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Summary

The Structure and Evolution of Breast Cancer Genomes

Scott Newman

Chromosome changes in the haematological malignancies, lymphomas and sarcomas are 
known to be important events in the evolution of these tumours as they can, for example, 
form  fusion  oncogenes  or  disrupt  tumour  suppressor  genes. The  recently  described 
recurrent fusion genes in prostate and lung cancer proved to be iconic examples as they 
indicated that important gene fusions are found in the common epithelial cancers also. 
Breast cancers often display extensive structural and numerical chromosome aberration 
and have among the most complex karyotyes of all cancers. Genome rearrangements are 
potentially an important source of mutation in breast cancer but little is known about how 
they might contribute to this disease. 

My first aim was to carry out a structural survey of breast cancer cell line genomes in order  
to find genes that were disrupted by chromosome aberrations in “typical” breast cancers. I 
investigated three breast cancer cell lines, HCC1187, VP229 and VP267 using data from 
array painting, SNP6 array CGH, molecular cytogenetics and massively parallel paired end 
sequencing. I then used these structural genomic maps to predict fusion transcripts and 
demonstrated expression of five fusion transcripts in HCC1187, three in VP229 and four in 
VP267.

Even though chromosome aberrations disrupt and fuse many genes in individual breast 
cancers,  a  major  unknown  is  the  relative  importance  and  timing  of  genome 
rearrangements  compared  to  sequence-level  mutation.  For  example,  chromosome 
instability might arise early and be essential to tumour suppressor loss and fusion gene 
formation or be a late event contributing little to cancer development. 

To address this question, I  considered the evolution of these highly rearranged breast 
cancer karyotypes. The VP229 and VP267 cell lines were derived from the same patient 
before and after therapy-resistant relapse, so any chromosome aberration found in both 
cell lines was probably found in the common in vivo ancestor of the two cell lines. A large 
majority  of  structural  variants  detected  by  massively  parallel  paired  end  sequencing, 
including  three  fusion  transcripts,  were  found  in  both  cell  lines,  and  therefore,  in  the  
common ancestor. This probably means that the bulk of genome rearrangement pre-dated 
the relapse.

For HCC1187, I classified most of its mutations as earlier or later according to whether 
they  occurred  before  or  after  a  landmark  event  in  the  evolution  of  the  genome  -  
endoreduplication  (duplication  of  its  entire  genome).  Genome  rearrangements  and 
sequence-level mutations were fairly evenly divided between earlier and later, implying 
that  genetic  instability  was  relatively  constant  throughout  the  evolution  of  the  tumour. 
Surprisingly,  the  great  majority  of  inactivating  mutations  and  expressed  gene  fusions 
happened earlier. The non-random timing of these events suggests many were selected.
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Introduction

1.1. Cancer

Cancer comprises a large number of diseases that can affect every tissue of the body and 

can afflict  people at all  ages.  In  2006 cancer  caused about  13% of  all  human deaths 

(Watson et al., 2006)

First  and  foremost,  cancer  is  a  disease  of  uncontrolled  cell  division.  Under  normal 

circumstances  somatic  cells  divide,  quiesce  or  die  when  appropriate  but  when  a  cell 

becomes cancerous it, and its progeny, divide uncontrollably, eventually forming a tumour.  

Often early cancers are in the form of benign, encapsulated lesions confined to a single 

tissue and many of  these pre-malignant  lesions do not  represent  a  danger  to  health. 

Some  benign  lesions,  however,  acquire  an  ability  to  invade  surrounding  tissues  and 

eventually spread to distant areas of the body -  a  process known as metastasis.  The  

majority of cancer-related deaths are caused by metastatic lesions. 

Secondly, cancer is an evolutionary process and evolution is stepwise mechanism driven 

by mutations in DNA.  Nowell (1976) suggested that an initiating event causes a cell to 

divide inappropriately and the uncontrolled and error-prone process of cell division leads to 

the  accumulation  of  genetic  alterations  (Nowell,  1976). This  facilitates  the  “continual 

selective  outgrowth  of  variant  sub-populations  of  tumour  cells  with  a  proliferative 

advantage”  (Bell, 2010, p.231). In subsequent years Nowell's view has been proven and 

now we regard  each tumour  as  “...  the  outcome of  a  process of  Darwinian  evolution 

occurring among cell populations within the micro-environments provided by the tissues of 

a multicellular organism“  (Stratton et al., 2009, p.719). Thus, cancer represents a cell's 

regression to a state of self-interest. Rather than obeying instructions from its surrounding 

environment for the good of the organism's germ line a cancer cell “decides” the best way 

to perpetuate its genes is to divide regardless of the interests of the organism.

Central  to the process of evolution is mutation. Mutations may be caused by chemical 

carcinogens, such as tobacco smoke, radiation or viral insertion into the genome but can 

also arise from random errors in DNA replication or repair. But regardless of the source of  

mutation the net result is production of gene variants which allow their host cell to either 
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Introduction

survive and reproduce better or to die. A cancer cell must, therefore, acquire mutations  

allowing it to survive better and reproduce more within its habitat and eventually to move 

expand into other bodily habitats.

Molecular biology has identified several characteristics that cells acquire when they evolve 

towards  this  self-interested  state:  the  so-called  'Hallmarks  of  Cancer.'  (Hanahan  and 

Weinberg, 2000).  These traits are: i) Self-sufficiency in growth signals ii) insensitivity to 

anti-growth signals iii) evasion of apoptosis iv) limitless replicative potential v) sustained 

angiogenesis,  where  appropriate  and vi)  the  ability  to  invade surrounding tissues and 

metastasise (Hanahan and Weinberg, 2000). The hallmarks have become a popular lens 

through which to view cancer evolution as they effectively split  a large question, “what 

causes cancer?” into a series of smaller ones.

The hallmarks are far from immutable, and debate, to varying extents, exists over each.  

For  example,  liquid  tumours  do  not  require  a  blood  supply  and  are,  by  definition, 

metastatic.  Others  have  suggested  phenotypes  such  as  chromosome  instability  and 

escape from senescence should be considered hallmarks as well  (Shay and Roninson, 

2004; Negrini et al., 2010). More hallmarks probably remain to be described but, for now, 

the ongoing challenge of cancer research is to identify the genetic changes that alter the  

specific cellular processes necessary for cancer to develop.

1.2. Breast Cancer

1.2.1. Susceptibility Alleles

Breast cancer accounts for approximately 20% of all cancers in Western Europe and the 

USA. Five to ten percent of breast cancers show clear inheritance through families where 

mutations in BRCA1 and BRCA2 genes confer a highly penetrant disease risk (Miki et al., 

1994; Wooster et al., 1995). Variants of four other genes, CHEK2, BRIP1, ATM and PLAB2 

confer a 2-4 fold relative risk of breast cancer and are classed as intermediate penetrance 

alleles (Ripperger et al., 2009). These mutations probably contribute in large part to early 

cancer  development  but  whether  they,  themselves,  cause a  growth  advantage or  just 
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facilitate further mutation remains a contentious issue (Sieber et al., 2002; Skoulidis et al., 

2010). 

Li  Fraumeni  syndome and  Cowden disease families,  carrying  mutations  in  TP53 and 

PTEN receptively,  also  have an increased risk  of  developing  breast,  as  well  as  other 

cancers  (Li  and Fraumeni,  1969;  Liaw et  al.,  1997).  Various other  DNA-repair  related 

syndromes involving STK11, PTEN, CDH1, NF1 and NBN genes also increase the risk of 

breast  cancer  (Mavaddat  et  al.,  2010) but  due to  the  rarity  of  these syndromes,  their 

overall contribution to the population burden of breast cancer is small. 

Risk  within  the  general  population  is  modulated  by  several  common  gene  variants 

including FGFR2, TNRC9, MAP3K1, LSP1 and RAD51L1 (Easton et al., 2007; Thomas et 

al., 2009). Several non-coding SNPs also confer susceptibility and probably play a role in 

the  regulation  of  other  cancer  relevant  genes  (Wright  et  al.,  2010).  The  moderate 

contribution to disease risk by SNPs in individuals means that most breast cancers are 

considered sporadic with no precise genetic or environmental cause determined. 

1.2.2. Breast Cancer Histology

A defining  feature  of  breast  cancer  is  its  heterogeneity.  Breast  cancers  have  distinct 

histopathological features, genetic and genomic variability, so are now considered by some 

as collection of diseases arising in the same organ rather than a single disease (Vargo-

Gogola and Rosen, 2007).  The challenge of identifying causative mutations in sporadic 

breast cancer has, therefore, been particularly difficult as hundreds of genes are mutated 

or  rearranged  and  thousands  of  genes  are  differentially  expressed  between  tumour 

subtypes. 

Histologically,  breast cancers are classified into several categories: the most advanced 

pre-invasive  breast  cancers  are  either  lobular  carcinoma  in  situ  (LCIS)  and  ductal 

carcinoma in situ (DCIS).  Invasive lesions are subdivided into tubular carcinoma (2%), 

medullary carcinoma (5%), lobular carcinoma (10%) and ductal carcinoma (80%) (Watson 

et  al.,  2006). Breast  cancers  are  also  staged  according  to  whether  they express  the 
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oestrogen receptor (ER), progesterone receptor (PR) and HER2/ERBB2 receptor. Breast 

tumours  are  further  classified  at  diagnosis  based  upon  size,  lymph  node  status  and 

metastasis, and degree of differentiation. Currently the combination of the above factors 

forms a model of risk and dictates treatment strategy.

1.2.3. Gene expression patterns

In addition to this histological heterogeneity, breast cancers are also heterogeneous on a 

molecular level. Messenger RNA profiling studies have revealed that breast cancer may 

have five or more, subtypes (Sotiriou et al., 2003; Sørlie et al., 2001; Weigelt et al., 2010b). 

Early studies by Perou et al. (2000) and Sørlie et al. (2001) showed two main and clinically 

relevant  classes,  based  on  ER status.  ER-positive  tumours  can  be  further  divided  in 

luminal A and B. ER-negative tumours can be divided into basal epithelial-like  ERBB2-

over-expressing and normal-breast-like groups (Perou et al., 2000; Sørlie et al., 2001).The 

luminal subtypes display high levels of ER-activated genes. Luminal A tumours express 

lower levels of proliferative genes and are usually of low histological grade and have an 

excellent prognosis. Luminal B cancers tend to be of a higher grade, express higher levels  

of proliferative genes and have a significantly worse prognosis (Weigelt et al., 2010a). The 

ER-negative tumours appear to be more heterogeneous. ERBB2 tumours express genes 

associated with  the  ERBB2 pathway and like basal  tumours,  which express basal-like 

cytokeratins,  laminins  and  fatty  acid  binding  proteins,  have  an  aggressive  clinical 

behaviour. The clinical significance of normal breast-like tumours has yet to be determined.

Later  studies  have  always  reproduced  the  ER-positive/ER-negative  classification,  but 

subdivisions of these groups have sometimes varied between studies. For example, the 

luminal  A and B classification seems robust,  but  some studies have proposed a sub-

division of  the luminal  B group that  is  not  always reproducible.  Likewise,  a  significant 

number of HER2-amplified tumours are ER-positive. Weigelt et al., (2010) concluded that 

“despite  the  numerous  publications  describing  this  molecular  taxonomy,  it  remains  a 

working model in development and not a definitive classification system, given that further 

molecular subtypes have been and may be identified” (Weigelt et al., 2010a, p.267). 
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1.2.4. Developmental Hierarchy of Breast Cells

The developmental hierarchy of breast epithelium is not well understood but it is probable 

that the various subtypes of breast cancer arise in distinct cell types (Stingl and Caldas,  

2007). A major question underpinning breast cancer classification is whether the different  

subtypes  do indeed arise  from different  stem cells  or  commuted  progenitors  or  if  the  

molecular heterogeneity of breast cancer represents multiple evolutionary routes taken by 

a common cell of origin. 

Mammary epithelium is composed of two lineages: an inner layer of luminal cells and an  

outer sheath of myoepithelial cells. A current model is that a single stem cell resides at the 

top of  both luminal  and myoepithelial  hierarchies.  This  stem cell  population splits  into  

committed luminal progenitor and bipotent progenitors. The luminal progenitors produce 

luminal and alveolar epithelium and the bipotent progenitors giving rise to the ductal and 

myoepithelial components (Stingl, 2009).  If cancers arise in committed progenitors rather 

than  from  the  multipotent  stem  cell  population  this  would  provide  a  rationale  for 

investigating  separate  molecular  subtypes  of  breast  cancer  as  if  they  were  separate 

diseases (Cairns, 2002; Krivtsov et al., 2006).

1.3. Mutations that cause cancer

Classically, somatic mutations that confer a growth advantage could be classified in one of 

two  categories:  oncogenes  and  tumour  suppressor  genes.  Oncogenic  mutations  are 

dominantly acting gains of function whereas tumour suppressor mutations are recessive 

losses  of  function.  But  as  we  have  learned  more  about  cancer  biology,  this  simple 

classification is becoming less clear. For example, some have suggested a 'gatekeeper'  

and 'caretaker' subdivision for tumour suppressor genes (Levitt and Hickson, 2002). 

The first  naturally occurring,  cancer-causing  sequence change in  humans was  a  G>T 

substitution resulting in a change from glycine to valine in codon 12 of the HRAS gene in 

bladder cancer (Parada et al., 1982; Tabin et al., 1982). Since the 1980s, the list of cancer 
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genes has grown to a current 427 according to one recent estimate and is only likely to get 

bigger  (Futreal et al.,  2004).  An important feature of this “cancer gene census” is that 

genes can be disrupted by numerous different mechanisms in including point mutation, 

chromosome aberration and epigenetic changes.

1.3.1. Sequence-level changes

Oncogenic  mutations  typically  alter  the  amino  acid  sequence  of  a  protein,  causing 

constitutive  or  inappropriate  activation.  Examples  of  this  process  are  point  mutations 

commonly observed in the RAS family of proto-oncogenes. K-RAS mutations are common 

in lung,  pancreas and colon carcinomas whereas  N-RAS mutations are often found in 

haematological  malignancies  such  as  acute  myeloid  leukaemia  and  H-RAS discussed 

above. The majority of mutations in these genes are in codon 12 and cause constitutive  

activation of the signal-transduction function of the RAS protein (Bos, 1989).

Loss of function can also be achieved by changes to the DNA sequence, for example by 

generating a stop codon within the reading frame of a gene, as is commonly observed in  

the tumour-suppressor gene, APC. DNA methylation at the CpG islands of gene promoters 

can also silence gene expression and aberrant methylation can cause tumour-suppressor 

gene silencing.  Methylation at the promoters of various cancer-relevant genes, including 

p16(INK4a), APC, BRCA1 and CDH1 has been described (Esteller et al., 2001).

1.3.2. Sequence-level changes in breast cancer

The first unbiased mutation screens of the breast cancer exome took place in 2007 based 

on the CCDS database, representing 18,191 distinct genes. The authors sequenced all the 

coding exons in eleven breast cancer cell lines and showed that an average breast cancer 

cell line accumulates around 90 mutant alleles in its lifetime. (Sjöblom et al., 2006; Wood 

et al., 2007). The majority of alterations were single-base pair substitutions (92.7%), with 

81.9% resulting in missense changes, 6.5% resulting in stop codons, and 4.3% resulting in 

alterations of splice sites or untranslated regions. The remaining somatic mutations were 

insertions, deletions, or duplications (7.3%). 
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The screen re-identified mutations in cancer genes such as  TP53  and  BRCA1 but the 

striking outcome of the study was, however, that the large majority of mutations were in 

genes not previously linked to cancer (Sjöblom et al. 2006; Wood et al. 2007). The authors 

used several criteria to estimate if a gene had mutated at a rate above background (see 

section 1.5.2.1), so was likely to have been selected. It was then clear that there was a 

large number of low prevalence and previously uncharacterised candidate cancer genes in 

breast cancer.

Recent  whole  genome  sequencing  studies  have  confirmed  this  view  of  the  genomic 

landscape  of  breast  tumours.  Shah  et  al  (2009)  achieved  >43-fold  sequence-level 

coverage  of  an  ER-positive  metastatic  lobular  breast  cancer  obtained  from  a  pleural 

effusion nine years after the initial diagnosis.  Prior to surgery, radiotherapy was used to 

treat the primary tumour and in the intervening 9 years before relapse, the patient was 

treated with tamoxifen and an aromatase inhibitor. The authors identified 32 somatic non-

synonymous coding mutations. When they went back to the primary tumour, from 9 years 

earlier, five of the 32 mutations were prevalent in the DNA of the primary tumour at high 

frequencies, six at lower frequencies and 19 could not be detected. It should be noted that 

the authors could not search effectively for indels, so the true number of mutations in their 

tumours was likely to be higher. Ding et al (2010) used a similar approach for a basal-like 

breast cancer, its metastasis and a xenograft of the metastasis. A total of 50 sequence-

level somatic mutations were validated in at least one of the samples. Of these validated 

point mutations and small indels, 48 were detectable in all three tumours. The metastasis  

was significantly enriched for 20 mutations and one large deletion shared by the primary 

tumour. 

When Shah et al. (2010) looked for recurrence of their 32 point mutations in 192 breast  

tumours, none had identical mutations and only three of the tumours had point mutations 

in one of the same genes. Furthermore, none of the 32 genes were previously identified as 

candidate cancer genes described by Wood et al. (2007). The authors concluded by “...  

predict[ing] that the key features of this landscape—a few gene mountains interspersed 

with many gene hills—will prove to be a general feature of most solid tumours ... This view 

of cancer is consistent with the idea that a large number of mutations, each associated 

8



Introduction

with a small fitness advantage, drive tumour progression” (Wood et al., 2007, p.1108).

1.3.3. Changes to chromosome structure

Catalogues of sequence-level somatic coding mutations are now growing rapidly, but this  

source of mutation only gives us a partial view of how genes can be disrupted in cancer 

(Wood et al., 2007; Forbes et al., 2010). The first loss of function mutation to be described, 

for example, was of the Retinoblastoma protein and was mediated through a chromosomal 

deletion (Knudson et al., 1976; Knudson, 1993). 

Clonal chromosome abnormalities, often acquired during carcinogenesis, are visible down 

the microscope as gains, deletions, inversions and translocations and are a feature of  

nearly all cancers (Mitelman et al., 1997, 2007; Heim and Mitelman, 2009). Chromosome 

abnormalities  contribute  to  carcinogenesis  by  four  mechanisms:  transcriptional 

deregulation of proto-oncogenes, duplication of proto-oncogenes (or regions containing 

them), deletion or interruption of tumour suppressor genes and the formation of chimeric 

fusion genes. 

An increasing number  of  chromosome abnormalities are now recognised as important 

diagnostic and prognostic factors. As of 2007, a total of 11,500 articles had been published 

on clonal cytogenetic abnormalities and of the 427 consensus cancer genes about 70% 

were discovered at or near chromosome break points  (Mitelman, 2000; Mitelman et al., 

1997, 2007; Futreal et al., 2004). The vast majority of recorded abnormalities have been 

described in haematological malignancies as individual cases often contain only a single 

derivative chromosome and the break points can be mapped by G-banding or techniques 

such as fluorescence in situ hybridization (FISH). 

Carcinoma genomes contain more structural variation than the average leukaemia and this 

has made it very difficult to identify chromosome breakpoints. In contrast to leukaemia etc. 

previous  research  in  common  epithelial  cancers  has  had  to  focus  on  sequence-level 

mutations and genomic gains and losses. As a result, we simply do not know much about 

the  contribution  of  gene  deletions  and  fusions  in  such  cancers.  Some  have  even 

9



Introduction

considered  chromosome  rearrangements  unimportant  in  carcinomas  (Vogelstein  and 

Kinzler, 2004). This conclusion probably reflects a lack of data rather than any fundamental 

difference  between  chromosome  aberrations  found  carcinomas  and  those  of 

haematological cancers (Mitelman et al. 2007).

1.3.4. The cytogenetics of breast cancer

In breast cancer, genomic rearrangements are so diverse it is debatable whether breast  

cancer cytogenetics really exists as it does for leukaemia, lymphoma and sarcoma (Stingl 

and Caldas, 2007). Past studies have noted the karyotypic alterations were clearly non-

random but also very heterogeneous (Teixeira et al., 2002; Teixeira, 2006); the majority of 

primary  breast  tumours  showing  a  complex  pattern  of  chromosomal  gain,  loss  and 

translocation.  While  breakpoints  or  regions  of  gain  are  often  recurrent  at  cytogenetic 

resolution, further investigation at the gene-level has often been difficult as the breakpoints  

show  some  heterogeneity  and  additional  rearrangements  probably  also  take  place 

(Paterson et al., 2007; Pole et al., 2008).

Observed  complexity  is  so  high  that  only  the  boldest  cytogenetic  features  have  been 

described in past G-banding and R-banding studies. Using standard cytogenetic methods, 

several  recurrent  karyotypic  abnormalities  have  been  identified:  The  most  frequent 

chromosome  rearrangements  were  del(3)(p12~10p14~21),  der(1;16)(q10;p10)  and  i(1)

(q10) found in 13, 12 and 9% of cases respectively (Teixeira et al. 2002; Teixeira 2006). 

The chromosomes 8, 1, 17, 16 and 20 were commonly involved in translocations, t(8;11),  

t(1;16) and t(5;17) being the most frequent. 

Spectral karyotyping (SKY) of metaphase chromosomes in primary tumours and cell lines 

allowed previously unidentifiable origins of marker chromosomes to be resolved (Adeyinka 

et al., 1998; Kytölä et al., 2000; Davidson et al., 2000). This allowed us to form a fuller idea 

of  the  extent  of  rearrangement  in  many  breast  cancer  genomes  (although  most 

intrachromosomal  events  could  not  be  identified  by  this  method).  Interestingly,  many 

balanced rearrangements were uncovered by SKY (Davidson et al. 2000) and as there is  

no  (or  very  little)  loss  of  genetic  material  in  a  balanced  translocation  junction,  gene 
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changes at the chromosome breakpoints are more likely to be important events than those 

at unbalanced translocation breaks.

1.3.5. Tumour Suppressor Gene Deletion

Loss  of  17p  is  one  of  the  most  common  cytogenetic  events  in  cancer.  The  tumour 

suppressor P53, located on 17p is most likely to be the critical gene lost here. Many other 

such losses can be observed in cancer genomes including focal deletions of RB1 and p16 

(Knudson et al., 1976; Murphree and Benedict, 1984; Baker et al., 1989). 

Recurrent losses are observed in breast cancer genomes also, most frequently, -1p, -8p, 

-11q and -16q. As regional variations in copy number cause considerable changes in the 

expression of large numbers of genes (Pollack et al., 2002) the difficulty in breast cancer is 

finding single genes driving cancer  progression amongst  a heterogeneous background 

(Chin et  al.,  2007).  These difficulties are illustrated by 8p deletion in breast and other 

cancers.

Numerous studies have shown that distal 8p is lost in breast and other tumours (Pole et 

al., 2006). Increasingly high resolution approaches revealed that the chromosome break 

often falls within 8p12, within or just proximal to the gene NRG1, a plausible breast cancer 

gene as it is a ligand for the ERBB2/ERBB3 heterodimer (Falls, 2003; Pole et al., 2008; 

Cooke et al., 2008). Subsequent systematic investigations of 8p identified the gene NRG1 

as recurrently broken in 6% of primary breast cancers and ovarian cancers  (Adélaïde et 

al., 2003; Huang et al., 2004) and not expressed in a high proportion of breast tumours 

due to methylation at its promoter (Chua et al., 2009). But still the possibility remains that 

loss of NRG1 is not the driving force behind 8p aberrations. Some tumours have breaks 

distal to NRG1, making some hypothesise that the true driver is somewhere distal of 8p12 

or that multiple tumour suppressors are found on 8p (Cooke et al., 2008). Also, the ODZ4-

NRG1 fusion in the MDA-MB-175 cell line was the first fusion gene described in breast 

cancer and seems to encode a pro-proliferative secreted protein, meaning that NRG1 has, 

in theory, oncogenic potential (Schaefer et al. 1997; X Liu et al. 1999; X Z Wang et al.  

1999).
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1.3.6. Oncogene Amplification

Oncogenes  can  achieve  over-expression  by  increase  in  their  genomic  copy  number 

(Pollack  et  al.,  2002;  Chin  et  al.,  2007).  Amplified  oncogenes  can  be  observed  in 

karyotypes  as  double-minute  (DM)  chromosomes  or  homogeneous  staining  regions 

(HSRs). Their mechanism of formation is contentious but in each case, up to hundreds of  

copies  of  amplified  regions  can  be  present  (Schwab  1998). DMs  are  acentric 

minichromosomes  that  exist  episomally  but  can  also  integrate  back  into  the  genome 

(Storlazzi et al. 2010). HSRs are segments of chromosomes that lack any banding pattern 

and can encompass large regions of amplified genomic DNA.  Three gene families MYC, 

ERBB and RAS are amplified in various tumour types and are clearly important factors in 

cancer (Santarius et al. 2010).

Several amplifications are recurrently observed in breast cancer: the best known being 

17q12,  which  harbours  the  HER2 (ERBB2)  gene.  HER2 is  highly  amplified  in 

approximately 20% of cases and defines a prognostically important  subclass of breast 

cancers  (Slamon  et  al.,  1987,  1989,  2001).  Other  recurrent  amplifications  are  on 

chromosomes  8,  11,  12,  17  and  20,  bounding  known  and  postulated  breast  cancer  

oncogenes such as BRF2, ASH2L, CCND1, EMSY, NCOA3, MYBL2 and STK6 (Garcia et 

al., 2005; Hughes-Davies et al., 2003). Co-amplification of 8p and 11q is often observed in 

breast cancer (Paterson et al., 2007). The gene(s) driving this amplification are not known 

but an explanation is synergistic up-regulation of CCND1 and ZNF703 (Kwek et al., 2009).

1.3.7. Gene Fusion

A major advance in cancer  cytogenetics came with  the description of  the Philadelphia 

chromosome,  an  abnormal  marker  in  the  karyotypes  of  leukaemic  cells  (Nowell  and 

Hungerford, 1960; Nowell, 1962). Chromosome banding then identified the Philadelphia 

chromosome as being derived from a translocation of chromosomes 9 and 22 (Rowley,  

1973). Eventually the break points were mapped as t(9;22)(q34;q11) (Heisterkamp et al.,  

1985) and the BCR-ABL fusion oncogene was described and was subsequently found in a 

high proportion of chronic myeloid and other leukaemias (de Klein et al. 1982; Druker et al.  
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2001). Most importantly, the over-active kinase ABL could be targeted with a non-specific 

kinase inhibitor and the iconic drug Glivec has provided a paradigm for targeted therapy 

(Druker et al., 2001). 

Examples  of  oncogenic  fusion  genes  now  abound  in  leukaemias,  lymphomas  and 

sarcomas and are often important diagnostic and prognostic features. In 2005 a recurrent 

fusion  gene  was  found  in  a  common  epithelial  cancer  when  Tomlins  at  al.  used  a 

bioinformatic  approach  to  find  gene  fusions  of  ETS-family  transcription  factors  to  the 

TMPRSS2 gene in approximately 70% of prostate cancers (Tomlins et al., 2005). In 2007, 

Soda et al. used a transformation assay to identify EML4-ALK gene fusions in non-small-

cell  lung cancer and went on to show the fusion was present  in approximately 7% of  

patients (Soda et al., 2007). Many more oncogenic fusion proteins probably remain to be 

found in the complex genomes of epithelial cancers. 

Most gene-fusions seem to fall  into several  general  classes (although there are some 

examples  which  do  not  clearly  fit  into  one  of  these  categories  such  as  the  BCL2 

(antiapoptotic) fusions in B-cell leukaemias).

i) Activation of receptor tyrosine kinases

ii) Activation of intracellular kinases

iii) Formation of chimeric transcription factors or chromatin modifiers

1.3.7.1. Receptor Tyrosine Kinases

The  RET–CCDC6 fusion gene in the papillary thyroid carcinoma was the first recurrent 

genetic  change caused by a chromosome aberration  in  an  epithelial  cancer  and nine 

subsequent  fusions  involving  RET were  described.  Approximately  40%  of  thyroid 

carcinomas are now known to carry one of these chimeric genes  (Pierotti et al., 1992). 

RET  is a receptor tyrosine kinase, and upon ligand binding the receptor dimerises and 

transphosphorylates the cytoplasmic tail of its neighboring molecule. The phosphorylated 

tail can recruit SH2 and SH3 containing cytoplasmic effector proteins, such as  Shc and 

Grb2 to  activate  mitogenic  pathways.  A  common  molecular  mechanism  leading  to 
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activation  of  RET occurs  in  all  cases.  Fusion  RET oncoproteins  can  dimerise  and 

transphosporylate  independent  of  ligand,  so  constitutively  activate  mitogenic  pathways 

(Alberti et al., 2003).

1.3.7.2. Intracellular Kinases

Fusions  of  intracellular  kinases  has  been  observed  in  members  of  the  RAS signal 

transduction  pathway notably  due  to  tandem duplication.  Both  BRAF and  RAF1 have 

found to be fused to KIAA1549 and SRGAP3 respectively in pilocytic astrocytomas. Both 

fusions  include  the  kinase  domains,  and  show elevated  kinase  activity  (Jones  et  al., 

2008a, 2009).

1.3.7.3. Transcription factors and Chromatin Modifiers

Gene fusions can form chimeric transcription factors. The translocation t(15;17)(q22;q21) 

in acute promyelocytic leukemia (PML) fuses the PML gene (15q22) with the retinoic acid 

receptor alpha gene (RARA) gene. The PML protein contains a RING finger DNA binding 

domain  and  RARA encodes  the  retinoic  acid  alpha-receptor.  The  PML-RARA fusion 

protein may confer altered DNA-binding specificity to the RARA ligand complex and PML-

RARA gene fusion provided another target for therapy in the form of the retinoid, all-trans  

retinoic acid (Huang et al., 1988).

Chimeric  chromatin  modifiers  can  also  affect  gene  transcription,  for  example  through 

fusions  of  the  Mixed  Lineage  Leukaemia gene,  MLL.  The  MLL protein  is  a  histone 

methyltransferase  found  within  complexes  that  regulate  transcription  via  chromatin 

remodelling and is the target of translocations in leukaemais. Specifically, MLL methylates 

histone H3 lysine 4, and regulates gene expression including multiple  HOX genes. The 

numerous leukaemogenic  MLL chimeras have lost  methyltransferase activity and most 

MLL -translocated leukaemias appear to have increased expression of  HOX and other 

target genes (Krivtsov and Armstrong, 2007).
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1.3.8. Gene fusions in breast cancer

Prior to 2007 only four fusion genes had been described in tumours of the breast: ETV6–

NTRK3, ODZ4–NRG1, BCAS3-BCAS4 and TBL1XR1–RGS17 (Wang et al., 1999; Hahn et 

al., 2004; Tognon et al., 2001; Mitelman et al., 2007).  ETV6–NTRK3, the only recurrent 

fusion gene, is specific to secretory breast carcinoma, which is rare and atypical. In 2008, 

Howarth et al. used an array-based approach to finely map chromosome breakpoints for 

all balanced breaks within 3 breast cancer cell lines: HCC1187, HCC1806 and ZR-75-30. 

Breaks in genes  CTCF,  EP300/p300 and  FOXP4 were observed as well  as two gene 

fusions between TAX1BP1-AHCY and RIF1-PKD1L1 reported (Howarth et al., 2008). 

Subsequent  studies  based  around  massively  parallel  paired  end  sequencing  have 

identified a large cache of, as far as we know, non-recurrent fusion genes in breast cancer 

cell lines and primary tumours – discussed below (Hampton et al., 2008; Zhao et al., 2009; 

Stephens et al., 2009). These systematic investigations support the idea that chromosome 

rearrangements play an important role in breast cancers and one of their modes of action 

is to fuse genes. There are potentially many recurrently disrupted genes at chromosome 

breakpoints in breast cancer but to date most have remained elusive (Edwards, 2010).

1.3.9. The complex structure of breast cancer genomes

The mutational burden of genes disrupted at the sequence-level and at the chromosome 

level  is  likely  to  be  similar  in  breast  cancer.  Recent  studies  based  around  massively 

parallel  paired  end  sequencing  have  confirmed  this  fact  and  add  detailed  maps  of 

structural variation to the developing picture of the breast cancer genome (Hampton et al., 

2008; Stephens et al.,  2009).  Massively parallel  paired end sequencing has also been 

applied  at  the  transcript  level  and  can  detect  fusion  transcripts  (Maher  et  al.,  2009; 

Chinnaiyan et al., 2009; Zhao et al., 2009).

Hampton et  al.  (2008) performed a structural  survey of  the widely-used MCF-7 breast 

cancer  cell  line  using  massively  parallel  paired  end  sequencing.  They  observed  157 

somatic  breakpoints  and  79  known  or  predicted  genes  were  found  at  translocation 
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breakpoints.  Ten events were predicted to fuse the reading frames of disparate genes and 

four could be detected at the transcript level.

Stephens et al. (2009) recently employed a similar approach to discover genes disrupted 

and fused at chromosome breakpoints in 24 breast cancers (9 cell lines and 15 primary 

tumours). The authors showed, as did Hampton et al. (2008), that structural variants in 

breast tumour genomes contribute many hundreds of mutations to the overall total, and 

furthermore, that genes can be mutated by mechanisms we have not yet fully appreciated 

such as tandem duplication and internal rearrangement. For cell lines the median number 

of rearrangements per sample was 101 and ranged from 58 to 245 and for tumours the 

median was 38 and ranged from 1 to 231 (Campbell et al., 2008b; Stephens et al., 2009).

Past studies have shown that translocations can occur between spatially proximal areas of 

the  genome  (Roix et al.,  2003; Osborne et al.,  2007) so it  follows that the majority of 

rearrangements should be small and intrachromosomal. This is indeed what Stephens et 

al. (2009) observed; 85% of rearrangements were within the same chromosome and less 

than 2Mb apart. Approaches such as SKY and array CGH probably would not have been 

able to identify them as many were balanced and most were below the resolution of this 

technique.

Many of the Stephens et al. (2009) rearrangements fell within genes, many fusion genes 

were  predicted  and  several  were  expressed.  An  important  observation  is  that  breast 

cancers can express several fused genes. The study described 21 potentially functional 

novel fusion genes, most of unknown function but several within known cancer genes such 

as ETV6 and EHF, although none were shown to be recurrent.

Given the small size of many of the rearrangements, many fell entirely within genes and in 

some cases this affected the exon structure of the transcript. Novel isoforms resulting from 

rearrangements  were  detected  for  oncogenes  such  as  RUNX1 but  also  in  well-

characterised tumour suppressor genes such as  RB1, APC and  FBXW7. Therefore, it is 

possible  oncogenic activation or  tumour suppressive  loss of  function was achieved by 

structural rearrangement of the open reading frames of these genes. It is interesting to  
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consider that Sanger sequencing studies would not have detected any mutations as the  

coding exons were all intact. It may be possible, therefore, that genes such as APC and 

RUNX1,  considered  unimportant  in  breast  cancer,  may,  in  fact,  be  relevant  to  breast  

cancer (Newman and Edwards, 2010; Edwards, 2010).

1.4. Questions for post-genome cancer research

In 2008-2010 we have seen first  fully sequenced cancer genomes from breast cancer, 

chronic myeloid leukaemia, lung cancer and malignant melanoma (Ley et al., 2008; Shah 

et al., 2009; Ding et al., 2010; Pleasance et al., 2010b, 2010a; Lee et al., 2010; Mardis et  

al., 2009) and these studies have rewritten our perception of the number of mutations a 

cancer genome contains. It is now clear that tumour genomes accumulate thousands of 

mutations, a hundred or so of which are in the coding exons of genes. But in addition to  

coding mutations, structural changes to the genome can contribute approximately as many 

mutations as changes to  the coding sequence (Hampton et  al.  2008;  Stephens et  al. 

2009). In any given tumour type there are hundreds of infrequently mutated genes and  

only  a  few  frequently  mutated  ones.  This  results  in  large  inter-tumour  genetic 

heterogeneity  but  additional  complexity  exists  as  tumours  themselves  contain  many 

competing  sub-populations  resulting  in  intra-tumour  heterogeneity  also  (Anderson  and 

Matsuno, 2006; Cooke et al., 2010b, 2010a; Navin et al., 2010). 

The way ahead for many in the field seems clear: to define more cancer genomes at the 

sequence  and  structural  levels  as  “[l]arge  sample  sets  will  have  to  be  analysed  to 

distinguish  infrequently  mutated  cancer  genes  from  genes  with  random  clusters  of 

passenger mutations” (Stratton et al.,  2009, p. 721). With this in mind the international 

cancer genome consortium intends to sequence 500 genomes from each of the common 

cancers within the next few years (Hudson et al., 2010).  But now that we might finally 

know what cancer genomes look like, the next question is how do we decide which of the 

many mutations are important?
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1.4.1. What types of mutations are needed to cause cancer?

Modern thinking of cancer biology centres around biological pathways.  Pathways turn 

signals  into  cellular  responses,  for  example,  in  Drosophila,  secreted  wingless  (wnt) 

signalling  molecules  cause  specific  cells  to  divide  and  differentiate  into  wing  halteres 

(Sharma and Chopra, 1976). Cellular responses, in general, work through pathways so it 

is reasonable to assume that each of the hallmarks of cancer are achieved by inactivation,  

or alternatively,  inappropriate activation of one or more biological pathway. Some have 

gone as far to say that all the complexity observed in tumour genomes affects no more 

than 20 biological pathways (Wood et al., 2007). The canonical wnt pathway is used here 

as an example as it  is  conserved between species, controls many events surrounding 

morphology, proliferation, motility and cell fate in embryogenesis and its aberrant signalling 

has been observed in several human cancers (Klaus and Birchmeier, 2008).

Secreted  Wnt proteins  bind  extracellular  domains  of  Frizzled family  of  receptors,  this 

causes activation of  Dishevelled (Dsh).  When  DSH is activated it  can inhibit  a second 

protein  complex  that  includes  axin,  glycogen  synthase  kinase-3 (GSK-3),  and 

adenomatous polyposis coli (APC).  The function of the axin/GSK-3/APC complex is to 

promote  proteolytic  degradation  of  another  intracellular  signalling  molecule,  β-catenin. 

Hence,  when  the  complex  is  inhibited,  cytoplasmic  β-catenin is  stabilised.   Upon 

stabilisation, β-catenin enters the nucleus and binds TCF/LEF family transcription factors 

and promotes expression of specific genes linked with cellular proliferation (Polakis, 2000).

Disregulation of  a  pro-growth  signalling pathway is  a  hallmark of  cancer  so we would 

expect to see mutations in members of this pathway in cancer, and indeed we do: Over-

production of  Wnt-1, the secreted signalling molecule, causes mammary tumours in the 

mouse  (Nusse and Varmus,  1982) Loss of  function  of  APC,  one of  the  most  famous 

examples of a tumour suppressor genes, is well described in colon cancer (Polakis, 1997). 

Activating  mutations  in  β-catenin can  also  be  observed  in  colon  cancer  as  well  as 

melanoma (Morin et al., 1997). Mutations in the AXIN1 gene have been reported in human 

hepatocellular carcinomas (Satoh et al., 2000).
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We can see that mutations within the same pathway can be oncogenic gains of function 

(WNT1, β-catenin) or tumour suppressive losses of function (APC, axin) but all have the 

eventual effect of dis-regulating the pathway, increasing net proliferation. Thus a series of  

isolated mutations can tell a common story.

Pathway-centred analysis of cancer mutations is beginning to bear fruit. For example, 12 

core processes or pathways appear to be deregulated in pancreatic tumours, but each by 

slightly different mechanisms (Jones et al., 2008c). In breast cancer, Wood et al. (2007) 

observed  several  mutations  in  PIK3CA,  a  known  oncogene  in  breast  cancer.  Not  all 

tumours had PIK3CA mutations but some had mutations in interacting and related genes 

GAB1, IKBKB, IRS4, NFKB1, NFKBIA, NFKBIE, PIK3R1, PIK3R4, and  RPS6KA3. This 

begins to implicate the PI3K pathway in general as well as links with nuclear factor kappa  

B (NF-κB) signalling in breast tumorigenesis.

The challenge we now face is predicting the effect, if any, a newly-discovered mutation has 

on a pathway, when the pathway or molecule in question is poorly characterised.

1.4.2. How many mutations are required for cancer to develop?

One of  the  largest  unanswered  questions in  cell  biology is,  how many mutations  are 

required to cause cancer? Many attempts have been made to answer this crucial question 

but one of the earliest models, suggesting six to seven rate limiting events, has remained 

the pre-genomic era's typical estimate for the number of necessary mutations in cancer 

(Armitage and Doll, 1954, 1957). Various mathematical models arguing for and against 

higher and lower numbers of mutations have been proposed (Tomlinson et al., 1996, 2002; 

Rajagopalan et al., 2003) but virtually all of these estimates come from the pre-genomic 

era.  Until  recently,  sufficient  data did  not  exist  to  allow people  to  address this  crucial  

question based on observation rather than theory and extrapolation.   Recent  analyses 

based around the breast cancer 'mutatomes' have suggested much higher, even as many 

as  fifty,  selected  mutations  in  epithelial  cancer  genomes  (Beerenwinkel  et  al.,  2007; 

Teschendorff and Caldas, 2009).
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1.4.2.1. Drivers versus Passengers

Central to this question is the drivers versus passengers problem (Stephens et al., 2005; 

Greenman et al., 2007): As our knowledge of cancer genomes increases, distinguishing 

selected 'driving'  mutations from large numbers of unselected ‘passenger’ mutations is 

becoming a major challenge.  A driver mutation has conferred growth advantage on the 

cancer cell, so has been positively selected.  A passenger mutation has not been selected:  

it has offered no growth advantage but any non-functional mutation that occurs in a cell  

with  driver  mutations  will  be  carried  along  by  cell  division  and  reach  fixation  in  the 

population, just as a driver would.

Greenman  et  al.  (2007)  made  one  of  the  first  attempts  to  address  this  problem 

experimentally. The authors assumed that to be a driver mutation, there must be an effect  

on protein structure, and therefore function, whereas synonymous mutations, as they do 

not alter protein structure, cannot be selected.  By sequencing 518 kinase genes in 210 

cancers including breast, lung, colorectal, gastric, testis, ovarian, renal, melanoma, glioma 

and acute lymphoblastic leukaemia Greenman et al.  (2007) were able to compare the 

relative proportions of synonymous and non-synonomous mutations.

There  appeared  to  be  an  excess  of  non-synonymous  mutations  compared  with  the 

expected number given the background synonymous mutation rate. Over one thousand 

somatic mutations were detected, 921 of which were single base substitutions. Of these 

substitutions, Greenman et al. (2007) estimated 763 (95% confidence interval, 675–858)  

were passenger mutations. This left an estimated 158 driver mutations (95% confidence 

interval, 63–246). This equates to less than one driving kinase mutation per sample, which 

is not particularly surprising. But nevertheless, these data suggested that the number of 

driving mutations may be somewhat higher than traditional estimates. If we assume that  

the  kinome is  a  reasonable  model  of  how genes,  in  general,  mutate  within  a  cancer 

genome (Greenman et al. corrected for highly mutated genes such as  KRAS) we might 

reasonably conclude that between 7 and 27% of all point mutations are likely to be driving 

events. 

20



Introduction

The first estimates for the number of driving mutations based on unbiased screening in  

breast cancer were attempted by Wood et al. (2007). Whole exome mutation screening of 

11 breast cancers revealed that breast tumours accumulate, on average, 90 mutant genes. 

To estimate the probability that  any given mutation was a passenger,  the authors first 

established the background mutation rate in the genome from previously published data. 

They then factored in gene size and varying frequencies of different base substitutions.  

The authors were then able to estimate if a given gene was mutated more than chance 

would  predict.   The  resulting  candidate  cancer  (CAN)  genes  had  more  than  90% 

probability of  having  undergone a selected mutation.  From 22 tumours,  11  each from 

breast and colon tumours, they identified 280 CAN-genes. In the average breast tumour, 

there were 14 CAN genes and this number can be equated to the lower estimate of drivers 

in  that  tumour.  These estimates  did  not  consider  non-coding regions,  RNA transcripts 

(including micro RNAs) or structural  variation, so the true number of  driving mutations  

could be considerably higher. 

It  may be reasonable to expect that driving cancer genes would be mutated in a high 

proportion of tumours and unselected passengers to be mutated at much lower frequency. 

Certain cancers appear to be “addicted” to certain oncogenes (Jonkers and Berns, 2004), 

for example, CML and ABL1 or pancreatic cancer and KRAS.  But, as the above studies 

show, the ‘genomic landscape’ of breast cancer contains only a small number of frequently 

mutated genes: 50% have mutations in TP53, 30% have mutations in PI3KCA, 20% have 

mutations in  CDH1 (Teschendorff and Caldas, 2009; Forbes et al.,  2010). Hundreds of 

other genes are found mutated in much lower numbers and some of these must also be 

driving mutations. 

1.4.2.2. Driving mutations caused by chromosome aberrations

It is probable that structural variation in the breast cancer genome is analogous to the 

sequence-level mutational landscape of breast cancer. Recurrent features such as ERBB2 

amplification  are  observed  with  high  frequency  but  many  hundreds  of  chromosome 

breakpoints occur at much lower frequency (Chin et al., 2007). 
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We also know that a typical breast cancer can express multiple fusion genes, but we do 

not  know how many are  driver  events.  Stephens et  al.  (2009) concluded most  gene-

fusions  were  not  selected  events.  As  the  mechanisms  that  form  chromosome 

translocations are thought to be random, the authors calculated that 2% of rearrangements 

would  have  generated  an  in-frame  fusion  gene  by  chance  compared  with  1.6%  of 

predicted fusion genes in their data.  Even if this observation is true, it is very different from 

saying gene fusions do not contribute any driving mutations in breast cancer. As we have 

seen above, even rare mutations can contribute driving events in cancer.

But interestingly, if one compares the number of  expressed in-frame fusion genes to the 

number of expressed out-of-frame fusion genes, the ratio is approximately 1:1.  This is 

somewhat  different  from the 1:3 ratio  we would expect  by chance and implies a high 

proportion of in-frame gene fusions in breast cancer are selected events.

1.4.3. How should we deal with intra-tumour heterogeneity?

As our capacity to identify mutations, both structural and sequence-level, increases the 

drivers versus passengers problem becomes ever more apparent. This task is made more 

challenging  by  the  intra-tumour  heterogeneity  at  the  sequence-level  as  well  as  the 

structural-level evident in many tumours (Jones et al., 2008b; Attard et al., 2009). 

Currently,  one  of  the  best  strategies  for  identifying  the  important  mutations  in  a 

heterogeneous  cancer  is  based  around  comparative  lesion  sequencing  (Jones  et  al., 

2008b; Shah et al., 2009). These studies have looked for mutations in primary tumours 

and their associated metastases.  From this one can identify three classes of mutation:  

those common to the primary tumour and metastasis and those private to one or the other.  

The common mutations are clearly interesting as these would contain all the early events 

in tumour evolution. Some may even argue that all the events necessary for metastasis 

are in this group as well  (Weiss et al.,  1983; Bernards and Weinberg, 2002; Edwards, 

2002). Private events in the primary tumour can be disregarded as they probably represent 

the heterogeneity of clonal sidelines.  Private events in the metastasis are more interesting 

as, where applicable, they may contain a mutation that allowed drug-resistant relapse. But 
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interestingly, the vast majority of apparently private mutations found within metastases are 

also found in the primary tumour, but often at a much lower frequency (Shah et al. 2009).

A second strategy for circumventing heterogeneity is to study cell lines. Historically, breast 

cancer cell lines have been used as models as it is difficult to obtain primary tumours and  

perform, for example, cytogenetic studies on them. Cell lines are considered much less 

heterogeneous than primary tumours as they presumably represent the outgrowth of a 

single ancestral cell in culture. Genome-wide screens have consistently identified higher 

numbers of mutations in cell lines than primary tumours (Wood et al., 2007; Stephens et 

al.,  2009) and  this  is  probably  because  finding  low-frequency  mutations  in  a 

heterogeneous environment is more difficult. 

Alternatively, it could represent evolution in culture, but some studies have indicated this  

source of mutation probably does not add a large number of mutations to the cell line 

genomes  (Neve  et  al.,  2006;  Jones  et  al.,  2008d).  For  example,  Neve  et  al.  (2006) 

compared early and late passage breast cancer cell  lines and concluded  they had not 

accumulated substantial new aberrations during culture. The authors went on to show that, 

broadly speaking, a panel of 51 breast cancer cell lines showed genomic gains and losses 

and transcriptional profiles similar to those found in a panel of breast tumours.  Thus, cell 

lines present, in many cases, a relatively homogeneous view of late stage tumours. While 

undoubtedly  their  genomes contain  many passenger  events,  these would  only  be  the 

passenger events in the history of a single lineage rather than the sum total of passenger 

mutations of the multiple clones of a primary tumour.

1.4.4. What is the role of chromosome instability?

The epithelial cancers often have highly rearranged genomes but a major unknown is how 

this state of chromosome instability (CIN) contributes to carcinogenesis1. If, for example, a 

1CIN  has  two  interchangeable  meanings  in  the  literature.  Some take  it  to  mean an  acquired 

acceleration in  the rate of  chromosome aberrations but  others only mean that  it  describes the 

observed  state  of  a  rearranged  genome.  Hereafter,  I  refer  to  an  acceleration  in  the  rate  of 

chromosome rearrangements as acquired CIN and the observed state of a rearranged genome as 

CIN alone.
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breast cancer expresses five fusion genes  (Hampton et al.,  2008), then how many are 

likely to be selected events as opposed to random or late passenger events? The question 

for epithelial cancers is, then, what proportion of chromosome changes are driving events? 

Essentially it is the drivers versus passengers problem restated. If upwards of 14 driving 

events come from somatic change at the sequence-level (Wood et al., 2007), is it possible 

to say a similar number come from changes in genome structure, given that chromosome 

changes probably disrupt as many genes as sequence changes? In order to answer these 

questions we must  first  speculate on the state of  CIN,  its  timing and whether  it  is  an  

acquired characteristic.

1.4.4.1. The State of CIN

We know that chromosome rearrangements can inactivate tumour-suppressor genes and 

activate  proto-oncogenes.  When  a  single  cytogenetic  aberration  is  observed  in  a 

leukaemia, for example, it is usually clear that chromosome instability has contributed a 

driving  mutation  to  that  particular  cancer.  Most  recurrent  clonal  rearrangements  in 

leukaemia are likely to be early events in cancer development, as they are usually the sole 

cytogenetic abnormality in a cell. This view is epitomised by Ford et al. (1998) who showed 

that  a  TEL-AML fusion  transcript  and  its  specific  genomic  junction  was  present  in 

monozygotic twins who both developed leukaemia. This means the translocation probably 

happened early in development in utero (Ford et al., 1998). 

In contrast to these early “primary” events, late stage and relapsed leukaemias sometimes 

show “secondary”  translocations.  These later  events  are not  seen with  any degree of  

recurrence between cases and are never the sole abnormality in a karyotype (Johansson 

et  al.,  1996).   It  is  probable,  therefore,  that  secondary  translocations  are  nearly  all  

passenger events. In the case of breast cancer, where most tumours do not exhibit many 

recurrent chromosome aberrations that we know of, it is tempting to conclude that we are 

only observing many late, and therefore, secondary events (Johansson et al., 1996). 

However, it is not clear if the primary/secondary classification of rearrangements can be 

applied to heterogeneous epithelial cancer genomes in such a regimented way. There are 
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probably  multiple  primary  and  secondary  chromosomal  events  in  breast  cancer.  For 

example, in individual breast cancers we can often see amplified ERBB2, loss of 8p and 

loss of 17p – three events which clearly contribute to carcinogenesis – in the same tumour 

(Chin et al., 2007). 

More  evidence  in  support  of  this  view  has  come  from  studies  on  the  intra  tumour 

heterogeneity of  epithelial  cancer cell  line karyotypes in culture. Muleris and Dutrillaux 

(1996)  showed  the  rate  of  unstable  rearrangement  (rearranged  chromosomes  not 

transmitted to the next generation) was approximately the same in all colorectal cancer cell 

lines.  But  for  one subtype of  cell  lines,  termed ‘monosomic’ -  as  they tended to  lose 

chromosomes - the number of stable rearranged chromosomes in karyotypes was much 

higher (Muleris and Dutrillaux, 1996). Roschke et al. (2002) observed that rearrangements 

in the NCI60 panel of cell lines tended to be peripheral to a 'core' karyotype and more  

normal chromosomes that were gained relative to the rearranged chromosomes (Roschke 

et al., 2002, 2003). Taken together, these studies imply that, if the majority of chromosome 

translocations were secondary,  and therefore passenger  events,  they would be lost  at 

random from the aneuploid genomes of epithelial cancers. This does not seem to be the 

case. 

1.4.4.2. The timing of CIN

If chromosome rearrangement starts late, then it is possible that all the driving mutations a  

that cancer requires preceded it. This would imply that most chromosome rearrangements 

are secondary events. Of course, if CIN is an acquired phenotype it probably starts early 

and the opposite possibility might be true.

The classical model of the genetic progression to cancer comes from studies on benign 

adenomas and more advanced carcinomas of the large intestine. By comparing mutations 

and LOH of known cancer genes in large numbers of samples at each stage one can 

reconstruct a progression from adenoma to carcinoma driven by specific genetic changes. 

The model starts with loss of APC or activation of β-cateinin and proceeds with activation 

of KRAS, loss of DCC/SMAD4/SMAD2 and loss of p53 (Cho and Vogelstein, 1992; Baker 
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et al., 1989, 1990). 

Within  this  progression the authors proposed the onset  of  chromosome instability was 

relatively late, coinciding more-or-less with loss of  TP53.  And there is now some in vivo 

evidence that  KRAS  mutant  tumours need to  lose  TP53 for  chromosome instability to 

happen (Hingorani et al., 2005). This has lead to the view that most useful sequence-level 

mutations must precede the onset of CIN (Vogelstein and Kinzler, 2004).

As  TP53 gene  mutations  were  relatively  rare  in  adenomas  but  relatively  common  in 

carcinomas, they were thought to occur at the transition from benign to malignant growth 

(Baker  et  al.,  1990).  This  study  was  not,  however,  based  on  comparative  lesion 

sequencing  but  rather  a  pool  of  adenomas  was  compared  to  an  unrelated  pool  of 

carcinomas. As the majority of adenomas do not progress to carcinoma an alternative 

explanation  is  that  only  the  adenomas with  TP53 mutations  can  progress  to  become 

carcinomas. If this is the case we would expect to see chromosome instability much earlier  

during the progression to cancer.

There is evidence that the karyotypes of some colorectal  adenomas, even at an early 

stage, display aneusomy and structural rearrangement  (Bomme et al., 1998). In benign 

breast  lesions  including  fibrocystic  lesions  from  women  with  and  without  a  known 

hereditary  predisposition  to  breast  cancer,  fibroadenomas,  phyllodes  tumors,  and 

papillomas,  karyotypes often show rearrangement but  of  a  lesser  extent  than is  often 

present in breast carcinoma. Commonly described changes in breast cancer such as gain 

of  1q,  interstitial  deletion  of  3p,  and  trisomies  7,  18,  and  20  can  also  be  observed. 

Interestingly, the frequency of chromosome abnormalities seems to correspond with risk of 

developing invasive mammary carcinoma  (Lundin and Mertens, 1998). It is reasonable, 

then, to think that chromosome rearrangements can start early in epithelial  cancers as 

chromosome rearrangements can be seen in precursor lesions (Fiche et al., 2000; Ottesen 

et al., 2000; Cerveira et al., 2006). 

Beyond benign stages we can see a stepwise progression of  karyotypic  complexity in 

malignant tumours. It appears that the number of chromosome rearrangements in cancers 
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including breast increase with tumour grade  (Magdelenat et al., 1992). Relapses always 

have  some  of  the  karyotypic  features  of  primary  tumours  but  often  show  additional  

rearrangements  (Cooke  et  al.,  2010).  In  breast  cancer,  there  also  appears  to  be  a 

correlation between karyotypic complexity and ER and PR status, ER-negative and PR-

negative tumours having more complex karytotypes. If one ascribes to the view that loss of  

oestrogen receptor expression is one of the final stages in the evolution of an ER-positive 

tumour,  this  serves  as  further  evidence  for  stepwise  acquisition  of  chromosome 

abnormalities (Magdelenat et al., 1992).

1.4.4.3. The Acquisition of CIN

Inherited diseases such as Ataxia Telangiectasia, Bloom syndrome, Fanconi Anaemia and 

Nijmegen  Breakage  Syndrome  predispose  individuals  to  various  early  onset  cancers. 

Investigations into the mechanisms of these diseases have invariably led to DNA repair 

and  spindle  checkpoint  defects  such  as  in  the  FANC family  of  genes,  ATM and  ATR 

(Taylor, 2001). As individuals show increased chromosomal instability and breakage, can 

we conclude that acquired CIN is a driving force behind accelerated cancer development  

in these individuals? Furthermore, as sporadic cancers have highly rearranged genomes, 

is it possible to conclude that an accelerated rate of genome rearrangement contributes to 

these cancers also?

A classic illustration of the need for a “mutator phenotype” in familial cancers comes from 

the  study  of  Familial  Adenomatous  Polyposis  (FAP)  and  Hereditary  Non-Polyposis 

Colorectal  Cancer  (HNPCC).  In  FAP, loss of  function of  the  APC gene deregulates  β-

cateinin-mediated  gene  expression  leading  to  increased  proliferation  (Nishisho  et  al., 

1991). In HNPCC, mutations in mismatch repair genes such as MSH1 and MLH2 cause 

small repeat elements to expand and disrupt gene function (Bodmer, 2006).  A prominent 

feature  of  FAP is  chromosome rearrangement  and numerical  abnormality  but  HNPCC 

karyotypes appear to be more normal (Kinzler et al., 1991; Nishisho et al., 1991; Nowak et 

al.,  2002).  There  is  evidence  to  suggest  a  degree  of  mutual  exclusivity  in  these 

mechanisms and this strengthens the debate in favour of an acquired mutator phenotype 

in familial cancer predisposition syndromes (Komarova et al., 2002).
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The  best  evidence  for  the  contribution  of  acquired  CIN  to  breast  cancer  comes from 

hereditary cancer syndromes associated with mutations in the  BRCA1 or  BRCA2 genes 

(breast  cancer  early  onset  1and  2).  Familial  mutations  in  these  genes  carry a  highly 

penetrant risk of early onset cancers of the breast and ovary (Miki et al., 1994; Wooster et 

al., 1995). A single mutant allele passed through the germline predisposes the individual to 

cancer, but cells within the resultant tumour undergo somatic loss of heterozygosity usually 

due  to  a  chromosomal  rearrangement  (Venkitaraman,  2007).  BRCA1 and  BRCA2 are 

tumour suppressor genes which help maintain genomic integrity through roles within the 

homologous recombination pathway (Chen et al., 1999)

In  sporadic  breast  cancer,  many  genomes  are  rearranged  in  a  way  that  appears 

comparable to the early-onset familial  cancers  (Grigorova et al.,  2004) If  CIN were an 

early, acquired, phenotype in sporadic cancers too, we could suppose that it contributed 

substantially to early cancer development as has been suggested previously (Komarova et 

al., 2002; Nowak et al., 2002; Rajagopalan et al., 2003).

Only anecdotal evidence for acquired CIN in sporadic breast cancer exists currently. For  

example, by looking at CGH profiles it is clear that there are several different types of 

tumour profiles: some are relatively 'quiet' some are highly rearranged, some are mostly 

tetraploid, some are mostly triploid, some have large regions of loss of herterozygosity,  

some do not and some have a high number of small tandem duplications (Fridlyand et al., 

2006; Chin et al., 2007; Stephens et al., 2009; Bignell et al., 2010). This suggests there are 

a  large  number  of  evolutionary  routes  a  genome can  take  towards  cancer,  thus,  the 

genomic landscapes we observe are likely to be “a composite of selection and particular 

failures in genome surveillance mechanism(s).”(Fridlyand et al. 2006).

1.5. Techniques used and discussed in this thesis
1.5.1. Florescence in situ Hybridization (FISH)

Fluorescence  in situ hybridization (FISH) is a standard molecular cytogenetic technique 

and is useful in defining the position of chromosome breaks. This technique, just like many 
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of the ones below described below relies on the propensity of denatured DNA to re-anneal  

with its complementary DNA sequence. In FISH, cellular DNA is denatured with heat or  

formamide and then left to re-anneal in the presence of a large excess of labeled probe 

DNA. The denatured chromosomal DNA then anneals with probe DNA. Excess probe is 

washed away leaving only hybridized probe to give a fluorescent signal in situ.

Usually, approximately 100kb fragments of the human genome, contained within bacterial 

artificial chromosomes (BACs), are used for FISH experiments. These BACs come from 

libraries developed to sequence the human genome, so a BAC representing virtually any 

region of the human genome is available. If BACs are used, a breakpoint can be defined to  

within the length of that BAC as the hybridization signal will “split”. As the average BAC is  

around 100kb, this is a relatively low-resolution way of defining breakpoints. Chromosome 

painting is an extension of FISH but instead of labelled BAC DNA being used as a probe, 

the DNA of an entire chromosome is used. 

1.5.2. Spectral Karyotyping

Spectral  Karyotyping  (SKY)  and  a  related  technique  multicolour  FISH  (M-FISH),  is  a 

method to simultaneously paint and visualize all chromosomes. This is especially useful  

when one is dealing with highly rearranged karyotypes. Most often, FISH experiments are 

done with three colours, flourescein (or some derivative), Cy-3 and Cy-5 as these dyes  

have sufficiently different emission spectra to be detected separately. Theoretically, one 

can use any combination of fluorophores for FISH so long as you are able to excite and 

detect at the appropriate wavelengths. SKY uses combinatorial  labelling of flow sorted 

chromosomes to achieve this simultaneous visualization. SKY and M-FISH systems use 

seven different haptens in different combinations. For example Chromosome 1 might be 

labelled with  hapten A,  chromosome 2 with  hapten B,  chromosome 3 is  labelled  with 

haptens A and B, chromosome 4 with A and C etc. In M-FISH each fluorophore is excited 

and imaged separately. In SKY, all fluorophores are excited, producing a unique spectral 

profile, and imaged simultaneously. In each case, computer software assigns a pseudo-

colour to each chromosome or part of a chromosome based in its unique combination of  

fluorescence (Speicher et al., 1996; Speicher and Carter, 2005)
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1.5.3. Flow sorting of Chromosomes

Fluorescence Activated Cell Sorting (FACS) can define and separate populations of cells 

within a sample, but can also be used to separate chromosomes. A large number of cells  

are arrested in metaphase using a microtubule inhibitor  such as colcemid. Condensed 

mitotic  chromosomes  are  then  separated  from  cell  nuclei  and  other  debris  by 

centrifugation.  This  chromosome  suspension  is  labelled  with  two  DNA-binding  dyes, 

Chromomycin A3 binds to G/C and Hoescht 33258 binds to A/T regions. When passed 

through the FACS machine’s lasers, chromosomes fluoresce at an intensity proportional to 

their  AT and GC content.  This fluorescence intensity ratio can be plotted and a given 

population of chromosomes can then be gated by the machine and collected (Telenius et 

al., 1992). Performing this process with metaphase chromosomes from a normal sample 

provides us with the raw material to make chromosome paints and repeating the process 

with tumour cell line chromosomes allows us to investigate them using reverse painting 

and array painting (Arkesteijn et al., 1999; Fiegler et al., 2003). 

1.5.4. Array CGH

Array CGH is commonly used to investigate gains and losses of genomic regions. Arrays 

made from genomic BAC clones have achieved resolutions relative to the size of DNA 

contigs used. For example Pole et al. (2006) used CGH to investigate regional deletions of  

chromosome 8 in breast cancer. They achieved 1 Mb resolution over chromosome 8 and 

used a tiling path of over 8p12 to achieve a resolution of 0.2 Mb. An 8p12 fosmid array  

(Pole et al., 2006; Cooke et al., 2008) achieved a 0.04Mb resolution. Small regions of the 

genome can be investigated to kilobase resolution using custom oligonucleotide arrays as 

used by Howarth et al (2008). 

High-resolution  genome-wide  copy  number  analysis  can  be  achieved  using  single-

nucleotide polymorphism (SNP) arrays for CGH. These arrays were originally intended to 

detect SNP genotypes over the whole genome, but can also be used to assess DNA copy 

number changes (Bignell et al., 2004). The Affymetrix SNP 6.0 platform has approximately 
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500,000 SNP-specific oligos distributed over the whole genome. As one probe is found 

approximately every 6kb, regions of gain or loss can often be identified to the level of the  

exon  when  genes  are  broken.  In  addition,  SNP  arrays  provide  both  copy  number 

information as well  as genotype status.  This  is  useful  in  identifying regions of  loss of  

heterozgosity and may also unravel the series of events that formed complex karyotypes.

1.5.5. Array Segmentation Algorithms

Several bioinformatic 'segmentation' algorithms exist to find copy number change points in 

array CGH data. Statistical methods such circular binary segmentation and hidden Markov 

models  (Marioni et al.,  2006; Venkatraman and Olshen, 2007) have been employed to 

define change points from the florescence intensity data of CGH probes, but no previous 

algorithm as factored in the SNP6 array's capacity to differentiate between SNP alleles. 

The PICNIC (Predicting Integral Copy Numbers In Cancer) algorithm  (Greenman et al., 

2010) identifies absolute copy number of each allele in any given region of genome. SNP 

combinations such as AA, AB and BB occur in diploid regions in a 1:1 ratio, while in triploid 

regions AAA, BBB, AAB, ABB regions are apparent by a 2:1 allele ratio and in tetraploid  

regions AABB (2:2), and AAAB and BBBA (3:1) regions are visible.

1.5.6. Array Painting

In array painting, flow sorted chromosomes are hybridized to microarrays allowing rapid 

identification of chromosome breakpoints (Fiegler et al., 2003; Howarth et al., 2008). For 

example,  HCC1187 contains  a  derivative  chromosome formed from a  translocation  of 

chromosomes 1 and 8, der(8)t(1;8). The derivative chromosome is flow sorted, amplified 

by degenerate oligo primed PCR (Telenius et al., 1992), labelled and then hybridized to a 

chromosome 1 tiling path array. The array will show hybridization up to the point at which  

chromosome  1  is  broken.  Traditional  array  comparative  genomic  hybridization  cannot 

detect balanced chromosome aberrations as there is no net gain or loss of material, but as 

only individual flow-sorted chromosomes are hybridized in array painting, even balanced 

breaks can be detected, provided they are interchomosomal
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1.5.7. Massively Parallel Paired End Sequencing

These third-generation sequencing approaches produce millions of sequencing reads in a 

single experiment (Metzker, 2010). Typically, these sequences have been short, around 37 

base  pairs,  but  longer  reads  are  now possible.  An  important  part  of  the  sequencing 

process is the alignment of millions of short reads to the reference genome. In the past 

researchers have used bioinformatic tools such as BLAST and FASTA for high accuracy 

alignment but these methods are too computationally intensive for millions of separate 

queries.  Custom algorithms such as MAQ (Mapping and Assembly with Quantiles) and 

BWA (Burrows-Wheeler Alignment) have been written specifically to address this trade off  

between accuracy and speed but as a result the capacity to incorporate mismatches into 

the alignment has diminished (Li et al., 2008; Li and Durbin, 2009). 

Massively parallel sequencing experiments represent a trade off between the amount of  

sequence  generated  and  cost  (Bashir  et  al.,  2008). Sampling  any  given  region  is  a 

stochastic process so the probability of a sequencing read crossing a translocation, for 

example, increases with the amount of sequence data generated .e.g.  Stephens et al.  

(2009) estimated that their approach detected, on average, 50% of the rearrangements in 

their 24 samples. The probability of finding a given proportion of rearrangements with a 

given  amount  of  sequence  data  can  be  described  by  the  Poisson  distribution  where 

y=number of events, λ = mean number of events:

P(Y=y) = (λy e-λ)/y! 

For example, if there are approximately 3 billion bases in the haploid genome and if a  

sequencing experiment generates 810 million single 37 base pair reads, this translates to 

30 billion base pairs of sequence. This is equivalent to 10 fold coverage of the haploid  

genome.  Since the genome coverage is the average number of times each base pair is 

hit, λ  = 10,  and Y is the number of  hits  we are looking for,  for  example two,  we can 

calculate the proportion of events that will be sampled twice in the experiment:

P(Y=2) = (102 e-10)/2! 
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=   0.00227

So  in  this  example,  0.227%  of  events  will  be  sampled  in  the  experiment  twice.  In 

sequencing experiments, however we want the number of events hit twice or more which 

is:

P(2 or more hits) = 1- (chance 1 hit) - (chance of zero hits)
    = 1 – 0.00045 – 0.00005
    = 0.9995

So in this experiment, 99.95% of events will, in theory, be hit twice or more. 

Sequencing  coverage  can  be  described  in  two  ways:  sequence  depth  and  physical  

coverage.  Depth  is  measured  by  the  average  number  of  times  an  individual  locus  is  

sampled. For the draft human genome sequence, this figure was 10 fold but was based 

around  relatively  accurate  Sanger  sequencing  data  (Lander  et  al.,  2001). For  high-

throughput sequencing approaches, the reads are typically shorter and the confidence in  

each base call is less (Meyerson et al., 2010). Recent sequencing projects have combated 

this by increasing the sequence depth to around forty-fold  (Ley et al., 2008; Ding et al., 

2010; Shah et al.,  2009; Pleasance et al.,  2010b, 2010a).  This figure is based around 

haploid genome coverage, so for polyploid cancer genomes the true figure is less. This 

'deep sequencing' approach is currently one of the fastest ways to find sequence-level 

mutations in cancer genomes but it is currently quite expensive (Meyerson et al., 2010).

Another popular use of next generation sequencing is to generate “paired end reads”. The 

paired end strategy has been used to detect rearrangements in several cancer genomes 

to date and has proven an effective strategy to find structural rearrangements (Volik et al., 

2003; Campbell et al., 2008b; Stephens et al., 2009). In this approach, genomic DNA is 

fragmented into pieces of a known size range and sequencing reads are generated from 

both ends of the fragment. Each read is then aligned to the reference genome just as for 

the above single reads but it is the spatial relationship of one read to its partner that can 

indicate a structural variation. Most of the reads, when aligned back to the genome, are in  
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the correct orientation and at the expected distance from their partners. Structural variants 

are apparent when pairs of sequences map to different chromosomes (translocation or 

insertion), too far apart (most likely a deletion), too close together (small insertion) or the 

wrong orientation (inversion) or the wrong genome order (tandem duplication).

As the read pairs are physically linked (for example 500 base pairs apart) much higher 

coverage  of  the  genome  can  be  achieved  with  less  sequencing.  Recent,  paired-end 

sequencing experiments have generated approximately 50 million paired reads (Campbell 

et  al.,  2008b;  Stephens  et  al.,  2009), this  translates  to  0.61-fold  haploid  sequence 

coverage, but if one considers physical coverage this figure increases to 8.4 fold meaning 

99% of events would be hit twice or more. The distance between the paired reads can be 

extended to around 3kb by employing the ‘mate pair’ strategy. Here genome fragments are 

circularised, the joined region cut out and the ends of each fragment sequenced just as for 

regular paired end sequencing  (Shendure et al., 2005).  Mate pair sequencing was not 

used  as  part  of  this  thesis  but,  as,  in  theory,  this  strategy can produce  much higher  

physical coverage than short fragment end sequencing it is currently being investigated by 

other lab members. 
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1.7. The purpose of this thesis

1.7.1. Aim 1: Map chromosome rearrangements in breast cancer

Breast cancer genomes are among the most complex of the common cancers displaying 

extensive  structural  and numerical  chromosome aberration.  Relative  to  sequence-level 

mutations,  little  is  known about  the genes affected by chromosome changes in breast 

cancer. In this thesis, I define breast cancer genome structure with a view to answering 

two questions.

1) How many genes are disrupted by chromosome aberrations in a “typical” breast 

cancer?

2) Fusion  genes  are  an  important  feature  of  several  cancers.  Do  chromosome 

aberrations fuse any genes in breast cancer?

1.7.2.  Aim 2:  Investigate the relative  timing of  point  mutations and chromosome 
aberrations

A major  unknown  is  the  relative  importance  and  timing  of  genome  rearrangements 

compared to sequence-level mutation. For example, chromosome instability might arise 

early  and  be  essential  to  tumour  suppressor  loss,  or  alternatively,  be  a  late  event 

contributing little to cancer development. 

By taking an evolutionary view of individual cancer genomes I address this question as  

“although complex and potentially cryptic to decipher, the catalogue of somatic mutations 

present in a cancer cell therefore represents a cumulative archaeological record of all the 

mutational  processes  the  cancer  cell  has  experienced  throughout  the  lifetime  of  the 

patient” (Stratton et al., 2009, p.720). By looking at the structure and sequence of breast 

cancer genomes together it is possible to speculate on the relative timing of mutations 

within individual tumours.
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Materials and Methods

2.1. Reagents, Manufacturers and Suppliers

Reagent Manufacturer/Supplier

BAC and fosmid clones BACPAC CHORI, Oakland, USA
Biotin dUTP Roche Diagnostics, Basel, Switzerland
BigDye  Terminator  v3.1  cycle 
sequencing kit Applied Biosystems Ltd. Foster City, CA
Biotinylated anti-streptavidin Vector Laboratories Inc., Burlingame, CA, USA
Chloramphenicol Sigma-Aldrich, Dorset, UK
Colcemid Sigma-Aldrich, Dorset, UK
Cryotubes Fisher Scientific, Loughborough, UK
Cy3-labelled dCTP Amersham, Epsom, UK
Cy5-labelled streptavidin Amersham, Epsom, UK
DAPI in Vectashield Vector Laboratories Inc., Burlingame, CA, USA
Denhardt's Solution Sigma-Aldrich, Dorset, UK
Dextran sulphate Sigma-Aldrich, Dorset, UK
Digoxygenin-11 dUTP Roche Diagnostics, Basel, Switzerland
DMEM-F12 GIBCO Technologies, Invitrogen, Paisley, UK
DMSO Invitrogen, Paisley, UK
DNA polymerase I Sigma-Aldrich, Dorset, UK
DNAse I Sigma-Aldrich, Dorset, UK
DNAzol reagent Invitrogen, Paisley, UK
dNTPs Invitrogen, Paisley, UK
Eppendorf tubes Starlab, Milton Keynes, UK
Ethanol Sigma-Aldrich, Dorset, UK
Falcon tubes Bibby Sterilin, Stone, UK
FBS Sigma-Aldrich, Dorset, UK
FITC-labelled anti-digoxygenin Roche Diagnostics, Basel, Switzerland
FITC-16dUTP Roche Diagnostics, Basel, Switzerland
Formamide VWR International, Lutterworth, UK
G50 MicroSpin columns GE Healthcare, Buckinghamshire, UK
GenomiPhi Kit GE Healthcare, Buckinghamshire, UK
GoGreen PCR master mix Fermentas Life Sciences, York, UK
HiSpeed Plasmid Midi-Prep Kit Qiagen UK, Crawley, UK
HotMaster Taq VWR International, Lutterworth, UK
Hyperladder I Bioline, London, UK
Human C0t-1 DNA Invitrogen
Isopropanol Invitrogen, Paisley, UK
Kanamycin Sigma-Aldrich, Dorset, UK
LB agar Hutchison/MRC Centre Media Unit
LB broth Hutchison/MRC Centre Media Unit
MCBD-201 GIBCO Technologies, Invitrogen, Paisley, UK
Mixed bed resin beads Sigma-Aldrich, Dorset, UK
Megabace  formamide  sequencing 
buffer Applied Biosystems Ltd. Foster City, CA
Na2HPO4 VWR International, Lutterworth, UK
NaHPO4 VWR International, Lutterworth, UK
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NanoDrop spectrophotometer Labtech International, Ringmer, UK
Nucleofast 96 PCR cleanup kit Clonetech, Mountain View, CA
Paired-End DNA Sample Prep Kit Illumina, San Diego, CA, USA
PBS Hutchison/MRC Centre Media Unit
Pellet Paint Merck KGaA, Darmstadt, Germany
Penicillin/streptomycin GIBCO Technologies, Invitrogen, Paisley, UK
Pipette tips Starlab, Milton Keynes, UK
Propidium iodide Invitrogen, Paisley, UK
QIAquick PCR Purification Kit Qiagen UK, Crawley, UK
PolyPrep poly-L-lysine coated slide Invitrogen, Paisley, UK
PyroMark Gold reagents Biotage
RNAseIN Promega, Fitchburg, USA
RPMI-1640 GIBCO Technologies, Invitrogen, Paisley, UK
S.N.A.P  UV-Free  Gel  Purification 
Kit Invitrogen, Paisley, UK
Sodium acetate Hutchison/MRC Centre Media Unit

Spectrum Orange dUTP
Vysis UK Ltd/Abbott Laboratories, Downers Grove 
IL, USA

Spermidine Invitrogen, Paisley, UK
Spermine Invitrogen, Paisley, UK
Spin Miniprep kit Qiagen UK, Crawley, UK
SSC Hutchison/MRC Centre Media Unit
Steptavidin-sepherose beads GE Healthcare
SuperScript III First-Strand 
Synthesis Kit Invitrogen, Paisley, UK
SYBR Green PCR Master Mix Applied Biosystems, Foster City, USA
TE Hutchison/MRC Centre Media Unit
TOPO XL PCR Cloning Kit Invitrogen, Paisley, UK
Tris-acetate pre-cast gel Invitrogen, Paisley, UK
Trizol reagent Invitrogen, Paisley, UK
Trypsin GIBCO Technologies, Invitrogen, Paisley, UK
Tween 20 QbioGene, Livingston, Scotland
Versene Hutchison/MRC Centre Media Unit

Table 2.1. Reagent manufacturers and suppliers

2.2. Common Solutions

Name Constituents

20X SSC 3M NaCl, 0.3 M trisodium citrate, pH 7.0

1X PBS
140 mM NaCl, 2.5 mM KCl, 10 mM Na2HPO4, 1.75 mM KH2PO4, pH
7.4

TE 10mM Tris-HCl, 1mM EDTA, pH 8

Versene

140mM NaCl, 2.6 mM KCl, 9 mM Na2HPO4, 1.5mM KH2PO4, 600μM 
EDTA,
20mM hepes, 0.015% (v/v) phenol red, pH 7.5
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Luria-Bertani (LB) 

broth

1% (w/v) tryptone, 0.5% (w/v) yeast extract, 1% NaCl(w/v), pH 

7.0. 
Luria-Bertani (LB) 

agar

1% (w/v) tryptone, 0.5% (w/v) yeast extract, 1% NaCl(w/v), 15 

g/L agar, pH 7.0.

Table 2.2. Commonly used solutions

2.3. Cell Lines and Culture
A panel of cell lines was analysed as part of this thesis. Several were cultured by myself  

(Table 2.3) and several by current and past lab members. Some lines, for example AU565, 

were not grown in the lab and only SNP6 data generated by the Wellcome Sanger Centre 

was available (see section 2.7.1 for details). 

Cell Line Media Source Reference

BT-474 RPMI 1640, 10%FBS  ATCC (Lasfargues et al., 1978)
EFM-19 RPMI 1640, 10%FBS DSMZ (Simon et al., 1984)
HCC1187 RPMI 1640, 10%FBS ATCC (Gazdar et al., 1998)
HCC1954 RPMI 1640, 10%FBS ATCC (Gazdar et al., 1998)
M62 DMEMF12, 10%FBS Tyler-Smith (Mathias et al., 1994)
MCF7 RPMI 1640, 10%FBS Dr M.J. O'Hare (Bacus et al., 1990)
MDA-MB-175 RPMI 1640, 10%FBS Dr M.J. O'Hare (Cailleau et al., 1978)
T47D RPMI 1640, 10%FBS  ECACC (Keydar et al., 1979)
ZR-75-1 RPMI 1640, 10%FBS ECACC (Engel et al., 1978)

VP229 MCBD201, 10%FBS G.Lowther
(McCallum and Lowther, 
1996)

VP267 MCBD201, 10%FBS G.Lowther
(McCallum and Lowther, 
1996)

Table 2.3. Cell lines, growth conditions and references.  ECACC is the European 

Collection of Cell Cultures, DSMZ is the German Collection of Microorganisms and Cell 

Cultures.  ATCC is American Type Culture Collection.  Prof. M. J. O'Hare (LICR/UCL 

Breast Cancer Laboratory, University College, Middlesex Medical School, London, UK); 

Dr. C. Tyler-Smith (Department of Pathology, University of Cambridge)

2.3.1. Thawing Splitting and Feeding Cells

Previously, ampoules of cells had been stored freezing medium (10% DMSO, 90% (v/v) 

culture media) in liquid nitrogen. To begin culture, frozen cells were thawed quickly at 37°C 
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in a water bath. The cells were quickly re-suspended in their medium and transferred to a 

15ml Falcon tube along with 10 ml of pre-warmed culture medium at 37°C. Cells were 

spun down (500g, 3mins) freezing medium was removed by suction and the cell pellet re-

suspended in 5 ml of culture medium and transferred to a T25 flask. Cells were incubated 

at 37°C, 5% CO2. 

Once  adherent  cells  had  reached  80%-90% confluence  they  could  be  split  and  sub-

cultured. Culture medium was aspirated and the cells rinsed with 5-10 ml of versene, to 

remove dead cells and debris. Cells were incubated with 5 ml of versene+ trypsin at 37°C 

and inspected at 1 min intervals until all the cells were detached from the flask. 10ml of 

culture medium was added to neutralise the trypsin and the suspension centrifuges (500g, 

3 min). The cell pellet was then re-suspended in culture medium and transferred to new 

flasks.  Suspension  cell  lines  were  split  and  sub-cultured  as  above  but  without 

typsinisation. 

2.4. Chromosome Preparations
2.4.1. Metaphase Chromosome Preparation for Flow Sorting

Flow sorting of chromosomes was a modification of the procedure previously described 

(Ng and Carter, 2006; Howarth et al., 2008). Sixteen hours after splitting, cells from ten 

T150  flasks  were  blocked  in  metaphase  with  0.1μg/ml  colcemid  (demecolcecine)  and 

incubated for 20 hours at 37°C. The mitotic cells were separated from adherent interphase 

cells by banging the flasks 15 times and transferring the supernatant to a new tube. Cell 

suspensions  were  centrifuged  at  250g  for  5  min  and  the  supernatant  discarded.  For 

suspension cells, all of the initial sample was centrifuged as above. Cells were then re-

suspended  in  total  volume  of  25ml  polyamine  hypotonic  solution  (75mM KCl,  0.5mM 

spermidine, 0.2mM spermine,  10mM MgSO4,  pH to 8.0, filter  sterile)  and incubated at 

room temperature. At 5 min intervals, cell swelling was monitored by mixing 10 μl of the  

swelling solution with 10μl of Turk’s stain (0.01% (w/v) gentian violet, 1% (v/v) acetic acid). 

Under a phase contrast microscope, swelled cells looked round and chromosomes were 

visible as speckles inside each cell. Swollen cells were centrifuged at 250g for 5min and 

the supernatant  discarded. The cells  were re-suspended in 2ml of  polyamine isolation 
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buffer (0.5mM EGTA, 2mM EDTA, 15mM Tris, 80mM KCl, 50mM NaCl, 0.5mM spermidine, 

0.2mM spermine, 30mM DTT, 0.25% (v/v) Triton-X 100. pH to 7.4, filter sterile), incubated 

on ice for 10 min and gently vortexed for 15s. 10 μl of the cell suspension was placed on a 

microscope slide and propidium iodide (5 μg/ml) was added. At this stage, chromosomes 

were visible under a fluorescence microscope. If chromosome clumps remained then the 

cells were vortexed again. Chromosome preparations were centrifuged at 173g for 1min. 

The supernatant containing suspended chromosomes was collected and stored at 4°C. 

One day prior to flow sorting,  chromosomes in suspension were stained with Hoechst 

33258 (5μg/ml final concentration), MgSO4  (10mM final) and Chromomycin A3 (40μg/ml 

final) and incubated at 4°C. Approximately 1 hour before flow sorting, trisodium citrate (100 

mM final)  and sodium sulphite  (250 mM final)  were  added to  improve flow karyotype 

resolution  (van den Engh et  al.,  1988).  The suspension was  filtered through a  20μm 

CellTrics filter  under  gravity to  remove cellular  debris  and the filtrate  kept  on ice until  

sorting. Chromosome preparations were analysed and sorted using a MoFlo flow sorter 

(Cytomation  Bioinstruments)  by  B.L.  Ng  (The  Wellcome  Trust  Sanger  Institute).  The 

sheath buffer was composed of 10mM Tris-HCl (pH 8.0), 1mM EDTA, 100mM NaCl and 

0.5mM sodium azide. For degenerate oligonucleotide primed polymerase chain reaction 

(DOP-PCR) amplification, aliquots of 300 chromosomes were flow sorted into PCR tubes 

containing  10μl  of  sterile  PCR  water.  For  GenomiPhi  amplification  (Amersham 

Biosciences), 5000 chromosomes were  sorted.  Figure 2.1  shows the flow karyotype for 

HCC1187.
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Figure 2.1. Flow Karyotype of HCC1187. Chromomycin fluorescence is on the x-

axis, Hoechst fluorescence on the y-axis. Both scales are arbitrary. Flow sorting was 

performed by Dr. B.L. Ng, Wellcome Sanger Institute.

2.4.2. Metaphase Preparation for FISH

Once adherent cell lines had reached approximately 80% confluence, cultures were split.  

Twenty  hours  after  splitting,  0.1  μg/ml  colcemid was  added  and  cells  incubated  for 

1h30mins.  Cells  were  trypsinised  and  spun  down  at  380g/3mins  and  supernatant  

removed. 0.075M KCl was slowly added under constant agitation to swell the cells. The 

swelling mixture was then incubated at 37°C for 15min. Swelling was stopped by addition 

of  5  drops  of  ice  cold  3:1  methanol/acetic  acid  fixative  and  cells  were  spun  down 

500g/5mins. The supernatant was removed and the cells fixed by slow addition of cold 3:1 

fixative under agitation. The cells were spun down and fixed twice more before a final  

fixation in 3:2 methanol:acetic acid. Fixed cell suspensions were kept at -20°C until use.  

12μl of cell suspension was dropped into a 100μl drop of UP H2O on a microscope slide 
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and  left  to  dry.  Metaphase  spreads  were  examined  using  a  Nikon  phase  contrast 

microscope.  Slides with  at  least 10 visible metaphase spreads were dehydrated in  an 

ethanol gradient (3mins each 75%, 90% and 100%) matured overnight at 37°C prior to 

FISH hybridizations.

2.4.3. Preparation of DNA Fibres for FISH

Fibre  FISH was  done  as  previously  described  (Mann  et  al.,  1997).  Cells  fixed as  for 

metaphase  FISH  were  also  used  to  prepare  extended  DNA fibres.  10  μl  of  the  cell  

suspension was spread horizontally across a PolyPrep poly-L-lysine coated slide (~1/3 

from the top of the slide). The slide was placed in a glass Coplin jar containing 60 ml of 

lysis buffer (0.5% (w/v) SDS, 50 mM EDTA, 200 mM Tris). The fixed cellular material was  

approximately 10mm below the surface of the lysis buffer. After 5min, 60 ml of 94% (v/v) 

ethanol was very slowly dropped on top of the lysis buffer. Chromatin fibres from lysed 

cells became visible at the point where the ethanol and lysis buffer met after approximately 

10min.  The slide  was then slowly pulled out  of  the liquid  at  approximately 75o to  the 

horizontal to extend the fibres along the slide. To fix the fibres in place, the slide was gently 

placed in a jar of 70% (v/v) ethanol and left for 30 min. Slides were dehydrated through an  

ethanol series as described above and air dried.

2.5. Fluorescence in situ Hybridization (FISH)
2.5.1. Preparation and Labelling of Chromosome Paints

Whole  chromosome  paints  were  made  from  flow  sorted  chromosomes  amplified  by 

degenerate oligonucleotide-primed PCR (DOP-PCR) as described previously (Telenius et 

al., 1992). Sorted human chromosomes were supplied by Professor M. Ferguson-Smith 

and  Mrs. P. O’Brien, Department of Veterinary Medicine, University of Cambridge. DOP 

amplification had previously been performed by Dr J.C. Beavis using the below procedure:

Primary amplification  of  flow sorted  chromosomes was  performed in  a  50  μl  reaction 

containing 1X Buffer  D, 200μM dNTPs, 0.05% (v/v)  polyoxyethylene ether  (W-1),  2μM 

6MW  primer  (5'-CCGACTCGAGNNNNNNATGTGG-3'),  4.5  units  Taq  polymerase  and 
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~350 flow sorted chromosomes. PCR was performed as in Table 2.5: 

Step Temperature Time

1 94°C 9 min 
2 94°C 1 min 30 s
3 30°C 1 min 30 s

Repeat steps 2 and 3 for 9 cycles

4 72°C 3 min 
5 94°C 1 min 30 s
6 62°C 1 min 30 s
7 72°C 1 min 30 s

Repeat steps 4-8 for 29 cycles

8 72°C 9 min 
9 4°C hold 

Table 2.5. Primary DOP PCR programme

Secondary and tertiary amplification of flow sorted products was performed in a 25 μl 

reaction containing 1X TAPS II buffer, 200μM dNTPs, 2μM 6MW primer, 0.05% (v/v) W-1, 

2.25 units Taq polymerase and 5μl of primary or secondary DOP amplification reaction. 

PCR was as in Table 2.6:

Step Temperature Time

1 94°C 9 min
2 94°C 1 min 30  s
3 62°C 1 min 30 s
4 72°C 1 min 30 s

Repeat steps 2-4 for 29 cycles

5 72°C 8 min 
6 4°C hold 

Table 2.6. Secondary and Tertiary DOP PCR programme

Amplified chromosome DNA was labelled by nick translation with either Biotin-conjugated 

dUTP or directly labelled Spectrum Orange (Vysis/Abbott), Fluorescein 12-dUTP (Roche). 

Labelling reactions contained 1X nick translation (NT) buffer (10X NT buffer is 0.5M Tris-

HCl,  1mM  dithiothreitol  (DTT),  0.1M  MgSO4),  38μM  d(A,C,G)TP,  19μM  dTTP,  28μM 

labelled dUTP, 10 units DNA polymerase I, 0.7-2ng DNAse I and ~0.5μg DNA in a total 
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volume of 25μl and were incubated for 2 hours at 14°C. The reaction was stopped by 

addition  of  2.5μl  0.5  M  EDTA and  incubation  at  65°C  for  10  min.  Labelled  whole  

chromosomes paints were stored in the dark at -20°C. 

2.5.2. BAC clones and their culture

Appropriate  bacterial  artificial  chromosome  (BAC)  and  fosmid-bearing  clones  were 

selected  for  FISH  experiments  using  the  UCSC  Genome  Browser 

(http://genome.ucsc.edu). BACs were obtained from BACPAC resources. BAC clones for 

FISH experiments are listed in Table 2.7.

Gene Clone Name Start position (HG18) End position (HG18)

PUM1 RP11-241O14 chr1: 204979770 chr1:205139387
TRERF1 RP11-7K24 chr6: 42173125 chr6:42228324
CTAGE5 W12-1623H12 chr14:38849330 chr14:38885848
SIP1 W12-1047K24 chr14:38685660 chr14:38728738 
MDS1 (3') RP11-659A23 chr3:170655616 chr3:170810166
MDS1 (5') RP11-141C22 chr3:170367524 chr3:170542975

Table 2.7 BAC, PAC and fosmid clones used for FISH experiments. Genomic 

positions are from the HG18 genome build 

E.coli bearing BACS or Fosmids were grown overnight  on LB agar + chloramphenicol  

(20mg/ml) for RP11-BAC clones and W12 fosmids or kanamycin (25mg/ml) for RP4 and 

RP1 PAC clones. Colonies were then picked and then grown in 50ml LB broth culture + 

chloramphenicol or kanamycin for 16h. 

2.5.3. Probe DNA Extraction and Labelling

BAC/fosmid  DNA  was  extracted  using  Qiagen  Spin  Miniprep  kit  (Qiagen)  as  per 

manufacturer’s instructions. 1000ng of probe DNA was labelled by nick translation with 

Spectrum  Orange  (Vysis/Abbott)  or  Fluorescein  12-dUTP  (Roche)  using  an  Abbot 

Molecular  nick  translation  kit  according  to  the  manufacturer’s  instructions.  Fibre  FISH 

probes were labelled indirectly for greater sensitivity.  These fosmids were labelled with 

biotinylated 16-dUTP (Bio-dUTP), or deoxygenin (Dig-dUTP) using a similar procedure to  
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labelling of chromosome paints except 150ng of DNA was labelled in a total volume of  

25ul.

2.5.4. Probe Precipitation

Per FISH hybridization, 3μg human C0t-1 DNA (Roche), 200–500ng whole chromosome 

paint, 50–100ng of each BAC DNA were co-precipitated with 20 μg glycogen in 100% 

ethanol for 2 hours at -80°C. Fibre-FISH probe mixtures contained 150-200ng of each 

labelled fosmid, 2 μg human C0t-1 DNA. Probe mixes were spun down at 13g for 30mins 

at 4°C. Ethanol was pipetted off, the DNA pellet was then dried in the dark at 37°C for 

30mins. The dry pellet was dissolved over 30mins at 37°C in 20μL hybridization buffer 

(50%  v/v  deionized  formamide,  10%  (w/v)  dextran  sulphate,  2XSSC,  1XDenhardt's 

solution and 40mmol/l sodium phosphate solution). 

2.5.5. FISH Hybridization

FISH was  performed  as  described  previously  (Alsop  et  al.,  2006;  Pole  et  al.,  2006). 

Hybridisations were usually performed on metaphase spreads from cell lines along with an 

M62 karyotypically normal control. Probe mixtures were denatured at 70°C for 10min, and 

incubated at 37°C for one hour prior to hybridisation. Cell DNA in the form of metaphase 

preparations on microscope slides was denatured at 70°C in 70% deionized formamide–

2X SSC for 1min 20s, quenched in ice-cold 70% ethanol for 2 minutes and dehydrated as 

above. Hybridizations took place in a humid chamber at 37°C for 14-20 hours. Formamide 

was deionized by stirring 1g mixed bed resin beads per 100 ml formamide for 2 hours. 

Beads were removed by filtration and 50 ml aliquots were stored at -35°C.

2.5.6. Post Hybridization Washing and Detection

Unbound  probe  DNA was  removed  by  washing  in  2×  SSC  for  5  minutes  at  room 

temperature, twice for 5 minutes at 42°C in 50% formamide–0.5× SSC, twice for 5 minutes 

at 42°C in 0.5× SSC. For directly labelled probes, coverslips were applied to slides using  

Vectashield  plus  4′,6-diamidino-2-phenylindole  (DAPI)  mounting  medium  (Vector 
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Laboratories).  

For indirectly labelled probes, biotin was detected with avidin conjugated to Cy5 (1 mg/ml,  

stock concentration), diluted 1:200 in 1% (w/v) BSA/4X SST. Prior to use, antibodies were 

vortexed briefly and centrifuged (16000g, 10 min) to remove self-conjugated aggregates. 

Following stringent washes, drained slides were blocked with 100 μl 3% (w/v) BSA/4X SST 

under a plastic cover slip in a dark humid chamber for 45mins. Slides were drained and 

100 μl  of  antibody solution  added and incubated for  30-60 min  at  37°C.  Slides  were  

washed 4 times 5mins in 0.5% (w/v) BSA/4X SST at room temperature, drained briefly, 

and mounted with Vectashield as above.

2.5.7. Fibre FISH hybridizations and Washes

The probes were prepared and denatured as above. Slides with extended chromatin fibres 

were denatured for 3mins in 0.5 M NaOH, 1.5 M NaCl and then neutralised in 0.5 M Tris-

HCl, 3 M NaCl, pH 7.2. Denatured slides were washed in 2X SSC and dehydrated through 

an ethanol series, 70% (v/v) ethanol, 90% (v/v) ethanol, and 100% (v/v) ethanol, 3mins 

each and air dried. Denatured FISH probe mixes were applied and coverslips sealed on as 

above. Probes were left to hybridise overnight at 37°C in a dark humid chamber. Following 

hybridisation, the coverslip was removed and slides were washed briefly in 2X SSC at 

room temperature.  To remove unbound probe,  slides were  washed twice in  50% (v/v) 

deionised formamide/1X SSC (5 min, 40°C), and twice in 1X SSC (5 min, 40°C). 

2.5.8. Fibre FISH Detection of indirectly labelled probes

Following FISH washes, endogenous epitopes were blocked using 100 μl 3% (w/v) BSA in 

4XSST under a parafilm cover slip in a dark humid chamber for 1 hour at 37°C. Slides  

were briefly washed in BSA/4X SST and incubated with 100 μl of antibody solution for 

45mins min at 37°C. For more sensitive detection, three antibody hybridisation steps were 

used.  Digoxygenin  was  detected  with  a  FITC-conjugated  mouse  anti-  digoxygenin 

(23mg/ml,  stock  concentration).  Biotin  was  detected  with  streptavidin  conjugated  Cy5 

(Alexa 488) (1 mg/ml, stock concentration). Antibodies were prepared as in section 2.6.6. 

Antibody hybridization was with streptavidin and anti-DIG. The first and third hybridizations 
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were with anti DIG-FITC and streptavidin-Cy5. The second hybridisation was with anti Cy5 

streptavidin. Between each antibody hybridization, slides were washed 3 times in 0.5% 

(w/v) BSA/4X SST (5 min, room temperature).

2.5.9. Image Acquisition and Processing

FISH experiments were visualised with a Nikon E800 microscope mounted with a 100 W 

mercury lamp light source (Microscope Services and Sales, Ewell, Surrey) and a cooled 

charge-coupled device camera (Applied Imaging, Newcastle-Upon-Tyne, UK). Slides were 

illuminated through a 83000 triple band pass filter set with TR, FITC and DAPI excitation 

filters (Chroma Technology Corp., Rockingham, VT, USA) to visualise FITC, Cy3/Spectrum 

orange.  Cy5 visualisation was through XF93 triple band pass filter set (Omega Optical, 

Inc., Brattleboro, VT, USA). Composite raw images were pseudocoloured and enhanced 

using  CytoVision  software.  The  Images  presented  in  this  thesis  were  exported  from 

CytoVision in .tiff format and thresholded with Adobe Photoshop CS3 software.

2.6. PCR and Sequencing 
2.6.1. Amplification of Sorted Chromosomes for PCR

Five thousand of each flow-sorted chromosome (~5 μl) from the HCC1187 cell line were 

precipitated overnight at –20°C along with 0.5 μl non-fluorescent Pellet Paint (to make the 

precipitated  DNA visible)  and  3.2μl  2.5M NaCl,  35.5μl  UP H2O  and  80μl  100%  (v/v) 

ethanol.  Chromosome aliquots were centrifuged at  16000g for  20mins at  4°C and the 

supernatant  pipetted  off.  The  pellet  washed  with  100μl  70%  (v/v)  ethanol,  and  then 

centrifuged as before for 10min. The supernatant was removed with a pipette and the 

pellet dried for 5min at 37°C and left to slowly re-suspend in 1μl TE.  The chromosome 

DNA was amplified using the GenomiPhi whole genome DNA Amplification Kit (Amersham 

Biosciences) according to manufacturer's instructions. The amplified DNA was purified by 

spin column chromatography using MicroSpin G-50 columns packed with Sephadex G-50 

(GE Healthcare) as per manufacturer's instructions. DNA was eluted in 50µl TE and the 

concentration of DNA measured with a Nanodrop instrument.
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2.6.2. Genomic DNA preparation 

Genomic DNA was extracted from HCC1187,  VP229 and VP267 confluent  cells  using 

DNAzol reagent (Invitrogen). Cells were scraped from culture plastic in10 ml DNAzol per 

10cm2  of culture flask surface area. The DNAzol/cellular suspension was transferred to a 

clean tube and DNA was precipitated by adding of 0.5 ml 100% (v/v) ethanol per 1 ml of  

DNAzol followed by gentle mixing. The DNA precipitate was removed by spooling around a 

clean pipette tip and washed twice in 1 ml of 95% (v/v) ethanol. The DNA pellet was dried, 

then re suspended in 500 μl nuclease free water and stored at -20°C. 

2.6.3. cDNA Preparation

RNA was extracted from cultured cells using Trizol reagent (Invitrogen) and chloroform. 

10μg of total RNA was treated with 1μl of rDNase I and the rDNase to remove genomic 

DNA.  DNAseI  was then inactivated with  DNAse Removal  Reagent. First  strand cDNA 

synthesis was performed using the SuperScript III First-Strand Synthesis Kit (Invitrogen). 

Oligo-dT priming was used to enrich for mRNA. For reverse transcription, 5μg of DNase-

treated RNA, 50ng oligoDT primers and 1μl of 10mM dNTPs were mixed and incubated at 

65°C for 5mins, then cooled on ice. 2μl  of  10X RT buffer,  4μl  of  25mM MgCl2,  2μl  of 

0.1MDTT, 40U RNaseIN (Promega) and 200U SuperScript III were then added and the 

reaction incubated at 25°C for 10 minutes then 50°C for 50 minutes, and the reactions 

were stopped by incubating at 85°C for 5 minutes. The cDNA was stored at -20°C until  

needed. 

2.6.4. PCR of Fusion Transcripts

To search for fused transcripts I used touchdown PCR as it is more sensitive than standard 

PCR techniques  (Korbie  and Mattick,  2008).  All  primers were  designed using Primer3 

website (http://fokker.wi.mit.edu/primer3/input.htm) (Rozen and Skaletsky, 2000) and were 

supplied  by Eurofins/MWG;  all  had  Tm of  62oC unless  otherwise  stated.  PCR primer 

sequences are given in Appendix 1.1. PCR reactions were performed using GoGreen PCR 

master  mix (Fermentas).  Reactions were set  up in a  25μl  (25-50ng of  template DNA, 
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12.5μl PCR master mix, 1μl each forward and reverse primer (10mM) and nuclease free 

water to 25μl). The PCR cycle as in Table 2.6 was run on a DNA Engine Tetrad PTC 225 

thermal cycler.

Phase 1 Step Temperature Time

1 Denature 95 °C 3 min
2 Denature 95 °C 30 s
3 Anneal 62 +10 °C(a) 45 s
4 Elongate 72 °C 60 s or more(b)

Repeat steps 2–4 (10–15 times)

Phase 2 Step Temperature Time

5 Denature 95 °C 30 s
6 Anneal 57°C 45 s
7 Elongate 72 °C 2 min

Repeat steps 5–7 (20–25 times)

Termination Step Temperature Time

8 Elongate 72 °C 5 min

Table 2.8 Touchdown PCR program as in Korbie and Mattick (2008). (a) Every time 

steps 2–4 are repeated, the annealing temperature was decreased by 1 °C/cycle, until 

62°C was reached.

15μl  of  each  reaction  sample  was  run  on  a  1.5% (w/v)  TBE agarose  gel  containing 

ethidium bromide along with Hyperladder I 200 base pair DNA ladder (Bioline). Gels were 

inspected under UV light Syngene G:BOX Chemi HR16 automated image analyser. 

2.6.5. Sanger Sequencing of Fusion Transcripts

PCR of the fusion transcript was performed as above and fusion transcripts were cloned 

and sequenced. The PCR product was run on a 1.5% agarose TAE gel containing crystal 

violet, cut out of the gel and purified using S.N.A.P UV-Free Gel Purification Kit (Invitrogen) 

as per manufacturer’s instructions. The PCR product was cloned using pCR-XL-TOPO 

vector and TOP10 chemically competent cells using TOPO XL PCR cloning kit (Invitrogen) 

as per manufacturer’s instructions. Cells were grown on LB + kanamycin (50mg/ml) and 

positive transformants were picked and grown overnight. Plasmids were recovered using 
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Qiagen spin  miniprep kit  as  per  instructions.  The purified  plasmid  was  precipitated  in 

ethanol,  dried,  re-suspended  in  water  and  sent  for  sequencing  at  the  University  of  

Cambridge Department of Biochemistry Geneservice.

2.6.6. Sanger Sequencing of Somatically Mutated Regions

Primers  for  the  85  sequence-level  somatic  mutations  in  HCC1187  were  previously 

published  (Wood  et  al.,  2007) and listed  in  Appendix  1.3.  PCR  was  performed  on 

HCC1187 genomic DNA and DNA from flow sorted and amplified chromosomes extracted 

as  described  above.   PCR  reactions  were  performed  using  Hotmaster  Taq  DNA 

polymerase (5Prime). Reactions had a total volume of 50μl comprising 50ng of template 

DNA,  5μl  of  HotMaster  PCR Buffer,  2μl  0.1mM dNTPs,  2μl  (10pM) each forward  and 

reverse primer and 0.2μl HotMaster Taq polymerase. The PCR cycle used DNA Engine 

Tetrad PTC 225 thermal cycler as in Table 2.9:

Step Temperature Time

1 95ºC 5min
2 95ºC 20s
3 58ºC 20s
4 72ºC 1min

Repeat steps 2 to 4,  35x

5 72ºC 5min
6 4ºC Hold

Table 2.9. PCR amplification program prior to sequencing PCR

10μl of each sample was run on a 1.5% agarose gel to check for a single clear band. As  

the PCR primers I used had been previously validated, this was the case for all of the loci  

tested.

PCR products, in 96 well format, were purified using  a Nucleofast 96 PCR cleanup kit 

(Clontech,  Mountain  View,  CA)and  vacuum  manifold  (Qiagen)  as  per  manufacturer's 

instuctions. DNA was eluted in 20µl of nuclease free water. 3µl of this solution was used as 

the input for sequencing PCR.  The same primers as used for initial  amplification were 

52



Materials and Methods

used  for  amplification with  BigDye  Terminator  v3.1  cycle  sequencing  kit  (Applied 

Biosystems, Foster City, CA). Per sample, approximately 400ng DNA, BigDye 1.5µlDilution 

Buffer,  1µl Big  Dye  v3.1,  1µl  Primer  (2pmol/ul),  water  to  10µl were  combined  for 

sequencing PCR as in table 2.10.

Step Temperature Time

1 96ºC 10 s
2 50ºC 5 s
3 60ºC 4 mins

Repeat steps 1-3 for 25 cycles

4 4ºC hold

Table 2.10. Sequencing PCR program

To precipitate DNA following sequencing PCR, 1µl  glycogen and 80µl  70% isopropanol 

were added to  each well.  The plate was incubated for  10 minutes at  -20ºC and then 

centrifuged for 30 mins at 3500rpm. The supernatant was then removed by gently turning 

plate over onto a tissue. The plate was centrifuged, upside down on a tissue at 50g for 1 

min to remove any residual  isopropanol.  The pellet  was then washed with 150µl  70% 

ethanol and spun for 5mins at 3500rpm and the supernatant removed as above. The pellet  

was left  to air dry before being re-suspended in10µl  Megabace formamide sequencing 

buffer. Sequence chromatograms were generated using according an ABI 3700 capillary 

DNA sequencer according to manufacturer’s instructions.

2.6.7. Sanger Sequencing Across Genomic Breakpoints

PCR  of  genomic  structural  variant  junctions  in  HCC1187,  VP229  and  VP267  was 

performed in the same way. Primers were designed using Pimer3 software  (Rozen and 

Skaletsky, 2000). For VP229 and VP267 DNA sequences flanking structural variant break 

points were assembled automatically from paired end sequence data (see below).
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2.6.8. Pyrosequencing

Assays  for  SNP  quantification  were  designed  using  Pyrosequencing  Assay  Design 

Software v 1.0 software (Biotage). Primers had Tm of approximately 70oC to ensure high 

specificity.  Outer  primer pairs  were tested by standard PCR on genomic DNA prior  to 

pyrosequencing.  Pyrosequencing PCR was carried  out  using  PyroMark  Gold  reagents 

(Biotage) unless otherwise stated as per manufacturer’s instructions. For each reaction 

5.0µl Gold Buffer, 4.0µl MgCl2 (25 mM), 2.5µl dNTP (10 mM), 0.3µl enzyme, 34.7µl water, 

1.5µl sample genomic DNA (100ng/ul), 1.0µl biotin primer (10nM), 1.0µl non-biotin primer 

(10mM) in a 50µl total volume was cycled as in Table 2.11:

Step  Temperature Time

1 95ºC 15min
2 95ºC 20s
3 (Anneling Temp) 20s
4 72ºC 20s

Repeat steps 2 to 4, 45x
5 72ºC 5min

Table 2.11. PCR conditions for Pyrosequencing

40µl  of  each  PCR  product  was  added  to  3µl  steptavidin-sepherose  beads  (GE 

Healthcare), 37µl binding buffer and 40µl water and shaken at 1200rpm for 5 mins to bind 

biotinylated  PCR  products  to  streptavidin  beads.  A  pyrosequencing  microtitre  plate 

(Biotage)  was  prepared  by  adding  to  each  well  1.5µl  sequencing  primer  and  43.5µl 

annealing buffer. DNA-bound streptavidin beads were washed using a PyroMark Vacuum 

Prep Workstation (Biotage) for 5s each in 70% ethanol, denaturation solution, 1X washing 

buffer, water, water. Beads were ejected onto the pre-prepared pyrosequencing plate and 

their DNA denatured for 3mins at 80ºC. Samples were run on a Pyrosequencer PSQ 96MA 

(Biotage) using a PyroGold reagent cartridge as per manufacturer’s instructions. Results  

were analysed using Biotage Assay Design software. PCR primers are listed in Appendix 

1.5.
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2.6.9. Illumina Sequencing

Short insert DNA sequencing libraries were prepared by Dr J.C.Pole and Dr I.Schulte with 

assistance and supervision from Dr S.F.Chin and Professor C.Caldas (CRUK Cambridge 

Research Institute). Genomic DNA was extracted as above and libraries constructed from 

a Paired-End DNA Sample Prep Kit (Illumina) according to the manufacturer’s instructions.  

Sequencing was  performed on  an Illumina GAIIx  sequencer,  generating  38  base  pair  

reads, at the Cancer Research UK Cambridge Research Institute. 

2.6.10. Quantitative PCR 

All  Quantitative PCR (qPCR) reactions were performed in triplicate in a  10 μl  volume 

containing 5 μl of SYBR Green PCR master mix (Applied Biosystems), 0.25 μM of primers 

and 1  μl  cDNA (approximately  100ng,  but  adjusted as  described below).To enrich  for  

messenger  RNA,  cellular  RNA  was  reverse-transcribed  using  an  oligo-dT  primer. 

Wherever practical, I used qPCR best practices as previously described  (Bustin, 2005). 

The  PCR  cycle  for  the  ABI  PRISM  7900HT  Sequence  Detection  System  (Applied 

Biosystems) was: 

Step Temperature Time

1 50ºC 2min
2 95ºC 10min
3 95ºC 15s
4 60ºC 30s
5 72ºC 2min

Repeat steps 2 to 5, 40x
6 72ºC 30min

Table 2.12. PCR conditions for quantitative PCR

I used the delta-delta Ct method to quantify the relative level of transcripts in a panel of cell  

lines (Pfaffl, 2001). The relative expression levels of the target gene to reference gene, in 

this case the housekeeping gene, GAPDH, were based on the difference in Ct (threshold 

cycle) values between a control 'normal' breast cell line, HB4a or HMT, and breast cancer 

cell lines samples according to the equation:
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                ratio = (Etarget)∆Ct
target

(control-sample)

            _______________________________

    (Eref)∆Ct
ref 

(control-sample) 

E is the amplification efficiency of each primers pair.  In theory a primer pair should be 

100% efficient, doubling the amount of DNA present with each round of PCR during the 

exponential phase so E = 2. In reality primers are not 100% efficient, so E was calculated  

from the slope of Ct value versus log10 input DNA using the equation:

 E = 10(-1/slope) 

For  each  qPCR primer  pair,  I  calculated  E  by  running  qPCR reactions  with  a  serial 

dilutions  of  a  universal  reference cDNA (Clonetech)  at100% (approximately  100ng/ul),  

50%, 10%, 5%, 1%, 0.5%, 0.1% and 0.01% concentrations.

2.7. Bioinformatics
2.7.1. SNP6 data and Segmentation

SNP6 data for HCC1187 was kindly provided by Dr G. Bignell (Wellcome Trust Sanger 

Institute). For other cell lines, the segmented SNP6 array CGH data for the Bignell et al.  

(2010)  dataset  was  downloaded  from  the  Sanger  Centre  Cancer  Genome  Project 

genotype and trace archive  http://www.sanger.ac.uk/genetics/CGP/Archive/ under a  data 

access  agreement.  Copy  number  segmentation  was  provided  by  Dr  C.D.  Greenman 

(Wellcome Trust Sanger Institute) and had been processed with  the PICNIC algorithm 

(Greenman  et  al.,  2010).  For  VP229,  data  was  provided  by  Dr  S.L.  Cooke,  CRUK 

Cambridge Research Institute and PICNIC segmentation was performed by Miss C.K. Ng.

2.7.2. Break point regions from segmented SNP6 array CGH data

The Bignell et al. (2010) data was in the form of a list of SNP specific and copy number  

probes along with their PICNIC-segmented total copy number. To find break point regions 
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in SNP6 data I used a Perl script that identified copy number transition points. The script  

output the two SNP or copy number probe positions that flanked the segmented break 

point  along  with  the  break  point  polarity:  copy number  gain  relative  to  the  preceding 

segment was a positive break,  loss was a negative break. The Perl  script  in  listed in 

Appendix 2.1.

2.7.3. Genes at SNP6 break points

The list  of  break  point  regions  from section  2.8.2  was  compared  with  a  list  of  'gene 

windows' as described in Chapter 6 using the Perl script in Appendix 2.2. The array CGH 

data contained many germline copy number variants (CNVs). As normal tissue was not 

available for all cell lines, I compared my list of copy number steps with list of known CNVs 

(Redon et al., 2006; Zhang et al., 2009). Any copy number step within 20kb of a known 

CNV boundary was omitted from the analysis.

2.7.4. Ensembl API scripting to predict gene fusions

After the clustering of similar sequencing reads into structural variant “nodes”, the nodes 

and their DNA strands were in-putted to a fusion gene prediction Perl script (Batty, 2010).

2.7.5. Ensembl API scripting to retrieve structural variant break point regions

Structural  variant  nodes  and  their  DNA strands  were  in-putted  to  a  genome  region 

extraction Perl script (Appendix 2.3). The script found the most conservative estimate of 

the break point region and used the Ensembl API to extract 1000 base pairs of sequence 

surrounding the putative  structural  variant.  Repeat  sequences in  the extracted regions 

were then masked to avoid non-specific primer annealing.

2.7.6. Circular visualisation of data

Cicle  plots  ere  generated  using  Circos  version  0.48  software  downloaded  from 

http://mkweb.bcgsc.ca/circos/ (Krzywinski et al., 2009).
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2.8. Statistical Model

2.8.1. Maximum likelihood estimators and confidence intervals

Scripts  to  generate  MLE were  written  in  the  R statistical  language  (R Foundation  for 

Statistical Computing, 2010). Confidence intervals were calculated using a bootstrapping 

approach (Davison and Hinkley, 1999). The R codes are in Appendix 2.4.

Suppose that X1,X2, ... ,Xm is a sample of size m, each taking values in {0; 1}. Of the m 

observations,  an  unknown  number  n  take  the  value  1  whereas  the  other  m  - n  are 

independent Bernoulli random variables having:

 

The random variable  Y  =  X1  +  ...  +  Xm is  observed,  and the aim is  to  estimate the 

parameter n and provide some assessment of confidence in that estimate. Note that this is 

a special case of the problem in which Xm-n+1, ... ,Xm are independent Bernoulli random 

variables having parameter q. In this case we can write down the distribution of Y , which 

is the sum of two independent Binomial random variables, B1 ~ Bin(m – n, p);B2 ~ Bin(n,  

q). Thus:

2.8.2. Classical approach

In what follows is a sample case where p = 0:5, q = 1 (3)

In this case (2) reduces to:
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2.8.3. Finding the MLEs

To find the maximum likelihood estimator of n, we use (4) to write the

likelihood as:

This can be maximized numerically. In some cases the MLE is not unique. For example 

when m = 16; y = 14, the values n = 12; 13 have equal likelihoods.

2.8.4. Confidence intervals

Supposing we have estimated n by an MLE, n . We then simulate B values of the MLE 

assuming that n  is the true parameter. This produces simulated values n i , i  = 1, 2, 

… , B. We suppose that the distribution of n−n  is well-approximated by that of n−n , 

from which a confidence interval can be approximated. To get a 100(1α) CI, sort the values 

of n i , i = 1, 2, … , B into increasing order, and record n l  = Bα =2th value and nu nu 

= B(1 α -2)th value. The CI is then has the form:

100(1 - a)%CI = (2 n−nu  ,l2 n−n l )
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The Structure of a Breast Cancer Genome



The Structure of a Breast Cancer Genome

3.1. Introduction

HCC1187 is a hypotriploid cell line derived from an ER-negative and ERBB2 non-amplified 

primary ductal carcinoma  (Gazdar et al., 1998; Wistuba et al., 1998). From a genomics 

perspective, it is one of our most intensively studied models of breast cancer having been 

investigated by molecular cytogenetics, exome-screening, and massively parallel paired 

end sequencing (Sjöblom et al., 2006; Wood et al., 2007; Howarth et al., 2008; Stephens 

et al., 2009).  The purpose of this section is to, as fully as possible, define the genomic 

aberrations of this breast cancer cell line and to use these data to address two questions:

1) How many genes are disrupted by chromosome aberrations in this “typical” breast 

cancer  cell  line  and  how  does  this  compare  to  the  sequence-level  mutational 

burden?

2) Do chromosome aberrations fuse any genes? If so, how many fusion transcripts 

can be found in HCC1187?

3.2. Previous Data
3.2.1. Spectral Karyotyping (SKY)

SKY was done previously by Dr. M. Grigorova (Grigorova and Edwards, 2004).

The modal chromosome number was 63 and ranged from 61 to 64. By SKY alone, there 

are  20  structural  chromosome abnormalities,  including  two  reciprocal  translocations  – 

t(1;8) and t(10;13).

3.2.2. Array Painting

In 2008, HCC1187 was investigated by array painting (Howarth et al., 2008). This allowed 

a  more  detailed  analysis  of  the  HCC1187  karyotype.  Initially,  all  chromosomes  were 

hybridized to 1Mb BAC arrays and to this resolution, 37 chromosomes were are apparently 

normal and 29 were structurally abnormal.  24 of these breaks appeared to be balanced 

with  respect  to  one  chromosome  and  these  chromosomes  were  hybridized  to  high 

resolution custom oligonucleotide arrays. This allowed high-resolution identification of 
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Chromosome 
Name from 

Howarth et al. 
(2008) Cytogenetic Description

Modal Number 
of Copies by 

SKY 

A der(1)(6pter->6p21.1::1p35.2->1q21.3::8p22->8pter) 1
D der(X)(6pter->6p21.1::1p35->1p21.3::Xp11.22->Xqter) 1
E der(8)(1q10->1q21.3::8p22->8q22.2::1p31.1->1pter) 1
G der(20)t(2;20)(q10;q11.21) 2
H der(8)t(1;8)(p31.1;q22.2) 1
J der(1)t(1;8)(p13;q22.2) 2
M del(7)(q36.1) 2

N 
der(10)(13qter->13q21::10p12->10q23.1::19q13.41-
>19qter) 1

O der(11)t(11;12)(p15.4;p11.22)del(11)(q13.5q21) 1
P der(19)t(2;19)(p10;p13.3) 1
R der(11)t(11;16)(p15.3;q22.1)del(11)(q13.5q21) 1

S
der(16)(16pter->16q22.1::11p15.3->11p15.4::12p11.22-
>12pter) 1

T der(19)t(2;19)(p16;p13.3) 1
U i(18)del(18)(q21.2) 1
V der(2;5) t(2;5)(p10;p10)del(2)(p16p25.1) 1
Y der(20)t(14;20)({14qter->14q24.3:}{20pter->20qter) 1
b der(13)t(10;13)(p12;q21.31) 3
c i(13q)del(13)(q10q31) 1
i der(19)t(1;19)(p36.22;q13.1)3 1
j der(?)({20pter->20p13:}{:13q31.1->13qter})3 1
k trc(1;X;1)(1qter->1p11::Xp21.3->Xq25::1p11->1qter) 1
B 4 2
C 3 2
F 5 2
I 6 2
K 7 2
N 8 1
Q 9,10,11,12 3,2,2,2
W 14 2
X 15 2
Y 16 1
Z 17 2
a 18 2
d 20 1
e 19 1

f/g 21 3
h 22 2
L X 1

Table 3.1. Cytogenetic description of HCC1187 karyotype modified from Howarth et 

al (2008). Chromosome U was shown to be an isochromosome of 18q by FISH (S.N. 

not shown)

chromosome breakpoints.  All  chromosomes are described cytogenetically in Table 

3.1, and are named A-Z and a-k, based on their sizes from the flow-sorted karyotype 
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(Howarth et al., 2008). The positions of chromosome break points defined by array 

painting are listed in Appendix 3.1. 

3.2.3. Massively Parallel Paired End Sequencing

In 2009, Stephens et al. published a survey of 24 breast cancer genomes by massively 

parallel paired end sequencing (Stephens et al., 2009). HCC1187 was one of the samples 

used and this provided further data on the structure of the HCC1187 genome. Stephens et 

al. (2009) reported 11-fold haploid genome coverage for HCC1187 but as the cell line is  

near  triploid  this  translates  to  approximately  3.7-fold  physical  coverage.  The  authors 

estimated that they had found 50% of the structural variants in their samples and indeed 

uncovered substantial somatic variation in the HCC1187 genome. Most rearrangements 

were small  deletions and tandem duplications beyond the resolution of  array CGH so 

could not have been detected by previous methods. 

Confirmed somatic structural variations comprised 26 deletions, 9 inversions, 50 insertions 

(most were probably tandem duplications) and 11 inter-chromosome translocations. The 

intra-chromosomal rearrangements ranged in size from 3.7kb to 58Mb with a median size 

of 65.5 kb. All structural variants are listed in table Appendix 3.2.

3.2.4. Exome-wide Mutation Screen and Targeted Resequencing

Wood et  al.  (2007)  reported  79  sequence-level  mutations  in  HCC1187.  Six  additional  

mutations are listed in the COSMIC database (Forbes et al., 2010). In total there are 85 

sequence-level mutations in the HCC1187 genome comprising 75 base substitutions and 

10  indels.  All  previously  reported  sequence-level  mutations  in  HCC1187  are  listed  in 

Appendix 3.3.
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3.3. Analysis Part I. The Genome Structure of HCC1187
3.3.1. Combining Array Painting Data with SNP6 array CGH Data

The breakpoints of the potentially balanced rearrangements in HCC1187 had previously 

been mapped using custom oligo arrays by array painting (Howarth et al., 2008). The large 

number of remaining unbalanced breakpoints were only known to within approximately 

1Mb. To map these unbalanced rearrangements, high resolution array CGH, provided by 

Dr G Bignell and analysed by Dr C.D. Greenman of the Wellcome Sanger institute, was 

used (Bignell et al., 2010; Greenman et al., 2010). Copy number change points had been 

identified  by  array  CGH  segmentation  using  the  PICNIC  algorithm  (Greenman  et  al., 

2010). All copy number segments from array CGH are listed in Appendix 3.4.

Array painting-derived CGH and SNP6 CGH data data for the HCC1187 genome (Howarth 

et al., 2008) were compared. There was a very good concordance between the two data 

sets (Figure 3.1). Where array painting had identified an unbalanced copy number step to 

1Mb resolution, the segmented SNP6 break point was always within those bounds (Table 

3.2). 
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Figure 3.1. The structure of the HCC1187 genome. 

Legend overleaf
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Figure 3.1. The structure of the HCC1187 genome. i) Spectral Karyotype (Grigorova 

and Edwards, 2004) with Howarth et al. (2008) chromosome names in white. ii) Circular 

representation  (Krzywinski  et  al.,  2009)  of  the  HCC1187  genome.  Chromosome 

ideograms are arranged clockwise p-terminal to q-terminal around the outside. Moving 

inward,  chromosome segments from array painting  (Howarth  et  al.,  2008)  are  grey 

rectangles  and the derivative  chromosome to which they belong are  indicated.  For 

example, chromosome D is made from pieces of chromosomes 1, 6 and X. The inner 

plot is SNP6 array CGH segmented with the PICNIC algorithm (blue line). Segmented 

copy number is on the y-axis. 
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Name 
Proposed 
Junction Chr

Array 
Painting 

LHS

Array 
Painting 

RHS
PICNIC 

LHS
PICNIC 

RHS Chr

Array 
Painting 

LHS

Array 
Painting 

RHS
PICNIC 

LHS
PICNIC 

RHS
A, D t(1;6) 1 31160803 31296885 31180697 31183666 ; 6 42354900 42358000 42354401 42356874

A t(1;8) 1 150503923 150563199 150517061 150526980 ; 8 14331543 14465908 143981882 143983187
D t(1;X) 1 96961782 97980642 97790620 97791276 ; X 50231248 54118742 53295047 53299507
E t(1;8) a 1 84172800 84174600 84233795 84234712 ; 8 99290956 101355408 Balanced Balanced
E t(1;8) b 1 150503923 150563199 150517061 150526980 ; 8 14589000 14591700 Balanced Balanced
G t(2;20) 2 89772453 94882962 88841557 88843175 ; 20 30605410 30851018 30764109 30768267
H t(1;8) 1 84135872 85445695 84233795 84234712 ; 8 99290956 101355408 Balanced Balanced
J t(1;8) 1 115246265 115255974 115260780 115276291 ; 8 99290956 101355408 Balanced Balanced
N t(10;13) 10 22830000 22875000 22815216 22815579 ; 13 58272600 58273300 58272072 58278781
N t(10;19) 10 84424000 84425500 84425879 84426077 ; 19 56139000 56141000 56248520 56250406

O
del(11)q13

.5q21) 11 76153426 78120577 77811711 77814699 ; 11 88001258 90989730 90315308 90315329
O t(11;12) 11 - - 5535160 5536230 ; 12 28228474 28699165 28660139 28664235
P t(2;19) 2 89772453 94882962 88841557 88843175 ; 19 - - 5745718 5750806
R t(11;16) 11 10435000 10438000 Balanced Balanced ; 16 66141900 66142200 Balanced Balanced

R
del(11)q13

.5q21) 11 76153426 78120577 77811711 77814699 ; 11 88001258 90989730 90315308 90315329
S t(12;16) 12 28228474 28699165 28660139 28664235 ; 16 66141900 66142200 Balanced Balanced
S t(11;16) 11 - - estimate 9302500 ; 16 66141900 66142200 Balanced Balanced
S t(11;12) 11 - - 5535160 5536230 ; 12 28228474 28699165 28660139 28664235
T t(2;19) 2 54050000 54053000 54050162 54055907 ; 19 5775600 5778000 5745718 5750806
V t(2;5) 2 89772453 94882962 88841557 88843175 ; 5 42897896 50000844 Balanced Balanced

V
del(2p)

(p16p25.1) 2 - - 105251764 105256524 ; 2 54050000 54053000 54050162 54055907
Y t(14;20) 14 75743298 76653724 72742737 72745332 ; 20 >1 <30760000 Balanced Balanced
b t(10;13) 10 22830000 22875000 22815216 22815579 ; 13 58272600 58273300 58272072 58278781
c i(13) 13 - - 88420742 88421559 ; 13 - - 88420742 88421559
i t(1;19) 1 11042656 11551099 11065194 11065899 ; 19 42104981 42928443 42438672 42438948
j t(13;20) 13 - - 88420742 88421559 ; 20 >1 <30760000 Balanced Balanced

k t(1;X) 1 - - 120264944 120268277 ; X
12228154

3 123854583 122545844 122546391
t(X;X) X 26887513 27118094 27115786 27116914 ; X 93199431 93201916

dmin - 1 117396138 117396585 ;

extends as 
far as 

146000000

Table 3.2. Comparison of array painting CGH with PICNIC-segmented SNP6 array CGH. Mappings are based on the HG18 genome build
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All copy number steps present at low resolution were present at high resolution also. This 

means there had been no recent karyotype evolution in culture and that the HCC1187 

karyotype  was  relatively  stable.   Figure  3.2 shows  a  representative  unbalanced 

chromosome break defined by 1Mb array painting CGH and high resolution SNP6 array 

CGH.

Figure 3.2.  Comparison of 1MB BAC array with SNP6 array CGH, chromosome 
6p. Red dots are median positions of 1MB BACs form Howarth et al. (2008), black dots 

are individual probes from Affymetrix SNP6 array from Bignell et al. (2010). The SNP6 

array gives a much higher resolution estimate of the breakpoint position. In this case, 

the midpoint of the BACS flanking the break were 31160802 and 31296885, the SNPs 

flanking the break were at 31180697 and 31183666.

3.3.2. Incorporating Massively Parallel Paired End Sequence data

I next compared my provisional genome map with the structural variant data reported by 

Stephens et al. (2009). Again, there was a high concordance between the array based 

definitions of chromosome break points and the sequencing-derived mappings.  Of the 28 
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cytogenetically visible chromosome junctions, 12 had been sampled by Stephens et al. 

(2009).  These  junctions  had  been  mapped  to  base  pair  resolution,  so  were  the  best 

mapping available (Table 3.3). Two inter chromosome genomic junctions "StephensDIF2" 

chr1:31334253+ joined to chr6:41406061- and "StephensDIF6" chr7:148873715+ joined to 

chr8:143979884-  were  not  anticipated  by  array  painting.  StephensDIF2  is  likely  to 

represent some complexity at the t(1;6) chromosomes A and D translocation break point 

and is discussed below in section 3.4.1.  StephensDIF6 may represent an unbalanced 

translocation between the q termini of chromosomes 7 and 8. Chromosome M, listed as 

del(7)(q36.1) probably has a small piece of chromosome 8, 143.9Mb>qter attached. This 

small piece of chromosome 8 was below the resolution of the 1 Mb array painting method.

One large intrachromsome inversion could not have been anticipated by array painting:  

“StephensINV1” and “StephensINV2” indicate an inversion between chr1:157359724 and 

215686770.  This  indicates  an inversion  of  a  large segment  of  1q,  and is  presumably 

present on one or several of chromosomes J or k.

3.3.3. Genes at Chromosome Break Points

After assembling the best mappings for each chromosomal breakpoint, I next asked if any 

genes  had  been  broken  and  whether  if  the  5'  portion  of  one  gene  had  ever  been 

juxtaposed to the 3' end of another, possibly forming a fusion transcript (Table 3.3). When 

predicting gene fusions,  I  assumed that  chromosome segments containing a telomere 

formed  the  termini  of  derivative  chromosomes.  Similarly,  centromeric  breaks  were 

assumed  to  form  centromeres  in  derivative  chromosomes.  For  segments  without 

telomeres or centromeres, orientation was unclear as genomic breakpoints in many cases 

had  not  been  cloned.  This  is  true  of  chromosomes  E,N,O  and  R.  The  alternative 

configurations were, however, also considered when investigating possible gene fusions. 
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Chr
Junction

Stephens 
Structural 
Varaint? Chr

Best 
Mapping Strand Chr

Best 
Mapping Strand Gene A Gene B

Possible 
Fusion

A t(1;8) 1 150522021 + 8 143982535 - HRNR (3') LY6E (3')

A, D t(1;6) DIF1 1 31183855 - 6 42356186 + PUM1(5') TRERF1 (3') PUM1-TRERF1
b t(10;13) DIF8 10 22832193 - 13 58272472 -

c i(13) 13 88421151 + 13 88421151 +

D t(1;X) DIF4 1 97784960 + X 53294900 + DPYD (3') IQSEC2 (5') IQSEC2-DPYD
E t(1;8) a DIF3 1 84234093 + 8 101058886 + TTLL7 (3') RGS22 (3')

E t(1;8) b 1 150522021 + 8 14590350 + HRNR (3') SGCZ (5') SGCZ-HRNR
G t(2;20) 2 88842366 - 20 30766188 + COMMD7 (5')

H t(1;8) 1 84234254 + 8 100323182 - TTLL7 (3') RGS22 (3')

i t(1;19) 1 11065541 + 19 42438810 - EXOSC10 (3') ZNF585B (3')

J t(1;8) DIF5 1 115272352 - 8 101059496 -
SYCP1 (3') /  
SIKE1 (5') RGS22 (5') RGS22-SYCP1

j t(13;20) 13 88421151 - 20 ? + ?

k t(X;X) X 27116350 - X 93200674 -

k t(1;X) 1 120266611 - X 122546118 + NOTCH2 (5')

M t(7;8) DIF6 7 148873715 + 8 143979884 - CYP11B2 (5')

N t(10;13) DIF7 10 22831512 + 13 58272177 +

N t(10;19) 10 84425978 + 19 56249463 + NRG3 (5') SIGLEC9 (5')

O
del(11)q13.5

q21) DEL17 11 77809792 + 11 90309424 -

O t(11;12) DIF9 11 5536414 12 28661343
OR52B6 (3') /  

HBG2 (5')

P t(2;19) 2 88842366 + 19 5748262 - NRTN (3')

R
del(11)q13.5

q21) DEL17 11 77809792 + 11 90309424 -

R t(11;16) DIF10 11 10436500 16 66142050 AMPD3



S t(11;12) DIF9 11 5536414 - 12 28661343 +
OR52B6 (3') /  

HBG2 (5')

S t(11;16) 11 9108545* + 16 66198168 + SCUBE2 (3') CTCF (5')
runthrough CTCF-

SCUBE2
T t(2;19) 2 54053031 + 19 5748262 - PSME4 (3') NRTN (3')

V
del(2p)

(p16p25.1) DEL2 2 11397776 + 2 55159176 - ROCK2 (3') RPS27A (3')

V t(2;5) 2 88842366 + 5 46449370 - FLJ40330 (5')

Y t(14;20) DIF11 14 72736528 - 20 6147141 + PSEN1 (5')

Table 3.3. Genes at array painting chromosome break points. Break point co-ordinates are defined by the best available mapping from array 

painting, SNP6 or Stephens et al. (2009).*The mapping of this chromosome translocation was from a cloned genomic junction from Dr. K.D. Howarth.
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3.3.4. Sub-Microscopic Aberrations From SNP6 and Massively Parallel paired End 
Sequencing Data

SNP6 array CGH showed additional  rearrangements that were below the resolution of 

1Mb array painting. The segmentation algorithm predicted 13 small deletions ranging from 

0.26 kb to 2.3Mb with a median size of 257kb. There were also 27 small  duplications 

ranging from 11.7kb to 2.8Mb, median size 320kb. All of these duplications and deletions  

were absent in the matched normal lymphoblastoid cell line, HCC1187BL. Many of these 

features were likely to be small interstitial deletions or “head to tail” tandem duplications.  

Indeed, five of the 13 deletions and 17 of the 27 duplications had associated structural  

variants from Stephens et al. (2009) that confirmed this inference. I assembled a list of  

genes at break points and predicted if any gene fusions may have resulted. I assumed 

each feature was either an interstitial deletion or tandem duplication (Table 3.4).

Massively parallel paired end sequencing uncovered further structural variation that was 

below the resolution of SNP6 array CGH segmentation. There were 18 apparent deletions 

ranging from 3.8kb – 2.01Mb with a median size of 16kb, 35 apparent duplications from 

4.2kb – 583kb median size 64kb. Additionally, there were 7 inversions ranging from 5.5kb 

to 17.8kb with a 14.8kb median size. These small  balanced rearrangements could not 

have been detected by array CGH approaches. As for the array CGH segmented deletions 

and duplications I identified broken genes and possible fusions (Table 3.5).
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Chr Type

Previous 
Segment 

End

Size of 
gained or 

lost region 
(kb)

Next 
Segment 

Start

Previous 
Segment 

CN

Gained or 
lost 

region 
copy 

number

Next 
Segment 

CN

Stephens 
et al. (2009) 

SV? LHS Gene RHS Gene
Potential Gene 

Fusion
2 Del 33032718 56.04 33089758 2 0 2 DEL3 LTBP1(5') LTBP1(3') No – intronic

2 Del 54050162 1101.61 55159490 2 1 2 PSME4 (3') RPS27A(3')

2 Del 66859298 257.47 67119098 2 1 2 DEL4

6 Del 1661709 4019.19 5681742 4 3 5 DEL6 GMDS (3') FARS2(3')

6 Del 101044085 205.62 101259352 2 1 2 SIM1 (3') ASCC3(5')

6 Del 134367799 208.05 134580872 2 0 2 SLC2A12 (3') SGK1(5')
SGK1-

SLC2A12
8 Del 124739282 2785.93 127533246 3 1 4 KLHL38 (3')

11 Del 20684394 23364.99 44051626 4 3 4 NELL1(5') ACCS(3')

12 Del 33417710 0.26 33420555 2 4 4 SYT10(3')

12 Del 127475298 646.23 128122073 2 1 2
TMEM132C 

(5')

14 Del 62771053 630.99 63410248 2 0 2
KCNH5(3') /  

RHOJ(5') SYNE2(3') RHOJ-SYNE2
15 Del 69964951 249.53 70233770 2 0 2 MYO9A(3')

17 Del 34666635 85.62 34766404 2 0 2 DEL22
FBXL20(5') /  
CRKRS(3')

1 Dup 31180697 149.29 31336568 2 5 4 DIF1/DIF2
PUM1(5')  

/PRO0611(3') SNORD85 (3')

2 Dup 104926149 319.83 105256524 2 3 2 INS4 MRPS9(3') TGFBRAP1(3')

2 Dup 222210422 651.77 222869850 2 3 2 INS5 PAX3(3')

3 Dup 9483392 1113.06 10597941 2 3 2 SETD5(3') MIR885(3')

3 Dup 57148414 95.13 57255295 2 4 2 INS9
IL17RD(5') /  
APPL1(3')

APPL1(5') /  
HESX1(3')

Runthrough 
IL17RD-
HESX1

3 Dup 130771904 131.5 130909903 2 4 2 INS10 PLXND1(5') TMCC1(3') PLXND1-



TMCC1
4 Dup 146293755 428.13 146731470 2 4 2 INS17 OTUD4(5')

4 Dup 199380516 2800.24 2807561 2 3 2
TNIP2(3') /  
SH3BP2(5')

6 Dup 41394582 959.43 42356874 4 6 2 DIF1 NCR2(3') TRERF1(3')

6 Dup 149546259 497.51 150052602 2 3 2 INS23
MAP3K7IP2 

(3') LATS1(3')

8 Dup 102400777 151.95 102558211 3 5 3 INS28 NACAP1 (3')

8 Dup 127530787 11.7 127547507 1 4 3

8 Dup 127966102 889.5 128857819 3 4 3

9 Dup 12874003 169.69 13047115 3 5 3 INS29

9 Dup 113916140 215.02 114139966 3 4 3 INS31 SUSD1(5') ROD1(3') SUSD1-ROD1
10 Dup 30165639 272.47 30440477 3 4 3 KIAA1462 (3')

10 Dup 46363383 874.32 47417401 3 4 3 GPRIN2(3')

12 Dup 11769713 58.38 11829511 3 5 3 INS36 ETV6(3') ETV6(5') No – intronic

12 Dup 33420367 334.77 33756464 4 4 2 SYT10(3')

12 Dup 34043707 424.29 34490595 2 5 2 ALG10(3')

13 Dup 101878311 365.51 102251373 4 5 4 INS38 TPP2(3') BIVM(5')

14 Dup 38673786 196.33 38881982 2 4 2 INS39 SIP1(3')

CTAGE5 (5') /  
TRAPPC6B 

(3') CTAGE5-SIP1
14 Dup 63658710 251.89 63912211 2 4 2 INS40 SYNE2(3') ESR2(3')

14 Dup 67838563 317.88 68157617 2 4 2 INS41 RAD51L1 (3')

15 Dup 83230545 600 83835487 2 3 2 SLC28A1 (3') AKAP13(5')
AKAP13-
SLC28A1

15 Dup 88492748 146.17 88640915 2 4 2 SEMA4B (3') CIB1(3')

18 Dup 8972450 1692.78 10666165 4 5 4 INS47 NDUFV2 (3')

Table 3.4. Small deletions and Duplications from segmented array CGH. Del=deletion, Dup=duplication, CN=copy number from PICNIC array 

CGH segmentation. Some of the deletions and duplications had an associated structural variant listed in Stephens et al. (2009) and are named as in 



Appendix 3.2. Genes at deletion or duplication break points are listed and the end of the gene retained in a possible fusion transcript is also noted (3' 

or 5'). 

Name
SV 

Type Chr A Position A Strand A Chr B Position B Strand B
Size 
(kb) Gene A Gene B Potential Effect

DEL10 Del 8 41576622 + 8 41588498 - 11.88 AGPAT6 (5') AGPAT6 (3') Deleted Exons

DEL11 Del 8 70272683 + 8 70277843 - 5.16

DEL12 Del 10 14616540 + 10 14649227 - 32.69 FAM107B (3') FAM107B (5') within intron

DEL13 Del 10 77414245 + 10 79429479 - 2015.23 C10orf11 (5') POLR3A (5')

DEL15 Del 11 34072921 + 11 34082648 - 9.73 CAPRIN1 (5')

DEL16 Del 11 55503503 + 11 55507819 - 4.32 OR7E5P (3') OR7E5P (5') within intron

DEL18 Del 12 114935765 + 12 114961462 - 25.7 MED13L (3') MED13L (5') Exons Deleted

DEL19 Del 13 47846990 + 13 47850855 - 3.87 RB1 (5') RB1 (3') Exons Deleted

DEL20 Del 14 79857506 + 14 79867739 - 10.23 DIO2 (3') DIO2 (5') within intron

DEL21 Del 14 98850865 + 14 98856028 - 5.16

DEL23 Del 20 9081436 + 20 9131009 - 49.57 PLCB4 (5') PLCB4 (3') within intron

DEL24 Del 20 52273532 + 20 52281706 - 8.17

DEL25 Del 20 52887189 + 20 52919407 - 32.22

DEL26 Del X 153858946 + X 153879982 - 21.04 F8 (3') F8 (5') Exons Deleted

DEL5 Del 4 138011731 + 4 138039024 - 27.29

DEL8 Del 7 110845099 + 7 110867805 - 22.71 IMMP2L (3') IMMP2L (5') within intron

DEL9 Del 7 132786464 + 7 132871038 - 84.57 EXOC4 (5') EXOC4 (3') Exons Deleted

INS1 Ins 1 37593659 - 1 38176917 + 583.26 ZC3H12A (3') INPP5B (3')

INS11 Ins 4 13044591 - 4 13478102 + 433.51 RAB28 (5')

INS12 Ins 4 40464439 - 4 40515180 + 50.74 NSUN7 (3') APBB2 (3')

INS13 Ins 4 79203712 - 4 79238418 + 34.71 FRAS1 (3') FRAS1 (5') within intron

INS14 Ins 4 82495561 - 4 82601352 + 105.79 RASGEF1B (3')



INS15 Ins 4 92041059 - 4 92076272 + 35.21 FAM190A (3') FAM190A (5') Exons Duplicated

INS16 Ins 4 117597380 - 4 117609422 + 12.04

INS18 Ins 5 37083312 - 5 37175248 + 91.94 NIPBL (3') C5orf42 (3')

INS19 Ins 5 174407766 - 5 174468477 + 60.71

INS2 Ins 1 190587754 - 1 190724320 + 136.57 RGS21 (3')

INS20 Ins 6 2046552 - 6 2063989 + 17.44 GMDS (5') GMDS (3')

INS21 Ins 6 11391453 - 6 11573487 + 182.03 NEDD9 (5') TMEM170B (3')

INS22 Ins 6 41476568 - 6 41569960 + 93.39

INS24 Ins 7 104330914 - 7 104516312 + 185.4
LHFPL3 (3') /  

LOC723809 (5') MLL5 (5') MLL5-LHFPL3
INS25 Ins 8 5911073 - 8 5986829 + 75.76

INS26 Ins 8 6480859 - 8 6586862 + 106 MCPH1 (3') AGPAT5 (5') AGPAT5-MCPH1
INS27 Ins 8 79925025 - 8 79950438 + 25.41

INS3 Ins 2 10155274 - 2 10239261 + 83.99 RRM2 (3') C2orf48 (5')
Runthrough 

Csorf48-RRM2

INS30 Ins 9 102203807 - 9 102265942 + 62.14 C9orf30 (3') TMEFF1 (5')
Runthrough TMEF1-

C9orf30
INS32 Ins 11 16826873 - 11 16879687 + 52.81 PLEKHA7 (5') PLEKHA7 (3') Exons Duplicated

INS33 Ins 11 57072794 - 11 57295287 + 222.49 SMTNL1 (3') CTNND1 (5') CTNND1-SMNTNL1
INS34 Ins 11 77389514 - 11 77443887 + 54.37

INS35 Ins 11 111292861 - 11 111354277 + 61.42 C11orf52 (3') DIXDC1 (5') DIXDC1-C11orf52
INS37 Ins 12 27532204 - 12 27595557 + 63.35 PPFIBP1 (5')

INS42 Ins 16 65695550 - 16 65828537 + 132.99 C16orf70 (3') FHOD1 (3')

INS43 Ins 16 79615251 - 16 79679344 + 64.09 CENPN (3') GCSH (3')

INS44 Ins 17 46134084 - 17 46194120 + 60.04
ANKRD40 (5') /  

LUC7L3 (3') C17orf73 (3')

INS45 Ins 17 72865900 - 17 72905624 + 39.72 SEPT9 (3') SEPT9 (5') Exons Duplicated

INS46 Ins 18 606353 - 18 631641 + 25.29 CLUL1 (3') CLUL1 (3') Exons Duplicated

INS48 Ins 19 10398770 - 19 10509924 + 111.15 PDE4A (3')

INS49 Ins 19 16828242 - 19 16940309 + 112.07 SIN3B (3') CPAMD8 (3')



INS50 Ins 20 19112222 - 20 19210849 + 98.63 SLC24A3 (3')

INS6 Ins 2 240060032 - 2 240105411 + 45.38

INS7 Ins 3 49410887 - 3 49559868 + 148.98 RHOA (5')

INS8 Ins 3 56444738 - 3 56449656 + 4.92 ERC2 (5') ERC2 (3') within intron

INV7 Inv 18 9767694 + 18 9773271 + 5.58 RAB31 RAB31 within intron

INV8 Inv 18 51504211 + 18 51510656 + 6.45

INV9 Inv 20 9771873 + 20 9780917 + 9.04

INV3 Inv 2 42519193 - 2 42533786 - 14.59 KCNG3 (5')

INV5 Inv 13 76416077 + 13 76432425 + 16.35

INV4 Inv 13 76399932 - 13 76416550 - 16.62

INV6 Inv 14 73245679 - 14 73263451 - 17.77 C14orf43(5')

Table 3.5. Small deletions and Duplications and inversions not segmented array CGH. Del=deletion, Ins=insertion – likely to be a tandem 

duplication duplication.  Genes at deletion or duplication break points are listed and the end of the gene retained in a possible fusion transcript is also 

noted (3' or 5'). 



The Structure of a Breast Cancer Genome

3.3.5. Broken and Predicted Fusion Genes in HCC1187

To produce a fusion transcript, the 5' end of one gene must be juxtaposed to the 3' end of 

another. When genes at breakpoints from the HCC1187 structural variants were combined 

several potential gene fusions were predicted.

I had carried out the bulk of this analysis before Stephens et al. (2009 using data from 

array painting and array CGH. Cytogenetically visible chromosome aberrations potentially 

produced  five  fusion  genes:  PUM1-TRERF1,  IQSEC2-DPYD,  SGCZ-HRNR,  RGS22-

SYCP1, CTCF-SCUBE2.  Twenty-three additional genes broken but not predicted to be 

fused. Sub-microscopic duplications and deletions segmented by PICNIC produced eleven 

possible fusion genes: SGK1-SLC2A12, RHOJ-SYNE2, IL17RD-HESX, PLXND1-TMCC1,  

SUSD1-ROD1,  CTAGE5-SIP1.  Data  from paired  end sequencing indicated five  further 

potential  fusions:  AKAP13-SLC28A1,  MLL5-LHFPL3,  AGPAT5-MCPH1,  Csorf48-RRM2,  

TMEF1-C9orf30.  Nine rearrangements were entirely within genes and traversed exons 

and potentially disrupted gene function: AGPAT6, MED13L, RB1, F8, EXOC4, FAM190A,  

PLEKHA7, SEPT9, CLUL1. Sub-microscopic rearrangements from array CGH and paired 

end sequencing data broke as many as 77 other genes

All the potential gene-fusions were investigated by RT-PCR and five were shown to be 

expressed:  PUM1-TRERF1, CTCF-SCUBE2, RHOJ-SYNE2, CTAGE5-SIP1 and ROD1-

SUSD1. Several of these genes may be relevant to breast cancer. 
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3.4. Expressed Fusion Genes in HCC1187

In the following section I describe how the expressed fusion transcripts were identified. 

Further investigations recurrence in other samples and expression levels are described in  

Chapter 6.

3.4.1. PUM1-TRERF1

Pumilio homolog 1 (PUM1) is fused to transcriptional regulating factor 1 (TRERF1) by to a 

t(1;6) translocation junction present on chromosomes A and D. At the cDNA level, exon20 

of PUM1 is fused to exon5 of TRERF1. I did not observe any different splice isoforms. The 

fusion transcript is predicted to cause a frame shift in TRERF1 (Figure 3.4). The PUM1-

TRERF1 breakpoint regions are interesting as SNP6 array CGH showed a gain in copy 

number approximately 140kb in length immediately distal to the PUM1 breakpoint and 1Mb 

copy number gain immediately proximal to the  TRERF1 breakpoint (Figure 3.3). A FISH 

experiment  showed the  PUM1-TRERF1 fusion was present  only on the two derivative 

chromosomes (chromosomes A and D) at the t(1;6) translocation breakpoint. Interphase 

cells showed two or three untranslocated PUM1 signals (chromosomes E and H), and one 

or  two  untranslocatedTRERF1  signals  (chromosome  I).  An  extra  PUM1 signal  was 

occasionally seen in metaphase chromosomes and may have been due to duplication of  

peak E or H in culture. The modal number of fused signals was four, so it is likely the 

PUM1-TRERF1 fusion  region  and  surrounding  loci  had  been  duplicated  during  the 

evolution of the tumour or cell line. As derivative chromosomes A and D share the same 

translocation breakpoint, it is probable a single chromosome originally carried the PUM1-

TRERF1 fusion  and subsequently  duplicated.  The 1Mb gain  proximal  to  the  TRERF1 

break contains several other genes including cyclin D3 (CCND3) and forkhead-box P4 

(FOXP4), and it is also possible one of these genes is driving the duplication of the region. 
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Figure 3.3. Translocation t(1;6) that caused the PUM1-TRERF1 fusion.
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Figure 3.3. Translocation t(1;6) that caused the  PUM1-TRERF1 fusion. i)  SNP6 

array CGH segmented with PICNIC. Black dots are individual probe loci, red lines are 

segmented  copy number.  Purple  lines  are  genomic  junctions  from Stephens  et  al. 

(2009). J1=StephensDIF1; chr1:31183855 - ;chr6:42356186 + and J2; StephensDIF2 

chr1:31334253 + ;chr6:41406061 -. ii) Regions of chromosomes 1 and 6 with the same 

segmented copy number named A-C and D-F. Positions of BACs used for FISH are 

indicated with green and red circles. iii) FISH of the t(1;6) translocation. M62 normal 

lymphoblastoid cell line metaphase spread shows two normal copies of chromosome 1 

(blue), each with a single red FISH signal on 1p (PUM1). Two C-group chromosomes 

have a single green signal on their p-arm (TRERF1). Interphase nuclei from M62 show 

red,red,green,green signals. HCC1187 metaphase spread shows numerous  segments 

of chromosome 1. There are two unpaired green signals and two unpaired red signals 

and  two  fused  red-green  signals,  presumably  at  the  t(1;6)  translocation  junction. 

HCC1187  interphase  nuclei  showed  a  modal  pattern  of  two  unpaired  reds,  two 

unpaired  greens  and  two  red-green-red-green  signals.  iv)  The  most  probable 

explanation for the patterns observed is a tandem duplication of the fused region at the 

translocation break point. 
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Figure 3.4. RT PCR of the PUM1-TRERF1 fusion transcript. i) The genomic loci of 

PUM1 and  TRERF1.  Dotted  lines  indicate  chromosome  breaks.  ii)  Pictorial 

representation  of  fusion transcript.  Uncharacterised exon is  labelled  'x'.  iii)  RT-PCR 

across the fusion transcript junction. The fusion junction was cloned and sequenced 

giving the sequence shown in iv) PUM1 exon 20 is fused with TRERF1 exon 5.Exons 
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are  names  as  for  PUM1-001  (ENST00000257075)  and  TRERF1-001 

(ENST00000372922). This and all subsequent PCRs used a 200 base-pair ladder.

PUM1 is a member of the evolutionarily-conserved PUF family of RNA binding proteins. 

The PUF family are characterised by a highly conserved C-terminal RNA-binding domain,  

composed of eight tandem repeats. PUF-family proteins bind to motifs in the 3'UTR of 

specific target  mRNAs and repress their  translation  (Spassov and Jurecic,  2003).  The 

mammalian PUF family members are poorly characterized and their mRNA targets are 

largely unknown although an interesting finding is that PUM2 may modulate translation of 

members of the MAPK signalling pathway (Lee et al., 2007). Some have suggested family 

members  interact  with  the  miRNA regulatory  system   (Galgano  et  al.,  2008). PUM1 

binding, in particular, is required to down-regulate p27 for cell cycle entry and does this by 

recruiting micro RNAs, miR-221 and miR-222 (Kedde et al., 2010). Conversely, it has been 

suggested that  PUM1 is expressed at a remarkably constant level over large data sets. 

This  expression  profile  makes  it  suitable  as  a  housekeeping  gene  for  investigating 

differential gene expression in cancers (Gur-Dedeoglu et al., 2009).

The potential role of TRERF1 in breast cancer is not clear. TRERF1 encodes a zinc-finger 

transcriptional regulating protein that interacts with CBP/p300. Insertional mutagenesis of 

the  oestrogen-dependent  cell  line,  ZR-75-1,  revealed several  candidate  BCAR (breast 

cancer  anti-estrogen  resistance)  genes  that  were  thought  to  underpin  oestrogen 

independence, one of which was TRERF1/BCAR2 (Dorssers and Veldscholte, 1997; van 

Agthoven  et  al.,  2009).  In  this  case,  retroviral  insertion  caused  increased  TRERF1 

expression and the authors postulated that  TRERF1 exerted a dominant growth control 

and acted as an oncogene by driving oestrogen-independent growth.   But  conversely,  

TRERF1 (TreP-123) acts with steroidogenic factor 1 (SF-1) and progesterone receptor to 

induce  expression  of  G(1)  cyclin-dependent  kinase  inhibitors  p21(WAF1)  (p21) and 

p27(KIP1) (p27). Knockdown of TRERF1 in T-47D and MDA-MB-231 cell lines enhanced 

cell proliferation and lowered p21 and p27 mRNA levels (Gizard et al., 2005, 2006). 

There are full length PUM1 and TRERF1 transcripts present in HCC1187 (not shown), and 

as the fusion transcript appears to be out of frame, it is unlikely that the fusion is functional.

84



The Structure of a Breast Cancer Genome

3.4.2. CTCF-SCUBE2

A  near-balanced  translocation  caused  CTCF to  fuse  with  SCUBE2.  The  t(11;16) 

translocation is not exactly reciprocal as it contains a genomic shard – a 1.3kb piece of  

chromosome 11 sandwiched between the  chromosome 11 and 16 translocation  break 

points (Figure 3.5). 

The second (untranslated)  exon  of  CTCF is  fused with  second exon  of  SCUBE2.  An 

uncharacterised exon upstream of  the annotated  SCUBE2 open reading frame is  also 

present in one of the fusion transcripts (Figure 3.6). The transcriptional start site for all the 

protein-coding isoforms of  SCUBE2 is in the first exon. As the fusion transcript does not 

contain the first exon of SCUBE2 (which contains the translational start site) and the CTCF 

portion of the transcript is untranslated it is not clear where translation would start. I used a 

bioinformatic algorithm to predict the best Kozak consensus site  (Liu et al.,  2005) This 

appeared to be the first AUG in  SCUBE2 exon 2. If we assume this is the true start of 

translation for the fusion transcripts, the codon 52 leads to a premature stop codon.

CTCF protein  is  involved  in  numerous  gene-regulation  functions  including  activation, 

repression,  silencing  and  chromatin  insulation  (Ohlsson  et  al.,  2001).  In  the  fusion 

transcript  only the first  two untranslated exons are present.  There are two presumably 

unbroken copies of the locus on chromosomes Y and R so this translocation is unlikely to  

have caused loss of CTCF.
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Figure 3.5. Genomic structure of the  CTCF-SCUBE2 regions. Upper scatter plots 

are SNP6 array CGH from chromosomes 11 and 16 (segmented copy number is not 

shown as PICNIC missed the copy number step at chr11:9.1Mb).  Purple boxes are 

array painting segments from chromosomes Q,O,R and S; pink boxes are segments of 

chromosome 16 from chromosomes R, S and Y. Purple lines are genomic junctions: J1 

=  chr11:9108544  +ve  ;  chr11:10519531  +ve,  J2  =  chr11:10520915  +ve  ; 

chr16:66198160 -ve  , J3 = chr16:66143420 -ve ; chr11:10438674 +ve. The genomic 

shard is shown between junctions J1 and J2. Junction sequences were cloned by Dr. 

K.D. Howarth.
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Figure 3.6. CTCF-SCUBE2 fusion transcript.
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Figure  3.6.  CTCF-SCUBE2  fusion  transcript.  i)  The  genomic  loci  of CTCF and 

SCUBE2.  Dotted  lines  indicate  chromosome  breaks.  ii)  Pictorial  representation  of 

fusion transcript.  Uncharacterised exon is labelled 'x'.  iii)  RT-PCR across the fusion 

transcript junction. Multiple bands indicate other isoforms may be present. The upper 

two bands were cloned and sequenced giving the sequence shown in iv) CTCF exon 2 

is  fused with  SCUBE2 exons  2,  3  and  4.  The larger  fusion  transcript  includes  an 

uncharacterised SCUBE2 exon. Both are predicted to form a truncated peptide. Exons 

are  named  as  in  CTCF-001  (ENST00000264010)  and  SCUBE2-001 

(ENST00000520467).

SCUBE2 (Signal peptide-CUB-epidermal growth factor–like domain-containing protein 2) 

is  a  poorly  characterised  member  of  the  evolutionarily  conserved  SCUBE family.  All 

members  contain  an  N-terminal  signal  peptide  sequence  followed  by  nine  EGF-like 

repeats,  and a CUB domain at the C-terminus.  CUB proteins are involved in various 

cellular  processes  including  complement  activation,  developmental  patterning,  tissue 

repair,  angiogenesis,  cell  signalling,  fertilisation,  haemostasis,  inflammation, 

neurotransmission,  receptor-mediated  endocytosis,  and  tumour  suppression  (Bork  and 

Beckmann, 1993). SCUBE2 is a secreted surface-anchored glycoprotein that can interact 

with SHH (Sonic Hedgehog) and its receptor PTCH1 (Patched-1) (Tsai et al., 2009). It has 

also been suggested that the carboxy terminal of SCUBE2 can bind and antagonize bone 

morphogenetic  protein  activity  (Cheng et  al.,  2009).  In  the normal  breast,  SCUBE2 is 

expressed in vascular endothelial  and mammary ductal  epithelial  cells and  SCUBE2 is 

also expressed in a high proportion of primary breast tumours (Cheng et al., 2009). Cheng 

et al. observed that over-expression in the MCF7 cell line suppressed cell proliferation. 

3.4.3. RHOJ-SYNE2

This fusion was formed by a homozygous deletion. Array CGH indicated the deletion was 

homozygous and PCR using STS markers confirmed a 600kb deleted region was entirely 

absent from HCC1187. The bounds of the homozygous deletion were mapped using PCR 

markers  at  1kb intervals  in  the regions indicated by the SNP array (not  shown).  This 

allowed me to design PCR primers across the genomic junction (Figure 3.7).
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Figure 3.7. The RHOJ-SYNE2 genomic locus. i) Segmented SNP6 array CGH. Purple 

squares  are  STS  markers.  ii)  PCR  of  STS  markers  confirms  the  deletion  in 

homozygous. iii) schematic of genomic junction formed by a homozygous deletion. iv) 
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PCR across  the  genomic  junction.  v)  sequence  across  the  genomic  junction.  Blue 

region  is  from  region  'a',  red  from  region  'c'.  The  black  region  is  non-templated 

sequence at the genomic junction. 

The  homozygous  deletion  removed  exons  2-5  of  RHOJ  (Ras  homolog  gene  family, 

member J) and the first exon of SYNE2 (spectrin repeat nuclear envelope 2). The RT-PCR 

product from the HCC1187 RHOJ-SYNE2 showed that exon1 of RHOJ was fused to exon 

2 of SYNE2. This fusion is predicted to cause a frame shift in the SYNE2 transcript (Figure 

3.8). The resulting peptide has a stop as the 7th codon of the SYNE2 portion of the fusion 

transcript.  I  performed further  RT-PCR using  the  RHOJ exon 1 forward  primer  with  a 

number of reverse primers in  SYNE2 extending as far as exon 25. PCR products were 

obtained up to SYNE2 exon 7, but no further. No other splice isoforms were apparent.

RHOJ belongs to the Rho family of small GTP-binding proteins, but not much is known 

about its function. The fusion causes a homozygous loss of RHOJ.  The  SYNE-2 gene 

encodes  numerous  isoforms  spectrin  repeat  family  proteins  by  way  of  tissue-specific 

alternative splicing and transcription initiation. Approximately 20 isoforms ranging in size 

from several  kDa to 1.10 MDa have been described and more probably remain to be 

characterized (Wheeler et al., 2007). The nesprin genes (SYNE1, SYNE2 and  SYNE3) 

encode a family of ubiquitously-expressed multi-isomeric intracellular proteins. Nesprins 

interact with emerin and lamin A/C to form a network that links the nucleoskeleton to the 

inner  nuclear  membrane,  outer  nuclear  membrane,  membraneous  organelles,  the 

sarcomere and actin  cytoskeleton (Zhang et  al.,  2007).  Recently,  Warren et  al  (2010) 

showed that isoforms of this structural protein also may have a play a role in signalling as 

it can tether ERK1/2 to PML nuclear bodies. Knockdown of one of these SYNE2 isoform 

resulted sustained ERK1/2 signal which increased proliferation (Warren et al., 2010). 
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Figure 3.8. RHOJ-SYNE2 fusion transcript. i)  Genomic region encompassing the 

homozygous  deletion  (dotted  lines).  ii)  schematic  representation  of  the  fusion 

transcript.  iii)  RT-PCR shows  the  RHOJ-SYNE2 fusion  transcript  is  expressed.  iv) 

Sequence of the fusion transcript and predicted protein sequence. Exons are named 

for RHOJ-001 (ENST00000316754) and SYNE2-205 (ENST00000357395).
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The deletion also caused loss four other genes:  GPHB5 (glycoprotein hormone beta 5), 

PPP2RSE (Serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit  epsilon 

isoform),  WDR89 (WD  repeat  domain  89)  and  SGPP1 (sphingosine-1-phosphate 

phosphatase 1), and loss of one of these may also play a role in carcinogenesis. 

3.4.4. CTAGE5-SIP1

A small tandem duplication fused CTAGE5 exon 20 with  SIP1 exon 10 (Figures 3.9 and 

3.10). Initial inspection indicated that the fusion transcript is out of frame. However, exon 

10 is the final exon of SIP1, so although the frame shift causes a premature stop codon, it 

is  probable  that  the  fusion  transcript  is  translated.  The  SIP1 portion  of  the  fusion  is 

predicted to contribute only seven amino acids and its 3' UTR to the hypothetical protein.

CTAGE5 (cutaneous  T-cell  lymphoma-associated  antigen  5)  is  also  called MGEA6 

(meningioma expressed antigen 6) as it was first identified as a menigioma cell-surface 

antigen  (Heckel  et  al.,  1997).  CTAGE5 is  overexpressed  in  meningioma  and  glioma 

relative to normal brain (Comtesse et al., 2002) but little is known about its function or its 

potential role in breast cancer. 

Switching of a 3'-UTR by gene fusion is observed in several soft tissue cancers. In these 

neoplasms, the final exon of the oncogene, HMGA2, can be replaced with last few exons 

and the 3'-UTR of a number of different genes including RAD51L1, FHIT and LPP. The 3' 

UTR of wild type HMGA2 has a let-7 micro RNA binding site which targets the mRNA for 

degradation. The fusion transcript  lacks the micro RNA binding site so allows  HMGA2 

mRNA to persist within the cell eventually leading to higher levels of HMGA2 protein (Mayr 

et al., 2007). I investigated the analogous possibility with CTAGE5 and SIP1. Quantitative 

real time PCR showed, however, that CTAGE5 was expressed at a level similar to control 

cell lines HMT-3552 and HB4a (not shown).
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Figure 3.9. The CTAGE5-SIP1 genomic locus. i) Segmented SNP6 array CGH shows 

a tandem duplication that was absent from the matched normal lymphoblastoid line 

HCC1187BL. ii) schematic of genomic junction formed by the tandem duplication. Black 

arrows indicate position of PCR primers for iii) PCR across the genomic junction. iv) 

sequence across the genomic junction.
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Figure 3.10. CTAGE5-SIP1 fusion transcript. i) Genomic region encompassing the 

tandem duplication (dotted lines). ii) schematic representation of the fusion transcript. 

Iii) RT-PCR shows the CTAGE5-SIP1 fusion transcript is expressed. iv) Sequence of 

the fusion transcript and predicted protein sequence.  Exons are  as in  CTAGE5-001 

(ENST00000341749) and SIP1 (ENST00000308317).
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3.4.5. SUSD1-ROD1

A small tandem duplication caused a  SUSD1-ROD1 fusion.  SUSD1 exon 6 is fused to 

ROD1 exon2 at the cDNA-level. The ROD1 portion of the transcript is predicted to undergo 

a frame shift (figures 3.11 and 3.12).

Figure  3.11.  The  SUSD1-ROD1 genomic  locus.  i)  Segmented  SNP6  array  CGH 

shows a tandem duplication that was absent from the matched normal lymphoblastoid 

line HCC1187BL. ii) schematic of genomic junction formed by the tandem duplication. 

Black arrows indicate position of PCR primers for iii) PCR across the genomic junction.  

iv) sequence across the genomic junction.
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Figure 3.12. SUSD1-ROD1 fusion transcript. i) Genomic region encompassing the 

tandem duplication (dotted lines). ii) schematic representation of the fusion transcript. 

Iii) RT-PCR shows the CTAGE5-SIP1 fusion transcript is expressed and that there may 

be several isoforms present (needs more labels). iv) Sequence of the fusion transcript 

and predicted truncated protein sequence.
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Nothing  is  known  about  SUSD1 (sushi  domain  containing  1).  ROD (regulator  of 

differentiation 1) is a functional homologue of S.pombe nrd1, an RNA-binding protein that 

suppresses differentiation (Sadvakassova et al., 2009). Little is known about its function in 

humans. 

As  the  fusion  was  formed by a  tandem duplication,  normal  copies  of  each  gene  are 

retained. Unless some type of dominant-negative mechanism is operative it is difficult to 

postulate on effect for SUSD1-ROD1.

3.4.6. PLXND1-TMCC1

Another  tandem  duplication  juxtaposed  PLXND1 to  TMCC1.The  fusion  transcript  is 

predicted to be in frame (Figure 3.13 and 3.14). PLXND1 exon 13 is fused with  TMCC1 

exon 4.  PLXND1 (Plexin D1) a single-pass transmembrane receptor and along with its 

ligand, semaphorin 3E, it plays a role in the growth of blood vessels (Sakurai et al., 2010). 

PLXND1 is  expressed  on  tumour  vessels  and  tumour  cells  in  a  number  of  different 

tumours  (Roodink  et  al.,  2005).  PLXND1 expression  is  strongly  correlated  with  both 

invasive behaviour and metastasis in melanoma (Casazza et al.,  2010; Roodink et al.,  

2009) and  PLXND1 is generally expressed in solid tumour musculature but not normal 

musculature  (Roodink  et  al.,  2009).  Nothing  is  known  about  the  function  of  TMCC1 

(transmembrane  and  coiled-coil  domain  family  1).  The  chimeric  protein  (if  translated) 

appears to lack the cytoplasmic Plexin domain which is involved in downstream signalling 

pathways, by interaction with proteins such as Rac1, RhoD, Rnd1 and other Plexin family 

members (Letunic et al., 2009).  It is, therefore, not clear how the chimera may act as an 

oncoprotein.
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Figure 3.13. PLXND1-TMCC1 genomic junction. i) Segmented SNP6 array CGH 

shows a tandem duplication that was absent from the matched normal lymphoblastoid 

line HCC1187BL. ii) schematic of genomic junction formed by the tandem duplication. 

Black arrows indicate position of PCR primers for iii) PCR across the genomic junction. 

iv) sequence across the genomic junction.
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Figure 3.14. PLXND1-TMCC1 fusion transcript. i) Genomic region encompassing the 

tandem duplication (dotted lines). ii) schematic representation of the fusion transcript. 

Iii) RT-PCR shows the PLXND1-TMCC1 fusion transcript is expressed. iv) Sequence 
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of the fusion transcript generated from the third PCR band and v) predicted protein 

domains from SMART (Letunic et al., 2009). Grey triangle is a Sema domain, yellow 

triangle  is  a  PSI  domain,  orange  diamond  is  an  IP  domain,  blue  rectangle  is  a 

transmembrane domain,  upper  black rectangle is a Plexin-homology domain,  lower 

black rectangles for TMCC1 is a transmembrane domain.

Other reported gene-fusions in HCC1187

Stephens  et  al.  (2009)  confirmed  expression  of  PLXND1-TMCC1,  CTAGE5-SIP1 and 

ROD1-SUSD1 in their study. They did not report expression of  PUM1-TRERF1,  RHOJ-

SYNE2 or CTCF-SCUBE2. The authors did, however, find three expressed gene fusions 

that  I  did  not:  RGS22-SYCP1,  SGK1-SLC2A12,  AGPAT5-MCPH1.  The molecular 

cytogenetic approach showed that  RGS22-SYCP1 and  SGK1-SLC2A12 were candidate 

fusions  but  I  could  not  show  expression  even  after  extensive  RT-PCR.  I  confirmed 

expression of the AGPAT5-MCPH1 fusion transcript by RT-PCR (not shown). 

One explanation for this is Stephens et al. used a more sensitive PCR assay. I do not think 

this is likely as previous real time PCR experiments by Dr KD Howarth and Dr SL Cooke 

showed SYCP1 was not detectably expressed in HCC1187 (Cooke, 2007). 
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3.5. Analysis Part II. Sequence-Level Mutations in 
HCC1187

Eighty  five  sequence-level  mutations  have  been  identified  in  the  HCC1187  genome 

comprising, 75 base substitutions and 10 indels. All known sequence-level mutations in  

HCC1187  are  listed  in table  3.6  and  presented  fully  in  Appendix  3.3. The  genetic 

consequences  of  these  mutations  were  predicted  to  be  10  indels,  66  missense,  5 

nonsense, 4 synonymous.  In two cases, two mutations appear to be in adjacent bases 

these  were:  FLJ20422 (NM_017814.1)  254A>T  and  253G>T  and  GOLPH4 

(NM_014498.2) 935C>T, 934G>C (Wood et al., 2007; Forbes et al., 2010).

3.5.1. Placing Sequence-Level mutations on the Genomic Map

To complete the genomic map of HCC1187, I next placed all of the known sequence-level 

mutations on it. To find the position of known point mutations, the individual chromosomes 

of HCC1187 were separated by flow-sorting and exons bearing known point mutations 

were  amplified  by  PCR  and  the  products  directly  sequenced.  This  established  the 

presence or absence of the mutations on each chromosome segment. For example, the 

mutation V158L in HSD17B8 is caused by a G>T mutation at chr6:33281286 (HG18). The 

mutation is listed as heterozygous and could therefore be on any of the four copies of this  

region in HCC1187, either copy of chromosome I, chromosome A or chromosome D. After 

flow sorting and sequencing genomic loci from chromosomes I, A and D, the mutation was 

found on both copies of chromosome I and not found on chromosomes A or D (Figure 

3.15)

Of the 85 previously described sequence-level mutations, I was able to confirm 83.Two 

reported mutations, in ZNF674 and HUWE1, were not found: they presumably occurred in 

other stocks of the HCC1187 cell line. It was possible to place 75 of these mutations on  

the genome map by sequencing mutant exons from flow sorted chromosome DNA (Figure 

3.17). It was not possible to place eight mutations because they were found in regions 

where  the  genome  structure  was  not  known  precisely  (see  discussion)  or  the 
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chromosomes on which the mutation might have resided were too small to flow sort. 

Figure 3.15. Placing sequence-level mutations on the genomic map. i)  PICNIC-

segmented array CGH. Total copy number is the blue line. Chromosome 6 ideogram is 

to the left. ii) Segments of chromosome 6 found in the HCC1187 genome, named I, A 

and D from array painting. Dotted line indicates the position of HSD17B8. Iii) Sequence 

traces show the G>T mutation is present on chromosome I but on chromosome A or D. 

As the sequence trace from chromosome I shows a homozygous mutation, we can 

conclude both copies of chromosome I carry the mutation.

3.5.2. Confirmation by pyrosequencing

To confirm that  the  proportion  of  mutant  and non-mutant  copies  of  each  gene  in  the 

isolated chromosome preparation was accurate, pyrosequencing was used on a subset of 

mutations. Seven of the point mutations, in CD2, FLJ20422,  GPNMB, HSD17B8, ITIH5L, 

KIAA0427 and MLL4, were investigated. In each case, the ratio of normal to mutant alleles 

found  by  Sanger  sequencing  of  flow  sorted  chromosomes  was  confirmed  by 

pyrosequencing of whole genomic DNA. For example the mutant form of the  HSD17B8 

gene  was  shown  by  Sanger  sequencing  to  be  present  on  both  normal  copies  of  

chromosome 6 (chromosome I) and absent from both translocated chromosome 6 copies 

(chromosomes A and D).  Pyrosequencing showed a 50:50 normal to mutant ratio in whole 

genomic DNA, as expected. Furthermore, pyrosequencing of flow sorted chromosomes 

confirmed the 0% mutant in the translocated chromosome 6 copies and 100% mutant in 

chromosome I. Thus non-specific genomic contamination of flow sorted chromosomes, if 

present  at  all,  was  at  a  level  too  low  to  detect  by  either  Sanger  sequencing  or 
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pyrosequencing (Figure 316).

Figure 3.16. Pyrosequencing confirmation of the  HSD17B8 mutation.  Left images 

are chromosome 6 segments I,A and D. The pyrosequencing assay used the reverse 

strand so the HSD17B8 G>T mutation would appear to be a C>A. Right hand boxes are 

quantitative  “pyrograms.”  Control  genomic  DNA showed  0% mutant  bases  whereas 

HCC1187 showed 50% mutant:wild type. Chromosome I showed 100% mutant alleles. 

As  there  are  two  copies  of  chromosome I  in  HCC1187  we  can  conclude  that  the 

mutation is homozygous with respect to chromosome I. The mutation was not found on 

chromosomes A and D. Pyrosequencing confirmed the pattern of mutations observed by 

Sanger sequencing (Figure 3.15).
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Gene

Sjoblom et al. 
(2006) / Wood 

et al (2007)

Sanger 
Cosmic

Forbes et 
al. (2010)

Genomic mutation as reported 
(2004 build)

Amino 
acid

Mutation 
Type

Possible 
Location Mutation Found

Mutation not 
found

AMPD2 X chr1:109885704G>A (homozygous) R762H Miss A A

CD2 X chr1:117019184G>A C217Y Miss A,J,k A J, k

SPTA1 X chr1:155422865A>T Q1581H Miss J,k J(hetero) k

SPEN X X chr1:16002504G>T R1488I Miss E,H E H

GLT25D2 X chr1:180641553G>A V475I Miss J,k k(htereo) J  

PLA2G4A X chr1:183651507C>G H442Q Miss J,k J(hetero) k

RBAF600 X chr1:19237486G>A R1394H Miss E,H E H

CYP4A22 X chr1:47323585G>A G417D Miss A,D,E,H D A, E, H

PRKAA2 X X chr1:56881987C>A P371T Miss A,D,E,H A D,E,H

CAMTA1 X chr1:7730843A>G L1080L S E,H,i i,H E

DDX18 X X chr2:118291285G>A G41R Miss G G(hetero)

ARHGEF4 X X chr2:131632752C>G (homozygous) T441R Miss G G(homo)

SCN3A X chr2:165812042A>G E946G Miss G G(hetero)

ZNF142 X chr2:219333250G>A (homozygous) R1002H Miss G G(homo)

SLC4A3 X
chr2:220323514_220323523delGAC

AAGGACA (homozygous) fs INDEL G G

UGT1A9 X chr2:234462937G>T (homozygous) S442I Miss G G(homo)

FLJ21839 X chr2:27191236G>C (homozygous) R395P Miss G Genomic(homo)

SULT6B1 X chr2:37318343A>C A108A S P,T
P(homo), 

Genomic(hetero) T(implied)

LHCGR X chr2:48826897G>A D564N Miss P,T T(homo) P

GOLPH4 X X chr3:169233251C>T A312V Miss C C(hetero)

GOLPH4 X X chr3:169233252G>C A312P Miss C C(hetero) C

RTP1 X chr3:188400138C>A (homozygous) R88S Miss C C

RNU3IP2 X chr3:51950902C>G (homozygous) R8G Miss C Genomic(homo)



BAP1 X chr3:52415311C>T (homozygous) Q261X N C C(homo)

C4orf14 X chr4:57673742A>G (homozygous) Q579R Miss B B(homo)

CTNNA1 X X chr5:138294082C>T (homozygous) Q678X N F F

PCDHB15 X chr5:140607486C>T (homozygous) A719V Miss F F(homo)

CENTD3 X chr5:141014054A>C (homozygous) T1428P Miss F F

GMCL1L X chr5:177546166delA (homozygous) fs INDEL F F(homo)

PDCD6 X chr5:359875G>T G123C Miss F,V F(hetero) V

FLJ32363 X chr5:43541741C>G S266R Miss F,V F(hetero) V

C6orf21 X chr6:31783819C>G P192R Miss I,A,D I (heterozygous) A,D

SKIV2L X chr6:32036799C>G L183V Miss I,A,D A,D I

HSD17B8 X chr6:33281286G>T V158L Miss I,A,D I (homo) A, D

B3GALT4 X chr6:33353713T>C V180A Miss I,A,D A, D I

NCB5OR X chr6:84706496G>T D337Y Miss I I(hetero)

FLNC X chr7:128071176G>T D185Y Miss M,K M K

TBXAS1 X chr7:139064224C>T R86W Miss M,K M (homo) K

ABCB8 X chr7:150179945C>G A673G Miss K K(hetero)

PAXIP1 X chr7:154198087T>G F457C Miss K K(homo)

GPNMB X chr7:23086956G>T S519I Miss M,K M (heterozygous) K

PEBP4 X chr8:22638372G>C R149P Miss N,E,H H(homo) N,E

ADRA1A X chr8:26778286G>T G40W Miss N,E,H N E, H

FRMPD1 X chr9:37730240G>A G572D Miss Q Q(hetero)

SORCS1 X chr10:108579379A>C K223N Miss Q Q(hetero)

KIAA0934 X chr10:363080G>A V1264M Miss Q,b b(hetero) Q

AVPI1 X chr10:99429559C>T (homozygous) Q32X N Q Q(homo)

ZCSL3 X chr11:31404466_31404470delTCTTG fs INDEL Q

Q(hetero), 
O(hetero), 
R(hetero)

NUP98 X X chr11:3657478G>T (homozygous) G1652V Miss Q Q(homo)

OR1S1 X chr11:57739474T>A F228I Miss Q,O,R Q(het)O,R (het)



ZNHIT2 X chr11:64641527G>C A59P Miss R R

IPO7 X chr11:9418649G>T A923S Miss Q,O,R O Q,R

TAS2R13 X chr12:10952719A>G N149S Miss Q,O,S Q(homo) Q,O,S

GPR81 X
chr12:121739602_121739601insA 

(homozygous) fs INDEL Q Q(homo)

PPHLN1 X chr12:41065014G>A (homozygous) V173M Miss Q Q 

INHBE X chr12:56135771G>C R62T Miss Q Q(het)

PPP1R12A X X chr12:78693190G>C (homozygous) Q767H Miss Q Q

ITR X chr13:94052277C>A T32N Miss

NFKBIA X X
chr14:34942227_34942226insC 

(homozygous) fs INDEL W W(homo)

WARS X chr14:99871016G>C E455D Miss W,Y Y W

SMG1 X chr16:18730825A>C K3579Q Miss Y,S Y S

PDPR X chr16:68734948A>T Y546F Miss Genomic(het)

LLGL1 X chr17:18080933C>G L522L S Genomic(hetero)

NOS2A X chr17:23118990G>T (homozygous) A679S Miss Z
Genomic(prob 

hetero) Z

RASL10B X X chr17:31086470G>A (homozygous) V52M Miss Genomic(homo)

TRIM47 X chr17:71382450_71382450 fs INDEL

TP53 X X
chr17:7520090_7520088delGGT 

(homozygous) G108del INDEL Genomic(homo)

STATIP1 X X chr18:31994943_31994944delCT fs INDEL U,a U(homo) a

FHOD3 X chr18:32527271C>T S533L Miss U,a U(homo) a

KIAA0427 X chr18:44541852G>C V389L Miss U,a U(homo) a

FLJ20422 X chr19:19104498A>T E85V Miss e,P,T,i e P,T,i

FLJ20422 X chr19:19104499G>T E85X N e,P,T,i e P,T,i

MLL4 X chr19:40904380C>T P764L Miss P,e,i P e, i

APOC4 X chr19:50140242C>A P75Q Miss e,P,T,i e P, T

MYBPC2 X chr19:55650351C>T P730L Miss e,P,T,i P e,T,i

PLCB1 X chr20: 8667928C>T A743A S G,Y,d d G,Y



ITGB2 X X
chr21:45146037_45146013delTGAA

CACGCACCCTGATAAGCTGCG fs INDEL F f(hetero)

MYH9 X X
chr22:35012676_35012674delGCA 

(homozygous) indel INDEL h h(homo)

CYP2D6 X chr22:40851168G>A G42R Miss F f(hetero)

PLS3 X chrX:114703778A>C D485A Miss L,D,k L D,k

ZNF674 X chrX:46144024G>A E85K Miss L,D,k L, k, Genomic

HUWE1 X chrX:53537429G>A R481K Miss L,D,k L,D,k

ITIH5L X chrX:54706426C>T P76L Miss L,D,k k L,D

SATL1 X chrX:84168729C>G S277X N L,D,k k(het), L(homo) D

Table 3.6. Sequence-level mutations in HCC1187
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3.6. Discussion

I generated a complete genomic map of HCC1187 using all known data on the cell line. 

Figure 3.17 clearly shows that, although the sequence-level mutational burden is quite 

high, the number of genes disrupted by chromosome aberrations is – at the very least – 

comparable in scale. 

Figure 3.17. The complete genome map of HCC1187. Chromosome ideograms and 

array painting chromosome segments are arrayed around the outside as in figure 3.1. 

Blue and red circles are missense and nonsense/ frameshift sequence-level mutations 

respectively.  Light  blue circles are expressed fusion genes.  They are placed on the 

chromosome segment identified by resequencing mutated exons. Inner links combine 

data from Howarth et al. (2008), Stephens et al, (2009), and the present study. Red 

links are translocations, light blue are duplications, dark blue are deletions and green 

are inversions.
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Approximately 150 genes were at chromosome breakpoints in HCC1187. Three genomic 

junctions  form  in-frame  and  expressed  fusion  transcripts  that  may  have  oncogenic 

potential. There were four homozygous deletions of genes that could constitute a tumour  

suppressor  loss.  Many  of  the  other  breaks  potentially  represent  one  of  the  two  hits 

required to inactivate tumour suppressors.

3.6.1. How complete was this analysis?

We  can  be  reasonably  certain  that  most  (if  not  all)  of  the  cytogenetically  visible 

chromosome translocations are accounted for in this analysis. Similarly, small gains and 

losses  that  could  be  identified  by  segmentation  algorithms  have  probably  all  been 

identified.   However,  some of  these were not  apparent  by array painting.  These were 

regions of chromosome 1q21, 10p, 10q,11 and 12p11 (Figure 3.18). It was not possible to 

discern the structures of these regions by FISH (not shown).

Figure 3.18. Complex regions on HCC1187 chromosomes 1,10, 11 and 12.
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Figure  3.18. Complex  regions  on  HCC1187  chromosomes  1,10,  11  and  12. 
Chromosome ideograms are around the outside. Segmented copy number is the blue 

line.  Intra-chromosomal structural  variants are  shown as inner  links.  Light  blue are 

duplications, dark blue are deletions and green are inversions from Stephens et al. 

(2009).

Stephens at al (2009) identified a hundred or so rearrangements below the resolution of 

array CGH as well as some balanced inversions (Appendix 3.2). As the authors estimated 

that their screen only detected 50 percent of rearrangements there is the possibility of one 

hundred or so further small rearrangements, and therefore more fusion genes.

3.6.2. The rearrangements that fused genes

As Edwards (2010) pointed out, the majority of structural variations in epithelial cancer 

genomes are likely to be intrachromosomal and sub-microsopic. It is not surprising, then, 

that  6/9  gene  fusion  in  HCC1187 were  formed by tandem duplications  and interstitial 

deletions  (Edwards,  2010). We should also consider that tandem duplications, deletions 

and inversions within genes can result in new and aberrant isoforms being expressed. In  

HCC1187  this  is  the  case  for  RB1 among  others.  The  possibility  of  a  recurrent 

submicroscopic breast cancer fusion gene is quite possible.

3.6.3. Conclusions

At least 150 genes were disrupted by chromosome rearrangement in HCC1187. As many 

as nine and possibly more genes are fused and expressed  in this cell line, three of which  

are in frame. But it is still not clear whether we should regard structural rearrangements as  

equally important as sequence-level mutations. In order to decide this we need to know 

about  the  relative  timing  of  these  mutational  mechanisms.  And  if  sequence-level  and 

structural rearrangement occur at similar times during tumour evolution, there is no reason 

why we should not regard both mechanisms important in tumour evolution.
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4.1. Introduction

Inferring  the  evolutionary  history  of  individual  tumours  has  not,  to  the  best  of  my 

knowledge, been attempted because of the perception is that it is impossible to look at a  

single sample at a single time point and infer the order in which its mutations occurred. 

But given that each individual cancer genome has been described as an 'archaeological  

record' of a tumour's history or even a 'palimpsest of mutational forces' (Stratton et al. 

2009, Greenman et al. 2010 submitted) there is a clear utility in finding the relative order 

in which mutations happened in individual tumours. 

There are at least nine fused transcripts in HCC1187 (Chapter 3) and three of these  

transcripts are predicted to preserve the reading frame of the 3' gene. In addition, we 

know  of  85  sequence-level  mutations  in  HCC1187  from  genome-wide  screens  and 

targeted resequencing (Sjöblom et al., 2006; Wood et al., 2007; Forbes et al., 2010). Most 

of these mutations must be passenger events, and, as discussed in Chapter 1, finding 

driving events amongst an excess of passengers is a considerable challenge. 

This  task  is  further  complicated  by  a major  unknown  in  cancer  biology:  the  relative 

importance and timing of genome rearrangements compared to sequence-level mutation. 

Some  suggest  chromosome  instability  might  arise  early  and  be  essential  to  tumour 

suppressor  loss  (Nowak  et  al.,  2002;  Rajagopalan  et  al.,  2003;  Rajagopalan  and 

Lengauer, 2004) while others think that CIN is a late event or contributes little to cancer 

development (Johansson et al., 1996; Sieber et al., 2002). 

In this chapter, I address the above question by considering the evolution of the highly-

rearranged  karyotype  of  HCC1187.  This  allowed  me  to  infer  the  relative  timing  and 

importance of different groups of mutations and retrace the evolutionary history of this 

tumour.
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4.1.1. A common route of evolution for breast cancer genomes.

I was able to infer how the karyotype of HCC1187 had evolved by applying a model first  

proposed by Muleris et al. (1988) and proved experimentally in breast cancer by Dutrillaux 

et al. (1991). This study used R-banded karyotype analysis on a large series of breast 

tumours  with  a  view  to  elucidating  the  sequence  through  which  complex  karyotypes 

evolve (Muleris et al., 1988; Dutrillaux et al., 1991).

Dutrillaux et al. (1991) looked at the total number of chromosomes, and the percentage of 

apparently abnormal chromosomes in 113 breast carcinomas. 65 were near diploid and 

48 hyperploid (>50 chromosomes). Chromosome numbers of near diploid tumours had a 

bimodal  distribution,  centred  around  45-46  and  37-38.  Tumours  with  the  fewest 

chromosomes  had  hyperploid  sidelines  in  significantly  more  cases  that  those  with 

chromosome contents nearer to diploid. This implies a selective pressure for chromosome 

number to increase once a certain proportion of the diploid genome, around 35%, had 

been lost. The mechanism of this ploidy increase was endoreduplication – duplication of 

the entire genome – as there was a large disparity between modal chromosome number 

and clonal sidelines rather than a series of intermediates. 

The authors went on to describe a generalised model for the evolution of breast cancer 

karyotypes (summarised in Figure 4.1):
1. Occurrence  of  unbalanced  rearrangements  decreasing  chromosome  number  and 

DNA content. 

2. Correlatively  to  the  rate  of  chromosome  rearrangements,  formation  of 

endoreduplications leading to hyperploid sidelines. 

3. Persistence of the near diploid cells and decrease of chromosome number to about 

35 and of DNA index to 0.85 or more frequently, elimination of the near diploid cells 

and complete passage to hyperploidy. 

4. further  losses  of  chromosomes  in  the  hyperploid  tumours,  whose  karyotypes  can 

decrease to about 55 chromosomes and a DNA index of 1.35.

5. Eventually, occurrence of a second endoreduplication, leading to an apparent near 
tetraploidy. (Dutrillaux et al., 1991, p.245)
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Figure  4.1.  The  pattern  of  karyotype  evolution  followed  by  most  breast  tumours, 
known as ‘monosomic’  evolution,  including an endoreduplication.  Upper  panels  are 

chromosome ideograms, lower  panels are simulated array CGH plots with the total  copy 

number (blue) and minor allele copy number (red) as from PICNIC segmentation. a) and b), 
An unbalanced translocation reduces the chromosome number by one, and leaves regions of 

loss of  heterozygosity  (LOH) (dashed boxes). c)  Often,  at  some point,  endoreduplication 

occurs, i.e. the whole chromosome complement doubles, to give a duplicated translocation 

and pairs of chromosome segments showing regions of loss of heterozygosity. The process 

may then continue with more unbalanced translocations. 

Dutrillaux et al. (1991) also note a perceived difficulty in distinguishing between tumours 

which have gained a few chromosomes and tumours which have lost many before and 

after endoreduplication. This is true when one only considers chromosome numbers, but 

when  information  on  chromosome  rearrangements  are  also  considered  a  ‘complete 
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discontinuity’  between endoreduplicated and non-endoreduplicted tumours is apparent. 

The authors often observed two populations of cells, one with approximately twice the 

number  of  rearranged  chromosomes  of  the  other.  In  these  side  lines  most  of  the 

chromosome translocations appeared in two copies. The authors never observed a series 

of  sidelines  with  intermediate  chromosome numbers  meaning  that  the  most  probable 

explanation for the doubled sideline was a simultaneous doubling of the ancestral genome 

– endoreduplication (Dutrillaux et al., 1991).
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4.2. The Evolution of HCC1187
4.2.1. HCC1187 is endoreduplicated 

It is very likely that HCC1187 endoreduplicated at some point in its history as many of its 

chromosome translocation break points appeared in two copies in the modal karyotype. 

These must have duplicated at some point in their history (Figure 4.3). 

Although breast cancer genomes contain hundreds of structural variations, a chromosome 

rearrangement at any given point in the genome is a rare event. If we see two copies of 

the same derivative chromosome in a karyotype it is likely to be due to duplication of one 

original copy. From this fact we can infer the order of events: translocation followed by 

duplication.  For  example,  HCC1187  chromosomes  A  and  D  both  have  a  t(1;6) 

translocation junction. To SNP6 array resolution both A and D appear to share the same 

genomic  break  point.  Chromosome  A  has  undergone  a  further  translocation  with 

chromosome 8, and chromosome D a further translocation with X. As neither translocation 

t(1;8) or t (1;X)  was duplicated we can infer each happened after the duplication of the 

ancestral derivative chromosome der(1)t(1;6).  

4.2.2. SNP Allele ratios confirm the HCC1187 endoreduplication

I used data from PICNIC (Predicting Integral Copy Numbers In Cancer) (Greenman et al., 

2010) array segmentation algorithm to assign an arbitrary ‘Parent A’ or ‘Parent B’ origin to 

virtually all regions of the HCC1187 genome. PICNIC is a segmentation algorithm written 

specifically for rearranged cancer genomes.  A useful feature of this algorithm is that it  

can produce two copy number profiles: one for the total copy number and one for the copy 

number of the “minor allele.” I combined chromosome segments from array painting, their 

shared breakpoints from SNP6 arrays and PICNIC zygosity data, and used the fact that 

shared breakpoints or shared alleles between two loci imply they had a common ancestor 

(Figures 4.2 and 4.3).
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Figure 4.2.  Segmentation by PICNIC algorithm reveals ‘Parent A’ and ‘Parent B’ origin of 
segments of chromosome 13. i) Segmentation by PICNIC algorithm (Greenman et al. 2010). 

'PICNIC plot' gives zygosity, i.e. parental origins, by plotting SNP calls AA, AB, ABB etc. Equal 

representation of both SNP alleles, i.e. AB, AABB, etc, would be plotted on the centreline. Pure A 

calls are to the right, with AA and AAA further out, and pure B to the left. Mixed calls of AAB, 

AAAB, etc fall between corresponding pure A calls and the centreline. Red lines indicates regions 

of homozygosity. ii) Total segmented copy number (green), equivalent to CGH, plotted left to right 

and minor allele copy number (blue line). iii) Segments of chromosome identified by array painting 

as chromosome b,  c,  j  and N with their  inferred parentA/parentB origin  (A=black,  B=grey).  In 

Region 1,  Total  copy number  is  three,  and region  is  homozygous,  since there are only  two 

combinations of alleles, pure A and pure B. Therefore the three copies of chromosome b share 

the  same  arbitrary  parental  origin.  In  Region  2,  there  is  one  copy,  homozygous.  The 

Chromosome 13 segments in chromosomes b and N are likely to be products of an ancestral 

translocation, since their breakpoints are the same to 6kb resolution (unpublished) and they add 

up to a complete chromosome 13. This means that originally the b and N segments were joined 

so they must have belonged to the same chromosome.  Region 3: Four copies with four allele 

combinations  indicating  that  three  copies  are  from  the  same  parent.  Peaks  c  and  j  share 

breakpoints, so are derived from the same chromosome, and must be of different parental origin 

from peak N to account for the allele combinations. In Conclusion, chromosomes b and N are from 

one parent, while chromosomes c and j are from the other parent.
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The  Parent  A/Parent  B  segmentation  showed  clearly  that  HCC1187  was 

endoreduplicated, as almost all chromosome segments that had been identified by array 

painting had duplicated at some point in their history and were found in the observed 

karyotype precisely twice (Figure 4.3). It follows that translocation junctions that had been 

duplicated probably occurred before endoreduplication and those that were not probably 

occurred after.  In  HCC1187,  9 chromosome translocations (41%) visible  by SKY and 

chromosome  painting  occurred  before  endoreduplication  and  13  after.  This  makes 

endoreduplication an approximate midpoint in the evolution of this karyotype with respect 

to chromosome translocations.
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Figure 4.3.  Circos plot of the HCC1187 genome: Chromosome ideograms around 

the outside,  oriented clockwise pter to qter. Grey boxes are chromosome segments 

observed by  array  painting.  Their  parent  of  origin  (light  grey  and  dark  grey)  was 

deduced  as  in  Figure  4.2  from  the  number  of  allelotypes  given  by  PICNIC 

segmentation.  Note that assignment of parents A and B does not transfer between 

chromosomes. Inner line plots are PICNIC plots:  dark blue line,  total  copy number, 

equivalent to array CGH. Red line, copy number of the minor allele; where this is zero 

the  genome  is  homozygous.  Chromosome  segments  that  share  a  translocation 

breakpoint were assumed to have the same parental origin.
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The second signature of endoreduplication was that large portions of the genome were 

present in two copies but had lost heterozygosity.  In these regions it is likely that one 

parental chromosome was lost and the remaining chromosome duplicated. As this was 

the case for several whole chromosomes, the simplest explanation is that chromosomes 

were  lost  one  by  one  and  the  remaining  copies  duplicated  simultaneously  at 

endoreduplication.  This  general  scheme  of  whole  chromosome  loss  and  unbalanced 

translocation  followed  by  an  endoreduplication  is,  in  fact,  the  commonly  observed 

evolutionary route for breast and colorectal cancer genomes described above (Muleris et 

al., 1988; Dutrillaux et al., 1991). For the three regions of the genome that were triplicated, 

for example chromosome 9, I assumed one duplication had occurred at endoreduplication 

and another had occurred later. 

4.2.3. Evolution of an endoreduplicated genome

This complex hypotriploid karyotype of HCC1187 is likely to have evolved by successive 

loss  of  chromosomes  and  endoreduplication.  Figure  4.4  shows  the  most  probable 

sequence  of  evolution.  In  making  this  scheme  I  only  had  to  assume  the  simplest 

explanation was most likely. The pre-endoreduplication events consisted mainly of whole 

chromosome  losses  and  unbalanced  translocations,  as  expected  if  early  karyotype 

evolution  followed  what  was  termed  the  'monosomic'  route  (Muleris  et  al.,  1988). 

Importantly, using this scheme it was possible to infer the most likely state of the genome 

immediately before endoreduplication. 
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Figure 4.4. Evolution of the HCC1187 karyotype.  i) Initial karyotype: chromosomes 

are shown is SKY pseudo-colours.  ii)  The first,  monosomic, phase of evolution was 

dominated by whole  chromosome losses and unbalanced translocations grey boxes 

indicate events that probably happened at this stage. iii) At some point, the remaining 

chromosome  complement  is  doubled  by  an  endoreduplication.  Endoreduplication 

duplicated  all of the translocation break points that preceded it. Black boxes show the 

nine translocations visible by SKY that were doubled. iv) Evolution then continued with 

further loss and unbalanced translocation. Thirteen of these translocations are seen as 
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single  copies  in  the  final,  observed,  karyotype.  Chromosome names  are  displayed 

below each chromosome.

4.3. Duplication of Mutations at Endoreduplication

As it appeared that endoreduplication formed an approximate mid-point in the structural 

evolution of the HCC1187 genome, I wondered if one could also use endoreduplication to 

investigate the timing of other mutations. This would be an interesting exercise for three 

reasons:

1) When working with cell lines one can never by sure if a fusion gene, for example, 

was formed in culture. Pre-endoredulpication fusion genes must have happened 

earlier and they would, therefore, be more likely to be in vivo events. 

2) If chromosome instability started late in the evolution of this line, then most point 

mutations must precede it. If this was the case, then most point mutations must 

have happened earlier  than endoreduplication.  Endoreduplication could help us 

understand  the  relative  timing  of  chromosome  changes  and  sequence-level 

mutations.

3) If a certain class of mutations was concentrated before or after endoreduplication, 

then this may indicate a  requirement for them to happen at a given time during 

tumour evolution. This fact implies selection may have contributed to earlier or later 

clustering of mutations. Endoreduplication may help us find driving events in the 

evolution of this genome.

4.3.1. Fusion genes

There are nine expressed fusion genes in HCC1187: AGPAT5-MCPH1, SGK1-SLC2A12, 

CTAGE5-SIP1, PLXND1-TMCC1, SUSD1-ROD1, RGS22-SYCP1, RHOJ-SYNE2, PUM1-

TRERF1 and CTCF-SCUBE2 (by combining my structural data from Chapter 3 with that 

of Stephens et al. (2009)). Just as for chromosome translocations, fusion genes present in 

two  copies  were  likely  to  have  occurred  before  endoreduplication,  while  if  a 
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rearrangement occurred after chromosome duplication, it would generally only be present 

in a single copy. 

Duplication of fusion genes was assessed by FISH and array CGH. Of the nine fusion 

genes,  six  had  clearly  been  duplicated,  two  had  not  been  duplicated  and  one  was 

undetermined.  The early,  so duplicated,  gene fusions were:  CTAGE5-SIP1,  PLXND1-

TMCC1,  RGS22-SYCP1,  RHOJ-SYNE2 and  PUM1-TRERF1 and  SGK1-SLC2A12.  The 

late non-duplicated fusions were CTCF-SCUBE2,  SUSD1-ROD1 while AGPAT5-MCPH1 

was undetermined.

4.3.1.1. Fusion genes at chromosome translocation break points

The PUM1-TRERF1 fusion was an earlier event since derivative chromosomes A and D 

shared the  same translocation  breakpoint,  a  single  chromosome originally  must  have 

carried the PUM1-TRERF1 fusion and subsequently duplicated. This is also the case for 

RGS22-SYCP1 as it was formed by a translocation t(1;8). This translocation is present on 

both  copies  of  chromosome J. Chromosome  J  was  observed  in  two  copies  so  was 

probably formed before endoreduplication too.

In contrast, fusion of CTCF and SCUBE2 was a later event as it was only found in a single 

copy and furthermore it had resulted from a balanced translocation of a chromosome that 

had already been duplicated. The 12;16 junction was in a derivative chromosome made of 

pieces of 11,12 and 16 (chromosome S). At some time before endoreduplication there 

was  a t(11,16)  translocation.  At  endoreduplication the der(11)t(11;16)  duplicated.  One 

copy of this remained (chromosome R) and the chromosome 16 portion of the other took 

part in a near balanced translocation with chromosome 12 to form the  CTCF-SCUBE2 

fusion on the derivative der(16) (chromosome S). Therefore chromosome S had evolved 

from  one  of  two  ancestral  copies  of  chromosome  R  so  must  have  occurred  after 

endoreduplication. 
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4.3.1.2. Fusion Genes formed through tandem duplications

Four of the gene fusions were formed by small tandem duplications. The duplications that 

formed  the  CTAGE5-SIP1 and PLXND1-TMCC1  fusion  probably  occurred  before 

endoreduplication, so were earlier events. The duplicated regions were found in 4 copies 

according to PICNIC segmentation. I first confirmed that the extra copies of this segment  

were most likely arranged in tandem. Both metaphase and interphase FISH using fosmids 

showed single fluorescence signals in only two places in the genome, on both copies of 

chromosome 3 and 14, indicating that the duplications must be very close together, either 

as 2 + 2 or 3 + 1 copies. FISH on extended chromatin fibres resolved pairs of signals, and 

individual  chromatin  fibres  always  showed two  signals,  indicating  that  the  fusion  was 

present as a tandem duplication on both homozygous copies of chromosome 3 or 14. The 

tandem duplications probably happened before endoreduplication, as they was present on 

both  chromosome  3s  and  14s  in  two  copies.  If  the  duplications  happened  after  

endoreduplication the duplicated region would be present in a 3:1 ratio which I did not  

observe by fibre FISH (Figure 4.5).

In contrast to the above “doubled” tandem duplications, the events that caused fusion of 

SUSD1 to  ROD1 was only found in single copy e.g. the segmented copy number only 

increased  by  one.  This  implies  these  tandem  duplications  were  not  duplicated  at 

endoreduplication  so  probably  happened  later.  The  tandem  duplication  that  fused 

AGPAT5 to MCPH1 was too small to be segmented by PICNIC so its copy number and, 

therefore, its timing was undetermined.
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Figure 4.5. Fibre FISH and Evolution of the CTAGE5-SIP1 fusion. Legend 

overleaf
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Figure 4.5. Fibre FISH and Evolution of the CTAGE5-SIP1 fusion.  There are 

two explanations for the evolution of the CTAGE5-SIP1 tandem duplication region 

on chromosome 14: 1) Early tandem duplication followed by endoreduplication. 2) 

Endoreduplication  followed  by  two  tandem  duplications  on  the  same 

chromosome. Fibre FISH using fosmids, W12-1047K4 and W12-1623, confirmed 

the first  explanation  was correct.  In  control  cells  FISH on extended chromatin 

fibres  confirmed  the  probes  hybridized  close  to  one  another  in  a  red-green 

configuration. In HCC1187, 100% of DNA fibres showed a red-green-red-green 

pattern (the figure shows two 60X microscope fields joined together). This means 

that i)  the duplicated region was arrayed in head to tail orientatation, ii) There was 

only one extra copy of the locus per chromosome. If evolution plan (2) was correct 

I  would  have  expected  to  see  a  50:50  ratio  of  single  red-green  signals  to 

triplicated red-green signals.  

4.3.1.3. Fusion genes formed by deletions

The interstitial deletion that formed the RHOJ-SYNE2 fusion was previously confirmed as 

homozygous. SNP6 data showed that chromosome 14 was homozygous over its entire 

length but present in two copies at the RHOJ-SYNE2 locus. The best explanation is that 

one copy of  chromosome 14 was  lost  and the  remaining  copy duplicated during  the 

endoreduplication. As the interstitial deletion that formed the  RHOJ-SYNE2 fusion was 

homozygous it must have pre-dated the endoreduplication. An identical case for  SGK-

SLC2A12 on chromosome six was observed.

4.3.1.4. Duplication of other small deletions and duplications

Most small gains and losses did not fuse genes, but it was still possible to place many of 

these  before  or  after  endoreduplication.  As  fibre  FISH  on  the  CTAGE5-SIP1 fusion 

showed, any earlier tandem duplication must have been doubled at endoreduplication. In 

array CGH, the segmented copy number must increase by two (or be divisible by two) for 

early events, and only increase by one for later events (Table 4.1).
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It was possible to place 19 small duplications before or after endoreduplication, fusions of 

CTAGE5-SIP1, PLXND1-TMCC1  and SUSD1-ROD1  were  caused  by  three  of  these. 

Eight duplications (42%) were placed earlier and eleven later. Earlier deletions, typified by 

the  RHOJ-SYNE2 deletion, would also be duplicated at endoreduplication but the copy 

number step would decrease by two (or be divisible by two). The copy number of later 

deletions  would  only  decrease  by  one. It  was  possible  to  place  9  deletions  (4 

homozygous)  of  less than 5Mb unambiguously before or  after  endoreduplication.  The 

fusion of  RHOJ to  SYNE2 and SGK1-SLC2A12 were caused by two of these deletions. 

Five deletions were placed earlier (56%) and four later.
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Chr Type

Preceding 
Segment 

End

Size of 
gained or 

lost region 
(kb)

Succeeding 
Segment 

Start

Preceding 
Segment 

CN

Gained or 
lost region 

copy 
number

Succeeding 
Segment 

CN
Doubled at 

Endoreduplication

Earlier 
or 

Later?

2 Deletion 33032718 56.04 33089758 2 0 2 y E 
2 Deletion 54050162 1101.61 55159490 2 1 2 n L
2 Deletion 66859298 257.47 67119098 2 1 2 n L
6 Deletion 1661709 4019.19 5681742 4 3 4 n L
6 Deletion 101044085 205.62 101259352 2 1 2 n L
6 Deletion 134367799 208.05 134580872 2 0 2 y E 
14 Deletion 62771053 630.99 63410248 2 0 2 y E 
15 Deletion 69964951 249.53 70233770 2 0 2 y E 
17 Deletion 34666635 85.62 34766404 2 0 2 y E 
2 Duplication 104926149 319.83 105256524 2 3 2 n L
2 Duplication 222210422 651.77 222869850 2 3 2 n L
3 Duplication 9483392 1113.06 10597941 2 3 2 n L
3 Duplication 57148414 95.13 57255295 2 4 2 y E 
3 Duplication 130771904 131.5 130909903 2 4 2 y E 
4 Duplication 146293755 428.13 146731470 2 4 2 y E 
4 Duplication 199380516 2800.24 2807561 2 3 2 n L
6 Duplication 149546259 497.51 150052602 2 3 2 n L
8 Duplication 127966102 889.5 128857819 3 4 3 n L
9 Duplication 113916140 215.02 114139966 3 4 3 n L
10 Duplication 30165639 272.47 30440477 3 4 3 n L
10 Duplication 46363383 874.32 47417401 3 4 3 n L
13 Duplication 101878311 365.51 102251373 4 5 4 n L
14 Duplication 38673786 196.33 38881982 2 4 2 y E 
14 Duplication 63658710 251.89 63912211 2 4 2 y E 
14 Duplication 67838563 317.88 68157617 2 4 2 y E 
15 Duplication 83230545 600 83835487 2 3 2 n E 
15 Duplication 88492748 146.17 88640915 2 4 2 y E 
18 Duplication 8972450 1692.78 10666165 4 5 4 n L



Table 4.1. Small deletions and tandem duplications placed before or after endoreduplication. Segment copy numbers were generated by 

PICNIC. Events that had been doubled at endoreduplication were placed earlier. Events not doubled were placed later. Ambiguous cases, for 

example a copy number change of three, or a surrounding copy number of three, were omitted from this analysis.
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4.3.2. Duplication of sequence-level mutations at endoreduplication

In Chapter 3, I placed all known sequence-level mutations on the HCC1187 genome map. 

To find the position of each mutation,  the individual  chromosomes of HCC1187 were 

separated by flow-sorting and exons bearing the mutation were amplified by PCR and the 

products directly sequenced. 

After adding PICNIC minor allele data to my genomic map (Figure 4.3), it was evident that 

most loci in this genome had duplicated precisely once. I could, therefore, infer whether  

the  common  ancestor—before  the  locus  duplicated  at  endoreduplication—bore  a 

sequence-level  mutation or not.  If  the mutation occurred before duplication it  must be 

present on both copies after the duplication. If a mutation was present on only one of the  

two  loci  in  the  observed  karyotype  I  could  infer  it  happened  after  endoreduplication 

(Figure 4.6). The only errors in this analysis would be if a mutation was duplicated or 

reverted by gene conversion (see Discussion). 
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Figure  4.6 The  location of  point  mutations on copies of  chromosome 6,  and 
deducing whether they preceded or followed endoreduplication. i) Deducing the 

parental  origin  of  chromosome 6 segments:  the  simplest  explanation  for  the  allele 

combinations (blue and red lines on the aCGH plot) in terms of parental origin. Both 

copies of chromosome 6I originate from parent A and the chromosome 6 segments of 

A and D originate from parent B. Several small  copy number steps are omitted for 
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clarity. ii) Sequence traces show whether mutations are on each isolated chromosome. 

HSD17B8:  Chromosome  6I  (2  copies)  homozygous  G>T   mutation  (black  arrow); 

chromosome  6A  and  6D,  no  mutation.  NCB5OR:  Chromosome  6I,  heterozygous 

mutant  (black  arrow).  iii)  The  likely  evolution  of  the  segments  of  chromosome  6: 

unbalanced  translocation  of  one  copy  of  chromosome  6  forming  der(1)(6pter-

6p21.1::1p35->1qter)  was  followed  by  duplication  of  both  chromosomes  during 

endoreduplication. HSD17B8 was mutated on each copy of chromosome 6I but not on 

6A or 6D, while NCB5OR was mutated on only one copy of chromosome 6I. The pre-

endoreduplication state was likely to be one normal copy of chromosome the other 

having a mutation in HSD17B8 and suffering unbalanced translocation. The NCB5OR 

mutation occurred after endoreduplication. 

Of the 83 previously described sequence-level mutations that I confirmed in Chapter 3, 34 

were classed as earlier and 39 later, with only 10 undetermined. Of these 10, 2 were on a  

chromosome that was too small to be resolved in flow sorting, and 8 were not possible to 

score, either because they were found on single-copy genome segments, or they were 

found in a region where parent of origin could not be determined (Figure 4.7, Table 4.2). 

All  mutations fitted around the scheme of karyotype evolution as expected; if  a given 

mutation had a ‘Parent A’ origin it was only found on Parent A-derived chromosomes. This 

reinforced the validity of the karyotype evolution scheme and implied that there was no 

significant incidence in this cell line of other mechanisms that could give duplication of a 

gene, or removal of one copy, such as gene conversion.
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Figure  4.7.  Sequence-level  mutations  and  fusion  genes  before  and  after 
endoreduplication.  Outer  rings  are  chromosome  ideograms  and,  array  painting 

segments as in Figure 4.3. Inner rings are chromosome segments that must have been 

present  before  endoreduplication(equivalent  to  the  state  portrayed  in  Figure  4.4(ii). 

Coloured dots are different types of mutations, on the outer chromosome segment on 

which they were observed: truncating (red), non-synonymous (blue), expressed gene 

fusion  (light  blue).  Mutations  that  were  on  two  copies  of  a  chromosome segment 

probably  occurred before endoreduplication  and are  also  shown  on the inner,  pre-

endoreduplication  genome. Dashed grey boxes  on chromosome 1 and 11 indicate 

regions  where  parental  origin  was  undetermined,  because  PICNIC  segmentation 

suggested additional rearrangements had taken place.
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Gene
Genomic mutation as reported (2004 

build)
cDNA 

Mutation
Amino 
acid

Mutatio
n Type

SIFT 
Score

LogR.E 
Value

LS-
SNP 

Score

Wood et 
al (2007) 

CAN 
Gene

Early 
/Late

ARHGEF4 chr2:131632752C>G (homozygous) 1322C>G T441R Miss 0 2.31 E
AVPI1 chr10:99429559C>T (homozygous) 94C>T Q32X N E

B3GALT4 chr6:33353713T>C 539T>C V180A Miss 0 1.27 E
BAP1 chr3:52415311C>T (homozygous) 781C>T Q261X N E

C4orf14 chr4:57673742A>G (homozygous) 1736A>G Q579R Miss 0.64 E
CENTD3 chr5:141014054A>C (homozygous) 4282A>C T1428P Miss E
CTNNA1 chr5:138294082C>T (homozygous) 2032C>T Q678X N E
FHOD3 chr18:32527271C>T 1598C>T S533L Miss 0.19 E

FLJ21839 chr2:27191236G>C (homozygous) 1184G>C R395P Miss -1.1 E
FLNC chr7:128071176G>T 553G>T D185Y Miss X E

GMCL1L chr5:177546166delA (homozygous) 741delA fs INDEL E

GPR81
chr12:121739602_121739601insA 

(homozygous)
165_166in

sA fs INDEL E
HSD17B8 chr6:33281286G>T 472G>T V158L Miss 0.01 0.45 0.11 E

INHBE chr12:56135771G>C 185G>C R62T Miss 0.16 0.07 X E
KIAA0427 chr18:44541852G>C 1165G>C V389L Miss 0.33 1.05 X E

MYH9
chr22:35012676_35012674delGCA 

(homozygous)
4200_4202

delGCA indel INDEL X E

NFKBIA
chr14:34942227_34942226insC 

(homozygous)
427_428in

sC fs INDEL E
NUP98 chr11:3657478G>T (homozygous) 4955G>T G1652V Miss 0.03 E
PAXIP1 chr7:154198087T>G 1370T>G F457C Miss 0.18 0 E

PCDHB15 chr5:140607486C>T (homozygous) 2156C>T A719V Miss 0.06 X E
PPHLN1 chr12:41065014G>A (homozygous) 517G>A V173M Miss E

PPP1R12A chr12:78693190G>C (homozygous) 2301G>C Q767H Miss 0.34 E
RASL10B chr17:31086470G>A (homozygous) 154G>A V52M Miss 0.08 0.3 1.27 E
RNU3IP2 chr3:51950902C>G (homozygous) 22C>G R8G Miss 0.09 E

RTP1 chr3:188400138C>A (homozygous) 262C>A R88S Miss E
SKIV2L chr6:32036799C>G 547C>G L183V Miss 0.01 E
SLC4A3 chr2:220323514_220323523delGACAA 1291_1300 fs INDEL E



GGACA (homozygous)
delGACAA

GGACA

STATIP1 chr18:31994943_31994944delCT
1739_1740

delCT fs INDEL E
TAS2R13 chr12:10952719A>G 446A>G N149S Miss 0.09 0.54 E
TBXAS1 chr7:139064224C>T 256C>T R86W Miss 0.01 1.66 -1.04 E

TP53
chr17:7520090_7520088delGGT 

(homozygous)
322_324de

lGGT G108del INDEL X E

TRIM47 chr17:71382450_71382450
1680_1681

insC fs INDEL E
UGT1A9 chr2:234462937G>T (homozygous) 1325G>T S442I Miss 0.06 0.17 -1.19 E
ZNF142 chr2:219333250G>A (homozygous) 3005G>A R1002H Miss 0.01 E
ABCB8 chr7:150179945C>G 2018C>G A673G Miss 0.33 X L

ADRA1A chr8:26778286G>T 118G>T G40W Miss 0.01 0.4 -0.36 L
C6orf21 chr6:31783819C>G 575C>G P192R Miss L
CAMTA1 chr1:7730843A>G 3240A>G L1080L S 1 L
CYP2D6 chr22:40851168G>A 124G>A G42R Miss 0.02 -0.97 -0.98 L
CYP4A22 chr1:47323585G>A 1250G>A G417D Miss 0 1.41 -1.2 L

DDX18 chr2:118291285G>A 121G>A G41R Miss L
FLJ20422 chr19:19104498A>T 254A>T E85V Miss 0.08 L
FLJ20422 chr19:19104499G>T 253G>T E85X N L
FLJ32363 chr5:43541741C>G 798C>G S266R Miss L
FRMPD1 chr9:37730240G>A 1715G>A G572D Miss L
GLT25D2 chr1:180641553G>A 1423G>A V475I Miss 0.38 1.26 L
GOLPH4 chr3:169233251C>T 935C>T A312V Miss 0.26 -0.66 L
GOLPH4 chr3:169233252G>C 934G>C A312P Miss 0.26 -0.66 L
GPNMB chr7:23086956G>T 1556G>T S519I Miss L
HUWE1 chrX:53537429G>A 1442G>A R481K Miss 1 0.27 L

IPO7 chr11:9418649G>T 2767G>T A923S Miss 0.3 L
KIAA0934 chr10:363080G>A 3790G>A V1264M Miss 0.17 -0.09 -1.46 X L
LHCGR chr2:48826897G>A 1690G>A D564N Miss 0.01 0.32 0.29 L
LLGL1 chr17:18080933C>G 1566C>G L522L S 1 L
MLL4 chr19:40904380C>T 2291C>T P764L Miss 0.01 L

MYBPC2 chr19:55650351C>T 2189C>T P730L Miss 0.01 L
NCB5OR chr6:84706496G>T 1009G>T D337Y Miss -1.58 X L
NOS2A chr17:23118990G>T (homozygous) 2035G>T A679S Miss 0.16 -0.76 L
PDCD6 chr5:359875G>T 367G>T G123C Miss 0 -1.27 L
PDPR chr16:68734948A>T 1637A>T Y546F Miss 0.54 1.85 L



PEBP4 chr8:22638372G>C 446G>C R149P Miss 0 2.7 L
PLA2G4A chr1:183651507C>G 1326C>G H442Q Miss 0.7 -1.11 L

PLCB1 chr20: 8667928C>T 2229C>T A743A S 1 0 L
PLS3 chrX:114703778A>C 1454A>C D485A Miss 0 1.75 -0.35 L

PRKAA2 chr1:56881987C>A 1111C>A P371T Miss 0.18 0.12 0.87 L
RBAF600 chr1:19237486G>A 4181G>A R1394H Miss L

SATL1 chrX:84168729C>G 830C>G S277X N L
SCN3A chr2:165812042A>G 2837A>G E946G Miss 0 0.31 L
SMG1 chr16:18730825A>C 10735A>C K3579Q Miss 0.02 L

SORCS1 chr10:108579379A>C 669A>C K223N Miss 0.12 L
SPEN chr1:16002504G>T 4463G>T R1488I Miss L
SPTA1 chr1:155422865A>T 4743A>T Q1581H Miss 0.01 0.34 L

SULT6B1 chr2:37318343A>C 324A>C A108A S 1 L
WARS chr14:99871016G>C 1365G>C E455D Miss 0.29 0.59 L

ZNF674 chrX:46144024G>A 253G>A E85K Miss 0.28 L
AMPD2 chr1:109885704G>A (homozygous) 2285G>A R762H Miss 0 d/k
APOC4 chr19:50140242C>A 224C>A P75Q Miss d/k
C6orf31 chr6:32226401G>A 280G>A A94T Miss d/k

CD2 chr1:117019184G>A 650G>A C217Y Miss 0.01 d/k

ITGB2
chr21:45146037_45146013delTGAACA

CGCACCCTGATAAGCTGCG

539_563de
lTGAACAC
GCACCCT
GATAAGC

TGCG fs INDEL d/k
ITIH5L chrX:54706426C>T 227C>T P76L Miss 0 3.16 d/k

ITR chr13:94052277C>A 95C>A T32N Miss d/k
OR1S1 chr11:57739474T>A 682T>A F228I Miss 0.47 0.1 d/k

ZCSL3 chr11:31404466_31404470delTCTTG
304_308de

lTCTTG fs INDEL d/k
ZNHIT2 chr11:64641527G>C 175G>C A59P Miss 0.32 d/k

Table 4.2. Sequence-level mutations classed as earlier or later than endoreduplication.  Mutations that were duplicated at endoreduplication 

were classed as earlier and single copy mutations were classed as later. Statistical estimates of a mutation's functionality by SIFT, LogR.E and LS-

SNP methods are included (see below) as are Candidate Cancer (CAN) genes from Wood et al. (2007).
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4.4. The relative timing of mutations in HCC1187

Overall,  the  proportions  of  earlier  and later  mutations were  remarkably similar:  22/50 

(44%) of structural changes (translocations, deletions and duplications) and 34/75 (45%) 

sequence-level changes were classed as earlier (Figure 4.8). Base substitutions predicted 

to be non-functional by the SIFT (sorting intolerant from tolerant) method(Ng and Henikoff, 

2003) were  split  9:14  (40%  early).  Taken  together  these  figures  indicate  that 

endoreduplication  happened  about  40% of  the  way  through  the  cell  line's  mutational  

history (Figure 4.8).

Figure 4.8.  The proportions of  structural  and sequence-level  mutations earlier and 
later than endoreduplication.

The similar proportions of point mutations and structural rearrangements earlier and later  

implies  that  the  two  kinds  of  mutation  occurred  broadly  in  parallel.  If  genome 

rearrangement had started substantially later than point mutation, then a higher proportion 

of sequence-level mutations should have been classified as earlier. Either chromosome 

instability started before most of the point mutations occurred, or chromosome instability 

was accompanied by an increased point-mutation rate. 
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I  next  investigated where particular subsets of  mutations tended to fall  earlier  or later 

relative to endoreduplication (Figure 4.9). 

 Figure 4.9. Earlier and later classifications of subsets of mutations.

For  structural  mutations,  the  earlier  group  included  9:22  (41%)  chromosome 

translocations. Small duplications were split 8/11 (42%) earlier and small deletions were 

split  5:4  (55%)  earlier.  Expressed  fusion  genes  were  split  6:2  and  all  three  in-frame 

fusions fell early. 

For sequence mutations, 23:35 (40%) non-synonomous mutations fell  early.  Mutations 

found by Sjoblom et al. (2006) and Wood et al. (2007) had previously been investigated 

by the algorithms SIFT, logR.E. and LS-SNP (Ng and Henikoff, 2003; Clifford et al., 2004; 
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Karchin et al., 2005; Wood et al., 2007). I repeated these analyses on mutations reported 

only in the COSMIC database using CANpredict software online (Kaminker et al., 2007). 

Some  mutations  could  not  be  analysed  by  the  above  methods,  for  example,  FLNC. 

Classifiable mutations that were predicted to be functional by at least one of the estimates 

were split 21:20 (51%).

Wood et al (2007) identified genes likely to be drivers as ‘candidate cancer genes’ (CAN) 

based  on  their  observed  versus  expected  mutation  rate  and  several  bioinformatic 

estimates of functionality.  CAN genes showed a bias towards the earlier category that 

may have been statistically significant (see below). Six of the nine CAN genes found in 

HCC1187  were  found  in  the  earlier  category  (INHBE,  KIAA0427,  MYH9,  PCDHB15,  

RNU3IP2, TP53) and three in the later category (ABCB8, KIAA0934, NCB5OR).

Strikingly  different  from  the  overall  distribution  of  mutations  in  HCC1187  was  the 

proportion of sequence-level truncation mutations in earlier rather than later categories: 

All  eight  INDEL mutations happened earlier,  and combining this  figure with  nonsense 

mutations showed 11:13 (85%) truncation mutations happened earlier.

4.5.  Statistical  Estimates  of  the  number  of  non-
randomly distributed mutations

Certain  classes of  mutation  appeared to  deviate  from the  expected 40:60 split.  Most 

notably, the mutations predicted to truncate proteins nearly all happened earlier. I next  

used a statistical model to estimate the number of mutations that showed non-random 

timing earlier  or  later.  The mathematical  model  and R scripts  to  run it  was  made by 

Professor S Tavaré, CRUK Cambridge Research Institute. Its application to these data 

and interpretation is my own work. The model is described in Chapter 2.9 and R scripts to 

run it are in Appendix 2.4. 
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The model assumed that any given class of mutations is a mixture of events that have to 

happen early or late and events that can fall at random. The algorithm finds the most likely 

number of non-randomly timed mutations (the maximum likelihood estimator, or MLE) and 

the 95th percentile confidence intervals we can have in that number given an estimate, p,  

of the timing of endoreduplication. The calculations below make no assumptions about the 

mutation rate, only that the relative proportions of different classes of mutations before  

and after endoreduplication were similar in the absence of selection. E.g. if the rate of  

missense mutation changed after endoreduplication, so did the rate of indel mutation. 

The degree of non-randomness of the earlier and later classification can be calculated for 

a  range of possible  scenarios,  but in all  cases the implications are that  a substantial  

number of mutations were non-randomly timed. 

4.5.1. Maximum Likelihood estimators.

For these calculations, I use the estimated p-value of 0.4 as described above. Consider,  

for example, the proportion of truncating mutations earlier and later: The observed 11:2 

distribution seems improbable. A proportion of these mutations must, presumably, have 

occur earlier. The MLE in this case is 10 mutations that show non-random timing, i.e. had 

to  happen  before  endoreduplication.  The  95% confidence  intervals  using  a  bootstrap 

approach are 7 and 12, If we then ask the reciprocal question: how many mutations had 

to happen late, p=0.6, late mutations=2, the MLE for late mutations is 0 (Figure 4.10). I 

next applied the model to all of the subsets of mutations mentioned above. 

Of the eight fusion genes, it was possible to place earlier or later, the most likely number  

that had to occur early was five with 95th percentile confidence intervals of between two 

and  seven.   For  small  deletions  the  MLE  was  three  with  95 th percentile  confidence 

intervals of between zero and six. It is, therefore, possible that this distribution occurred by 

chance.  A similar case was observed for Wood et al. (2007) CAN genes (MLE=4 or 5  

confidence interval 0 to 7) and predicted functional mutations (MLE=8, confidence interval 

0 to 16)(Figure 4.10).
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Figure 4.10. Non-randomly timed mutations in HCC1187. Upper plots are the total number of mutations placed earlier (blue)or later (red). 

Lower plots are MLEs (red and blue dots) and 95th percentile confidence intervals (horizontal red and blue lines).
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4.5.2. Did specific mutation rates change over time?

Central  to  the  statistical  model  was  the  assumption  that  the  relative  proportions  of 

different  classes  of  mutations  before  and  after  endoreduplication  were  similar  in  the 

absence  of  selection.  The  HCC1187  tumour  received  undisclosed  chemotherapy 

treatment  prior  to  the  derivation  of  the  cell  line  (Gazdar  et  al.,  1998),  so  there  is  a 

possibility that a certain type of mutation would be artificially concentrated at one stage of  

tumour evolution. To address this concern I used my statistical model to compare the 

rates of the different types of mutation earlier and later (Figure 4.11).

Figure 4.11. The proportion of different types of mutation earlier and later. Upper 

plots are the total number of mutations placed earlier (blue)or later (red). Lower plots 

are MLEs (red and blue dots) and 95 th percentile confidence intervals (horizontal red 

and blue lines).
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Most types of mutation seemed to accumulate in the expected manner given the p value 

of 0.4. There did appear to be some small fluctuations earlier and later, but these may 

well  have  been  due  to  chance  and  the  small  number  of  mutations  sampled.  Indel 

mutations were all concentrated earlier and this is discussed below. There was a possible 

excess of transversion mutations in the later category (MLE=4 or 5, confidence interval 0-

10) due to CG>AT and TA>AT mutations. The G>T transversions could be explained by 

oxidation in culture (Kino and Sugiyama, 2001), but again, this distribution could be due to 

random chance. But even if we base our estimate of p only on transitions, we still see a 

ratio of 43 percent to 57 percent. If  chemotherapy or oxidation in culture did generate 

some mutations in HCC1187 they were not sufficient to have biased my estimate of the 

timing of endoreduplication, but nevertheless, I discuss this possibility below.

4.5.3. What if endoreduplication were a late event?

Now consider what happens if we allow p to vary (Figure 4.12), i.e. suppose that some of  

the non-synonymous missense mutations were selected to occur at a specific time. For p 

values above 0.4 we see that the MLE for early-selected truncating mutations decreases 

and above p=0.8 the MLE becomes zero. This corresponds to endoreduplication being a 

relatively late event so the truncation mutations would be mostly earlier due to random 

chance.
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Figure 4.12. Estimates of the number of truncating mutations selected to be 
early, for various values of p, the probability of a non-selected mutation falling 
early. MLEs are represented by blue dots, The 95th percentile confidence intervals 

generated by bootstrapping are vertical bars. Note that for some values of p there 

are two, equally likely MLEs.  

However,  if  endoreduplication  was  late,  there  is  a  large  excess  of  non-synonymous 

missense mutations in the late category and we have to conclude that many of the late 

non-synonymous mutations were had to happen late. For example, if p=0.85, MLE for  

non-randomly timed late non-synonymous mutations is 35 with 95% confidence intervals 

30,  38.  If  we  plot  this  estimate  for  varying  p  we  see  that,  the  later  we  suppose 

endoreduplication  to  have  happened,  the  more  late  mutations there  must  have  been 

(supplementary figure 4).  When endoreduplication happened early we see that the MLE 

for late non-random events drops to zero. This just means that a significant proportion of  
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mutations did not show non-random timing. It  is still  likely that there were some non-

randomly-timed non-synonymous mutations they just do not cluster earlier or later.

Figure 4.13 Combining maximum likelihood estimates of truncating mutations 

selected to be early (blue) and non-synonymous missense mutations selected to be 

late (red).

4.6. Discussion

Endoreduplication in  HCC1187 proved to be a useful  milestone,  because numbers of 

structural  changes  and  point  mutations  were  roughly  equally  distributed  between  the 

earlier and later categories, so endoreduplication occurred about 40 percent of the way 

through the evolution of this genome. The earlier versus later classification may help us to 

understand a variety of issues including the timing and origins of chromosome instability 

(CIN) and the drivers versus passengers problem.
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4.6.1. The timing of CIN

The distribution of mutations allows us to speculate on the timing of CIN in this cell line. 

There has been much discussion of when CIN occurs, for example some have suggested 

it as a key facilitator of early tumourgenesis, notably causing loss of heterozygosity of 

APC in colorectal cancers (Rajagopalan et al., 2003; Rajagopalan and Lengauer, 2004). 

In contrast,  Johannsson et al.  (1996) suggested that the extensive rearrangements of 

carcinoma karyotypes might be late progression events. Others favour a critical role of 

‘crisis’, a transient period of chromosome instability caused by telomere loss  (DePinho 

and Polyak, 2004; Stephens et al.,  2011). These latter views suggest that the relative 

rates of different kinds of mutation would change during the evolution of the tumour.

There is no evidence from these data that different kinds of mutation, e.g. point mutation 

versus translocation or whole chromosome loss, occurred at radically different times in the 

development of the tumour. If chromosome instability appeared after a significant number 

of point mutations had accumulated, we would have seen the majority of point mutations 

before endoreduplication, which I did not observe. It follows that either CIN started before 

most of the point mutations, or the onset of CIN was accompanied by an increased point-

mutation rate. An important value of the classification is that mutations that may cause 

chromosome instability must generally be in the ‘earlier’ group as, by definition, they must 

pre-date almost all chromosome changes, which in most cases are quite numerous before 

endoreduplication. 

4.6.2. Early Tumour Suppressor Loss

The high proportion of earlier truncating mutations, especially indels (8 earlier vs 0 later),  

could  be  explained  in  two  ways:  i)  the  rate  of  indel  mutations  was  high  before 

endoreduplication and low after, relative to most other types of mutation ii)  passenger 

indels  accumulated  in  the  same  way  as  other  passenger  mutations  but  more  indels 

accumulated early because they were selected. 
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I consider (ii) most likely because for 9/11 truncating mutations a chromosome loss before 

endoreduplication  caused  loss  of  the  second  wild  type  allele.  This  is  consistent  with 

chromosome instability facilitating early tumour suppressor loss, as has been suggested 

previously. Indeed, the earlier truncation mutations include known and candidate tumour 

suppressor genes  TP53, BAP1 (BRCA1-associated protein),  CTNNA1 (CateninA1) and 

NFKBIA (nuclear  factor  of  kappa light  polypeptide  gene enhancer  in  B-cells  inhibitor)

(Jensen et al., 1998; Jensen and Rauscher, 1999; Ventii et al., 2008; Liu et al., 2007,  

2010; Ding et al.,  2010; Osborne et al.,  2005); others were  AVPI1,  GMCL1L,  GPR81, 

MYH9 ,  SLC4A3,  ELP2 and TRIM47.  These data, therefore, support the view that early 

tumour suppressor loss is consistent with tumour evolving monosomically and that driver 

mutations that cause gene inactivation will  be concentrated pre-endoreduplication.  An 

explanation  for  this  phenomenon  is  that  loss  or  inactivation  of  two  alleles  pre-

endoreduplication  is  more  likely  than  loss/inactivation  of  four  alleles  post-

endoreduplication (Muleris and Dutrillaux, 1996).

4.6.3. Non-random timing of predicted functional substitutions

Gain  of  function  mutations  are  not  under  the  same numerical  constraints  as  tumour 

suppressors. Where two hits are required to impair tumour suppressor gene function, only 

a single mutation is required for oncogenic gains of function and we may, therefore, see 

these mutations either side of endoreduplication. Some, however, suggest that all useful  

mutations in a tumour must pre-date the invasive stage (Bernards and Weinberg, 2002; 

Edwards, 2002). In this case, we might expect to see functional mutations clustering early 

and there is a suggestion of this in the data. Eight mutations predicted to be functional by 

at least one of the three bioinformatic estimates were most likely to show non-random 

timing as were four or five of the CAN genes. Although the 95 th percentile confidence 

intervals  included zero,  these data  are  still  suggestive  of  an  early  bias  for  functional  

mutations.
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4.6.4. Non-random timing of gene fusions

We can be 95 percent certain that at least two, but as many as eight, fusion genes had to 

happen early.  The most probable estimate is six. This is a surprisingly high proportion 

given the proposition by Stephens et al. (2009) that most gene fusions were passenger 

events. Three of the gene-fusions appeared to be in-frame and these all fell early. This  

makes them likely candidates for selected events. But as Hampton et al. (2008) noted, out 

of frame gene-fusions may also be selected events as they potentially inactivate one or 

both of the genes involved. As two of the gene fusions were caused by homozygous 

deletion, either loss of function of the fused genes themselves or genes deleted in the 

intervening segment could also be selected events. 

4.6.4. The Timing of Endoreduplication

Interpretations  of  the  earlier  and  later  classes  depend  on  when  HCC1187 

endoreduplicated  as  endoreduplication  can  be  observed  both  in  vitro and  in  vivo 

(Schwarzacher and Schnedl, 1965; Dutrillaux et al.,  1991). There is some evidence that 

endoreduplication occurred in vivo in this case. The original ploidy of HCC1187 was not 

reported, only that shortly after its derivation, HCC1187 had multiple ploidy indices by flow 

cytometry  (Gazdar et al.,  1998; Wistuba et al.,  1998).  However,  around 60 percent of 

mutations occurred after endoreduplication. It would be surprising if so many happened in 

culture,  given  that  cell  lines  largely  recapitulate  the  genomic  aberrations  observed  in 

primary tumours (Neve et al., 2006; Chin et al., 2007). If endoreduplication happened in 

vitro,  only ‘earlier’  mutations happened  in  vivo, and all  driver  mutations will  be in the 

‘earlier’ set; whereas if endoreduplication happened in vivo, some driving mutations will be 

present in the ‘later’ group. In either case our estimate of the number of earlier driving 

mutations remains the same. 
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4.6.5. How accurate was this analysis?

The above conclusions depend on the accuracy of my earlier and later classification of 

mutations. I was confident that the tumour had undergone endoreduplication as it showed 

two characteristic signatures of this phenomenon: multiple duplicated rearrangements and 

multiple duplicated homozygous regions. Given that there had been an endoreduplication, 

I reconstructed the main steps of HCC1187 karyotype evolution (Figure 4.4) by assuming 

that the simplest possible sequence of events had happened. Implicit was the assumption 

that, as far as possible, all duplications had occurred at endoreduplication. The deduced 

sequence  of  chromosome  changes  was  almost  exactly  consistent  with  monosomic 

evolution  (allowing  some  whole-chromosome  losses  that  had  occurred  without 

translocation, and two translocations where no loss occurred). 

4.6.6. More complex evolutionary routes?

Three  duplications  could  not  be  explained  by  endoreduplication:  these  were  three 

chromosome segments of the same parental origin that were present in three copies,  

chromosome 9 from parent A, chromosome b (der(13)t(10;13)) and the chromosome 13 

portion  of  chromosome  j.  The  simplest  route  to  these  triplications  was  via 

endoreduplication followed by an additional single-chromosome duplication. 

It is possible a small number of steps in the evolution were more complex than I deduced, 

but  this  would  not  have  altered  the  earlier  versus  later  classification  very  often. 

Specifically, if all three triplicated chromosomes had taken the more complex evolutionary 

route  (perhaps  duplication  followed  by  endoreduplication,  followed  by  loss),  the 

classification of no more than three point mutations could be affected, moving them from 

the later category to the undetermined’ class. For example, for chromosome 9 from parent 

A, we assumed that independent duplication followed endoreduplication, so the mutation 

of  FRMPD1 occurred later; but if the duplication had preceded endoreduplication and a 

copy was later lost, the mutation would be ‘unclassifiable’.
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Some mutations were omitted from analysis. These were from the complex regions of 10p 

and 11q where  the parent  of  origin  could not  be accurately  determined.  The omitted 

mutations  comprised  eight  non-synonymous  missense  and  two  truncating  mutations. 

Even if we consider the most unfavourable case, that the two truncating mutations were 

later,  the  MLE for  non-random early  events  becomes 9  with  95% confidence interval  

between 4 to 12. 

4.6.7. Gene Conversions?

If a gene conversion had occurred, then a later mutation would appear to have occurred 

earlier. No gene conversions had to be invoked as all mutations were confined to one 

parent of origin, implying that gene conversion was rare or absent in this cell line. This is  

consistent with previous studies which showed that unbalanced translocations and whole 

chromosome loss  account  for  the  bulk  of  loss  of  heterozygosity  in  epithelial  cancers 

(Thiagalingam et al., 2001, 2002; Ogiwara et al., 2008). 

4.6.8. A lower estimate of the number of driving mutations in HCC1187

Clustering of a certain type of mutation early could imply one of two things: i) A particular 

mutational mechanism was more active earlier than later or ii) that non-randomly timed 

mutations had to happen early, so were selected. If we assume that the second option is 

correct then a lower estimate for the total number of earlier selected events is nine - two 

gene-fusions and seven nonsense/frameshift mutations. These are the lower confidence 

intervals for two of the classes of mutation where this limit was greater than zero. If one, 

however,  adds the MLEs of different types of mutations, the number of  non-randomly 

timed selected events may be in excess of twenty.
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5.1. Introduction

With the advent of massively parallel paired end sequencing it is now possible to rapidly 

define genome rearrangements in cell  lines and primary tumours. However, surveys of 

primary  tumour  genomes  will  probably  require  high  physical  coverage  given  their  

heterogeneity and contamination with stromal cells. We can reasonably expect ten-fold 

physical coverage from massively parallel paired end sequencing experiments (Stephens 

et al., 2009). But if one imagines a triploid tumour genome with thirty percent stromal cell  

contamination – as is commonly observed – the nominal ten-fold physical coverage of a 

haploid genome is only about two-fold in real terms. This translates to around 60 percent 

of  clonal,  single  copy  rearrangements  being  sampled  twice  or  more.  For  non-clonal 

rearrangements, this figure would decrease. Thus the results will be biased towards the 

dominant clone of the particular region of tumour the sequencing library was made from.

It is likely that a higher proportion rearrangements can be sampled in cell lines as they are 

more clonal and do not contain any stromal cells. But as many cell lines are from late-

stage disease and have  existed  in  culture  for  years  one can never  be  sure  that  any 

rearrangement was an in vivo event.

A possible  solution to  these problems is  comparative lesion sequencing  (Jones et  al., 

2008; Shah et al., 2009). In this approach, samples from the same patient at two different 

time points  are sequenced and compared.  Rearrangements common to both samples 

probably occurred earlier and in vivo, and, if using cell lines, a higher proportion of these 

rearrangements can be sampled. One such model currently exists for breast cancer, the 

VP229 and VP267 cell lines. In this chapter, I describe their genome structures using data 

from massively parallel paired end sequencing.

5.1.1. VP229 and VP267 Cell Lines

The two cell lines, VP229 and VP267, are from the same breast, VP229 being derived 

from  a  local  excision  specimen  and  VP267  from  a  mastectomy  specimen  following 

Tamoxifen treatment 12 months later (Table 5.1)  (McCallum and Lowther,  1996).  Early 
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chromosome  analysis  of  the  two  lines  showed  considerable  complexity,  but  several 

features were present  in  both cell  lines.  This  implies that  VP267 most  likely  arose by 

“clonal evolution in vivo from cells similar to those which were present in the biopsy used 

to establish VP229.” (McCallum & Lowther 1996 p.258) 

Cell 
Line

Patient 
Age

Previous 
Treatment Histology

ER status 
(DCC)* Survival after Op

VP229 47 None Ductal Grade III 0/0 2 years

VP267 48 Tamoxifen Ductal Grade III 0/38 1 year

Table 5.1. VP229 and VP267 information. *DCC is a dextran-coated charcoal assay 

(McGuire and DeLaGarza, 1973).

The karyotypes of  both cell  lines were  among the most  complex that  Davidson et  al. 

(2000) observed, meaning that techniques such as array CGH and array painting would be 

very difficult to interpret. This made them a good candidate for investigation by massively 

parallel paired end sequencing. Studying the genomic structures of these two cell lines is 

interesting for several reasons: 

1) Massively  parallel  paired-end  sequencing  would  allow  me  to  rapidly  define 

chromosome  aberration  break  points  and  predict  gene-fusions  in  these  two 

complex genomes

2) Cell  lines  are known to  evolve in  culture  so one can never  be sure  if  a  given 

rearrangement happened in vivo or in vitro (Roschke et al., 2002, 2003). As VP229 

and VP267 are separate isolates from the same patient, any rearrangement found 

in both lines was probably present in the original tumour in vivo.

3) The cell lines were originally scored as ER-negative (McCallum and Lowther, 1996), 

but according to the RT-PCR, immunohistochemisrty and gene-induction assays of 

Ghayad et al. 2009, the VP cell lines express a functionally active ERα. VP229 was 

sensitive  to  both  commonly  used  ER  agonists,  Tamoxifen  and  Fulvestrant  but 

strikingly, VP267 cells were resistant to both drugs (Ghayad et al., 2009). VP267 is 

a  relapse  following  Tamoxifen  treatment,  so  the  genetic  lesion  responsible  (if 

retained) would only be found in VP267.
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5.2. Bioinformatic Processing of Sequence Data
5.2.1. Library Preparation, Bioinformatic Processing and Physical Coverage 
Calculations

Sequencing libraries for VP229 and VP267 were constructed by Dr JC Pole and Dr I  

Schulte. Bioinformatic processing was via a bioinformatic pipeline constructed by Dr K. 

Howe, Dr S.L. Cooke and Miss C.K. Ng (Wellcome Sanger Institute and CRUK Cambridge 

Research Institute). Briefly,  image analysis and base calling modules FIRECREST and 

BUSTARD (Illumina) were used to produce raw sequence data. Sequences were aligned 

to  the  HG37  reference  genome  using  the  Burrows  Wheeler  alignment  (BWA)(Li  and 

Durbin, 2009) as it is faster and possibly more accurate than MAQ (Meyerson et al., 2010). 

Reads that would not align with BWA were passed on to Novoalign alignment which is very 

accurate but slow (Hercus, 2009). Run statistics for the two libraries are summarised in 

table 5.2 and estimated physical genome coverage is shown in table 5.3.

Cell Line Unique Normal Pairs Total Bases Covered

VP229 47056862 20661043936

VP267 51024575 21451529751

VP229 / VP267 combined 98081437 42112573687

Table 5.2 Run statistics for VP229 and VP267 sequencing libraries

Haploid genome 
coverage

Diploid 
genome 
coverage

Triploid 
genome 

coverage

VP229 6.9 3.4 2.3
VP267 7.2 3.6 2.4
VP229/VP267 
combined 14 7 4.7

Table 5.3. Estimated physical genome coverage 

Library preparation has a ligation step, so it is possible spurious structural variants would 

be generated. To counter this, each structural variant had to be supported by at least two 
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unique paired reads to be considered further. Estimated physical genome coverage was 

calculated as above and using the Poisson distribution function, the proportion of events 

hit two times or more was also calculated (Table 5.4). 

Cell Line
Haploid genome 

coverage
Diploid genome 

coverage
Triploid genome 

coverage

VP229 0.99 0.8 0.59
VP267 0.99 0.91 0.59
VP229/VP267 
combined 0.99 0.99 0.96

Table 5.4. Estimates of the proportion of events hit twice or more using the 
Poisson function given the coverage estimates from table 5.3. 

VP229 and VP267 have modal chromosome numbers of 62 and 59 respectively but it is  

not  possible to state the ploidy of genome as a whole as many loci  deviate from the  

median copy number.  Instead, I estimated the total DNA content of VP229 by adding up 

the total copy number of PICNIC segments from array CGH. Using this approach, there 

were 8.2 billion bases in VP229 and this translates to 2.7 times the haploid genome. For 

VP267, array segmentation was not available.

5.2.2. Copy Number Estimation

Generating copy number data from massively parallel sequencing data was done by Miss. 

E.M. Batty and Dr. K. Howe (Batty, 2010). A description of the work is included here as I 

later rely on these data for structural variant validation.

 

The majority of read pairs mapped normally to the reference genome. This was defined as  

read pairs mapping to the same chromosome, in the correct orientation and separated by 

a distance of  no more than three standard deviations from the median fragment  size 

(Figure 5.1).
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Figure 5.1. Frequency distribution of sequencing reads.  Any read pair that 

mapped closer together or further apart than the upper and lower limits (defined as 

three standard deviations from the median) was considered abnormal.

The number of reads from any given region of the genome should be proportional to its  

copy number,  so gained regions should contain more normally mapping read and lost  

regions fewer. To generate copy number data comparable to array CGH, some biases in 

the data had to be removed. Sequencing reads must align uniquely to the genome or they 

are discarded, so a region rich in repeats would have a disproportionately low number of  

mapping reads and appear to have decreased in copy number. The level of sequence 

uniqueness of the reference genome for any given region is recorded as a 'mapability'  

score.  Using  mapabilty,  bins  of  varying  size  across  the  genome were  calculated  that 

should have the same number of normal reads map back to them if the genome being 

sequenced were normal and diploid (K Howe et al. unpublished).
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A second bias was evident in copy number plots and related to GC content. It seemed that 

GC-rich  regions  gave a  disproportionately  high  number  of  reads  even with  mapability 

binning  and  the  experimental  modifications  suggested  by  Quail  et  al.  (2008).  This 

phenomenon is well documented in array CGH experiments and has been termed a 'GC 

wave' (Marioni et al., 2007; Leprêtre et al., 2010). To correct the GC wave without a DNA 

from a matched normal sample a similar procedure to that of Marioni et al. (2007) was 

used. The number of sequencing reads in each bin were plotted against GC content. The 

deviation of each point from the normal range was plotted as a loess line. The equation of 

this line was then used to correct the CG wave, smoothing the data  (Batty, 2010). The 

corrected data was then segmented using circular binary segmentation in a similar way to 

array CGH (Venkatraman and Olshen, 2007).

This method gave CGH results comparable to that of SNP6 array CGH; an example is 

shown in Figure 5.2. It is also likely that this method gives a more accurate estimate of the 

copy number of amplified regions than array CGH. Array CGH approaches are based on 

hybridization of labelled DNA to the array. Highly amplified regions are found in hundreds 

of  copies  so  can saturate  the  array  (Chiang et  al.,  2009).  This  fact  is  reflected  by a 

maximum copy number estimate of only 15 by PICNIC (Greenman et al., 2010).
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Figure 5.2. Copy number of VP229 chromosome 10 assessed by three methods. 
i) Tiling path BAC array (Blood, 2006). ii) SNP6 array CGH. iii) Loess-corrected copy 

number based on normally-mapping paired reads (Batty, 2010).

5.2.3. Predicted Structural Variants

Read pairs that aligned too far apart, to different chromosomes or in the wrong orientation 

indicated possible structural variants (SV). The different types of structural variants are 
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named after their likely effect given the simplest possible interpretation (Figure 5.3).

Figure  5.3.  Interpretations  of  aberrantly-mapping  read  pairs  for  short  insert 
libraries. Light grey boxes are DNA strands from one chromosome, the upper one is 

the positive strand. Dark grey boxes are DNA strands from another chromosome. The 

examples here are all from the positive strand of derivative chromosomes but read pairs 

originating  from  the  negative  strand  are  also  generated  in  such  sequencing 

experiments.

The numbers of aberrantly mapping read pairs for VP229 and VP267 are below (Table 

5.5).  
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SV Type VP229 VP267

Total 213056 120540
DIF 36416 88412
INV 74486 10995

DEL / INS 102154 21133

Table 5.5. Summary of aberrantly mapping read pairs. DEL=deletion, DIF=translocation, 

INS=insertion, INV=inversion, ITR=inverted tandem repeat.

5.2.3. Clustering of Structural Variants

To find read pairs that traversed structural variants, similar reads were clustered together 

using a custom Perl script (K Howe et al. Unpublished). Each structural variant had to be 

supported by at least two unique read pairs to be considered further.  These clusters of  

paired reads provided a minimum region for the chromosome break point (Figure 5.4 and 

table 5.7). If structural variants from the two different cell lines could clustered together 

they were likely to  have been in  the common ancestor  of  VP229 and VP267,  named 

hereafter as “VP-Ancestor.”

Figure 5.4. Aberrantly mapping reads clustering strategy. Three read-pairs (green,purple 

and  red  lines)  span  an  inter-chromosome  translocation  (or  insertion)  breakpoint, 

chromosome A is  light  grey,  chromosome B,  dark  grey.  Similar  reads  are  clustered into 

'nodes'. The best estimate for the position of this break point is between the right hand side of 

node 1 and the left hand side of node 2.

After clustering, deletions, inversions and insertions of less than 10kb were frequent in  

these data. Most are hypothesised to be germ line variants so were not considered further,  

as in  previous studies  (Campbell  et  al.,  2008;  Stephens et  al.,  2009).  If  the structural 

variant less than 10kb but was predicted to fuse two genes I first validated the genomic 

breakpoints by PCR as below.  The remaining structural variants are listed in Table 5.6.
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SV Type

In both VP229 
and VP267

(VP-Ancestor)  Only in VP229 Only in VP267 All

DEL 61 19 30 110
DIF 153 32 73 258
INS 41 14 28 83
INV 81 18 23 122
ITR 6 99 2 107
Total 342 182 156 680

Table 5.6. Predicted structural variants with reads >10kb apart or on different 
chromosomes

5.3. Validation of Structural Variants
5.3.1.Validation by PCR

To confirm that the bioinformatically-predicted structural  variants were really present in 

each cell line, I performed PCR across genomic breaks as in previous studies (Hampton et 

al., 2008; Stephens, 2009). There were a large number of structural variants so I could not 

validate all  of  them by this method because of time and cost.  Instead,  I  attempted to  

validate  a  subset  of  rearrangements,  representing  all  different  types  and  sizes  of 

rearrangement that were predicted to fuse genes either directly or by runthrough  – 103 in  

total. It was likely that some of the predicted rearrangements were germ line variants and, 

as there is no matched normal sample available for VP229 and VP267, I used a pool of 

genomic DNA from ten normal females to check for common germ line variants. Validation 

of break points by PCR is summarised in Table 5.7 and Figure 5.5. 

Attempted
Present in normal 

female pool

Present in VP229 or 
VP267 but not in 

normal female pool
Could not 
validate

DEL 25 9 15 1
DIF 42 8 27 7
INV 22 7 13 2
INS 14 6 7 1

Total 103 30 62 11

Table 5.7. Summary of PCR validation of structural variants in VP229 and VP267
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Figure 5.5. Summary of PCR validation of structural variants in VP229 and VP267

Of the 103 attempted validations, 92 gave a PCR product and 30 of these 92 were found  

in  the  pool  of  normal  female  DNA.  This  subset  of  “normal”  variants  were  probably a 

combination  of  germline  copy  number  variants  and  mismappings  of  the  BWA-aligned 

sequencing reads.  There appeared to be no bias towards any specific type or size of 

intrachromsomal rearrangement. These variants were not investigated any further in this 

thesis,  but  the reasons for their  mismapping may be useful  information that  may help 

improve future alignment strategies. Eleven structural variants could not be validated by 

PCR. A small subset of these are likely to be due to PCR failure and the remainder, again, 

due  to  mismappings  or  sequencing  errors.  Interestingly,  9/11  failed  PCRs  were  only 

predicated in a single library. This suggests spurious structural variants are generated in 

library preparation but at quite a low rate. This also suggests preparing two independent  

libraries from the same sample may be a way to cut out spurious structural variation.

Sixty-two predicted structural variants (60%) PCR-validated in VP229 or VP267 and were 

not present in the normal female pool. This figure means that the majority of predicted 

structural  variants  were  real  but  also  stresses  the  importance  of  validation  in  such 
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experiments. When a structural variant was predicted to be in both samples they were  

found in both samples but when they were predicted to be in a single sample, they were  

often in both (Table 5.8). This points to the importance of validation of apparently private 

mutations in both samples, especially when the coverage is low.

Predicted in VP 
229 and VP267

Present in 
VP229 and 

VP267
Present in 
VP229 only

Present in 
VP267 only

Total 37 35 0 0
DEL 7 7 0 0
DIF 15 14 0 0
INS 4 4 0 0
INV 11 10 0 0

Predicted in 
VP229 only

Present in 
VP229 and 

VP267
Present in 
VP229 only

Present in 
VP267 only

Total 14 4 5 0
DEL 6 2 4 0
DIF 5 1 1 0
INS 1 0 0 0
INV 2 1 0 0

Predicted in 
VP267 only

Present in 
VP229 and 

VP267
Present in 
VP229 only

Present in 
VP267 only

Total 22 12 0 6
DEL 3 1 0 1
DIF 14 8 0 3
INS 3 1 0 2
INV 2 2 0 0

Table 5.8. PCR validation of structural variants in depth. PCR validated junctions are 

only those that were absent from the normal female pool.

Approximately  30% of  structural  variants  were  found  in  pooled  normal  DNA from ten 

donors.  There  appeared  to  be  no  bias  towards  any  specific  type  or  size  of 

intrachromsomal rearrangement. Some of these rearrangements were probably germ line 

structural  variation  but  it  is  also  possible  that  some  resulted  from  misalignment  of  

sequencing  reads  due  to  SNPs  or  small  indels.  The  relative  proportions  of  germline 

variants and spurious alignments is not known.
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A second  method  of  structural  variant  was  described  previously  based  around  copy 

number changes (Stephens et al., 2009). If a structural variant is found at an unbalanced 

copy number change point by array CGH, it  is thought to be more likely to be a true  

structural variant.  Copy number plots had been generated from the millions of normally 

aligning read pairs and was shown to comparable to SNP6 array CGH in resolution (Batty, 

2010). The loess-corrected copy number data was segmented using the circular binary 

segmentation  R package  DNA copy (Venkatraman and  Olshen,  2007). This  algorithm 

outputs segments of genome with the same predicted copy number similar to PICNIC 

segmentation  discussed  in  previous  chapters.  I  compared  PCR-validated  structural 

variants from above with copy number steps (Table 5.9).

Present in VP229 or 
VP267 but not in 

normal female pool

Validated by PCR and 
within 20kb of a copy 

number step

Validated by PCR but 
not within 20kb of a 
copy number step

DEL 15 7 8
DIF 27 13 14
INV 13 9 4
INS 7 4 3

Total 62 33 29

Table 5.9. PCR-validated structural variants at copy number change points.

About half of the validated structural variants were within 20kb of a copy number change 

point. This implies that proximity to a copy number step may be a reasonable method to 

validate a subset of  structural variants.  However,  around half  of  the structural  variants 

were not associated with a copy number step and may be copy number neutral, and sub 

array CGH resolution.  In  addition,  many chromosome breaks are  known to  be  locally 

complex containing small genomic “shards” (Bignell et al., 2007). Their small size would 

also make them difficult to detect by copy number change. 

5.3. Comparing the genomes of VP229 and VP267

Although the data set is incomplete, it is still possible to make some observations about  

the genome structures of VP229 and VP267 and the implied common ancestor.  Figure 

5.6  shows  a  circular  representation  of  these  genomes  based  around  copy  number 
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-validated structural variant junctions.

Figure 5.6. Validated structural variants in VP229 and VP267.
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Figure  5.6.  Copy  number  validated  structural  variants  in  VP229  and  VP267. 
Upper  Circos  plot:  Structural  Variants  found  in  both  VP229  and  VP267,  therefore 

probably present in the common ancestor. Light blue links are insertions, purple are 

inverted  tandem  repeats,  green  are  insertions,  red  are  interchromosomal 

translocations and dark blue are deletions. Lower Circos plots are structural variants 

found only in one cell line. Grey histograms are copy number plots generated from 

loess-corrected binned sequencing reads as described above. Grey links are structural 

variants found in the common ancestor. Coloured links are structural variants found 

only in VP229 and VP267. Histogram represents the relative proportions of structural 

variants in each sample.

5.3.1. The VP-ancestoral genome was highly rearranged

Previous  studies  have  invariably  shown  that  primary  tumours  contain  fewer  structural  

variants than cell lines (Stephens et al., 2009; Varela et al., 2010; Campbell et al., 2010b) 

and  it  is  tempting  to  conclude  that  cell  lines  accumulate  large  numbers  of  structural 

variants in culture. While some chromosome aberrations probably occur in vitro it is likely 

that  the  majority  are  true  in  vivo events.  This  is  clearly  illustrated  by  the  genomic 

complexity of the common ancestor of VP229 and VP267 as it contained in excess of 150 

copy number-validated structural variants. 

5.3.1. The VP229 and VP267 genomes diverged away from the common ancestor

A smaller proportion of structural variants were found in VP267 but not in VP229 and vice 

versa (Figure 5.6).  This implies that the two cell lines had a common ancestor at some 

point  in  time  and  that  they  evolved  separately  to  the  observed  configuration.  This 

evolutionary split likely happened quite late in the evolution of the tumour as the proportion 

of private VP229 or VP267 mutations is much lower than the shared category.
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5.4. Fusion Genes in VP229 and VP267

5.4.1. Bioinformatic Prediction of genes broken and fused

I used a custom Perl script to predict genes broken or fused in VP229 and VP267. This 

script  found genes at or near to chromosome break points and predicted if  they were 

potentially fused to another gene either directly or by runthrough. The script also identified 

genes where an internal rearrangement may have resulted in alternative isoforms being 

expressed (Batty,  2010). Potentially fused genes in VP229 and VP267are listed in Table 

5.10.  A  large  number  of  run-through  fusions  were  also  predicted  which  I  did  not 

investigate.

5.4.2. Expressed fusion genes in VP229 and VP267

All  potential  fusions  were  investigated  by  RT-PCR.  I  was  assisted  by  PhD  student, 

S.Flach, and her contribution is noted in table 5.7. Three fusion genes were expressed in 

both  VP229  and  VP267:  MDS1-KCNMA1,  FAM125B-SPTLC1 and  PDLIM1-ZBBX.  On 

further fusion transcript was found in VP267 only: TRAPPC9-KCNK9. 
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Type Supp.
Node 
1 chr

Node 1 
start

Node 1 
end dir

Node 
2 chr

Node 2 
start

Node 2 
end dir Possible Fusion

VP
229

gDNA 
PCR

VP
229

gDNA 
PCR

RT-
PCR 
by

Del 2 7 1173342 1173753 + 7 1192615 1192690 -1
 ZFAND2A-
C7orf50 y y SN

Del 6 8 140704651 140704941 + 8 141348436 141348751 -1
 TRAPPC9-
KCNK9 n y SN

Del 6 9 130313996 130314354 + 9 132757339 132757510 -1  FNBP1-FAM129B y y SN
Del 8 11 5784201 5784559 + 11 5809301 5809685 -1  OR52N1-TRIM5 y y SF
Del 3 20 17506460 17506612 + 20 17598409 17598578 -1  RRBP1-BFSP1 y y SN

Del 4 X 142600166 142600247 + X 142799082 142799186 -1
 SPANXN2-
SPANXN3 y y SN

Ins 7 10 76898989 76899271 -1 10 84730469 84730979 +  NRG3-SAMD8 y y SF
Ins 2 19 11614744 11614845 -1 19 11638741 11638818 +  ZNF653-ECSIT n y SF

Ins 2 22 39425844 39425899 -1 22 39445528 39445564 +
 APOBEC3G-
APOBEC3D y y SN

Ins 22 10 78198382 78198678 -1 10 83671218 83671877 +  NRG3-C10orf11 y y SF
Diff 2 1 49783251 49783335 + 14 31139376 31139481 +  SCFD1-AGBL4 n y SF
Diff 9 3 167030872 167031047 + 10 97034481 97034738 -1  PDLIM1-ZBBX y y SF
Diff 85 3 169496733 169497135 + 10 84276976 84277214 -1  MYNN-NRG3 y y SN
Diff 9 3 171158535 171158864 + 10 97032906 97033283 -1  PDLIM1-TNIK y y SF

Diff 2 7 102818133 102818319 + 12 63957260 63957303 -
 DPY19L2-
DPY19L2P2 y y SN

Diff 7 10 76297188 76297545 + 3 178114514 178114843 -  ADK-KCNMB2 y y SF

Diff 15 10 77069722 77070093 + 17 26873584 26873946 -
 AC010997.5-
UNC119 y y SN

Diff 3 10 77393012 77393230 - 17 27124203 27124413 -
 C17orf63-
C10orf11 y y SF

Diff 3 10 77414962 77415055 + 17 27117214 27117289 +
 C10orf11-
C17orf63 y y SF

Diff 43 10 78679650 78680299 + 3 169181685 169182111 - MDS1-KCNMA1 y y SN
Diff 102 10 79656167 79656503 - 3 178107424 178107859 -  DLG5-KCNMB2 y y SF
Diff 10 10 84303032 84303414 1 12 66816857 66817212 +  NRG3-GRIP1 y y SF
Diff 7 10 125636500 125636725 + 21 31094557 31094776 -  GRIK1-CPXM2 y y SF
Diff 3 13 21750547 21750661 + 11 108585829 108586244 -  MRP63-DDX10 y y SN
Diff 23 17 35849590 35849900 - 4 782909 -783243 -  CPLX1-DUSP14 y y SN
Diff 2 19 18953632 18953670 - 8 68218123 68218163 -  ARFGEF1-UPF1 y y SF



Diff 2 20 51857762 51857845 + 22 29065501 29065807 +  TSHZ2-TTC28 n y SF
Inv 4 3 108136284 108136419 + 3 110987235 110987406 +  PVRL3-MYH15 y y SN
Inv 13 9 94647680 94648017 + 9 128534661 128534996 +  PBX3-ROR2 y y SN
Inv 11 9 94648426 94648733 - 9 127055261 127055508 -  ROR2-NEK6 y y SN

Inv 5 9 94861458 94861760 + 9 129243323 129243573 +
 FAM125B-
SPTLC1 y y SF

Inv 16 9 127073730 127074038 - 9 130287513 130287774 -  FAM129B-NEK6 y y SN

Inv 14 10 97789793 97790092 + 10 108715824 108716128 +
 AL356155.1-
SORCS1 y y SN

Inv 11 10 98803429 98803655 + 10 99294104 99294473 +  UBTD1-SLIT1 y y SN

Inv 8 10 124809773 124809955 + 10 127790628 127790985 +
 ACADSB-
ADAM12 y y SF

Inv 13 17 35326354 35326611 + 17 36222373 36222607 +
 AATF-
AC113211.2 y y SN

Table 5.10.  Predicted Fusion Genes in VP229 and VP267.  Type:  Del  =  Deletion,  Ins  =  Insertion,  Diff  =  Translocation,  Inv  = 

Inversion. Supp.=Number of read pairs that span the genomic junction; a minimum of two were required. Amplified regions typically 

had more reads crossing junctions. Dir = node direction: (+), the read cluster was in the positive orientation and (–) for the negative 

strand. All genomic DNA junctions were confirmed by PCR of VP229 and VP267 genomic DNA. None of the above junctions were  

found in the normal DNA pool. The fusion transcripts whose expression was demonstrable by RT-PCR are in bold.
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5.4.2.1. PDLIM1-ZBBX

An  inter-chromosome  rearrangement  juxtaposed  PDLIM1 and  ZBBX.  The  genomic 

junction between chromosomes 3 and 10 were found in both VP229 and VP267 (Figure 

5.7). PDLIM exon 1 is fused with ZBBX exon 16 causing an out of frame fusion transcript 

(Figure 5.9). This is unlikely to produce a homozygous loss of function for either gene as 

non-rearranged copied of PDLIM1 and ZBBX probably remain on chromosomes 3 and 10.

PDZ and  LIM domain  protein  1  (PDLIM1),  also  referred  to  as  carboxyl  terminal  LIM 

domain  protein  1  (CLIM1)  is  a  transcriptional  co-regulator  that  can  bind  to  the  LIM 

domains  of  nuclear  LIM  proteins  including  LIM-homeodomain  (LIM-HD)  transcription 

factors. PDLIM1 is an ERα cofactor and it is likely that it plays a role in the regulation of 

ERα target  genes in  breast  cancer  cells  and primary tumours (Johnsen et  al.,  2009).  

Nothing is known of zinc finger, B-box domain containing (ZBBX).
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Figure 5.7. PDIM1-ZBBX genomic junction. i) VP229 loci of chromosomes 3 and 10. 

Scatter  plots  are  loess-corrected copy number  data,  equivalent  to  array CGH.  The 

purple line is an inter chromosome junction. ii) Equivalent plot from VP267. iii) PCR 

validation of the genomic junction. iv) schematic representation of the genomic junction 

and sequence across it.
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Figure  5.8.  RT-PCR of  the  PDLIM1-ZBBX fusion  transcript.  i)  The  PDLIM1 and 

ZBBX genomic loci; dotted lines indicate chromosome break points. ii) RT-PCR of the 

fusion transcript. iii) Schematic of the fusion transcript exons are named according to 

PDLIM1-001  (ENST00000329399)  and  ZBBX-001  (ENST00000392766).iv)  cDNA 

sequence across the fusion junction is predicted to cause a frame-shift  in the ZBBX 

portion of the transcript.
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5.4.2.2. FAM125B-SPTLC1

An intra-chromosome rearrangement, nominally an inversion, caused fusion of FAM125B 

and SPTLC1 (Figure 5.9). RT-PCR showed that FAM125B exon 6 was fused with SPTLC1 

exon  4.  (Figure  5.10) Only  one  copy  of  each  locus  remains  according  to  PICNIC 

segmentation of SNP6 VP229 array CGH, so it is possible one or both of these genes are 

lost by a two-hit mechanism.

Family with sequence similarity 125, member B (FAM125B) is a component of the ESCRT-

I complex (endosomal sorting complex required for transport I), a regulator of vesicular  

trafficking process (Tsunematsu et al., 2010). Serine palmitoyltransferase, long chain base 

subunit 1 (SPTLC1) is part of the serine palmitoyltransferase complex, the initial enzyme 

in sphingolipid biosynthesis (Weiss and Stoffel, 1997).  Sphingolipids are a component of 

cell membranes and are involved in a large number of cellular processes including mitosis,  

apoptosis, migration, stemness of cancer stem cells and cellular resistance to therapies 

so may have relevance to cancer (Patwardhan and Liu, 2010). 
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Figure 5.9.  FAM125B-SPTLC1 genomic junction. i) VP229 loci of chromosomes 9. 

Scatter  plots  are  loess-corrected copy number  data,  equivalent  to  array CGH.  The 

purple line is an intra-chromosome junction, classed as an inversion. ii) Equivalent plot 

from VP267. iii) PCR validation of the genomic junction. iv) schematic representation of 

the genomic junction and sequence across it.
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Figure 5.10.  RT-PCR of the  FAM125B-SPTLC1 fusion transcript.  i)  The  FAM125B 

and SPTLC1 genomic loci; dotted lines indicate chromosome break points. ii) RT-PCR 

of  the  fusion  transcript.  iii)  Schematic  of  the  fusion  transcript  exons  are  named 

according  to  FAM125B-001 (ENST00000361171)  and  SPTLC1-001 

(ENST00000262554).  iv)  cDNA sequence  across  the  fusion  junction  is  predicted  to 

cause a frame-shift in the SPTLC1 portion of the transcript 
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5.4.2.3. MDS1-KCNMA1

An inter-chromosome junction fused MDS1 to KCNMA1 (Figure 5.11). The fusion junction 

is likely to be within the complex co-amplification of chromosomes 3 and 10. The fusion 

transcript is predicted to be in frame (Figure 5.12).

Figure 5.11. MDS1-KCNMA1 genomic junction. i) VP229 loci of chromosomes 3 and 
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10. Scatter plots are loess-corrected copy number data, equivalent to array CGH. The 

purple line is an inter-chromosome junction. ii)  Equivalent plot from VP267. iii) PCR 

validation of the genomic junction. iv) schematic representation of the genomic junction 

and sequence across it.

Figure 5.12.  RT-PCR of  the  MDS1-KCNMA1 fusion transcript.  i)  The  MDS1 and 
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KCNMA1 genomic loci; dotted lines indicate chromosome break points.  ii) RT-PCR of 

the fusion transcript. iii) Schematic of the fusion transcript exons are named according 

to  MECOM-005  (ENST00000486748)  and  KCNMA1-005  (ENST00000372408)  .iv) 

cDNA sequence across the fusion junction is predicted to cause an in-frame gene fusion

The MDS1 (Myelodysplasia syndrome-associated protein 1) locus is known to take part in 

translocations.  The  human  MDS1 gene  was  first  identified  as  a  component  of  the 

AML1(RUNX1)-MDS1-EVI1 fusion  transcript  formed  through  a  t(3;21)  translocation  in 

some spontaneous myeloid leukaemias (Fears et al., 1996). MDS1 is 3 kb telomeric to the 

first exon of EVI1, another known target of translocations in leukaemia. Transcription of the 

MDS1-EVI1 (MECOM) locus is complex. Transcripts can contain only  EVI1 exons, only 

MDS1 exons, or fusion transcript containing the first two exons of MDS1 (as in the MDS1-

KCNMA1 fusion) and exon 2 onwards of  EVI1 (Métais and Dunbar, 2008). Although the 

fusion transcript is expressed in both normal and leukaemic tissues (Fears et al., 1996) 

there is some evidence to suggest that MDS1 drives increased expression of EVI1 in AML 

and that  these patients  have  a  poorer  prognosis  (Barjesteh van Waalwijk  van Doorn-

Khosrovani et al., 2003). 

KCNMA1 is the pore forming  α-subunit of the large-conductance calcium- and voltage-

activated  potassium  channel,  BKCa.  (also  called  hSlo  form  Drosophila “slowpoke” 

homologue and Maxi-K).  BKCa  channels  consist of a pore-forming alpha subunit and a 

regulatory  beta  subunit  (KCNMB1-4)  which  confer  the  channel  with  a  higher  calcium 

sensitivity.  The  intracellular  C-terminal  region  of  KCNMA1 consists of  a  pair  of  RCK 

domains  each  of  which  contains  two  primary  binding  sites  for  Ca2+,  termed  'calcium 

bowls.'  Interestingly,  functionally  important  mutations  cluster  near  the  calcium  bowls 

suggesting that this region plays a role in modulating the channel's sensitivity to calcium 

(Yuan et al., 2010).

Sequencing of the full length MDS1-KCNMA1 fusion transcript confirmed that MDS1 exon 

2 was fused to KCNMA1 exon 24. Almost nothing is known about the MDS1 protein except 

that the additional amino acids in the MDS1-EVI1 fusion protein encodes a so-called "PR" 

domain (PRD1-BF1/BLIMPI-RIZ homology), which defines a sub-class of zinc finger genes 
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(Métais and Dunbar,  2008).  For the  KCNMA1 portion of the transcript, most of  the N-

terminal domains,  including the pore domain, is excluded from the fusion transcript and 

only  the  C-terminal  intra-cellular  domains  are  retained.  This  region  encodes  two 

intracellular  RCK domains  and  a  “calcium bowl”  which  can  bind  calcium ions.  These 

domains are thought to play a role in the calcium-sensitive opening of the channel (Pico, 

2003; Yuan et al., 2010).

5.4.2.4. TRAPPC9-KCNK9

A small  intra-chromosomal  deletion fused  TRAPPC9  and  KCNK9 in  VP267 but  not  in 

VP229 (Figure 5.13). As a result, we cannot be certain if this was an in vivo event. Exon 9 

of TRAPPC9 is fused with exon 2 of KCNK9. The fusion is predicted to be in frame (Figure 

5.14).

TRAPPC9 (trafficking protein particle complex 9, also known as NIBP). Not much is known 

about  this  protein  except  that  it  is  implicated in  NF-kappaB activation and possibly in 

intracellular  protein  trafficking  (Mochida  et  al.,  2009). Potassium channel  subfamily  K 

member 9 is a protein that in humans is encoded by the KCNK9 gene and is also referred 

to as TASK3 ((TWIK)-related acid-sensitive-3). It is one of the members of the superfamily 

of potassium channel proteins that contain two pore-forming P domains. The predicted 

fusion protein comprises of several low-complexity regions from the TRAPPC9 portion of 

the fusion and the transmembrane potassium pumping domains of KCNK9.

Two pore potassium channels are regulated by mechanisms including oxygen tension, pH, 

mechanical stretch, and G-protein signalling. Some studies indicated that over-expression 

of  KCNK9 may contribute to the development of cancers such as colorectal (Kim et al., 

2004). Overexpression of  KCNK9 in cell lines can confer resistance to hypoxia and may 

promote tumour formation in nude mice (Mu et al., 2003). 

The 8q24 region in which  KCNK9 resides is amplified in a number of cancers, probably 

due  to  MYC so  its  amplification  in  some  cancers  may  well  be  a  passenger  event 

secondary  to  MYC amplification.  Bearing  this  in  mind,  Mu  et  al.  (2003)  showed  that 

“KCNK9 is the sole over-expressed gene within the amplification epicentre.” The KCNK9 
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gene is amplified and over-expressed in approximately 10% breast tumours.  It is possible 

that over expression of the pumping domain occurs due to the gene fusion and this is  

discussed further in the next chapter.

Figure 5.13.  TRAPPC9-KCNK9 genomic junction. i) VP229 chromosome 8. Scatter 

plots are loess-corrected copy number data, equivalent to array CGH. ii) Equivalent plot 

from VP267. The purple line is an intra-chromosome junction, called as a deletion. The 

plot shows a clear copy number step at one of the junctions that is absent from VP229. 
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iii)  PCR  showed  the  genomic  junction  was  found  in  VP267  only.  iv)  schematic 

representation of the genomic junction and sequence across it.

Figure 5.14. RT-PCR of the TRAPPC9-KCNK9 fusion transcript. i) The TRAPPC9 and KCNK9 

genomic loci; dotted lines indicate chromosome break points. ii) RT-PCR of the fusion transcript. iii) 

Schematic  of  the  fusion  transcript  exons  are  named  according  to  TRAPPC9-001 

(ENST00000389328) and KCNK9-201 (ENST00000303015). iv) cDNA sequence across the fusion 

junction is predicted to cause an in-frame gene fusion. This is sequence from the starred band.
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5.5. Discussion Part I

5.5.1.  How complete are contemporary massively parallel  paired end sequencing 
studies?

Mathematical models of paired end sequencing studies predict that a high proportion of 

rearrangements are sampled in each experiment. But currently, there is has been little 

experimental  investigation  to  support  theoretical  estimates.  In  2009,  Stephens  et  al. 

carried  out  a  survey  of  24  breast  cancer  genomes  by  massively  parallel  paired  end 

sequencing. I compared the structural variant data from this study with the chromosome 

aberrations predicted from array CGH data.

Copy number steps from array CGH (Bignell et al., 2010) represent most types of genomic 

aberration occurring such as tandem duplication, deletion, amplification and unbalanced 

translocation. Although the resolution is limited and balanced rearrangements cannot be 

detected, these data provide a reasonable method to assess the accuracy of massively 

parallel sequencing experiments as unbalanced rearrangements, evident as segmented 

copy number steps, must be joined to something else in the genome – most likely another  

unbalanced copy number step.

I took all PICNIC-segmented copy number steps from the HCC breast cancer cell lines 

(Gazdar et al., 1998) and VP229 and asked whether there was any associated structural 

variant (Stephens et al., 2009) within 20kb 5' or 3' of the breakpoint region (Table 5.11).
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Cell Line

Estimated 
Genome 
Size (Gb)

Physical 
coverage 
(haploid 

genomes)
Corrected 
Coverage

Copy 
Number 
Steps

Number of 
Copy number 
steps with an 
associated SV

Percentage 
Sampled

HCC1143 10.04 7.6 2.28 353 71 20.11
HCC1187 7.81 11 4.23 157 61 38.85
HCC1395 7.97 6.4 2.41 345 65 18.84
HCC1599 8.79 4.9 1.67 357 20 5.6
HCC1954 12.95 6.7 1.55 448 91 20.31
HCC2157 7.97 4.4 1.66 256 46 17.97
HCC2218 11.71 5.9 1.51 114 30 26.32

HCC38 10.04 9.1 2.72 395 139 35.19
VP229 8.2 6.9 2.52 452 65 14.38

Table 5.11. Physical coverage versus sequence sampling: Data for HCC cell lines 

is  from Stephens et  al.  (2009).  PICNIC copy number steps are from Bignell  et  al. 

(2010).  VP229 data  SNP6  data  was  provided  by  Dr  SL Cooke  (Cambridge  CRI). 

Genome  size  was  estimated  from  PICNIC  total  copy  number  and  a  “corrected 

coverage”  value  calculated  e.g.  The  HCC1187  genome  is  estimated  to  be  7.81 

gigabases. Given 11 fold coverage of a nominal haploid genome, this translates to 

4.23-fold coverage of HCC1187's near triploid genome.

There  did  seem to  be a  correlation  between physical  coverage and the  proportion  of 

rearrangements sampled (Figure 5.15).  However, these figures are much lower than the 

Poisson distribution would predict  (90 percent  of  rearrangements for  HCC1187 versus 

39% seen here) and the reasons why are not entirely clear. A likely factor, however, is the  

high proportion of repeat elements in the human genome. Currently, each sequence read 

must map uniquely to be considered in these experiments and those mapping to repeat 

elements are discarded. It is possible that a translocation break flanked by repeats would 

not be found by current sequencing methodologies and is discussed further in Chapter 7.

Stephens et al. (2009) did attempt to address this issue by producing a sequencing library 

with  3kb  fragments  for  HCC1187.  These  'mate  pairs'  were  expected  to  traverse  the 

majority  of  human  repeat  elements.  The  authors  stated  that  “[a]lthough  additional 

rearrangements were detected, a distinct class of repeat-mediated rearrangement was not 

found.” (Stephens et al. 2009. p1008).
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Figure 5.15 Physical coverage versus the proportion of unbalanced 
rearrangements detected by array CGH.

It is unlikely that increasing the sequence coverage will solve this problem. Pleasance et 

al. (2009) generated 39-fold sequence coverage for the NCI-H209 cell line. This translates 

to approximately  410-fold physical coverage of the haploid genome, but it appears that 

only 32 percent of the unbalanced breaks by CGH were sampled.  At this stage, we can 

only  regard  genome  analysis  by  paired  end  sequencing  as  an  incomplete  survey  of 

genome rearrangements (Pleasance et al., 2010). 
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5.5.2. Complexity at Chromosome Breaks

In HCC1187, about half of the predicted fusion genes were expressed but in VP229 and 

VP267 this was not the case. A possible explanation for this inconsistency is that many 

chromosome breaks in VP229 and VP267 were within complex amplicons. The genomic 

junctions  of  amplicons  often  contain  'genomic  shards'  -  pieces  of  DNA,  often  from 

unrelated genomic regions,  that range from tens of bases to tens of kilobases in size 

(Bignell et al., 2007) The presence of one or more genomic shards at a junction makes its 

interpretation much more difficult.  The t(11;16) translocation from HCC1187 contains a 

genomic  shard  and is  shown below to  illustrate  this  difficulty  in  assembling  structural 

variant data from such regions (Figure 5.16). 

In this example, sequencing across genomic break points showed a 1.4kb shard at the 

junction between the t(11;16) translocation (Chapter 3, chromosome S). In addition, the 

reciprocal product, (chromosome R) is slightly unbalanced with respect to chromosome 

16. Array painting and FISH showed that assembly 1) was probably true and this lead to 

prediction and RT-PCR verification of the CTCF-SCUBE2 fusion transcript.

In paired-end sequencing experiments the only source of information is structural variant 

genomic junctions. If we consider each structural variant in isolation, we cannot predict the 

CTCF-SCUBE2 fusion gene (Table 5.12).
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Figure 5.16 Possible Assemblies of the HCC1187 t(11;16) translocation from paired-end 
sequence data.  i)  Paired-end sequence data.  Purple  rectangle  is  chromosome 11,  pink 

rectangle is chromosome 16. Curved lines are structural variants from Stephens et al. (2009) 

according to HG18 named A,B. The dotted line is a simulated read as this junction was not  

detected by Stephens et al. and is named junction C ii) There are four ways to assemble 

these reads. For example, solution 1) Junction C forms a der(11)t(11;16), Junctions A and B 

form a near reciprocal product, a der(11)t(16,11), with a small genomic shard at the 11;16 

junction.
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Node1 Node2

Junction Chr Position Dir Gene Chr Position Dir Gene

A 11 9108545 + SCUBE2 11 10519531 + None
B 11 10520918 + None 16 66198168 + CTCF
C 11 10438664 - None 16 66143420 - None

Table 5.12. Genomic Junctions for the HCC1187 t(11;16) translocation.  

We have  to  assemble  the  reads  into  a  local  genome structure  to  predict  the  CTCF-

SCUBE2 fusion.  But  if  the  only  source  of  information  is  structural  variant  genomic 

junctions, there are four equally plausible ways to assemble the genomic region and only 

assemblies 1) and 4) point to the existence of the CTCF-SCUBE2. 

One could argue that the close proximity of junctions A and B indicate the presence of a  

shard and this would make assembles 1) and 4) equally plausible. It is likely that in this  

example the shard could be jumped by a large insert mate-pair sequencing strategy, but  

as shards of up to 30kb have been reported (Bignell et al., 2007), mate pair strategies will 

not be able to solve all examples.

5.5.3. How complete was the analysis of VP229 and VP267?

Given the above data on physical genome coverage and break point complexity, it is clear  

that  this  analysis  is  only  preliminary  and  structural  variant  junctions  that  contained 

genomic shards were probably frequent in VP229 and VP267. The above example only 

contained three genomic junctions, but as multiple shards can be observed at a single  

junction, other examples are likely to be much more complex. It is also likely that some 

genomic junctions were not sampled in these experiments making the data incomplete. No 

attempt was made to assemble complex junctions in VP229 and VP267. It is therefore  

likely that many more fusion genes remain to be found in these genomes. 
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5.6. Discussion Part II

5.6.1. Did VP229 and VP267 really evolve from a common ancestor?

As cell line cross contamination is a problem in the field (Chatterjee, 2007) it is reasonable 

to ask if VP229 and VP267 really were derived from the same patient at different stages of  

disease  (McCallum and Lowther, 1996)  and were not, for example, cross contaminants. 

There are two lines of evidence to support the fact that VP267 was not derived directly  

from VP229 or vice versa.

Firstly,  VP229, is sensitive to Tamoxifen and Fulvestrant but VP267 cells are resistant to 

both drugs (Ghayad et al.,  2009). This fits the story of patient relapse after Tamoxifen 

treatment (McCallum and Lowther, 1996). An alternative explanation is that VP229 was re-

sensitised to the drugs in culture or VP267 evolved drug resistance in culture. Secondly, 

the private structural variants in each cell line imply that they evolved separately from a 

common ancestor.  Perhaps the different structural variant profiles could be explained by 

loss of rearranged regions or ongoing rearrangement in culture. It  would, however,  be 

surprising if so many rearrangements accumulated in culture, given what we know about  

the relatively slow rate of in vitro evolution of other cell lines (Roschke et al., 2002, 2003; 

Cooke et al., 2010). 

An analagous in vivo experiment has recently been reported: Campbell et al., (2010) used 

massively parallel paired end sequencing to compare genome rearrangement profiles in 

pancreatic cancer metastases. The authors demonstrated two classes of rearrangement: 

those found in all metastatic lesions reflecting rearrangements in the common ancestor 

and those “private” to each metastatic lesion. Although frequencies varied over their ten 

sample sets, an average of approximately 75 percent of structural variants were found in 

all  the  metastases  from  a  single  patient  (Campbell  et  al.,  2010a). This  proportion  is 

strikingly similar to the number of rearrangements observed in VP229 and VP267 relative 

to the implied common ancestor.
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5.6.2. The fusion genes in VP229 and VP267

There were at least three predicted fusion transcripts in VP229 and VP267 – these were 

probably present in the common ancestor of the two cell lines. VP267 had one additional  

fusion transcript, TRAPPC9-KCNK9, which may also have formed in vitro. Both of the out 

of frame fusion transcripts are likely to be passenger events, as non-rearranged genomic 

regions and normal transcripts are present in the cell lines. The in frame fusion of MDS1 to 

KCNMA1 may, however, produce a functional protein and was probably formed at a time 

before the relapse-capable clone had evolved within the primary tumour.  Given that a  

proportion of earlier fusion transcripts in HCC1187 may be selected events it is, therefore 

plausible that the MDS1-KCNMA1 gene fusion was a driving event.

Potassium channels couple intracellular chemical signalling to electric signalling and stand 

at  the  crossroads  of  several  tumour-associated  processes  such  as  cell  proliferation, 

survival,  secretion  and  migration  (Kunzelmann,  2005). There  is  evidence  that  cell 

membrane potential  is  depolarised  in  early  G1  phase  and  that  hyperpolarization 

accompanies  progression  to  S  phase.  The  likely  physiological  mechanism  for 

hyperpolarization  is  the  opening  of  a  number  of  K+ channels  (including  KCNMA1). 

Blockade of channel activity leads to membrane depolarization and an arrest in early G1 

and several studies have indicated membrane hyperpolarization is essential for transition 

from G0/G1 and G1/S  (Ouadid-Ahidouch et al.,  2004; Ouadid-Ahidouch and Ahidouch, 

2008)

In cancer, the general opinion seems to be that increased expression of voltage-sensitive 

ion channels is associated with increasing levels of malignancy but  there is currently no 

clear  understanding  of  why this  may be  (Kunzelmann,  2005;  Fiske  et  al.,  2006).  For 

example, In glioma cell lines, up-regulation and constitutive activation of the KCNMA1 are 

correlated  with  increased  malignancy  (Liu  et  al.,  2002).  Similarly,  in  prostate  cancer, 

amplification of 10q22 causes over-expression of KCNMA1 and may lead to increased cell 

proliferation (Bloch et al., 2007). In osteosarcoma, however,  KCNMA1 is down-regulated 

and may have a tumour-suppressive function in this cancer type (Cambien et al., 2008).
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The only evidence of  KCNMA1 involvement in  breast  cancer is  that  channels are up-

regulated in MDA-MB-361 breast cancer cells supposedly derived from a brain metastases 

(Khaitan et al., 2009). A second, possibly relevant, finding was that 17-beta-estradiol binds 

the regulatory subunit of the channel allowing for activation of channel activity in smooth 

muscle (Valverde et al., 1999). It is tempting to wonder if an oestrogen-independent late-

stage breast cancer somehow needs to circumvent this mechanism. 
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6.1. Introduction 

The  structure  of  breast  cancer  genomes  can  be  complex  even  among  the  epithelial 

cancers  (Heim  and  Mitelman,  2009). Although  some  of  cytogenetically  classifiable 

chromosome aberrations are clearly non-random, for example loss of 17p (TP53) (Baker 

et al., 1989, 1990), loss of 8p (likely to be driven by loss of NRG1) (Adélaïde et al., 2003; 

Huang et al., 2004; Chua et al., 2009) and amplification of ERBB2 (Slamon et al., 1989), 

we know little about the large remainder of cytogenetically unclassifiable aberrations.  In 

the  previous  chapters,  I  have  described  several  fusion  transcripts.  In  this  section,  I 

attempted to establish if any of the fused genes were disrupted recurrently in a panel of 

breast cancer cell lines. 

6.2. Finding broken genes by array CGH

Genes at unbalanced chromosome breaks in SNP6 array CGH can often be identified. For 

example, the average breakpoint region for 41 breast cancer cell lines could be predicted 

to  within  approximately  3kb  (Bignell  et  al.,  2010).  As  shown  in  Chapter  3,  the 

computationally -predicted breakpoints nearly always coincide exactly with, or are only a  

few kilobases away, from the true, experimentally proven, breaks. 

Recently, Bignell et al. (2010) released SNP6 array CGH data for  755 cancer cell lines, 

including 41 from breast cancer. This provided me with a large data set in which to look for  

recurrently broken genes. I  first extracted the break point regions using a custom Perl  

script.  The  data  was  in  list  form  with  each  SNP and  copy number  probe  having  an 

associated  PICNIC-segmented  copy  number  (Bignell  et  al.,  2010).  The  script  found 

change points in PICNIC-segmented copy number and output the breakpoint regions and 

their “polarity” (Appendix 2.1). Breakpoints at copy number gains p-terminal to q-terminal 

were scored as positive. Negative breaks were at copy number losses p-terminal to q-

terminal (Figure 6.1).

I  next  established  whether  any  of  the  break  point  regions  coincided  with  genes.  
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Breakpoints  outside  of  genes  can  also  disrupt  gene  function,  for  example  by forming 

runthrough gene fusions. In a runthrough fusion, a broken gene splices into the second (or 

a subsequent) exon of an unbroken gene near to the translocation breakpoint as is the 

case for TAXBP1-AHCY (Howarth et al., 2008).  Because of this, I also included the region 

upstream of the gene.

 

A list of gene boundaries and gene “windows” was assembled from the Refseq database 

by Dr. P.A. Edwards. Gene windows extended up to 200kb before a gene or until another  

gene on the  same strand was  reached.  Breaks within  this  window potentially  caused 

runthrough fusion with another gene. The lists of breakpoint regions and gene windows 

became the input for a second Perl  script that matched breakpoints with CCDS genes 

where the breakpoint region was found entirely within the gene or gene window (Appendix 

2.3).1

Array CGH only identifies unbalanced chromosome break points and balanced reciprocal 

translocations or inversions would be missed by this approach. However, it is worth noting 

that  rearrangements  historically  considered  as  balanced  often  lose  material  at 

chromosome break points,  making them visible by array CGH. For example the genic 

breakpoints associated with  BCR-ABL fusion often show copy number changes (Figure 

6.3) (Sinclair et al., 2000; De Gregori et al., 2007). In addition, as breast cancers often gain 

or lose whole chromosomes, an initially balanced rearrangement can become visible by 

array CGH if one of the chromosomes bearing the reciprocal rearrangement is gained or  

lost (Howarth et al., 2008).

1 A more efficient SQL-based system is currently under development in the Edwards laboratory
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Figure 6.1. Identifying break point regions from PICNIC-segmented SNP6 array 
CGH data. Figure shows a region of chromosome 14 from the HCC1187 cell line. The 

data points on the scatter plot are individual probes from the SNP6 array. Copy number 

segments, defined by PICNIC are the black horizontal lines. Blue lines are 'negative' 

breakpoint regions as the copy number decreases p-terminal to q-terminal, red lines 

are positive breaks. The break point regions were defined by the SNP probes flanking 

the copy number change points.
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Figure 6.2. Breaks in the  ABL1 gene.  Individual  samples are listed on the right. 

Several haematological cancer cell lines show positive breaks in the large first intron of 

ABL1 (break point regions are blotted as red bars). This corresponds to the 3' portion 

of ABL1 being retained in a possible fusion transcript. Two lung lines also have positive 

breaks in  ABL1.  Several other lines including haematological, lung, cervix and skin 

have negative breaks in ABL1 (blue bars). For these the 5' end of the gene would be 

retained in a possible fusion transcript.

6.3. Recurrent breaks by array CGH

I used the above methods to look for recurrent breakage in genes found fused in HCC1187 

and VP229/VP267 (Table 6.1). In this search for recurrence, I also considered data from 

massively parallel paired end sequencing from Stephens et al. (2009) and unpublished 

data from other lab members EM. Batty, JC. Pole and I. Schulte on cell lines MDA-MB-134 

and ZR-75-30.
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Gene

Total breaks 
in all cell 

lines

Total breaks 
in 41 breast 
cancer cell 

lines

Breast cancer 
breaks 

retaining 3' end
Breast cancer breaks 

retaining 5' end

PUM1 7 3 0 3
TRERF1 10 2 1 1
ROD1 3 2 2 0

SUSD1 5 2 0 2
RHOJ 12 1 0 1

SYNE2 11 2 2 1
CTCF 3 1 0 1

SCUBE2 3 1 1 0
CTAGE5 4 1 0 1

SIP1 1 1 0 0
AGPAT5 3 1 0 0
MCPH1 11 1 1 0
SGK1 3 1 0 1

SLC2A12 4 2 1 1
PLXND1 4 1 0 1
TMCC1 123 2 1 1
RGS22 7 1 0 0
SYCP1 5 2 1 2

KCNMA1 30 2 2 0
MECOM 37 6 2 4
FAM125B 7 2 1 1
SPTLC1 3 1 0 0
PDLIM1 1 1 0 1
ZBBX 6 1 1 0

KCNK9 14 2 1 1
TRAPPC9 36 2 0 2
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Table 6.1 Breaks in HCC1187 and VP229/VP267 expressed fusion genes by array-

CGH. The breaks in HCC1187 and VP229 are included in these figures but not VP267 

as SNP6 data was not available.

6.3.1. Breaks in PUM1 in breast cancer cell lines

Two cell  lines in addition to HCC1187 have breaks in  PUM1:  EVSA-T and UACC-812 

(Figure 6.3).To investigate a possible gene-fusion in UACC-812, I attempted to amplify the 

putative 3' fusion partner by RACE. However, this approach only detected the normal copy 

of the PUM1 transcript (not shown). The EVSA-T cell line was not available.
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Figure 6.3. Array CGH breaks in PUM1. Array CGH copy number is shown as in the 

above colour scale as. The HCC1187 chromosome break is visible at the top. 

6.3.2. Breaks in TRAPPC9 and KCNK9 in breast cancer cell lines

There are several breaks in the  TRAPPC9 and  KCNK9 regions. AU565, COLO824 and 

MDA-MB-157 appear to have deletions within the TRAPPC9 gene. These features are of 

unknown significance. AU565, MDA-MB-175 and ZR-75-30 all have breaks just up stream 

of the start of KCNK9. These breaks are in the correct configuration to cause runthrough 

fusion (Figure 6.4).

Figure 6.4. Array CGH breaks in TRAPPC9 and KCNK9 regions.

KCNK9 is over expressed in breast cancers due to amplification of the genomic locus (Mu 

et al., 2003). Since the KCNK9 region is not amplified in VP229 or VP267, I investigated 
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whether the fusion transcript caused over-expression of the transmembrane domains of 

KCNK9 in VP267. Quantitative PCR on cDNA showed a 25-fold increase in the 3' portion 

of KCNK9 transcript relative to VP229 (Figure 6.5). The over-expression was probably due 

to the gene fusion as my control primer pair spanned the genomic break point. 

Figure 6.5.  Expression levels of  KCNK9 in  breast  cancer  cell  lines. i)  KCNK9 

genomic locus. VP267 breakpoint is shown. ii) Quantitative RT-PCR for exons 1 and 2 

and exon 2 only of  KCNK9. Y-axis shows expression as a proportion housekeeping 

gene, GAPDH, and scaled to HB4a. 
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6.3.3. Breaks in MDS1 (MECOM) in breast cancer cell lines

There were several breaks in the MECOM locus by array CGH, three of which potentially 

retained the 5' end of the transcript as in the VP229 and VP267 fusion with  KCNMA1. 

These breaks were in HCC1395, AU565 and T47D (Figure 6.6).

Figure 6.6. Array CGH breaks in MDS1 (MECOM). Array CGH copy number is shown 

as in the above colour scale as in figure 6.3.

I confirmed these breaks by FISH using two probes, one 5' and one 3' of the  MECOM 

locus (Figure  6.7).  The AU565 cell  line  was  not  available  and I  instead used SKBr3, 

another cell line derived from the same patient (Bacus et al., 1990). Just as in VP229 and 

VP267,  a  common  rearrangement  in  two  cell  lines  from  the  same  patient  probably 

indicates an in vivo event. FISH confirmed that the MECOM locus was broken in HCC1395 
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and SKBr3. In T47D, there were no split signals. It is likely the array CGH segmentation  

was slightly inaccurate and the true breakpoint was just proximal to the gene.

Figure 6.7. FISH to confirm MDS1 breaks. The 5' end of the gene is in green (BAC 

RP11-659A23 HG18chr3:170655616-170810166) and the 3' end of the gene is in red 

(RP11-141C22 HG18chr3:170367524-170542975). Both probes localise to the q-arm 

of an A group chromosome, likely to be chromosome 3. Unpaired green signals are 

visible in HCC1395, probably as part of an isochromosome.

In the Stephens et al. (2009) paired end sequencing data there was a predicted fusion of 

MDS1 in HCC1395 from an inter-chromosome translocation: chr3:168981393 joined to 

chr6:84925947 (HG18), predicted to fuse the 5' of MDS1 into 3' of KIAA1009. I could not 
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show expression of the fusion transcript by RT-PCR. It is possible that this fusion gene is  

not expressed in HCC1395 or that the paired end sequence data was incomplete. For 

example, there could be an undefined genomic shard at the translocation junction.

6.3.4. An Internal Rearrangement of KCNMA1 in BT20

Only one other cell line, besides VP229 and VP267 showed breaks in KCNMA1. This was 

BT20 which had an internal deletion of  KCNMA1. The breaks could be interpreted as a 

small interstitial deletion and, if this was the case, an aberrant transcript may result from 

the locus bearing the deletion. I investigated this possibility by RT-PCR and found a short 

isoform: KCNMA1 exon 3 spliced into exon 23. This new isoform was predicted to be out 

of frame so not likely to produce a functional protein. A full-length KCNMA1 transcript was 

also found in BT20, so there was not a homozygous loss of KCNMA1 (Figure 6.8). 
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Figure 6.8. Internal deletion of KCNMA1 in the BT20 cell line. i) PICNIC-segmented 

SNP6 array CGH. Blue line is  the total  copy number,  red line  is  minor  allele  copy 

number. A small deletion is present at the  KCNMA1 locus. Dotted lines indicate the 

extent of the deletion. ii) RT-PCR shows a short isoform of KCNMA1, not present in 

normal breast (HB4a cell line). iii) Sequence across the cDNA junction shows fusion of 

KCNMA1 exon  3  with  KCNMA1 exon  23.  iv)  The  protein  encoded  by  the  fusion 

transcript is predicted to be an out of frame. Exons are named as for  KCNMA1-001 

(ENST00000286627)
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6.4. Discussion

6.4.1. Methods of analysis

My search for recurrently broken and fused genes was centred around unbalanced break 

points  in  array CGH data.  The obvious drawbacks of  this approach are that  it  cannot 

detect balanced rearrangements or rearrangements below approximately 50kb in size.  An 

alternative approach is to search for breaks in primary tumours by tissue microarray FISH. 

I anticipated some difficulty using this method, as several of my gene-fusions were formed 

though small  tandem duplications  and deletions  which  are  difficult  to  identify  by such 

methods. As the Bignell et al. (2010) array CGH data provided a reasonably large set of  

samples and all of the gene fusions I described were at unbalanced break points, I thought 

this was a reasonable way to look for other breaks in these genes. 

6.4.2. Recurrent breaks in breast cancer cell lines

I  looked in a panel of breast cancer cell  lines for recurrent breakage of the expressed 

fusion genes from HCC1187 and VP229/VP267.  Most  of  these fusion genes were not  

recurrently broken across many sample but four genes,  PUM1,  KCNMA1,  KCNK9 and 

MDS1 were broken in other cell lines. It is therefore possible that these genes are fused, 

probably with partners other than those described here, in other cell lines.
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7.1. The Structure of Breast Cancer Genomes

The  first  aim  of  this  thesis  was  to  define  structural  rearrangements  in  breast  cancer 

genomes. I placed an emphasis on finding fusion genes because of their potential clinical  

utility. I used a combination of molecular cytogenetics and massively parallel paired end 

sequencing  data  to  achieve  this.  For  HCC1187,  the  combination  of  approaches  has 

produced probably one of the most detailed maps of a breast cancer genome to date. 

The genome surveys of HCC1187, VP229 and VP267 add to the emerging picture that 

hundreds  of  different  genes  may  be  disrupted  by  chromosome  aberrations  in  breast 

cancer (Hampton et al., 2008; Stephens et al., 2009). Secondly, the average breast cancer 

expresses several fusion genes. For example, nine in HCC1187, three in VP229, four in 

VP267,  five  in  MCF7  (Hampton  et  al.  2008)  and  seven  in  ZR-75-30  (Dr  I.Schulte, 

unpublished).

It  is  difficult  to  tell  which fusion genes are functional  in  breast  tumours as we do not 

currently know which breast cancer fusion genes are recurrent. Out of frame gene fusions 

may cause loss of function of either or both genes involved. In frame fusions may be truly 

oncogeneic  gains  of  functions  or  could  act  through  dominant-negative  mechanisms 

(Hampton et al.  2008).  However,  the evolutionary model  in chapter four argues that  a 

subset of gene fusions have to be formed at a certain time so were likely to be selected 

events.

7.1.1. Cell lines as models of breast cancer

As breast cancer cell lines are extensively used as models, the applicability of findings to  

primary breast tumours are often questioned.  This is understandable as many cell lines 

have survived in  culture for  decades and often derived from advanced stage tumours 

(Vargo-Gogola and Rosen, 2007). There is, however, good evidence that breast cancer 

cell lines, broadly speaking, recapitulate the genomic features of primary tumours. 
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Neve  et  al.  (2006)  compared  early  and  late  passage  breast  cancer  cell  lines  and 

concluded  they  had  not  accumulated  substantial  new  aberrations  during  culture.  The 

authors went on to showed that, broadly speaking, a panel of 51 breast cancer cell lines 

showed genomic  rearrangements  (using  1Mb CGH arrays)  and  transcriptional  profiles 

similar  to  those  found  in  a  panel  of  breast  tumours.  The  cell  lines  also  displayed 

considerable  inter-line  heterogeneity as observed in  primary tumours. Inevitably,  some 

differences were observed between cell lines and primary tumours. For example, cell lines 

could only be clustered into a single luminal subset, rather than two for primary tumours 

and the basal-like subset of cell lines can be split into A and B when tumours could not. As  

cell lines do not contain stromal or normal epithelial cell contamination differences may 

have been resolved more clearly (Sørlie et al., 2001; Neve et al., 2006; Fridlyand et al., 

2006). 

Neve et al. (2006) concluded that: 
…  the  cell  line  collection  mirrors  most  of  the  important  genomic  and  resulting 

transcriptional abnormalities found in primary breast tumors and that analysis of the 

functions of these genes in the ensemble of cell lines will accurately reflect how they 

contribute to breast cancer pathophysiologies. (Neve et al., 2006, p.520) 

In short, no single cell line can adequately model breast cancer or even a single subtype of 

it. In stead a panel of cell lines should be consulted, as I attempted to do in chapter six.

7.1.2. The Heterogeneity of Breast Cancer

It is possible that breast cancer is a collection of cancers of the mammary gland, each with  

a separate set of genetic lesions responsible for its development (Bertucci and Birnbaum, 

2008). If this is the case, one would expect to see subtype-specific gene fusions as we do 

in  leukaemias,  for  example  the  SIL-TAL1  fusion  gene  is  only  found  in  T-cell  acute 

lymphoblastic leukaemia (Mansur et al., 2009). If we considered leukaemia to be a single 

disease, then even the most common subtype-specific fusion genes such as  SIL-TAL1 

would be quite rare. 

HCC1187 is ER-negative, PR-negative and ERBB2-non-amplified so may have originated 
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from a 'triple negative' breast cancer. As it is likely that triple negative breast cancers have 

a distinct cell of origin (Foulkes et al., 2010) then a logical next step is to look exclusively 

within  the  triple  negative  category  for  recurrence  of  gene  fusions  such  as  PLXND1-

TMCC1. The heterogeneity of breast cancer, its cell of origin and subtypes have proven to 

be a difficult issue to resolve. In the future, very large studies such as the METABRIC 

consortium, the Cancer Genome Atlas Research Network and the International Cancer 

Genome Consortium will provide enough data for definitive classification of breast cancers 

and allow subtype-specific searches for recurrence. 

7.1.3. Is there a better way to find fusion genes in complex genomes?

The purpose of cytogenetics, and the derivatives discussed in this thesis, is to find genes 

whose expression is altered in cancer. Through the study of chromosome structure, we 

can, for example, identify genes at chromosome breakpoints. And indeed structural studies 

that have identified the majority of fusion genes to date (Hampton et al., 2008; Howarth et 

al., 2008; Stephens et al., 2009). 

The two famous examples of fusion genes in common epithelial cancers were found by 

other, essentially one off, methods. Soda et al. (2007) used a transformation assay to find 

the EML4-ALK fusion gene in non-small-cell lung cancer (Soda et al., 2007). The authors 

generated a cDNA library from a lung adenocarcinoma and used a retrovirus to insert  

cDNAs into mouse 3T3 fibroblasts.  Tomlins et al. (2005) used a bioinformatic approach to 

find the  TMPRSS2-ERG and  TMPRSS2-ETV1 fusion genes. The authors hypothesized 

that when gene fusion results in the marked over-expression of the 3' gene, this profile 

should be visible in microarray data. Their cancer outlier profile analysis (COPA) found 

genes that were highly over-expressed in a subset of prostate tumours  (Tomlins et al., 

2005). This approach is, however,  limited to genes that are highly over-expressed and 

several famous fusion genes cannot be detected by this method. For example, the outlier  

profile  of  ABL1 and  ALK in  leukaemia  and  lung  cancer  datasets  respectively  are  not 

particularly striking (Rhodes et al., 2004). I did, however, use the online tool Oncomine to 

look for over-expression of the fusion transcripts I had found in breast cancer cell lines 

(Rhodes et al., 2004). Unfortunately, none had a good outlier profile. 
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I was reliant on RT-PCR to detect expression of fusion transcripts. The touch down method 

(Korbie and Mattick,  2008) that I  employed was proved to  be the most  sensitive  and 

specific, but I also considered various PCR derivatives such as splinkerette, vectorette and 

inverse  PCR  that  amplify  from  a  known  sequence  to  an  unknown  one  (Arnold  and 

Hodgson, 1991; Ochman et al., 1988; Horn et al., 2007). But ultimately the touch-down 

PCR strategy represented a compromise between sensitivity, specificity, cost and speed.

Transcriptome  sequencing  approaches  can  also  identify  fusion  transcripts  and  are 

evolving rapidly (Volik et al., 2006; Chinnaiyan et al., 2009; Maher et al., 2009; Zhao et al., 

2009; Berger et al., 2010; Sboner et al., 2010). This type of analysis could, in theory, also 

identify 'bicistonic mRNAs', where there is a fusion between two open reading frames in 

the  absence  of  chromosomal  rearrangement  (Guerra  et  al.,  2008).   It  is,  therefore, 

tempting to conclude that structural studies will give way to transcriptome-based surveys. 

While  this  may be justifiable  for  clinical  laboratories,  the data presented in  this  thesis 

shows that the genomic context in which a fusion gene is found is valuable information for 

discovery screens. 

7.1.4. The mechanisms of fusion gene formation 

In  order  to  ask  if  there  are  recurrent  gene-fusions  in  breast  cancer,  it  is  useful  to 

investigate the mechanisms which may form them. In leukaemias and lymphomas there 

may be a tendency for genes that are found close together in the interphase nucleus to  

become fused (Roix et al., 2003). It is also likely that fusion-prone genes often co-localise 

to the same transcription factory (Osborne et al., 2007), for example, IGH and MYC in B-

cell precursors. But it has also been suggested that these same gene fusions result from 

the  mis-targeting  of  recombinases  RAG1 and  RAG2,  which  usually  facilitate  somatic 

rearrangement of immunoglobulin and T-cell receptor loci, to cryptic recombination signal 

sequences that precede certain genes such as BCL2, LMO2, TAL2, and TAL1 (Marculescu 

et al., 2002; Raghavan et al., 2004). Taken together, these observations imply that certain 

fusions may occur more frequently because of the relative (or combined) input of specific  

mutational mechanisms. 
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Breast cancers probably have the most complex genomes of the common cancers. It is 

likely, as Fridlyand et al. (2006) suggest, that the diverse genomic landscapes of individual  

breast  tumours  reflect  defects  in  specific  cellular  mechanisms.  If  such  defective 

mechanisms  rely  on  specific  DNA motifs  such  as  recombination  signal  sequences  or 

transcription factor binding sites, then it  is  possible that specific pairs of genes will  be 

brought  into  proximity  more  frequently.  An  interesting  observation  is  that  in  prostate 

cancer, androgen-receptor mediated transcription may play a role in forming gene-fusions 

(Edwards,  2010).  For  example,  TMPRSS2 and  ERG are  brought  into  proximity  and 

cleaved by topisomerase 2B upon androgen-induced transcription  (Haffner et al., 2010). 

Whether an analogous case for oestrogen-regulated genes in breast cancer exists is not 

yet clear.

If, however, a large proportion of the rearrangements we observe in breast cancer result 

from some type of non-specific failure of DNA repair – perhaps loss of the homologous 

recombination  repair  pathway  (Graeser  et  al.,  2010)  –  we  might  envisage  another 

possibility: that highly  recurrent gene fusions such as  BCR-ABL,  IGH-MYC,  TMPRSS2-

ERG are rare, but certain oncogenes fuse somewhat promiscuously as, for example we 

observe  with  MLL and  RET.  Indeed,  the  two  genes  have  over  thirty  fusion  partners 

between them (Mitelman et al., 2010). 

7.1.5. Are there recurrent fusion genes in breast cancer?

If genes are brought into proximity more-or-less at random and the probability of many 

highly-recurrent gene fusions is low, then there is a second possibility: A number of non-

recurrent or rare gene fusions and point mutations may all result in the same phenotype.

There is already some data to suggest that this may be the case in breast cancer. For 

example, Stephens et al. (2009) found a fusion of ETV6, part of a known fusion gene in 

secretory breast  carcinoma,  and  ITPR2.  The authors  could  not  demonstrate  recurrent 

fusion of  ETV6 with  ITPR2,  but did observe breaks in  ETV6 by FISH in several other 

tumours.  It  is  therefore  possible  that  ETV6 is  fused with  multiple  different  partners.  A 
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similar possibility presents itself with  MDS1 from the present study. The MDS1-KCNMA1 

fusion was probably an in vivo event as it was found in the common ancestor of VP229 

and VP267.  The locus is  a  known target  of  rearrangement  in  other  cancers  and it  is  

broken, retaining the 5' end in two other breast cancer cell lines. I did not attempt 3' RACE 

for MDS1 so the possibility remains that MDS1 is fused in multiple cell lines.

7.1.6.  Multiple methods of gene disruption and a phenotype-centred view of gene 
fusions

Gene-fusion is only one method by which gene function can be altered. For example,  

activating point mutations in RET cause multiple endocrine neoplasias and fusions of RET 

contribute to thyroid cancer (Alberti et al., 2003).  Perhaps we can see an analogous case 

for genes such as KCNK9. This gene is amplified and over-expressed in breast cancers 

and  it  appears  as  though  the  TRAPPC9-KCNK9 fusion  in  VP267  results  in  over-

expression of  the pore domain of  KCNK9.  Thus,  it  is  possible that over-expression of 

KCNK9 was achieved by gene-fusion in this case. Other cell  lines have breaks slightly 

upstream  of  KCNK9,  so  it  is  possible  that  over-expression  could  be  achieved  by 

runthrough fusion in these cell lines. The genomic complexity of these regions, however, 

made it impractical to peruse this hypothesis further.

If we view gene fusion as just one of many ways in which a pathway member can be 

altered we may begin to see the phenotypic consequences of rare or non-recurrent fusion 

genes. As well as an internal rearrangement of KCNMA1 that resulted in expression of a 

novel isoform, Stephens et al. (2009) also observed an internal rearrangement and novel 

isoform of  KCNMB2 in another sample. The  KCNMB2 gene encodes an auxiliary beta 

subunit which influences the calcium sensitivity of the major potassium channel (encoded 

by  KCNMA1).  Stephens et al.  (2009) also reported fusion of  KCNQ5,  a voltage gated 

potassium channel to RIMS1. And from my data, KCNK9, another voltage gated channel, 

is  fused.  Point  mutations  in  potassium  channels  are  being  observed  with  increasing 

frequency. From the Wood et al. (2007) mutation screen of eleven breast cancers, there  

were  several  point  mutations  in  potassium channel  genes  including  KCNA5,  KCNC2, 

KCNJ15,  KCNQ3.  Interestingly,  there  were  two  mutations  in  KCNQ5 and  KCNT1 in 
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colorectal cancer as well as single samples with mutations in KCNA10, KCNB2, KCNC4,  

KCND3 and KCNH4 (Wood et al., 2007). In a recent screen of pancreatic cancer coding 

exons, there were mutations in  KCNC3, KCNA3, KCNMA1 and  KCNT1 (Yachida et al., 

2010) and KCNH8 were found in three lung carcinomas (Kan et al., 2010). One begins to 

wonder whether these various mutations all result in aberrant polarisation of cells allowing 

their transition into G1 phase.

7.2. The Evolution of Breast Cancer Genomes

The breast cancer genomes described in this thesis were complex. The challenge we now 

face is how to tell which, of the many, mutations are important in cancer evolution. One of  

the best methods to do this is by looking for recurrence over many samples. For breast  

cancer, a complex and heterogeneous disease, this would require detailed investigation of 

very large data sets. 

Instead, I took an alternative approach to find mutations that may have been important in 

tumour development: I interpreted these genomes from an evolutionary perspective. For  

HCC1187, I classed mutations according to their timing relative to endoreduplication. For 

VP229 and VP267,  I  used a comparative lesion sequencing approach to find genome 

rearrangements in the common ancestor of the two cell lines.

The relative timing of genome rearrangements before or after endoreduplication proved to 

be very informative as it was an approximate midpoint in the mutational history of the cell  

line.  As  certain  classes  of  mutations  such  as  nonsense  and  indels  and  gene-fusions 

clustered early, I was able to estimate the number of selected events in the evolution of  

this  tumour.  The  comparative  lesion  sequencing  strategy  showed  that  substantial 

rearrangement had occurred before the clone capable of tamoxifen-resistant relapse had 

arisen  at  the  primary  site.  Taken  together,  these  findings  indicate  that chromosome 

instability is not a late and irrelevant event but occurs at around the same time as other 

mutational mechanisms.
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7.2.1. Endoreduplication as a cancer genomics tool

HCC1187  is  not  an  isolated  example  of  monosomic  evolution  followed  by 

endoreduplication.  This  is,  in  fact,  a  common  evolutionary  route  in  breast  and  colon 

carcinomas (Dutrillaux et al., 1991; Dutrillaux, 1995). There are several cell lines such as 

T47D, DU4475 and MDA-MB-468 that have clearly evolved through monosomy and then 

endoreduplicated (Davidson et al., 2000). 

I suggest that endoreduplication be used as a tool to investigate tumour evolution.  For 

example,  the relative  timing  of  adenoma-carcinoma  sequence  mutations  could  be 

investigated relative to endoreduplication. Over a large dataset, one would always expect 

to see homozygous (early) mutations of APC and two or more late heterozygous mutations 

of  TP53 if the currently accepted scheme for colorectal cancer evolution is correct  (Cho 

and Vogelstein, 1992). 

7.2.2. Comparative lesion sequencing

Comparative  lesion  sequencing  can  also  tell  us  about  the  relative  timing  of  cancer 

mutations.  The bulk of cancer-related mortality is due to metastasis. Some assume that 

the ability to metastasise is an acquired attribute  (Yokota,  2000). Some, however, argue 

that once a tumour becomes invasive it is inherently able to metastasise  (Weiss et al., 

1983; Edwards, 2002). 

The answer to this debate may come from comparative lesion sequencing. If a mutation 

within  a  single  cell  of  a  primary  tumour  confers  the  ability  to  metastasise,  then  all  

metastatic lesions will contain that mutation but the bulk of the primary tumour will not. The 

private mutations of the metastatic lesions will display an unrelated variety of passenger 

mutations. 

An opposite case may be argued for drug resistance, where it often appears that a minor 

population of cells within a tumour can grow out after their drug-sensitive competitors have 

been killed  (Engelman et al., 2007; Turke et al., 2010; Cooke et al.,  2010). In this case, 

only mutations apparently private to the relapse (but probably found in the primary tumour 
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in  low  frequency)  would  be  informative  about  the  molecular  mechanism  behind  drug 

resistance.

7.3. Future Directions

7.3.1. The challenges of massively parallel sequencing

The high-resolution map of the HCC1187 genome allowed me to assess the sensitivity of 

the Stephens et al. (2009) massively parallel paired end sequencing approach. There was 

a  disparity  between  the  mathematically-predicted  sensitivity  and  the  experimentally-

observed  values.  There  may  be  several  reasons  for  the  lower-than-expected  yield  of 

structural variants from massively parallel paired end sequencing.

At  the  moment,  we  are  particularly  poor  at  identifying  rearrangements  involving 

centromeres, telomeres, sub telomeres and other repetitive sequences. Using algorithms 

such as MAQ or BWA, sequencing reads must align uniquely in the genome or they are 

discarded. As reads from repeat regions have multiple mappings, these algorithms cannot 

identify structural variants within such regions. Furthermore, we know from constitutional 

cytogenetics  that  chromosome  translocations,  deletions  and  duplications  are  often 

mediated by recombination between segmental  duplications  (Rudd et al.,  2009).  If  this 

mechanism is operative in cancer too  (Darai-Ramqvist  et al.,  2008),  then the resulting 

chromosome aberrations would be difficult to define with existing approaches. 

Secondly,  the  sequence  at  chromosome  aberration  break  points  is  often  complex, 

containing non-templated sequences,  small  indels  and inversions  (Bignell  et  al.,  2004; 

Stephens et al., 2009) such sequences are also difficult to align to the reference genome. 

The BWA-based alignments in this thesis, for example, only allowed for two mismatches 

within each short sequencing read. A three base pair indel would, therefore, have been 

discarded. 

Bioinformatics analysis of massively parallel sequencing data is evolving quickly. At the 

same time, the cost of sequencing is decreasing. In the near future, it is likely that deep 
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sequence coverage reads could be assembled  de novo for each new tumour genome 

(Zerbino and Birney, 2008; Li et al., 2010).This would, in theory, find a higher proportion of 

genome rearrangements  and  circumvent  the  problems of  complex  genomic  shards  at 

chromosome break points.

As  somatic  rearrangement  of  tumour  DNA probably occurs  in  most  epithelial  cancers 

(Lengauer et al., 1998; Bignell et al., 2007; Beroukhim et al., 2010),  two recent studies 

have shown the potential for this phenomenon to produce personalised tumour biomarkers 

(Leary et  al.,  2010;  McBride et  al.,  2010). After  structural  variant  junctions have been 

identified by paired end sequencing it is relatively easy to design PCR primers flanking the 

rearrangement junction. This PCR-based assay provides a sensitive and specific test for 

circulating tumour DNA in patient plasma. Leary et al. (2010) claim to detect tumour DNA 

molecules at levels lower than 0.001% in patient plasma samples. Importantly, it doesn't 

matter if the rearrangement junctions are driver or passenger mutations, only that they are 

found in the primary tumour and are not lost in the relapse or progression clone.

7.3.2.  Using  structure  and  sequence  together  to  investigate  cancer  genome 
evolution

Recent whole tumour genome sequencing studies have used longer paired end reads to 

generate high physical and sequence coverage (Pleasance et al., 2010a, 2010b).  Such 

studies define structural and sequence-level mutations in one experiment. These studies 

have  uncovered  thousands  of  sequence-level  somatic  mutations  in  individual  cancer 

genomes. Although a huge majority are probably passenger mutations  (Stratton et al., 

2009), they can still tell us something about the evolution of the cancer genome.

If a genome region bearing a somatic mutation is duplicated, then so is the mutation. For  

example,  if  we  have  two  disparate  loci,  both  found  in  two  copies  but  having  lost 

heterozygosity we can speculate on the relative timing of each duplication by comparing 

the  relative  proportions  of  homozygous  (pre-duplication)  and  heterozygous  (post 

duplication)  mutations  from  each  locus.  For  example,  chromosomes  thirteen  and 

seventeen of NCI-H209 are two such regions. The simplest explanation for the 2-copy 

LOH  state  is  chromosomal  loss  followed  by  duplication  of  the  remaining  copy.  For 
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chromosome thirteen,  59  percent  of  the  mutations are homozygous.  For  chromosome 

seventeen, 41 percent of mutations are homozygous. The lower proportion of duplicated 

mutations  on  chromosome  seventeen  implies  that  it  duplicated  before  chromosome 

thirteen (assuming the background rate of mutation was the same for both chromosomes).  

Greenman et al. (2010) used a mathematical model of the accumulation of mutations to 

estimate that duplication of chromosome thirteen and seventeen happened approximately 

78 and 68 percent of the way through the evolutionary history of that cell line respectively.  

There  are  homozygous  mutations  of  RB1 and  TP53 on  chromosomes  thirteen  and 

seventeen  in  this  cell  line.  As  homozygous  mutations  probably  occurred  before  the 

chromosome duplications, we now have an estimate for the latest possible time that the 

cell line had functional RB1 and TP53 proteins (Greenman et al., 2010; Greenman, 2010). 

A similar approach to my own was recently reported from the whole genome sequencing of 

a melanoma cell line, COLO-829 by Pleasance et al. (2010a).

By combining information on chromosome copy number change with base substitutions 

the relative order of some mutations on this mitotic lineage can be established. Several 

genomic regions in COLO-829 show evidence of loss of one parental  chromosome, 

leading to LOH,  followed by re-duplication of  the remaining copy.  In  these regions, 

mutations which occurred before the re-duplication event will be homozygous, whereas 

those arising after re-duplication will be heterozygous. In most such regions, a small 

fraction  of  mutations  are  heterozygous,  indicating  relatively  late  re-duplication. 

However,  in  a  region  of  LOH  on  chromosome  1q,  there  are  more  heterozygote 

substitutions  than  homozygote,  suggesting  earlier  re-duplication.  (Pleasance  et  al., 

2010a, p.5)

Interestingly,  Pleasance  et  al  (2010)  were  able  to  compare  the  'earlier'  homozygous 

mutation spectrum with the later heterozygous spectrum.  The earlier category showed 

signs of increased UV type damage suggesting ultraviolet light exposure was a major early 

mutational mechanism in this skin cancer. Thus, we can use a complex karyotype as a tool  

to understand tumour evolution as a whole. 
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7.4. Conclusions

We should no longer consider genome rearrangement and point mutation as separate 

from  one  another.  Rather,  when  sequence-level  mutations  are  viewed  in  their 

chromosomal,  and  therefore  evolutionary,  context  we  can  find  important  classes  of 

mutation more easily.
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A.1.1. PCR Primers to confirm fusion gene expression in HCC1187

SGK1_008_1F CCTTTGCCTCCTGACATGAT
SGK1_008_2F CCCACCTCAACTACCAGCAT
SGK1_001_1F AGAAATGCTCAGCCTTCCAA
SGK1_001_2F TCAGAGTCCCAGCCTGAAGT
SLC2A12_001_3R ACCAGGAAAGATCTCGCTGA
SLC2A12_001_4R ACAACAAAAAGCAGGGATGC
SLC2A12_001_5R GCTCCTGGGGTTTTCTTTTT
RGS22_210_19F AACAGTTTGCAGCACGTCAG
RGS22_210_20F AAAAGAAAATCGGGGTCTGG
RGS22_210_21F TCGCAAAGCATTATTGAATCC
RGS22_210_22F CCGGAAGGAGTTAGGACCAT
SYCP1_001_24R CCAAATTTCTGTTTGGCACTTT
SYCP1_001_25R CCATAAGTGCTACCATTTCAGC
SYCP1_001_26R TGCTCTCAGTGATGACTGTTCTT
SYCP1_001_27R CAAAAGTTCAGCTTTGAGATTGG
AGPAT5_201_2F TTTAGCAAATCATCAAAGCACA
AGPAT5_201_3F GCTGCCATTGTATGGGTGTT
AGPAT5_201_4F GATGCGAAACAAGTTGCAGA
AGPAT5_201_5F TCAGCTAGTCAGGCATTTGCT
MCPH1_201_14Ri ACGCCAGTTCCTTCTCTTCA
MCPH1_201_14Rii CGCCAGTTCCTTCTCTTCAC
MCPH1_201_14Riii CCACAACACATGGCAAACAT
SUSD1_201_3F AACCACACATCTTGCCACAA
SUSD1_201_4F TGTGAAGTTTCTGGCCTGTG
SUSD1_201_5F TGGGAGTCCCCAAAATTACA
SUSD1_201_6F GTGGCTCGCTATGTCTGTCA
ROD1_004_2R GGTCCGTTAATGATGCCAGA
ROD1_004_3R AGGCGAACAGGGAGGTCTAT
ROD1_004_4R AGTAACGGCAGCTTCCTCAG
ROD1_004_5R CATTGGAAGGACCTCCAGAA
PLXND1_201_10F TGCAGCCCTGGAGTGTAGTTT
PLXND1_201_11F GATTCCTGGACAGCCCTGAG
PLXND1_201_12F CACCTGTGCATGTGGAGTGA
PLXND1_201_13F TGAGCCACTGCCTGACAGAT
TMCC1_001_4R GTTTGGGCAAGGCTGCTTAC
TMCC1_001_4Rii TGCACTGCCAAATTTGTTCC
TMCC1_001_5R ATGCTTGCCAGTTCCTGCTT
TMCC1_001_6R AGCCCTTCTAGCTGCACCAC
RHOJ-1F GCAAAGAGGGAACTGACAGCA
SYNE2-2R GTTCATCTTCGGTGGGAAGC
SYNE2-5R TCGGTTTCTTAGGAATGTCAAGG
PUM1-19F CTTATGGCTGCCGAGTGATT
TRERF1-7R GATGGAGCATGTCAGCTTGTT
CTCF-1S CTGAGCCTGTGGAGCGATT
CTCF-2S ACCTGAAGCCAAAGAACAAGA
SCUBE2-4R CACTCATAGGCCCCATGAC

A.1.2. PCR Primers to confirm fusion gene expression in VP229 and 
VP267

TRAPPC9_203_Ex6F TCGGACGTGCTAAGAACTGC
TRAPPC9_203_Ex7R ATGCTTCCATGCTCCGTTTC
TRAPPC9_203_Ex8F GTGGAGGGCCTGCTACAAAC
TRAPPC9_203_Ex9R GGGAGGCGTAGACCAATTCA
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KCNK9_201_Ex1F CCGGATCAAGGGGAAGTACA
KCNK9_201_Ex2R CGGCGTAGAACATGCAGAAG
KCNK9_201_Ex2F GCTTTACCGACCACCAGAGG
KCNK9_201_Ex3R GCACAGCAGAGGTCCACTTG
PDLIM1_001_1F CCATGACCACCCAGCAGATA
PDLIM1_001_2R TTTTCCCCATCAATGGCTGT
PDLIM1_002_1F GGTGCCCTGCAAGCTGTT
PDLIM1_002_2R GGATGACGCTTCCCTTCCT
ZBBX_202_14F GGCCAAGCTTTGAAGAATCA
ZBBX_202_15R TGGAATTGTTGCATTCTAAACGA
ZBBX_202_15F TCGTTTAGAATGCAACAATTCCA
ZBBX_202_16R GCAGCTGCACTTCTTGATCG
FAM128B_003_2F GACCAGTATGGCGTGGCTCT
FAM128B_003_3R TTCTTGCTGTCCTCCTGGTG
FAM128B_003_4F CTCACGTCCGTGGACCAATA
FAM128B_003_5R TGCTCGGCTTCTGTCATCAT
MDS1_Ex1F GGCACAGCATGAGATCCAAA
MDS1_Ex2R GGGAGGCCTCAGGAAACTT
MDS1_Ex2F AGGTCCTTGTTTCCCCTTCG
MDS1_Ex3R AGGGAGGGAGTGCTGGCTAC
KCNMA1_Ex23F GGGTCAACATCCCCATCATC
KCNMA1_Ex24R GCGCTCATGAGTGAGTCCAG
KCNMA1_Ex24F ACAGCATTTGCCGTCAGTGT
KCNMA1_Ex25R GGTCCCTATTGGCCAGTGTC

A.1.3. PCR Primers for resequencing of HCC1187 somatic mutations

Primers designs were taken from Sjoblom et al. (2006) and Wood et al. (2007)

APOC4 F CAGAGAGGAGCGGATAAATGG
10ITIH5L /r GCCAGGATTCAGACTCAAGAAG
10ITIH5L/f GTTCCCAAAGACTAGCCCATC
11PLS3 /r GAAGCATCTCCCACTTAACATCC
11PLS3/f CTTGACGCTGAGCTTCTTGAG
12SATL1 /r TACCTGATTGGTTTGTGCCTG
12SATL1/f ACTGAGCCAACCAGTCCTGAG
13ITR /r AGGTCCAGGTGAGGCTGG
13ITR/f AATGTCTTCGGCTTATGGCAG
14PEBP4 /r TCCTTCCAGTTCACTCCCAAG
14PEBP4/f AGATCCCGCCAAATACAAATC
15OR1S1 /r CTCAGGGCACCTTTCATATCC
15OR1S1/f CATTGACAATTTGCTCTTGGG
16IPO7 /r CTTTAAAGGGCAGGCAGAAAC
16IPO7/f TTTAAACACCAATTCCTGGAGC
17ZCSL3 /r TCCAGACAGAAACACTTACCACAT
17ZCSL3/f TCCATGTTGCATGATTGTGAA
18ZNHIT2 /r TGGGACAATAGCTATCCCTCAG
18ZNHIT2/f GACTTCTGTGCCACACTGCTC
19TAS2R13 /r AGGCATTTGTATGGACCTTGG
19TAS2R13/f CAATCTCCAGAATTGGGCTG
1PRKAA2 /r GCCATAATGTCATACGGTTTGC
1PRKAA2/f CTAACGTCATTGATGATGAGGC
20NUP98 /r AAGATGCCTGCTTTGACAGTG
20NUP98/f TTCCTTTCTGTCTTCCTGCC
21KIAA0427 /r AGAACTCGCAGCCTTCTCG
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21KIAA0427/f AGTAGGCCTGGTCCTGCTTTC
22STATIP1 /r ATTACCAAACTTGCAGGAGCC
22STATIP1/f CCCATCTCCCTGTCTTTCTCTC
23FLJ21839 /r TTACAAGCATGCACCACCAC
23FLJ21839/f CAAACTGAGAATTCAGGCAGC
24ADRA1A /r GCTAATCCTTCCTCTTCCATCC
24ADRA1A/f GTCATGTACTGCCGCGTCTAC
25RBAF600 /r CCAAAGTGCAGACACCTAACC
25RBAF600/f ATTGCCCTCAAGGTCAAACAG
26SPEN /r CTCCCTCAGATGTCTGCTTCC
26SPEN/f TGAACACAAATCCCACTCACC
27PDCD6 /r GTATCCATGTCGAGGATCGC
27PDCD6/f CTGGTTAGTGGTCAGCAGTGG
28FLJ32363 /r TTTCTGACAACACTGCAGATGAG
28FLJ32363/f AGGCTGAGATCTGGCCCTC
29PLA2G4A /r TGCAACATGCAATCCTCTCTC
29PLA2G4A/f GAGCTAGTAGATCTCACTCTGTGGTTT
2MLL4 /r TGAATAGCTGCACTTTGGCTC
2MLL4/f ACGAATCGGTGCTTACTCCTC
30SPTA1 /r AAGCAATAAAGCTGCCAGGTG
30SPTA1/f CTGCCTTCACAGCCTTCCTAC
31ABCB8 /r GCTTTATTGTGAGCAGGAGCAG
31ABCB8/f TCCTTTCAGATTGGGCATTG
32TBXAS1 /r CAGAGGCCTGATTGCATCC
32TBXAS1/f GCTGGTGGAAAGAAATTTGATG
33ZNF674 /r AATGCCAAGCAAAGAACACAG
33ZNF674/f CCCTTGCTTGCTATGTGAATG
34LHCGR /r TGCATACAGAAATGGATTGGC
34LHCGR/f CATAGACTGGCAGACAGGGAG
35SULT6B1 /r CCCAGATCTACCTAAATCTTCTTCC
35SULT6B1/f GCCACCTCCTGTTCCTCAG
36KIAA0934 /r GGAGCCAGTCTGTGCTGTACC
36KIAA0934/f TCTGTGGGAAGGAGTCTCTGG
37WARS /r AATTACCCACAATGCTTTGCC
37WARS/f GTGGTGTGGGCTGAGCTG
38PDPR /r GCCTGAGAGCCTCTGCTACA
38PDPR/f TCAATAGCTAGCGTTCCCTGG
39AMPD2 /r GAATGGAGACATGCAGAGACC
39AMPD2/f CTCGCACAAGGTACTACAGCG
3MYBPC2 /r AAGATGGGCCAGAGGTGG
3MYBPC2/f CTAAGATTCATGGCCTCGGAC
40C4orf14 /r GGCTTTCTTAACAGAGCTATGGG
40C4orf14/f GCACTGCTTCAGTATTGTGCC
41BAP1 /r ATCAGAGACAAATGCTGTGGG
41BAP1/f GTATGGCTAGTCGCTGCCTG
42RNU3IP2 /r AGAGAGGGACGAAGCTGACTC
42RNU3IP2/f GCGGTGGAAGCCTATCAATAC
43RTP1 /r CAACCACGGAATCTTATACGG
43RTP1/f CATTCCTAGGGCTGTTTCCAC
44GOLPH4 /r TCATCTTTCTGAGGTATGCGAA
44GOLPH4/f GACATGGAAATCAAGAAATTACATC
46CENTD3 /r CTGCAGTGGTCTCTCCTTTCC
46CENTD3/f GCACAGGGTTGTTCCAGAATC
47CTNNA1 /r AGAAGATTGTCCACAAAGCCC
47CTNNA1/f TATGCCACAGATTGCCTGTTG
48GMCL1L /r TGGTTCAGTTTCAAGAAAGGC
48GMCL1L/f ATGTAGACGCACTGCAGGTTG
49PCDHB15 /r AACAGACGGTCGGAAAGCTAC
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49PCDHB15/f GTCGTACCAGCTGCTCAAGG
4PLCB1 /r AACCCACAGACCTATGAGCAC
4PLCB1/f CTGAGACAGGAGAATGGCTTG
50ARHGEF4 /r TGCTAATGCTCAAACTGGCTG
50ARHGEF4/f GAAATGTAGAGGCTCTTGCCC
51UGT1A9 /r GGGCTGATTAATTTATGCAAAG
51UGT1A9/f AGCAGCCATGAGCATAAAGAG
52ZNF142 /r CAACGGCTCTGTTTACAGGTG
52ZNF142/f TAAGAAGCACCACCTTGACCC
53DDX18 /r CCAGGCTAATCTCTAACATACTGGTG
53DDX18/f CAGGAAGCCATGGAAGTTCTC
54SCN3A /r AACAATAAGGCACATGGTTTGG
54SCN3A/f ACATGGGCATATCTTTGGATG
55SLC4A3 /r CCCAACCCACTCAGTGAAGTC
55SLC4A3/f CCTGACCCTCCACTACTCACC
56ITGB2 /r CTGGAGTCCCTCAGACGACC
56ITGB2/f CATCTTGCTTTCTCCACCTCC
57MYH9 /r AGCCCAGGCTTTCTCTGATG
57MYH9/f TTTCATAACTGGGCAGATCCC
58CYP2D6 /r TGCCATGTATAAATGCCCTTC
58CYP2D6/f TTTATAAGGGAAGGGTCACGC
59NCB5OR /r GAAATGATGAATGAGGAAATGG
59NCB5OR/f TCAGACTTCAGATGGTTTGGC
5CAMTA1 /r ATGGGTAGATTTCTTCCACGG
5CAMTA1/f AATCGTAAAGCATTTGTTTCCC
60PAXIP1 /r AGGTGGAACCTGATGCTGC
60PAXIP1/f GCAGTGCTGTTTAGCCAAGTG
61AVPI1 /r GGCCAAGTAACTAGCTCCAGG
61AVPI1/f CCTAGGATTAGCCAGGACCC
62GPR81 /r GTGATGAACACAATTGCCACC
62GPR81/f CTGTGTGGTTTCTGCTTCCAC
63FRMPD1 /r CCAAAGTGGAAGAAGGTGGAC
63FRMPD1/f ATAGGACGGTCTTAGGCCAGC
64SORCS1 /r AGCATCCACCCAACAAGACTC
64SORCS1/f GAAACCTCCTGAGAGCCATTC
65PPHLN1 /r AATGGCTAGCCCAGATACCAG
65PPHLN1/f AGGAAAGAGTTTAGGGCCACC
66PPP1R12A /r GGTTCGATGAATCACAAGTTAGG
66PPP1R12A/f GGAAATTTGAATTACTTTGGCG
67INHBE /r CCTCCTTCTCCTGCCACAC
67INHBE/f CCCAGCAATCAGACTCAACAG
68NFKBIA /r TGCCTGGACTCCTTAAGTTGG
68NFKBIA/f CCTGTCTAGGAGGAGCAGCAC
69SMG1 /r AGGAGTTTCTCTCTTGCACCG
69SMG1/f ACCACTACCACCTATCCCGTG
6C6orf31 /r AGTCTCCTGCAGGTAAGGGTC
6C6orf31/f GCAGATGGCCTAGATACAGCC
70NOS2A /r TATGCCCTAACAGGCTCTTGC
70NOS2A/f GTTACACGAAACACACGGCTC
71RASL10B /r TACAGCAGTTTGGAATCCAGC
71RASL10B/f GCACTAAGCCCACCTCTTGTC
72TP53 /r GAGGAATCCCAAAGTTCCAAAC
72TP53/f ACGTTCTGGTAAGGACAAGGG
73LLGL1 /r ACCAGACCCTCCAGCTCATC
73LLGL1/f ACTCGGGTAGCCCTGACATC
74TRIM47 /r CTCTTCAGCACGGATATGCAG
74TRIM47/f GAACCAAAGGTGTCAAGAGGG
7B3GALT4 /r TCAGCAGGAATTTCCCATAGC
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7B3GALT4/f AACTGGGCTGAGAAACACTGC
8SKIV2L /r TAGTCCAGGAGCTGGAGTTGG
8SKIV2L/f CCTTTACTGTCATCTGCTGGG
9HUWE1 /r TCTGCTTTACCTGCCATCTCTAC
9HUWE1/f CAACTGTGTATCTGCTTGCAGTG
ADRA1A f2 CCTTCATGTGGCCTTCTGAG
ADRA1A r2 GTCGATGGAGATGATGCAGAG
APOC4 R CAAGAGATCTCGCTGTGTTGC
BAP1 f2 CCACTCCAAGTCCCACCTTT
BAP1 r2 CTGCCAGGATATCTGCCTCA
C6orf21 F GTGTACGACGTCTTGGTGCTC
C6orf21 F TTATCCAGGCATGGTGGC
C6orf21pyro F CTCCCCTACAGGATCCCAGTT
C6orf21pyro S TGCAATGTCCTCCTGT
C6orf31 f2 CCACTACCATCAGTCTGGCAC
C6orf31 r2 CCTGCCCTTGTTCCTCTATCC
CD2 F TCTGTGAGCCTGGGAGTTATG
CD2 pyro F AGTAATGGGCTCTCTGCCTGGA
CD2 pyro S TATCTCATCATTGGCATA
CD2 R TGCAGATTCAAGGTGTCATCC
CYP4A22 F TCCAATGACCCTTGGAGAATA
CYP4A22 R AGCACCAGAGCCAGGATAGTT
FHOD3 F TGCTGTGTGCATCAGGAAAC
FHOD3 R TGAAATCATCACTACTGCCCTG
FLJ20422 F GAGCCAAGGTTGTGGAAAGAG
FLJ20422 pyro F GTGCTCACCGTCCCTCTTG
FLJ20422 pyro S ATGCCCCGTTCCAGC
FLJ20422 R TCCACAAACCACTGGTACTCC
FLJ32363 f2 CATTGCCAGATCATGAAATCC
FLJ32363 r2 CATAAGCAACACATTTGCTAGGG
FLNC F CTCTGAGGGTGTTGGGTGAAC
FLNC R GCGATGGAAAGGAGTGATGTC
GLT25D2 F AACCAAAGCTGTGCTTCATCC
GLT25D2 R CAGGACACTCACCATCTCTGC
GPNMB F CACCAGTGTCTTGCAAACTGTC
GPNMB pyro F ACACAAGGAATACAACCCAATAGA
GPNMB pyro S GAATACAACCCAATAGAAAA
GPNMB R TGCCTGCAGTATAATCCCTCTC
HSD17B8 F CAAGGTGGCGATCTCTGAAC
HSD17B8 pyro R GGGTTCTCCTCTCTATACCACTTG
HSD17B8 pyro S CAACCTGACCTTTCCTA
HSD17B8 R CCTTGGATGCTGCATAGTTTG
HUWE1f2 TGGAATTTATGAGGAAGAATGAAAA
HUWE1r2 GAAATCAACTGTGTATCTGCTTGC
IPO7 pyro F TATTTGGAGATTCTGGCTAAGCA
IPO7 pyro S GAGATTCTGGCTAAGCA
ITIH5l pyro F ACCTAAAACACCTCCTCCTGTCT
ITIH5l pyro S TTGACCTGGATCTGC
ITR f2 GTCGGTGCAGACCTGGAG
ITR r2 AGGTGAGGCTGGGGAAGTC
KIAA0427 pyro F AACAGCATGCGGAACAACAG
KIAA0427 pyro S AACAACAGCAGCGAC
MLL4 f2 GGTCACCACTCCTGTTAAGGC
MLL4 pyro R ATCCGGGCTTTTTCCAGG
MLL4 pyro S GCATCTGCTGTGGTGA
MLL4 r2 GGATCACAGAAAGGCAGGTTC
PEB4 pyro R TGGAAGGATGGGGAGGTCTTA
PEB4 pyro S GATAGACAAAGAACTGGTAG
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PLCB1 f2 CCAGGTGTGTCCTTAATGTCC
PLCB1 r2 TGTTACATAACAAAATTACAAAGCAGA
PRKAA2 pyro R TTTGGGCTTAGTCGTATTCAGTG
PRKAA2 pyro S GCTGTCTGCTATAAGAGGTG
SATL1 f2 ACAAGTAGGCACCAGCCAATC
SATL1 r2 TGCCTCCCTTACTCTTTCAGC
TRIM47 f2 GATTTGGACAGCGACACAGC
TRIM47 r2 AGCATAGAAGGCCAAGGCAC
WARS f2 TGACTGGGCTGGGATTATTG
WARS r2 AGGAAGGAGCCACTCAGGAC
ZNHIT2 f2 ACCTGCCCTCGCTGTAATG
ZNHIT2 r2 GCATTATCCAGCTCCTCCAG

A.1.4. Real time PCR primers

GAPDH_RT_F GCAAATTCCATGGCACCGT
GAPDH_RT_R TCGCCCCACTTGATTTTGG
KCNK9_201_Ex1F CCGGATCAAGGGGAAGTACA
KCNK9_201_Ex2R CGGCGTAGAACATGCAGAAG
KCNK9_Ex2int_F CGTTGACTACCATTGGGTTCG
KCNK9_Ex2int_R CAGCCCCACCAGGATATACA

A.1.5. PCR Primers for Pyrosequencing

Primer Name 5' Biotin Sequence (5' to 3') Tm
C6orf21pyro F CTCCCCTACAGGATCCCAGTT 70.5
C6orf21pyro R Biotin TCCTGCCAGGTCACAGAGTC 70.5
C6orf21pyro S TGCAATGTCCTCCTGT 52.9
CD2 pyro F AGTAATGGGCTCTCTGCCTGGA 73.4
CD2 pyro R Biotin AGAAAACGAGCAGTGCCACAAAG 73.8
CD2 pyro S TATCTCATCATTGGCATA 49.4
FLJ20422 pyro F GTGCTCACCGTCCCTCTTG 70.9
FLJ20422 pyro R Biotin GGCTATTACCCAGGGCATCC 71.6
FLJ20422 pyro S ATGCCCCGTTCCAGC 61.2
GPNMB pyro F ACACAAGGAATACAACCCAATAGA 67.7
GPNMB pyro R Biotin ACTCAGGCCTTTGCTTCTGAC 69.8
GPNMB pyro S GAATACAACCCAATAGAAAA 51.3
HSD17B8 pyro F Biotin TCGTGGTTCCATCATCAACAT 70.1
HSD17B8 pyro R GGGTTCTCCTCTCTATACCACTTG 68.4
HSD17B8 pyro S CAACCTGACCTTTCCTA 50.7
IPO7 pyro F TATTTGGAGATTCTGGCTAAGCA 69
IPO7 pyro R Biotin TTTAAAGGGCAGGCAGAAACTA 69
IPO7 pyro S GAGATTCTGGCTAAGCA 51.2
ITIH5l pyro F ACCTAAAACACCTCCTCCTGTCT 68.4
ITIH5l pyro R Biotin GAAATTGGAGATAAAGGCAAGATG 69.1
ITIH5l pyro S TTGACCTGGATCTGC 50
KIAA0427 pyro F AACAGCATGCGGAACAACAG 71.2
KIAA0427 pyro R Biotin TCGGACACAGCCTTCTGGTA 70.8
KIAA0427 pyro S AACAACAGCAGCGAC 50.6
MLL4 pyro F Biotin GAGCAACGGGCCACAGAC 71.9
MLL4 pyro R ATCCGGGCTTTTTCCAGG 71.2
MLL4 pyro S GCATCTGCTGTGGTGA 56.3
PEB4 pyro F Biotin ACCGGCACACAGTGGCTT 71.8
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PEB4 pyro R TGGAAGGATGGGGAGGTCTTA 71.8
PEB4 pyro S GATAGACAAAGAACTGGTAG 48.1
PRKAA2 pyro F Biotin TGATAGTGCCATGCATATTCCC 70.8
PRKAA2 pyro R TTTGGGCTTAGTCGTATTCAGTG 69.3
PRKAA2 pyro S GCTGTCTGCTATAAGAGGTG 54.6
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A.1.6. PCR Primers to confirm somatic structural variants in VP229 and VP267
i) Predicted structural variants

Predicted 
in

Type 
of SV

Node 
1 chr Node 1 start Node 1 end

Node 1 
direction

Node 2 
chr Node 2 start Node 2 end

Node 2 
direction

Primer 
name

VP267 DIF 1 19501578 19501771 1 9 115804584 115804726 -1 A1
Vpboth DIF 3 167030872 167031047 1 10 97034481 97034738 -1 A10
VPBoth DIF 3 170442107 170442495 1 4 144355821 144356190 -1 A12
Vpboth DIF 3 171158535 171158864 1 10 97032906 97033283 -1 A13
VP229 DEL 3 171409858 171409978 1 3 171410591 171410850 -1 A14
VPBoth INS 5 749192 749453 -1 5 840835 840876 1 A15
VP229 DIF 5 10296160 10296260 1 7 146469598 146469634 1 A16
VPBoth INV 6 2903166 2903329 1 6 3064030 3064149 1 A17
VPBoth DEL 6 29856913 29856955 1 6 29896035 29896072 -1 A18
Vpboth DIF 1 110132251 110132512 1 9 84978114 84978363 -1 A2
Vpboth DIF 7 102818133 102818319 1 12 63957260 63957303 -1 A21
VPBoth INV 9 84673335 84673384 -1 9 95650438 95650487 -1 A22
Vpboth INV 9 94861458 94861760 1 9 129243323 129243573 1 A23
VP267 DIF 9 115804619 115804742 1 1 19501845 19502151 -1 A24
VPBoth INV 9 127073730 127074038 -1 9 130287513 130287774 -1 A25
VPBoth DEL 9 130313996 130314354 1 9 132757339 132757510 -1 A26
VP229 DEL 10 14704339 14704762 1 10 14705031 14705468 -1 A27
VP267 DIF 10 76297188 76297545 1 3 178114514 178114843 -1 A28
VPBoth INS 1 144837271 144837307 -1 1 146474210 146474251 1 A3
VPBoth DIF 10 77063134 77063482 -1 3 100659737 100660078 -1 A30
Vpboth DIF 10 77069722 77070093 1 17 26873584 26873946 1 A31
VP267 DIF 10 77393012 77393230 -1 17 27124203 27124413 -1 A32
VP267 DIF 10 77414962 77415055 1 17 27117214 27117289 1 A33
VPBoth DIF 10 78224422 78224758 1 3 178426171 178426491 1 A34
Vpboth INV 10 78229401 78229776 -1 10 122537421 122537463 -1 A35
Vpboth DIF 10 78679650 78680299 1 3 169181685 169182111 -1 A36
VP229 DIF 10 78679650 78680299 1 3 169181872 169182064 1 A36
VP267 DIF 10 78679650 78680299 1 3 169181872 169182064 1 A36
Vpboth INV 10 79656068 79656493 1 10 84276990 84277205 1 A37
VPBoth DIF 10 79656167 79656503 -1 3 178107424 178107859 -1 A38
VP229 DEL 10 80127208 80127257 1 10 80127854 80128006 -1 A39
Vpboth DEL 2 242852936 242853243 1 2 243035841 243036157 -1 A4
VPBoth DIF 10 84303032 84303414 1 12 66816857 66817212 1 A40
Vpboth INV 10 93897014 93897410 1 10 102245634 102246026 1 A41
VP267 DIF 10 109724338 109724379 1 22 29065779 29065914 -1 A42



Vpboth INV 10 124809773 124809955 1 10 127790628 127790985 1 A43
VP267 INS 11 308533 308595 -1 11 314064 314148 1 A44
VP229 DEL 11 47289854 47290156 1 11 47290578 47290834 -1 A45
VP229 DIF 11 77656124 77656163 1 7 64623948 64623999 1 A46
VP229 DEL 12 69079758 69079913 1 12 69080496 69080619 -1 A47
VP267 DIF 13 21750547 21750661 1 11 108585829 108586244 -1 A48
VP229 DIF 13 61034148 61034183 -1 14 74200278 74200314 -1 A49
VP267 DIF 3 9461581 9461652 1 X 102375851 102375932 1 A5
VPBoth INS 14 106349889 106349928 -1 14 106359128 106359223 1 A50
VPBoth DIF 14 106483843 106484213 1 15 22479869 22479909 -1 A51
VP229 DEL 15 52175561 52175956 1 15 52176296 52176440 -1 A52
VPBoth INV 15 78282315 78282356 1 15 79054483 79054549 1 A53
VP267 DEL 16 611910 612133 1 16 675407 675637 -1 A54
VP267 INV 16 70152159 70152198 -1 16 74397297 74397478 -1 A55
VPBoth INV 17 35326354 35326611 1 17 36222373 36222607 1 A56
VP267 DIF 17 37230708 37231060 -1 3 171648030 171648408 -1 A57
VP229 DEL 17 78163335 78163371 1 17 78362163 78362206 -1 A58
VP267 INS 19 11614744 11614845 -1 19 11638741 11638818 1 A59
VP267 INS 3 35662797 35662951 -1 3 56242409 56242583 1 A6
VP267 DIF 19 18953632 18953670 -1 8 68218123 68218163 -1 A60
VP229 DEL 19 37346031 37346070 1 19 41295756 41295849 -1 A61
VP229 DEL 19 39434948 39435080 1 19 39435655 39435730 -1 A62
VPBoth INS 19 43244102 43244259 -1 19 43359087 43359402 1 A63
VP229 INS 19 43356453 43356512 -1 19 43418232 43418272 1 A64
VP229 DIF 19 52596051 52596107 1 6 157823962 157824122 1 A65
VP229 INV 19 54804916 54804957 -1 19 55105319 55105362 -1 A66
VP267 DEL 20 17506460 17506612 1 20 17598409 17598578 -1 A67
VP267 DIF 20 51857762 51857845 1 22 29065501 29065807 1 A68
VPBoth INV 22 20329738 20329796 -1 22 20653465 20653516 -1 A69
VPBoth DIF 3 107806125 107806388 1 4 73975049 73975377 -1 A7
VP267 DIF 22 29065304 29065537 -1 3 24817529 24817579 -1 A70
VPBoth INV 22 36626954 36626996 1 22 36657767 36657818 1 A71
VPBoth INS 22 39425844 39425899 -1 22 39445528 39445564 1 A72
VP229 INS X 29329361 29329472 -1 X 31278768 31278858 1 A73
VP229 DIF X 100133833 100133870 1 12 7240008 7240314 -1 A74
VP229 DEL X 142600166 142600247 1 X 142799082 142799186 -1 A75
VP229 INV 3 108136284 108136419 1 3 110987235 110987406 1 A8
VP267 INV 3 108136284 108136419 1 3 110987235 110987406 1 A8
VPBoth DIF 3 149679452 149679489 -1 7 83100972 83101067 -1 A9
VPBoth DEL 10 116257973 116258272 1 10 116364481 116364798 -1 Del20
VP229 DEL 8 41675207 41675366 1 8 41704343 41704453 -1 Del21



VPBoth DEL 16 27336191 27336599 1 16 27351346 27351623 -1 Del34
VPBoth DIF 17 35329033 35329210 1 4 778121 778512 1 Fus1
VP229 INS 3 10115221 10115261 -1 3 11932819 11932869 1 Fus10
Vpboth DIF 10 125636500 125636725 1 21 31094557 31094776 -1 Fus14
VP229 DEL 4 3156552 3156602 1 4 3437871 3437927 -1 Fus15
Vpboth DIF 3 169496733 169497135 1 10 84276976 84277214 -1 Fus16
Vpboth INS 10 78198382 78198678 -1 10 83671218 83671877 1 Fus17
VPBoth INS 10 76898989 76899271 -1 10 84730469 84730979 1 Fus19
VP267 INS 10 76898989 76899271 -1 10 84730993 84731135 1 Fus19
VPBoth DEL 11 5784201 5784559 1 11 5809301 5809685 -1 Fus20
Vpboth INV 9 94648426 94648733 -1 9 127055261 127055508 -1 Fus21
VP267 DIF 10 62684277 62684470 -1 12 69045557 69045632 -1 Fus22
VPBoth INV 9 94647680 94648017 1 9 128534661 128534996 1 Fus23
VP267 DIF 1 49783251 49783335 1 14 31139376 31139481 1 Fus24
VP229 INV 12 48446975 48447325 -1 12 52404710 52404905 -1 Fus25
VP267 DEL 8 140704651 140704941 1 8 141348436 141348751 -1 Fus27
VPBoth INV 10 98803429 98803655 1 10 99294104 99294473 1 Fus28
Vpboth DEL 10 102235324 102235661 1 10 114568184 114568344 -1 Fus29
VPBoth DEL 7 1173820 1173899 1 7 1192727 1192916 -1 Fus30
VPBoth DEL 7 1173342 1173753 1 7 1192615 1192690 -1 Fus30
VP229 DEL 7 1173342 1173753 1 7 1192727 1192916 -1 Fus30
Vpboth INV 10 97789793 97790092 1 10 108715824 108716128 1 Fus5
Vpboth DIF 12 69990188 69990524 1 9 37924987 37925228 1 Fus6
VPBoth DIF 17 35849590 35849900 -1 4 782909 783243 -1 Fus7
Vpboth INV 10 96875800 96876182 1 10 114571574 114571949 1 Runthru18
Vpboth DIF 17 35670072 35670392 -1 4 778819 779114 -1 Runthru2
VPBoth DIF 10 124148806 124149214 1 3 171407291 171407709 -1 Ruthru15

i) VP229/VP267 Structural Variant Primers

Primer 
name VP229PCR VP267PCR

Normalfem
alePCR F primer R primer

A1 y y y TGGTTCCATTCTTAACTCTATCTGA AAATGAGTGTGGCCATCTGT
A10 y y n AACCACACATATGAACACAGCA TGAGTGGTCATGCTTCAGGA
A12 y y n CACAATATCCCAGCATGAGG AATTTGGGACAGGCTTGATG
A13 y y n CAGGAATAGCTCTCCCAGTCC ATTCCCATCCAGGAAGGTCT
A14 y y y GATCTGCTTACCCCCATCAA CGCACTTATGTGTCACTTCCTT
A15 y y n GTGGACGTCACAGACCAGAG GAGCTGTGGCTTTCCTGTTC
A16 y n n AGCTTTGTTCAGGCACGAGT GAGCAGATCACGAGGTCAGG



A17 y y y CCCAGAGCAGAGAAGAGCAG GCTCGTCAAGTGTGGGAAA
A18 y y n AGGCCTTGTTCTCTGCTTCA CTTACCCCATCTCAGGGTGA
A2 y y n AGCAAGATTTGCAAGCAGGT TGTAAATTGTCAGATGAAGGCAGT
A21 y y n CACGCCTGGCTTTTTGTATT TCATCGCGCATCATAGTCTC
A22 y y y GATGGGCAAGCATCTGTTCT GATTTACCTTCGAGGCATGG
A23 y y n AGCCAGTCTCAAATCGCCTA GTGGGACCTGTCCTCTTTCA
A24 y y n GAAACACAGGAACTGTCAGCA GTTTGCACTTACCCTGAGGA
A25 y y n TGCAGTGAGCTCTCAGGAAA GGGTCTAGGTTGCTGTGGAT
A26 y y n AGAGGTCCCCTCCCATGA GTACTCCAGGCGGTTTTCAA
A27 y y y TGCATGCCCTTCTGATGATA TCTATGTTCCAAGCCTCCTCA
A28 y y n TGTCATTTTGCAAATGGTTCTT TGCGCTATTAAATTTGGAGACC
A3 y y y TTGCCTACCATTTCCTCTGAA GGTGACCAAAGATTGCAAAAA
A30 y y y CCACTCTGCTTGCCTTATCC GATGCCATCTGTCCACCTCT
A31 y y n GACGTTTGGGACCTGAGAAA CAGTTGGTCCAGCTCCTACC
A32 y y n TTCCCAGGTTTCTAAGTGCAG TGACCTTACAAAAACCACCTTTT
A33 y y n GCCTATTCATTTTATCACCATACTTC GCTACCCAAACAGAATGAGAAGA
A34 y y y ACATGTGGGCACACAGAAGA TGTGGCCTTAGAGTGGGACT
A35 y y n AACTTGCTTGCCTCTGGTGT GAGCACAGCTGGGTATTAGCA
A36 y y n AGAGGGGGAAGGCTGAACTA GGGCACATATCCCTTGAAGA
A36 y y n AGAGGGGGAAGGCTGAACTA GGGCACATATCCCTTGAAGA
A36 y y n AGAGGGGGAAGGCTGAACTA GGGCACATATCCCTTGAAGA
A37 n n n CGTGTTCTAACAAAGATCTGTCAA CACTGTCCAAAGGATGTTGC
A38 y y n TTTTAATGATACTTTCTTTCTCTGACA GCTTGTAACTTTCAAAAATAGTTGAGG
A39 y y y CTCGCTGCAATTTGTCTCTG TCTTTGCAGGCAATGTGTGT
A4 y y y GTCTGTTTGCTCTGCCTCCT TCCCATTAACTTGATTTCTGCTC
A40 y y n TGGAGTCTGTTACCTGAGAGTTAGAA GCCCAGTCATGGTTTGTGTA
A41 y y n AGGGGGTCCACCAATTCTAC GGGAAAGGACTTTGCTAGGG
A42 n n n GATGGAACCCTGGTTAGGTG AAAAATTCAAGCATATGGAAAAACTTA
A43 y y n GGCATGAGAAACATTTCAGTTT GGGAGAAAGCCCTCATCTTC
A44 y y y AACTGAAACGACAGGGGAAA CTGGAGCCTCCTCCTAGACC
A45 y y y TTTTCCTCCTTCCCACACAC GGCCATACCACAGAGTGACA
A46 y y y TTGTCGATTTGCTGAACAGG GCTGCCAGCTGTCTATTTGA
A47 y y y GCTGAGGATTGTGGAACCAT GCTTTGCCTGACCAAAGTCT
A48 y y n ACGCACCGCTTTCCTCTC GCCAAAGATTGTAGTGATTTCCTT
A49 n n n TCATACCCATAAATCCCACTTC GGTCAAGAAGAGTTGCTAGATATTAAA
A5 n y n AATGTGCACAACCCACTTCA AACAGAGCCTCAGAGCCAAA
A50 y y y CTGCCCACCCTATCTTAGCC GCCACATAGGAGCTCACCAG
A51 y y y GGCTTTATTCATCCCGGTTT TCAGCTTCATCTCCCATTGA
A52 y y y TCCATCGGTCCCTCAAATAA CTGTTCATCCCTGCATCCTT
A53 y y y GTCCTCCAGGAAGCACTGAG GACAGCTGCCTATGGGATGT
A54 n n n GAGCTTAGGTGGCACAGAGG CAGCGGTTGGTGATGTCATA



A55 y y n TGCAACCATCTCTTCCTTCC TGGCTTGGTCAGAGTGTGAG
A56 y y n CTTGGGGATCTAGGCATTCA GTGGTGGCACCTGTACTCCT
A57 n n n GGGTCTCATTTCCATGTTTTG GAAGCCAGTTTACTGCTGCT
A58 y n n TTCTCCCTCGCTGTGAAACT CCGTCATTAACCCACCATCT
A59 n y n CAGGCTTGACGAACAAGTGA GCCCTCGTTTTTCTTTTTGA
A6 n y n AGCAAACACAAGGCCAAGAT CCAAAGTCAAAAGGCAGTGG
A60 y y n CTCAAAAGGCAAAGCAGCTC TGTCCTGTGCCTTATAAACAGTG
A61 y n n TGGGTTTGCCATTCTCCT TCCCTATCTCCCTTCCTTCA
A62 y y y GGAGCATTACAAGCAGTGAGAC GGAAGTGGTCAAGTTCTCAGC
A63 y y y CCCTGTCCCTCTCTGGTGTA GGAGGAAGCAGAGTGACTGG
A64 y y y GCAATTACAAGGGTGGATGG GTCCTTCAGAGGCTGACACC
A65 n n n TAGGCCAGGCATAGCAGTTC GCCTGGCGATATACCTTCTG
A66 y y y TGTTCCCAAAACGTTGAACA GACGGGATGTAGCAGCAAAT
A67 y y n TAAATGACCCCTCCCCTTGT TGCAGCAGCCAGTGAGTC
A68 n y n GCCCTAACCTAAGTCGAAGG AGATGTTTTCCACATACATGCTT
A69 y y y GGAGACCCAGCTATGACACG TATCTGTGTTTCCCCCAGGA
A7 y y y ATTAAAAAGGGCAGGGCAGT GGTAAACTTTTAGGGAGCTAGGTAAT
A70 y y n TTTTGGCCCTAACTGGTCAC CATTTGCAAACCAAATCACA
A71 y y y CAGAAGGGTCCTGCTGTGTT GTTACCTCCATTGGGCACTC
A72 y y n CCTACGCAAAGCCTATGGTC CCCAGGAAAGTTAGGGAGGA
A73 n n n ATTTGTGGTTTGGCAAAAGG AAAGCAGGTCATTGCTTTTCA
A74 n n n TCGGGGACATGAGTTTATCT CCTTTTCCAGGGCTAACTCC
A75 y y n TTAATCCAGCCGTGCTTAGG TAGGAGCAAGGGGAAGTTCA
A8 y y n TGTGGCTTTGTACACTTCTGTCT AAAAGGAAAGGGGACTTGGA
A8 y y n TGTGGCTTTGTACACTTCTGTCT AAAAGGAAAGGGGACTTGGA
A9 y y y TGCAGCATTTTCTTTTTGCT TGGTGCTGTAACTCAAACATCA
Del20 y y n GAACCCATCCTTGGACAGAA CAGCATGACTGCCTTGCTTA
Del21 y n n AGCCTGAATGTCAAGGTGCT GGTAGGGTGGACTGTGTGCT
Del34 y y y GCCTATTCGCTGGGTCTTC AGGCACCTGCAGAGAGAGAG
Fus1 y y n TGATACATGCAAAAACGTGGA GTCCTAGGTGGGAGGGAGAG
Fus10 y y y TGGCATCAGTAATTGGAGCA CAATGTACTGCTGGGGTACAAA
Fus14 y y n GGCTTAAAGCTTGGGACACA CTCCAACCAGGCTGTTGTTT
Fus15 y n n GGAGAGGCCTCCTGATTTTC AGCACCCCCAGAACCTTAGT
Fus16 y y n ACGGAAACGTGGAAAATCAC CCAGCAATGACTCCAGTGAA
Fus17 y y n AAAGTGCAGGCAAGGAGAAA CCCTGGGATTCACAAATATCA
Fus19 y y n TCCATTATCCAAAGAGTTCATTCA AGCGTGGTCCACCTTAAAAA
Fus19 y y n TCCATTATCCAAAGAGTTCATTCA AGCGTGGTCCACCTTAAAAA
Fus20 y y n TCAATCCCTGTCTCCTTCCA ATAGTTGCCCTGCTGATTGG
Fus21?? y y n ATGGCCTCCTCTCCTGCT AGCTGCGGTCTCACTCTAGG
Fus22 n n n CTGCAACTGTTGGATGAAATG TTCAAAGACCCCCAAATTGT
Fus23?? y y n TGCGTTTAAATCAAATCAACGA AACAAGATGTGTTGATATTTGGAGAG



Fus24 n y n GCCTTTCTGGACTTCTGTTCC TGGAAACATTAGAAAGGGCAAC
Fus25 n n n CCAGAGCACTTGCATTTTGA AGCTTCTCCCACCTGGATCT
Fus27 n y n TTCAACACACACTGGCTTCC TGCTTGTGTTGCTCTTTTGG
Fus28 y y n TCTCTCTCTCCCTGCCACTG CTGGGGTAGAAAAGGTGGTG
Fus29 y y n GCCTTTCTGAGTGGGAACAA AGTAATCCTCAGCCCCATCG
Fus30 y y n TGGGAGAAAGATCATTTGCTAT ACAGACACCCTTTGGACCAC
Fus30 y y n CACCCAGGTGCTACTTTACGA GAAGTGGAGCCCCATTGAG
Fus30 y y n CACCCAGGTGCTACTTTACGA GAAGTGGAGCCCCATTGAG
Fus5 y y n AGGGTGCTCCTTTCCTTCTC GCAGACCTAGAGGCTGTGCT
Fus6 y y n TGTCTTGTGCTGGGAATTGT CTCTGGGCACACATACATGC
Fus7 y y n GCGAGAAAGCAAATCCGATA CACTCCCATCCTCAGGTGTT
Runthru18 y y y GGTCATTCGGGAGCATATTG GGGCCCACATTCCTTTTATT
Runthru2 y y y TTTCTGAGTATTCTTTCTCCCAAGA GGTGTCCTCTGTCCGTCTGT
Ruthru15 n n n TGATGGCATGTGCCTGTAAT TTCAAGGCTGCAGTGAGCTA

iii) Inverted Tandem Repeat and Small Deletion Predicted Structural Variants

Predicted 
in

Type 
of SV

Node 
1 

Node 1 
start

Node 1 
end

Node 1 
direction

Node 2 
chr

Node 2 
start

Node 2 
end

Node 2 
direction Primer Name

Vpboth ITR 4 75042125 75042539 1 4 75042125 75042539 -1 ITR5
VP229 DEL 15 70479894 70480192 1 15 70480652 70480863 -1 VP229_smallDEL5
VP229 DEL 12 19554147 19554458 1 12 19554657 19555116 -1 VP229_smallDEL1
VP229 DEL 19 19535993 19536032 1 19 19536772 19536925 -1 VP229_smallDEL8
VP229 DEL 1 156622751 156623199 1 1 156623465 156623925 -1 VP229_smallDEL2
VP229 DEL 9 17612391 17612676 1 9 17613036 17613351 -1 VP229_smallDEL4
Vpboth ITR 16 48084954 48085365 1 16 48084954 48085365 -1 ITR4
VP229 DEL 11 71712233 71712644 1 11 71712910 71713324 -1 VP229_smallDEL3
Vpboth ITR 11 66277922 66278273 1 11 66277922 66278273 -1 ITR2
Vpboth ITR 4 188170325 188170496 1 4 188170325 188170496 -1 ITR6
Vpboth ITR 12 92734889 92735301 1 12 92734889 92735301 -1 ITR3
Vpboth ITR 10 85628541 85628978 1 10 85628541 85628978 -1 ITR1
VP229 DEL 5 31860066 31860119 1 5 31860779 31860830 -1 VP229_smallDEL7
VP229 ITR 11 79634637 79634965 1 11 79634637 79634965 -1 ITR32
VP229 DEL 18 54691525 54691641 1 18 54692203 54692319 -1 VP229_smallDEL6



Appendix 1. PCR Primers

iv) Inverted Tandem Repeat and Small Deletion Primer Sequences

Primer Name F primer sequence
ITR5 AAGTTCCTCTGGCTGCGTAA
VP229_smallDEL5 ACAGCCATCTTGGGAAACAC
VP229_smallDEL1 AGGAGACTGCCACCATGC
VP229_smallDEL8 CAGTGTGGGGAGGCTATTTG
VP229_smallDEL2 CCCACAGAGCCTTAAGCAAC
VP229_smallDEL4 CTGGGAGGATGCATTTCACT
ITR4 GGCTTGGTAACTGGTGGAAA
VP229_smallDEL3 GTGGACCCTGAACAGGTTGT
ITR2 GTGGCTGACCCAGAGATTGT
ITR6 TCATAGCTTGTGCCGAACAG
ITR3 TGCAACAACTCCTGCAAGTC
ITR1 TGGGTTCTAAGGGTGTCCTG
VP229_smallDEL7 TGGTGGTTTCATTGGAGGAT
ITR32 TGTCGAACTTCCAGAAATAAAAT
VP229_smallDEL6 TTGCATTCATTCAAGGCTCA

A.1.7. PCR Primers to confirm somatic structural variants in HCC1187

HCC1187Fus1F TGGATTGGTTTCTCTTTCTCC
HCC1187Fus1R CCTTCTACCGCCTCCTCAC
HCC1187Fus2F GGTCAGCCATCATCTGTGTC
HCC1187Fus2R TGGAGACAATAAGTTGGAGCAA
HCC1187Fus3F GCATGGTGGCTTACACCTG
HCC1187Fus3R GGGCAAAGGTTTTATGGCTA
HCC1187Fus4F AACTCATGGCCCATACAATG
HCC1187Fus4R TTCTTCCACCTAAGCCTTGC
HCC1187Fus5F TCCTGGATATCACCCTTGAGA
HCC1187Fus5R CTGAAAATGAACGCAGGACA
HCC1187Fus6F TGCCCAACGTGGTAAGTAAA
HCC1187Fus6R TTACGTGCTCAGGGGAGCTA
HCC1187Fus7F AGCAGTGTGCAATCTGCATT
HCC1187Fus7R TGTTGTCAAAACCCATCCAG
HCC1954Fus1F GAGAGGGTGGCAATGTGAGT
HCC1954Fus1R CAGTGGTGGTATCCTGTTTATCA
RHOJgDNA_F GCACATGGAAACACATGGAA
SYNE2gDNAR GCAGTACACAAGGGGCTAGG
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Appendix 2. Perl and R scripts

Appendix 2.1. Perl script to extract break point regions from segmented 
SNP6 data

#!/usr/bin/perl -w
#Finds the breakpoint data from PICNIC segmented .csv files in a directory
use warnings;
use strict;

my$output = "BreastLinesPICNICbreaks.txt";
open(OUTPUT, ">$output");
#Loops through all the files in the directory
@files = <*>;
foreach $file (@files) {
#Prints current file name
print $file . "\n";
my $infile  = $file;
my @data;
print "loading $infile ...\n";
open( INFILE, "<$infile")or die( "Couldn't open file $infile: $!\n" );
@data=<INFILE>;
close( INFILE );
print "$infile loaded\n";
my $linecounter=0;
foreach(@data){

#Ignores file header
#The input file is comma delimited: chromosome, position, Affymetrix 
#probe ID, Alternative ID, nucleotide 1, nucleotide 2, probe 
#intensity, segmented copy number, genotype 1, genotype 2.
next if ($_=~m/#/);
$linecounter++;
chomp$_;
my ( $chr , $pos , $affyID ,  $RSID , $nuc1 , $nuc2 , $copy , 
$genotype_intensity , $segmentCN , $genotype1 , $genotype2 ) = 
split(',', $_);
my ( $ch , $chrNo ) = split('r', $chr);

my ( $chrB , $posB ,$affyIDB ,  $RSIDB , $nuc1B , $nuc2B , $copyB , 
$genotype_intensityB , $segmentCNB , $genotype1B , $genotype2B ) = 
split(',', $data[$linecounter]);
my ( $chB , $chrNoB ) = split('r', $chrB);

if ($chrNo=~m/X/)
{$chrNo=23}
if ($chrNoB=~m/X/)
{$chrNoB=23}
if ($chrNo=~m/Y/)
{$chrNo=24}
if ($chrNoB=~m/Y/)
{$chrNoB=24}

#Finds chage points in copy number between one line and the next
if(($chrNo==$chrNoB)&&($segmentCN!=$segmentCNB)){

print OUTPUT "$infile $chr:$pos-$posB $segmentCN
$segmentCNB\n";
}

}
}

close(OUTPUT);
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Appendix 2.2. Perl Script to find genes at SNP6 break points
#Finds the breakpoint regions from the above script that coincide with genes or 
#gene windows
use warnings;
use strict;

#Load all PICNIC breakpoint regions, all positive and negative strand genes and 
#gene windows
my $infile1  = "Cell_LinesPICNICbreaksAll.txt";
my $infile2 = "tableOfPlusGenesGenome.txt";
my $infile3 = "tableOfMinusGenesNegGenome.txt";
my $infile4 = "geneWindowsPLusWDes.txt";
my $infile5 = "geneWindowsMinusWDes.txt";
my $infile6  = "genes_at_all_PICNIC_breaks.txt";
my$output = "genes_at_all_PICNIC_breaks.txt";

#Set up arrays to hold each data file
my @PICNIC_breaks;
my @pos_genes;
my @neg_genes;
my @pos_windows;
my @neg_windows;

#Open files
open( INFILE1, "<$infile1")or die( "Couldn't open file $infile1: $!\n" );
open( INFILE2, "<$infile2")or die( "Couldn't open file $infile2: $!\n" );
open( INFILE3, "<$infile3")or die( "Couldn't open file $infile3: $!\n" );
open( INFILE4, "<$infile4")or die( "Couldn't open file $infile2: $!\n" );
open( INFILE5, "<$infile5")or die( "Couldn't open file $infile3: $!\n" );
open(OUTPUT, ">$output");

#Assign files to arrays
@PICNIC_breaks=<INFILE1>;
@pos_genes=<INFILE2>;
@neg_genes=<INFILE3>;
@pos_windows=<INFILE4>;
@neg_windows=<INFILE5>;
print "$infile1 loaded\n";
print "$infile2 loaded\n";
print "$infile2 loaded\n";

#Close input files
close( INFILE1 );
close( INFILE2 );
close( INFILE3 );

print "Processing ...\n";
foreach(@PICNIC_breaks)

{
#print "$_";
chomp$_;
my ( $cellline , $break_chr , $break_start , $break_end , $prevCN , 
$afterCN ) = split(" " , $_);
my$break_polarity=$afterCN-$prevCN;

if($break_polarity > 0)
{

#Positive breaks positive genes
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#Any break that retains the 5' end of the gene or any break within the 
#gene window for a runthrough
#if loop pulls out positive breakpoint polarities

foreach(@pos_windows)
{
chomp$_;
my ( $genechr1 , $window_start , $window_end , $gene_name ) = 
split(/\t/, $_);
my ( $genech1 , $genechr ) = split(/chr/, $genechr1);

#The PICNIC breakpoint region has to be entirely within the 
#gene window. For this to happen
# the window start has to be less than the PICNIC start and 
#the window end has to be greater
# than the PICNIC end.

if(($break_chr==$genechr)&&($window_start<$break_start)&&($window_end>$break_end
))

{
#Output line
print OUTPUT "$cellline $break_chr $break_start
$break_end $gene_name 3' end retained\n";
}

}
#Positive breaks negative genes
#These retain the 3' end of the gene. The break has to be 
#within the gene and exclude the 5' window.
#in this case the gene window end is adjusted by subtracting 
#the window #size defined above.
foreach(@neg_genes)
{
chomp$_;
my ( $genechr1 , $window_start , $window_end , $gene_name ) = 
split(/\t/, $_);
my ( $genech1 , $genechr ) = split(/chr/, $genechr1);

if(($break_chr==$genechr)&&($window_start<$break_start)&&($window_end>$break_end
))

{
#Output line
print OUTPUT "$cellline $break_chr $break_start
$break_end $gene_name 5' end retained\n";
}

}
}

#negative breaks negative genes
#These retain the 5' end of the gene or form possible 
#runthroughs so consider the whole gene window
#this else loop is left over from the if loop above. All the 
#-ve breaks are considered here

else
{
foreach(@neg_windows)

{
chomp$_;
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my ( $genechr1 , $window_start , $window_end , $gene_name ) = 
split(/\t/, $_);
my ( $genech1 , $genechr ) = split(/chr/, $genechr1);

if(($break_chr==$genechr)&&($window_start<$break_start)&&($window_end>$break_end
))

{
#Output line
print OUTPUT "$cellline $break_chr $break_start
$break_end $gene_name 3' end retained\n";

}
}

#negative breaks positive genes
#These can only retain the 3' end of the gene so discount the window

foreach(@pos_genes)
{
chomp$_;
my ( $genechr1 , $window_start , $window_end , $gene_name ) = 
split(/\t/, $_);
my ( $genech1 , $genechr ) = split(/chr/, $genechr1);

if(($break_chr==$genechr)&&($window_start<$break_start)&&($window_end>$break_end
))

{
#Output line
print OUTPUT "$cellline $break_chr $break_start
$break_end $gene_name 5' end retained\n";

}
}

}
}

close OUTPUT;

#Load the file you just created in order to get rid of duplicate entries
print "Removing duplicates ...\n";
open( infile6, "<$infile6")or die( "Couldn't open file $infile6: $!\n" );
my@PICNIC_genes=<infile6>;
open(OUTPUT, ">$output");

#Make a hash of all the lines of the input file and returns all unique keys
#then prints to the output file

my %hash   = map { $_, 1 } @PICNIC_genes;
my @unique = keys %hash;
foreach(@unique)

{
print OUTPUT "$_";
}

close OUTPUT;
print "finished\n";
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Appendix 2.3. Perl script to extract break point regions for PCR 
verification
#!/usr/bin/perl -w
#Pull out genome slices and construct a sequence to design primers for PCR 
#verification
#This script will output "Slice1[]Slice2" ready for primer3 and pre-mask all 
#repeats

use strict;
use warnings;
use strict;
use Bio::EnsEMBL::Registry;

#make a connection to the Ensembl database

my $registry = 'Bio::EnsEMBL::Registry';
$registry->load_registry_from_db(

-host => 'ensembldb.ensembl.org',
-user => 'anonymous'
);

#Open input file should be as below $cellline, $breakID , $SVtype , $SVsupport , 
#$node1chr , $node1start , $node1end , $node1dir , $node2chr , $node2start , 
#$node2end , $node2dir
#eg.
#VP229 Fus10 INS 2 3 10115221 10115261 -1 3 11932819 
# 11932869 1

my $infile  = "VP229breaks.txt";
print "loading all breaks...\n";
open( INFILE, "<$infile")or die( "Couldn't open file $infile: $!\n" );
my @allbreaks;
@allbreaks=<INFILE>;
close( INFILE );
print "$infile loaded\n";

#Create an output file
my $outfile = "VP229breakpointregions.txt";
open( OUTFILE, ">$outfile");

#set the size of the genome slice you want to get back
my $slice_size=1000;
foreach (@allbreaks)

{
chomp$_;

 my( $cellline, $breakID , $SVtype , $SVsupport , $node1chr , $node1start , 
$node1end , $node1dir , $node2chr , $node2start , $node2end , $node2dir ) = 
split(/\s/, $_);

#Positive read, negative read = positive strand joined to positive 
#strand: Simplest case.
#Pull out sequence to LHS of node1 end and to RHS of node2 start

if(($node1dir =~ m/^1/)&&($node2dir =~ m/^-1/))
{
print "positive and negative : $node1dir , $node2dir\n";
my $first_slice_start=$node1end-$slice_size;
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my $first_slice_end=$node1end;
my $second_slice_start=$node2start;
my $second_slice_end=$node2start+$slice_size;
print "will fetch $node1chr : $first_slice_start - 
$first_slice_end [] $node2chr : $second_slice_start - 
$second_slice_end \n";

#make slice adapter1 by linking it to the ensembl database
my $slice_adaptor1 = $registry->get_adaptor( 'Human', 'Core', 
'Slice' );
#fetch the slice defined by chr node start and node end
my $chromslice1 = $slice_adaptor1-
>fetch_by_region('chromosome', $node1chr, $first_slice_start, 

` $first_slice_end);
#Fetch the same region repeatmasked
my $repeat_slice1 = $chromslice1->get_repeatmasked_seq();
#compare the two slices and output repeat-masked sequence
my $sequence1 = $repeat_slice1->seq();
#repeat for slice2
my $slice_adaptor2 = $registry->get_adaptor( 'Human', 'Core', 
'Slice' );
my $chromslice2 = $slice_adaptor2-
>fetch_by_region('chromosome', $node2chr, $second_slice_start, 
$second_slice_end);
my $repeat_slice2 = $chromslice2->get_repeatmasked_seq();
my $sequence2 = $repeat_slice2->seq();
print "$sequence1 [] $sequence2 \n";
print OUTFILE "$breakID $sequence1 [] $sequence2\n";
}

#Negative read, positive read = positive strand joined to positive 
#strand, but the read is from negative strand.
#Like the above, just flipped over.
if(($node1dir =~ m/^-1/)&&($node2dir =~ m/^1/))

{
print "negative and positive : $node1dir , $node2dir\n";
my $first_slice_start=$node2end-$slice_size;
my $first_slice_end=$node2end;
my $second_slice_start=$node1start;
my $second_slice_end=$node1start+$slice_size;
print "will fetch $node1chr : $first_slice_start - 
$first_slice_end [] $node2chr : $second_slice_start - 
$second_slice_end \n";
my $slice_adaptor1 = $registry->get_adaptor( 'Human', 'Core', 
'Slice' );
my $chromslice1 = $slice_adaptor1-
>fetch_by_region('chromosome', $node1chr, $first_slice_start, 
$first_slice_end);
my $repeat_slice1 = $chromslice1->get_repeatmasked_seq();
my $sequence1 = $repeat_slice1->seq();
my $slice_adaptor2 = $registry->get_adaptor( 'Human', 'Core', 
'Slice' );
my $chromslice2 = $slice_adaptor2-
>fetch_by_region('chromosome', $node2chr, $second_slice_start, 
$second_slice_end);
my $repeat_slice2 = $chromslice2->get_repeatmasked_seq();
my $sequence2 = $repeat_slice2->seq();
print "$sequence1 [] $sequence2 \n";
print OUTFILE "$breakID $sequence1 [] $sequence2\n";
}

263



Appendix 2. Perl and R scripts

#Positive read, positive read = Positive strand, node1 joined to 
#negative strand node2.
#pull out positive node and join it to the reverse complement of the 
#negative strand
if(($node1dir =~ m/^1/)&&($node2dir =~ m/^1/))

{
print "positive and positive : $node1dir , $node2dir\n";
#As for +ve read joined to -ve read
my $first_slice_start=$node1end-$slice_size;
my $first_slice_end=$node1end;
my $second_slice_start=$node2end-$slice_size;
my $second_slice_end=$node2end;
print "will fetch $node1chr : $first_slice_start - 
$first_slice_end [] $node2chr : $second_slice_start - 
$second_slice_end \n";
my $slice_adaptor1 = $registry->get_adaptor( 'Human', 'Core', 
'Slice' );
my $chromslice1 = $slice_adaptor1-
>fetch_by_region('chromosome', $node1chr, $first_slice_start, 
$first_slice_end);
my $repeat_slice1 = $chromslice1->get_repeatmasked_seq();
my $sequence1 = $repeat_slice1->seq();
my $slice_adaptor2 = $registry->get_adaptor( 'Human', 'Core', 
'Slice' );
my $chromslice2 = $slice_adaptor2-
>fetch_by_region('chromosome', $node2chr, $second_slice_start, 
$second_slice_end);
my $repeat_slice2 = $chromslice2->get_repeatmasked_seq();
my $sequence2 = $repeat_slice2->seq();

#make reverese complement of slice2
my$revcomp = reverse $sequence2;
# The Perl translate/transliterate command does reverse 
#compliment and ignores repeats masked to "N".
$revcomp =~ tr/ACGTacgt/TGCAtgca/;
print "$sequence1 [] $revcomp \n";
print OUTFILE "$breakID $sequence1 [] $revcomp\n";
}

if(($node1dir =~ m/^-1/)&&($node2dir =~ m/^-1/))
{
print "negative and negative : $node1dir , $node2dir\n";
my $first_slice_start=$node1start;
my $first_slice_end=$node1start+$slice_size;
my $second_slice_start=$node2start;
my $second_slice_end=$node2start+$slice_size;
print "will fetch $node1chr : $first_slice_start - 
$first_slice_end [] $node2chr : $second_slice_start - 
$second_slice_end \n";
my $slice_adaptor1 = $registry->get_adaptor( 'Human', 'Core', 
'Slice' );
my $chromslice1 = $slice_adaptor1-
>fetch_by_region('chromosome', $node1chr, $first_slice_start, 
$first_slice_end);
my $repeat_slice1 = $chromslice1->get_repeatmasked_seq();
my $sequence1 = $repeat_slice1->seq();
my $slice_adaptor2 = $registry->get_adaptor( 'Human', 'Core', 
'Slice' );
my $chromslice2 = $slice_adaptor2-
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>fetch_by_region('chromosome', $node2chr, $second_slice_start, 
$second_slice_end);
my $repeat_slice2 = $chromslice2->get_repeatmasked_seq();
my $sequence2 = $repeat_slice2->seq();

#make reverese complement of slice1
my$revcomp = reverse $sequence1;
$revcomp =~ tr/ACGTacgt/TGCAtgca/;
print "$revcomp [] $sequence2 \n";
print OUTFILE "$breakID $revcomp [] $sequence2\n";
}

}

print "Finished!\n";
close ( OUTFILE );
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Appendix 2.4. R script to generate maximum likelihood estimators and 
95th percentile confidence intervals
#This R script was written by Professor S. Tavaree, Cambridge CRI and is based 
#on a statistical model also written by Professor Tavaree.

#Load the nnet package
library(nnet)

#Total number of any giver class of mutations
m <- 75

#Number of mutations that fell early
y <- 34

#Proportion of mutations that fell early by chance
p=0.4

lik <- numeric(y+1)
for(n in 1:(y+1)){lik[n]<-dbinom(y-n+1,m-n+1,p)}
# clean up rounding
lik <- signif(lik,digits=6) 
mle <- which(lik == max(lik)) - 1

confint <- function(m,nhat,B,alpha,p){
nhathat <- numeric(B)
# Simulate B values of y = nhat + Bin(m-nhat,p) 
for(i in 1:B){ y <- nhat + rbinom(1, m-nhat, p) 
lik <- numeric(y+1) 
for(n in 0:y){lik[n+1]<-dbinom(y-n,m-n,p)} 
lik <- signif(lik,digits=6) # clean up rounding!
nhathat[i] <- which.is.max(lik) - 1 #chooses MLE at random if ties 
} 
snhathat <- sort(nhathat,decreasing=FALSE) 
nl <- snhathat[floor(B * alpha/2)] 
nu <- snhathat[ceiling(B * (1 - alpha/2))] 
cll <- 2 * nhat - nu 
clu <- 2 * nhat - nl
print(cll)
print(clu)
}

#Returns the maximum likelihood estimator (MLE)

mle

#Returns the 95th perrcentile confidence intervals. This example is for a sample 
#of 34 early mutations, the mle calculated above (7 in this case), and run for 
#10000 iterations, with p of 0.4
#confint(34,5,10000,0.05,0.321)

confint(m,mle,10000,0.05,p)
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Name Proposed Junction Chr  Break LHS Break RHS Chr Break LHS Break RHS

A, D t(1;6) 1 31160802.5 31296885 ; 6 42354900 42358000
A t(1;8) 1 150503922.5 150563199 ; 8 14331542.5 14465907.5
D t(1;X) 1 96961781.5 97980642 ; X 50231247.5 54118741.5
E t(1;8) a 1 84172800 84174600 ; 8 99290955.5 101355408
E t(1;8) b 1 150503922.5 150563199 ; 8 14589000 14591700
G t(2;20) 2 89772452.5 94882962 ; 20 30605409.5 30851017.5
H t(1;8) 1 84135871.5 85445694.5 ; 8 99290955.5 101355408
J t(1;8) 1 115246265 115255974 ; 8 99290955.5 101355408
N t(10;13) 10 22830000 22875000 ; 13 58272600 58273300
N t(10;19) 10 84424000 84425500 ; 19 56139000 56141000
O del(11)q13.5q21) 11 76153425.5 78120576.5 ; 11 88001257.5 90989730
O t(11;12) 11 - - ; 12 28228473.5 28699164.5
P t(2;19) 2 89772452.5 94882962 ; 19 - -
R t(11;16) 11 10435000 10438000 ; 16 66141900 66142200
R del(11)q13.5q21) 11 76153425.5 78120576.5 ; 11 88001257.5 90989730
S t(12;16) 12 28228473.5 28699164.5 ; 16 66141900 66142200
S t(11;16) 11 - - ; 16 66141900 66142200
S t(11;12) 11 - - ; 12 28228473.5 28699164.5
T t(2;19) 2 54050000 54053000 ; 19 5775600 5778000
V t(2;5) 2 89772452.5 94882962 ; 5 42897896 50000844
V del(2p)(p16p25.1) 2 - - ; 2 54050000 54053000
Y t(14;20) 14 75743298 76653723.5 ; 20 >1 <30760000
b t(10;13) 10 22830000 22875000 ; 13 58272600 58273300
c i(13) 13 - - ; 13 - -
i t(1;19) 1 11042655.5 11551099 ; 19 42104980.5 42928442.5
j t(13;20) 13 - - ; 20 >1 <30760000
k t(1;X) 1 - - ; X 122281542.5 123854583
L t(X;X) X 26887513 27118094 ; X - -

Table A3.1. Chromosome break points defined by array painting. Break point regions were defined by BACs or oligo probes flanking 

copy number shifts. Genome co-ordinates are as in the HG18 genome build.



Name SV Type Chr A Position A Strand A Chr B Position B Strand B
Size

Support

StephensDEL1 DEL 2 996170 + 2 1007188 - 11018 6
StephensDEL2 DEL 2 11397776 + 2 55159176 - 43761400 1
StephensDEL3 DEL 2 33031637 + 2 33097132 - 65532 16
StephensDEL4 DEL 2 66861264 + 2 67119301 - 258074 5
StephensDEL5 DEL 4 138011731 + 4 138039024 - 27293 8
StephensDEL6 DEL 6 1664850 + 6 5686186 - 4021373 6
StephensDEL7 DEL 6 134369018 + 6 134579664 - 210646 6
StephensDEL8 DEL 7 110845099 + 7 110867805 - 22706 8
StephensDEL9 DEL 7 132786464 + 7 132871038 - 84574 8
StephensDEL10 DEL 8 41576622 + 8 41588498 - 11876 7
StephensDEL11 DEL 8 70272683 + 8 70277843 - 5160 6
StephensDEL12 DEL 10 14616540 + 10 14649227 - 32687 11
StephensDEL13 DEL 10 77414245 + 10 79429479 - 2015234 8
StephensDEL14 DEL 11 9108490 + 11 10519862 - 1411372 7
StephensDEL15 DEL 11 34072921 + 11 34082648 - 9764 8
StephensDEL16 DEL 11 55503503 + 11 55507819 - 4353 4
StephensDEL17 DEL 11 77809792 + 11 90309424 - 12499632 12
StephensDEL18 DEL 12 114935765 + 12 114961462 - 25697 8
StephensDEL19 DEL 13 47846990 + 13 47850855 - 3902 1
StephensDEL20 DEL 14 79857506 + 14 79867739 - 10233 17
StephensDEL21 DEL 14 98850865 + 14 98856028 - 5163 11
StephensDEL22 DEL 17 34671312 + 17 34759972 - 88697 3
StephensDEL23 DEL 20 9081436 + 20 9131009 - 49573 11
StephensDEL24 DEL 20 52273532 + 20 52281706 - 8211 7
StephensDEL25 DEL 20 52887189 + 20 52919407 - 32255 4
StephensDEL26 DEL X 153858946 + X 153879982 - 21036 17
StephensDIF1 DIF 1 31183855 - 6 42356186 + N/A 19
StephensDIF2 DIF 1 31334253 + 6 41406061 - N/A 8
StephensDIF3 DIF 1 84234093 + 8 101058886 + N/A 8
StephensDIF4 DIF 1 97784960 + X 53294900 + N/A 6
StephensDIF5 DIF 1 115272352 - 8 101059496 - N/A 9
StephensDIF6 DIF 7 148873715 + 8 143979884 - N/A 5
StephensDIF7 DIF 10 22831512 + 13 58272177 + N/A 5
StephensDIF8 DIF 10 22832193 - 13 58272472 - N/A 3
StephensDIF9 DIF 11 5536414 - 12 28661343 + N/A 2



StephensDIF10 DIF 11 10520685 + 16 66197968 + N/A 3
StephensDIF11 DIF 14 72736528 - 20 6147141 + N/A 4
StephensINS1 INS 1 37593659 - 1 38176917 + 583223 5
StephensINS2 INS 1 190587754 - 1 190724320 + 136566 6
StephensINS3 INS 2 10155274 - 2 10239261 + 83987 7
StephensINS4 INS 2 104933183 - 2 105257264 + 324081 5
StephensINS5 INS 2 222206770 - 2 222863211 + 656441 3
StephensINS6 INS 2 240060032 - 2 240105411 + 45379 3
StephensINS7 INS 3 49410887 - 3 49559868 + 148981 4
StephensINS8 INS 3 56444738 - 3 56449656 + 4918 12
StephensINS9 INS 3 57150092 - 3 57255624 + 105532 8
StephensINS10 INS 3 130774767 - 3 130902421 + 127654 7
StephensINS11 INS 4 13044591 - 4 13478102 + 433476 4
StephensINS12 INS 4 40464439 - 4 40515180 + 50706 5
StephensINS13 INS 4 79203712 - 4 79238418 + 34671 6
StephensINS14 INS 4 82495561 - 4 82601352 + 105791 5
StephensINS15 INS 4 92041059 - 4 92076272 + 35213 7
StephensINS16 INS 4 117597380 - 4 117609422 + 12042 1
StephensINS17 INS 4 146298490 - 4 146725491 + 427001 16
StephensINS18 INS 5 37083312 - 5 37175248 + 91936 6
StephensINS19 INS 5 174407766 - 5 174468477 + 60711 4
StephensINS20 INS 6 2046552 - 6 2063989 + 17402 2
StephensINS21 INS 6 11391453 - 6 11573487 + 182034 4
StephensINS22 INS 6 41476568 - 6 41569960 + 93357 11
StephensINS23 INS 6 149549556 - 6 150018566 + 468975 3
StephensINS24 INS 7 104330914 - 7 104516312 + 185363 5
StephensINS25 INS 8 5911073 - 8 5986829 + 75721 5
StephensINS26 INS 8 6480859 - 8 6586862 + 106003 8
StephensINS27 INS 8 79925025 - 8 79950438 + 25413 8
StephensINS28 INS 8 102399808 - 8 102559056 + 159248 19
StephensINS29 INS 9 12879468 - 9 13045861 + 166393 14
StephensINS30 INS 9 102203807 - 9 102265942 + 62100 3
StephensINS31 INS 9 113916716 - 9 114134450 + 217699 9
StephensINS32 INS 11 16826873 - 11 16879687 + 52779 2
StephensINS33 INS 11 57072794 - 11 57295287 + 222493 5
StephensINS34 INS 11 77389514 - 11 77443887 + 54338 2
StephensINS35 INS 11 111292861 - 11 111354277 + 61416 6
StephensINS36 INS 12 11774592 - 12 11804932 + 30340 17
StephensINS37 INS 12 27532204 - 12 27595557 + 63318 3
StephensINS38 INS 13 101879040 - 13 102251960 + 372920 6



StephensINS39 INS 14 38672867 - 14 38881647 + 208780 5
StephensINS40 INS 14 63654523 - 14 63910709 + 256151 7
StephensINS41 INS 14 67838965 - 14 68157538 + 318573 11
StephensINS42 INS 16 65695550 - 16 65828537 + 132952 2
StephensINS43 INS 16 79615251 - 16 79679344 + 64093 2
StephensINS44 INS 17 46134084 - 17 46194120 + 60036 3
StephensINS45 INS 17 72865900 - 17 72905624 + 39689 2
StephensINS46 INS 18 606353 - 18 631641 + 25253 4
StephensINS47 INS 18 8929214 - 18 10803919 + 1874670 3
StephensINS48 INS 19 10398770 - 19 10509924 + 111119 4
StephensINS49 INS 19 16828242 - 19 16940309 + 112067 6
StephensINS50 INS 20 19112222 - 20 19210849 + 98592 7
StephensINV1 INV 1 157359299 + 1 215686367 + 58327068 5
StephensINV2 INV 1 157359724 - 1 215686770 - 58327047 2
StephensINV3 INV 2 42519193 - 2 42533786 - 14593 4
StephensINV4 INV 13 76399932 - 13 76416550 - 16618 4
StephensINV5 INV 13 76416077 + 13 76432425 + 16348 5
StephensINV6 INV 14 73245679 - 14 73263451 - 17772 13
StephensINV7 INV 18 9767694 + 18 9773271 + 5577 2
StephensINV8 INV 18 51504211 + 18 51510656 + 6446 4
StephensINV9 INV 20 9771873 + 20 9780917 + 9045 5

Table A3.2. Structural variants reported by Stephens et al. (2009). DEL=deletion, INV=Inversion, INS=Insertion/tandem 

duplication, DIF=Interchomosome translocation. Support refers to the number of paired sequencing reads that crossed the 

genomic junction.



Sjoblom 
(2006), 
Wood 
(2007)

COSMIC 
(2010)

Genomic mutation as reported (2004 
build)

Genomic Mutation (2009 
build)

cDNA 
Mutation

Amino 
acid Mutation Type

X X chr2:131632752C>G (homozygous) chr2:131799020-131799020 1322C>G T441R Miss
X chr10:99429559C>T (homozygous) chr10:99439569-99439569 94C>T Q32X N
X chr6:33353713T>C chr6:33245735-33245735 539T>C V180A Miss
X chr3:52415311C>T (homozygous) chr3:52440271-52440271 781C>T Q261X N
X chr4:57673742A>G (homozygous) chr4:57832814-57832814 1736A>G Q579R Miss
X chr5:141014054A>C (homozygous) chr5:141033870-141033870 4282A>C T1428P Miss
X X chr5:138294082C>T (homozygous) chr5:138266183-138266183 2032C>T Q678X N
X chr18:32527271C>T chr18:34273273-34273273 1598C>T S533L Miss
X chr2:27191236G>C (homozygous) chr2:27279585-27279585 1184G>C R395P Miss
X chr7:128071176G>T chr7:128477225-128477225 553G>T D185Y Miss
X chr5:177546166delA (homozygous) chr5:177613560-177613560 741delA fs INDEL

X
chr12:121739602_121739601insA 
(homozygous)

chr12:123214721-
123214722

165_166in
sA fs INDEL

X chr6:33281286G>T chr6:33173308-33173308 472G>T V158L Miss
X chr12:56135771G>C chr12:57849504-57849504 185G>C R62T Miss
X chr18:44541852G>C chr18:46287854-46287854 1165G>C V389L Miss

X X
chr22:35012676_35012674delGCA 
(homozygous) chr22:36688174-36688176

4200_420
2delGCA indel INDEL

X X
chr14:34942227_34942226insC 
(homozygous) chr14:35872475-35872476

427_428in
sC fs INDEL

X X chr11:3657478G>T (homozygous) chr11:3700902-3700902 4955G>T G1652V Miss
X chr7:154198087T>G chr7:154567154-154567154 1370T>G F457C Miss

X chr5:140607486C>T (homozygous) chr5:140627302-140627302 2156C>T A719V Miss
X chr12:41065014G>A (homozygous) chr12:42778747-42778747 517G>A V173M Miss
X X chr12:78693190G>C (homozygous) chr12:80190722-80190722 2301G>C Q767H Miss
X X chr17:31086470G>A (homozygous) chr17:34062357-34062357 154G>A V52M Miss
X chr3:51950902C>G (homozygous) chr3:51975862-51975862 22C>G R8G Miss
X chr3:188400138C>A (homozygous) chr3:186917436-186917436 262C>A R88S Miss
X chr6:32036799C>G chr6:31928820-31928820 547C>G L183V Miss

X
chr2:220323514_220323523delGACAAG
GACA (homozygous) chr2:220498009-220498018

1291_130
0delGACA
AGGACA fs INDEL

X X chr18:31994943_31994944delCT chr18:33740945-33740946
1739_174
0delCT fs INDEL

X chr12:10952719A>G chr12:11061452-11061452 446A>G N149S Miss



X chr7:139064224C>T chr7:139611040-139611040 256C>T R86W Miss

X X
chr17:7520090_7520088delGGT 
(homozygous) chr17:7579363-7579365

322_324d
elGGT G108del INDEL

X chr17:71382450_71382450 chr17:73870855-73870855
1680_168
1insC fs INDEL

X chr2:234462937G>T (homozygous) chr2:234680937-234680937 1325G>T S442I Miss
X chr2:219333250G>A (homozygous) chr2:219507745-219507745 3005G>A R1002H Miss
X chr7:150179945C>G chr7:150742297-150742297 2018C>G A673G Miss
X chr8:26778286G>T chr8:26722369-26722369 118G>T G40W Miss
X chr6:31783819C>G chr6:31675840-31675840 575C>G P192R Miss
X chr1:7730843A>G chr1:7796577-7796577 3240A>G L1080L S
X chr22:40851168G>A chr22:42526670-42526670 124G>A G42R Miss
X chr1:47323585G>A chr1:47611565-47611565 1250G>A G417D Miss
X X chr2:118291285G>A chr2:118575055-118575055 121G>A G41R Miss
X chr19:19104498A>T chr19:19243498-19243498 254A>T E85V Miss
X chr19:19104499G>T chr19:19243499-19243499 253G>T E85X N
X chr5:43541741C>G chr5:43505984-43505984 798C>G S266R Miss
X chr9:37730240G>A chr9:37740240-37740240 1715G>A G572D Miss
X chr1:180641553G>A chr1:183909896-183909896 1423G>A V475I Miss
X X chr3:169233251C>T chr3:167750549-167750549 935C>T A312V Miss
X X chr3:169233252G>C chr3:167750550-167750550 934G>C A312P Miss
X chr7:23086956G>T chr7:23313716-23313716 1556G>T S519I Miss

X chrX:53537429G>A chrX:53520704-53520704 1442G>A R481K Miss
X chr11:9418649G>T chr11:9462073-9462073 2767G>T A923S Miss
X chr10:363080G>A chr10:373080-373080 3790G>A V1264M Miss
X chr2:48826897G>A chr2:48915246-48915246 1690G>A D564N Miss
X chr17:18080933C>G chr17:18140208-18140208 1566C>G L522L S
X chr19:40904380C>T chr19:36212540-36212540 2291C>T P764L Miss
X chr19:55650351C>T chr19:50958539-50958539 2189C>T P730L Miss
X chr6:84706496G>T chr6:84649777-84649777 1009G>T D337Y Miss
X chr17:23118990G>T (homozygous) chr17:26094863-26094863 2035G>T A679S Miss
X chr5:359875G>T chr5:306875-306875 367G>T G123C Miss
X chr16:68734948A>T chr16:70177447-70177447 1637A>T Y546F Miss
X chr8:22638372G>C chr8:22582427-22582427 446G>C R149P Miss
X chr1:183651507C>G chr1:186919850-186919850 1326C>G H442Q Miss

X chr20: 8667928C>T chr20:8719928-8719928 2229C>T A743A S
X chrX:114703778A>C chrX:114880798-114880798 1454A>C D485A Miss
X X chr1:56881987C>A chr1:57169966-57169966 1111C>A P371T Miss
X chr1:19237486G>A chr1:19492180-19492180 4181G>A R1394H Miss
X chrX:84168729C>G chrX:84362584-84362584 830C>G S277X N



X chr2:165812042A>G chr2:165986535-165986535 2837A>G E946G Miss
X chr16:18730825A>C chr16:18823324-18823324 10735A>C K3579Q Miss

X chr10:108579379A>C
chr10:108589389-
108589389 669A>C K223N Miss

X X chr1:16002504G>T chr1:16257198-16257198 4463G>T R1488I Miss
X chr1:155422865A>T chr1:158609792-158609792 4743A>T Q1581H Miss
X chr2:37318343A>C chr2:37406692-37406692 324A>C A108A S

X chr14:99871016G>C
chr14:100801263-
100801263 1365G>C E455D Miss

X chrX:46144024G>A chrX:46387770-46387770 253G>A E85K Miss
X chr1:109885704G>A (homozygous) chr1:110173662-110173662 2285G>A R762H Miss
X chr19:50140242C>A chr19:45448402-45448402 224C>A P75Q Miss
X chr6:32226401G>A chr6:32118423-32118423 280G>A A94T Miss
X chr1:117019184G>A chr1:117307142-117307142 650G>A C217Y Miss

X X
chr21:45146037_45146013delTGAACAC
GCACCCTGATAAGCTGCG chr21:46321585-46321609

539_563d
elTGAACA
CGCACC
CTGATAA
GCTGCG fs INDEL

X chrX:54706426C>T chrX:54689701-54689701 227C>T P76L Miss
X chr13:94052277C>A chr13:95254276-95254276 95C>A T32N Miss
X chr11:57739474T>A chr11:57982898-57982898 682T>A F228I Miss

X chr11:31404466_31404470delTCTTG chr11:31447890-31447894
304_308d
elTCTTG fs INDEL

X chr11:64641527G>C chr11:64884951-64884951 175G>C A59P Miss

Table A3.3. Coding sequence mutations in HCC1187 as reported by Wood et al (2007) and the COSMIC database
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