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Abstract

This thesis contains studies of phenomenological aspects of new physics at hadron

colliders, such as the Large Hadron Collider (LHC). After a general introduction in chap-

ter 1, in chapter 2 we outline the main features of the Standard Model (SM) of particle

physics and the theoretical motivations for going beyond it. We subsequently provide

brief descriptions of a few popular models that aim to solve the issues that arise within

the SM.

In chapter 3 we describe the general Monte Carlo method for evaluating multidimen-

sional integrals and show how it can be used to construct a class of computational tools

called Monte Carlo event generators. We describe the main generic features of event

generators and how these are implemented in the HERWIG++ event generator.

By applying resummation techniques, we provide, in chapter 4, analytical calcula-

tions of two types of hadron collider observables. The first, global inclusive variables,

are observables that make use of all measured particle momenta and can provide useful

information on the scale of new physics. The second observable is the transverse energy

of the QCD initial state radiation (ET ), associated with the either Drell-Yan gauge boson

production or Higgs boson production. In both cases we provide comparisons to results

obtained from Monte Carlo event generators.

In chapter 5 we examine two well-motivated models for new physics: one of new heavy

charged vector bosons (W prime), similar to the SM W gauge bosons, and a model moti-

vated by strong dynamics electroweak symmetry breaking that contains new resonances,

leptoquarks, that couple primarily to quarks and leptons of the third generation. In the

prior model, we improve the current treatment of the W ′ by considering interference ef-

fects with the SM W and construct an event generator accurate to next-to-leading order

which we use to conduct a phenomenological analysis. For the leptoquark model, starting

from an effective Lagrangian for production and decay, we provide an implementation in

the HERWIG++ event generator and use it to form a strategy for mass reconstruction. The

thesis ends with some conclusions and suggestions for extensions of the work presented.

Further details and useful formulæ are given in the appendices.
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Chapter 1

Introduction

The Human kind, by good fortune, has developed the ability to ponder and investigate

natural phenomena. We have been intrinsically acting as scientists for thousands of years.

However, the form of what we call ‘science’, a term originating from the Latin sciencia,

meaning knowledge, has evolved dramatically through the ages. The Greek philosopher

Aristotle, who lived in the 4th century BC, profoundly affected those who followed him

with his views on natural phenomena. His persistent beliefs included that substances

that make up the Earth (‘earth’, ‘air’, ‘water’, ‘fire’) were different than those that made

up the heavens (‘aether’) and that objects moved as long as they were being pushed.

His writings were largely qualitative and, although he had basic ideas regarding a few of

the fundamental concepts of nature, such as speed and temperature, he was lacking the

proper instruments to make quantitative statements about them. It was not until the 16th

century AD, and the ideas of Galileo Galilei, an Italian natural scientist, that things began

to change. Galileo, with the aid of the newly-invented telescope which he had improved,

made detailed astronomical observations that made it more plausible that the heavens

and the Earth were made from the same materials. He also proposed the ‘law of inertia’,

whereby objects tended to maintain their state of motion instead of preferring to be at

rest. Aristotle’s misconceptions originated from his lack of understanding of frictional

forces. Isaac Newton, unarguably one of the most important scientists of recent centuries,

effectively weaved his theories of motion and gravitation based on the groundwork laid

by scientists like Galileo.

Newton’s Universe was like clockwork: mechanical and perfectly deterministic. Space

was absolute: the scene in which the heavenly bodies and the Earth executed their eternal

motion, a rigid grid of three dimensions. Time, according to Newton, was flowing always

1



2 Chapter 1. Introduction

at the same rate (‘equably’), and ‘without regard to anything external’. These concepts

persisted until the advent of further scientific revolutions that occurred in the early 20th

century: Albert Einstein’s theory of relativity, doing away with absolute space and time,

and quantum mechanics, a theory of subatomic particles, whose results for the evolution

of a physical system were of probabilistic nature. The revolutions were either instigated

by experimental facts (e.g. Einstein’s explanation of the photoelectric effect) or guided

by the philosophy that natural laws should be ‘beautiful’ (e.g. the Dirac equation). It is

important to emphasise, however, that Newton’s theories were not discarded completely;

rather, they were shown to be specific limits of the theories that encompass them. In the

words of the mathematician David Hilbert, in a lecture delivered before the International

Congress of Mathematicians at Paris in 1900,

‘History teaches the continuity of the development of science. We know

that every age has its own problems, which the following age either solves or

casts aside as profitless and replaces by new ones.’

Old problems are viewed from different perspectives by scientists of the following gen-

erations, in a different framework of thought, possessing more powerful analytical and

experimental tools. Some are solved, some discarded, and new questions are posed.

Nowadays, the study of the fundamental nature of matter is called ‘particle physics’,

or ‘high energy physics’. Particle physicists are currently faced with a multitude of un-

solved puzzles. The quest to address them may lead to a revolution of our view of the

fundamental principles of equal magnitude as the ones that have occurred before. We

present an overview of the current understanding of the subatomic world in chapter 2.

This framework is called the ‘Standard Model’ of particle physics. We will also examine

the issues that are thought to plague this framework and outline some suggestions that

have been put forward to address some of them.

Science is based on careful observations, known as experiments. Through experiments,

we put our predictions to a test in a controlled environment, in a reproducible way.

In particle physics, the most common form of experiment is rudimentary: we ‘throw’

particles onto one another and study the scattering process. Though basic, the idea is

powerful: very detailed quantitative predictions can be made and theories can be put to

a rigorous test. The Large Hadron Collider (LHC), at the European Organisation for

Nuclear Research (CERN), near Geneva, Switzerland, involves such experiments. It will

primarily1 collide protons to protons at energies we have never examined before, about

1The LHC is also a heavy-ion collider.
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14000 times the rest mass energy of the proton (∼ 1 GeV). There, we expect to at least

observe a hypothetical particle that is required for the consistency of the Standard Model,

the Higgs boson.2
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Figure 1.1: The Standard Model spectrum of known massive particles. The mass is shown on
the vertical axis in logarithmic scale, in units of GeV, from 10−6 GeV to 1019 GeV.
The photon, gluon and the neutrinos are not shown.

Forgetting for the moment the more concrete theoretical reasons (which we will review

in the following chapter) to expect the observation of new phenomena at the energy scales

of the LHC, we can make a plausibility argument for their existence by a simple observa-

tion. Figure 1.1 demonstrates the spectrum of known fundamental particles present in the

SM that possess mass.3 The vertical axis shows the mass in logarithmic scale, extending

from 10−6 GeV to the scale 1019 GeV, the fundamental scale of gravity, known as the

Planck scale.4 The Planck scale is the highest scale at which our current understanding

of physics makes sense. By examining Fig. 1.1, one may observe something bizarre and

slightly suspicious: many particles have been discovered with masses ranging from frac-

tions of a GeV to fractions of a TeV, and one more (the Higgs boson) is predicted below

2Or, if it is absent, we expect to observe a mechanism that explains that absence.
3The neutrinos also possess mass, albeit a small one. However, only mass differences are known and

we do not show them here.
4The Planck scale is the scale at which the strength of the gravitational interaction between particles

becomes of order one. An estimate is given by MPl = G
−1/2

N ∼ 1019 GeV, where GN is Newton’s
gravitational constant.



4 Chapter 1. Introduction

the TeV scale, but no known particles exist above that scale! The question that arises

is: why should there be such a ‘desert’ of energy (or mass) scales between the TeV scale

and the Planck scale? If we do not accept the existence of such a puzzling absence of

particles, then we can only conclude one of the following:

• We do not currently possess the correct understanding of the fundamental scale of

gravity, the Planck scale. Either there exists some specific mechanism explaining

why such a large hierarchy arises between the TeV scale and the Planck scale, or

the Planck scale is much lower than 1019 GeV.

• There exists a multitude of new particles and new interactions, waiting for potential

discovery by future experiments.

Both of these prospects are very exciting. The LHC will be instrumental in exploring the

TeV scale, perhaps revealing a whole new set of particles or phenomena that will provide

an explanation for the above observation.

This thesis focuses on hadron colliders, of which the LHC is the most ‘powerful’ ever

built. It is an extraordinary experiment, based on a collaboration which transcends bor-

ders, involving tens of thousands of researchers from more than a hundred nations. The

task that particle physicists are facing at the LHC is non-trivial. Certain ingenuity is

required if we wish to maximise the amount of physics results obtained from the experi-

ments. A solid bridge of communication between the theorists and the experimentalists

needs to be established. This is where phenomenology comes into play: it provides an

interface between theory and experiment, for example through powerful computational

tools, Monte Carlo programs, which we will be discussing in detail in chapter 3. These

tools are indispensable to both experimentalists and theorists. In chapter 4, we make

analytical phenomenological predictions of the effects of the theory of the strong force,

quantum chromodynamics (QCD), to observables that experimenters will be using, either

in their searches for new physics, or for better understanding of known SM processes.

In the final chapter, 5, we take two well-motivated new physics scenarios and provide a

phenomenological analysis to act as a guide for experimentalists in their search.

In another part of his 1900 talk in Paris, Hilbert asks the following:

‘Who of us would not be glad to lift the veil behind which the future lies

hidden; to cast a glance at the next advances of our science and at the secrets

of its development during future centuries?’

We hope that soon we will have reached such a point.



Chapter 2

The Standard Model and beyond

2.1 Introduction

In his popular science book ‘QED: The Strange Theory of Light and Matter’ [6], Richard

Feynman writes:

Therefore the possibility exists that the three W ’s and the photon are all dif-

ferent aspects of the same thing. Stephen Weinberg and Abdus Salam tried to

combine quantum electrodynamics with what’s called the ‘weak interactions’

into one quantum theory, and they did it. But if you just look at the results

they get you can see the glue, so to speak. It’s very clear that the photon and

the three W ’s are interconnected somehow, but at the present level of under-

standing, the connection is difficult to see clearly – you can still see the ‘seams’

in the theories; they have not yet been smoothed out so that the connection

becomes more beautiful and, therefore, probably more correct.

Despite Feynman’s observation, the so-called ‘Standard Model’ of particle physics (ab-

breviated as SM) has been tremendously successful at describing experimental data. In

fact, the SM can be arguably considered as the quantitatively most successful theory our

species has ever constructed, with astounding agreement between theory and experiment:

the anomalous magnetic moments of the electron and of the muon are amongst the most

precise measurements in the whole of physics.

The ‘glue’-ing that Feynman refers to is the fact that the SM is a gauge theory of a

product of gauge symmetry groups:

SU(3)c × SU(2)L × U(1)Y , (2.1)

5



6 Chapter 2. The Standard Model and beyond

where the SU(3)c describes quantum chromodynamics (QCD) and the SU(2)L×U(1)Y the

electroweak (EW) theory. The SU(3)c symmetry, known as colour, is explicitly manifest

in Nature, whereas the SU(2)L×U(1)Y symmetry is broken down to U(1)em via the Higgs

Mechanism.

The Higgs Mechanism, introduced to explain the masses of fermions and bosons in the

theory by breaking the electroweak symmetry, is currently the least understood part of

the SM and is thus a source of inspiration to many extensions to the SM. Many of these

extensions attempt to explain the so-called ‘hierarchy problem’, which can be briefly

described as the lack of explanation for the stability of the Higgs boson mass against

radiative corrections. Due to this issue and other open theoretical questions, the SM is

often believed to be an incomplete description of particle physics. Its amazing success

at describing experiments, however, ensures that it will be a subset of a ‘true’ theory,

understood in the framework of effective field theories as capturing the low-energy limit

of some more fundamental, microscopic physics [7].

In section 2.2 we give a general introduction to the SM at its current state, starting

from the general principles for writing down a relativistic quantum field theory. We will be

focusing on the phenomenological aspects of the EW theory and QCD and mathematical

details will be kept to a minimum. In section 2.3 we examine some important open

theoretical and experimental questions that suggest the need for extensions to the SM

and present a brief overview of BSM theories.

The reader is referred to Ref. [8] for further details on the fundamentals of quantum

field theory. For further details on the basic principles of QCD and particularly on QCD

phenomenology, [9,10] are recommended and for a general introduction to gauge theories

and the Standard Model [7, 11, 12].

2.2 The Standard Model

2.2.1 Gauge theories

Symmetries provide good candidates for underlying first principles in Physics. The gauge

principle is an economical guide for using local symmetry to construct renormalisable

quantum field theories. The fact that local invariance is required is motivated by the

relativistic viewpoint: each observer, at every space-time point, possesses some freedom

of convention. This of course may be considered by some as an aesthetical argument;

however, the gauge principle has been proven to produce phenomenologically successful
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field theories and accounts for quantum electrodynamics (QED) as well as EW theory

and QCD.

The gauge principle is most simply illustrated in the case of invariance under the

unitary group U(1), which yields an abelian gauge theory that describes QED. Consider

the classical Lagrangian density1 describing the interaction of a spin 1/2, charged fermion

field ψ with the gauge field Aµ:

Lem = −1

4
FµνF

µν + ψ̄(i /D −m)ψ , (2.2)

where F µν = ∂µAν − ∂νAµ is the field strength tensor and the covariant derivative is

defined by /Dψ ≡ γµDµψ ≡ γµ(∂µ + ieAµ)ψ, where m and e are respectively the mass

and electric charge of ψ and we have also defined the Feynman slash convention. The

Lagrangian is invariant under the simultaneous gauge transformations:

Aµ → A′µ ≡ Aµ − ∂µχ , (2.3)

ψ → ψ′ ≡ eieχψ , (2.4)

where χ = χ(x, t) is an arbitrary function of space-time. Had we not included the field

Aµ, the Lagrangian would not have remained invariant under the local transformation of

the field ψ alone, owing to the derivatives present in the fermion kinetic terms. This can

be seen explicitly if we examine the transformation of the term ψ̄γµ∂µψ under Eq. (2.4):

ψ̄γµ∂µψ → ψ̄e−ieχγµ∂µ(eieχψ) = ψ̄(γµ∂µ + ieγµ(∂µχ))ψ , (2.5)

which is evidently not invariant unless we use the covariant derivative, which introduces

Aµ, to cancel out the extra term:

ψ̄γµDµψ → ψ̄e−ieχγµDµ(eieχψ) = ψ̄(γµ∂µ + ieγµAµ − ieγµ(∂µχ)ψ + ieγµ(∂µχ))ψ

= ψ̄γµDµψ (invariant) . (2.6)

Thus, the requirement that the Lagrangian (and hence the equations of motion) is invari-

ant under local U(1) transformations requires the existence of a gauge field Aµ. This field

corresponds to the electromagnetic field and hence to the photon.

1In what follows, and the rest of this thesis, we will be referring to the ‘Lagrangian density’ simply as
the ‘Lagrangian’.
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2.2.2 Electroweak theory

As we alluded in the introduction, the electroweak sector of the SM can be described by

a non-abelian gauge theory based on the group SU(2)L × U(1)Y , where the L subscript

indicates the left-handed chiral nature of the coupling of the gauge fields and Y is the

hypercharge, to be distinguished from the electromagnetic charge, Q. The SU(2)L quan-

tum number is referred to as the weak isospin. We can separate the Lagrangian into three

parts as

LEW = Lbosons + LHiggs + Lfermions , (2.7)

where Lbosons, LHiggs and Lfermions correspond to the gauge bosons, the Higgs field and the

fermions respectively.

2.2.2.1 Boson masses

The gauge boson Lagrangian now contains two gauge fields:

Lbosons = −1

4
FA

µνF
Aµν − 1

4
BµνB

µν , (2.8)

where the FAµν and Bµν are the field tensors corresponding to the SU(2)L and U(1)Y

symmetries and the index A labels the SU(2)L weak isospin quantum numbers:

FAµν = ∂µWAν − ∂νWAµ − gfABCWBµWCν ,

Bµν = ∂µBν − ∂νBµ , (2.9)

where the fABC are the group structure constants (the alternating tensor in the SU(2)

case) and g is the SU(2)L charge. It is important to note that the non-abelian field

tensor FAµν now contains a self-interaction term ∝WBµWCν , a feature that is even more

significant in SU(3) non-abelian gauge theory, as we shall see.

The SU(2)L × U(1)Y symmetry is not manifested in nature. It is in fact, a sponta-

neously broken symmetry: the W and Z gauge bosons are massive. The minimal way

to break it within the SM and give masses to the gauge bosons, while preserving the

gauge-invariant nature of the theory, is to introduce the complex scalar Higgs field that
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is an SU(2)L doublet and possesses hypercharge Y = 1/2:2

φ =

(
φ+

φ0

)
,

φ† =
(
φ̄0 φ−

)
,

(2.10)

where the meaning of the labels on the components will become apparent subsequently.

The corresponding Lagrangian, LHiggs is given by

LHiggs = (Dµφ)†(Dµφ) − V (φ†φ) , (2.11)

where the covariant derivative, which introduces the interaction between the Higgs field

and the gauge fields, is defined by

Dµ ≡ ∂µ + ig(T ·W µ) + iY g′Bµ . (2.12)

In the above, we have suppressed weak isospin indices, the T are matrix representations

of the SU(2)L generators and g and g′ are the SU(2)L and U(1)Y gauge charges respec-

tively. The potential term is given a special form containing quadratic and quartic terms,

commonly referred to as the ‘mexican hat’ potential:

V (φ†φ) = −µ2(φ†φ) + λ(φ†φ)2 , (2.13)

and the constants are chosen such that µ2, λ > 0. This potential possesses a minimum

at (φ†φ)min = µ2/2λ ≡ v2, an unstable maximum at the origin and goes off to positive

infinity as (φ†φ) → ∞ (hence the resemblance to the mexican hat). Figure 2.1 illustrates

the shape of the potential on the complex φ plane. To break the symmetry, a particular

direction (referred to as a ‘vacuum expectation value’ or VEV) in the SU(2) space for the

minimum of φ is chosen:

〈φ〉 =
1√
2

(
0

v

)
. (2.14)

2The hypercharge for the Higgs field could have been chosen Y = 1. The choice affects the hypercharges
for the rest of the matter content in the theory. The relation between electric charge, hypercharge and
the third component of weak isospin will contain factors of 2 accordingly.
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Figure 2.1: The ‘mexican hat’ potential given by Eq. (2.13), with µ2, λ > 0.

Notice that, at the minimum, the theory still possesses a residual U(1) symmetry. To

determine the properties of the theory at this minimum, we need to expand the fields

about it, using an SU(2) transformation of the field:

U(ξ) = e−iT ·ξ/v , (2.15)

φ =

(
0

(H + v)/
√

2

)
U(ξ) , (2.16)

where we have three ξ components and one scalar degree of freedom, H . At first order this

is just an expansion of the field about the minimum. Since the Lagrangian of Eq. (2.11)

is gauge-invariant, we should simultaneously perform an SU(2) gauge transformation:

T ·W µ → UT ·W µU−1 +
i

g
(∂µU)U−1 . (2.17)

We obtain the following form for the Higgs boson Lagrangian:

L =
1

2
∂µH∂

µH−V
(

(v +H)2

2

)
+

(v +H)2

8
χ†(2gT ·Wµ+g

′Bµ)(2gT ·W µ+g′Bµ)χ , (2.18)

where we have used the vector χ = (0, 1), a unit vector along the direction of the Higgs
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boson VEV. Evidently the three degrees of freedom from the ξ field do not appear ex-

plicitly in the Lagrangian. These degrees of freedom have been absorbed by the gauge

bosons and provide the longitudinal degree of freedom: a massive vector boson has three

polarisation states whereas a massless one has two.

We now consider the terms quadratic in the vector boson fields:

LM =
v2

8

[
(gW 3

µ − g′Bµ)(gW 3µ − g′Bµ) + 2g2W−
µ W

+µ
]
. (2.19)

We need to rewrite this in ‘diagonal form’, i.e. in terms of mass eigenstates. We define

two electrically neutral fields Zµ and Aµ:

Zµ = cos θwW
3
µ − sin θwBµ ,

Aµ = sin θwW
3
µ + cos θwBµ , (2.20)

where we have also defined the electroweak mixing angle, sin2 θw = g′2/(g2 + g′2) ≃ 0.23.3

Using the definitions of Eq. (2.20) we have

LM =
g2v2

4
W+

µ W
−µ +

(g2 + g′2)v2

8
ZµZ

µ , (2.21)

from which we can now deduce the vector boson masses:

MA = 0 , MW =
1

2
vg , MZ =

1

2
v
√
g2 + g′2 . (2.22)

Thus, with the particular choice for the Higgs boson representation, masses have been

generated for the weak vector bosons, Z and W±, while one field, A, has remained mass-

less. This corresponds to a U(1)-symmetric force which we identify with QED and a

boson which we identify with the photon, γ. We can thus write the following symmetry

breaking relation:

SU(2)L × U(1)Y → U(1)em , (2.23)

and we can associate the different charges of fields by

Q = T 3 + Y , (2.24)

where Q is the electromagnetic charge, T 3 is the third component of weak isospin and Y

3The current Particle Data Group value is sin2 θ̂(MZ)(MS) = 0.23116(13) [13].
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Representation T 3 Y Q

e−R 0 -1 -1




νeL

e−L




+1/2 0
- 1/2

−1/2 -1

νeR 0 0 0

d′R 0 −1/3 −1/3




uL

d′L




+1/2 +2/3

+1/6
1/2 −1/3

uR 0 +2/3 +2/3

Table 2.1: The first-generation fermion representations in the electroweak SU(2)L×U(1)Y the-
ory. The third component of weak isospin, T 3, the hypercharge, Y and the resulting
electromagnetic charge Q are given. The primes on the quark sector indicate that
they are not mass eigenstates. The right-handed neutrino is hypothetical, does not
couple to the SM particles and is shown for completeness.

is the hypercharge. Q is essentially the only remaining unbroken generator. We can now

see that the upper component of the Higgs doublet has Q = 1, whereas the lower one has

charge Q = 0, which explains why the VEV was chosen as in Eq. (2.14).

2.2.2.2 Fermion masses and couplings

Introducing fermion masses explicitly into the fermion Lagrangian would break gauge

invariance. The Higgs mechanism in its simplest form is the conventional method to

give masses to the SM fermions without any adverse effects. The choices of fermion

representations in the SM and their charges are given in Table 2.1, for the first generation.

The SM has been observed to contain three ‘copies’ of this structure: three generations.

Notice that the difference between the hyperchages of the singlet (right-handed) and

doublet (left-handed) is ±1/2, which allows us to use the Higgs doublet (with Y = 1/2)
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to form gauge-invariant terms:

L = gee(ν̄eL, ēL)

(
φ+

φ0

)
eR + gdd(ūL, d̄

′
L)

(
φ+

φ0

)
d′R

+ gνν(ν̄eL, ēL)

(
φ̄0

φ−

)
ν̄eR + guu(ūL, d̄

′
L)

(
φ̄0

φ−

)
uR

+ (other flavours) + h.c. , (2.25)

Thus, when the Higgs field obtains a VEV and the symmetry is broken, we obtain terms

quadratic in the fermion fields: mass terms proportional to the VEV, mff = gffv/
√

2,

and mixing terms between the fermions. To take care of this mixing we conventionally

define




d′

s′

b′


 = V




d

s

b


 , (2.26)

where V is known as the Cabbibo-Kobayashi-Maskawa (CKM) matrix.4 V is a 3 × 3

unitary matrix, given by

V =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 , (2.27)

and can be parametrized by three mixing angles and a charge-parity (CP) violating phase.

In the SM, this phase provides a source of CP violation, observed experimentally via mix-

ing in the neutral kaon system (K0-K̄0 mixing) [11]. See appendix C for parametrizations

of the CKM matrix and measured values of its matrix elements.

In practical calculations, the CKM matrix elements Vij can be inserted into the am-

plitude of diagrams where a W boson couples to quarks i and j. If we define the right-

and left-handed projection operator for fermions, PR,L = 1
2
(1 ± γ5), we may write down

4Kobayashi and Maskawa were awarded the Nobel Prize in 2008, on work related to the CKM matrix,
and specifically ‘for the discovery of the origin of the broken symmetry which predicts the existence of at
least three families of quarks in nature’ [14].
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the interaction term between the SM fermions f and f ′ and the W boson:

LWff =
g√
2
Vff ′ f̄γµPLf

′W µ + h.c. , (2.28)

where Vff ′ = 1 for leptons (ℓνℓ) and Vff ′ = Vij for quarks i and j.

2.2.3 Quantum chromodynamics

Quantum chromodynamics (QCD) is also formulated in terms of a gauge theory, based

on the non-abelian group SU(3). It possesses several distinct features: it is unbroken

in Nature, contains self-interacting degrees of freedom, the gluons, and exhibits asymp-

totic freedom, which reveals that only in the short-distance limit we can use perturbative

methods legitimately.

We will briefly review the construction of the theory and subsequently present pertur-

bative tools that will be employed in calculations that will follow in this thesis.

2.2.3.1 SU(3) gauge theory

The fermions that carry SU(3) charge, or colour charge, are the quarks. The full quantum

Lagrangian is given by

LQCD = Lclassical + Lgauge−fixing + Lghost . (2.29)

The expression for the classical Lagrangian is similar to what we have written down for

the QED and EW theories:

Lclassical = −1

4
FA

µνF
Aµν +

∑

flavours

q̄a(i /D −mq)abqb , (2.30)

where the sum over the index A is over the eight colour degrees of freedom of the gluon

field GA
µ , the sum over flavours is over the nf quark flavours and the field strength tensor

FAµν is defined as

FAµν ≡ ∂µGAν − ∂νGAµ − gsf
ABCGBµGCν , (2.31)

where gs is the strong charge and the fABC are the structure constants of SU(3). We

may also define the strong coupling constant αs ≡ g2
s/4π. The covariant derivative Dµ is
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defined according to whether it acts on triplet or octet fields:

(Dµ)ab = ∂µδab + ig(t ·Gµ)ab , (Dµ)AB = ∂µδAB + ig(T ·Gµ)AB , (2.32)

where t and T are generators (matrices) in the fundamental and adjoint representations

of SU(3) respectively. They satisfy the following relations:

[tA, tB] = ifABCtC , [TA, TB] = ifABCTC , (TA)BC = −ifABC . (2.33)

The following identities are true for SU(N) gauge theories:

Tr(tAtB) =
1

2
δAB ≡ TRδ

AB ,

∑

A

tAabt
A
bc =

N2 − 1

2N
δac ≡ CF δac ,

Tr(TCTD) =
∑

A,B

fABCfABD = NδCD ≡ CAδ
CD , (2.34)

which imply that for QCD, for which N = 3: TR = 1/2, CF = 4/3 and CA = 3.

In practical calculations an explicit representation for the tA is not necessary, and the

identities of Eq. (2.34) are used.

The classical Lagrangian, Eq. (2.30), is invariant under the simultaneous SU(3) trans-

formations:

qa → q′a =
(
eit·θ)

ab
qb ≡ Uabqb ,

t.Gµ → t.G′
µ = Ut ·GµU

−1 +
i

gs

(∂µU)U−1 , (2.35)

where θA = θA(x, t) are eight arbitrary real functions of space-time.

The Lagrangian of Eq. (2.30) cannot be used immediately to calculate Feynman rules

for QCD: in this form, a propagator for the gluon field cannot be defined.5 We can exploit

gauge invariance to add a gauge-fixing term to the QCD Lagrangian which amends this

issue:

Lgauge−fixing = −1

λ
(∂µGA

µ )2 , (2.36)

where λ is an arbitrary parameter. Provided we work in the covariant gauge, that is, a

gauge in which we choose ∂µGA
µ = 0, we have not made any changes in the physics and

5The same issue arises when defining the photon propagator in QED.
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(a) (b) (c) (d)

Figure 2.2: The quark-gluon vertex, (a), and part of the one-loop correction to it, (b), are
shown. We need to decide whether we assign the loop correction as a correction to
the vertex, as in (c), or to the rest of the diagram, as in (d). This is done at some
scale µR, above which the loop is part of the vertex and below which it is part of
the rest of the diagram.

we can now define a propagator for the gluon fields.

Finally, it is necessary to add an extra term to the Lagrangian which is related to the

need for ghost particles, Lghost, whose purpose is to cancel unphysical degrees of freedom

that may arise when renormalising a non-abelian gauge theory. For further details on

non-abelian gauge theory renormalisation and the need for ghost fields, see [8].

2.2.3.2 Renormalisation and the running of αs

Besides the masses of the quarks, the only other parameter which appears in the QCD

Lagrangian is the strong charge,6 gs. One should be cautious however: parameters in a

Lagrangian are not necessarily physical quantities. Physical observables can be calculated

as functions of these parameters, in this case of gs. What we would like to do is reformulate

the theory so we can write a physical observable as a function of another. This process is

called renormalisation.

As an illustrative example, as given in Ref. [9], consider the quark-gluon vertex shown

in Fig. 2.2. Figure 2.2a shows the lowest order of the vertex in perturbation theory, for

which we can define gs to be the strength. If we now start considering higher orders, and

specifically part of the one-loop correction shown in Fig. 2.2b, we must decide whether

we will include this as part of the vertex, as in Fig. 2.2c, or as part of the rest of the

diagram, as in Fig. 2.2d. To do this we choose some scale µR, called the renormalisation

scale, above which the loop is part of the vertex, as in Fig. 2.2c, and below which it is

6In practical calculations one usually employs αs rather than gs.
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part of the rest of the diagram, as in Fig. 2.2d. This scale should not have any physical

significance: it is simply a device we introduce to avoid double-counting. Due to this,

µR should not affect any physical prediction. However, the strength gs now becomes a

function of the scale µR.

We can see the effect of this procedure on the theory by considering a dimensionless

physical observable R that is a function of a physical scale Q2. After applying the above

renormalisation procedure, the observable R can only be a function of Q2, µ2
R and αs(µ

2
R).

Dimensional analysis restricts R to depend on Q2 and µ2
R only through their ratio, giving

R = R(Q2/µ2
R, αs(µ

2
R)) . (2.37)

We can now employ the fact that a physical observable cannot depend on the value of the

renormalisation scale, µR and write, using the chain rule:

µ2
R

d

dµ2
R

R(Q2/µ2
R, αs) = 0 ,

⇒
[
µ2

R

∂

∂µ2
R

+ β(αs)
∂

∂αs

]
R = 0 , (2.38)

where we have defined

β(αs) ≡ µ2
R

∂αs

∂µ2
R

. (2.39)

An important observation is that the Q-dependence of the quantity R would not have

come about in a classical theory: it is a feature of the renormalised theory which arises

due to the introduction of the scale µR.

Even though the β-function of QCD is currently known to four-loop accuracy,

β(αs) = −α2
s(β0 + β1αs + β2α

2
s + β3α

3
s + ...) , (2.40)

only the one-loop result is necessary for qualitative understanding of QCD:

β0 =
11CA − 4TRnf

12π
. (2.41)

For most phenomenology the number of active quark flavours can be taken to be nf = 5

and hence the β-function is negative when αs is small. This implies that the running
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coupling αs decreases to zero as an inverse power of lnQ2. To one-loop order, we have

αs(Q
2) =

αs(µ
2
R)

1 + αs(µ2
R)β0 ln(Q2/µ2

R)
. (2.42)

Hence QCD interactions become weak at high energy, a feature called asymptotic freedom,

and strong at low energy. This is in contrast to QED, where the observed charge of the

electron is smaller at large distances. This can be thought of as being due to the self-

interactions of the gluons: emission of virtual gluons, which are themselves charged, causes

the colour charge of the source that emitted them to ‘leak out’ to the vacuum. In effect,

this reduces the colour force at short distances since the interaction between distributed

charges that overlap is weaker than that between point charges.

2.2.3.3 Parton evolution

Free quarks or gluons have not been observed in Nature. This has led to the confinement

hypothesis: the only energy eigenstates of QCD that can exist in Nature have to be

colour-neutral (or colour-singlets). There is strong circumstantial evidence in favour of the

hadrons as bound states of quarks and anti-quarks. For example, there exists quantitative

understanding of high energy inelastic scattering of hadrons once they are taken to be

composites of quarks and gluons. In fact, hadron-hadron and hadron-lepton scattering can

be described in terms of perturbation theory and the parton model, a direct consequence

of the property of asymptotic freedom. The basic assumption of the parton model is that

interactions of hadrons are due to interactions of more elementary entities, called partons,

which turn out to be the quarks and gluons of QCD. The number and momenta of partons

are most conveniently described in terms of parton density functions (PDFs). Theoretical

and experimental details on the parton model can be found in [10].

The PDFs are fundamentally non-perturbative and at present cannot be predicted

from first principles. However, the evolution equations for their scale-dependence can be

derived (see, for example, [10]). We denote the fraction of momentum of the proton that a

parton i possesses at scale Q2 as x. The momentum fraction distribution is then denoted

by fi(x,Q
2). The equation describing the evolution of fi(x,Q

2), known as the DGLAP

(Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) equation, takes the following form:

Q2 ∂

∂Q2
fi(x,Q

2) =
∑

j

∫ 1

x

dz

z

αs

2π
Pij(z)fj(x/z,Q

2) , (2.43)
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where Pij(z) are the so called (regularised) splitting functions, related to the probability

of finding a parton i in a parton j and the integral is taken over all possible momentum

fractions for the splittings, z. The regularised splitting functions at leading order are

given by

Pqq(z) = CF

[
1 + z2

(1 − z)+
+

3

2
δ(1 − z)

]
,

Pqg(z) = TR[z2 + (1 − z)2] ,

Pgg(z) = 2CA

[
z

(1 − z)+
+

1 − z

z
+ z(1 − z)

]

+
1

6
(11CA − 4nfTR)δ(1 − z) , (2.44)

where we have used the so-called ‘plus’ prescription,

∫ 1

0

dx
f(x)

(1 − x)+
=

∫ 1

0

dx
f(x) − f(1)

1 − x
, (2.45)

and the values of the constants CA, CF and TR for QCD have been given in section 2.2.3.1.

2.2.3.4 Parton branching

Perturbative calculations in QCD are hard beyond leading order: the work involved in-

creases roughly factorially with the order. However, there are cases when we cannot

truncate the series to a fixed order since there are higher order terms that are enhanced

in certain regions of phase space. Such a region is collinear parton emission from a parton

involved in a scattering process. This can be either an incoming parton or an outgoing

parton. Branchings of outgoing partons are called ‘time-like’ (Fig. 2.3) and branchings of

incoming partons are called ‘space-like’ (Fig. 2.4).

We consider the kinematics for the time-like branching shown in Fig. 2.3 first. Our aim

is to calculate the modification to the n-body cross section when we have a single branching

in the collinear approximation. We define the opening angle between the outgoing partons

b and c as θ = θb + θc. The collinear approximation implies that θ → 0. If we neglect the

parton masses then p2
b ≈ 0 and p2

c ≈ 0. If we then define t ≡ p2
a, using pa = pb + pc, we

may write

t = 2pb · pc = 2EbEc(1 − cos θ) , (2.46)

where Eb and Ec are the corresponding energies of the partons b and c. Defining the
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Mn
a

b

c

θb

θc

Figure 2.3: The kinematics of time-like branching: an outgoing parton, part of an n-body
matrix element Mn, branches into partons c and b at angles θb and θc.

Mn

a

c

θb

θc

b(z)

Figure 2.4: The kinematics of space-like branching: an incoming parton a branches into par-
tons b and c. Parton b carries a momentum fraction z of parton a. Parton b then
takes part in an interaction in some n-body matrix element Mn.

energy fraction of the splitting, z, by

z ≡ Eb

Ea
= 1 − Ec

Ea
, (2.47)

t can then be approximated for small θ as

t ≈ z(1 − z)E2
aθ

2 . (2.48)

Due to the propagator factor, the (n + 1)-body matrix element squared, |Mn+1|2, is

proportional to 1/t. In fact, it can be shown that it can be written in terms of the n-body

matrix element squared as

|Mn+1|2 =
8παs

t
P̂ba(z) |Mn|2 . (2.49)
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The splitting function in this case, P̂ba, is ‘unregularised’, i.e. it may diverge as z → 0

or z → 1. It will be shown later how to obtain a regularised splitting function when

including the virtual corrections to the differential cross section, for the case of space-like

branching (section 4.2). The origin of the collinear enhancement is now obvious: it is due

to the 1/t factor which diverges as t→ 0, i.e. when the internal parton line is on-shell.

We can use Eq. (2.49) to compute the cross section for one branching in terms of that

for no branchings, using the following relations:

dσn+1 =
8παs

t
P̂ba(z)F |Mn|2 dΦn+1 ,

dσn = F |Mn|2 dΦn , (2.50)

where F is the flux factor for the initial state and Φm is the relevant m-body phase space.

It can be shown that

dΦn+1 = dΦn
1

4(2π)3
dtdzdφ , (2.51)

where φ is the azimuthal angle related to the branching. Hence, in the collinear ap-

proximation, when all angles are small, we have derived the relation between the n-body

differential cross section and the differential cross section for one time-like emission,

dσn+1 = dσn
dt

t
dz
αs

2π
P̂ba(z) , (2.52)

where an average/sum over initial/final spins has been taken. We can repeat the same

procedure for space-like branchings (Fig. 2.4) for which we define |p2
b | ≡ t. We then have

t = EaEbθ
2
c and the phase space factor becomes

dΦn+1 = dΦn
1

4(2π)3
dt

dz

z
dφ , (2.53)

where z = Eb/Ea = 1 − Ec/Ea. But in this case the initial-state flux factor, F , changes

by a factor of z because of the change of energy of the incoming parton from Eb to Ea.

Thus, it turns out that the expression for space-like branching is identical to the one for

time-like branching, Eq. (2.52).
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t

W, Z, γ H

H H

H H H H

Figure 2.5: The three most ‘dangerous’ quadratically divergent one-loop corrections to the
Higgs boson mass in the Standard Model. From left to right: the top contribution,
the gauge boson contribution and the Higgs boson contribution.

2.3 Beyond the Standard Model

2.3.1 The need for BSM physics

The standard model is phenomenally successful at describing strong, weak and electro-

magnetic interactions, with precision results up to O(100 GeV). Given its success, why

don’t we just look for the ‘missing’ Higgs particle and declare the end of particle physics

once we discover it? The reason is that there are conceptual and phenomenological hints

that the SM is incomplete. The conceptual issues include the multitude of unexplained

parameters, family replication and flavour hierarchies, the inability of the SM to incor-

porate gravity and the hierarchy problem. Phenomenological hints are neutrino masses,

Dark Matter, the cosmological vacuum energy (also known as Dark Energy) and the quest

for Grand Unification and coupling constant merging. We discuss a few of these issues

here.

2.3.1.1 The hierarchy problem and new physics

An important conceptual issue, known as the hierarchy problem, concerns the Higgs field.

Essentially the problem arises since, in its usual Standard Model incarnation, the Higgs

boson is considered to be a fundamental scalar. Fundamental scalars suffer from radia-

tive instability in their masses due to radiative corrections. The three most ‘dangerous’

contributions from radiative corrections to the Higgs boson mass in the SM come from

one-loop diagrams with top quarks, gauge bosons and the Higgs boson itself, as shown in

Fig 2.5. The contributions to the Higgs boson mass squared are proportional to a cut-off

scale squared, Λ2, with the top contribution being negative and the gauge and Higgs bo-

son contributions being positive. If Λ is set to be the Planck scale, MP l ∼ 1019 GeV, then
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the Higgs boson mass ought naturally to be of that order, barring any unnatural cancella-

tions between the positive and negative contributions. On the other hand, experimental

evidence shows that the Higgs boson should be light: its mass should be . 245 GeV,

assuming no new physics [13]. To achieve this, the cut-off scale Λ should be much lower

than the Planck scale and new physics, possibly in the form of new resonances, is expected

to appear at the electroweak scale ΛEW ∼ O(1 TeV).

2.3.1.2 The little hierarchy problem

If new particles are indeed responsible for cancelling the quadratic divergences to the

square of the Higgs boson mass, their masses should be O(1 TeV) by naturalness. How-

ever, current experimental data already set some constraints on possible new physics at

the TeV scale. For example, absence of nucleon decays and strong bounds on flavour-

changing neutral currents indicate that these effects cannot receive any significant contri-

butions from TeV-scale physics. Precision electroweak measurements put constraints on

operators arising by exchanging new heavy particles and scales which suppress them are

required to be larger than 2−7 TeV [15]. Therefore, there exists an issue of compatibility

between the experimental data and the expectation of the masses of the new particles re-

quired in order to satisfy the naturalness of the low Higgs boson mass. This is sometimes

referred to as the ‘little hierarchy problem’.

A possible ‘solution’ to this problem relies on the fact that the quadratic sensitivity to

the high energy physics of the Higgs boson mass is a result of loop contributions: to cancel

the quadratic divergences, the new TeV-scale particles only need to appear in interaction

vertices in pairs or more. Therefore, we can suppress the tree-level contributions, while

maintaining the cancellation of the loop contributions, by introducing a new symmetry

acting on the new particles, under which all the SM fields are neutral. The simplest, and

most common, choice is a Z2 symmetry, or parity.

2.3.1.3 Dark Matter

The nature of Dark Matter (DM) has been an open question in astrophysics since the

initial observations by Fritz Zwicky in 1933 which required the existence of non-luminous,

weakly interacting matter to explain the orbital velocities of galaxies in clusters. Following

the initial discovery, observations have indicated that galaxy rotation curves do not fall

off with radial distance from the galactic centre and evidence from the cosmic microwave
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background (CMB) indicates that DM makes up about 25% of the energy density of the

Universe [16].

There are two basic types of candidates for DM. The first is Massive Compact Halo

Objects (MACHOs). MACHOs are objects of baryonic origin such as black holes, brown

dwarf stars and giant planets. It has been shown, however that MACHOS cannot account

for more than 20% of DM [17]. The second type of candidates are weakly interacting

particles. The only candidates within the SM, the neutrinos, do not possess the necessary

density to compose the Dark Matter. In addition, the existence of hot (i.e. relativistic)

DM is not consistent with observations and hence any candidates should be relatively

heavy. Thus DM is thought to consist of cold (i.e. non-relativistic), stable, or at least

meta-stable [18, 19], massive particles which appear in theories beyond the SM. These

are usually called Weakly Interacting Massive Particles, or WIMPs. There are good

arguments that these particles might appear at the TeV scale [20].

2.3.1.4 Dark Energy

Strong evidence for the existence of Dark Energy comes from distant supernovae observa-

tions, indicating that our Universe is currently undergoing an accelerated expansion. The

question of the nature of Dark Energy is considered by theorists to be even more severe

than the Dark Matter problem, not only because Dark Energy is thought to contribute

about 70% of the energy density of the Universe, but also because we currently have no

strong theoretical explanations for it: it is totally mysterious. It could possibly be the

vacuum energy, in the form of a cosmological constant. The issue is much worse than the

previously mentioned hierarchy problem: calculations of the energy density of vacuum in

quantum field theory, with a cut-off at 1014 GeV,7 give a result for a cosmological con-

stant of the order of 1054 GeV4, whereas the measured value of the dark-energy density is

10−47 GeV4 [21]. It is likely that solving the problem requires a complete quantum theory

of gravity [22].

2.3.1.5 GUTs and coupling constant merging

A troubling feature of the Standard Model is the fact that it contains almost 20 param-

eters. It is thought that a fundamental theory of nature should be able to explain the

origin of their values through some underlying principle. We would also need to address

7This scale could be the Grand Unification scale, for example.
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the issue Feynman wasn’t comfortable with at the conception of the Standard Model: the

fact that the different components ‘have not yet been smoothed out’. It basically boils

down to the fact that we have three gauge couplings of different magnitudes. In mathe-

matical terms, the question is why is the gauge group of the Standard-Model semi-simple

and not simple?

A resolution to this issue is to assume that the underlying gauge symmetry of nature

is in fact a simple group, but it is broken at some high energy scale down to the gauge

group of the SM. For example, the underlying gauge group could be the SU(5) group,

which can be shown to contain an SU(3) × SU(2) × U(1) subgroup. The SU(5) group

can then be easily broken down to the SM group via the introduction of a set of Higgs

fields [21]. Although SU(5) can successfully incorporate the SM, it predicts proton decay

with a lifetime that has already been excluded [23]. Nevertheless, it is a simple example

of a Grand Unified Theory (GUT).

A GUT can possibly solve the problem of seemingly separate gauge couplings. As

we have already demonstrated in the case of the strong coupling constant, αs, the gauge

couplings are scale-dependent quantities. If the hypothesis of unification is to hold, they

must all equal each other at some scale, the grand unification scale. Below this scale, the

simple group (e.g. SU(5)) is broken down to the SM group and the separate couplings

have different behaviour. In fact, below the grand unification scale, the couplings for each

group SU(3), SU(2) and U(1) evolve according to the respective β-functions with no

memory of the simple group they originated from. If the exercise is performed, evolving

from low to high scale, however, it is found that the unification of the couplings in the

Standard Model is a ‘near-miss’, as can be seen by the dashed lines in Fig. 2.6.

2.3.2 Survey of BSM theories

2.3.2.1 Supersymmetry

Supersymmetry is one of the most popular extensions to the Standard Model, and not

without good reasons. Conceptually it is very appealing: it is the only possible extension

to the spatial symmetries of the theory in flat, four-dimensional space. It appears to be

able to accommodate a solution to the hierarchy problem, contains natural candidates

for Dark Matter and solves the ‘near-miss’ of the gauge-coupling unification in the SM.

It is also a powerful tool for understanding quantum field theories, especially in the non-

perturbative regime [25].
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Figure 2.6: Renormalisation group evolution of the inverse gauge couplings for SU(3), SU(2)

and U(1) (α−1
3,2,1(Q) respectively) in the Standard Model (dashed lines) and the

Minimal Supersymmetric Standard Model (solid lines). The super-particle mass
thresholds are varied between 250 GeV and 1 TeV, α3(mZ) between 0.113 and
0.123 and two-loop effects are included [24].

Supersymmetry introduces fermionic operators Qα and Q̄α̇ to the Poincaré generators

P µ (corresponding to translations) and Mµν (corresponding to rotations and Lorentz

boosts).8 The new operators satisfy the following anti-commutation relation:

{Qα, Q̄β̇} = 2(σµ)αβ̇Pµ , (2.54)

where σµ is the 4-vector of Pauli matrices. The anti-commutation relation implies that

two symmetry transformations QαQ̄β̇ have the effect of a translation. This is to be

expected since the operators themselves carry spin angular momentum, so it is clear that

supersymmetry must be a space-time symmetry.

Let |B〉 be a bosonic state and |F 〉 a fermionic state. Then we have, schematically,

Qα |F 〉 = |B〉 ,
Q̄β̇ |B〉 = |F 〉 , (2.55)

8Hence, the Poincaré group corresponds to the basic symmetries of special relativity.
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Figure 2.7: Cancellation between the quadratically divergent contributions to the Higgs boson
mass squared from top and stop loops in the MSSM render its mass finite.

and, as a result,

QQ̄ : |B〉 → |B(translated)〉 . (2.56)

Supersymmetry is a symmetry between bosonic particles and fermionic particles. The

matter fields (in the fundamental representations) of the Standard Model, fit into chiral

multiplets, while the gauge fields fit into vector multiplets. In supersymmetry, a chiral

multiplet contains a fermion field and a scalar field, related by a supersymmetry transfor-

mation such as the one described by Eqs. (2.55) and a vector multiplet contains a vector

field and a fermion field also related by the same transformation. If supersymmetry is

exact (i.e. unbroken) the particles related to fields in the same multiplet should possess

the same mass.

The minimal additional content of a supersymmetric theory to the matter fields of

the SM consists of a (super-)scalar for each chirality of the SM fermions and a (super-

)fermion for each SM vector boson. The Higgs boson sector for electroweak symmetry

breaking becomes more complicated, requiring the introduction of a second Higgs doublet,

otherwise the electroweak gauge symmetry would suffer a gauge anomaly. The conditions

for cancellation of gauge anomalies are already miraculously satisfied in the SM by the

known quarks and leptons, but in a supersymmetric theory, the multiplet which contains

the SM Higgs boson will now contain a fermionic partner. This would spoil the anomaly

cancellation, but can be avoided if a second doublet which has Y = −1/2 is introduced,

so that the contributions from the two fermionic members of the Higgs multiplets are

cancelled out. Furthermore, the Y = −1/2 doublet is required so that masses can be

given to the −1/3 down-type quarks and charged leptons [24].

The Minimal Supersymmetric Standard Model (MSSM) provides an elegant solution

to the hierarchy problem of the SM: the supersymmetric partner corrections cancel out the

quadratically divergent SM particle corrections to the square of the Higgs boson mass,

as illustrated in Fig. 2.7. Supersymmetry can also accommodate candidates for Dark
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Matter. As we have mentioned in section 2.3.1.2, to solve the little hierarchy problem

we need to introduce a new discrete Z2 symmetry, or parity. In the MSSM, and in other

supersymmetric models, R-Parity is introduced, under which the super-partners are odd

and the SM particles are even. If R-parity is exact, the lightest supersymmetric particle

(LSP) cannot decay to lighter SM particles and thus may be stable and contribute to

Dark Matter.

Exact supersymmetry is of course not manifested in nature, otherwise we would have

already observed the super-multiplets. A method to break supersymmetry is thus re-

quired; in fact this is where the elegance of the theory ends and the complications begin:

as a result of the breaking, many free parameters are added to the model. To maintain

the successful cure for the hierarchy problem, resulting in the observed W and Z masses,

the masses of super-partners should be around the TeV scale, with the lightest ones at

most about 1 TeV [24].

2.3.2.2 Extra Dimensions

Another possibility of extending the space-time symmetries of Nature is to introduce extra

spatial dimensions. This has been a long-discussed idea and has re-surfaced in different

contexts. There are many flavours of models with extra dimensions, each attempting

to address different issues that plague the SM: e.g. Universal Extra Dimensions [26] or

Randall-Sundrum type scenarios [27].

The Randall-Sundrum scenario is particularly interesting. In its simplest form, it is a

5-dimensional theory. The extra dimension is an interval, with the surfaces (or ‘branes’)

at the end of each interval being (3+1)-dimensional. One surface is at y = 0 and the

other at y = πR, where R is a length related to the extra dimensions. The metric

changes from y = 0 to y = πR as ηµν → e−kπRηµν where k is a constant. This implies

that all the length and energy scales change with y. If the fundamental scale is the

Planck scale, MP l, the y = 0 brane carries physics at MP l, but all energy scales are

‘red-shifted’ by the exponential factor until the other brane is reached, where we would

have an exponentially smaller scale. In particular, this scale can be the electroweak scale:

MEW ≈ MP le
−kπR ∼ 1 TeV. In fact this method ‘shifts’ the hierarchy problem to a

problem of finding the proper mechanism to fix the size of the extra dimensions. The

Randall-Sundrum scenario can also potentially incorporate a mechanism that explains

the flavour structure and mass hierarchy of the SM [28].

Very often, extra-dimensional models suffer from a ‘little hierarchy’ problem and a
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discrete parity needs to be introduced to restrict the production of heavier resonances

to pairs. This is sometimes called ‘Kaluza-Klein’ parity (KK parity). The lightest KK

resonance is sometimes also considered to be a viable Dark Matter candidate.

2.3.2.3 Strong dynamics

Strong coupling dynamics can provide an elegant and natural solution to the hierarchy

problem. It is natural in a literal sense since we have already observed an example in

Nature in which a large hierarchy arises: between the Planck scale and the proton mass

scales (1 GeV). This is a result of the running of the QCD coupling constant and the

strong coupling regime in the infrared.

In technicolour models, as some strong dynamics models are usually called, mass is

given to the electroweak gauge bosons via some new strong dynamics. Extensions to

these models allow mass to be given to the SM fermions as well. In typical types of

extensions we obtain large flavour-changing neutral currents which are highly constrained

by experiment. Technicolour models also have trouble facing the electroweak precision

tests. Minimal Walking Technicolour (MWTC) [29] is a model which has the smallest

deviation from precision data, with the most economical particle content. In MWTC

theories the coupling remains large and nearly constant over a wide range of energy

scales. Technicolour theories have also been combined with supersymmetry to alleviate

some of the issues present [30].

Strong dynamics theories may contain composite fermionic or bosonic resonances or

composite Higgs particles. We will examine a model which contains scalar leptoquark

resonances in section 5.3.

2.3.2.4 Dimensional deconstruction and Little Higgs models

Dimensional deconstruction involves building extra dimensions instead of starting with

them [31]. The idea can be used to construct renormalisable four-dimensional gauge

theories that dynamically generate extra dimensions. In this framework, extra dimensions

can be used purely as an inspiration and may be discarded in the end, together with all

the issues they introduce (for example, without the need of justification of the size of

the extra dimension). As a result, realistic theories of electroweak symmetry breaking in

four-dimensions can be constructed, with the new feature that they are perturbative (as

supersymmetry is) and insensitive to high energy details up to a cut-off scale much larger

than O(TeV).
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‘Little Higgs’ models are such models, inspired by the method of dimensional decon-

struction [32], although most do not have a simple five-dimensional or ‘theory space’

interpretation. In Little Higgs models a special ‘collective’ pattern is created in which

the gauge and Yukawa couplings break some global symmetries. As a consequence of

this special pattern, the one-loop contribution to the Higgs boson mass is not generated.

This can be viewed as the cancellation between divergences caused by the SM particles

(Fig. 2.5) and new resonances, as in supersymmetry. Unlike supersymmetry, the new

resonances have the same statistics as their SM counterparts. The remaining corrections

to the Higgs boson mass parameter are smaller and no fine tuning is required to keep

the Higgs boson light. At energies of O(10 TeV), the Little Higgs description becomes

strongly-coupled and the model needs to be completed in the ultraviolet regime, for exam-

ple by a QCD-like gauge theory with a confinement scale around 10 TeV [33]. Note that

in phenomenologically viable Little Higgs models, a discrete parity, called T -parity, needs

to be introduced to solve strains that arise from the electroweak precision tests [34, 35].

The phenomenological consequences are similar to those in supersymmetry: new heavy

resonances will be pair-produced and the theory may contain Dark Matter candidates.

2.3.2.5 String theory and all that

String theory [21] was ‘discovered’ by accident in the late 1960s, first proposed as a theory

of strong interactions. It was later dismissed as a valid theory of hadronic physics, but

some theorists considered the fact that it contained spin-2 resonances as an indication

that it could possibly lead to a theory of gravity. A lot of work has been done in the

‘framework’ of string theory and it has since become a popular candidate for a quantum

theory of gravity. However, organising principles for the ‘theory’ do not exist and at

present it seems that the number of possible solutions is practically infinite.

Another candidate for a theory of quantum gravity is ‘loop quantum gravity’. It

is a non-perturbative approach to a quantum theory of gravity, in which no classical

background metric is used. One of the consequences is that quantities such as area and

volume are quantised in units of the Planck length. It has modest aims, not attempting

unification; rather, its goal is to quantise Einstein’s general theory of relativity in four

dimensions [36].

Whatever the theory of quantum gravity looks like, what is certain at this point is

that we need a major revision of our understanding of the nature of space-time to discover

a path towards it.
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Monte Carlo methods and event

generators

3.1 Introduction

Theories of physical systems are formulated in terms of ‘equations of motion’. These are

usually differential equations which describe the rate of change of variables with respect

to system parameters, such as time. For concreteness, let us assume that the rate of

change of a particle’s position in one dimension, X, is given by the following differential

equation:

dX

dt
= f(t) , (3.1)

where f(t) is a given function of time. To calculate the displacement of the system from

t1 to t2, we need to integrate the differential equation:

X =

∫ t2

t1

f(t)dt . (3.2)

In fact, a vast majority of problems in Physics can be reduced to solving particular

integrals. Most of these integrals cannot be solved analytically, forcing us to resort to

numerical techniques to evaluate them.

In one dimension, calculating integrals numerically is just a matter of applying certain

well-known techniques, such as the trapezium rule, Simpson’s rule, gaussian quadrature

and so on. These take the values of f onN points {t1, ..., tN}, at certain fixed intervals, and

31
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yield an estimate of the integral. These ‘quadrature’ methods are based on approximating

the function f(t) with some polynomial. An alternative technique is based on the fact

that the value of the integral can be recast as the average of the integrand:

X = (t2 − t1) 〈f(t)〉 . (3.3)

We can approximate the average of the integrand by taking N values of t, uniformly

distributed on (t1, t2), and hence obtain a reasonable estimate of X:

X ≈ (t2 − t1)
1

N

N∑

i=1

f(ti) . (3.4)

The order in the sum in Eq. (3.4) is not of any significance so it is possible to draw the

N values of ti randomly. We can then write

X ≈ (t1 − t2) 〈f(ti)〉 ,
ti = (t2 − t1)ρi + t1 , (3.5)

where ρi is a random number1 on the interval (0, 1). This method of using random

numbers to aid the calculation of integrals is known as ‘Monte Carlo’ integration.2 If we

assume N ≫ 1, we can estimate the accuracy of the method using the Central Limit

Theorem. The distribution of 〈f(ti)〉 will tend to a Gaussian with standard deviation

σ = σi/
√
N , where σi is the standard deviation of the values of f(xi). This implies that

the inaccuracy of our estimate simply decreases as 1/
√
N .

In particle physics the dimensionality of the integrals is usually very large and vari-

able: for an n-particle final state, there are 3n − 4 dimensions, coming from the three

components of momentum and taking into account the total 4-momentum conservation,

plus flavour and spin labels. Table 3.1 shows the rate of convergence of the various in-

tegral approximation techniques in d-dimensions: the ‘quadrature’ rules all suffer from

1A random number is one whose value is unpredictable from any initial information. In practice
pseudo-random numbers are used in Monte Carlo event generators. These are sequences of numbers
which are fully deterministic, but are supposed to be indistinguishable from random numbers. We will
assume that a pseudo-random number generator has been provided and we will not make the distinction
in this thesis.

2The name is, of course, inspired by the ‘Casino de Monte Carlo’ which is a ‘legendary casino, a jewel
of the arts ‘Belle Epoque’, the absolute reference for all players. Its wide range of table games is the
most prestigious and the most complete in Europe’ [37]. The only association of the author of the thesis
to the famous casino appears at http://www.hep.phy.cam.ac.uk/theory/andreas/mc.jpg.
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Technique Convergence

trapezium 1/N2/d

Simpson’s 1/N4/d

mth-order gaussian quadrature 1/N (2m−1)/d

Monte Carlo 1/
√
N

Table 3.1: The rate of convergence with the number of points N used for each method in
d-dimensions.

the problem that they converge in accordance to N1/d, the number of points along each

axis.3 The convergence of the Monte Carlo technique overtakes each of the methods

mentioned at d = 4, 8 and d = 4m − 2 respectively and hence it is well-suited for the

high-dimensional integrals that appear in particle physics. The Monte Carlo integration

method in fact possesses many advantages over numerical quadrature methods: it con-

verges fast in many dimensions, it can handle complex integration regions, it has a small

‘feasibility limit’ (the number of function evaluations which must be made for the method

to work) and it is easy to estimate the accuracy of the result. Moreover, it is useful in

the study of fundamentally random processes since there can be a direct correspondence

between the parameter space points and actual events being modelled. This is one of the

main reasons why the Monte Carlo method has become an important tool for collider

experiments, through its use in constructing event generators and detector simulators.

3.2 Monte Carlo event generators

An event generator can be defined as any program which aims to simulate individual

events, rather than the bulk properties of a physical process. Using the Monte Carlo

method, an event generator is capable of simulating a wide range of interesting processes

that are expected at hadron colliders such as the LHC.

As we have already noted at the end of the previous section, in particle physics the

Monte Carlo method is closely related to the physical process under study in a way that

allows us to make a direct connection between phase space points and events. The Monte

Carlo method can be used to generate ‘unweighted’ events which can be manipulated like

those obtained by experiment.

3However this is only true for the quadrature methods if the derivatives exist and are bounded.
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3.2.1 Unweighted event generation

The unweighting of events (or phase space points) is performed by a method called ‘hit-

or-miss’. The method can be briefly described in the following steps:

• We find the maximum of the distribution f(t) in the interval (t1, t2), fmax, during an

initial sampling. This is taken to be the maximum weight in the integration region.

• In a subsequent sampling process, we choose whether we keep (accept) or throw

away (reject) a randomly chosen event with properties given by t, with probability

f(t)/fmax. We thus end up with a sample of events which have been ‘accepted’.

• During the initial sampling, the value of the integral, X, can also be calculated

using Monte Carlo integration as described by Eq. (3.5).

It should be understood that t is now a multidimensional phase space point. The above

steps can be translated to particle physics ‘language’ readily: the point t would be a set of

particle momenta and other quantum numbers, f(t) would be the matrix element squared

for the configuration t and X would be the total cross section within the cuts set by t1

and t2.

Both the convergence of the integral and the event generation efficiency can be im-

proved if importance sampling is employed. The basic idea is to perform a Jacobian

transformation so that the integrand is flatter in the new integration variable, thus reduc-

ing the standard deviation of the weights. Using importance sampling can improve the

efficiency by many orders of magnitude.

3.2.2 General features of event generators

We outline the components of an event generator. For further details the recent review [38]

is useful. We also discuss jets: although not explicitly part of the event generation, they

are important for making the connection between the parton picture, arising from the

theoretical calculations, and the hadrons observed in experiments.

3.2.2.1 Hard subprocesses

A particle physics event generator has at its core the simulation of ‘hard subprocesses’:

particle scattering at large invariant momentum transfer. These processes are calculable
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in the framework of QCD, as it becomes asymptotically free at high energy and hence

perturbative.

Unweighted hard scattering events are produced using the ‘hit-or-miss’ method as

described in section 3.2.1. In the case of hadron colliders, with incoming hadrons h1 and

h2, partons i and j are ‘extracted’ from each respectively, with corresponding momentum

fractions xi and xj . The probability density functions for the momentum fractions are then

given by the relevant Parton Density Functions (PDFs): fi/h1
(xi, µ

2) and fj/h2
(xj , µ

2), as

defined in section 2.2.3.3. The cross section for the hard subprocess h1h2 → n + X,

can then be calculated by assuming that the non-perturbative hadron physics and the

short-distance hard physics can be factorized [38]:

σ =
∑

i,j

∫ 1

0

dxidxj

∫
fi/h1

(xi, µ
2
F )fj/h2

(xj , µ
2
F )dσ̂ij→n(µF , µR) , (3.6)

where µF and µR are the relevant factorisation [10] and renormalisation scales and the

parton-level differential cross section may be written as

dσ̂ij→n(µF , µR) =
1

2ŝ
|Mij→n|2 (Φ;µF , µR)dΦn , (3.7)

where Φ is the final-state phase space, ŝ = xixjs is the partonic centre-of-mass energy

squared in terms of the hadronic centre-of-mass energy squared, s, and |Mij→n|2 is the

matrix element squared for the process, averaged over initial spin and colour. The phase

space dΦn over the n final-state particles is given by

dΦn =
n∏

k=1

d3pk

(2π)32Ei
(2π)4δ(pi + pj −

n∑

k=1

pk) , (3.8)

where pi and pj are the initial-state momenta.

3.2.2.2 Parton showers

The particles which participate in the hard subprocesses at hadron colliders are likely to

carry QCD charge. Of course, this is always true for the incoming partons. Inevitably,

colour-charged particles will radiate via the QCD interaction: quarks and gluons can

radiate gluons, gluons can branch out to quark-anti-quark pairs. This is in accordance

with the parton branching picture we presented in section 2.2.3.4, where we wrote down

the expression for the differential cross section for a single branching, Eq. (2.52). This



36 Chapter 3. Monte Carlo methods and event generators

equation contains a 1/t factor, and hence the t→ 0 phase space region is enhanced. This

is in fact a collinear-enhanced region, since, as we have already shown (Eq. 2.48), t ∝ θ2,

where θ is the opening angle for the branching.

The Monte Carlo method is well-suited for describing parton branching. This is done

in terms of the Sudakov form factor, which forms the basis of the ‘parton shower’. The

Sudakov form factor,

∆ba(t0, t) = exp

[
−
∫ t

t0

dt′

t′

∫
dz
αs

2π
P̂ba(z)

]
, (3.9)

is simply the probability of a parton evolving from scale (squared) t0 to t without branch-

ing, for a certain type of evolution ba (a parton a evolving to a parton b). The integral

over z would diverge at z = 0 and z = 1 and so needs to be cut-off at appropriate val-

ues, functions of the cut-off scale t0. The Monte Carlo branching algorithm, details of

which can be found in [10], evolves the parton from squared scale and momentum frac-

tion (t1, x1) to (t2, x2) in steps in (t, x) space. The algorithm takes into account collinear

enhancements to all orders in perturbation theory, a procedure called ‘resummation’ to

which we will return in chapter 4.

In addition to the collinear enhancements, there are enhancements due to the emission

of soft gluons. These are treated in detail in [10]. It turns out that these follow a

remarkable property called angular ordering: an example of a coherence effect common to

all gauge theories. The upshot of this effect is that parton emissions occur at successively

smaller angles as one evolves from the high scale of the hard subprocess to lower scales.

In the case of final-state showers, this means as one evolves ‘forwards’ from the hard

subprocess to the hadronization scale at which the outgoing hadrons are formed. But for

initial-state showers, it means as one evolves ‘backwards’ from the hard subprocess to the

constituent partons of the incoming hadrons. It is convenient to generate the initial-state

showers by backwards evolution because the hard subprocess kinematics must be specified

first and the shower must evolve to satisfy them.

3.2.2.3 Hadronization

The hard subprocess in conjunction with the parton shower will produce a set of partons

(quarks/gluons) from the scattering of the incoming hadrons, possibly associated with

some heavier resonances (heavy quarks, gauge bosons or new heavy particles) which would

then subsequently be decayed. Yet quarks and gluons are never visible in their own right.
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After the parton shower has terminated, we are left with a set of partons with virtuali-

ties (square of 4-momenta) of the order of the cut-off scale, which lies in the low momentum

transfer, long-distance regime. This regime is dominated by non-perturbative effects, such

as the conversion of the partons into hadrons, or hadronization. As a non-perturbative ef-

fect, hadronization can currently only be described by phenomenological models that are

inspired by QCD. The general approach assumes the hypothesis of local parton-hadron

duality, which associates the flow of momentum and quantum numbers at parton level

with those at hadron level. This hypothesis is important as it allows us to associate the

theoretical parton-level calculations with what is observed at collider experiments, the

hadrons. Here we briefly discuss the main features of two popular hadronization models:

the string model and the cluster model. Further details on these can be found in [10,38].

The string model is based on the assumption of linear confinement at large distances.

For example, for the production of a qq̄ pair, the model assumes the physical picture of a

‘colour flux tube’ being stretched between the q and the q̄. For a uniform tube, this leads

to a confinement picture with a linearly rising potential V (r) = κr, where κ is the string

constant, phenomenologically taken to have the value κ ≈ 0.2 GeV2. As the q and q̄

move apart the string may break, creating a new q′q̄′ pair, and the system breaks into two

colour-singlet systems qq̄′ and q′q̄. The string model offers a very predictive framework and

applies to complicated multiparton distributions but contains many parameters related

to flavour properties which need to be determined by data.

The cluster model is based on the so-called preconfinement property of parton showers:

the colour structure of the shower at any evolution scale is such that the colour-singlet

combinations of partons (i.e. clusters) can be formed with an asymptotically universal (i.e.

dependent only on the evolution scale and the QCD scale) invariant mass distribution. In

this model, cluster hadronization starts with non-perturbative splitting of gluons into qq̄

pairs (or diquark-anti-diquark) and the formation of clusters from colour-connected pairs.

Clusters above a certain (flavour-dependent) maximum mass are first fragmented in a

string-like fashion into lighter clusters. Most clusters then undergo sequential two-body

phase space decays. In the cluster model, heavy flavour, strangeness and baryon produc-

tion are suppressed and transverse momenta are limited by the cluster mass distribution.

The model, in combination with the angular-ordered shower, gives a fairly good overall

description of high-energy collider data, less good than the string model but with fewer

parameters.
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3.2.2.4 Jets

As we have seen, almost immediately after they are produced, quarks and gluons fragment

and hadronize, leading to sprays of energetic hadrons, which we may call ‘jets’. However,

the definition of a jet is not a simple one, even though we may easily identify the structure

on an event display. Defining a jet is complicated for several reasons:

• Partons have divergent branching probabilities in perturbative QCD.

• A jet may originate from the hadronic decay of a heavy particle or it may be radia-

tive, arising through the emission of a parton via parton branching.

• It is also never possible to identify a jet with a single parton: jets are colour-singlets

whereas partons are not.

To address these issues and create a consistent definition of what a jet is we need to define

a ‘jet algorithm’. These algorithms provide a set of rules for grouping particles into jets.

They involve a parameter that defines a distance measure between the particles, used

as a criterion to judge whether they belong to the same jet or not. A ‘recombination

scheme’ is also required, which indicates what the momentum of the combination of two

particles is when they are grouped together. A jet algorithm together with a recombination

scheme form a ‘jet definition’. A jet definition should possess the following properties, the

‘Snowmass accord’ [39], set in 1990 by a group of influential theorists and experimentalists:

• It has to be simple to implement in an experimental analysis and a theoretical

calculation.

• It has to be defined at any order of perturbation theory and yield a finite cross

section at any order of perturbation theory.

• It has to yield a cross section that is relatively insensitive to hadronization.

Another important and desirable property not explicitly mentioned but implied by the

above list is ‘infrared and collinear safety’ (IRC): if one modifies an event by either adding

a collinear or a soft emission, the hard jets that are found in the event should remain

unchanged. Some modern jet definitions do satisfy the Snowmass criteria and are IRC

safe. Examples are the kt and anti-kt algorithms, the Cambridge/Aachen algorithm and

seedless cone algorithms (e.g. SISCone). For a further, more detailed discussion on

carefully defining and using IRC-safe and Snowmass-accord jet algorithms see Ref. [40].
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3.2.2.5 The underlying event

Strong evidence for the existence of the ‘underlying event’ has existed since the CERN

ISR experiment, through measurements of momentum imbalance [41]. Experimentally,

what is called the ‘underlying event’ (UE) includes all activity in a hadronic collision

that is not related to the ‘signal’ particles from the hard subprocess (for example, the

leptons in the Drell-Yan process). This definition will obviously include initial- and final-

state radiation described by the parton shower, but for the sake of modelling, these extra

emissions can be attributed to the hard subprocess. It is then thought that the UE

originates from additional soft scatters that occur during a hadron-hadron collision. It is

a significant effect to consider when it comes to measuring jet properties: jet algorithms

will inevitably gather together any energy deposits from the soft particles in the vicinity

when constructing a jet. This will alter the energy and internal structure of the jets

formed by the algorithm.

Currently, description and understanding of the UE comes mainly through the use

of phenomenological models. The simplest model, called the UA5 model [42], treats the

UE as additional soft hadronic activity generated by additional clusters which have been

formed flat in rapidity, with an exponentially falling transverse momentum distribution.

A more recent, and phenomenologically more successful, model treats the UE as a

sequence of more or less independent parton interactions which include full parton show-

ers [43, 44]. This is capable of describing the jet-like structure of the UE. The additional

scatters are always modelled as simple 2 → 2 QCD scatterings as long as the scattering

contains a hard jet of at least a few GeV.

We will be examining the effect of the UE described by a model of the latter philosophy

of multiple parton interactions on certain hadron collider variables in chapter 4.

3.2.3 The HERWIG++ event generator

There is a healthy choice of general-purpose Monte Carlo event generators on the mar-

ket. The latest incarnations of the more popular generators are Pythia 8 [45] and

HERWIG++ [46], and a ‘new-comer’, SHERPA [47]. These differ mainly in physics, philos-

ophy and implementation of the various components described in section 3.2.2, a variety

which allows cross-checking of models and implementations.

The author of the present thesis has been a heavy user of the HERWIG++ event genera-

tor as well as member of the HERWIG++ collaboration and hence this thesis will inevitably
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be heavily biased towards that event generator. In this section we briefly review the main

features of the HERWIG++ event generator, in reference to the general features we have

presented in section 3.2.2. For further details, one can consult the manual [46] and public

webpages [48] which are updated to keep up with the latest developments.

HERWIG++ is based on the FORTRAN event generator HERWIG (which stands for Hadron

Emission Reactions With Interfering Gluons), first published in 1986 [49]. HERWIG++ is

not just a rewrite of the earlier FORTRAN version in the C++ language, but also introduces

physics improvements whenever necessary and feasible.

3.2.3.1 ThePEG

HERWIG++ is distributed as a comprehensive collection of plugin modules to ThePEG, the

‘Toolkit for High Energy Physics Event Generation’ [50], which provides all the infras-

tructure that is necessary to construct an event generator. It can handle random number

generation, the event record and a mechanism for creating physics implementations for

all steps of event generation. It also provides a reader for the Les Houches Accord event

format [51], a feature we make use of in section 5.2 to perform a phenomenological analysis

of a heavy charged vector boson model.

3.2.3.2 Hard process generation, parton shower and decays

Three main mechanisms for simulation of hard processes are available in HERWIG++:

1. A hand-coded set of matrix elements for common processes in hadron, lepton and

deep inelastic scattering collisions. These are written using a reimplementation of

the HELAS helicity amplitude formalism, which allows the spin correlations to be

carried forward to the remaining event simulation consistently.

2. A generic matrix element calculator for 2 → 2 processes, mainly used for Beyond-

the-Standard Model physics, which automatically determines the permitted dia-

grams for a set of given external legs from a list of active vertices.

3. As already mentioned, it is possible to read Les Houches Accord event format files

at parton level, with any number of legs to be read from external sources.

The parton shower associated with the hard processes is based on a new evolution

variable q̃, motivated from the branching of gluons off heavy quarks [52]. The evolution

in this variable ensures the angular ordering of emissions, to take into account the colour
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coherence effects. Prior to the parton shower, heavy unstable particles (e.g. Higgs bosons,

W , Z, top quarks and other BSM particles) are decayed. All intermediate coloured lines

are also showered.

3.2.3.3 Hadronization and hadron decays

HERWIG++ uses the cluster hadronization model, described in section 3.2.2.3. The unsta-

ble hadrons that are formed are decayed via the same framework as fundamental unstable

particles: using either a general matrix element based on the spin structure, or a specific

matrix element for the important decay modes.

3.2.3.4 The underlying event

The implementation of the multiparton scattering in HERWIG++ is connected to the parton

shower and hadronization models. Event generation starts with sampling the hard process

according its matrix element and PDFs. The parton shower evolves the final-state partons

from the scale of the hard interaction down to the cut-off scale for the hadronization. The

incoming partons are extracted out of the hadrons and the chosen number of secondary

interactions is sampled according to the QCD 2 → 2 matrix elements and the same

PDFs as for the hard process. The partons involved in the additional hard scatters also

undergo parton showers. Secondary interactions are showered in an identical way to the

hard process. However, backward evolution has to be modified: for example, an additional

scattering may lead to partons with more energy than the remaining energy of the hadron

remnants, and has to be vetoed. A further modification is that any incoming partons are

always evolved back to an initial gluon, with a gluon distribution identical to the one in

the initial hadron. Further details of the implementation can be found in [44].

3.2.3.5 Beyond the Standard Model

Each new physics model in HERWIG++ is implemented in a model class which includes

the model parameters and vertex structure. A model input text file allows for changes

in the parameters and all possible production and decay matrix elements with up to four

external legs are constructed. The BSM models currently available in HERWIG++ (version

2.5.0) are [53]:

• Supersymmetric models: MSSM and NMSSM implemented with flexibility in the

parameters via the Susy Les Houches Accord file reader [54].
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• A model for universal extra dimensions and an implementation of the Randall-

Sundrum model and ADD-type gravitons.

• A model for transplanckian scattering.

• A model involving non-derivatively and derivatively-coupled leptoquark resonances.

We will study the implementation and phenomenology of the leptoquark model in detail

in section 5.3.

3.3 Next-to-leading order matching

Fixed-order matrix elements are excellent for simulating well separated, hard partons,

but are unable to describe collinear and soft partons, which have logarithmically divergent

probabilities. Parton showers are good in the opposite region: hard, wide-angled emissions

are handled poorly while the enhanced soft and collinear emissions are well-described, even

for multiple emissions. Generic Monte Carlo event generators start the parton shower from

a leading order (LO) distribution of partons to produce a high multiplicity hadronic state

with relatively low transverse momenta. The fact that the shower starts from the LO

distribution implies that the total cross section is also accurate to that order.

However, for many processes there exist next-to-leading order (NLO) perturbative

calculations. These may provide significant corrections to both the total cross section and

the shape of distributions of observables. They are also essential in providing control over

the scale dependence of our calculations, absent from a LO calculation. We would thus like

to combine the NLO matrix elements with the parton shower. The task is non-trivial for

several reasons, which we shall discuss. We present a brief overview of two popular NLO

‘matching’ methods, the ‘Monte Carlo at Next-to-leading Order’ (MC@NLO) [55,56] method

and the ‘Positive Weight Hardest Emission Generation’ (POWHEG) [57, 58] method. The

discussion in this section has been adapted from [38] and [59]. We use these two methods

to simulate the production of heavy charged vector bosons at NLO in section 5.2.

3.3.1 MC@NLO

We begin by describing MC@NLO method for combining the NLO matrix element with the

parton shower. The parton shower and the NLO result contain terms of the same order
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and hence when defining any matching method we have to take care to avoid double-

counting. The MC@NLO method, as we shall see, exhibits the complication that a small

fraction of the generated events possess negative weights. These are few enough so that

the number of events required for constructing smooth distributions is comparable to that

for an ordinary LO process.

We demonstrate the procedure by applying it to a toy model, by assuming the emission

of only photons for simplicity. Consider a system that radiates particles with energy x,

such that 0 ≤ x ≤ 1. In perturbation theory, the cross section for a process at NLO (one

photon emission), after dimensional regularisation in d = 4 − 2ǫ dimensions is given by4

σNLO = lim
ǫ→0

∫ 1

0

dxx−2ǫ

[(
dσ

dx

)

B

+

(
dσ

dx

)

V

+

(
dσ

dx

)

R

]
, (3.10)

where the factor x−2ǫ has been retained from the phase space factor and

(
dσ

dx

)

B

= Bδ(x) ,

(
dσ

dx

)

V

= a

(
B

2ǫ
+ V

)
δ(x) ,

(
dσ

dx

)

R

= a
R(x)

x
, (3.11)

where a is the coupling constant (analogous to αs in QCD), B and V are constant with

respect to x and represent the Born (leading order) and virtual contributions, and R(x) →
B as x→ 0, where R is the real contribution.

Now, at leading order, an infrared-safe observable O(x) has an expectation value given

by

〈O〉LO = BO(0)

= lim
ǫ→0

∫
dxx−2ǫBδ(x)O(x) , (3.12)

where we have written the second line in a way convenient to be used below. We can then

4Dimensional regularisation is a technique used when renormalising a theory: the idea is to compute a
Feynman diagram as an analytic function of the dimensionality of space d. Any loop-momentum integral
will converge for sufficiently large d (in the case of infrared divergences). Hence in this case ǫ < 0 is
required.
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write down the equivalent NLO prediction for O using Eqs. (3.10) and (3.11):

〈O〉NLO = lim
ǫ→0

∫
dxx−2ǫO(x)

[
Bδ(x) + a

(
B

2ǫ
+ V

)
δ(x) + a

R(x)

x

]

= (B + aV )O(0) + lim
ǫ→0

[
a
B

2ǫ
O(0) +

∫ 1

0

dxx−2ǫO(x)a
R(x)

x

]
. (3.13)

For an observable O(x), the ǫ parameter gives rise to poles of opposite sign in the virtual

and real contributions which cancel to give a finite integral. To show this explicitly we

start by using the fact that

aBO(0)

∫ 1

0

dx
x−2ǫ

x
= −aB

2ǫ
O(0) , (3.14)

to write the expectation value of O(x) as

〈O〉NLO = (B + aV )O(0) + lim
ǫ→0

∫ 1

0

dxx−2ǫ

[
a
O(x)R(x) −BO(0)

x

]
, (3.15)

where Eq. (3.14) has been added and subtracted from Eq. (3.13). The integrand in the

second term does not contain any singularities and hence we can set ǫ = 0 to get:

〈O〉NLO =

∫ 1

0

dx

[
O(0)

(
B + aV − aB

x

)
+O(x)

R(x)

x

]
. (3.16)

This method of making the finiteness of the NLO expression explicit is called ‘subtraction’.

It yields an NLO-accurate expression for an observable. The MC@NLO formalism aims to

match the shower Monte Carlo to the NLO calculation, reproducing the expression of

Eq. (3.16).

An observable at leading order, i.e. with no radiation from the system before being

interfaced to the shower Monte Carlo, is given by the first line in Eq. (3.12). The energy

of the system in this case is xM = 1. A shower MC sums the enhanced higher order terms

to all orders to give the following for the distribution of the observable O:

dσ

dOLO+MC

= BIMC(O, xM) = BIMC(O, 1) , (3.17)

where IMC(O, xM) is the distribution of the observable after an MC shower starting with

energy xM . The above expression implies that the total rate at LO is given by B, which
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is due to the unitary nature of the parton shower. We can make an attempt to extend

Eq. (3.17) to NLO by simply replacing O(0) and O(x) in Eq. (3.16) with the MC shower

observables IMC(O, 1) and IMC(O, 1− x) respectively:

〈O〉naive =

∫ 1

0

dx

[
IMC(O, 1)

(
B + aV − aB

x

)
+ IMC(O, 1 − x)

R(x)

x

]
. (3.18)

We have assumed that the energy of the system is xM = 1 − x after the radiation of a

photon of energy x. The näıve expression of Eq. (3.18) implies that we need to generate

two events for a randomly chosen x:

• A ‘no emission + shower MC’-type event with xM = 1 and weight given by the

integrand in the first term, B + aV − aB/x, and

• a ‘one emission + shower MC’-type event with xM = 1− x and weight given by the

integrand in the second term, aR(x)/x.

We have of course called Eq. (3.18) the ‘näıve’ result since it is plagued by two issues.

The first is that as x → 0, the weights for the two types of events diverge even though

the integral is finite. The second issue is that this procedure introduces double-counting:

terms that appear in the NLO emission also appear in the shower MC. For an explicit

demonstration of how double counting occurs see Ref. [59].

Both identified problems of the näıve subtraction can be solved by introducing a

‘modified subtraction’:

〈O〉mod =

∫ 1

0

dx

[
IMC(O, 1)

(
B + aV − aB(1 −Q(x))

x

)
+ IMC(O, 1− x)

R(x) − aBQ(x)

x

]
,

(3.19)

where we have added to the first term the following:

IMC(O, 1)
aBQ(x)

x
, (3.20)

and subtracted from the second term:

IMC(O, 1 − x)
aBQ(x)

x
, (3.21)

where aQ(x)/x is analogous to a splitting function αsP (z) in QCD and Q(x) is a mono-
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tonic function that satisfies

0 ≤ Q(x) ≤ 1 , lim
x→0

Q(x) = 1 , lim
x→1

Q(x) = 0 . (3.22)

The difference between the added and subtracted terms does not contribute to the ob-

servable at O(a) since IMC(O, xM) is independent of xM at O(a0). The function Q(x)

is dependent on the shower MC used, which effectively requires the MC@NLO method to

be customised for each MC. The modified procedure can be shown to coincide with the

NLO result at O(a) and the integrand for the two ‘types’ of events can be shown to be

finite as x→ 0 [59], hence solving both issues. The extension to QCD from the toy model

does not require any significant changes to the procedure we have described. A necessary

modification involves an extra term related to the initial-state collinear divergences.

Notice that the weights in Eq. (3.19) can be either positive or negative. These lead to

‘unphysical’ negative weight events, which can be handled during the unweighting process

by assigning to them a weight -1 instead of +1. This can be easily taken into account

when producing histograms of distributions, by removing an event from the histogram bin

it corresponds to rather than adding it there. The events with negative weights, however,

can be manipulated in the same way as the positively-weighted ones: e.g. cuts can be

applied to them and they can be processed by detector simulation software.

3.3.2 POWHEG

The ‘Positive Weight Hardest Emission Generation’ (POWHEG) method was proposed to

overcome the problem of negatively-weighted events generated by MC@NLO. The goal is to

generate the hardest emission first using the exact NLO matrix element and yield only

positively-weighted events. Another advantage of the POWHEG method is that it does not

depend upon the subsequent shower MC.

In Monte Carlo event generators with angular-ordered showers, such as HERWIG++,

the first emission is not necessarily the hardest one. Hence, implementing the POWHEG

method requires the use of a transverse momentum veto to ensure that any emissions

that follow the first one are softer. Also, a ‘truncated shower’, extra soft radiation, must

be generated to recover the double-logarithm accuracy of the shower.

We first write down the inclusive differential cross section as given by the first emission
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in a parton shower,

dσPS = dΦ0B

[
∆(Q2, Q2

0) +

∫

Q2
0

dq2

q2

∫
dz
αs

2π
P (z)∆(Q2, q2)

]
, (3.23)

where ∆(q2
1, q

2
2) is the Sudakov form factor (see Eq. (3.9)), Q2 and Q2

0 are the starting scale

and cut-off scales for the shower respectively and dΦ0 is the Born phase space. Performing

the integral would give a total cross section equal to the Born cross section, as previously

mentioned.

Note that the real emission matrix element, R, can be split into a singular part and

a non-singular part: R = Rs + Rns. We can replace the splitting function in Eq. (3.23)

with the singular part of the real emission matrix element,

dq2

q2
dz
αs

2π
P (z) → dΦr

Rs

B
, (3.24)

where dΦr is the phase space of the radiation variables. The replacement can be carried

over to the Sudakov form factor by defining [38]

∆̄(Q2, q2) = exp

[
−
∫

dΦrαs
Rs

B

]
. (3.25)

For angular-ordered parton showers, a hard matrix element correction, related to the non-

singular term Rns, is necessary to cover the whole phase space and we get the following

result:

dσPScorr = dΦ0B

[
∆̄(Q2, Q2

0) +

∫
dΦrαs

Rs

B
∆̄(Q2, q2)

]
+ dΦ0,rαsR

ns . (3.26)

In the POWHEG method, we define Rs = R and hence Rns = 0. We then write

dσPOWHEG = dΦ0B̄

[
∆̄(Q2, Q2

0) +

∫
dΦrαs

Rs

B
∆̄(Q2, q2)

]
, (3.27)

where we have now used the NLO-weighted Born matrix element, B̄, defined by

B̄ ≡ B + αsV +

∫
(R− C) dΦr , (3.28)

where C are counter-terms chosen to approximate R with the same singularities so that
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the integral over four dimensions is finite. Parton showering using Eq. (3.27) will give

similar emissions as the first term in Eq. (3.26), but with a global NLO reweighing B̄/B,

which can be considered to be a local k-factor.5 The replacement B → B̄ will result in

the integrated cross section being correct to NLO.

We note that the term αsV +
∫

(R− C), which can be negative, is formally of order

αs and therefore it is always overcome by the positive-definite term B (otherwise the

perturbation expansion would not be valid). This results in positive weights being assigned

to each event, since the NLO-weighted B̄ is positive-definite.

5A k-factor is the ratio between a cross section at LO and one at higher order: k = σh.o./σLO.



Chapter 4

Effects of QCD radiation on hadron

collider observables

The original work in this chapter was done in collaboration with Bryan Webber and

Jennifer Smillie and appears in [1–3].

4.1 Introduction

We have already laid down a few convincing arguments for why we should expect new

particles or phenomena at the TeV scale in section 2.3.1. These include the naturalness

of the expected Higgs mass and the electroweak symmetry breaking scale, and arguments

that dark matter should naturally occur at the TeV scale. The LHC has been designed

to investigate the electroweak scale and hence it is hopeful that it will shed light to

some of the puzzles of the Standard Model within the next few years, by uncovering new

phenomena.

But searching for new physics at a hadron collider such as the LHC is a non-trivial task.

There are two main challenges we need to face. First of all, possible new physics signals can

be quite complex (see Fig. 4.1 for an illustration). New heavy resonances can decay into

multiple jets and/or leptons. If the new dynamics possesses some discrete parity, such as

R-parity in supersymmetry, then the new particles will be pair-produced, resulting in two

identical (or similar) decay chains and introducing a combinatorial problem. Moreover,

the end-point of likely long decay chains can very possibly be a particle which interacts

weakly with ordinary matter, especially since we expect it to be a dark matter candidate

(a WIMP). This would result in missing energy in our detector which would complicate

the issue further, especially in combination with the SM neutrinos which would also escape

49
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χ

χ

p

p

M

Figure 4.1: New physics processes are expected to provide complex signals: multiple jets
and/or leptons resulting in combinatorial issues plus missing energy. The diagram
shows the production of two heavy resonances (blue) via some matrix element
M and their subsequent decay chains into SM particles (black), new resonances
(red) and finally into some weakly interacting particles that escape detection (red
dashes). This could be, for example, the production of a gluino and a squark with
subsequent decay into a χ in supersymmetry.

the detector. Moreover, signals are expected to have low production rates, especially in

comparison against backgrounds usually occurring orders of magnitude more often.

The second set of challenges we need to face is intrinsic to a high energy hadron collider

(see Fig 4.2). These are mainly due to the fact that the incoming hadrons are ‘bags’ of

quarks and gluons and the high energy interacting partons radiate gluons before they

interact, according to the parton branching picture we presented in section 2.2.3.4. Thus,

processes are always associated with copious collinear initial-state radiation (ISR) which

affects the longitudinal momentum components of particles. Moreover, it is not possible

to measure the initial longitudinal (i.e. along the z-axis, defined parallel to the detector’s

beam pipe) components of the interacting partons in hadron colliders, since what is left of

the colliding hadrons (the ‘remnants’) travels down the beam pipe and is not detected.1

But the issues are not only limited to ISR and our inability to measure the z-components

of incoming partons: secondary partonic interactions between the interacting hadrons also

play an important role, contaminating the signal with soft particles. It is also worthwhile

to note that since the LHC is destined to become a high-luminosity machine,2 secondary

1Note, however, that central exclusive production, in which the protons remain intact and forward
detectors can be used to measure the z-component of the central system, has been investigated. See, for
example, [60].

2Here we refer to the instantaneous luminosity of a collider with bunched beams. If two bunches
containing n1 and n2 particles collide with frequency f and the beam profiles are characterised by σx

and σy, the transverse beam profiles in the horizontal and vertical directions respectively, then the
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Figure 4.2: Physics searches at hadron colliders are complex: high energy processes are always
associated with copious initial-state radiation (blue gluon lines), and secondary
interactions are very likely (secondary partons linking to small blue interaction).
We do not show secondary proton-proton interactions (pile-up).

proton-proton interactions (or ‘pile-up’) are also expected to add soft particles to the

events. Of course, one cannot forget the various experimental challenges due to beam

halo, noise and so on.3

Several search variables of varying complexity and assumptions have been constructed

to tackle the aforementioned issues. This is done, for example, either through cleverly

defining variables that have discriminatory power against backgrounds, after cuts have

been imposed to the event sample, or variables that are insensitive to QCD effects in

certain ways.

Kinematic variables can be constructed in order to constrain the momenta of particles

and hence search for new physics. They represent the first step in understanding the

observations at hadron colliders, since they make very few assumptions about the details

of the underlying physical model, such as the gauge groups, spins or couplings, providing

model-independent, robust information [62]. The very simplest class of the kinematic

variables are global inclusive variables, i.e. those that make use of all observed momenta,

without hypothesising any particular structure of the final state. Since the longitudinal

instantaneous luminosity is given by L = (fn1n2)/(4πσxσy). The rate of events for a certain process of
cross section σ is then given by dN/dt = L × σ [13].

3See, for example, Ref. [61] for details of the expected performance of the ATLAS experiment at the
LHC.
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momentum of the hard process is unknown, transverse variables of this class have been

generally investigated so far. Examples are the observed transverse energy ET , the missing

transverse energy, /ET , and their sum, HT = ET + /ET . The distributions of these quantities

can provide information on the energy scales of new processes such as supersymmetric

particle production [63–65].

Although longitudinal components of final-state momenta are strongly influenced by

ISR, they do contain information about the underlying hard process. Indeed, the amount

of ISR emitted is determined by the energy scale of the subprocess. This has motivated

several studies of global inclusive variables that contain longitudinal components, such as

the ŝ
1/2
min and the total visible mass M variables, which will be investigated in section 4.2.

Initial-state radiation also modifies the distributions of the products of the hard pro-

cess. This effect has been studied in great detail for the processes of electroweak boson

production, with the result that the transverse momentum and rapidity distributions

of W , Z and Higgs bosons at the Tevatron and LHC are predicted with good preci-

sion [66–68]. In contrast, the equivalent ET distributions have received little attention.

In section 4.3 we will be investigating the ET distribution in vector boson production and

Higgs boson production.

4.2 Effects of QCD radiation on global inclusive vari-

ables

4.2.1 Global inclusive variables

Global inclusive variables are easily defined with reference to Fig. 4.3, as found in [69].

We focus on a specific subprocess, formed by the interaction of two incoming partons from

the hadrons (protons or anti-protons). The resulting final-state particles can be either

visible, Xi, or invisible, χi. The visible particles Xi can originate either from the hard

process itself or from ISR and can be jets, electrons, muons and photons. The invisible

particles consist of SM neutrinos, which we take to be massless, and some new massive

BSM particles, not necessarily of the same type. We can define, using the sum of the

4-momenta of all the visible particles, the total 3-momentum P and the total energy E.

The only experimental information we possess about the invisibles is the total missing

transverse momentum 2-vector, /P T . Any global inclusive variable can be defined by using

E, components of P and /P T .



4.2. Effects of QCD radiation on global inclusive variables 53

X1

X2

X3

X4

Xnvis

χninv

χnχ+2

χnχ+1

p(p̄)
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Figure 4.3: Global inclusive variables can be defined with reference to the above figure, taken
from [69]. Black (red) lines correspond to SM (BSM) particles. The solid lines de-
note SM particles Xi, i = 1, 2, . . . , nvis, which are visible in the detector, e.g. jets,
electrons, muons and photons. The SM particles may originate either from initial-
state radiation, or from the hard scattering and subsequent cascade decays (indi-
cated with the green-shaded ellipse). The dashed lines denote neutral stable invisi-
ble particles χi, i = 1, 2, . . . , ninv which consist of some number nχ of BSM particles
(indicated with the red dashed lines), as well as some number nν = ninv − nχ of
SM neutrinos (denoted with the black dashed lines). The global event variables
describing the visible particles are: the total energy E, the transverse components
Px and Py and the longitudinal component Pz of the total visible momentum P.
The only experimentally available information regarding the invisible particles is
the missing transverse 2-momentum /P T .

4.2.2 The variable ŝmin

In Ref. [69] various global variables were investigated, including those that make use

of longitudinal as well as transverse momentum components. The quantities studied

included the total energy E visible in the detector (as defined in section 4.2.1) and the

visible invariant mass M ,

M =

√
E2 − P 2

z − /P
2
T , (4.1)

where Pz is the visible longitudinal momentum. In addition a new variable was introduced,

defined as

ŝ
1/2
min(Minv) ≡

√
M2 + /P

2
T +

√
M2

inv + /P
2
T , (4.2)
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where the parameter Minv is a variable estimating the sum of masses of all invisible

particles in the event:

Minv ≡
ninv∑

i=1

mi . (4.3)

The variable ŝ
1/2
min is simply the minimum value of the parton-level Mandelstam variable ŝ

(the square of the partonic centre-of-mass energy) which is consistent with the observed

values of the total energy E, Pz and /P T in a given event. It was argued that the peak

in the distribution of ŝ
1/2
min is a good indicator of the mass scale of new physics processes

involving heavy particle production in the absence of ISR and multiple parton interactions.

In Ref. [69] specific examples were given in tt̄, gluino pair-production and gluino-LSP

associated production and the dependence on Minv was also investigated.

It was also recognised that the effects of the ISR and the multiple parton interactions

make this measurement impossible, since ŝ
1/2
min would measure the total energy of the

full system, whereas the interest is on the energy of the hard scattering. In Ref. [70]

an alternative approach was proposed, preserving the definition, but instead of using

information from the calorimeters to construct the quantities E, P and /P T , reconstructed

objects were used. That means, objects that have been recognised via some algorithm as

jets, muons, electrons or photons were used. This seems to recover some of the attributes

of ŝ
1/2
min, but the distributions are not calculable analytically and hence we do not pursue

this method here.

4.2.3 ISR effects without invisible particle emission

In the present section we examine the effects of ISR on global inclusive variables, first in

an approximate fixed-order treatment, taking into account collinear-enhanced terms, and

then in an all-orders resummation of such terms. We quantify the way the distributions

of quantities that involve longitudinal momenta depend on the scale of the underlying

hard subprocess and on the properties of the detector, in particular the maximum visible

pseudorapidity ηmax. Initially, we ignore the effect of invisible final-state particles: we

assume that all the final-state particles from the hard subprocess are detected. We will

present the treatment of invisibles in section 4.2.5.

The Monte Carlo results presented in Ref. [69] show that the second term on the

right-hand side of Eq. (4.2) is not strongly affected by ISR. The first term is intended to

add extra longitudinal information about the hard subprocess, allowing a more reliable
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determination of its mass scale. The extra longitudinal information enters through the

visible mass M , and we therefore concentrate on this quantity.

4.2.3.1 Born approximation

In the Born (or leading-order) approximation, assuming that no beam remnants are de-

tected, M yields a perfect estimate of the centre-of-mass energy of the hard subprocess

with no invisibles. For incoming partons with momentum fractions x1,2:

E =
1

2

√
S(x1 + x2) , Pz =

1

2

√
S(x1 − x2) , (4.4)

where
√
S is the hadron-hadron centre-of-mass energy, so that

M2 = x1x2S , Y ≡ 1

2
ln

(
E + Pz

E − Pz

)
=

1

2
ln
x1

x2
, (4.5)

where we have also defined the rapidity of the visible system, Y . The differential cross

section for parton flavours a, b is thus:

dσab

dM2dY
=

∫
dx1 dx2 fa(x1)fb(x2)δ(M

2 − x1x2S)δ

(
Y − 1

2
ln
x1

x2

)
σ̂ab(x1x2S) , (4.6)

where fa,b are the relevant parton distribution functions for the incoming hadrons and σ̂ab

is the hard subprocess cross section. Hence, at Born level we find

S
dσab

dM2dY
= fa

(
M√
S
eY

)
fb

(
M√
S
e−Y

)
σ̂ab(M

2) . (4.7)

The parton distributions are sometimes given as Fi(x) = xfi(x), in terms of which we

have

M2 dσab

dM2dY
= Fa

(
M√
S
eY

)
Fb

(
M√
S
e−Y

)
σ̂ab(M

2) . (4.8)

If the partonic cross section σ̂ab has a threshold or peak, indicating that the ab subprocess

has a characteristic scale Q, then this is also manifest in the Born cross section (4.8) at

M ∼ Q, provided the relevant parton distributions are large enough for that subprocess

to contribute significantly.
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4.2.3.2 Quasi-collinear NLO correction

To examine the sensitivity of the above results to ISR, let us first compute the NLO

contribution due to quasi-collinear gluon emission and the associated virtual corrections.

Consider first the emission of a gluon from parton a. If the emission angle θ, defined with

respect to the beam direction in the lab frame, is large enough, say θ > θc, the gluon

enters the detector and contributes to M . In the small-angle approximation we then have

E =
1

2

√
S(x1/z + x2) , Pz =

1

2

√
S(x1/z − x2) , (4.9)

where x1/z is the momentum fraction of parton a before the emission, so that

M2 = x1x2S/z , Y =
1

2
ln

x1

zx2
. (4.10)

The correction associated with a detected emission from parton a is then:

αs

π

∫

θc

dθ

θ

dz

z
dx1 dx2P̂a(z)fa(x1/z)fb(x2)δ(M

2 − x1x2S/z)δ

(
Y − 1

2
ln

x1

zx2

)
σ̂ab(x1x2S)

(4.11)

where P̂a(z) is the unregularised a → ag splitting function and we have neglected the

running of αs for the moment.

On the other hand if the gluon misses the detector (θ < θc), E and Pz are still given

by Eq. (4.4), so the contribution is

αs

π

∫ θc

0

dθ

θ

dz

z
dx1 dx2P̂a(z)fa(x1/z)fb(x2)δ(M

2 − x1x2S)δ

(
Y − 1

2
ln
x1

x2

)
σ̂ab(x1x2S) .

(4.12)

Finally the associated virtual correction is the term that regularises the splitting function,

which in this approximation is

−αs

π

∫
dθ

θ
dz dx1 dx2P̂a(z)fa(x1)fb(x2)δ(M

2 − x1x2S)δ

(
Y − 1

2
ln
x1

x2

)
σ̂ab(x1x2S) .

(4.13)

Adding everything together gives a correction

δ

(
dσab

dM2dY

)
=

αs

π

∫
dθ

θ
dz dx1 dx2 P̂a(z)fb(x2)σ̂ab(x1x2S)

×
[1
z
fa(x1/z)δ

(
Y − 1

2
ln

x1

zx2

)
δ(M2 − x1x2S/z)Θ(θ − θc)
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+
{1

z
fa(x1/z)Θ(θc − θ) − fa(x1)

}
δ

(
Y − 1

2
ln
x1

x2

)
δ(M2 − x1x2S)

]
.

(4.14)

Setting aside for the moment the possibility of splittings other than a→ ag, the DGLAP

evolution equation for fa(x1) is

q
∂

∂q
fa(x1) =

αs

π

∫
dz P̂a(z)

[
1

z
fa(x1/z) − fa(x1)

]
, (4.15)

where q represents the scale at which the parton distribution is measured. Hence the

correction may be written as

δ

(
dσab

dM2dY

)
=

∫
dθ

θ
dx1 dx2 fb(x2)σ̂ab(x1x2S)

[
q
∂fa

∂q
δ

(
Y − 1

2
ln
x1

x2

)
δ(M2 − x1x2S)

+
αs

π

∫
dz

z
P̂a(z) fa(x1/z)

{
δ

(
Y − 1

2
ln

x1

zx2

)
δ(M2 − x1x2S/z)

− δ

(
Y − 1

2
ln
x1

x2

)
δ(M2 − x1x2S)

}
Θ(θ − θc)

]
. (4.16)

Since dθ/θ = dq/q, the first term represents a change of scale in the Born term. It replaces

the reference scale in fa by the scale Q of the hard subprocess. The remaining terms give

a correction

δ

(
dσab

dM2dY

)
=

αs

πS

∫

θc

dθ

θ

∫
dz

z
P̂a(z)fb

(
M√
S
e−Y

)

×
[
fa

(
M√
S
eY

)
zσ̂ab(zM

2) − fa

(
M

z
√
S
eY

)
σ̂ab(M

2)

]
. (4.17)

In leading-log approximation the θ integration just gives a factor of − ln θc. In the same

approximation, we may set − ln θc = ηmax,
4 the maximum pseudorapidity seen by the

detector. Note that this is a different quantity from Y , the true rapidity of the visible

system. The correction associated with parton b gives the same expression with a ↔ b

and Y → −Y . Thus, defining

x̄1 =
M√
S
eY , x̄2 =

M√
S
e−Y , (4.18)

4Note that this is an approximation to the conventional definition of the pseudorapidity η =
− ln tan( θ

2
), consistent with the leading-long approximation.
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we have

S
dσab

dM2dY
= fa(x̄1, Q)fb(x̄2, Q)σ̂ab(M

2)

+ ηmax
αs

π

∫
dz

z

[
z{P̂a(z) + P̂b(z)}fa(x̄1, Q)fb(x̄2, Q)σ̂ab(zM

2)

− {P̂a(z)fa(x̄1/z,Q)fb(x̄2, Q) + P̂b(z)fa(x̄1, Q)fb(x̄2/z,Q)}σ̂ab(M
2)
]
.

(4.19)

Expressing this in terms of Fi(x) = xfi(x), as in Eq. (4.8),

M2 dσab

dM2dY
= Fa(x̄1, Q)Fb(x̄2, Q)σ̂ab(M

2)

+ ηmax
αs

π

∫
dz
[
{P̂a(z) + P̂b(z)}Fa(x̄1, Q)Fb(x̄2, Q)σ̂ab(zM

2) (4.20)

− {P̂a(z)Fa(x̄1/z,Q)Fb(x̄2, Q) + P̂b(z)Fa(x̄1, Q)Fb(x̄2/z,Q)}σ̂ab(M
2)
]
.

Results for tt̄ production at the LHC (pp at
√
S = 14 TeV) with ηmax = 5 and Y = 0

are shown in Fig. 4.4. Leading-order MSTW parton distributions [71] were used. For

simplicity we have taken Q = M . Recall that the simplifying assumption made here is

that all tt̄ decay products are detected, so the M distribution vanishes below tt̄ threshold.

We see that there is a large negative NLO correction near threshold, followed by a broad

positive peak. To understand these qualitative features, consider the case a = b, as in

gg → tt̄, and Y = 0, so that x̄1,2 = M/
√
S ≡ x̄. Then the NLO correction becomes

simply:

δ

(
M2 dσ

dM2dY

)
= 2ηmax

αs

π
F (x̄)

∫
dzP̂a(z)

[
F (x̄)σ̂(zM2) − F (x̄/z)σ̂(M2)

]
. (4.21)

The first term is positive-definite, contributes only above threshold, and diverges at thresh-

old. It produces the broad positive peak. The second term is negative-definite, contributes

around threshold, and has a divergent coefficient. It provides the sharp negative peak.

4.2.3.3 Resummation

By adding and subtracting the expression

{P̃a(z) + P̃b(z)}Fa(x̄1, Q)Fb(x̄2, Q)σ̂ab(M
2) , (4.22)
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Figure 4.4: Distribution of visible mass M in tt̄ production at LHC for ηmax = 5 and Y = 0:
leading and approximate next-to-leading order.

in the integrand of Eq. (4.20) and comparing with Eq. (4.15), we see that the last line of

that equation corresponds to a change of scale Q→ Qc ∼ θcQ in the parton distributions,

leading to

M2 dσab

dM2dY
= Fa(x̄1, Qc)Fb(x̄2, Qc)Σab(M

2) . (4.23)

The above definition of Σab includes the approximation Qc ≈ θcM in the evaluation of the

PDFs, since they do not vary substantially with scale. To first order we can then write

Σab(M
2) = σ̂ab(M

2)

+ ηmax
αs

π

∫
dz{P̂a(z) + P̂b(z)}{σ̂ab(zM

2) − σ̂ab(M
2)} . (4.24)

The interpretation of this result is simple: undetected ISR at angles less than θc, cor-

responding to scales less than ∼ θcQ, is absorbed into the structure of the incoming

hadrons.

To resum the effects of gluons at angles greater than θc, consider first the real emission

of n such gluons from parton a. In the quasi-collinear approximation these form an
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angular-ordered sequence, giving rise to a contribution to Σab of

δR,n(Σab) =
(αs

π

)n
∫

θc

dθ1
θ1

∫

θ1

dθ2
θ2

. . .

∫

θn−1

dθn

θn

∫ 1

0

dz1 . . .dznP̂a(z1) . . . P̂a(zn)σ̂ab(z1 . . . znM
2)

=
1

n!

(
ηmax

αs

π

)n
∫ 1

0

dz1 . . .dznP̂a(z1) . . . P̂a(zn)σ̂ab(z1 . . . znM
2) , (4.25)

where again we have made the identification − ln θc = ηmax and we are still neglecting the

running of αs. The multiple convolution of the momentum fractions zi can be transformed

into a product by taking Mellin moments. Defining

∫ ∞

0

dM2
(
M2
)−N

σ̂ab(M
2) ≡ σ̂ab

N , (4.26)

we have

(αs

π

)n
∫ ∞

0

dM2
(
M2
)−N

∫
dz1 . . .dznP̂a(z1) . . . P̂a(zn)σ̂(z1 . . . znM

2) = (γ̂a
N)n σ̂ab

N ,

(4.27)

where

γ̂a
N =

αs

π

∫ 1

0

dz zN−1P̂a(z) . (4.28)

Therefore defining correspondingly,

∫ ∞

0

dM2
(
M2
)−N

Σab(M
2) ≡ Σab

N , (4.29)

the contribution (4.25) to this quantity will be

δR,n(Σab
N ) =

1

n!
(ηmaxγ̂

a
N)n σ̂ab

N , (4.30)

which summed over n gives

∑

n

δR,n(Σab
N ) = exp (ηmaxγ̂

a
N) σ̂ab

N . (4.31)

The corresponding virtual contributions give a Sudakov-like form factor,

exp

(
−αs

π

∫

θc

dθ

θ

∫ 1

0

dz P̂a(z)

)
. (4.32)
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and therefore the total contribution from parton a is

exp (ηmaxγ
a
N) σ̂ab

N , (4.33)

where γa
N is the anomalous dimension,

γa
N =

αs

π

∫ 1

0

dz
(
zN−1 − 1

)
P̂a(z) =

αs

π

∫ 1

0

dz zN−1Pa(z) , (4.34)

Pa(z) being the regularised a→ ag splitting function. Note that it is the virtual correction,

introduced via the form factor in Eq. (4.32), that has regularised the splitting function.

Parton b gives a similar factor with γb
N in place of γa

N , so the result for the quantity (4.29)

is simply

Σab
N = eηmax(γa

N +γb
N )σ̂ab

N . (4.35)

We can see as follows that this result is qualitatively correct. The anomalous dimensions

are positive for small N and negative for large N . Thus, for θc ≪ 1, Σab
N is enhanced

relative to σ̂ab
N at small N and suppressed at large N . Now from the moment definition

(4.26) small N corresponds to large M and vice versa. Hence the distribution of M is

suppressed at small M and enhanced at large M relative to the Born term, as observed

in the Monte Carlo [69] and NLO results.

The emission of partons other than gluons is included by introducing the anomalous

dimension matrix ΓN with elements given by

(ΓN )ba =
αs

π

∫ 1

0

dz zN−1Pba(z) , (4.36)

where Pba(z) is the regularised a→ b splitting function. Then

Σab
N = σ̂a′b′

N

(
eηmaxΓN

)
a′a

(
eηmaxΓN

)
b′b

. (4.37)

The corresponding generalisation of the evolution equation (4.15) is

q
∂

∂q
fb(x) =

αs

π

∫
dz

z
Pba(z)fa(x/z) . (4.38)
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Defining the moments of the parton distribution functions

fa
N =

∫ 1

0

dxxN−1fa(x) , (4.39)

we see that

q
∂

∂q
f b

N = (ΓN)baf
a
N , (4.40)

with solution

f b
N (q) =

(
[q/q0]

ΓN
)

ba
fa

N(q0) . (4.41)

Hence

f b
N (Q) =

(
eηmaxΓN

)
ba
fa

N(Qc) , (4.42)

where

Qc = θcQ = Qe−ηmax , (4.43)

showing that the evolution of the visible mass distribution is related to that of the parton

distributions over the same range of scales.

Taking into account the running of the strong coupling αs(q) in the evolution equation

(4.38), Eq. (4.42) becomes

f b
N(Q) = Kba

N f
a
N(Qc) , (4.44)

where

Kba
N =

([
αs(Qc)

αs(Q)

]p∆N

)

ba

, (4.45)

with the factor p = 6/(11CA−2nf ), coming from the QCD one-loop β-function, Eq. (2.41),

given in section 2.2.3.2, and

(∆N )ba =
π

αs

(ΓN)ba =

∫ 1

0

dz zN−1Pba(z) . (4.46)

The running of αs will affect Eq. (4.37) similarly, giving

Σab
N = σ̂a′b′

N Ka′a
N Kb′b

N . (4.47)

To invert the above we can write the following double convolution

Σab(M
2) =

∫ 1

0

dz1 dz2 σ̂a′b′(z1z2M
2)Ka′a(z1)Kb′b(z2) , (4.48)
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where

Kb′b(z) =
1

2πi

∫

C

dN z−NKb′b
N . (4.49)

In the above inversion, performed on the complex plane, the contour C is formally defined

to be to the right of all singularities of the integrand and runs parallel to the imaginary

axis from −i∞ to +i∞. We will be discussing the details of the inversion in section 4.2.4.

It then follows from Eq. (4.45) that Kb′b(z) obeys an evolution equation like that of the

parton distributions,

Q
∂

∂Q
Kb′b(z) =

αs(Q)

π

∫
dz′

z′
Pb′a(z

′)Kab(z/z
′) . (4.50)

Putting everything together, the visible mass distribution is related to the hard sub-

process cross section (in the absence of invisible final-state particles) as follows:

M2 dσab

dM2dY
=

∫
dz1 dz2 σ̂a′b′(z1z2M

2)Ka′a(z1)Fa(x̄1, Qc)Kb′b(z2)Fb(x̄2, Qc) , (4.51)

where the kernel functions Ka′a(z) and Kb′b(z) can be obtained by solving the evolution

equation (4.50) with the initial condition that Kab(z) = δabδ(1 − z) at Q = Qc or by

directly using Eq. (4.49) to invert the Mellin transform. The results shown in this section

use the former method whereas in section 4.2.5 results given by the latter method will

be shown. Note also that the assumption Qc ≈ θcM that we had made in Eq. (4.23) has

been alleviated in Eq. (4.51).

To verify that the integrated cross section is not affected by resummation, define

x1,2 = z1,2x̄1,2 and write Eq. (4.51) as

M2 dσab

dM2dY
=

∫
dx1 dx2 σ̂a′b′(x1x2S)Ka′a(x1/x̄1)fa(x̄1, Qc)Kb′b(x2/x̄2)fb(x̄2, Qc) .

(4.52)

Now
dM2

M2
dY =

dx̄1

x̄1

dx̄2

x̄2
, (4.53)

and ∑

a

∫
dx̄1

x̄1
Ka′a(x1/x̄1)fa(x̄1, Qc) = fa′(x1, Q) . (4.54)
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Hence

∑

ab

∫
dM2dY

dσab

dM2dY
=
∑

a′b′

∫
dx1 dx2 σ̂a′b′(x1x2S)fa′(x1, Q)fb′(x2, Q) , (4.55)

in agreement with Eq. (4.6).

Resummed results corresponding to Fig. 4.4 are shown in Fig. 4.5. We see that the

peak of the distribution has moved to much higher mass, beyond 1 TeV. This is due to

multiple emission of ISR partons in the evolution of the initial state from the detection

scale Qc to the hard subprocess scale Q. As the value of ηmax is reduced, the range of

evolution becomes smaller, less ISR is emitted, and the peak moves closer to the hard

subprocess scale, as illustrated in Fig. 4.6. Results for higher values of the visible rapidity

Y are shown in Fig. 4.7. The peak moves to lower mass as Y increases, as a consequence

of the suppression of high masses by the rapid fall-off of the parton distributions at high x.

All the results shown in the present section have been obtained by solving the evolution

equation (4.50) directly.

Figure 4.5: Resummed distribution of visible mass M in tt̄ production at LHC for ηmax = 5
and Y = 0.
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Figure 4.6: Resummed distribution of visible mass M in tt̄ production at LHC for Y = 0 and
lower values of ηmax: colour scheme as in Fig. 4.5.

Figure 4.7: Resummed distribution of visible mass M in tt̄ production at LHC for ηmax = 5:
results at non-zero visible rapidity Y .

4.2.4 Mellin transform inversion

In the previous section we presented results using the direct integration of Eq. (4.50). In

the following sections we will be using the inverse Mellin transform to calculate the kernel

functions. We outline the procedure in this subsection.

Equation (4.49), sometimes called the Bromwich integral, defines the inverse of a

Mellin transform. Formally, the contour C on the complex N -plane is to the right of all

singularities in the integrand and runs parallel to the imaginary axis from −i∞ to +i∞.

The formal contour C is shown in Fig. 4.8 in blue dashes. However, we often need to

perform the inversion on the complex plane numerically. The formal contour C turns out
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φ

Figure 4.8: Integration contours, C, C0 and C1, for the inverse Mellin transform as given by
the Bromwich integral, Eq. (4.49). The angle φ is used in the parametrization of
C0.

to be inappropriate for a numerical calculation. To see this, consider the parametrization

of the contour C passing through the point a on the real axis: N = a + it, where t is a

parameter which runs from −∞ to +∞. Then the Bromwich integral becomes

Kb′b(z) =
z−a

2π

∫ +∞

−∞
dt e−it ln zKb′b

N(t) . (4.56)

The above expression will not converge numerically because of the oscillatory nature of

the factor e−it ln z. In PDF evolution this is ameliorated by deforming the contour C to

contour C0, shown in Fig. 4.8 in purple dot-dashes. If there are no singularities in the

integrand in the region C0 − C, we expect the result of the integration not to change by

the deformation. This is indeed the case for all the functions we will be considering. The

contour C0 can be parametrized as N = a + teiφ where φ is a constant related to the

slope of the straight lines as shown in Fig. 4.8. It is easy to see that if φ > π/2, then a

damping term of the form et cos φ ln(1/z) is introduced in the integrand and hence numerical

convergence can be achieved. The contour C0 is usually used to evolve parton density

functions [72], according to Eq. (4.44).

However, in the case of the evolution kernels Ka′a(z), the linear contour C0 does not
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δC0
(z) δC1

(z)

Figure 4.9: A comparison of the resulting ‘delta’ functions obtained by using C0 (left) and C1

(right). It is obvious that the function obtained by using C1 behaves much more
like a delta function: going from z = 0.8 to z ≈ 1, δC0 goes from a value of ∼ 1 to
a value of ∼ 10, whereas δC1 goes from ∼ 10−8 to ∼ 10−5. Note the logarithmic
scale on the vertical axis in the right-hand figure.

provide sufficient accuracy to reproduce the function from its transform. This is due

to its inability to accurately invert a constant function fN = c to the correct analytic

result, a delta function. This implies that the inversion does not reproduce the necessary

initial condition, Ka′a(z,Q = Qc) ∝ δ(1 − z). A numerically more accurate contour is

available in the literature, used in the so-called ‘Fixed-Talbot algorithm’. This contour,

C1 is shown in solid red in Fig. 4.8. It has the form Re(N) = ImN cot(ImN/r), where

r is a parameter which we will set to r = 0.4m/ log(1/z) during the computation, m

being the required precision in number of decimal digits, a value derived from numerical

experiments. The contour is related to the ‘steepest descent’ path for a certain class of

functions. For further details on its origin and accuracy see Ref. [73]. A comparison of

the resulting ‘delta’ functions obtained by using C0 and C1 can be seen in Fig. 4.9. It is

obvious that the function obtained by using C1 behaves much more like a delta function.

We first rewrite the evolution kernel in a more convenient basis:

Ka′a
N =

(
O−1

[
αS(Qc)

αS(Q)

]p diag(λN,i)

O
)

a′a

, (4.57)
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where O is the matrix of eigenvectors of ∆N and diag(λN , i) is the diagonal matrix of its

eigenvalues. This is equivalent to using, implicitly, the singlet and non-singlet basis [10].

As a test of the evolution using Mellin inversion, we used the contour C1 to evolve

u-quark and gluon PDFs from a starting scale of Qc = 10 GeV to Q = 104 GeV. The form

of fa(x,Qc) at Qc = 10 GeV was extracted directly from the the leading-order MSTW

parton distributions [71] and the evolved results at Q = 104 GeV were compared to the

actual values given by the MSTW PDFs. The results are shown in Fig. 4.10, exhibiting

good agreement for most of the range of values of x. The discrepancy at high x is due to

the difference in treatment of fa(x) as x→ 1.
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Figure 4.10: The MSTW PDFs for the u-quark PDF (left) and the gluon PDF (right) evolved
from their given form at Qc = 10 GeV to Q = 104 GeV using Mellin inversion on
the complex plane via the C1 contour (red points). The actual values from the
MSTW PDFs are given for comparison (green points).

4.2.5 ISR effects including invisible particle emission

Suppose now that an invisible 4-momentum pµ
inv is emitted from the hard subprocess. If we

define the total lab frame 4-momentum of the incoming partons a and b as P µ = (E, ~P ),

then

P µ =
1

2

√
S[(x̄1 + x̄2), 0, 0, (x̄1 − x̄2)] , (4.58)
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and the visible 4-momentum will be given by P µ − pµ
inv. By definition, the visible mass is

then

M2 = (P − pinv)
2 = P µPµ + pµ

invpinv,µ − 2pµ
invPµ . (4.59)

Equation (4.59) demonstrates the interplay between two effects: on one hand ISR in-

creases the ‘true’ scale of the hard process Q, to the ‘apparent’ scale M by contaminating

the detector with extra particles, and on the other hand the invisible particle emission

decreases M by the loss of particles. In the case of gluino pair-production both effects

are equally important, as we will show.

Substituting from Eq. (4.58) in Eq. (4.59) and defining p±inv ≡ p0
inv ± p3

inv, we obtain

M2 = x̄1x̄2S +m2
inv −

√
S[x̄1p

−
inv + x̄2p

+
inv] , (4.60)

where minv represents the total invariant mass of the invisibles, m2
inv = pµ

invpinv,µ.

The momenta pµ
inv are defined in the lab frame, relative to which the centre-of-mass

frame of the hard subprocess is boosted by an amount defined by the momentum fractions

x1 and x2 of the partons entering the subprocess. This implies that the p±inv transform as

p+
inv =

√
x1

x2
q+
inv , p−inv =

√
x2

x1
q−inv , (4.61)

where q±inv ≡ q0
inv ±q3

inv, defined in terms of the invisible momentum, qµ
inv, in the centre-of-

mass frame of the hard subprocess. Substituting the expressions of Eq. (4.61) in Eq. (4.60),

we find an expression for the visible invariant mass:

M2 = m2
inv + x̄1x̄2S

[
1 − z1f

+
inv − z2f

−
inv

]
, (4.62)

where we have defined f±
inv = q±inv/Q and used Q2 = x̄1x̄2z1z2S. We may now solve

Eq. (4.62) for Q2 to obtain Q2 in terms of M2:

Q2 =
z1z2(M

2 −m2
inv)

1 − z1f
+
inv − z2f

−
inv

. (4.63)

The above expression for the hard subprocess scale now becomes the argument of the
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parton-level cross section, σ̂a′b′ in Eq. (4.51):

S
dσab

dM2dY
=

∫
dz1 dz2 Ka′a(z1)fa(x̄1, Qc)Kb′b(z2)fb(x̄2, Qc) σ̂a′b′

(
z1z2(M

2 −m2
inv)

1 − z1f
+
inv − z2f

−
inv

)
.

(4.64)

The functions f±
inv, which are related to the invisible particle 4-momenta, remain to be

determined. The visible system rapidity, Y , is also modified by the presence of invisible

particles as

Y =
1

2
log

(
x̄1(1 − z1f

+
inv)

x̄2(1 − z2f
−
inv)

)
, (4.65)

and therefore Eqs. (4.18) for x̄1,2 become:

x̄1 =

√
(M2 −m2

inv)(1 − z2f
−
inv)

S(1 − z1f
+
inv − z2f

−
inv)(1 − z1f

+
inv)

eY ,

x̄2 =

√
(M2 −m2

inv)(1 − z1f
+
inv)

S(1 − z1f
+
inv − z2f

−
inv)(1 − z2f

−
inv)

e−Y . (4.66)

The kinematic constraints restrict Q2 to be greater than the threshold energy squared for

the process and the true invariant mass, M2
true ≡ x̄1x̄2S = Q2/(z1z2), to be greater than

the visible invariant mass, M2. These result in the following two constraints for Q2:

Q2 > Q2
threshold , Q2 > z1z2M

2 . (4.67)

4.2.5.1 Single-invisible decays

The benchmark scenario for a single invisible decay originating from the hard process is

tt̄ production in which one of the two tops decays into bqq′ (hadronic) and the other into

bℓν (semi-leptonic), the neutrino comprising the missing 4-momentum. Excluding the

proton remnants, we assume that all other particles within the pseudorapidity coverage

are detected. We will refer to the neutrino as the invisible particle and the W as the

intermediate particle in the tt̄ case, but the treatment is readily applicable to the gluino

case where the invisible particle is the χ0
1 and the intermediate particle is a squark (treated

in section 4.2.5.2).

To calculate the functions f±
inv and obtain Q2, we need to calculate the neutrino 4-

momentum in the hard process frame. This is done by choosing the neutrino 4-momentum

in the frame of its parent W and then applying two subsequent Lorentz boosts: one going
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from the W frame to the top frame, and one from the top frame to the hard process

frame. The decay chain is shown in Fig. 4.11. Each of these boosts involves two angular

variables which originate from the ‘decay’ of the parent particle. Hence the 4-momentum

qµ
inv of the neutrino may be written as

qµ
inv = Λµ

κ

(
Q, θ̂, φ̂

)
Λκ

λ

(
θ̃, φ̃
)
p̄λ

ν(θ̄, φ̄) , (4.68)

where the Λ’s are Lorentz boost matrices and where quantities with a hat refer to the

hard process frame, quantities with a tilde refer to the top frame and quantities with a bar

refer to the W frame. The angles θ and φ represent the usual polar angles, defined with

respect to the direction of the ‘sister’ particle (see Fig. 4.11). For example, in the case

W+ → ℓ+νℓ, where the W+ was produced from the top decay along with a bottom quark,

the angles (θ̄, φ̄) are defined with respect to the direction of motion of the b quark in the

W+ frame. The two boost vectors have magnitudes given by |~βi| = |~pi|/Ei (i = t,W ),

the ratio of the parent 3-momentum magnitude and its energy. The boosts, as well as

the magnitude of the invisible particle 4-momentum, can be obtained by considering the

kinematics in each frame as:

p̄λ
ν(θ̄, φ̄) = mW

2
(1, ~̄r) , (4.69)

~βW =
m2

t−m2
W

m2
t +m2

W

~̃r ,

~βt =
√

1 − 4m2
t

Q2
~̂r ,

where ~r = (sin θ cosφ, sin θ sinφ, cosφ) is the unit vector in spherical polar coordinates in

the appropriate frame and mW , mt are the W and top quark masses respectively. The

4-vector fµ
inv, and hence the functions f±

inv, are calculated by f±
inv = q±inv/Q. Evidently,

the functions f±
inv are functions of Q2, giving an implicit equation for Q2. To make this

more explicit, we rewrite Eq. (4.63):

Q2 =
z1z2 [M2 −m2

inv(Q
2,Ω)]

1 − z1f
+
inv(Q

2,Ω) − z2f
−
inv(Q

2,Ω)
, (4.70)

and analogously for Eq. (4.66), where Ω represents the set of all angular variables. In the

present case minv(Q
2,Ω) = mν ≃ 0 but for multiple invisible particles it will also be a

function as indicated.

Equation (4.70) needs to be solved numerically for each set (z1, z2,Ω) in the region
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g̃/t

(θ̄, φ̄)

(θ̃, φ̃)

(θ̂, φ̂)

q̃/W

χ0
1/ν

q

q/ℓ

Figure 4.11: The sequential two-body decay chain under consideration in the invisible particle
treatment. The relevant production angles in the parent centre-of-mass frame
are also shown in parentheses.

(4m2
t/g̃, z1z2S), where S is the square of the proton centre-of-mass energy, along with

the restriction that the visible invariant mass should be lower than the ‘true’ invariant

mass, M ≤Mtrue. The numerical solution was found using the Van Wijngaarden-Dekker-

Brent method [74,75], a bracketing method for finding roots of one-dimensional equations.

Since Q is not uniquely determined for each M , different values of the ‘true’ centre-of-

mass energy Q contribute to the cross section. Note that not all possible configurations

(z1, z2,Ω) are kinematically allowed to contribute to the cross section at M and hence

some configurations do not yield roots of Eq. (4.70). Once Q2 is obtained, the parton-

level cross section for the hard process partons, σ̂a′b′(Q
2), is calculated. This result is then

multiplied with the parton density functions for the incoming partons, fa,b(x̄1,2, Qc), and

the kernels for evolution from incoming partons a and b to hard process partons a′ and b′

(Ka′a(z1) and Kb′b(z2)). We then integrate over all possible values of z1 and z2, according

to Eq. (4.64). Finally, to obtain the full resummed result we have to integrate over the

distribution of the angular variables Ω. Notice that the visible invariant mass distribution

becomes non-zero below the threshold for production, M < 2mt/g̃, owing to the loss of

invisible particles.

4.2.5.2 Double-invisible decays

We now turn to the case where both particles produced in the hard process decay invisibly.

For illustration we refer to sequential decays of the gluino: g̃ → q̃q → χ0
1qq. Although

this decay mode is generally not the dominant one, it is useful for illustration of the

procedure. We extend the treatment given in the semi-leptonic/hadronic top case by



4.2. Effects of QCD radiation on global inclusive variables 73

writing out functions related to the two invisible particle 4-momenta in the decay chain

(which we call χ and χ′):

qµ
χ = Λµ

κ

(
Q, θ̂, φ̂

)
Λκ

λ

(
θ̃, φ̃
)
p̄λ

χ(θ̄, φ̄) , (4.71)

qµ
χ′ = Λµ

κ

(
Q, θ̂′, φ̂′

)
Λκ

λ

(
θ̃′, φ̃′

)
p̄λ

χ′(θ̄′, φ̄′) , (4.72)

where the primed quantities now distinguish between the two invisibles. Since both of

these 4-vectors are defined in the hard subprocess frame, we simply have

f±
inv =

1

Q

(
q±χ + q±χ′

)
. (4.73)

The rest of the treatment is identical to the case for one invisible particle: an implicit

equation has to be solved to obtain Q2 for each (z1, z2, Ω) set and then an integral over

Ω is taken to obtain the resummed result.

4.2.5.3 Angular distributions

The distributions of the angular variables Ω = (θ̂, φ̂, θ̃, φ̃, θ̄, φ̄), appearing in the treatment

of invisibles given in the previous sections, are process-dependent. They represent the an-

gles at which the daughter particle is emitted in the frame of the parent particle. We in-

vestigated the angular distributions using HERWIG++ version 2.4.0 and subsequently used

the results in calculating the f±
inv functions. The results for SPS1a gluino pair-production

are shown in Fig. 4.12, where the uniform distributions are shown for comparison (red

horizontal line). Figure 4.13 shows the distributions as obtained for top pair-production.

The neutrino angle in the W frame is also compared to the analytic calculation. As ex-

pected, all the φ angles, in both cases, were found to be uniform (not shown). The form

of all the distributions can be justified using general spin considerations:

θ̂i: The angular distribution of the angle θ̂i at which the fermions are produced in

the hard process frame is expected to have the form ∼ 1 + β cos2 θ̂i, where β is a

process-dependent constant.

θ̃i: The angle θ̃i, is defined between the direction of the daughter boson (W or q̃)

with respect to the direction of polarisation of the parent (t or g̃). The angular
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distribution for a spin-up fermion parent is then given by [76]

1

N↑

dN↑

d cos θ̃i

=
1

2
(1 + Pαi cos θ̃i) , (4.74)

where αi is a constant and P is the modulus of the polarization of the parent.

Since the production processes for both tt̄ and g̃g̃ are parity-conserving, there is

also an equal spin-down (N↓) contribution to the total distribution with the sign of

αi reversed. This results in a uniform distribution for cos θ̃i.

ˆ ˜ ¯
Figure 4.12: Monte Carlo results for the gluino pair-production decay chain angles. From left

to right: the production angle of the gluino in the hard process frame, the angle of
the outgoing squark in the gluino frame and the angle of the outgoing neutralino
in the squark frame. The uniform distributions are shown for comparison.

θ̄i: In gluino pair-production, the decay products of the squark, q̃, which is a scalar,

are uniformly distributed in cos θ̄. In top pair-production, on the other hand, the

decay W → ℓνℓ is parity-violating and the distribution of cos θ̄ is forward-backward

asymmetric in the W frame [10]. The angle θ̄ (sometimes called Ψ, see e.g. [77])

can be used experimentally to infer helicity information on the W . The distribution

may be written as

1

N

dN

d cos θ̄
=

3

2

[
F0

(
sin θ̄√

2

)2

+ FL

(
1 − cos θ̄

2

)2

+ FR

(
1 + cos θ̄

2

)2
]
,

(4.75)

where FL, FR and F0 are the probabilities for left-handed, right-handed and lon-

gitudinal helicities of the W in top quark decay respectively. The SM predictions,
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(FL, FR, F0) = (0.304, 0.001, 0.695), yield the blue solid curve shown on the right in

Fig. 4.13.

ˆ ˜ ¯
Figure 4.13: Monte Carlo results for the top pair-production decay chain angles. From left to

right: the production angle of the top in the hard process frame, the angle of the
outgoing W boson in the top frame and the angle of the outgoing neutrino in the
W frame. The uniform distributions are shown for comparison. The neutrino
angle in the W frame is also compared to the analytic calculation.

The spins of the two produced fermions (tops or gluinos) are correlated and this may

cause a degree of correlation between the distributions of particles in the decay chains.

We investigated whether these correlations play an important role in the calculation of the

invisible particle effects on the visible mass. By comparing the invariant mass distributions

with and without the spin correlations in the Monte Carlo we concluded that the effect

is small in both top and gluino pair-production and can be safely neglected.

4.2.6 Results

We present the resummed distributions obtained for tt̄ and g̃g̃ production according to

Eq. (4.64). All results are for the LHC at design energy, i.e. pp collisions at
√
s = 14 TeV.

We have integrated over the visible system rapidity, Y , in the range |Y | < 5. We first

compare our results to those obtained using the HERWIG++ event generator at parton

level (i.e. no hadronization or underlying event) and excluding the proton remnants.5 In

sections 4.2.6.3 and 4.2.6.4 we examine the effects of hadronization and the underlying

event. Parton-level top and gluino pair-production cross section formulae are given in

5We verified, using the event generator, that the contribution of the proton remnants to the total
invariant mass in the considered rapidity range is negligible.
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Figure 4.14: The tt̄ visible mass distributions for a pseudorapidity cut ηmax = 5, comparing
hadronic (no invisibles) and semi-leptonic (one invisible) decays. The leading-
order tt̄ invariant mass distribution is shown (red dot-dashes) for comparison.

appendix B. The PDF set used both in the resummation calculation and HERWIG++ is

the MRST LO** (MRSTMCal) set [78, 79].

4.2.6.1 Top quark pair-production

We present resummed results in comparison to Monte Carlo for Standard Model tt̄ pro-

duction, where we include particles with maximum pseudorapidity ηmax = 5. In Figs. 4.14

and 4.15 we show separate results for combinations of hadronic and semi-leptonic decays

of the top, leading to zero, one or two invisible neutrinos from the hard process. The

effect of the invisibles in both the fully semi-leptonic case and the hadronic/semi-leptonic

case are small compared to the effects of hadronization, to be discussed in section 4.2.6.3.

The differences between the Monte Carlo and resummed curves in Figs. 4.14 and 4.15

may be attributed to sensitivity to the behaviour of the PDFs and parton showering at

low scales, since Qc can be as low as 2mt × e−5 ∼ 2 GeV in the case of tt̄ production, and

the precise definition of Qc in terms of ηmax.
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Figure 4.15: The tt̄ visible mass distributions for a pseudorapidity cut ηmax = 5, comparing
hadronic (no invisibles) and fully leptonic (two invisibles) decays. The leading-
order tt̄ invariant mass distribution is shown (red dot-dashes) for comparison.

4.2.6.2 Gluino pair-production

We focus on the SPS1a point [80], which has gluino and lightest neutralino masses mg̃ =

604.5 GeV andmχ0
1

= 97.0 GeV respectively (and see table 4.1 for the squark masses). For

simplicity we set the squark mass in the invisible particle treatment to 550 GeV. We also

present results for a modified SPS1a point, with mg̃ = 800 GeV. In this process only the

two-invisibles case is realistic, but for comparison we also show results for no invisibles,

i.e. imagining that the two lightest neutralinos are also detected. When ηmax = 5, 3,

Particle Mass (GeV) Particle Mass (GeV)
g̃ 604.5 s̃L 570.7
χ0

1 97.0 s̃R 547.9

ũL 562.3 b̃1 515.3

ũR 548.2 b̃2 547.7

d̃L 570.7 t̃1 400.7

d̃R 547.9 t̃2 586.3

Table 4.1: The relevant particle masses in the supersymmetric model used in the invisible
study, SPS1a. The modified SPS1a point differs in that it has mg̃ = 800 GeV.
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there is fairly good agreement between the Monte Carlo and resummation predictions in

both the two-invisibles and no-invisibles cases, and for both gluino masses, as shown in

Figs. 4.16 and 4.17, where one should compare the dashed histograms (Monte Carlo) to

the solid curves of the same colour (resummation).

The shift in the peak of the visible mass distribution in going from no to two invisibles

is much larger than that in top pair-production, amounting to 600-700 GeV, roughly

independent of ηmax and the gluino mass. This results mainly from the higher masses

of the intermediate particles in the decays (mq̃ ≃ 550 GeV vs. mW = 80 GeV), which

implies a higher energy release, rather than the masses of the invisible particles themselves

(mχ0
1

= 97 GeV vs. mν = 0).

One of the assumptions of the resummation is that all the visible hard process decay

products are detected, which is not true when the maximum pseudorapidity ηmax is re-

stricted to lower values. When ηmax ∼ 2 in the Monte Carlo analysis, a significant number

of hard process particles begin to be excluded and hence the curves shift to lower values

compared to the resummed predictions. Figure 4.18 shows the rapidity distribution of the

decay products of the gluino at parton level for mg̃ = 604.5 GeV. For the case shown, cuts

of ηmax = 5, 3, 2 and 1.4 correspond to exclusion of, respectively, ∼0.002%, 1.1%, 7.5%

and 20.0% of the gluino decay products from the detector. The effect of this appears in

Figs. 4.19 and 4.20, where the Monte Carlo distributions are narrower and peak at lower

masses than the resummed predictions. The variation between the resummed ηmax = 2

and 1.4 curves is smaller than that between ηmax = 5 and 3, since they correspond to

smaller differences in Qc.

The heavy and light gluino scenarios exhibit similar behaviour when varying the pseu-

dorapidity coverage and the number of invisibles, showing the lack of dependence of the

resummation on the mass of the pair-produced particle. The sensitivity to low-scale PDF

behaviour and showering is reduced compared to the tt̄ case since we are considering

higher centre-of-mass energies, with the lowest possible Qc now being of the the order

2mg̃ × e−5 ∼ 8 GeV. The position of the curves is again also sensitive to the precise

definition of Qc in terms of ηmax.

Table 4.2 shows a summary of the peak positions for all cases and different pseudo-

rapidity cuts. For the higher values of ηmax, the agreement between the Monte Carlo

and resummation is satisfactory. There is a large difference in the peak positions for no

invisibles and ηmax = 5, but this is mainly due to the broad shape of the peak in this case,

while the overall distributions agree better. For ηmax ≤ 2 there is a growing discrepancy,
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mg̃ (GeV). ηmax MC (GeV) (0 inv./2 inv.) Resum. (GeV) (0 inv./2 inv.)
604.5 5 2280/1560 1785/1620
604.5 3 1680/1080 1593/1204
604.5 2 1440/840 1497/1204
604.5 1.4 1380/660 1497/1204
800.0 5 2820/2100 2569/1870
800.0 3 2220/1620 2128/1684
800.0 2 1920/1380 1865/1683
800.0 1.4 1740/1140 1865/1683

Table 4.2: Summary of the positions of the peaks of the gluino pair-production visible mass
distributions as given by the Monte Carlo and the resummation, for different values
of the maximum pseudorapidity and for no and two invisibles.

Figure 4.16: The SPS1a gluino pair-production visible mass distributions for pseudorapidity
cuts ηmax = 5 (left) and ηmax = 3 (right). The leading-order distribution is shown
(red dot-dashes) for comparison.

especially for the realistic case of two invisibles, due to the loss of particles coming from

the hard process.

4.2.6.3 Hadronization effects

We have assumed that ISR partons emitted at pseudorapidities above ηmax do not con-

tribute to the visible invariant mass. This would be true if the hadronization process were

perfectly local in angle. However, as a result of hadronization high rapidity ISR partons

can produce lower rapidity hadrons and thus ‘contaminate’ the detector and shift the

visible mass to higher values.

As we have already discussed in section 3.2.3, the hadronization model employed in
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Figure 4.17: The modified SPS1a gluino pair-production (with mg̃ = 800 GeV) results for
pseudorapidity cuts ηmax = 5 (left) and ηmax = 3 (right). The leading-order
distribution is shown (red) for comparison.

Figure 4.18: The SPS1a gluino pair-production pseudorapidity distribution of gluino decay
products, for the case mg̃ = 604.5 GeV.

the HERWIG++ Monte Carlo is a refinement of the cluster model. The model involves

clustering of partons into colour-singlet objects that decay into hadrons, resulting in a

smearing of the pseudorapidity distribution which causes the increase in the visible mass

described above. The effect is shown in Fig. 4.21 for gluino and top pair-production

(excluding the invisible particles from the hard process). The effect was found to be

larger for tt̄ production where the mass distribution is shifted significantly, whereas in

gluino pair-production the shift is negligible.6

6This was found to dependent solely on the mass of the pair-produced particle, with a similar effect
to the gluino case appearing if the top mass is increased to ∼ 605 GeV.
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Figure 4.19: The SPS1a gluino pair-production results for pseudorapidity cuts ηmax = 2 (left)
and ηmax = 1.4 (right). The leading-order distribution is shown (red dot-dashes)
for comparison.

Figure 4.20: The modified SPS1a gluino pair-production (with mg̃ = 800 GeV) results for
pseudorapidity cuts ηmax = 2 (left) and ηmax = 1.4 (right). The leading-order
distribution is shown (red) for comparison.

4.2.6.4 Underlying event

The underlying event, which we have discussed in section 3.2.2.5, is a further source of

non-perturbative contributions to the visible mass. If P µ
H represents the ‘hard’ visible

4-momentum studied in earlier sections and P µ
U represents that due to the underlying

event, the total visible mass is given by

M2 = (PH + PU)2 = M2
H +M2

U + 2(EHEU − PzHPzU)

= M2
H +M2

U + 2MU

√
M2

H+ 6E2
T cosh(YH − YU) . (4.76)
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Figure 4.21: The tt̄ fully semi-leptonic (left) and SPS1a gluino pair-production (right, with
mg̃ = 604.5 GeV) visible mass distributions for a pseudorapidity cut ηmax = 5
with and without hadronization (black and red respectively).

Figure 4.22: The tt̄ fully hadronic visible mass distributions for pseudorapidity cuts ηmax = 5
(left) and ηmax = 3 (right), with and without multiple parton interactions (black
and red respectively) and the reconstructed curves (blue dot-dashes). The ηmax =
5 curve was reconstructed using the resummed results for the visible mass and
rapidity, whereas the ηmax = 3 curve was reconstructed using the Monte Carlo
visible mass and rapidity.

where we neglect transverse momentum associated with the underlying event. Thus, even

if the visible invariant mass due to the underlying event is small, its effect on the overall

visible mass may be enhanced through the last term on the right-hand side.

As we have already mentioned, the underlying event is simulated in HERWIG++ by a

multiple parton interaction model. In this model, for the rapidity ranges considered here,

the underlying event is approximately process-independent and exhibits little correlation

with the rest of the event. Therefore, to a good approximation, the distributions of the

variables related to the underlying event, YU andMU , can be determined once and for all at
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Figure 4.23: The SPS1a gluino pair-production (with mg̃ = 604.5 GeV) visible mass dis-
tributions for pseudorapidity cuts ηmax = 5 (left) and ηmax = 3 (right), with
and without multiple parton interactions (black and red respectively) and the
reconstructed curves from the Monte Carlo visible masses and rapidities (blue
dot-dashes).

each collider energy. The process-dependence comes primarily through the dependence on

YH and MH , which can be calculated using the resummation formula given in Eq. (4.64).

The overall visible mass distribution can then be obtained by convolution using Eq. (4.76).

The effects of including the underlying event in the visible mass distribution are shown

in Figs. 4.22 and 4.23 for tt̄ and gluino pair-production, respectively. The multiple parton

interactions push the peak value to substantially higher masses. The shift amounts to

about 250 GeV at ηmax = 3 and 1.2 TeV at ηmax = 5, and is roughly process-independent.

However, since the underlying event is approximately uncorrelated with the hard process,

the visible mass distributions can be reconstructed well by the convolution procedure

outlined above, as shown by the blue dot-dashed curves in Figs. 4.22 and 4.23. The

distributions for the underlying event, MU , used to obtain Figs. 4.22 and 4.23, are shown

in Fig. 4.24. These features of the underlying event will need to be validated by LHC

data on a variety of processes. Accurate modelling of the underlying event is important

for practically all aspects of hadron collider physics.

4.2.7 Conclusions

We have presented detailed predictions on the total invariant mass M of the final-state

particles registered in a detector, as a function of its pseudorapidity coverage ηmax by

considering the effects of QCD initial-state radiation, first in the quasi-collinear NLO

approximation and then in an all-orders resummation of the collinear-enhanced terms.
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Figure 4.24: The tt̄ (left) and SPS1a gluino pair-production (right, with mg̃ = 604.5 GeV)
underlying event MU distributions for pseudorapidity cuts ηmax = 5 (red) and
ηmax = 3 (black).

This quantity provides the dominant contribution to many global inclusive observables

such as the new variable ŝ
1/2
min (Eq. (4.2)), which can provide information on the energy

scales of hard processes. We have extended the resummation method presented to include

the effects of invisible particle emission from the hard process. We have considered the

case of one or two invisible particles and presented results for Standard Model top quark

pair-production and SPS1a gluino pair-production, obtained using a numerical Mellin

moment inversion method.

In the case of tt̄ production the invisible particles are neutrinos from W boson decays

and their effect on the visible invariant mass distribution is small, even when both decays

are leptonic. This is mainly a consequence of the small W boson mass compared to

the overall invariant mass, rather than the negligible neutrino mass. For gluino pair-

production the invisibles are a pair of massive LSPs from squark decays. The LSP mass

is again small compared to the overall invariant mass, but the squark masses are not,

leading to a substantial downward shift in the visible mass distribution, of the order of

the squark mass. In both cases the resummed predictions are in fair agreement with Monte

Carlo estimates of the position of the peak in the distribution, provided the pseudorapidity

range covered by the detector is large enough (ηmax
>∼ 3). For ηmax ∼ 3, the difference

between the Monte Carlo prediction and resummed predictions is of the order of 100

GeV for both the heavy and light gluino SPS1a points. The agreement becomes worse

when the pseudorapidity range is restricted, due to particle loss from the hard process.

Table 4.2 shows the positions of the peaks of the distributions for the Monte Carlo results

from HERWIG++ and the resummation.
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These comparisons were made with Monte Carlo visible mass distributions at parton

level. We found that non-perturbative effects, especially the underlying event, tend to shift

the invariant mass distributions to significantly higher values than expected from a purely

perturbative calculation. According to the underlying event model used in HERWIG++,

the shift amounts to about 250 GeV at ηmax = 3 and 1.2 TeV at ηmax = 5. This effect is

also expected in other observables sensitive to longitudinal momentum components, such

as ŝ
1/2
min. However, in the model found in HERWIG++ version 2.4.x, the underlying event is

only weakly correlated with the rest of the event and hence its effects can be determined

once and for all at each collider energy. The modelling of the underlying event is an

important feature of the Monte Carlo programs that needs to be validated by comparison

with experiment. Once this has been done, a wide range of global inclusive observables,

including the visible invariant mass, will be reliably predicted and useful for establishing

the scales of contributing hard subprocesses.

It is important to note that recent UE results from the LHC experiments have shown

that the model present in HERWIG++ 2.4.x does not describe the data adequately [81].

A more recent version of the event generator, 2.5.0 [53], which includes a model for

colour reconnection, an extension of the cluster model of hadronization, achieves major

improvements in the description of the UE LHC data.

4.3 Resummation of ET in vector boson and Higgs

boson production at hadron colliders

QCD radiation from incoming partons changes the distributions of the products of the

hard process. This effect has been studied in great detail for the processes of electroweak

boson production, with the result that the transverse momentum and rapidity distri-

butions of W , Z and Higgs bosons at the Tevatron and LHC are predicted with good

precision.7 The predictions for the transverse momentum (qT ) distributions in particu-

lar include resummation of terms enhanced at small qT to all orders in αs, matched with

fixed-order calculations at higher qT values. The transverse momentum of the boson arises

(neglecting the small intrinsic transverse momenta of the partons in the colliding hadrons)

7See [66–68] and references therein.
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from its recoil against the transverse momenta of the radiated partons: qT = |~qT |, where:

~qT = −
∑

i

~pT i . (4.77)

The resummation of enhanced terms therefore requires a sum over emissions i subject to

the constraint (4.77), which is most conveniently carried out in the transverse space of

the impact parameter ~b Fourier conjugate to ~qT :

δ(~qT +
∑

~pT i) =
1

(2π)2

∫
d2~b eiqT ·b

∏

i

eipTi·b . (4.78)

One then finds that the cumulative distribution in b = |~b| contains terms of the form

αn
s lnp(Qb), where Q is the scale of the hard process, set in this case by the mass of

the electroweak boson, and p ≤ 2n. These terms, which spoil the convergence of the

perturbation series at large b, corresponding to small qT , are found to exponentiate [82–88]:

that is, they can be assembled into an exponential function of terms that are limited to

p ≤ n + 1. This resummation procedure improves the convergence of the perturbation

series at large values of b and hence allows one to extend predictions of the qT distribution

to smaller values.

Together with its vector transverse momentum ~pT i, every emission generates a con-

tribution to the total hadronic transverse energy of the final state, ET , which, neglecting

parton masses, is given by

ET =
∑

i

|~pT i| . (4.79)

To first order in αs (0 or 1 emissions) this quantity coincides with qT , but they differ in

higher orders. In particular, at small qT there is the possibility of vectorial cancellation

between the contributions of different emissions, whereas this cannot happen for the scalar

ET . Thus the distribution of ET vanishes faster at the origin, and its peak is pushed to

higher values. To resum these contributions at small ET , one should perform a one-

dimensional Fourier transformation and work in terms of a ‘transverse time’ variable τ

conjugate to ET :

δ(ET −
∑

|~pT i|) =
1

2π

∫
dτ e−iET τ

∏

i

ei|pTi|τ . (4.80)

Since the matrix elements involved are the same, one finds a similar pattern of enhanced
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terms at large τ as was the case for large b: terms of the form αn
s lnp(Qτ) with p ≤ 2n,

which arise from an exponential function of terms with p ≤ n + 1. Evaluation of the

exponent to a certain level of precision (leading-logarithmic, LL, for p = n + 1, next-

to-leading, NLL, for p = n, etc.) resums a corresponding class of enhanced terms and

extends the validity of predictions to lower values of ET .

The resummation of ET in this way has received little attention since the first papers

on this topic, over 20 years ago [89–91]. This is surprising, as most of the effects of QCD

radiation from incoming partons mentioned above depend on this variable rather than qT .

A possible reason is that, unlike qT , ET also receives an important contribution from the

underlying event, which is thought to arise from secondary interactions between spectator

partons, as discussed in section 3.2.2.5. At present this can only be estimated from

Monte Carlo simulations that include multiple parton interactions (MPI). Nevertheless it

is worthwhile to predict as accurately as possible the component coming from the primary

interaction, which carries important information about the hard process. For example, we

expect the ET distributions in Higgs and vector boson production to be different, as they

involve primarily gluon-gluon and quark-anti-quark annihilation, respectively. Accurate

estimates of the primary ET distribution are also important for improving the modelling

of the underlying event.

In the present section we extend the resummation of ET in vector boson production

to next-to-leading order (NLO) in the resummed exponent, parton distributions and co-

efficient functions, and present for the first time the corresponding predictions for Higgs

boson production. In section 4.3.1 the resummation procedure is reviewed and extended

to NLO; results on the resummed component are presented in section 4.3.2. This compo-

nent alone is not expected to describe the region of larger ET values, of the order of the

boson mass; in section 4.3.3 we describe and apply a simple procedure for including the

unresummed component at order αs. Section 4.3.4 presents ET distributions generated

using the parton shower Monte Carlo programs HERWIG version 6.510 [92] and HERWIG++

version 2.4.0 [46], which are compared with the analytical results and used to estimate of

the effects of hadronization and the underlying event. Our conclusions are summarised

in section 4.3.5. Appendix D.1 gives mathematical details of a comparison between the

resummation of the transverse energy ET and transverse momentum qT and appendix D.2

shows results for the LHC at lower centre-of-mass energy (7 TeV).
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4.3.1 Resummation method

4.3.1.1 General procedure

Here we generalise the results of Ref. [90] to NLO resummation. The resummed compo-

nent of the transverse energy distribution in the process h1h2 → FX at scale Q takes the

form:

[
dσF

dQ2 dET

]

res.

=
1

2π

∑

a,b

∫ 1

0

dx1

∫ 1

0

dx2

∫ +∞

−∞
dτ e−iτET fa/h1

(x1, µ) fb/h2
(x2, µ)

× W F
ab(x1x2s;Q, τ, µ) , (4.81)

where fa/h(x, µ) is the parton distribution function (PDF) of parton a in hadron h at

factorisation scale µ, taken to be the same as the renormalisation scale here. In what

follows we use the MS renormalisation scheme. As mentioned earlier, to take into account

the constraint that the transverse energies of emitted partons should sum to ET , the

resummation procedure is carried out in the domain that is Fourier conjugate to ET , using

Eq. (4.80). The transverse energy distribution (4.81) is thus obtained by performing the

inverse Fourier transformation with respect to the transverse time, τ . The factor W F
ab

is the perturbative and process-dependent partonic cross section that embodies the all-

order resummation of the large logarithms ln(Qτ). Since τ is conjugate to ET , the limit

ET ≪ Q corresponds to Qτ ≫ 1.

As in the case of transverse momentum resummation [93], the resummed partonic

cross section can be written in the following universal form:

W F
ab(s;Q, τ, µ) =

∑

c

∫ 1

0

dz1

∫ 1

0

dz2 Cca(αs(µ), z1; τ, µ) Cc̄b(αs(µ), z2; τ, µ) δ(Q2 − z1z2s)

× σF
cc̄(Q,αs(Q)) Sc(Q, τ) . (4.82)

Here σF
cc̄ is the cross section for the partonic subprocess c+ c̄→ F , where c, c̄ = q, q̄ (the

quark qf and the anti-quark q̄f ′ can possibly have different flavours f, f ′) or c, c̄ = g, g.

The term Sc(Q, τ) is the quark (c = q) or gluon (c = g) Sudakov form factor. In the case

of ET resummation, this takes the form [90,91]:

Sc(Q, τ) = exp

{
−2

∫ Q

0

dq

q

[
2Ac(αs(q)) ln

Q

q
+Bc(αs(q))

] (
1 − eiqτ

)}
, (4.83)
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with c = q or g. The functions Ac(αs), Bc(αs), as well as the coefficient functions Cab in

Eq. (4.82), contain no ln(Qτ) terms and are perturbatively computable as power expan-

sions with constant coefficients:

Ac(αs) =

∞∑

n=1

(αs

π

)n

A(n)
c , (4.84)

Bc(αs) =

∞∑

n=1

(αs

π

)n

B(n)
c , (4.85)

Cab(αs, z) = δab δ(1 − z) +
∞∑

n=1

(αs

π

)n

C
(n)
ab (z) . (4.86)

Thus a calculation to NLO in αs involves the coefficients A
(1)
c , A

(2)
c , B

(1)
c , B

(2)
c and C

(1)
ab .

All these quantities are known for both the quark and gluon form factors and associated

coefficient functions. Knowledge of the coefficients A(1) leads to the resummation of the

leading logarithmic (LL) contributions at small ET , which in the differential distribution

are of the form αn
s lnp(Q/ET )/ET where p = 2n − 1. The coefficients B(1) give the

next-to-leading logarithmic (NLL) terms with p = 2n − 2, A(2) and C(1) give the next-

to-next-to-leading logarithmic (N2LL) terms with p = 2n − 3, and B(2) gives the N3LL

terms with p = 2n− 4. With knowledge of all these terms, the first term neglected in the

resummed part of the distribution is of order α3
s ln(Q/ET )/ET .

In general the coefficient functions in Eq. (4.82) contain logarithms of µτ , which are

eliminated by a suitable choice of factorisation scale. To find the optimal factorisation

scale, we note that, to NLL accuracy,

∫ Q

0

dq

q
lnp q

(
1 − eiqτ

)
≃
∫ Q

iτ0/τ

dq

q
lnp q , (4.87)

where τ0 = exp(−γE) = 0.56146 . . ., γE being the Euler-Mascheroni constant. See ap-

pendix D.1 for a derivation. The effective lower limit of the soft resummation becomes

iτ0/τ , and the parton distributions and coefficient functions should be evaluated at this

scale. However, evaluation of parton distribution functions at an imaginary scale using

the standard parametrizations is not feasible. We avoid this by noting that

fa/h(x, q
′) =

∑

b

∫ 1

x

dz

z
Kab(z; q

′, q)fb/h(x/z, q) , (4.88)
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whereKab is the DGLAP evolution kernel, also used in section 4.2.3.3 (see, e.g. Eq. (4.54)).

Therefore:

fa/h(x, iµ) =

∫ 1

x

dz

z
Kab(z; iµ, µ)fb/h(x/z, µ) , (4.89)

where the evolution kernel Kab(z; iµ, µ) is given to NLO by

Kab(z; iµ, µ) = δab +
i

2
αs(µ)Pab(z) , (4.90)

where Pab(z) is the leading-order DGLAP splitting function. Similarly, in the coefficient

functions we can write αs(iµ) in terms of αs(µ) using the definition of the running coupling,

given in section 2.2.3.2: ∫ iµ

µ

dαs

β(αs)
= 2

∫ iµ

µ

dq

q
= iπ , (4.91)

where β(αs) = −bα2
s + O(α3

s), so that

αs(iµ) = αs(µ) − iπb[αs(µ)]2 + O(α3
s) . (4.92)

Furthermore, as the expressions (4.81) and (4.82) are convolutions, we can transfer the

extra terms from (4.89) into the coefficient functions to obtain

W F
ab(s;Q, τ) =

∑

c

∫ 1

0

dz1

∫ 1

0

dz2 C̃ca(αs(τ0/τ), z1) C̃c̄b(αs(τ0/τ), z2) δ(Q
2 − z1z2s)

× σF
cc̄(Q,αs(Q)) Sc(Q, τ) , (4.93)

where

C̃ca(αs(µ), z) =
∑

d

∫ 1

z

dz′

z′
Ccd(αs(iµ), z/z′)Kda(z

′; iµ, µ) . (4.94)

Now the lowest-order coefficient function is of the form:

C̃(0)
ca (z) = C(0)

ca (z) = δcaδ(1 − z) , (4.95)

and therefore

C̃(1)
ca (z) = C(1)

ca (z) + i
π

2
Pca(z) . (4.96)
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Putting everything together, we have

[
dσF

dQ2 dET

]

res.

=
1

2πs

∑

c

∫ +∞

−∞
dτ e−iτETSc(Q, τ) Rc(s;Q, τ) σ

F
cc̄(Q,αs(Q)) , (4.97)

where, taking all PDFs and coefficient functions to be evaluated at scale µ = τ0/τ ,

Rc(s;Q, τ) =
∑

a,b

∫ 1

0

dx1

x1

dx2

x2

dz1
z1
fa/h1(x1) fb/h2(x2) C̃ca(z1) C̃c̄b

(
Q2

z1x1x2s

)
. (4.98)

To write (4.97) as an integral over τ > 0 only, we note from (4.89) and (4.90) that when

τ → −τ , to NLO the real parts of fa/h1
and fb/h2

are unchanged but the imaginary parts

change sign. All other changes in (4.98) are beyond NLO. Thus, writing

Rc = R(R)
c + iR(I)

c , (4.99)

R
(R)
c is symmetric with respect to τ and R

(I)
c is antisymmetric. Defining

F (R)
c (Q, τ) = 2

∫ Q

0

dq

q

[
2Ac(αs(q)) ln

Q

q
+Bc(αs(q))

]
(1 − cos qτ) ,

F (I)
c (Q, τ) = 2

∫ Q

0

dq

q

[
2Ac(αs(q)) ln

Q

q
+Bc(αs(q))

]
sin qτ , (4.100)

we therefore obtain

[
dσF

dQ2 dET

]

res.

=
1

πs

∑

c

∫ ∞

0

dτ e−F
(R)
c (Q,τ)

[
R(R)

c (s;Q, τ) cos{F (I)
c (Q, τ) − τET}

−R(I)
c (s;Q, τ) sin{F (I)

c (Q, τ) − τET}
]
σF

cc̄(Q,αs(Q)) , (4.101)

where, inserting (4.95) and (4.96) in (4.98) and defining ξ = Q2/s, we have to NLO,

R(R)
c (s;Q, τ) = R(R)

c (ξ = Q2/s, τ)

=

∫
dx1

x1

dx2

x2

{
fc/h1

(x1)fc̄/h2
(x2) +

αs

π

∑

a

[
fa/h1

(x1)fc̄/h2
(x2)C

(1)
ca

(
ξ

x1x2

)

+fc/h1
(x1)fa/h2

(x2)C
(1)
c̄a

(
ξ

x1x2

)]}
,

R(I)
c (s;Q, τ) = R(I)

c (ξ = Q2/s, τ)
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=
αs

2

∑

a

∫
dx1

x1

dx2

x2

[
fa/h1(x1)fc̄/h2(x2)Pca

(
ξ

x1x2

)

+fc/h1
(x1)fa/h2

(x2)Pc̄a

(
ξ

x1x2

)]
. (4.102)

It will be more useful to write, for example,

∫
dx1

x1

dx2

x2
fa/h1(x1)fc̄/h2(x2)Pca

(
ξ

x1x2

)

=

∫
dx1

x1

dx2

x2
dz δ

(
z − ξ

x1x2

)
fa/h1(x1)fc̄/h2(x2)Pca(z)

=

∫
dx1

x1

dz

z
fa/h1

(x1)fc̄/h2

(
ξ

zx1

)
Pca(z) . (4.103)

This makes it more straightforward to interpret the plus prescription, which appears in

some splitting functions, as

∫
dx1

x1

dz

z
fa/h1

(x1)fc̄/h2

(
ξ

zx1

)
P (z)+

=

∫
dx1

x1
fa/h1

(x1)

∫ 1

0

dz

[
1

z
fc̄/h2

(
ξ

zx1

)
− fc̄/h2

(
ξ

x1

)]
P (z)

=

∫ 1

ξ

dx1

x1
fa/h1

(x1)

∫ 1

ξ/x1

dz

[
1

z
fc̄/h2

(
ξ

zx1

)
− fc̄/h2

(
ξ

x1

)]
P (z)

−
∫ 1

ξ

dx1

x1
fa/h1(x1)fc̄/h2

(
ξ

x1

)∫ ξ/x1

0

dz P (z) . (4.104)

We show in appendix D.1 that the results of resummation of the scalar transverse

energy are identical to those of the more familiar resummation of vector transverse mo-

mentum at order αs, as they should be since at most one parton is emitted at this order.

The transverse energy computed here is the resummed component of hadronic initial-

state radiation integrated over the full range of pseudorapidities η. In Ref. [90] the ET

distribution of radiation emitted in a restricted rapidity range |η| < ηmax was also es-

timated. This was done by replacing the lower limit of integration in Eqs. (4.100) by

Qc = Q exp(−ηmax), i.e. assuming that radiation at q < Qc does not enter the detected

region. This is justified at the leading-logarithmic level, where q/Q ∼ θ ∼ exp(−η) and

the scale dependence of the parton distributions and coefficient functions in Eq. (4.98) can

be neglected. Then when ηmax = 0 the form factor Sc is replaced by unity and Eq. (4.97)

correctly predicts a delta function at ET = 0 times the Born cross section. However, this
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simple prescription cannot be correct at the NLO level, where the τ -dependence of the

scale must be taken into account. Therefore we do not consider the ET distribution in a

restricted rapidity range here.

It is worth noting at this point, an existing related resummation of a variable called

the ‘beam thrust’, essentially defined as the ET weighted by exp(−η) [94].

4.3.1.2 Vector boson production

One of the best studied examples of resummation is in vector boson production through

the partonic subprocess q + q̄′ → V (V = W or Z):

σF
cc̄(Q,αs(Q)) = δcqδc̄q̄′δ(Q

2 −M2
V )σV

qq′ , (4.105)

where, at lowest order,

σW
qq′ =

π

3

√
2GFM

2
W |Vqq′|2 ,

σZ
qq′ =

π

3

√
2GFM

2
Z(V 2

q + A2
q)δqq′ , (4.106)

with Vqq′ the appropriate CKM matrix element and Vq, Aq the vector and axial couplings

to the Z0. The coefficients in the quark form factor Sq(Q, τ) are [86, 95]:

A(1)
q = CF , A(2)

q =
1

2
CFK , B(1)

q = −3

2
CF ,

B(2)
q = C2

F

(
π2

4
− 3

16
− 3ζ3

)
+ CF CA

(
11

36
π2 − 193

48
+

3

2
ζ3

)
+ CF nf

(
17

24
− π2

18

)
,

(4.107)

where ζn is the Riemann ζ-function (ζ3 = 1.202 . . .), CF = 4/3, CA = 3, nf is the number

of light flavours, and:

K =

(
67

18
− π2

6

)
CA − 5

9
nf . (4.108)

The above expression for B
(2)
q is in a scheme where the subprocess cross section is

given by the leading-order expression (4.105). In the same scheme the NLO coefficient

functions are [95, 96]:

Cqq(αs, z) =
{

1 +
αs

4π
CF (π2 − 8)

}
δ(1 − z) +

αs

2π
CF (1 − z)
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≡
(
1 +

αs

π
c(1)q

)
δ(1 − z) +

αs

2π
CF (1 − z) ,

Cqg(αs, z) =
αs

2π
z(1 − z) , (4.109)

where the second line defines c
(1)
q . The corresponding splitting functions are:

Pqq(z) = CF

[
1 + z2

(1 − z)+

+
3

2
δ(1 − z)

]
,

Pqg(z) =
1

2

[
z2 + (1 − z)2

]
. (4.110)

Equations (4.102)–(4.104) therefore give

R(R)
q (ξ, τ) =

∫ 1

ξ

dx1

x1

{
fq/h1(x1)fq̄/h2

(
ξ

x1

)(
1 +

αs

π
2c(1)q

)

+
αs

π

∫ 1

ξ/x1

dz

z

[
fq/h1(x1)fq̄/h2

(
ξ

zx1

)
CF (1 − z)

+

{
fg/h1(x1)fq̄/h2

(
ξ

zx1

)
+ fq/h1(x1)fg/h2

(
ξ

zx1

)}
1

2
z(1 − z)

]}
,

R(I)
q (ξ, τ) =

αs

2

∫ 1

ξ

dx1

x1

∫ 1

0

dz

z

{
2fq/h1(x1)fq̄/h2

(
ξ

zx1

)
Pqq(z) (4.111)

+

[
fg/h1

(x1)fq̄/h2

(
ξ

zx1

)
+ fq/h1

(x1)fg/h2

(
ξ

zx1

)]
Pqg(z)

}

=
αs

2

∫ 1

ξ

dx1

x1

{
2CFfq/h1

(x1)fq̄/h2

(
ξ

x1

)[
2 ln

(
1 − ξ

x1

)
+

3

2

]

+

∫ 1

ξ/x1

dlz

z

[
2CFfq/h1

(x1)

{
fq̄/h2

(
ξ

zx1

)
1 + z2

1 − z
− fq̄/h2

(
ξ

x1

)
2z

1 − z

}

+

{
fg/h1

(x1)fq̄/h2

(
ξ

zx1

)
+ fq/h1

(x1)fg/h2

(
ξ

zx1

)}
1

2

{
z2 + (1 − z)2

}]}
.

4.3.1.3 Higgs boson production

In the case of Higgs boson production the corresponding LO partonic subprocess is gluon

fusion, g + g → H , through a massive-quark loop:

σF
cc̄(Q,αs(Q)) = δcgδc̄gδ(Q

2 −m2
H)σH

0 , (4.112)
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where in the limit of infinite quark mass:

σH
0 =

α2
s(mH)GFm

2
H

288π
√

2
. (4.113)

The coefficients in the gluon form factor Sg(Q, τ) are [97–99]:

A(1)
g = CA , A(2)

g =
1

2
CAK , B(1)

g = −1

6
(11CA − 2nf) ,

B(2) H
g = C2

A

(
23

24
+

11

18
π2 − 3

2
ζ3

)
+

1

2
CF nf − CA nf

(
1

12
+
π2

9

)
− 11

8
CFCA .

(4.114)

Here again, the above expression for B
(2)
g is in a scheme where the Higgs boson sub-

process cross section is given by the leading-order expression (4.112). In the same scheme

the NLO coefficient functions are [100]:

Cgg(αs, z) =

{
1 +

αs

4π

[
CA

(
2 − π2

3

)
+ 5 + 4π2

]}
δ(1 − z)

≡
(
1 +

αs

π
c(1)g

)
δ(1 − z) ,

Cgq(αs, z) = Cgq̄(αs, z) =
αs

2π
CF z . (4.115)

The corresponding splitting functions are:

Pgg(z) = 2CA

[
z

(1 − z)+
+

1 − z

z
+ z(1 − z)

]
+

1

6
(11CA − 2nf)δ(1 − z) ,

Pgq(z) = Pgq̄(z) = CF
1 + (1 − z)2

z
. (4.116)

Equations (4.102)–(4.104) therefore give

R
(R)
g (ξ, τ) =

∫ 1

ξ

dx1

x1

{
fg/h1

(x1)fg/h2

(
ξ

x1

)(
1 +

αs

π
2c(1)g

)

+
αs

π

∫ 1

ξ/x1

dz

z

[
fg/h1

(x1)fs/h2

(
ξ

zx1

)
+ fs/h1

(x1)fg/h2

(
ξ

zx1

)]
1

2
CFz

}
,

R
(I)
g (ξ, τ) =

αs

2

∫ 1

ξ

dx1

x1

∫ 1

0

dz

z

{
2fg/h1

(x1)fg/h2

(
ξ

zx1

)
Pgg(z)

+

[
fg/h1(x1)fs/h2

(
ξ

zx1

)
+ fs/h1(x1)fg/h2

(
ξ

zx1

)]
Pgq(z)

}
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=
αs

2

∫ 1

ξ

dx1

x1

{
2fg/h1

(x1)fg/h2

(
ξ

x1

)[
2CA ln

(
1 − ξ

x1

)
+

1

6
(11CA − 2nf)

]

+

∫ 1

ξ/x1

dz

z

[
4CAfg/h1(x1)

{
fg/h2

(
ξ

zx1

)[
z

1 − z
+

1 − z

z
+ z(1 − z)

]
− fg/h2

(
ξ

x1

)
z

1 − z

}

+

{
fg/h1(x1)fs/h2

(
ξ

zx1

)
+ fs/h1(x1)fg/h2

(
ξ

zx1

)}
CF

1 + (1 − z)2

z

]}
, (4.117)

where fs =
∑

q(fq + fq̄).

4.3.2 Resummed distributions

4.3.2.1 Vector boson production

Figure 4.25: Resummed component of the transverse energy distribution in Z0 boson produc-
tion at the Tevatron and LHC. The curves show the effects of the coefficients in
the quark form factor: black, all coefficients; magenta omitting B

(2)
q ; blue A

(1)
q

and A
(2)
q only; red A

(1)
q only.

Figure 4.25 shows the resummed component of the transverse energy distribution in

Z0 boson production at the Tevatron (pp̄ at
√
s = 1.96 TeV) and LHC (pp at

√
s = 14

TeV).8 For all calculations, we use the MSTW 2008 NLO parton distributions [71]. The

different curves show the effects of the subleading coefficients (4.107) in the quark form

factor. We see that while B
(1)
q has a large effect (the difference between the blue and

magenta curves), the effects of the other subleading coefficients are quite small.

8Results for pp at
√

s = 7 TeV are given in appendix D.2.
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The peak of the resummed distribution lies at around ET ∼ 10 GeV at the Tevatron,

rising to ∼ 14 GeV at the LHC. This is comfortably below MZ , justifying the resummation

of logarithms of ET/MZ in the peak region. However, at LHC energy the predicted

distribution has a substantial tail at larger values of ET , indicating that the higher-order

terms generated by the resummation formula remain significant even when the logarithms

are not large. In addition, the LHC prediction does not go to zero as it should at small

ET . However, this region is sensitive to the treatment of non-perturbative effects such as

the behaviour of the strong coupling at low scales (we freeze its value below 1 GeV) and

the upper limit in the integral over transverse time (we set τmax = 1/Λ where Λ is the

two-loop QCD scale parameter, set to 200 MeV here).

The resummed component forW± boson production looks very similar, apart of course

from the overall normalisation, and therefore we do not show it here. Predictions with

matching to fixed order will be presented in section 4.3.3.

4.3.2.2 Higgs boson production

Figure 4.26 shows the resummed component of the transverse energy distribution in Higgs

boson production at the Tevatron and LHC, for a Higgs boson mass of 115 GeV. The

effects of subleading terms in the gluon form factor (4.114) are more marked than those

of the quark form factor discussed above. The distribution peaks at large values of ET ,

around 40 GeV at the Tevatron, rising to ∼ 50 GeV at the LHC. This is due to the

larger colour charge of the gluon. However, together with the large effects of subleading

terms, it does make the reliability of the resummed predictions more questionable. Also

in contrast to the vector boson case, the suppression at low and high ET is if anything too

great, resulting in negative values below 16 GeV and above 120 GeV at Tevatron energy.

We verified, by cutting-off the gluon PDFs at zero, that the negative values are due to

the resummation and not due to the gluon PDF becoming negative at low x values.

4.3.3 Matching to fixed order

The resummed distributions presented above include only terms that are logarithmically

enhanced at small ET . To extend the predictions to larger ET we must match the resum-

mation to fixed-order calculations. To avoid double counting of the resummed terms, the

corresponding contribution must be subtracted from the fixed-order result.

We consider here only matching to first order in αs. To this order the ET distribution
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Figure 4.26: Resummed component of the transverse energy distribution in Higgs boson pro-
duction at the Tevatron and LHC. The curves shows the effects of the coefficients
in the gluon form factor: black, all coefficients; magenta omitting B

(2)
g ; blue A

(1)
g

and A
(2)
g only; red A

(1)
g only.

for ET > 0 has the form:

dσ

dET
=

1

ET
(A lnET +B) + C(ET ) , (4.118)

where A and B are constants (for a given process and collision energy) and the function

C(ET ) is regular at ET = 0. The terms involving A and B are already included in the

resummed prediction, and therefore we have only to add the regular function C to it to

obtain a prediction that is matched to the O(αs) result. This function is determined

by fitting the O(αs) prediction for ET dσ/dET to a linear function of lnET at small

ET , extracting the coefficients A and B, and then subtracting the enhanced terms in

Eq. (4.118).

4.3.3.1 Vector boson production

The above matching procedure is illustrated for Z0 production at the Tevatron in Fig. 4.27.

The fit to the logarithmically enhanced terms gives excellent agreement with the order-αs

result out to around 20 GeV, confirming the dominance of such terms throughout the

region of the peak in Fig. 4.25. The remainder function C(ET ) vanishes at small ET

and rises to around 10 pb/GeV, falling off slowly at large ET . Consequently the matching

correction to the resummed prediction is small and roughly constant throughout the region
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Figure 4.27: Left: O(αs) ET distribution in Z0 production at the Tevatron; solid, full predic-
tion; dashed, fit to enhanced terms. Right: difference between full prediction and
fit to enhanced terms.

Figure 4.28: Predicted ET distribution in Z0 production at the Tevatron and LHC. Solid:
resummed prediction matched to O(αs). Dashed: resummed only. Dot-dashed:
O(αs) only.

40–100 GeV, as shown in Fig. 4.28.

As shown on the right in Fig. 4.28, the situation is similar at LHC energy: the matching

correction is small, although in this case it is negative below about 40 GeV. The large tail

at high ET and the bad behaviour at low ET , due to uncompensated higher-order terms

generated by resummation, are not much affected by matching to this order.

The corresponding matched predictions forW± boson production are shown in Fig. 4.29.
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Figure 4.29: Predicted ET distribution in W++W− production at the Tevatron and LHC.
Solid: resummed prediction matched to O(αs). Dashed: resummed only. Dot-
dashed: O(αs) only.

As remarked earlier, the form of the resummed distribution is very similar to that for Z0

boson production, and again the matching correction is small.

Note that at high ET the O(αs) distributions should approximate the matched distri-

butions, although this is not apparent in the figures.

4.3.3.2 Higgs boson production

Adopting the same matching procedure for Higgs boson production, we find the results

shown in Figs. 4.30 and 4.31. The form of the matching correction is similar to that

for vector bosons, but its effect is rather different. The roughly constant, then slowly

decreasing, correction in the region 20–100 GeV is not small compared to the resummed

result and therefore it raises the whole distribution by a significant amount throughout

this region. This has the beneficial effect of compensating the negative values at low

and high ET at Tevatron energy. However, it further enhances the high ET tail of the

distribution at LHC energy. This, together with the relatively large correction in the peak

region, casts further doubt on the reliability of the predictions in the case of Higgs boson

production.
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Figure 4.30: Left: O(αs) ET distribution in Higgs boson production at the Tevatron; solid,
full prediction; dashed, fit to enhanced terms. Right: difference between full
prediction and fit to enhanced terms.

Figure 4.31: Predicted ET distribution in Higgs boson production at the Tevatron and LHC.
Solid: resummed prediction matched to O(αs). Dashed: resummed only. Dot-
dashed: O(αs) only.

4.3.4 Monte Carlo comparisons

In this section we compare the resummed and matched distributions obtained above with

the predictions of the parton shower Monte Carlo programs HERWIG [92] and HERWIG++ [46].

Comparisons are performed first at the parton level, that is, after QCD showering

from the incoming and outgoing partons of the hard subprocess. We say ‘incoming and

outgoing’ because both programs apply hard matrix element corrections: in addition to
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the Born process, O(αs) real emission hard subprocesses are included in phase space

regions not covered by showering from the Born process.

After showering, the Monte Carlo programs apply a hadronization model to convert

the partonic final state to a hadronic one. We show the effects of hadronization in the case

of HERWIG only; those in HERWIG++ are broadly similar since both programs use basically

the same cluster hadronization model we described in section 3.2.2.3. The programs also

model the underlying event, which arises from the interactions of spectator partons (see

section 3.2.2.5) and makes a significant contribution to the hadronic transverse energy.

In this case we show only the underlying event prediction of HERWIG++, since the default

model used in HERWIG has been found to give an unsatisfactory description of Tevatron

data. For an improved simulation of the underlying event, HERWIG can be interfaced

to the multiple interaction package JIMMY [43], which is similar to the model built into

HERWIG++.

4.3.4.1 Vector boson production

Figure 4.32 shows the comparisons for Z0 production at the Tevatron and LHC. The

HERWIG predictions are renormalised by a factor of 1.3 to account for the increase in the

cross section from LO to NLO. The HERWIG++ results were not renormalised, because

they were obtained using LO** parton distributions [78], which aim to reproduce the NLO

cross section. We see that the parton-level Monte Carlo predictions of both programs

agree fairly well with the matched resummed results above about 15 GeV, but HERWIG++

generates a substantially higher number of events with low values of ET . A similar

pattern is evident in the results on W± boson production, shown in Fig. 4.33. The effects

of hadronization, shown by the difference between the blue and magenta histograms, are

also similar for both vector bosons. They generate a significant shift in the distribution,

of around 10 GeV at Tevatron energy and 20 GeV at LHC.

4.3.4.2 Higgs boson production

As may be seen from Fig. 4.34, the agreement between the resummed and parton-level

Monte Carlo results is less good in the case of Higgs boson production than it was for vector

bosons. Here we have renormalised the HERWIG predictions by a factor of 2 to allow for the

larger NLO correction to the cross section. Then the Monte Carlo ET distributions agree

quite well with each other but fall well below the matched resummed predictions. Fair

agreement above about 40 GeV can be achieved by adjusting the normalisation, but then
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Figure 4.32: Predicted ET distribution in Z0 boson production at the Tevatron and LHC.
Comparison of resummed and Monte Carlo results.

Figure 4.33: Predicted ET distribution in W++ W− boson production at the Tevatron and
LHC. Comparison of resummed and Monte Carlo results.

the Monte Carlo programs predict more events at lower ET . The effect of hadronization

is similar to that in vector boson production, viz. a shift of about 10 GeV at the Tevatron

rising to 20 GeV at the LHC, which actually brings the HERWIG distribution into somewhat

better agreement with the resummed result.

4.3.4.3 Modelling the underlying event

Figures 4.35 and 4.36 show the parton-level HERWIG++ predictions for the ET distribution

in Z0 and Higgs boson production, respectively, with the contributions from initial-state
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Figure 4.34: Predicted ET distribution in Higgs boson production at the Tevatron and LHC.
Comparison of resummed and Monte Carlo results.

Figure 4.35: Predicted ET distribution in Z0 boson production at the Tevatron and LHC.
Monte Carlo results including underlying event.

radiation (in red, already shown in Figs. 4.32 and 4.34), the underlying event (blue)

and the combination of the two (green). As we have already seen in section 3.2.2.5, the

underlying event is modelled using multiple parton interactions. Clearly it has a very

significant effect on the ET distribution. However, this effect is substantially independent

of the hard subprocess, as we have already found in section 4.2.6.4 when examining the

total invariant mass, M . This can also be seen from the comparison of the ET of the UE

associated to different subprocesses in Fig. 4.37.

We find that the probability distribution of the ET contribution of the underlying event
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Figure 4.36: Predicted ET distribution in Higgs boson production at the Tevatron and LHC.
Monte Carlo results including underlying event.

in the HERWIG++ Monte Carlo can be represented quite well by a Fermi distribution:

P (ET ) =
1

N
1

exp
(

ET−µ
T

)
+ 1

, (4.119)

for which the normalisation, N , is given by

N = T ln
[
exp

(µ
T

)
+ 1
]
. (4.120)

The dependence of the ‘chemical potential’ µ and ‘temperature’ T on the hadronic collision

energy is shown in Fig. 4.38. The red curves show fits to the energy dependence of the

form:

µ =
A
√
s

1 +B
√
s
, T = q

(
1 − e−r

√
s
)
, (4.121)

where the coefficients in the fits are A = 20(1), B = 0.030(4), q = 36(2), r = 0.28(3).

Example fits for the LHC case,
√
s = 14 TeV, are shown in Fig. 4.37.

4.3.5 Conclusions

We have extended the resummation of the hadronic transverse energy ET in vector boson

production to next-to-leading order (NLO) in the resummed exponent, parton distribu-

tions and coefficient functions, and also presented for the first time the corresponding

predictions for Higgs boson production. We have matched the resummed results to the

corresponding O(αs) predictions, by adding the contributions in that order which are not
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Figure 4.37: Comparison of ET distributions of the HERWIG++ underlying event in different
subprocesses at the LHC. Fits obtained using the Fermi distribution of Eq. 4.119
for the mean values of the parameters given below Eq. 4.121 are shown, as well as
two example fits, obtained by varying the parameters by one standard deviation
in different directions (lowest: A = 21, B = 0.026, q = 34, r = 0.31, highest:
A = 19, B = 0.034, q = 38, r = 0.25).

included in the resummation. In addition we have compared our results to parton shower

Monte Carlo predictions and illustrated the effects of hadronization and the underlying

event.

In the case of vector boson production, the resummation procedure appears stable and

the parton-level results should be quite reliable. The leading-order mechanism of quark-

anti-quark annihilation typically generates a moderate amount of transverse energy in

initial-state QCD radiation. Consequently the effects of subleading resummed terms and

fixed-order matching are small and the peak of the ET distribution lies well below the

boson mass scale, where resummation makes good sense. The comparisons with Monte

Carlo programs reveal some discrepancies but these are at the level of disagreements

between different programs; in this case the resummed predictions should be more reliable

(at parton level) than existing Monte Carlo programs. The programs suggest that the
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Figure 4.38: Fitted values of the parameters of the HERWIG++ underlying event in Higgs
production in pp collisions at various energies.

non-perturbative effects of hadronization and the underlying event are substantial. These

effects can however be modelled in a process-independent way. We have suggested a

simple parametrization of the contribution of the underlying event through the model

given in the HERWIG++ event generator. We stress once again, however, that recent UE

results from the LHC experiments have shown that this model does not describe the data

adequately [81], and as of version 2.5.0, HERWIG++ includes an improved description [53]

via a colour reconnection model. The effect of the improved model on the ET distributions

remains to be investigated in future work.

The situation in Higgs boson production is not so good. The dominant mechanism

of gluon fusion generates copious ISR and the effects of subleading terms and matching

are large. The resummed ET distribution peaks at a value that is not parametrically

smaller than the Higgs boson mass and the behaviour at low and high ET is unphysi-

cal before matching. The discrepancies between the matched resummed and Monte Carlo

predictions are substantially greater than those between different programs, even allowing

for uncertainties in the overall cross section. All this suggests that there are significant

higher-order corrections that are not taken into account, either further subleading loga-

rithms or unenhanced terms beyond NLO. It would be interesting (but very challenging)

to attempt to extract such terms from the available NNLO calculations of Higgs boson

production.
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Chapter 5

New physics searches at hadron

colliders

The original work in this chapter was done in collaboration with Oluseyi Latunde-

Dada [4], Bryan Webber, Kazuki Sakurai and Ben Gripaios [5].

5.1 Introduction

The challenges present at hadron colliders have been discussed in section 4.1, where we

emphasised that new physics signals can be difficult to observe and interpret. The diffi-

culties arise due to multiple jets and/or leptons, the presence of invisible particles and the

huge backgrounds that may potentially imitate the topology and kinematics of a signal

of relatively low rate. It is thus extremely important to investigate the phenomenology

of concrete models of new physics. At the same time, we need to ensure that we do not

weaken our reach due to biases introduced by focusing on specific models. The strategies

that we develop must allow us to explore the possibilities for generic new physics signa-

tures, motivated by theoretically and experimentally plausible models. Furthermore, it is

important for the observables that we construct to be well-defined and calculable so they

can provide unambiguous information for the discovery of new physics and determination

of its properties.

In this chapter we investigate two different new physics scenarios. In section 5.2

we present an investigation on a generic model that involves the production of a new

heavy charged vector boson, called W ′ (W prime), essentially a heavy version of the

standard model W gauge boson. Such heavy bosons may arise from the breaking of a

large symmetry group to the SM symmetry group, as excitations of the SM W in models

109
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with extra dimensions, or as a composite particle in a strong dynamics theory. We study

the interference effects of a W ′ with the SM W and extend the treatment to next-to-

leading order by using the MC@NLO and POWHEG methods described in section 3.3. We

incorporate these features in a publicly available event generator and use this to examine

the detection reach at the Tevatron and the LHC. In section 5.3 we examine a model

that contains composite leptoquarks, particles that couple to leptons and quarks (as the

name suggests), which may arise in strong dynamics theories. These couple primarily

to the third generation of fermions, a feature motivated by a model of fermion mass

generation which aims to solve the problem of flavour-changing neutral currents in theories

where electroweak symmetry is broken via strong dynamics. We propose a general search

strategy for discovery and mass reconstruction of leptoquarks.1

5.2 NLO production of heavy charged vector bosons

5.2.1 Introduction

There exists a proliferation of theories which contain new heavy, electrically neutral or

charged, gauge bosons referred to as Z ′ and W ′ respectively. Both the Z ′ and W ′ have

been studied extensively and reviews can be found in [13] and [101] respectively. The

study of this section focuses on W ′ bosons.

The new charged vector bosons may or may not have similar properties to the SM

bosons, depending on the underlying theory. In particular they may have right-handed in-

stead of left-handed couplings, may couple to new fermions, or may even be fermiophobic.

Models which predict new charged vector bosons may be based on extensions of the elec-

troweak gauge group, SU(2)×U(1), for example to the gauge group SU(2)1 × SU(2)2 ×
U(1) [102], or groups that contain the electroweak symmetry, such as SU(3) × U(1)

or SU(4) × U(1) [103]. Several models with extra dimensions contain W ′ bosons as

Kaluza-Klein excitations in the bulk. Examples of these models include the Randall-

Sundrum model (section 2.3.2.2) with bulk gauge fields [27] and Universal Extra Dimen-

sions [26,104]. Theories which break the electroweak sector via strong dynamics may also

contain the W ′ as a composite spin-1 particle [105, 106].

1It is interesting to mention that these two scenarios of new physics are not mutually exclusive. Both
leptoquarks and heavy vector bosons may arise in the same model. This could be, for example, a strong
dynamics theory that contains composite scalar particles, acting as leptoquarks, and composite vector
particles, acting as W ′’s. In these models the W ′ bosons would also potentially couple preferentially to
the fermions of the third generation.
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W/W ′

ℓ

νℓ

Figure 5.1: Schematic diagram for the Drell-Yan process pp → W/W ′ → ℓνX.

Current Monte Carlo simulations of Drell-Yan-type W ′ production at hadron collid-

ers rely mainly on leading-order matrix elements and parton showers. There exists no

treatment of next-to-leading (NLO) QCD effects which simultaneously includes the in-

terference effects for the W ′. Here, we present the results of the event generator package

Wpnlo [107] which improves the treatment of Drell-Yan production of heavy charged gauge

bosons. We consider the interference effects with the Standard Model W , which have been

shown to provide valuable information [108], but have not been considered in experimen-

tal searches. We use the MC@NLO and POWHEG methods, discussed in section 3.3 to match

the NLO QCD calculation to the parton shower, producing fully exclusive events using

the HERWIG++ event generator. Note that a similar implementation for the Z ′ exists

for the NLO MC@NLO event generator, which matches the complete NLO matrix elements

with the parton shower and cluster hadronization model of the Fortran HERWIG event

generator [109].

5.2.2 W ′ at leading order

The W ′ reference model is based on the one which originally appeared in Ref. [110]. In

the model described therein, sometimes referred to as the Sequential Standard Model,

the magnitudes of the W ′ couplings to fermions are directly transcribed from the SM

W , i.e. it is a heavy copy of the SM W . In the present treatment we allow both right-

and left-handed couplings, ∝ (1± γ5) respectively. In the case of right-handed couplings,
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we assume that the right-handed neutrinos are light compared to the W ′, but not light

enough for the Z boson to decay into them. The W ′ and W couplings to fermions are

given by

LWiff ′ =

(
GFM

2
W√

2

)1/2

Vff ′Cℓ,q
i f̄γµ(ki − hiγ5)f

′W µ
i + h.c. , i = {W,W ′}, (5.1)

where GF is the Fermi coupling constant,2 MW is the SM W mass, Cℓ,q
i are the coupling

strengths of boson i to leptons and quarks respectively, W µ is the massive boson polari-

sation vector, f and f ′ are the Dirac spinors for the fermions and Vff ′ is the unit matrix

when ff ′ are leptons and the CKM matrix, given in appendix C, when ff ′ are quarks.

The ki and hi represent the structure of the vector-axial vector (V-A) coupling of the

bosons, where for the case i = W we have kW = hW = 1, i.e. purely left-handed cou-

pling. Using the above coupling to fermions, we show in appendix E.2 that the hadronic

differential cross section for the process pp→ W+/W ′+ → ℓνX (Fig. 5.1) is given by

dσ

dτdydz
=
G2

FM
4
W

192π

∑

qq′

|Vqq′|2
[
SG+

qq′(1 + z2) + 2AG−
qq′z
]
, (5.2)

where z = cos θ is defined as the scattering angle between the u-type quark and the

outgoing neutrino (both being fermions) in the centre-of-mass frame, y is the rapidity of

the intermediate boson, τ = ŝ/s is the ratio of the squares of the quark centre-of-mass

energy to the proton centre-of-mass energy. S = S(ŝ) and A = A(ŝ) are functions of the

quark centre-of-mass energy:

S =
∑

i,j

Si,j =
∑

i,j

Pij(CiCj)
ℓ(CiCj)

q(kikj + hihj)
2 , (5.3)

A =
∑

i,j

Ai,j =
∑

i,j

Pij(CiCj)
ℓ(CiCj)

q(kjhi + hjki)
2 , (5.4)

with

Pij = ŝ
(ŝ−M2

i )(ŝ−M2
j ) + ΓiΓjMiMj

[(ŝ−M2
i )2 + Γ2

iM
2
i ][i → j]

, (5.5)

where i, j can be either W or W ′ andMi, Γi are the mass and width of boson i respectively.

The functions G±
qq′ that appear in the differential cross section are even or odd products

2The constant GF is related to the weak coupling constant g, which appears in Eq. (2.28), by GF /
√

2 =
g2/(8M2

W ).



5.2. NLO production of heavy charged vector bosons 113

of parton density functions for the relevant hadrons, given by

G±
qq′ =

[
fq/A(xa, ŝ)fq′/B(xb, ŝ) ± fq/B(xb, ŝ)fq′/A(xa, ŝ)

]
, (5.6)

where fq/h(x, ŝ) is the parton density function for a quark q in a hadron h carrying

hadron momentum fraction x, in a collision in which the quark pair centre-of-mass energy

squared is ŝ. The A,B indices represent the type of the ‘left’ (travelling in the positive

z-direction) or ‘right’ (travelling in the negative z-direction) hadrons respectively. This

definition allows for easy modification of the pp → W/W ′ → ℓνX cross section to the

pp̄→W/W ′ → ℓνX, by changing the PDFs accordingly. Analogous expressions can also

be obtained for the case of (W−, W ′−), by appropriately modifying the functions G±
qq′ and

taking z → −z. The width can be taken to be a free parameter in the reference model:

the couplings of the W ′ to other gauge bosons or the Higgs boson are model-dependent.3

Here we shall assume for illustration that the fermionic decay width4 scales with the mass

as ΓW ′→ff ′ = (4ΓWMW ′/3MW ) (provided that MW ′ ≫ Mt, the mass of the top quark)5

and that the tri-boson W ′WZ vertex is suppressed by a small mixing angle and can be

neglected in the analysis.

5.2.3 W − W ′ interference

The narrow width approximation (NWA) is often used when discussing the production of

new vector bosons. This approximation is usually claimed to be valid up to O(ΓW ′/MW ′)

corrections. However, W -W ′ interference effects can become important in certain regions

even as the width ΓW ′ → 0, see for example [108], and as we also show below. Use of the

NWA may thus lead to invalid conclusions, as pointed out in [111].

Interference effects arise because the Drell-Yan process pp → W/W ′ → ℓνX can

proceed either via an intermediate SM W or a W ′ in the reference model. The matrix

element squared for the process may be decomposed in the following way:

|M|2 = |MW |2 + |MW ′|2 + 2Re(M∗
WMW ′) . (5.7)

The last term, which contains the interference, depends on the functions S(ŝ) and A(ŝ)

3An exception is the photon, for which the coupling is fixed by gauge invariance.
4The fermionic decay width is thus also taken to be the lower bound on the total width.
5The factor of 4/3 comes from the extra decay channel that opens up when MW ′ > Mtop, e.g.

W ′+ → tb̄.



114 Chapter 5. New physics searches at hadron colliders

(Eqs. (5.3) and (5.4)). Here we discuss the function S(ŝ) when studying interference

effects, although the arguments for A(ŝ) are equivalent. The function S(ŝ) can be de-

composed into pieces that arise individually due to the W or the W ′, and an interference

piece:

S = SW,W + SW ′,W ′ + SW,W ′ + SW ′,W = SW,W + SW ′,W ′ + 2Sint , (5.8)

where we have defined the interference term Sint ≡ SW,W ′ = SW ′,W . Explicitly, this term

may be written as

Sint =

[
ŝ
(ŝ−M2

W )(ŝ−M2
W ′) + ΓWΓW ′MWMW ′

[(ŝ−M2
W )2 + Γ2

WM
2
W ][W →W ′]

]
(1 + hWhW ′)2 , (5.9)

where we have set all the couplings Cℓ,q
W/W ′ = 1 and kW = kW ′ = 1. It is evident that

since hW = 1 for the SM W , when we set hW ′ = −1 then the interference term vanishes:

Sint = 0. This implies that there is no interference for the case of the SM W and a

purely right-handed W ′, and the square of the total matrix element for the process can

be written as the sum of the squares of the individual matrix elements for the W and W ′:

|M(hW ′ = −1)|2 = |MW |2 + |MW ′|2 . (5.10)

It is simple to see why this is so: the W ′ and SM W decay to final-state particles of

different helicities, which are distinguishable, and hence the two processes cannot interfere.

However, when hW = 1 and hW ′ = 1, i.e. both bosons possessing left-handed couplings,

we have Sint 6= 0. In fact, by examining of the expression for Si,j (Eq. (5.3)), we observe

that Sint should be of the same order of magnitude as SW ′,W ′ and SW,W . Figure 5.2 shows

the variation of the interference term, as well as the W and W ′ terms SW,W and SW ′,W ′,

for the case MW ′ = 1 TeV. We observe that Sint is negative (green, blue, purple) in

the intermediate mass squared region ŝ ∈ (M2
W ,M

2
W ′) = (∼ 6400 GeV2, 106 GeV2). The

total cross section in this region is less than the sum of the individual W and W ′ cross

sections. We note that the possibility of a reduced cross section is seldom considered

in experimental searches. It is important to realise that the interference term is non-

vanishing and comparable in magnitude to the other terms in S(ŝ) even as ΓW ′ → 0, a

clear indication that the narrow width approximation is not justified in the intermediate

region.
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Figure 5.2: The interference term Sint for hW ′ = 1, MW ′ = 1 TeV, plotted against ŝ, for dif-
ferent widths: ΓW ′ = 1, 35, 100 GeV (green, blue, purple respectively). The terms
SW,W (red) and SW ′,W ′ (black) are shown for comparison. It is evident that Sint is
negative in the intermediate region (M2

W ,M2
W ′) = (∼ 6400 GeV2, 106 GeV2). It is

also clear that the magnitude of the interference term is comparable to SW,W and
SW ′,W ′. As the width decreases the negative peak becomes narrower, but there al-
ways exists a portion of the curve in the intermediate region which is independent
of the width.

5.2.4 Extension to NLO

Next, we extend the simulation to NLO using the MC@NLO and the POWHEG methods. We

briefly discuss their application to W ′ boson production. Full details of the application

of the MC@NLO method to vector boson production can be found in section 6 of Ref. [112].

Details of the application of the POWHEG method can be found in chapter 4 of Ref. [59],

where vector boson production is discussed in detail.
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5.2.4.1 The MC@NLO method

The NLO cross section for the production of W ′ bosons can be written as a sum of two

contributions:

σNLO = σqq̄′ + σ(qq̄′)g , (5.11)

where σqq̄′ is the contribution from qq̄′ annihilation and σ(qq̄′)g is the contribution from the

Compton subprocesses. In the modified minimal subtraction (MS) factorisation scheme,

these are:

σqq̄′ = σ0

∑

q

∫
dx1dx2

x[Dq(x1)Dq̄′(x2) + q ↔ q̄′]

Dq(xq)Dq̄′(xq̄′)

[
δ(1 − x) +

αS

2π
CF

{
−2

1 + x2

1 − x
ln x

+ 4(1 + x2)

(
ln(1 − x)

1 − x

)

+

+

(
−8 +

2

3
π2

)
δ(1 − x)

}]
,

σ(qq̄′)g = σ0

∑

q,q̄′

∫
dx1dx2

x[D(q,q̄′)(x1)Dg(x2) + (q, q̄′) ↔ g]

Dq(xq)Dq̄′(xq̄′)

αS

2π
TR

[
1

2
+ 3x− 7

2
x2

+ (x2 + (1 + x2)) ln
(1 − x)2

x

]
, (5.12)

where σ0 is the Born differential cross section d2σ0

dQ2dY
with Q the invariant mass and Y

the rapidity of the vector boson. The x1, x2 are the NLO momentum fractions and xq, xq̄′

are the Born momentum fractions with Q2 = xqxq̄′S, if S denotes the hadronic centre-of-

mass energy. Also, x =
xqxq̄′

x1x2
and Dq(x1) = x1fq(x1) etc., with fq(x1) being the parton

distribution function of parton q.

Focusing on the qq̄′ annihilation process for the moment, if we introduce the variable

y = cos θ , (5.13)

where θ is the scattering angle of the emitted parton in the partonic centre-of-mass frame,

we can rewrite
σqq̄′

σ0
as an integral over x and y:

σqq̄′

σ0
=

∑

q

∫
dxdy

[{
x[Dq(x1)Dq̄′(x2) + q ↔ q̄′]

Dq(xq)Dq̄′(xq̄′)

1

2

(
δ(1 − x) +

αS

2π
CF

(
−2

1 + x2

1 − x
ln x

+ 4(1 + x2)

(
ln(1 − x)

1 − x

)

+

+

(
−8 +

2

3
π2

)
δ(1 − x)

))
−Mqq̄′(x, y)

}
+Mqq̄′(x, y)

]
,

(5.14)
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where Mqq̄′(x, y) is the real emission matrix element. Since we have subtracted this

contribution from the total cross section, in the curly brackets we are left with the sum

of the Born, virtual and QCD PDF correction contributions. Now we can define an

infrared-safe observable O whose NLO expectation value is given by

〈Oqq̄′〉 =
∑

q

∫
dxdy

[
OW ′

{
x[Dq(x1)Dq̄′(x2) + q ↔ q̄]

Dq(xq)Dq̄′(xq̄′)

1

2
(δ(1 − x)

+
αS

2π
CF

(
−2

1 + x2

1 − x
ln x+ 4(1 + x2)

(
ln(1 − x)

1 − x

)

+

+

(
−8 +

2

3
π2

)
δ(1 − x)

) )
−Mqq̄′(x, y)

}
+OW ′gMqq̄′(x, y)

]
, (5.15)

where OW ′ and OW ′g are observables arising from hadronic final states generated from

q+ q̄ → W ′ and q+ q̄ →W ′ + g starting configurations respectively. This however is not

entirely correct because of double counting in the final states represented by OW ′ which

are already included in the states arising from OW ′g. The solution to this is to subtract

the parton shower contributions, which we denote MCqq̄′
(x, y), from the regions in which

the parton shower contributes (the jet region J) and integrate the full matrix element in

the hard emission region D, left untouched by the shower. This gives for 〈Oqq̄′〉:

〈Oqq̄′〉 =
∑

q

∫

J

[
OW ′

{
x[Dq(x1)Dq̄′(x2) + q ↔ q̄′]

Dq(xq)Dq̄′(xq̄′)

1

2

(
δ(1 − x) +

αS

2π
CF

(
−2

1 + x2

1 − x
ln x

+ 4(1 + x2)

(
ln(1 − x)

1 − x

)

+

+

(
−8 +

2

3
π2

)
δ(1 − x)

))
−Mqq̄′ +MCqq̄′

}

+ OW ′g

{
Mqq̄′ −MCqq̄′

}]

+
∑

q

∫

D

[
OW ′

{
x[Dq(x1)Dq̄′(x2) + q ↔ q̄′]

Dq(xq)Dq̄′(xq̄′)

1

2

(
δ(1 − x) +

αS

2π
CF

(
−2

1 + x2

1 − x
ln x

+ 4(1 + x2)

(
ln(1 − x)

1 − x

)

+

+

(
−8 +

2

3
π2

)
δ(1 − x)

))
−Mqq̄′

}
+OW ′gMqq̄′

]
.

(5.16)

A similar functional 〈O(qq̄′)g〉 can be generated for the Compton subprocesses. Events can

then be generated in the different regions of phase space according to their contributions

to the above integrals. These events are then interfaced with HERWIG++ and showered.

Full details of the algorithm for event generation can be found in [112].
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5.2.4.2 The POWHEG method

The POWHEG method, as described in section 3.3, involves the generation of the hardest

radiation from the parton shower according to the real emission matrix element and

independently of the shower Monte Carlo generator used. If we introduce

Rv,r = Mqq̄′ +M(qq̄′)g , (5.17)

where Mqq̄ and M(qq̄′)g are real emission matrix elements for qq̄′ annihilation and the

Compton subprocesses respectively, we can write the cross section for the hardest gluon

emission event as

dσ =
∑

q

B̄q
vdΦv [∆q(0) + ∆q(pT)Rv,rdΦr] . (5.18)

The index q runs over all quarks and anti-quarks. The subscript v represents the Born

variables, which in this case are the invariant mass Q and the rapidity Y of the boson, r

represents the radiation variables x, y and dΦv, dΦr are the Born and real emission phase

spaces respectively.

∆q(pT) is the modified Sudakov form factor for the hardest emission with transverse

momentum pT, as indicated by the Heaviside function in the exponent of Eq. (5.19):

∆q(pT) = exp

[
−
∫

dΦrRv,rΘ(kT(v, r) − pT)

]
, (5.19)

where kT is the transverse momentum of the hardest emission relative to the splitting

axis and in this case is given by

kT(x, y) =

√
Q2

4x
(1 − x)2(1 − y2) . (5.20)

Furthermore:

B̄q
v = Bq

v + V q
v +

∫
(Rv,r − Cv,r)dΦr . (5.21)

B̄q
v is the sum of the Born (Bq

v), virtual (V q
v ) and real (Rv,r) terms (with some counter-

terms, Cv,r). The Born variables are generated with distribution B̄q
v , with the radiation

variables of the first emission generated according to [∆q(0) + ∆q(pT)Rv,rdΦr].

In the MS factorisation scheme, the contribution to the order-αS cross section for W ′

production is given by Eqs. (5.11) and (5.12). The function B̄q in Eq. (5.21) can then

be written as a sum of finite terms using the subtraction method. Here we borrow the
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MC@NLO subtraction formula introduced in Eq. (5.14) and write the function B̃q(Q2, Y ) as

B̃q(Q2, Y ) =
∑

q

∫
dxdydQ2dY

d2σ0

dQ2dY

[
x[Dq(x1)Dq̄′(x2) + q ↔ q̄]

Dq(xq)Dq̄′(xq̄)

1

2
[δ(1 − x)

+
αS

2π
CF

{
−2

1 + x2

1 − x
ln x +4(1 + x2)

(
ln(1 − x)

1 − x

)

+

+

(
−8 +

2

3
π2

)
δ(1 − x)

}]
−Mqq̄ +MCqq̄′

+
{
Mqq̄′ −MCqq̄′

}

+
x[D(q,q̄′)(x1)Dg(x2) + (q, q̄′) ↔ g]

Dq(xq)Dq̄(xq̄)

αS

2π
TF

1

2

[
1

2
+ 3x− 7

2
x2

+ (x2 + (1 + x2)) ln
(1 − x)2

x

]
−M(q,q̄′)g +MC(q,q̄′)g

+
{
M(q,q̄′)g −MC(q,q̄′)g

}]
,

(5.22)

where we have written the virtual and PDF corrections in terms of the real emission

matrix elements and MC are the subtracted parton shower approximation terms in the

HERWIG++ jet regions. Note that the above prescription does not imply that the POWHEG

method depends on the shower MC used. We have simply used the shower approximation

terms to define a subtraction scheme for the definition of the NLO cross section.

The flavour of the event, the Born variables Q2 and Y , as well as the the radiation

variables x and y are then generated according to the integrand in Eq. (5.22). The

radiation variables are ignored, which amounts to integrating away these variables, leaving

the Born variables distributed according to B̄q(Q2, Y ). The radiation variables x, y are

generated according to

∆q(pT)R(x, y)dxdy . (5.23)

Details of the algorithm used can be found in Ref. [59].

5.2.5 Experimental bounds

We provide a brief overview of direct and indirect searches for W ′ before presenting our

results.

At the Fermilab Tevatron6 both the D0 and CDF collaborations have studied the

eν [113, 114] and tb̄ [115–117] channels. The W ′ was assumed to have narrow width and

SM-like couplings to fermions. In the eν channel the signal consists of a high-energy

6The Tevatron is a proton-antiproton collider located at Fermilab, USA, with a hadronic centre-of-
mass energy of 1.96 TeV.
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electron and missing transverse energy, with an edge in the transverse mass distribution

at MW ′. In the tb̄ channel the signal consists of a W boson decaying leptonically and

two b-jets [13]. The limits obtained from the eν searches, corresponding to 1 fb−1 of data

for D0 and 205 pb−1 for CDF, are MW ′ > 1 TeV and MW ′ > 788 GeV respectively.

The D0 Collaboration has published results using 0.9 fb−1 of data in the tb̄ channel, in

which the limit for left-handed W ′ masses is MW ′ > 731 GeV. Furthermore, for right-

handed W ′ bosons, the limit is MW ′ > 739 GeV assuming the W ′ boson decays to all

fermions, and MW ′ > 768 GeV if it decays only to quarks. CDF has set the limits, using

1.9 fb−1, MW ′ > 800 GeV when MW ′ > MνR
, the mass of the right-handed neutrino,

and MW ′ > 825 GeV when MW ′ < MνR
. The limits given are at 95% confidence level

(C.L.). A recent review on Tevatron searches is contained in Ref. [118]. More recently,

using 36 pb−1 of LHC data at 7 TeV, the CMS collaboration has published limits for the

sequential SM-like W ′ using the µν channel of MW ′ > 1.40 TeV. This limit was stated to

increase to 1.58 TeV if the analysis was combined with the eν analysis. The equivalent

limit from the ATLAS collaboration, extracted using an equivalent amount of data, is

1.47 TeV [119].

Low energy constraints on W ′’s are strongly model-dependent. If the W ′ couples to

quarks, then box diagrams involving a SM W and a W ′ contribute to meson mixing, for

example to KL −KS mixing. Then the limit arising for the left-right symmetric model,

based on the symmetry group SU(2)L×SU(2)R×U(1)B−L, is MW ′ > 2.5 TeV [120]. This

can be relaxed if we assume no correlation between the right-handed quark and lepton

couplings [121]. Limits also arise from possible contributions of W ′ bosons in neutrinoless

double-beta decay and right-handed neutrino emissions from supernovae [13].

5.2.6 Results

We present a sample of distributions of variables obtained for ∼ 105 events using the Wpnlo

event generator, both at leading and next-to-leading order, using the MC@NLO and POWHEG

methods. The parton-level Wpnlo output was interfaced through the Les Houches interface

to the general purpose event generator HERWIG++, used for showering and hadronization.

The k-factor (where k = σNLO/σLO), for the considered invariant mass range and for fac-

torisation/renormalisation scales set to the default NLO scale µ0 =
√
k2

T +Q2 (where kT

and Q are the dilepton transverse momentum and invariant mass respectively), was found

to be k ≈ 1.3, in all studied cases. The plots have been normalised to unity (with the

exception of Fig. 5.10) to emphasise the differences in the shape of the distributions. For
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Figure 5.3: Transverse momentum distribution at the Tevatron obtained for MC@NLO

with HERWIG++ in the DIS and MS factorisation schemes (PDFs: cteq5d
and cteq5m [122] respectively), POWHEG MS (cteq5m) and LO (PDF:
MRST2001LO [123]), in the mass range (70 − 90) GeV.

validation purposes, Fig. 5.3 presents a comparison of the W boson transverse momentum

distribution, (assuming no W ′) between Tevatron data (taken from Ref. [124]) and the

three possible methods: leading order, MC@NLO and POWHEG. The plots include events in the

invariant mass range (70 − 90) GeV. The MC@NLO and POWHEG distributions are in agree-

ment with the data within the statistical Monte Carlo and experimental uncertainties.

The leading-order pT distribution is cut off at the W mass since this provides the only

relevant scale in the parton shower, whereas the MC@NLO and POWHEG distributions extend

to higher transverse momentum. The different factorisation schemes given, DIS and MS,

arise due to the arbitrariness of the prescription in how the finite contributions to the

PDFs are treated when factorising the logarithmic singularities. The subsequent figures

in this section represent simulations made for the LHC running at 14 TeV proton-proton

centre-of-mass energy.

Figure 5.4 shows the variation of the NLO cross section for a 1 TeV left-handed

W ′ in the invariant mass range [400, 5000] GeV with factorisation scale, µF , for a fixed

renormalisation scale using the MS scheme. The LO variation with PDF scale is also

shown in an equivalent range. The values have been normalised to the cross sections

at the default scales µ0 =
√
k2

T +Q2 (default NLO) and µ0 = Q (default LO). In the
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NLO case the renormalisation scale was held fixed at MW ′. The NLO cross section

calculation appears to be slightly more stable than the LO calculation. The k-factor at

µ0 was found to be k = 1.288 and the LO cross section at µ0 = Q was found to be

σLO = (2.99 ± 0.07) pb. Figures 5.5 and 5.6 show the transverse mass distributions (in

Figure 5.4: The normalised variation with scale of the cross section calculations at NLO (red
crosses) and LO (black diamonds) are shown for a proton-proton collider at 14
TeV, MW ′ = 1 TeV, ΓW ′ = 36 GeV and left-handed chirality in the invariant
mass range [400, 5000] GeV.

this case we show a ‘theoretical’ transverse mass, defined by MT =
√
M2 + P 2

T ) at LO

and NLO for a W ′ at masses and widths of [1 TeV, 36 GeV] and [2 TeV, 72 GeV], for

purely left-handed (hW ′ = 1) and purely right-handed (hW ′ = −1) couplings to fermions

respectively. Figures 5.7 and 5.8 show the corresponding W/W ′ transverse momentum

distributions. In this case the LO distribution cuts off at the W ′ mass. The effect is less

visible for higherW ′ masses. Figure 5.9 shows a comparison between the different methods

of the W/W ′ rapidity, longitudinal momentum and mass distributions for a right-handed

W ′ of mass 2 TeV and width 72 GeV at the LHC.

Finally, Fig. 5.10 shows a comparison between the left- and right-handed W ′ ‘exper-

imental’ transverse mass distributions at NLO (defined by M2
T = 2 /ETETℓ − 2~/pT

· ~pTℓ,
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using the missing transverse energy and momentum, and the lepton transverse energy

and momentum), using the MC@NLO method. The importance of the interference between

the SM W and the W ′ can be clearly observed: the differential cross section in the region

below MT = MW ′ in the purely left-handed (hW ′ = 1) case is reduced in comparison to

the purely right-handed (hW ′ = −1) case. For a transverse mass greater than the on-shell

mass of the W ′, the interference term becomes positive for the left-handed case, although

this effect is not significant. The SM contribution, in the absence of a W ′ boson, is given

for comparison in both figures. In the right-handed case the contribution of the W ′ is

simply additive to the SM contribution.

Figure 5.5: Transverse mass distributions at the LHC obtained using the MC@NLO and POWHEG

methods (cteq5m/MS) and LO (MRST2001LO) for a purely left-handed W ′.
The plots correspond to masses/widths equal to [1 TeV, 36 GeV] (left) and
[2 TeV, 72 GeV] (right). The invariant mass range was taken to be (0.4−3.0) TeV
for the 1 TeV case and (0.4 − 5.0) TeV for the 2 TeV case. The effect of the
destructive interference can be observed in both cases. Note that the plots have
been normalised to unity.

5.2.7 Extraction of limits

In appendix E.1 we provide a general method for discriminating between two models

given a set of events. Here we apply this method to extract observation limits on the W ′

mass and width at LO. A stand-alone program was written to calculate the quantity R
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Figure 5.6: Transverse mass distributions at the LHC obtained using the MC@NLO and POWHEG

methods (cteq5m/MS) and LO (MRST2001LO) for a purely right-handed W ′.
The invariant mass range, the W ′ mass and widths are identical to those in the
previous figure.

Figure 5.7: Transverse momentum distributions at the LHC obtained using the MC@NLO and

POWHEG methods (cteq5m/MS) and LO (MRST2001LO) for a purely left-handed
W ′. The invariant mass range, the W ′ mass and widths are identical to those in
the previous figures.

at matrix element level, given by Eq. (E.5):

R
p(S)

p(T )
= exp

(
N∑

i=0

log

(
p(MT,i|T )

p(MT,i|S)

))
×
(
N̄T

N̄S

)N

e−(N̄T −N̄S) . (5.24)
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Figure 5.8: Transverse momentum distributions at the LHC obtained using the MC@NLO and

POWHEG methods (cteq5m/MS) and LO (MRST2001LO) for a purely right-handed
W ′. The invariant mass range, the W ′ mass and widths are identical to those in
the previous figures.

The ‘true’ underlying theory, labelled T, was assumed to contain a W ′ at a predefined

mass and theory S was taken to be the SM. Some comments are appropriate:

• Although the total W ′ width was being varied, the decay width to fermions was

always assumed to be ΓW ′→ff ′ = (4ΓWMW ′/3MW ).

• In a real experiment the W ′ mass would be unknown and maximum likelihood

methods should be used to fit the parameters if significant deviation from the SM

is found.

• The R parameter can become very large if a small number of unlikely events occur,

which favour one theory over the other. Experimentally this is unrealistic since

‘unlikely’ events could be the effect of background or detector effects. To take these

into account, one has to introduce nuisance parameters whose behaviour, at this

level of analysis, have to be chosen arbitrarily. Here we avoid the introduction of

such arbitrary parameters.

• The detection curves were drawn for specific data distributions and fluctuations are

expected. In other words, the plots correspond to a specific ‘experimental’ data set.

• The ratio of the prior probability distributions, p(S)/p(T ), was taken to be equal to

unity throughout this analysis: i.e. we assume both models are equally likely prior

to the ‘experiment’.
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Figure 5.9: W/W ′ rapidity (top left), longitudinal momentum (top right) and mass (bot-
tom) distributions at the LHC obtained using the MC@NLO and POWHEG methods
(cteq5m/MS) and LO (MRST2001LO) for a purely right-handed W ′ of mass 2 TeV
and width 72 GeV. The invariant mass range, the W ′ mass and widths are identical
to those in the previous figures.

• A rapidity cut on the leptons corresponding to ycut = 2.5 for the LHC and ycut = 1.3

for the Tevatron was applied to take into account the acceptance regions of the

detectors.

• The distributions p(MT |S) and p(MT |T ) were calculated using the Monte Carlo

event generator itself at higher statistics (∼ 105) than the required number of events

to reduce the required computer time. The sum over i in Eq. (E.5) was taken over

the bins of these distributions and not individual events.
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Figure 5.10: Transverse mass distributions at the LHC obtained using the MC@NLO method

(cteq5m/MS), POWHEG (cteq5m) for purely left- and right-handed W ′’s. The
invariant mass range was taken to be (0.4 − 3.0) TeV. The plots correspond to
masses/widths equal to [1 TeV, 36 GeV] and [2 TeV, 72 GeV]. The significance
of the destructive interference can be observed in the left-handed case; in the
right-handed case the distribution is just the sum of the standard model W and
right-handed W ′ contributions. Note that the plots are normalised to the NLO
cross section for each process.

The limits were drawn on a width-mass plane as logR = C detection curves, where C

is a constant. The variable R can be interpreted as a probability ratio and a discovery

curve logR = C can be interpreted as the limit where the existence of a W ′ is discovered

with certainty 1 − e−C . For example if C = 10, then the detection curve represents

the ∼ 99.9996% confidence level. The LO detection curves can be seen, for different

integrated luminosities at the LHC (14 TeV), in Fig 5.11 for a right-handed W ′ and

Fig. 5.12 for a left-handed W ′. The curves correspond to a single data sample at each

[MW ′,ΓW ′] point, and therefore there are large statistical fluctuations, particularly in the

low-luminosity curves. A comparison between the curves for a left- and right-handed W ′

is shown in Fig. 5.13. It can be observed that a left-handed W ′ has a slightly higher

detection reach, especially at larger widths. By examining Figs. 5.11 and 5.12, we deduce

that the maximum detection reach at the LHC, for example using an integrated luminosity
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of 100 fb−1, for a W ′ decaying primarily to fermions (ΓW ′ ≈ ΓW ′→ff ′), is ∼ 4 TeV. We
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Figure 5.11: The detection reach at the LHC for log R = 10 (left) and log R = 100 (right) at
different integrated luminosities for the right-handed case. The colour scheme is:
green, blue, black corresponding to the luminosities 1, 10, 100 fb−1.
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Figure 5.12: The detection reach at the LHC for log R = 10 (left) and log R = 100 (right) at
different integrated luminosities for the left-handed case. The colour scheme is
identical to the previous figure. In the log R = 10 and 100 fb−1 case all points
below the contour have log R < 10.

also show the expected limit at the Tevatron (1.96 TeV) in Fig. 5.14 with an integrated

luminosity of 2 fb−1, both at leading and next-to-leading (see below) orders. When the W ′

is only allowed to decay to fermions, i.e. has width ΓW ′ ≈ 36 GeV, the predicted detection

limit for logR ∼ 10 is MW ′ ≈ 1.1 TeV. This is expected to be reduced by experimental

effects. Since the available centre-of-mass energy at the Tevatron is 1.96 TeV, we expect

the saturation of the detection reach to come at about MW ′ ∼ 1 TeV without interference

and slightly higher in the left-handed case when interference effects are included. The
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Figure 5.13: The detection reach at the LHC for log R = 10 (left) and log R = 100 (right) at
different integrated luminosities for the left- and right-handed cases. The colour
scheme is for 1, 10, 100 fb−1 is: left-handed: green, blue, black and right-handed:
orange, light blue, pink.

Tevatron NLO case does not exhibit any substantial difference from the LO case. We
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Figure 5.14: The detection reach at the Tevatron for log R = 10 (left) and log R = 100 (right)
at 2 fb−1, for the left- and right-handed cases, at LO and NLO. The colour scheme
is for right-handed and left-handed correspondingly, at LO: green, blue and NLO:
light blue, pink.

have performed an equivalent analysis using the NLO method POWHEG at matrix element

level to improve computational time. Working at matrix element level with the POWHEG

method is justified since the transverse mass distribution is not significantly altered after

shower and hadronization and no difficulties arise due to negatively-weighted events, as

would be the case in the MC@NLO case. The comments given at the beginning of the section

for the LO analysis also apply to the NLO analysis. The results are shown in Figs. 5.15

and 5.16 in comparison to the LO results. In the right-handed chirality scenario, NLO
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implies a lower detection reach than indicated at LO. The situation is more complicated in

the left-handed case where the NLO case implies a slightly higher reach for larger widths.

To investigate the dependence of the NLO results on the factorisation scale µF we
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Figure 5.15: The detection reach at the LHC for log R = 10 (left) and log R = 100 (right) at
different integrated luminosities for the right-handed case compared at LO and
NLO. The colour scheme for 1, 10, 100 fb−1 is: LO: green, blue, black and NLO:
orange, light blue, pink.
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Figure 5.16: The detection reach at the LHC for log R = 10 (left) and log R = 100 (right)
at different integrated luminosities for the left-handed case compared at LO and
NLO. The colour scheme is identical to the previous figure.

have reproduced the logR contours for the right-handed W ′ LHC case with an integrated

luminosity of 10 fb−1 at different values of µF while keeping the renormalisation scale

fixed, using the MS scheme. The results are shown in Fig. 5.17. The curves show that

the factorisation scale does not affect the detection reach substantially, for example only

shifting the logR = 10 contour at a width of ΓW ′ ∼ 200 GeV from MW ′ ∼ 3500 GeV to
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MW ′ ∼ 3750 GeV going from µF = 0.5µ0 to µF = 4µ0.
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Figure 5.17: The NLO detection reach at the LHC for log R = 10 (left) and log R = 100 (right)
for an integrated luminosity of 10 fb−1 at different factorisation scale µF . The
colour scheme for µF = 0.5µ0, µ0, 2µ0 and 4µ0 is: green, blue, pink and light
blue.

5.2.8 Conclusions

We have presented a Monte Carlo implementation of the Drell-Yan production of new

charged heavy vector bosons. We have considered the interference effects with the Stan-

dard Model W boson, allowing arbitrary chiral couplings to the leptons and quarks.

Moreover, the implementation is correct up to next-to-leading order in QCD, via the

MC@NLO and POWHEG methods using the HERWIG++ event generator. We have presented

a sample of results at both leading and next-to-leading orders. As expected, the LO

and NLO boson transverse momentum distributions were found to differ significantly, the

NLO extending to higher pT . The dilepton transverse mass, invariant mass, rapidity and

z-momentum distributions were found not to be significantly altered by the NLO treat-

ment. The total cross section was found to increase in the NLO case by a factor of ∼ 1.3

in the region of interest.

Subsequently we applied a theoretical discrimination method to the W ′ reference

model to obtain mass-width observation curves for left- and right-handed chiralities of

the W ′ both at LO and NLO (POWHEG). The NLO curves were shown not to vary signifi-

cantly with factorisation scale. The event generator used throughout this analysis, Wpnlo,

is fully customisable and publicly available [107].
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5.3 Searching for third-generation composite lepto-

quarks

5.3.1 Introduction

The riddle of electroweak symmetry breaking (EWSB), and specifically the hierarchy

problem we have described in section 2.3.1.1, can be addressed in natural way via the

introduction of new physics in the form of a new strong force. An example of new strong

dynamics is ‘technicolour’ - a theory in which EWSB can be explained without adding

any fundamental scalars and the Higgs boson arises as a composite particle of some new

fermion states. This solution is natural in a literal sense, meaning that we have already

observed an example present in Nature: the hierarchy between the Planck scale (1019 GeV)

and the proton mass (∼ 1 GeV) is a result of the logarithmic running of the QCD coupling

constant and the onset of the strong coupling in the infrared.

The Higgs mechanism must explain not only how the masses of the gauge bosons arise,

but also the origin of the fermion masses. We have already described the conventional

mechanism of fermion mass generation in the SM in section 2.2.2.2. This is done con-

ventionally via the so-called ‘Yukawa’ interaction. Before EWSB we have, e.g. for the

fermions of the third generation, couplings of the form:

LYuk.SM = λT T̄OHt+ h.c. , (5.25)

where λT is the top quark Yukawa coupling, T is the third generation fermion SU(2)L

doublet, OH is the fundamental scalar Higgs operator and t is the third generation fermion

SU(2)L singlet. In theories of strong dynamics EWSB it is usual to assume that masses

arise via a similar Yukawa-type interaction:

LYuk.strong = λT
s

T̄OHt

Λd−1
f

+ h.c. , (5.26)

where we have included a suppression scale Λf , the scale at which the flavour physics

arises, d = [Oh] is the mass dimension of the scalar Higgs operator, now taken to be d ≥ 1

and λT
s is a ‘strong’ Yukawa coupling (which is dimensionless like λT ). However, in the

framework of an effective theory, other terms will necessarily need to be added to the full
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Lagrangian. One of these terms has the form:

L ⊃ q̄iqj q̄kql
Λ2

f

. (5.27)

This four-fermion operator is potentially catastrophic since it can induce flavour-changing

neutral currents (FCNCs) that can contribute to meson mixing. For example, an operator

involving two strange quarks and two down quarks, of the form ∼ s̄dd̄s, would contribute

to K0 − K̄0 mixing. This type of FCNCs have been well-measured experimentally and

to satisfy the existing constraints, one needs to choose the suppression scale to be Λf &

103 GeV. In the SM we can set Λf as large as we wish and the FCNCs decouple from

the theory since the SM Yukawa interaction term of Eq. (5.25) is not suppressed by any

power of Λf . In theories of strong dynamics, d > 1 in general and hence we cannot set the

scale Λf to be arbitrarily high, otherwise there is a risk of decoupling the Yukawa term of

Eq. (5.26) as well, rendering the theory incapable of producing fermion masses naturally.

This is particularly true for the large top quark mass.

A solution to this issue, that was proposed long ago [125], introduces composite

fermions which arise due to the strong dynamics. The elementary fermions do not couple

directly to the scalar Higgs operator; instead they mix with the composite fermions via

bilinear interactions. Schematically, the Lagrangian terms relevant to the generation of

mass for the third generation is given by

Lmix ∝ mρ

[
yT

gρ

T̄OT +
yt

gρ

t̄Ot + ŌTOT + ŌtOt

]
+ gρŌTOHOt + h.c. , (5.28)

wheremρ and gρ are the strong coupling mass scale and coupling respectively, yT and yt are

the mixing parameters of the theory, corresponding to the left- and right-handed top quark

multiplets, OT and Ot are composite left- and right-handed fermions respectively, and OH

is the composite scalar Higgs operator. Note that there are two mixing parameters for each

fermion, one for each chirality. As an example, the fermions OT,t could be technibaryons,

composites of some new ‘technifermions’ in a technicolour theory, just as the protons are

composites of quarks in QCD. The Lagrangian Lmix produces an effective Yukawa term

for the elementary fermions. By examining Fig. 5.18:

LYuk.eff ∝ yTyt

gρ
T̄OHt ≡ λT T̄OHt+ h.c. , (5.29)



134 Chapter 5. New physics searches at hadron colliders

where we have used the mixing parameters to define the top Yukawa coupling:

λT ≡ yTyt

gρ

. (5.30)

The mechanism is not only capable of producing fermion masses, but also offers the hope

T OT Ot t

OH

Figure 5.18: A schematic diagram demonstrating how the effective T̄OHt vertex is formed
using the mixing terms and the Higgs boson coupling to the composite fermions
in the Lagrangian of Eq. (5.28).

that the observed hierarchies of masses and mixings of the SM fermions may be related to

the electroweak hierarchy via strong-coupling effects. This is because the third generation

can be considered to be the ‘most composite’ and hence should have masses closest to the

strong dynamics scale [125].

It is obvious now that the new strong sector must know about SU(3) colour and must

contain, at the very least, colour-triplet fermionic resonances that mix with the elementary

colour-triplets and make the observed fermions. It is reasonable to also expect the strong

sector to contain other coloured resonances. It may contain bosonic resonances that,

depending on their gauge charges, may be able to couple to a lepton and a quark, playing

the role of the leptoquark states. For example, in Ref. [125], in which the fermionic

resonances were the technibaryons of SU(3), the model would also contain technimesons

that would be able to act as leptoquarks.

It is easy to make an estimate of the magnitude of the leptoquark couplings to fermions

in such models. These arise in much the same way as the effective Higgs boson couplings,

through the following schematic Lagrangian:

LLQ ∝ mρ

[
yQ

gρ
Q̄OQ +

yL

gρ
L̄OL + ŌQOQ + ŌLOL

]
+ gρŌQOLQOL + h.c. , (5.31)

where yQ is one of the quark mixing parameters, yL is one of the lepton mixing parameters
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and OLQ is a leptoquark operator with the correct gauge charges to couple to a composite

quark and a composite lepton. It is important to note that the mixing parameters that

appear in Eq. (5.31) are the same as those that appear in Lmix (Eq. (5.28)). The lepto-

quark effective coupling can then be calculated by considering the schematic diagram in

Fig. 5.19. We can deduce that the form of the coupling is

LLQff ∝ yQyL

gρ
Q̄OLQL ≡ λLQQ̄OLQL+ h.c. , (5.32)

where we have defined the leptoquark coupling to quarks and leptons, λLQ ≡ yQyL/gρ.

We can make estimates of the magnitude of the coupling using the measured Yukawa

couplings if we restrict the mixing parameters to be equal for the quarks and leptons of

each generation:

yQ ∼ yq ∼ yr ,

yL ∼ yν ∼ yℓ , (5.33)

where Q ∈ {U,C, T} and L ∈ {L1, L2, L3} (left-handed doublets), q ∈ {u, c, t} (right-

handed up-type singlets), r ∈ {d, s, b} (right-handed down-type singlets), ν ∈ {νeR, νµR, ντR}
(hypothetical right-handed neutrinos) and ℓ ∈ {eR, µR, τR}. We can then use the measured

Yukawa couplings and estimate each of the mixing parameters that appear in Eq. (5.30)

for the quarks and leptons:

yQ ∼
√
λQgρ , yL ∼

√
λLgρ . (5.34)

We can substitute these estimates into the leptoquark coupling to fermions defined in

Eq. (5.32), to obtain an estimate in terms of the measured Yukawa couplings:

λLQ ∼
√
λLλQ . (5.35)

From the above equation it is easy to see that couplings to quarks of the third generation

will dominate in this type of models. The SM fermion Yukawa couplings (taken from

Ref. [126]) are given in Table 5.1 and the resulting estimates of the leptoquark couplings

are given in Table 5.2. These estimates evade the constraints coming from flavour experi-

ments, for leptoquark masses even down to ∼ 200 GeV, which may arise if the leptoquarks

appear as pseudo-Nambu-Goldstone bosons [126].
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Q OQ OL L

OLQ

Figure 5.19: A schematic diagram demonstrating how the effective Q̄OLQL vertex is formed
using the mixing terms and the leptoquark coupling to the composite quarks and
leptons in the Lagrangian of Eq. (5.31).

Fermion Yukawa, λF

e 2.87 × 10−6

µ 6.09 × 10−4

τ 1.02 × 10−2

d 2.30 × 10−5

s 3.39 × 10−4

b 1.40 × 10−2

u 2.87 × 10−6

c 6.09 × 10−4

t 1.02 × 10−2

Table 5.1: The Standard Model fermion Yukawa couplings [126].

Lepton Quark 1 2 3
1 8.2 × 10−6 1.0 × 10−4 1.5 × 10−3

2 1.2 × 10−4 1.5 × 10−3 2.2 × 10−2

3 4.9 × 10−4 6.0 × 10−3 9.0 × 10−2

Table 5.2: Estimates of the leptoquark couplings to fermions [126], using the measured Yukawa
couplings that appear in Table 5.1 and the assumption that there is only one mixing
parameter for the quarks and leptons of each generation.

Since the leptoquark couplings to light fermions are highly suppressed, the only rele-

vant couplings for direct collider production and detection are those to third-generation

fermions.7 As a result, the leptoquark states will decay exclusively to third-generation

fermions, that is to tτ or tντ or bτ or bντ . Näıvely, since the leptoquark couplings scale

roughly with the Yukawa couplings, and since the bounds preclude a leptoquark mass

7For an alternative scenario with leptoquarks of this type, see [127].
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below mt,
8 one might conclude that decays involving the top must dominate. However,

we shall see later that the gauge quantum numbers sometimes preclude couplings to top

quarks and, of course, unknown global symmetries may also preclude one or more cou-

plings. Thus we consider all four possible couplings.

Since leptoquarks couple dominantly to third-generation quarks and leptons, pair-

production through colour gauge interactions will overwhelmingly dominate single-production

at the LHC. The channels of interest therefore involve pair-wise combinations of tτ or tντ

or bτ or bντ .
9 The 2b2τ and 2b+ /ET channels already have been the subject of searches at

the Tevatron [128,129], and can be adapted easily for the LHC. The use of novel kinematic

variables such as MT2 in this 2b+ /ET channel may well improve the prospects for discovery

and mass measurement. The two channels involving the top require more ingenuity, but

merit investigation.

In the present section we perform the first detailed phenomenological study of the pos-

sible production of such states at the LHC. In section 5.3.2 we briefly review their quantum

numbers, couplings and decay modes, which we have implemented in the HERWIG++ event

generator.10 This allows us to propose and investigate strategies for reconstructing third-

generation leptoquark masses from their decay products, including those that involve top

quarks, in the following sections. Our conclusions are presented in section 5.3.9.

Although we focus here on direct searches at the LHC, there are also promising chan-

nels for indirect searches, namely in Bd → Kµ̄µ and Bs → µµ at LHCb, in µ → eγ and

τ → µγ, in µ− e conversion in nuclei, and in τ → ηµ at future B factories [126].

5.3.2 Phenomenology

5.3.2.1 Scalar leptoquark pair-production

We focus on scalar leptoquarks in the present study since their bosonic couplings are

determined completely by QCD and hence their production cross sections only depend

on their masses. Moreover, the lightest (and most easily accessible) leptoquarks in these

scenarios arise as scalar pseudo-Nambu-Goldstone bosons. The type of leptoquarks we are

considering are predominantly pair-produced via gluon-gluon fusion or quark-anti-quark

8Searches at D0 for third-generation scalar leptoquarks decaying exclusively to bτ or bντ yield bounds
of 210 GeV [128] and 229 GeV [129] respectively.

9Note that third-generation lepton-quark couplings are also possible in R-parity-violating supersym-
metric theories.

10PYTHIA [45, 130,131] contains an implementation of a single scalar leptoquark of arbitrary flavour.
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annihilation, due to the fact that they couple to the third-generation quarks and leptons.

Only charge-conjugate leptoquarks can be produced in this way: associated production of

different leptoquarks is forbidden since it would not conserve the Standard Model gauge

quantum numbers. Single-production in association with a lepton is allowed but at a

14 TeV LHC it becomes dominant at leptoquark masses of about 2.2 TeV, at which point

the total cross section, σ ∼ 10−2 fb, is already too low for discovery.

5.3.2.2 Effective Lagrangian for interactions with gluons

The effective Lagrangian describing the interaction of the scalar leptoquarks with gluons

is [132]

Lg
S =

(
Dµ

ijΦ
j
)†

(Dik
µ Φk) −M2

LQΦi†Φi , (5.36)

where Φ is a scalar leptoquark, i, j, k are colour indices, the field strength tensor of the

gluon field is given by

Ga
µν = ∂µAa

ν − ∂νAa
µ + gsf

abcAµbAνc , (5.37)

and the covariant derivative is

Dij
µ = ∂µδ

ij − igst
ij
a Aa

µ . (5.38)

The Feynman rules that result from this Lagrangian and the diagrams that contribute to

pair-production of scalar leptoquarks are given in appendix F.1. Expressions for the cross

sections are given in appendix B.

5.3.2.3 Non-derivative fermion couplings

The effective Lagrangian that describes the possible non-derivative couplings of the scalar

leptoquarks to third-generation quarks and leptons is given by [133]

Lnd = (g0Lq̄
c
Liτ2ℓL + g0Rt̄

c
RτR)S0

+ g̃0Rb̄
c
RτRS̃0 + g1Lq̄

c
Liτ2τaℓLS

a
1

+ (h1Lt̄RℓL + h1Rq̄Liτ2τR)S1/2 + h2Lb̄RℓLS̃1/2 + h.c. , (5.39)

where the τa are the Pauli matrices, qL and ℓL are SU(2)L quark and lepton doublets

respectively and tR, bR and τR are the corresponding singlet fields. We denote charge-
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Name SU(3)c T 3 Y Qem Decay mode HERWIG++ id

S0 3̄ 0 1/3 1/3 τ̄Rt̄R, τ̄Lt̄L, ν̄τ,Lb̄L -9911561

S̃0 3̄ 0 4/3 4/3 τ̄Rb̄R -9921551

S
(+)
1 3̄ +1 1/3 4/3 τ̄Lb̄L -9931551

S
(0)
1 3̄ 0 1/3 1/3 τ̄Lt̄L, ν̄τ,Lb̄L -9931561

S
(−)
1 3̄ -1 1/3 -2/3 ν̄τ,Lt̄L -9931661

S
(+)
1/2 3 +1/2 7/6 5/3 tRτ̄L, tLτ̄R 9941561

S
(−)
1/2 3 -1/2 7/6 2/3 bLτ̄R, tRν̄τ,L 9941551

S̃
(+)
1/2 3 +1/2 1/6 2/3 bRτ̄L 9951551

S̃
(−)
1/2 3 -1/2 1/6 -1/3 bRν̄τ,L 9951651

Table 5.3: Numbering scheme, charges and possible decay modes for the non-derivatively cou-
pled scalar leptoquarks. Y represents the U(1)Y charge and T 3 is the third compo-
nent of the SU(2)L charge. Since S1 is an SU(2)L triplet, it contains three complex
scalars. The S1/2 and S̃1/2 are SU(2)L doublets. The naming convention is ex-
plained in the text. The minus sign in the ids of some of the leptoquarks indicates
the fact that they are anti-triplets of SU(3)c.

conjugate fields by f c
R,L = (PR,Lf)c, where the superscript c implies charge conjugation.

In Table 5.3 we give the quantum numbers for the five types of non-derivatively coupled

scalar leptoquarks: the SU(2)L-singlet complex scalars S0 and S̃0, the SU(2)L-triplet

complex scalar S1 and the SU(2)L-doublets S1/2 and S̃1/2.

The numbering scheme used in our implementation of scalar leptoquarks in HERWIG++

is also given in Table 5.3. The particles are numbered as 99NDDDJ , where N distin-

guishes the representation of the standard model gauge group, DDD is the lowest possible

number chosen to relate the leptoquark to the Particle Data Group (PDG) codes of de-

caying fermions, and J = 2S + 1, where S is the particle spin. The sign of the PDG code

is negative for colour anti-triplets and positive for colour triplets. Hence, −9911561 is the

‘first’ type of leptoquark, S0, and can decay to particles with codes 15 (τ) and 6 (t).

Notice that the first three kinds of leptoquarks, the S0, S̃0 and the S1 triplet are colour

anti-triplets and the particles (as opposed to the anti-particles) decay into an anti-lepton

and an anti-quark. This is contrast to the S1/2 and S̃1/2 doublets, which are colour-triplets

and decay into quarks and anti-leptons.
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Name SU(3)c T 3 Y Qem Decay mode HERWIG++ id

S ′
0 3 0 2/3 2/3 tRν̄τ,L, bRτ̄L, bLτ̄R 9961551

S̃ ′
0 3 0 5/3 5/3 tRτ̄L, tLτ̄R 9971561

S
′(+)
1 3 +1 2/3 5/3 tRτ̄L, tLτ̄R 9981561

S
′(0)
1 3 0 2/3 2/3 tRν̄τ,L, bLτ̄R, bRτ̄L 9981551

S
′(−)
1 3 -1 2/3 -1/3 bRν̄L 9981651

S
′(+)
1/2 3̄ +1/2 5/6 4/3 b̄Lτ̄L, b̄Rτ̄R -9991551

S
′(−)
1/2 3̄ -1/2 5/6 1/3 b̄Lν̄τ,L, t̄Rτ̄R, t̄Lτ̄L -9991561

S̃
′(+)
1/2 3̄ +1/2 -1/6 1/3 t̄Lτ̄L, t̄Rτ̄R -9901561

S̃
′(−)
1/2 3̄ -1/2 -1/6 -2/3 t̄Lν̄τ,L -9901661

Table 5.4: Numbering scheme, charges and possible decay modes for the derivatively-coupled
scalar leptoquarks. The details are as in Table 5.3.

5.3.2.4 Derivative fermion couplings

We also consider leptoquarks that couple derivatively to the quarks and leptons. The

couplings of the leptoquarks to fermions involve three fields, and hence two independent

positions for the derivative to act, modulo integration by parts. Here, we choose to place

the derivative on either the quark or the lepton, such that the Lagrangian is given by

Ld =
−i√
2f

(g′0L,iq̄Lp
µ,iγµℓL + g′0R,ib̄Rp

µ,iγµτR)S ′
0

+
−i√
2f
g̃′0R,it̄Rp

µ,iγµτRS̃
′
0 +

−i√
2f
g′1L,iq̄Lp

µ,iγµτaℓLS
′a
1

+
−i√
2f

(h′1L,ib̄
c
Rp

µ,iγµℓL + h′1R,iq̄
c
Lp

µ,iγµτR)S ′
1/2 +

−i√
2f
h′2L,it̄

c
Rp

µ,iγµℓLS̃
′
1/2 + h.c. ,

(5.40)

where the index a ∈ {1, 2, 3} and pµ,i, i ∈ {l, q}, denotes the momentum of the lepton or

quark.

The charges of the primed scalar states appear in Table 5.4; they correspond, of course,

to those of vector leptoquarks. Notice that whereas the S0 is a colour anti-triplet, S ′
0 is a

colour triplet and so on.
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Consider a leptoquark S ′
0 that couples derivatively to fermions in the following way:

L ∼ 1√
2f

(
g′0L,it̄L/p

iS ′
0νL + g′0L,ib̄L/p

iS ′
0τL + g′0R,ib̄R/p

iS ′
0τR
)

+ h.c. , (5.41)

where the f is the sigma model scale for the strong dynamics. Consider the decay of the

S ′
0 to on-shell fermions via the coupling g′0L,ib̄Lp

µ,iγµtL. We then have

g′0L,ib̄L/p
iτLS

′
0 = g′0L,q b̄L/p

qS ′
0ℓL + g′0L,ℓb̄L/p

ℓτLS
′
0

= g′0L,qmbb̄RS
′
0ℓL + g′0L,ℓmτ b̄LS

′
0τR . (5.42)

Note that the chirality of one decay product is reversed in each term by the mass insertion,

which breaks the gauge symmetry. An equivalent manipulation is given in appendix F.2

for terms that contain conjugate fields. For simplicity, we choose to set the quark and

lepton primed couplings for each term equal, g′ℓ = g′q = g′, where g′ represents g′0, g
′
1 or

h′1. As a result of the above manipulation, an effective Lagrangian for the on-shell decay

of a scalar leptoquark S ′
0 may be written as

Leff. ∼ 1√
2f

(
g′0Lmtt̄RS

′
0ντ,L + g′0Lmbb̄RS

′
0τL + g′0Lmτ b̄LS

′
0τR

+ g′0Rb̄LmbS
′
0τR + g′0Rb̄RmτS

′
0τL
)

+ h.c. (5.43)

⇒ Leff. ∼
[

1√
2f

(g′0Lmb + g′0Rmτ )

]
b̄RS

′
0τL

+

[
1√
2f

(g′0Lmτ + g′0Rmb)

]
b̄LS

′
0τR

+

[
1√
2f

(g′0Lmt)

]
t̄RS

′
0ντ,L + h.c. , (5.44)

converting all the derivative couplings to ones that look like those for the unprimed lepto-

quarks, with the lepton or fermion masses appearing in the coupling. See appendix F.2 for

the full effective Lagrangian. Since the scale f is typically a few hundred GeV, couplings

proportional to the top quark mass are expected to dominate when the corresponding

decays are kinematically allowed. The on-shell fermion assumption is realistic since the

widths of the fermions are small in comparison to their masses and hence off-shell effects

are negligible.
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Name λL(ℓq) λR(ℓq) λL(νq)

S0 g0L g0R −g0L

S̃0 0 g̃0R 0

S
(+)
1

√
2g1L 0 0

S
(0)
1 −g1L 0 −g1L

S
(−)
1 0 0

√
2g1L

S
(+)
1/2 h1L h1R 0

S
(−)
1/2 0 −h1R h1L

S̃
(+)
1/2 h2L 0 0

S̃
(−)
1/2 0 0 h2L

Table 5.5: The λi couplings of the non-derivatively-coupled scalar leptoquarks to the different
quark-lepton combinations, as they appear in the Lagrangian.

5.3.2.5 Decay widths

The decay width of non-derivatively coupled scalar leptoquarks in the limit of massless

quarks and leptons is given by [133]

Γ =
MLQ

16π

(
λ2

L(ℓq) + λ2
L(νq) + λ2

R(νq)
)
, (5.45)

where the couplings λL,R(ℓq) for the types of leptoquarks we are considering are given in

Table 5.5 in terms of the couplings that appear in the Lagrangian. The couplings are taken

to be real. The expression gives, for quark-lepton couplings g ∼ 0.1 and leptoquark mass

of ∼ 400 GeV, a width of ∼ 0.1 GeV. The decay width to massive qℓ is further suppressed

by a phase-space factor compared to the massless quark and lepton width [129]:

F ∼ (1 − rq − rℓ)
√

1 + (rq − rℓ)2 − 2rq − 2rl , (5.46)

where rq,ℓ are the squared ratios m2
q,ℓ/M

2
LQ respectively.

Table 5.6 shows the couplings for the primed, derivatively-coupled, scalar leptoquarks.

The expression for the width given in Eq. (5.45) remains unchanged in the case of the

primed leptoquarks, with the couplings λi taking the appropriate values. Tables 5.7

and 5.8 show example decay widths and branching ratios for scalar leptoquarks of mass

MLQ = 400 GeV and couplings g = 0.1. In the case of derivatively coupled leptoquarks

we choose a suppression scale f = 800 GeV.
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Name λL(ℓq) ×
√

2f λR(ℓq) ×
√

2f λL(νq) ×
√

2f

S ′
0 g′0L,qmb + g′0R,ℓmτ g′0R,qmb + g′0L,ℓmτ g′0L,qmt

S̃ ′
0 g̃′0R,ℓmτ g̃′0R,qmt 0

S
′(+)
1

√
2g′1L,qmt

√
2g′1L,ℓmτ 0

S
′(0)
1 −g′1L,qmb −g′1L,ℓmτ g′1L,qmt

S
′(−)
1 0 0

√
2g′1L,qmb

S
′(+)
1/2 h′1L,qmb + h′1R,ℓmτ h′1R,qmb + h′1L,ℓmτ 0

S
′(−)
1/2 h′1R,ℓmτ h′1R,qmt h′1L,qmb

S̃
′(+)
1/2 h′2L,ℓmτ h′2L,qmt 0

S̃
′(−)
1/2 0 0 h′2L,ℓmt

Table 5.6: The λi couplings of the derivatively-coupled (primed) scalar leptoquarks to the
different quark-lepton combinations, as they appear in the Lagrangian. In our
analysis, we have set the quark and lepton couplings equal for simplicity.

5.3.3 Reconstruction strategies

Table 5.9 provides an overview of our suggested reconstruction strategies for the different

types of leptoquarks. The ‘stransverse’ mass variable, MT2, which appears in the table has

been defined previously in Ref. [134], for the case of identical semi-invisible pair decays

as

MT2 ≡ min
/cT +/c′T = /pT

{max (MT ,M
′
T )} , (5.47)

where the minimisation is taken over /cT and /c′T , the transverse momenta of the invisi-

ble particles, with the constraint that their sum equals /pT, the total missing transverse

momentum, and MT and M ′
T are the transverse masses calculated for the two decay

chains. We assume that the invisible particles are massless and use the jet masses in our

definitions of MT2. The new variables Mbal
min and Mmin will be defined in section 5.3.6.1.

We present our analysis of the mass reconstruction techniques for each pair-production

decay mode separately, initially at parton level and then at detector level, including

discussion of the relevant backgrounds. We focus on the S0 singlet, S1 triplet and S1/2

doublet and outline how to generalise the strategy to all the leptoquark multiplets.

It is evident from Tables 5.7 and 5.8 that the leptoquark decay widths are generally

much smaller than the resolution of the detector components, and hence our analysis is

not sensitive to the decay widths. Throughout the following we have set the leptoquark
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Decay mode Decay width (GeV) BR

S̄0 → τ−t 0.1040 0.5666
S̄0 → ντb 0.07956 0.4334
¯̃S0 → τ−b 0.07956 1

S̄
(+)
1 → τ−b 0.1591 1

S̄
(0)
1 → τ−t 0.05225 0.3964

S̄
(0)
1 → ντ b 0.07956 0.6036

S̄
(−)
1 → ντ t 0.1045 1

S
(+)
1/2 → τ+t 0.1040 1

S
(−)
1/2 → τ+b 0.07956 0.6036

S
(−)
1/2 → ν̄τ t 0.05225 0.3964

S̃
(+)
1/2 → τ+b 0.07956 1

S̃
(−)
1/2 → ν̄τ b 0.07956 1

Table 5.7: Decay widths for non-derivatively-coupled scalar leptoquarks of mass MLQ =
400 GeV and couplings g = 0.1.

couplings to fermions to the value g = 0.1. This value is close to the estimate of the

leptoquark coupling to third-generation quarks and leptons (≈ 0.09) derived using the

measured fermion Yukawa couplings and the assumptions given towards the end of Sec-

tion 5.3.1 (see Tables 5.1 and 5.2). The resulting width-to-mass ratio for the leptoquarks

corresponding to this coupling, according to Eq. (5.45), is O(10−4).

We use the HERWIG++ event generator to generate a number of events corresponding

to an integrated luminosity of 10 fb−1 of the relevant signal and tt̄ background samples.

Subsequently we use the Delphes framework [135] to simulate the detector effects and

assess the feasibility of reconstruction in an experimental situation.11 Delphes includes

the most crucial experimental features: the geometry of the central detector, the effect

of the magnetic field on the tracks, reconstruction of photons, leptons, b-jets, τ -jets and

missing transverse energy. It contains simplifications such as idealised geometry, no cracks

and no dead material. We use the default parameter settings in the Delphes package that

correspond to the ATLAS detector. Crucial features of our analysis are both b- and τ -

tagging of jets and we caution the reader to take into consideration that the relevant

efficiencies will contain a degree of uncertainty at the early stages of the LHC experiment.

11Delphes is a framework for fast simulation of a general-purpose collider experiment.
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Decay mode Decay width (GeV) BR

S ′
0 → τ−b 4.440 × 10−6 0.0036
S ′

0 → ντ t 0.001239 0.9964

S̃ ′
0 → τ−t 0.001239 1

S
′(+)
1 → τ−t 0.002478 1

S
′(0)
1 → τ−b 1.292 × 10−6 0.0010

S
′(0)
1 → ντ t 0.001239 0.9990

S
′(−)
1 → ντb 2.193 × 10−6 1

S̄
′(+)
1/2 → τ−b 4.440 × 10−6 1

S̄
′(−)
1/2 → τ−t 0.001239 0.9991

S̄
′(−)
1/2 → ντb 1.098 × 10−6 0.0009

¯̃S
′(+)

1/2 → τ−t 0.001234 1
¯̃S
′(−)

1/2 → ντ t 0.001239 1

Table 5.8: Decay widths for derivatively-coupled (primed) scalar leptoquarks of mass MLQ =
400 GeV, couplings g′ = 0.1 and suppression scale f = 800 GeV.

The b-tagging present in the Delphes framework assumes an efficiency of 40% if the jet

has a parent b-quark, 10% if the jet has a parent c-quark and 1% if the jet is light (i.e.

originating from u, d, s or g). The identification of hadronic τ -jets is consistent with the

one applied in a full detector simulation. The resulting efficiencies for hadronic τ -jets are

in satisfactory agreement with those assumed by ATLAS and CMS. See [135] for further

details.

Throughout the analysis we apply transverse momentum cuts of at least 30 GeV. Since

we are always working with high-transverse momentum objects, we can assume that pile-

up arising due to secondary proton-proton collisions is under experimental control. See,

for example, the ATLAS tt̄H(→ bb̄) study in Ref. [77].

5.3.4 (tτ )(tτ ) decay mode

We examine the possibility of full reconstruction of the topology shown in Fig. 5.20, where

we have, for example, S0(S̄0) → bjjj1ν1 and S0(S̄0) → bℓν3j2ν2, where ν1 and ν2 represent

one or more neutrinos coming from the τ decays and ℓ can be either a muon or an electron.

We can assume that the neutrinos ν1,2 associated with the decays of the τs are collinear

with the direction of the jets j1,2 associated with them. The validity of this assumption
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modes types technique

(tτ)(bν) S0, S
(0)
1 jτ ‖ ντ , mass constraints

⇒ edge reconstruction (Mbal
min, Mmin, MT2)

(tτ)(tτ) S0, S
(0)
1 , two jτ ‖ ντ , mass constraints

S
(+)
1/2 , S̃ ′

0 ⇒ full reconstruction

(bν)(bν) S0, S
(0)
1 , MT2

S̃
(−)
1/2 , S

′(−)
1

(bτ)(bτ) S
(+)
1 , S̃

(−)
1/2 two jτ ‖ ντ , mass constraints

S̃0, S
′(+)
1/2 , ⇒ full reconstruction

S
′(0)
1

(tν)(tν) S
(−)
1 , S

(−)
1/2

S ′
0, S

′(0)
1 , MT2

S̃
′(−)
1/2

(tν)(bτ) S
(−)
1/2 , S ′

0 jτ ‖ ντ , mass constraints

S
′(0)
1 ⇒ edge reconstruction (Mbal

min, Mmin, MT2)

Table 5.9: The table outlines the general reconstruction strategy for leptoquark pair-
production for the different types of leptoquarks. For variable definitions and further
details see the respective sections.

has been confirmed using HERWIG++, for leptoquarks of masses 1, 0.4 and 0.25 TeV, as

may be seen in Fig. 5.21, which shows the distribution of δR =
√
δη2 + δφ2 between

the momenta of the τ jet partons and the τ invisibles. The assumption is employed

in our reconstruction of any leptoquark decay mode containing a τ -jet. The top quark

branching ratios are ∼ 0.216 for the semi-leptonic e, µ modes and ∼ 0.676 for the hadronic

top modes. These appear twice since we have either the t or t̄, resulting in an overall

∼ 0.292 factor for the top decay modes. The branching ratios and cross sections for S0S̄0

production depend on the leptoquark mass and coupling and are shown in Table 5.10,

where the last column is the resulting cross section for the topology under study. We

focus on 400 GeV leptoquarks since these are clearly not excluded by direct searches at

present and still provide a sufficient number of events to be potentially discovered at a

reasonable luminosity (10 fb−1) at 14 TeV.
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Figure 5.20: Pair-production of S0 leptoquarks with decay to (tτ)(tτ), followed by one
hadronic and one semi-leptonic top decay.

MS0 (GeV) σ(pp→ S0S̄0) (pb) BR(tτ) σ(tτ t̄τ̄ → bb̄jjℓ(= e, µ)ντ τ̄ ) (pb)

174.2 (= mtop) 141(1) 0. 0.
250 24.3(3) 0.34 0.729
400 2.000(7) 0.567 0.188
500 0.561(6) 0.606 0.06
1000 5.94(7) ×10−3 0.65 7.3 × 10−4

Mtop (GeV) σ(pp→ tt̄) (pb) - σ(tt̄→ bb̄jjℓ(= e, µ)ν) (pb)
174.2 834(1) - 242

Table 5.10: S0S̄0 total cross section at the LHC at 14 TeV pp centre-of-mass energy, branching
ratio to tτ and remaining cross section taking into account the top branching ratios.
The corresponding tt̄ values are given for comparison.

5.3.4.1 Kinematic reconstruction

The final states of S0S̄0 → t̄τ+tτ− processes contain many decay products including

neutrinos. If the system has a large enough number of kinematical constraints, such as

mass-shell conditions and the balance of the total transverse momentum, we can com-

pletely reconstruct the kinematics of the system. The numbers of unknown variables and

constraints are summarised in Table 5.11 for each decay pattern of the tops: (1) both

tops decay hadronically, (2) one top decays semi-leptonically and another hadronically
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Figure 5.21: The distribution of the distance in R-space (δR =
√

δη2 + δφ2) between the
momenta of the τ jet and the τ invisibles in S0 pair-production for MLQ =
1, 0.4, 0.25 TeV.

Decay type # of unknowns # of constraints
(1) had,had 1 + (0 + 2)N (2 + 2)N
(2) had,lep 1 + (4 + 2)N (5 + 2)N
(3) lep,lep 1 + (8 + 2)N (8 + 2)N

Table 5.11: The numbers of unknown variables ([mLQ], [ν from top], [energy fraction of tau])
and constraints ([mass-shell conditions], [balance of missing momentum]) in N
events of each decay type. The mass-shell conditions that constrain the unknown
variables are counted here, i.e. the mass-shell conditions on S0, leptonic top, W
and ν from leptonic top decay.

and (3) both tops decay semi-leptonically. As mentioned above, we assume τ -neutrinos

are collinear to the τ -jets, leaving two unknown parameters associated with the taus,

namely the energy ratios zi (i = 1, 2, zi ≥ 1) which are defined (neglecting masses) by

pτi
= zipji

,

pνi
= pτi

− pji
= (zi − 1)pji

, (5.48)
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where pτi
, pji

and pνi
are the four-momenta of the τ leptons, τ -jets and τ -neutrinos,

respectively. Under this assumption, the unknown variables in Table 5.11 are the mass

of the leptoquark, the 4-momenta of neutrinos from leptonic top decays and the energy

fractions associated with the neutrinos from the tau decays. The mass-shell conditions

that could constrain the unknown variables are counted in Table 5.11, i.e. the mass-shell

conditions on S0, leptonic top, W and ν from leptonic top decay.

It is only possible to wholly reconstruct the kinematics of a single event in decay types

(1) and (2). In decays of type (1), it would be difficult to reconstruct both hadronic tops

because of the large combinatorial background. Thus, we focus on decay type (2) and

attempt to determine the leptoquark mass. As we show in appendix F.3, in this case

one obtains a quartic equation for the energy ratio z2, and hence in general up to four

solutions for the leptoquark mass, at least one of which should be close to the true value

if the visible momenta and missing transverse momenta are well-measured.

5.3.4.2 Parton-level reconstruction

We first perform the (tτ)(tτ) analysis of the hard process (no initial- or final-state ra-

diation, no underlying event) at parton level without considering experimental or com-

binatoric effects, to examine its feasibility. For the majority of cases there are only two

physical, approximately degenerate, solutions, which are close to the true leptoquark mass.

The numerical solution of the quartic equation sometimes fails to yield real roots. The

results for true leptoquark masses MS0 = (0.25, 0.4, 1.0) TeV are shown in Fig. 5.22, which

includes histograms of the solutions obtained for 103 events. The histogram includes a

bin at 0 where the events without real solution are placed. These amount to about 10%

of the total events. At this level the reconstruction technique provides a good estimate

of the leptoquark mass for all the trial true masses, lying within a few GeV of the true

mass.

5.3.4.3 Experimental reconstruction

We consider an S0 leptoquark with mass MS0 = 400 GeV, for which the cross section

for production and decay into the topology of Fig. 5.20, S0S̄0 → tτ t̄τ̄ → bb̄jjℓντ τ̄ , is

σ = 0.187 pb. The most significant background in this scenario is tt̄ production, with

two extra jets misidentified as τs and subsequent decay of the tops into bb̄jjℓν. The cross

section for this process is 242.4 pb, overwhelming to begin with. There is also potentially

an irreducible Htt̄→ τ τ̄ tt̄ background which, for a Higgs boson of mass MH = 115 GeV,
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Figure 5.22: Histograms of the solutions obtained at parton level for S0S̄0 and decay to a
semi-leptonic top, a hadronic top and two tau leptons, for MS0 = (0.25, 0.4, 1.0)
TeV (from left to right respectively). The first bin (0 GeV) contains the events
for which no real solution has been found.

has a cross section of approximately 65 fb. Since one of the main rejection mechanisms

is the reconstruction through the solution of the kinematic equations, we do not expect

this background to contribute significantly in the signal region.

We simulate the events with QCD initial-state radiation (ISR), final-state radiation

(FSR) and underlying event (UE). We use the default jet algorithm provided by the

Delphes package for the ATLAS configuration, the anti-kt with the parameter set to

R = 0.7. We then demand a set of relatively loose cuts on the full tt̄ and S0S̄0 samples,

since in a real experiment we would not be able to separate the different decay modes of

the top quark or S0 leptoquark. The cuts applied are the following:

• The existence of a lepton in the event, being either a muon or electron, with pT,ℓ >

30 GeV.

• A minimum of 6 jets.

• The missing transverse momentum in the event, /ET > 20 GeV.

• Two τ -tagged jets, with the extra requirement that they both have pT,τ > 30 GeV.

• No jets tagged as both b- and τ -jets simultaneously.

We also require that the highest-pT lepton is at a distance δR > 0.1 from the τ -tagged

jets, since electrons may create a candidate in the jet collection as well as the lepton
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collection. The analysis then breaks up into different branches according to the number

of b-tagged jets in an event:

• Two b-tagged jets: we look for one or two further jets (with pT > 30 GeV) that form

an invariant mass close to the top mass, within 20 GeV. One b-jet is then associated

with the semi-leptonic top decay and the other with the hadronic top decay.

• One or no b-tagged jets: when there is one b-tagged jet, we check whether it will

satisfy the top mass conditions with any other (one or two) remaining jets, otherwise

we associate it with the semi-leptonic top. If so, we look for any two or three jets

that satisfy the top mass conditions, and form the hadronic top within a 20 GeV

mass window. For the remaining b-jets (or if there are no b-jets) we look for the

remaining highest-pT jets. Any jets that are found in this way and called b-jets are

required to have a pT,b > 30 GeV.

No solutions are found in the sample of 70 signal events passing the cuts, if we require the

ratios z2 to be purely real. Hence, the solutions to the quartic equation for the momentum

ratios z2, described in appendix F.3, are now allowed to be complex in order to provide

some signal. This is valid since even true leptoquark events are smeared and distorted

by detector and QCD effects. We use the real part of z2 as an input to the calculation of

the rest of the kinematic variables. This is reasonable since the experimental effects are

expected to ‘smear’ the position of the true value of z2 in all directions in the complex

plane. The effect is shown in Fig. 5.23, where we plot the real and imaginary parts of z2

for the events that have passed the kinematic cuts. Evidently, there is a concentration

of solutions around the positive real axis, an effect exemplified by Fig. 5.24, where we

show the ratio of the real part of z2 and its modulus. We have further demanded that the

resulting momentum fractions are physical: R(z1,2) > 1, resulting in only real solutions for

MS0 . Figure 5.25 shows a reconstruction plot for leptoquarks of mass MS0 = 400 GeV.

Note that each event was given weight 1, distributed evenly amongst the solutions it

yields. In the case of complex z2, we assume there is one solution corresponding to the

complex conjugate pair.

Although the cuts applied are relatively weak, most of the background rejection comes

from the requirement of two τ -tagged jets. The background does not produce solutions

in the physical region often enough to be significant.
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Figure 5.23: The plot shows the complex values of the solutions for z2 after solving the quartic
equation for the events that have passed the experimental cuts. There exists a
higher concentration of events about the positive real axis. The number of entries
is 280 (4 solutions included for each of the 70 events).

Figure 5.24: The plot shows the ratio of the real part of z2 and its modulus. The peak close
to 1 demonstrates the clustering of the real positive solutions about the real axis
and justifies the use of the real part as an input to the rest of the calculation.
The number of entries is 280 (4 solutions included for each of the 70 events).
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Figure 5.25: Experimental reconstruction of the S0S̄0 → tτ t̄τ̄ → bb̄jjℓ(= e, µ)ντ τ̄ mode using
the method described in the text. Note that each event has weight 1, distributed
evenly amongst the solutions it yields. The signal is shown in red (35 entries)
and the tt̄ background in blue dashes (3 entries).

5.3.5 (qν)(qν) decay modes

We can obtain the mass of the leptoquarks when both of them decay into bν or tν using

the MT2 variable (Eq. (5.3.3)). Examples of these decay mode are S0S̄0 → b̄ν̄bν and

S̄
(−)
1/2S

(−)
1/2 → t̄νtν̄.

5.3.5.1 Parton-level reconstruction

At parton level, the (tν)(tν) and (bν)(bν) decay modes are similar and hence we consider

only the latter here. We first construct the MT2 variable using the parton-level b-quark

4-momenta, in the absence of any experimental effects, ISR, FSR or UE. The result is

shown in Fig. 5.26 for MLQ = (0.25, 0.4, 1) TeV, confirming the expected sharp edge in

these idealised conditions.

5.3.5.2 Experimental reconstruction

As before, we use the Delphes framework to simulate the detector effects, with the settings

stated in section 5.3.3. We demand two b-tagged jets in both the q = b and q = t cases.
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Figure 5.26: The parton-level MT2 distribution constructed for the S0S̄0 → b̄ν̄bν using the
true b-quark momenta, for MLQ = 1, 0.4, 0.25 TeV.

In the latter we search for combinations of 1 or 2 jets with the b-tagged jets which form

the top mass within a window of 10 GeV. We require the following cuts for the (bν)(bν)

case, on the full S0S̄0 sample:

• Two b-tagged jets with pT,b > 120 GeV each.

• No electrons or muons in the event.

• Missing transverse energy /ET > 250 GeV.

For the (tν)(tν) case we require the following cuts on the S̄
(−)
1/2S

(−)
1/2 sample:

• Two b-tagged jets with pT,b > 80 GeV each.

• No electrons or muons in the event.

• Missing transverse energy /ET > 260 GeV.

The resulting MT2 distributions for the signal (blue) and tt̄ background (red) can be seen

in Fig. 5.27. The (tν)(tν) mode appears to be more challenging to reconstruct than the
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Figure 5.27: Experimental reconstruction of the S0S̄0 → bντ b̄ν̄τ mode (left, 121 background
events, 125 signal events) and S̄−

1/2S
−
1/2 → t̄νtν̄ mode (right, 39 background

events, 48 signal events) using MT2. ISR, FSR and the underlying event have
been included in the simulation. The signal is given in red and the tt̄ background
in blue dashes.

(bν)(bν) mode. This is due to the fact that the tt̄ background is very similar to the signal

and the difficulties that are present in reconstructing hadronic tops. Nevertheless, as the

results show, it may be possible to observe an excess over the MT2 distribution of the

background and provide an estimate of the mass.

5.3.6 (q′τ )(qν) decay modes

One possible event topology for the S0S0 → b̄ν̄tτ− processes is shown in Fig. 5.28. When

the top decays hadronically the system has two neutrinos, one from an S0 decay and

another from a τ decay. If we can reconstruct the hadronic top correctly, we can simply use

MT2 to obtain the mass of the leptoquarks. Similar topology is present in the S̄
(−)
1/2S

(−)
1/2 →

(bτ̄ )(t̄ν) decay mode.

It is known that the information from MT2 is the same as that from the ‘minimal

kinetic constraints’, in events where two identical particles decay to missing particles

with the same mass [136–138]. As discussed in section 5.3.4, in this type of event, we can

take advantage of the fact that, to a good approximation, the neutrino from a τ decay is

travelling almost collinearly to the τ -jet in the lab frame. By including this constraint,

we can define kinematical variables, Mmin and Mbal
min, which perform better than MT2 at

parton level, as we will show in the following subsections.
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Figure 5.28: Pair production of S0 leptoquarks with decay to (tτ)(bν), followed by hadronic
top decay.

5.3.6.1 Kinematic reconstruction

In the τ collinearity approximation, neglecting masses, we can write

pντ = wpj , w > 0 . (5.49)

The second neutrino comes directly from the S0 decay associated with a b-jet. The

transverse components of the momentum of this neutrino are constrained by

pν = pmiss − wpj . (5.50)

There are two unknown parameters left, w and pz
ν . In terms of these, we define two

invariant mass variables:

m2
tτ (w) = (pt + (1 + w)pj)

2 = m2
t + 2(1 + w)pt · pj (5.51)

and

m2
bν(w, p

z
ν) = (pb + pν)

2

= 2Eb

√
(pmiss − wpj)2 + (pz

ν)
2 − 2pb · (pmiss − wpj) − 2pz

bp
z
ν .

(5.52)
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Figure 5.29: Parton-level distributions of Mbal
min (left), Mmin (centre) and MT2 (right) for

(bν)(tτ) (solid curve) and (tν)(bτ) (dashed curve).

Note that mtτ does not depend on pz
ν and is a monotonically increasing function of w

because pt · pj > 0. We can now define two MT2-like variables:

Mmin = min[max{mtτ , mbν}] ≥MT2 , (5.53)

and

Mbal
min = min

mtτ=mbν

[mbν ] , (5.54)

where minimisation is taken for all possible (w, pz
ν). By construction, both these quantities

have an upper bound equal to the leptoquark mass:

MS0 ≥Mmin, MS0 ≥Mbal
min . (5.55)

Furthermore, we show in appendix F.4 that

Mbal
min ≥Mmin . (5.56)

5.3.6.2 Parton-level reconstruction

Figure 5.29 shows the parton-level distributions of Mbal
min, Mmin and MT2 for 1000 events.

We took only the true combination of the jet assignment. As can be seen, all the distri-

butions have clear edge structures at the input leptoquark mass of 400GeV.

In order to compare these variables we took their differences, shown in Fig. 5.30. The
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Figure 5.30: Parton-level distributions of Mbal
min − Mmin (left) and Mmin − MT2 (right) for

(bν)(tτ) (solid curve) and (tν)(bτ) (dashed curve)

relation Mbal
min ≥Mmin ≥MT2 is seen to hold on an event-by-event basis. This implies that

Mbal
min and Mmin are more powerful than MT2 for determining the mass of the leptoquark,

at least at parton level.

5.3.6.3 Experimental reconstruction

The settings for experimental reconstruction used for the Delphes fast simulation remain

unaltered in this analysis (see section 5.3.3). We apply the following event selection cuts

to the full S0S̄0 signal and the tt̄ background:

• At least four jets found in each event.

• Exactly one τ -tagged jet with pT > 120 GeV.

• No, one or two b-tagged jets with pT > 60 GeV.

• Missing transverse energy, /ET > 200 GeV.

For the b-jet originating from the leptoquark decay, we choose the highest-pT b-tagged jet

when there are two b-tagged jets and the highest-pT jet (excluding the τ -tagged jet) when

there are no b-tagged jets. We use all the remaining jets with pT > 30 GeV, (not identified

as the b-jet from the leptoquark) to search for one, two or three jets that form an invariant

mass close to the top mass, within a 20 GeV window. We apply the additional constraint

that the difference between the pT of the τ -tagged jet and the pT of the b-tagged jet,
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Figure 5.31: Reconstructed distributions Mbal
min (left), Mmin (centre) and MT2 (right) for

(bν)(tτ) signal (red) and tt̄ background events (blue dashes) including ISR, FSR
and the underlying event. There are 37 signal events and 19 background events
in all plots.

pT,τ − pT,b > −10 GeV. This eliminates a high fraction of the tt̄ background since the τs

in that sample originate from the W decay and are expected to have lower pT on average

than the bs that originate directly from the top. On the contrary, in the leptoquark signal

the τ and b transverse momenta are expected to be of the same magnitude on average.

The resulting distributions are shown in Fig. 5.31. Due to the low number of events

passing the selection cuts, it is not obvious whether the Mbal
min observable performs better

than Mmin and MT2. However, we checked that the three distributions satisfy the same

inequalities presented in Fig. 5.30 for the parton-level reconstruction.

The reconstruction strategy for the (tν)(bτ) mode follows the technique described in

section 5.3.6.1 for the (bν)(tτ) case, with the simple replacement b ↔ t. The assignment

of b-jets and top-jets is performed in the same way as in the (bν)(tτ) analysis, with the

following cuts applied to the full S̄
(−)
1/2S

(−)
1/2 sample:

• At least four jets found in each event.

• Exactly one τ -tagged jet with pT > 190 GeV.

• No, one or two b-tagged jets with pT > 40 GeV.

• Missing transverse energy, /ET > 120 GeV.

There is also a cut on the reconstructed hadronic top jet, of pT > 120 GeV and that its

invariant mass lies within 20 GeV of the top mass. The results are shown in Fig. 5.32.
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Figure 5.32: Reconstructed distributions Mbal
min (left), Mmin (centre) and MT2 (right) for the

(tν)(bτ) signal (red) and tt̄ background events (blue dashes) including ISR, FSR
and the underlying event. There are 68, 72 and 72 signal events (left to right)
and 22, 23, 23 background events (left to right).

Note that the background that would be present due to the S
(+)
1/2 leptoquark has not been

included.

Although at parton level, the variable Mbal
min performs better than Mmin and MT2, it

seems to become unstable after including experimental effects, with some events failing

to produce a value within the range of the plots shown in Fig. 5.32. The origin of the

instability is the additional assumption of the leptoquark masses being equal, which is

satisfied at parton level (up to small width effects) but does not hold exactly after detector

simulation. For the events for which no solution is found, we assign Mbal
min = Mmin. Even

after this readjustment, there are a few events for which a solution for Mbal
min is found

and lies outside the region shown. Therefore, MT2 and Mmin appear to be preferable as

experimental observables.

5.3.7 (bτ)(bτ) decay mode

5.3.7.1 Kinematic reconstruction

The (bτ)(bτ) mode can be fully reconstructed if one again assumes collinearity of the

τ -jets and τ -neutrinos: pτ,i = zipj,i (i = 1, 2, zi > 1). This implies that the missing

momentum from each τ can be written as /pi = (zi − 1)pj,i. Hence, we may write the
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following equalities for the components of the measured missing transverse momentum:

px
miss = px

j1(z1 − 1) + px
j2(z2 − 1) ,

py
miss = py

j1(z1 − 1) + py
j2(z2 − 1) . (5.57)

The above equations may be written in matrix form and inverted to give

z1 = 1 +
py

j2p
x
miss − px

j2p
y
miss

px
j1p

y
j2 − py

j2p
x
j2

,

z2 = 1 − py
j1p

x
miss − px

j1p
y
miss

px
j1p

y
j2 − py

j2p
x
j2

. (5.58)

Now the invariant mass of each of the two leptoquarks may be written as m2
S = (pb +pτ)

2,

resulting in the following expression:

m2
S = 2zipbi · pji , (5.59)

where we have neglected the τ and b-quark mass terms. Using Eqs. (5.58), we obtain two

values of mS per event. At parton level, with the correct jet assignments, these solutions

approximate the leptoquark mass very closely, up to the collinearity approximation.

5.3.7.2 Experimental reconstruction

The Delphes framework has been used with identical settings as in the previous sections.

The following cuts have been applied to the S
(+)
1 S̄

(+)
1 → (b̄τ̄)(bτ) mode:

• At least 4 jets present in the event.

• Two τ -tagged jets with pT > 140 GeV.

• Missing transverse energy /ET > 140 GeV.

We accept events with no, one or two b-tagged jets. If there are less than two b-jets,

we search for the highest-pT non-tagged jet(s) to obtain two b-jets. We apply a cut

of pT > 50 GeV on these. There are two possible assignments of the bτ combination,

resulting in a total of four solutions. The resulting distribution for the mass solutions, as

described in section 5.3.7.1, is show in Fig. 5.33. The tt̄ background appears to be under

control, with 1.75 entries in the mass histogram.
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Figure 5.33: Experimental reconstruction of the (bτ)(bτ) mode using the method described in
the main text. ISR, FSR and the underlying event have been included in the
simulation. Note that each solution has weight 0.25. The signal is shown in red
(18.75 entries) and the tt̄ background in blue dashes (1.75 entries).

We also considered the bb̄jj background, for which we generated events using Alpgen

v2.13 [139], applying the pT cuts on the four parton-level objects. We concluded that we

can safely ignore this background since the expected number of events with two τ -tagged

jets was O(1), before applying any restrictions on the missing transverse energy, /ET . Note

that the backgrounds to this decay channel originating from the other members of the

leptoquark multiplet have not been included.

5.3.8 Determination of quantum numbers

In the ideal scenario where all of the decay modes of a leptoquark multiplet are seen, the

quantum numbers can be deduced without ambiguity. For example if we only observe

combinations of (tτ) and (bν) decay modes, then the only likely candidate is an S0 sin-

glet. However, if in conjunction with these decay modes we observe (bτ) and (tν) decay

modes, with corresponding total rates, then we might guess that we have observed the S1

multiplet.

The issue is more complicated if some decay modes are missed. For example if only
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the (tτ)(tτ) decay mode has been seen, we might assume that we have observed the pair

production of an S̃ ′
0 leptoquark. However, we might have observed the (tτ)(tτ) decay

of an S̃
′(+)
1/2 leptoquark pair and missed the more challenging (tν)(tν) mode of the S̃

′(−)
1/2

leptoquarks. In this case we would need to examine the helicities and charges of the

decay products: the S̃
′(+)
1/2 decays to t̄Lτ̄L and t̄Rτ̄R whereas the S̃ ′

0 decays to tRτ̄L and

tLτ̄R. Since we can reconstruct all decay products of the top and τ without combinatorial

ambiguity, using the measured leptoquark mass as an input, there is hope that we could

measure top [140–142] and τ [143,144] polarisations simultaneously. This would allow us

to distinguish these two cases. We leave investigation of the feasibility of this to future

work.

5.3.9 Conclusions

If strongly-coupled dynamics solves the hierarchy problem of electroweak symmetry break-

ing, the question arises of how best to discover it at the LHC. Existing constraints coming

from electroweak precision tests tell us that, at least at low energies, any model of strong

dynamics must be a lot like the Standard Model (with perhaps a faint hope of observable

deviations in the Higgs sector [145,146]). Existing constraints coming from flavour physics

are somewhat different in that, while the data are certainly consistent with the Standard

Model, naturalness arguments suggest that strongly-coupled theories should differ from

the Standard Model in the flavour sector. Indeed, fermion masses should arise via mixing

between elementary and composite fermions of the strongly-coupled sector.

If that is so, then composite leptoquarks (or diquarks) may also appear, coupled pre-

dominantly to third-generation fermions. These would provide a spectacular signature at

the LHC. Their Standard Model quantum numbers imply that they would be produced

strongly as conjugate particle-anti-particle pairs, decaying into third-generation quarks

and leptons in the combinations summarised in Table 5.9. We have proposed a number

of new experimental search strategies adapted to these characteristic final states, also

summarised in Table 5.9, and implemented the relevant processes in the HERWIG++ event

generator version 2.5.0 [53] in order to study their effectiveness in the presence of QCD

radiation, backgrounds and the underlying event. We used the Delphes detector simu-

lation to assess the effects of b- and τ -tagging efficiencies and detector resolution. For

definiteness we assumed a leptoquark mass of 400 GeV and an integrated pp luminosity

of 10 fb−1 at 14 TeV.

In the case of decays of leptoquark pairs to (qτ)(qτ) where q = t or b, the approximate



164 Chapter 5. New physics searches at hadron colliders

collinearity of the missing neutrinos and jets from the tau decays allows full reconstruction

of the leptoquark mass, even when one top decay is semi-leptonic. In the former case

there is a quartic ambiguity in the resulting mass, although not all of the solutions are

real. After detector resolution smearing, the correct solutions for the momentum fraction

z2 may be complex, but we found that using the real parts provides a fair estimate of

the mass, with resolution of the order of ±150 GeV. For (bτ)(bτ) the only ambiguity is

combinatoric but the mass resolution is similar. In both cases the expected background

from qq̄jj is small after cuts and reconstruction.

For decays to (tτ)(bν) or (tν)(bτ), we have proposed an edge reconstruction strategy

similar to those developed for supersymmetric models, but using mass variables Mbal
min and

Mmin that are in principle superior to the classic ‘stransverse mass’ MT2. However, given

the limited statistics expected, the difference in performance between these variables was

not obvious. We found cuts to reduce the background from tt̄ to manageable levels, but

the edge reconstruction remains challenging without higher statistics. For (qν)(qν) the

story is similar for edge reconstruction in MT2, the case of q = t being the more difficult

owing to the similarity of the distributions of the signal and tt̄ background. But even in

that case a clear excess over background should be visible and would give a rough estimate

of the leptoquark mass.

In the event that a discovery is made, one might ask to what extent this provides proof

that electroweak symmetry breaking is driven by strongly-coupled, composite dynamics.

After all, one can easily imagine weakly-coupled theories with such states, for example,

third-generation squarks in R-parity-violating supersymmetric models. Ultimately, TeV-

scale compositeness can only be revealed by experiments probing significantly higher

scales; for that, we shall have to wait some time. In the meantime, the discovery of

leptoquarks coupled to third-generation fermions and their de facto consistency with the

multitude of existing flavour experiments would imply very strong bounds on the couplings

to other fermions. The scenario in which the observed fermions are partially elementary

and partially composite provides, as far as we know, the only mechanism in which the

required suppression can be automatically achieved. Moreover, it gives a prediction for

the size of the other couplings, some of which are not far from current bounds, which

may then be targeted in ongoing flavour experiments. Though circumstantial, this would

seem to be the best possible evidence for compositeness that one might hope for in the

LHC era.



Chapter 6

Conclusions and Outlook

At the time of writing of this thesis, the framework of the Standard Model (SM) is a well-

established set of gauge theories, described by the product group SU(3)c×SU(2)L×U(1)Y

and complemented by the Higgs mechanism, responsible for the breaking of the SU(2)L×
U(1)Y down to U(1)em. It is well-established in the sense that it currently provides

excellent agreement with experimental data. However, as we have discussed in chapter 2,

there remain serious open questions that cast doubt on the status of the SM as a ‘final’

theory of Nature. These include the stability of the scalar Higgs mass against radiative

corrections, known as the hierarchy problem, the ‘near-miss’ of the unification of the

gauge couplings in the SM, and questions originating from astrophysical and cosmological

measurements such as the existence of non-luminous gravitating matter (dark matter)

and a mysterious form of energy that causes the Universe’s expansion rate to accelerate

(dark energy). There is also a strong feeling that the absence of a quantum description of

gravitational interactions in the same framework as the other forces is an indication that

we are far from a complete theoretical description of Nature.

Several solutions, of varying degrees of ambition, have been proposed to address the

problems that plague SM. These range from extensions of space-time symmetries, by

adding extra dimensions or supersymmetries to the Poincaré symmetry, models with

larger gauge groups with intricate symmetry breaking patterns resulting in interesting

effective theories (e.g. Little Higgs models) or the addition of new strong forces (e.g.

technicolour). High energy particle colliders allow us to explore the high energy realm,

and determine which of the proposed theories, if any, is related to Nature. In these exper-

iments, collisions of particles are performed in a controlled environment and deductions

are made by examining the products of the scattering reactions. The latest and greatest
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experiment is the Large Hadron Collider (LHC), at CERN, near Geneva, Switzerland.

The LHC is a machine that collides protons head-on, with a design nominal energy of

14 TeV.

Theoretical predictions are necessary if we wish to squeeze out every drop of physics

from the LHC experiment. The Monte Carlo method that we described in chapter 3,

provides powerful tools that enable us to make phenomenological predictions, incorpo-

rating perturbative quantum chromodynamics (QCD) and other models inspired by it.

Monte Carlo methods are conceptually easy to associate with experiments. They provide

simulations of particle collisions, starting from the parton-level theoretical predictions,

e.g. derived from a set of Feynman rules, to a full simulation of the effects of interactions

of the resulting particles with the components of the detector. Such simulations also in-

clude perturbative treatment of initial- and final-state QCD showers, as well as models of

secondary partonic interactions, which form the underlying event, a phenomenon under

intense theoretical and experimental investigation. The matrix elements and the show-

ers can nowadays be provided at next-to-leading order (NLO) accuracy, providing more

reliable predictions and better agreement with experiment via the POWHEG and MC@NLO

methods we discussed in section 3.3.

The exploration of physics at high energy hadron colliders is a non-trivial task. We

considered, in the introduction of chapter 4, the complications that we have to face, both

due to the complexity of the possible new physics signals and the difficulties that arise due

to the fact that the colliding particles are hadrons. These are illustrated schematically

in Figs. 4.1 and 4.2. In chapter 4 we constructed analytical predictions of the effects of

QCD phenomena on certain hadron collider variables: on a class of variables called ‘global

inclusive variables’, which make use of all observed momenta, and on the transverse energy

of initial-state radiation in Higgs and Drell-Yan gauge boson production. We compared

the analytical predictions to results obtained from Monte Carlo event generators. In the

future, the calculations of QCD effects on global inclusive variables could be extended

to make use NLO cross sections and splitting functions. Furthermore, the validity of the

calculation of the distribution of transverse energy associated with Higgs production is

uncertain, even after matching to NLO. This could be investigated further with matching

to the full NNLO result.

To be able to cope with the complexity of new physics signals and set the best possible

bounds on model parameters, or improve the potential of discovering new physics, we have

to be adequately prepared. This involves constructing robust general search strategies and
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predictions. In chapter 5 we first improved the treatment of Drell-Yan production of heavy

charged vector bosons, called W ′ (W prime) by using the POWHEG and MC@NLO methods to

generate fully exclusive events at NLO. We also considered the effects of interference of a

potential W ′ with the SM W . Interference may provide extra information to the nature

of the new particle or improve the detection reach. We also investigated an interesting

model of scalar leptoquarks which couple to third-generation quarks and leptons, inspired

by a theory of strong dynamics electroweak symmetry breaking, although not limited to

it. The signals are challenging at the LHC due to their complexity and potentially huge

backgrounds, but we provided a complete strategy for reconstruction of all the possible

decays in pair-production of charge-conjugate leptoquark states. Future extensions to

this work may involve using NLO matrix elements for the production of the leptoquarks

or investigating the existence of new diquark states that might exist in the same models.

Strategies may be developed for determining the quantum numbers of the leptoquarks,

using methods that measure the helicity of the fermions that originate from their decays,

as we pointed out at the end of section 5.3.

We are at the beginning of an exciting time for particle physics, and science in general.

The quest for understanding the underlying structure of Nature that started thousands of

years ago will surely enter a new chapter during the Large Hadron Collider era. Our duty

is to be prepared, guided by our intuition and the analytical and computational tools that

we have created, so that we will be able to comprehend the new results that will be faced

with. The methods and ideas studied in this thesis could contribute in that direction.
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Appendix A

Illustration of a Monte Carlo event

In this appendix we illustrate, with the help of schematic diagrams, the set of steps per-

formed by a generic Monte Carlo event generator when producing a full event simulation.

Figures A.1 to A.5 demonstrate the various steps. In each step, the newly added features

are shown in red colour.

1. Hard process generation, Figure A.1: The hard process is generated by choos-

ing a point on the phase space according to the ‘hit-or-miss’ method.

2. Heavy resonance decay, Figure A.2: Heavy resonances with narrow widths are

decayed before the parton shower. In this example the heavy resonance could be a

top quark, decaying to a ℓνℓ and a b-quark.

3. Parton showers, Figure A.3: The incoming partons are showered by evolving

backwards to the incoming hadrons, producing initial-state radiation. Any final-

state particles that are colour-charged also radiate, producing final-state radiation.

4. Multiple parton interactions, Figure A.4: Secondary interactions between

partons within the colliding hadrons, modelled as QCD 2 → 2 interactions, are

generated. The secondary partons are showered and are always evolved backwards

to gluons in the underlying event model present in HERWIG++.

5. Hadronization and hadron decays, Figure A.5: In the cluster model, clusters

are formed and hadrons are produced. Unstable hadrons are subsequently decayed.
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Figure A.1: STEP 1: Generation of the hard process.

Figure A.2: STEP 2: Decay of heavy resonances.

h h

Figure A.3: STEP 3: Parton showers.
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h h

Figure A.4: STEP 4: Multiple parton interactions.

h h

Figure A.5: STEP 4: Hadronization and hadron decays.



172 Chapter A. Illustration of a Monte Carlo event



Appendix B

Pair-production cross sections

The leading order parton-level cross section for QCD pair-production of particles of mass

mp may be written in terms of scaling functions fij as

σ̂ij(Q
2) =

α2
S(Q2)

m2
p

fij . (B.1)

For heavy quark pair-production, the functions for gluon-gluon and quark-anti-quark

initial states are given by [10]

fgg =
πβρ

192

{
1

β
(ρ2 + 16ρ+ 16) log

∣∣∣∣
1 + β

1 − β

∣∣∣∣− 28 − 31ρ

}
, (B.2)

fqq̄ =
πβρ

27
(2 + ρ) . (B.3)

where ρ = 4m2
q/Q

2 and β =
√

1 − ρ.

For the case of gluino pair-production, the equivalent functions fij are given by [147]

fgg =
πm2

g̃

Q2

{[
9

4
+

9m2
g̃

Q2
− 9m4

g̃

Q4

]
log

∣∣∣∣
1 + β

1 − β

∣∣∣∣− 3β − 51βm2
g̃

4Q2

}
, (B.4)

fqq̄ =
πm2

g̃

Q2

{
β

[
20

27
+

16m2
g̃

9Q2
− 8m2

−
3Q2

+
32m4

−
27(m4

− +m2
q̃Q

2)

]
(B.5)

+

[
64m2

q̃

27Q2
+

8m4
−

3Q4
− 16m2

g̃m
2
−

27Q2(Q2 − 2m2
−)

]
log

(
1 − β − 2m2

−/Q
2

1 + β − 2m2
−/Q

2

)}
,

where now β =
√

1 − 4m2
g̃/Q

2 and m2
− represents the mass-squared difference between

the gluino and the t-channel squark, m2
− = m2

g̃ −m2
q̃ .

173



174 Chapter B. Pair-production cross sections

For the case of scalar leptoquark pair-production, the scaling functions are given by

fgg =
πM2

LQ

96ŝ

{
β(41 − 31β2) − (17 − 18β2 + β4) log

∣∣∣∣
1 + β

1 − β

∣∣∣∣
}
,

fqq̄ =
2πM2

LQ

27ŝ
β3 , (B.6)

where β =
√

1 − 4M2
LQ/Q

2. The differential cross sections with respect to the leptoquark

scattering angle in the partonic centre-of-mass frame, θ, are given by

dσ̂gg

SS̄

d cos θ
=

πα2
s

6ŝ
β

{
1

32
[25 + 9β2 cos2 θ − 18β2]

− 1

16

(25 − 34β2 + 9β4)

1 − β2 cos2 θ
+

(1 − β2)2

(1 − β2 cos2 θ)2

}
,

dσ̂qq̄

SS̄

d cos θ
=

πα2
s

18ŝ
β3 sin2 θ . (B.7)



Appendix C

The Cabibbo-Kobayashi-Maskawa

matrix

The Cabibbo-Kobayashi-Maskawa (CKM) matrix (Eq. (2.27)) is a 3 × 3 unitary matrix

that can be parametrized by three mixing angles θij (i, j ∈ {1, 2, 3}, i 6= j) and a charge-

parity (CP) violating phase, δ. A common choice is

V =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13




(C.1)

where we have used the shorthand notation cij = cos θij and sij = sin θij . The angles

θij have been chosen to lie in the first quadrant. Experimentally it has been observed

that s13 ≪ s23 ≪ s12 ≪ 1, so it is convenient to demonstrate the hierarchy using the

Wolfenstein parametrisation:

s12 = λ =
|Vus|√

|Vud|2 + |Vus|2
, s23 = Aλ2 = λ

∣∣∣∣
Vcb

Vus

∣∣∣∣ ,

s13e
iδ = V ∗

ub = Aλ3(ρ+ iη) =
Aλ3(ρ̄+ iη̄)

√
1 − A2λ4

√
1 − λ2

[1 −A2λ(ρ̄+ iη̄)] . (C.2)
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We then have

V =




1 − λ2/2 λ Aλ3(ρ− iη)

−λ 1 − λ2/2 Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1


+ O(λ4) . (C.3)

The fit for the Wolfenstein parameters defined above gives

λ = 0.2253 ± 0.0007 , A = 0.808+0.022
−0.015 ,

ρ̄ = 0.132+0.022
−0.014 , η̄ = 0.341 ± 0.013 . (C.4)

We can use this to estimate the CP violating phase, δ to be ≈ 68.8◦.

The Particle Data Group world average values, including errors, for the absolute values

of the matrix elements of the CKM matrix are [13]:

V =




0.97425 ± 0.00022 0.2252 ± 0.0009 (3.89 ± 0.44) × 10−3

0.230 ± 0.011 1.023 ± 0.036 (40.6 ± 1.3) × 10−3

(8.4 ± 0.6) × 10−3 (38.7 ± 2.1) × 10−3 0.88 ± 0.07


 . (C.5)



Appendix D

Supplementary material for ET

resummation

D.1 Relation of ET resummation to qT resummation

Here we demonstrate the equivalence of transverse energy and transverse momentum

resummation at O(αs). Expanding Eq. (4.83) to this order, using (4.87) and substituting

into (4.81) and (4.82), we find terms involving the integrals

Ip(Q,ET ) =
1

2π

∫ +∞

−∞
dτ e−iτET lnp

(
Qτ

iτ0

)
, (D.1)

with p = 1, 2. At this order, evaluating the PDFs at the scale iτ0/τ leads to single-

logarithmic terms of the same form when we use (4.89) to write

fa/h(x, iτ0/τ)) = fa/h(x,Q) − αs

π
ln

(
Qτ

iτ0

)∑

b

∫ 1

x

dz

z
Pab(z)fb/h(x/z,Q) . (D.2)

The integral (D.1) may be evaluated from

Ip(Q,ET ) =
dp

dup
I(Q,ET ; u)|u=0 , (D.3)

where

I(Q,ET ; u) =
1

2π

∫ +∞

−∞
dτ e−iτET

(
Qτ

iτ0

)u

. (D.4)
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Writing τ = iz/ET , we have

I(Q,ET ; u) = − i

2πET

(
Q

ET τ0

)u ∫ +i∞

−i∞
dz zu ez . (D.5)

We can safely deform the integration contour around the branch cut along the negative

real axis to obtain

I(Q,ET ; u) = − 1

πET

(
Q

ET τ0

)u

sin(πu) Γ(1 + u) , (D.6)

which, recalling that ln τ0 = −γE = Γ′(1), gives

I1(Q,ET ) = − 1

ET
, I2(Q,ET ) = − 2

ET
ln

(
Q

ET

)
. (D.7)

The resummed component of the transverse momentum (qT ) distribution takes the

form:

[
dσF

dQ2 dqT

]

res.

= qT
∑

a,b

∫ 1

0

dx1

∫ 1

0

dx2

∫ ∞

0

db b J0(bqT ) fa/h1
(x1, b0/b) fb/h2

(x2, b0/b)

× W
F

ab(x1x2s;Q, b) , (D.8)

where b0 = 2 exp(−γE),

W
F

ab(s;Q, b) =
∑

c

∫ 1

0

dz1

∫ 1

0

dz2 Cca(αs(b0/b), z1) Cc̄b(αs(b0/b), z2) δ(Q
2 − z1z2s)

× σF
cc̄(Q,αs(Q)) Sc(Q, b) , (D.9)

and

Sc(Q, b) = exp

{
−2

∫ Q

b0/b

dq

q

[
2Ac(αs(q)) ln

Q

q
+Bc(αs(q))

]}
. (D.10)

Expanding to O(αs), we find the same terms as in the ET resummation except that (D.1)

is replaced by

Ip(Q, qT ) = qT

∫ ∞

0

db b J0(bqT ) lnp(Qb/b0) . (D.11)

It therefore suffices to show that

Ip(Q, qT ) = Ip(Q,ET = qT ) , p = 1, 2 . (D.12)
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Now corresponding to (D.4) we have

I(Q, qT ; u) = qT

∫ ∞

0

db b J0(bqT )

(
Qb

b0

)u

. (D.13)

Using the result: ∫ ∞

0

dt tµ−1 J0(t) =
2µ

2π
sin
(πµ

2

)
Γ2
(µ

2

)
, (D.14)

gives

I(Q, qT ; u) = − 2

πqT

(
2Q

qT b0

)u

sin
(πu

2

)
Γ2
(
1 +

u

2

)
, (D.15)

and hence

I1(Q, qT ) = − 1

qT
, I2(Q, qT ) = − 2

qT
ln

(
Q

qT

)
, (D.16)

in agreement with (D.7) and (D.12). Notice, however, that the higher (p > 2) derivatives

of I and I differ, corresponding to the difference between ET and qT resummation beyond

O(αs).

D.2 Results for LHC at 7 TeV

Figure D.1: Predicted ET distributions in Z0 production in pp collisions at
√

s = 7 TeV .

We show here results for the LHC operating at a centre-of-mass energy of 7 TeV,

corresponding to those shown earlier for 14 TeV. Apart from the normalisation, the pre-

dictions for the two energies are very similar, with only a slight downward shift in the
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Figure D.2: Predicted ET distributions in W± production in pp collisions at
√

s = 7 TeV .

Figure D.3: Predicted ET distributions in Higgs boson production in pp collisions at
√

s = 7
TeV .

position of the peak in the ET distribution at the lower energy.



Appendix E

Supplementary material for W ′

study

E.1 Model discrimination

The search for new physics often involves the task of discriminating between two models:

one with new physics, the other without. The actual task of discovering new physics

though is laborious: one has to understand the detector well enough and has to be able

to obtain sufficient statistics to say with certainty that something new has been observed.

Here we adopt a rather theoretical approach: we describe a purely statistical method for

discriminating between models [148, 149]. This will essentially yield an upper bound on

the detection reach of a heavy particle: detector effects and backgrounds will result in a

reduced detection limit. It is useful, however, to be aware of the theoretical possibilities

for discovery.

E.1.1 Likelihood ratios of probability density functions

Consider N data points, of a mass variable measurement, {mi}. Based on these data

points, a theoretical model T is R times more likely than another theoretical model S, if

R =
p(T |{mi})
p(S|{mi})

, (E.1)
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where p(X|{mi}) is the probability of model X being true given the data set {mi}. We

may use Bayes’ Theorem to rewrite R as

R =
p({mi}|T )p(T )

p({mi}|S)p(S)
, (E.2)

where p(T ) and p(S) are the probabilities that S and T are true respectively, called prior

probabilities since they represent any previous knowledge we may possess on the theories.

In the study performed here, we assume that these quantities are equal: there is no strong

evidence for either model. We may simplify Eq. (E.2) further:

R
p(S)

p(T )
=

ΠN
i=0p(mi|T )

ΠN
j=0p(mj|S)

= ΠN
i=0

p(mi|T )

p(mi|S)

⇒ R
p(S)

p(T )
= exp

N∑

i=0

log

(
p(mi|T )

p(mi|S)

)
, (E.3)

where we have assumed that events in the data set {mi} are independent. Eq. (E.3) is

a discrete version of the Kullback-Leibler distance [150], a useful quantity for comparing

the relative likelihood of two theories according to a given data sample. It is important to

note that the distributions p(mi|T ) and p(mi|S) are normalised to unity. This means that

any difference in the number of events predicted by the two theories will not be taken into

account. This will obviously underestimate the significance of a difference in the number

of events as predicted by the two models, for example a substantial excess of events in an

invariant mass peak that may be present. We describe a method which takes this factor

into account in the next section.

E.1.2 Poisson likelihood ratios

In this modification to the method described in the previous section, we simply multiply

the variable R defined in Eq. (E.1) by a ratio of Poisson distributions for the total number

of events:

R =
p(T |{mi})
p(S|{mi})

(
N̄T

N̄S

)N

e−(N̄T −N̄S) , (E.4)

where N̄X = σX .L is the expectation value of the number of events according to theory

X, given by the product of the cross section, σX , and the integrated luminosity, L. This
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expression can be manipulated in a similar manner to Eq. (E.3) to obtain

R
p(S)

p(T )
= exp

(
N∑

i=0

log

(
p(mi|T )

p(mi|S)

))
×
(
N̄T

N̄S

)N

e−(N̄T −N̄S) , (E.5)

For convenience we may define the ‘shape’ and ‘Poisson’ factors respectively:

RS = exp
N∑

i=0

log

(
p(mi|T )

p(mi|S)

)
,

RP =

(
N̄T

N̄S

)N

e−(N̄T −N̄S) , (E.6)

This method takes into account the difference in the total number of events expected

according to each theory at the given integrated luminosity. This is accomplished by

reweighing the ‘shape’ factor RS by a factor RP which gives the ratio of probabilities to

obtain the observed number of events.

E.1.3 Application to a toy model

 0

 1

 2

 3

 4

 5

 1  2  3  4  5  6  7  8  9  10

dσ

dm

m

Figure E.1: The differential cross sections dσ
dm according to two ‘toy’ theories T and S are

shown. Theory T possesses a Gaussian ‘bump’, at m = 5 whereas S is just a
falling distribution, 1/m. m is in arbitrary mass units and σ in equivalent inverse
area squared units.
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Before applying the method to the full W ′ model, it is instructive to present its

application to a simple model involving two analytical ‘toy’ distributions. Events for

the two distributions have been generated by the general Monte Carlo event generation

method. The ‘differential cross sections’ for the two ‘theories’ T and S with respect to a

variable m in arbitrary units, defined in the range m ∈ [0.1, 10], are given by

dσT

dm
=

1

m
+ 0.3e−(m−5)2 ,

dσS

dm
=

1

m
. (E.7)

Theory T has a Gaussian peak at m = 5 on top of a background falling as ∼ 1/m and

theory S falls as ∼ 1/m. The situation is shown in Fig. E.1. This is qualitatively similar to

the SM tail (theory S) and the SM plus a heavy particle (theory T). The ‘cross sections’ in

the range m = [0.1, 10] are σT = 5.14 and σS = 4.60, in arbitrary area units. Assuming an

integrated ‘luminosity’ of L = 30 (in equivalent arbitrary inverse area units), we have an

expected number of events N̄T = 154 and N̄S = 138. Initially, we assume that theory T is

the correct underlying theory: we produce events that are actually distributed according

to it. The result for the variable R if theory T was ‘true’ was then found to be R = 62.

This implies that theory T is 62 times more likely than theory S given this specific data

set. If, however, the underlying theory is chosen to be S, then we get R = 0.23. This

implies that in the case that theory T is ‘true’, it is easier to exclude theory S than to

exclude theory T in the case that theory S is ‘true’. In other words, it is easier to make

a discovery of a new resonance if it is there than to exclude it if it’s not.

E.2 The W ′ Drell-Yan cross section

In the present section we give details of the derivation of the leading order Drell-Yan

cross section for pp(p̄) → W/W ′ → ℓνX, given in Eq. (5.2). We reproduce the W ′ and

W couplings to fermions given in Eq. (5.1) (with kW = kW ′ = 1):

LWiff ′ =

(
GFM

2
W√

2

)1/2

Vff ′Cℓ,q
i f̄γµ(1 − hiγ5)f

′W µ
i + h.c. , (E.8)
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Wi

q(p, s)

q̄′(p′, s′)

f(k, r)

f ′(k′, r′)

Figure E.2: Feynman diagram for qq̄′ → Wi → f f̄ ′. The quantities in the parentheses repre-
sent the 4-momentum and spin of the particle respectively.

The propagator for a massive vector boson i is given by

W µν
i (q) =

−i
q2 −M2

i + iMiΓi

[
gµν − qµqν

q2 − ζM2
i

(1 − ζ)

]
, (E.9)

where ζ is the gauge fixing parameter. Two possible gauges are ζ = 1, the Feynman gauge,

and ζ = 0, the Landau gauge. Any observable quantity calculated should be independent

of the gauge fixing parameter. Here we derive the differential cross section using arbitrary

ζ to show this fact explicitly. The invariant matrix element for the parton-level process

qq̄′ →Wi → f f̄ ′ (Fig. E.2) is given by

Mi =
GFM

2
W√

2
Vff ′Vqq′C

ℓ
iC

q
i

[
f̄γµ(1 − hiγ5)f

′]W µν
i [q̄′γν(1 − hiγ5)q] , (E.10)

As stated in section 5.2.2, Vff ′ is the unit matrix when ff ′ are leptons, ℓℓ′, so we set

Vℓℓ′ = 1 for the allowed lepton combinations. Vff ′ is a CKM matrix element when ff ′ =

qq′ (see appendix C for the CKM matrix element values). We now form:

MiM∗
j = Ωqq′

[
f̄γµ(1 − hjγ5)f

′]W µν
i [q̄′γν(1 − hjγ5)q]

×
[
f̄ ′γλ(1 − hiγ5)f

]
W λκ∗

j [q̄γκ(1 − hiγ5)q
′] , (E.11)

where we have defined the constant Ωqq′ =
G2

F M4
W

2
|Vqq′|2 (CiCj)

ℓ(CiCj)
q. We take the sum

over the fermion spins (s, s′, r, r′) and use the identity
∑

s f
s(k)f̄ s(k) = /k±m, where f s(k)

are spinors representing particles (or antiparticles) of mass m, spin s and 4-momentum

k. We have

∑

spins

[
f̄ ′γλ(1 − hiγ5)f

] [
f̄γµ(1 − hjγ5)f

′]
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=
∑

spins

f̄ ′
aγ

ab
λ (1 − hiγ5)bcfcf̄dγ

de
µ (1 − hjγ5)eff

′
f

= /k′faγ
ab
λ (1 − hiγ5)bc/kcdγ

de
µ (1 − hjγ5)ef

= Tr
[
/k′γλ(1 − hiγ5)/kγµ(1 − hjγ5)

]
, (E.12)

and similarly

∑

spins

[q̄γκ(1 − hjγ5)q
′] [q̄′γν(1 − hjγ5)q]

= Tr
[
/pγκ(1 − hiγ5)/p

′γν(1 − hjγ5)
]
. (E.13)

In the above, we have neglected all fermion masses. Putting everything together we obtain

∑

spins

MiM∗
j = Ωqq′Tr

[
/k′γλ(1 − hiγ5)/kγµ(1 − hjγ5)

]
W λκ∗

j

× Tr
[
/pγκ(1 − hiγ5)/p

′γν(1 − hjγ5)
]
W µν

i . (E.14)

We can simplify Eq. (E.14) by performing the traces and contracting, using the mathe-

matical package FORM [151]. We obtain

∑

spins

MiM∗
j = Ωqq′

(ŝ−M2
i )(ŝ−M2

j ) +MiMjΓiΓj

[(ŝ−M2
i )2 +M2

i Γ2
i ] [i→ j]

×
[
8(1 + hihj)

2[(t̂+ ŝ)2 + t̂2] + 8ŝ(hi + hj)
2(2t̂+ ŝ)

]
, (E.15)

where ŝ = (p + p′)2 is the square of the quark centre-of-mass energy and t̂ = (p − k)2.

It is reassuring that the gauge-fixing parameter ζ does not appear in Eq. (E.15), as it

should not have any physical significance. We now consider the kinematics, a schematic

diagram of which is shown in Fig. E.3, where pµ = (|~p| , |~p| , 0, 0) for the u-type quark,

kµ = (|~k|, |~k| cos θ, |~k| sin θ, 0) for the outgoing neutrino, ν. The angle θ is defined between

the u-type quark and the neutrino. We have ŝ = (p+p′)2 = 2p·p′ and t̂ = (p−k)2 = −2p·k.
Since we have neglected fermion masses |~p| = |~k| =

√
ŝ/2 and hence t̂ = −2|~k| |~p| (1 −

cos θ) = − ŝ
2
(1 − cos θ). Finally, we obtain

t̂2 + (t̂+ ŝ)2 =
ŝ2

2
(1 + cos2 θ) ,

ŝ(2t̂+ ŝ) = ŝ2 cos θ . (E.16)
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With these relations at hand and by using z = cos θ, we can rewrite
∑

spins MiM∗
j as

∑

spins

MiM∗
j =

∑

qq′

Ωqq′

3

(ŝ−M2
i )(ŝ−M2

j ) +MiMjΓiΓj

[(ŝ−M2
i )2 +M2

i Γ2
i ] [i→ j]

× ŝ2
[
(1 + hihj)

2(1 + z2) + 2(hi + hj)
2z
]
. (E.17)

We have averaged over initial spins by multiplying by 1/4 and divided by 3 to account

for the fact that the fusing quark and anti-quark must form a colour singlet. We have

also summed over all possible quark flavour combinations, qq′. Using Eq. (E.17) we may

now write the total matrix element squared as |M|2 = |MW |2 +M∗
WMW ′ +M∗

W ′MW +

|MW ′|2. It is not difficult to see that we may group the z-even and z-odd terms into

the functions S(ŝ) and A(ŝ), defined in Eqs. (5.3) and (5.4) respectively. If the collision

u(p, E1)

ν(k, E3)

ℓ̄(k′, E4)

d̄(p′, E2)θ

Figure E.3: Diagram showing the kinematics for the specific case of ud̄ → W+
i → ℓ̄ν in the

centre-of-mass frame. The angle θ is defined to be the scattering angle in the
centre-of-mass between the ν and the u, both being fermions.

had involved only quarks of constant centre-of-mass energy then we would simply plug

the matrix element squared at parton level into the expression for the 2 → 2 scattering

differential cross section:
dσ

dzdφ
=

1

64π2ŝ
|M|2 . (E.18)

Integrating over φ would give
dσ

dz
=

1

32πŝ
|M|2 . (E.19)

In a collision which involves a quark q and an anti-quark q̄′, each can come from either

of the two hadrons. Let us identify the two hadrons to ‘left’ (hadron A) when moving in

the positive z-direction and ‘right’ (hadron B) when moving in the negative z-direction.

Since we do not have any information about which quark came from which hadron, we
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have to include both possibilities in the calculation. If the quark q comes from hadron A,

and the anti-quark q̄′ comes from hadron B then the definition of the angle θ, and hence z,

remains unchanged. Contrariwise, if q comes from A and q̄′ comes from B, we have to take

z → −z in our expressions to take into account the fact that the z-axis definition would

change. A schematic diagram can be seen in Fig. E.4. Consider the prior case first. Note

BA
xbxa θ

Figure E.4: Schematic diagram showing the quark momenta fractions, xa corresponding to the
quark coming from the ‘left’ proton, A, and xb corresponding to the quark coming
from the ‘right’ proton, B.

that if we consider the lab frame collision of the quarks, where pµ
q,lab =

√
s

2
(xa, 0, 0, xa) and

p′µq̄′,lab =
√

s
2

(xb, 0, 0,−xb), we may write ŝ as ŝ = (p + p′)2 = s
4
[(xa + xb)

2 − (xa − xb)
2] =

xaxbs, where s is the hadron centre-of-mass collision energy. The quarks are of course

confined in the hadrons and possess a distribution of momenta, distinct for each quark

flavour. We denote the differential cross section
∑

qq′ qq̄
′ → W/W ′ → f f̄ ′ by dσ̂ and

the full hadronic differential cross section, including the PDFs, by dσ. To obtain the

full hadronic differential cross section we multiply by the parton density functions, and

integrate over the momentum fractions xa and xb, using a delta function which ensures

that the quarks have the correct centre-of-mass energy, δ(ŝ − xaxbs). For the case of q

coming A and q̄′ from B:

dσLR

dzdŝ
=

∫ 1

0

dxadxbδ(ŝ− xaxbs)fq/A(xa, ŝ)fq′/B(xb, ŝ)
dσ̂

dzdŝ

=
∑

qq′

Ωqq′

96

∫ 1

0

dxadxbδ(ŝ− xaxbs)fq/A(xa, ŝ)fq′/B(xb, ŝ)
[
S(ŝ)(1 + z2) + 2A(ŝ)z

]
.

(E.20)
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If we now consider the case when the q comes from B and q̄′ from A, we have to take

z → −z. This will not change the z-even factor, but will change the z-odd factor:

dσRL

dzdŝ
=
∑

qq′

Ωqq′

96

∫ 1

0

dxadxbδ(ŝ− xaxbs)fq′/A(xa, ŝ)fq/B(xb, ŝ)
[
S(ŝ)(1 + z2) − 2A(ŝ)z

]
.

(E.21)

To combine the two results into the full differential cross section, we combine the PDFs

into an even and an odd function respectively:

G±
qq′ =

[
fq/A(xa, ŝ)fq′/B(xb, ŝ) ± fq/B(xb, ŝ)fq′/A(xa, ŝ)

]
. (E.22)

This results in the following expression:

dσ

dzdŝ
=
∑

qq′

Ωqq′

96

∫ 1

0

dxadxbδ(ŝ− xaxbs)
[
S(ŝ)(1 + z2)G+

qq′ + 2A(ŝ)zG−
qq′

]
.

(E.23)

Since ŝ = xaxbs, we have τ = xaxb and by defining the boson (or dilepton) rapidity

y ≡ 1
2
log(E+pz

E−pz
) = 1

2
log(xa/xb), we finally arrive at the full hadronic differential cross

section:
dσ

dτdydz
=
G2

FM
4
W

192π

∑

qq′

|Vqq′|2
[
SG+

qq′(1 + z2) + 2AG−
qq′z
]
, (E.24)

where we have set Cℓ,q
i = 1. This is exactly what was given in section 5.2.2, Eq. (5.2).
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Appendix F

Supplementary material for

leptoquark study

F.1 Feynman rules and diagrams

The Feynman rules [132] relevant to the leptoquark pair-production diagrams are given

in Figs. F.1 and F.2. The relevant parton-level Feynman diagrams are shown in Figs. F.3

and F.4 for gluon-gluon and quark-anti-quark initial states respectively.

k3

k1

k2

V S̄S,aij
µ = gs(t

a)ij(k2 − k1)µ .

Figure F.1: Feynman rule for the vertex scalar leptoquark-scalar anti-leptoquark-gluon. All
momenta are incoming and arrows indicate colour flow.

Since the couplings to light generations are suppressed in the kind of models we are

considering, leptoquark single-production in hadron colliders can proceed only via b-quark

gluon fusion, as shown in Fig. F.5. However this is also heavily suppressed due to the low

b-quark PDF and the small couplings to fermions, and can be neglected.

191
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p3

p4

p1

p2

W S̄Sgg,ija1a2(p1, p2, p3, p4) = g2
s(t

a1ta2 + ta2ta1)ij

× gµ1µ2 .

Figure F.2: Feynman rule for the vertex scalar leptoquark-scalar anti-leptoquark-gluon-gluon.
All momenta are incoming.

Figure F.3: Feynman diagrams relevant to scalar leptoquark pair-production with gluon-gluon
initial states.

Figure F.4: Feynman diagram relevant to scalar leptoquark pair-production with guark-anti-
quark initial states.
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Figure F.5: Feynman diagrams relevant to scalar leptoquark single production. Solid lines
with an arrow indicate quarks, lines without an arrow indicate leptons.

F.2 The effective Lagrangian for derivatively-coupled

leptoquarks

The Lagrangian for derivatively-coupled conjugate fields, which appears in Eq. (5.40),

also contains terms involving the conjugate fields, such as

LS̃′

1/2
∼ t̄cRγµτLp

µ,qS̃
′(+)
1/2 . (F.1)

To manipulate the above expression for the case of on-shell S̃ ′
1/2 decays as we did in

Eq. (5.42), we need to show that

Ψ̄C
R,L/p = mΨ̄C

L,R , (F.2)

where Ψ is a 4-component spinor and ΨC
L,R = (PL,RΨ)C . This can be demonstrated by

using the following identities [152]:

Ψ̄C = −ΨTC−1 ,

C−1γµ = −γT
µC

−1 , (F.3)

and hence

Ψ̄C
R,L = − [PR,LΨ]T C−1 . (F.4)

So the necessary effective Lagrangian for the decay is given by

Leff ∼ mtt̄
c
LτLS̃

′(+)
1/2 . (F.5)
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The full list of effective Lagrangians for the primed leptoquarks, from which the decay

modes and couplings in Tables 5.4 and 5.6 can be derived, is given by

LS′

0
=

[ −i√
2f

(g′0Lmb + g′0Rmτ )

]
b̄RS

′
0τL

+

[ −i√
2f

(g′0Lmτ + g′0Rmb)

]
b̄LS

′
0τR

+

[ −i√
2f

(g′0Lmt)

]
t̄RS

′
0ντ,L , (F.6)

LS̃′

0
=

[ −i√
2f

(g̃′0Rmtt̄LτR + g̃′0Rmτ t̄RτL)S̃ ′
0

]
, (F.7)

LS′

1
=

[ −i√
2f

√
2g′1L(mtt̄RτL +mτ t̄LτR)S

′(+)
1

+
−i√
2f

√
2g′1Lmbb̄RνLS

′(−)
1

+
−i√
2f

(g′1Lmtt̄RνL − g′1Lmbb̄RτL − g′1Lmτ b̄LτR)S
′(0)
1

]
, (F.8)

LS′

1/2
=

[ −i√
2f

(h′1Lmbb̄
c
LνL + h′1Rmtt̄

c
RτR + h′1Rmτ t̄

c
LτL)S

′(−)
1/2

+
−i√
2f

(h′1Lmb + h′1Rmτ )b̄
c
LτLS

′(+)
1/2

+
−i√
2f

(h′1Lmτ + h′1Rmb)b̄
c
RτRS

′(+)
1/2

]
, (F.9)

LS̃′

1/2
=

[ −i√
2f
h′2Lmtt̄

c
LνLS̃

′(−)
1/2

+
−i√
2f

(h′2Lmtt̄
c
LτL + h′2Lmτ t̄

c
RτR)S̃

′(+)
1/2

]
, (F.10)

where we have defined: S
′(±)
1 ≡ (S

′(1)
1 ∓ iS

′(2)
1 )/

√
2 (and equivalent definitions for S̃

′(±)
1/2 )

and S
′(0)
1 ≡ S

′(3)
1 . We have also used the fact that the doublet leptoquarks may be written

as a vector S ′
1/2 = (S

′(−)
1/2 , S

′(+)
1/2 ). We have set the quark and lepton couplings to equal,

gq = gℓ,1 however these can be reinstated trivially by replacing g → gq where a quark

mass term appears and g → gℓ where a lepton mass term appears.

Note that terms appearing in this Lagrangian are no longer SU(2)L × U(1)Y gauge-

invariant. This is consistent since these terms would appear in the Lagrangian after

electroweak symmetry breaking and vanish as the fermion masses tend to zero. The

1The implementation in HERWIG++ version 2.5.0 also includes this simplification.
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Lagrangian is, of course, U(1)em gauge-invariant.

F.3 (tτ )(tτ ) reconstruction method

In terms of the momentum ratios zi defined in Eq. (5.48), the conditions for balancing

the total missing transverse momentum can be written as

z1 = (px
miss − (z2 − 1)px

j2
− px

νl
)/px

j1
+ 1, (F.11)

py
j1
px

νl
− px

j1p
y
νl

= px
miss p

y
j1
− py

miss p
x
j1 + (z2 − 1)(px

j1p
y
j2
− py

j1
px

j2). (F.12)

The mass-shell conditions, except for p2
νl

= 0, can be written as

m2
W = (pl + pνl

)2 = 2pl · pνl
, (F.13)

m2
t = (pb + pl + pνl

)2 = m2
W +m2

b + 2pb · pl + 2pb · pνl
, (F.14)

m2
S0

= (pt + pτ1)
2 = m̃2

t + 2z1pt · pj1 , (F.15)

m2
S0

= (pb + pl + pνl
+ pτ2)

2 = m2
t + 2z2(pb + pl) · pj2 + 2z2pj2 · pνl

, (F.16)

where m̃t is the reconstructed mass of the hadronic top and mt is the assumed mass of

the semi-leptonic top. By eliminating z1 and mS0 from Eqs. (F.11), (F.15) and (F.16),

one obtains

z2pj2 · pνl
+
pt · pj1

px
j1

px
νl

= t3 + u3z2, (F.17)

where

t3 =
m̃2

t −m2
t

2
+
px

miss + px
j1 + px

j2

px
j1

pt · pj1 , (F.18)

u3 = −(pb + pl) · pj2 −
px

j2

px
j1

pt · pj1 . (F.19)

Using a vector pνl
= (Eνl

, px
νl
, py

νl
, pz

νl
), Eqs. (F.12), (F.13), (F.14) and (F.17) can be

recasted as

APνl
= S (F.20)
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where

A =




El −px
l −py

l −pz
l

Eb −px
b −py

b −pz
b

z2Ej2 −z2px
j2

+ (pt · pj1)/p
x
j1

−z2py
j1

−z2pz
j2

0 py
j1

−px
j1 0



, (F.21)

and

S =
(

m2
W

2
,

m2
t−m2

b−m2
W

2
− pb · pl, t3 + u3z2, t4 + u4z2

)
. (F.22)

t4 and u4 are defined as

t4 = (px
miss + px

j2
)py

j1
− (py

miss + py
j2

)px
j1
, (F.23)

u4 = px
j1
py

j2
− py

j1
px

j2
. (F.24)

From Eq. (F.20), we can determine pνl
as a function of z2. Finally, z2 can be determined

from the mass-shell condition:

p2
νl

= (A−1S)2 = 0. (F.25)

This provides a quartic equation for z2, and we can find up to four real solutions in the

physical range z2 ≥ 1. We can then obtain mS0 by substituting z2 into Eq. (F.16).

F.4 (q′τ )(qν) reconstruction method

Given w in Eq. (5.52), mbν(w, p
z
ν) can be minimised in terms of pz

ν . The result is

[mmin
bν (w)]2 = m2

bν(w, p̃
z
ν)

= 2|pb||pmiss − wpj| − 2pb · (pmiss − wpj)

= [mbν
T (w)]2, (F.26)

where

p̃z
ν ≡ |pmiss − wpj|

|pb|
pz

b (F.27)
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and mbν
T (w) is the transverse mass of the bν system. This allows us to calculate Mmin by

one-parameter minimisation:

Mmin = min
w

[max{mtτ (w), mbν
T (w)}]. (F.28)

Since mtτ (w) is a monotonically increasing function of w, if mtτ (0) ≥ mbν
T (0):

Mmin = mtτ (0) . (F.29)

Furthermore, since there exists a value p̂z
ν which fulfils mtτ (0) = mbν(0, p̂

z
ν), we find

Mbal
min = mtτ (0) . (F.30)

If mbν
T (0) > mtτ (0), we have to search for other values of w. For the true w and pz

ν , say

w∗ and pz∗
ν , we have

mbν
T (w∗) < mbν(w

∗, pz∗
ν ) = mtτ (w

∗) . (F.31)

This assures existence of ŵ which satisfies the relation mbν
T (ŵ) = mtτ (ŵ). By scanning w

from 0 to ŵ, one finds:

Mbal
min = mbν

T (ŵ) , (F.32)

and

Mmin = min
w∈[0−ŵ]

[mbν
T (w)] . (F.33)

Hence we have

Mbal
min ≥Mmin. (F.34)
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