
Auditory-Based	Processing	of
Communication	Sounds

Thomas C. Walters
Clare College

University of Cambridge

This thesis is submitted for the degree of

Doctor of Philosophy

20 January 2011



i



To
Meles
Meles
Meles
Minor

ii



Declaration

This dissertation is  the result of my own work and includes nothing which
is  the  outcome  of  work  done  in  collaboration  except  where  specifically
indicated either  here  or  in  the  text.
Parts  of  the  work  in  Section 2.2 were  undertaken  in  collaboration  with
my colleagues at the CNBH lab, Jessica Monaghan and Christian Feldbauer.
The  work  in  Section 6.1 was  undertaken  at  Google  Research  in  collabor-
ation  with  Richard  F.  Lyon, Gal Chechik, Samy Bengio  and Martin Rehn.
It is included with their permission.
The text of this thesis does not exceed 60,000 words.

iii



Acknowledgements

Thanks are due to a great number of people for their role in my PhD
studies. First, to Roy Patterson, for agreeing to take me on as a student
for a Masters project at the CNBH lab sometime in late 2003, and then
to Roy again for deciding that he could cope with having me around in
the lab for a bit longer, first as a Research Assistant, and then as a PhD
student. In that time he’s been an excellent supervisor, giving me the
freedom to go off and explore while always being ready to quietly nudge
me in the right direction.
Then there’s everyone who has passed through the CNBH lab in Cam-
bridge since 2004, all  of whom I’ve learned something from, from
discussions with the postdocs to supervising physics masters students.
Richard Turner, David Smith, Tim Ives, Stefan Bleeck, Ralph van Din-
ther, Martin Vestergaard, Jess Monaghan, Nick Fyson, Alexis Hervais-
Adelman, Etienne Gaudrain, Clara Suied, Phil Gomersall, Willem van
Engen, James Muir, Alex Robson, Bobby Antonio, Graeme Kerr and
Arunn Mahakuperan, thanks to you all for making the CNBH a great
place to work (and a great place to eat cheese).
Outside the CNBH, my thanks go to Toshio Irino for answering my
random emails relating to the inner workings of the dcGC, and Hideki
Kawahara, the engineering wizard who created and supports STRAIGHT.
When I branched out from Cambridge, and found myself working at
Google Research in California, I was once again surrounded by a great
team of people. Dick Lyon was an excellent host and an inspiring
mentor, and the rest of the machine hearing team: Gal Chechik, Mar-
tin Rehn and Samy Bengio were dynamic, engaging and great fun to
work with.
Without wishing to get totally sentimental (but frankly if you’re still
reading by this point, you probably don’t mind), thanks to my parents
for continuing to provide moral support for my career in science, des-
pite claiming not to have understood anything I’ve been working on
for the past decade. And finally, last but very definitely not least, very
many thanks to Jo for the encouragement, cajoling, endless cups of tea,
and occasional use of force in getting me to actually write this all up.

iv



Abstract

This thesis examines the possible benefits of adapting a biologically-
inspired model of human auditory processing as part of a machine-
hearing system. Features were generated by an auditory model, and
used as input to machine learning systems to determine the content of
the sound. Features were generated using the auditory image model
(AIM) and were used for speech recognition and audio search. AIM
comprises processing to simulate the human cochlea, and a ‘strobed
temporal integration’ process which generates a stabilised auditory im-
age (SAI) from the input sound.

The communication sounds which are produced by humans, other an-
imals, and many musical instruments take the form of a pulse-resonance
signal: pulses excite resonances in the body, and the resonance follow-
ing each pulse contains information both about the type of object pro-
ducing the sound and its size. In the case of humans, vocal tract length
(VTL) determines the size properties of the resonance. In the speech
recognition experiments, an auditory filterbank was combined with a
Gaussian fitting procedure to produce features which are invariant to
changes in speaker VTL. These features were compared against stand-
ard mel-frequency cepstral coefficients (MFCCs) in a size-invariant syl-
lable recognition task. The VTL-invariant representation was found
to produce better results than MFCCs when the system was trained
on syllables from simulated talkers of one range of VTLs and tested on
those from simulated talkers with a different range of VTLs.

The image stabilisation process of strobed temporal integration was
analysed. Based on the properties of the auditory filterbank being used,
theoretical constraints were placed on the properties of the dynamic
thresholding function used to perform strobe detection. These con-
straints were used to specify a simple, yet robust, strobe detection al-
gorithm. The syllable recognition system described above was then ex-
tended to produce features from profiles of the SAI and tested with
the same syllable database as before. For clean speech, performance of
the features was comparable to that of those generated from the fil-
terbank output. However when pink noise was added to the stimuli,
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performance dropped more slowly as a function of signal-to-noise ra-
tio when using the SAI-based AIM features, than when using either
the filterbank-based features or the MFCCs, demonstrating the noise-
robustness properties of the SAI representation.
The properties of the auditory filterbank in AIM were also analysed.
Three models of the cochlea were considered: the static gammatone fil-
terbank, dynamic compressive gammachirp (dcGC) and the pole-zero
filter cascade (PZFC). The dcGC and gammatone are standard filterb-
ank models, whereas the PZFC is a filter cascade, which more accur-
ately models signal propagation in the cochlea. However, while the
architecture of the filterbanks is different, they have all been success-
fully fitted to psychophysical masking data from humans. The abilities
of the filterbanks to measure pitch strength were assessed, using stim-
uli which evoke a weak pitch percept in humans, in order to ascertain
whether there is any benefit in the use of the more computationally
efficient PZFC.
Finally, a complete sound effects search system using auditory features
was constructed in collaboration with Google research. Features were
computed from the SAI by sampling the SAI space with boxes of dif-
ferent scales. Vector quantization (VQ) was used to convert this multi-
scale representation to a sparse code. The ‘passive-aggressive model for
image retrieval’ (PAMIR) was used to learn the relationships between
dictionary words and these auditory codewords. These auditory sparse
codes were compared against sparse codes generated from MFCCs, and
the best performance was found when using the auditory features.
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List	of	abbreviations	used	in	this	thesis

AGC Automatic gain control.
AIM The auditory image model.
AIM-C The auditory image model in C++.
AIM-MAT The auditory image model in MATLAB.
BMM Basilar membrane motion.
CNBH Centre for the Neural Basis of Hearing.
dcGC Dynamic compressive gammachirp.
DCT Discrete cosine transform.
GPR Glottal pulse rate.
HMM Hidden Markov model.
HTK HMM toolkit.
IRN Iterated rippled noise.
MFCC Mel-frequency cepstral coefficient.
MIREX Music information retrieval evaluation exchange.
MP Matching pursuit.
NAP Neural activity pattern.
PAMIR Passive-aggressive model for image retrieval.
PCP Pre-cochlear processing.
PZFC Pole-zero filter cascade.
SAI Stabilised auditory image.
SNR Signal-to-noise ratio.
SSI Size-shape image.
STFT Short-time Fourier transform.
STI Strobed temporal integration.
VQ Vector quantisation.
VTL Vocal tract length.
VTLN Vocal tract length normalisation.
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Chapter	1

Introduction

The human auditory system is a remarkable signal processing device, which is op-
timised for the analysis of communication sounds in challenging acoustic environ-
ments. As I write this introduction, I am sitting in a crowded cafe; there are at least
a dozen different conversations going on around me, music playing in the back-
ground, a noisy espresso machine in front of me, vehicles passing in the street out-
side and baby crying just to my right. From this cacophony I can trivially identify
the various sound sources, and turning my attention to one of them and concen-
trating, I can follow a conversation, identify the song playing, or track the progress
of an emergency vehicle down the street. This wealth of information comes from
the analysis of a pair of waveforms by a combination of a dynamically-controlled
‘hardware’ system, in the form of the cochlea, and signal processing ‘software’ in
the form of neurons all the way up the auditory pathway from the cochlear nucleus
to primary auditory cortex and beyond. The systems in our heads which perform
this processing are the result of hundreds of millions of years of evolutionary fine-
tuning, and we have only begun to understand how they work. However, just be-
cause we don‘t fully understand every aspect of auditory processing doesn’t mean
that we shouldn’t try to put what we do know to good use.

Ever since computing devices entered the popular consciousness, there has been a
rather anthropomorphic expectation that such machines should be able to parse
complex auditory and visual scenes with ease. Such an expectation is not unreas-
onable; ‘If we can do these tasks so easily,’ runs the train of thought, ‘then it must
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1. INTRODUCTION

be trivial for these complicated computing machines.’ Of course, nothing could
be further from the truth. There is some decidedly non-trivial computation going
on in our skulls. However, by learning what makes our own abilities so special,
and then applying some of the tricks that we learn to the automated analysis of
audio we hope to improve the performance of machine systems which attempt to
understand some features of sound.

This thesis covers a few aspects of the still-nascent field of ‘machine hearing’: the
application of models of human audition to the analysis of complex audio signals by
machines. These models, which are sometimes very simplistic, are used to gener-
ate feature streams which can be passed to automated systems to extract meaning
from sounds. Making use of some of the features of the auditory system which are
believed to assist in the processing of communication sounds. This combination of
physiological simulation and engineering application is not new. For example, the
quasi-logarithmic mel frequency scale employed by mel-frequency cepstral coef-
ficient (MFCC) features (which are ubiquitous in content-based audio analysis) is
based on observations about human pitch perception. However machine hearing
is based far more upon the systematic application of knowledge and results from
the study of human hearing to audio analysis problems.

In this thesis the auditory image model (AIM), is used as the basis of the audit-
ory model. Two different feature representation are developed and tested. One
on a simple speech recognition task, the second on a more complex sound-effects
analysis task. As part of this undertaking, the physiological basis of auditory pro-
cessing is reviewed, and used to inform improvements to various parts of AIM. As
a test of the features produced, AIM is used as a preprocessor for an automatic
speech recognition system and an audio search engine.

AIM is an existing computational model of human auditory processing. It simu-
lates the processing which goes on in the early stages of the human auditory path-
way, and its design is informed by the physiology of the auditory system. In this
thesis, aspects of AIM are developed and refined for use in machine hearing, both
by the use of data on human physiology and perception, and by the application of
prior knowledge of the structure of communication sounds. The representations
of sound generated by AIM are further processed to produce sets of features which
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describe perceptually-salient aspects of the input sound. Two machine hearing sys-
tems are developed; these systems use the auditory features produced by AIM in a
speech recognition task and a sound-effects search task. Significantly, the systems
are able to scale to large datasets, allowing the use of auditory features in machine
learning tasks requiring hundreds of hours of training data.

Figure 1.1 is a block diagram showing the overall structure of the auditory image
model when used as a preprocessor for machine hearing applications. This thesis
concerns itself with all sections of the model, from the input audio to the machine
learning system. This introduction provides an overview of the sounds used by
animals to communicate, and outlines the structure of the systems which are de-
scribed in more detail in later chapters; in particular, AIM is introduced in this
chapter. Chapter 2 describes the use of a simple auditory filterbank to produce
features for a syllable recognition task. The features generated are designed to
be scale-shift invariant, mimicking an important feature of human perception of
communication sounds. Chapter 3 deals with the generation of stabilised audit-
ory images from the output of the cochlear model, and in particular the process of
strobe detection for the strobed temporal integration process. Chapter 4 describes
the generation of noise-robust auditory features by use of the stabilised auditory
image (SAI) generated by AIM. The process of strobed temporal integration in
AIM is found to create features which are more roust to interfering noise than
simple spectral features. In chapter 5, various models of human auditory filtering
are assessed; these models simulate the response of the outer and middle ear, the
nonlinear response of the cochlea, and the neural transduction performed by the
inner hair cells, leading to a simulation of the signal transmitted up the auditory
nerve in response to any sound. Two different models of the compressive auditory
filter are compared and improved by reference to the physiology of hearing and
the constraints of the auditory model. Finally in chapter 6, a complete machine
hearing system comprising a compressive filterbank, a stabilised auditory image,
a sparse feature representation and a machine learning system is used as a sound-
effects search tool which is capable of associating text terms with the content of
audio files.
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Figure 1.1: Left: Structure of the auditory image model when used as a prepro-
cessor for machine hearing applications. Right: Content / results of the various
processing stages
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1.1	Communication	sounds

1.1 Communication	sounds

The voiced parts of human speech take the form of pulse-resonance signals. The
production mechanism for these sounds is simple: the vocal folds interrupt the
stream of air from the lungs periodically, producing a stream of pulses which ex-
cite resonances of the vocal tract above the larynx. The form of the resonances
carries information about the body which produced them. Figure 1.2 shows a cross-
section of the human vocal tract; in human speech the configuration of the excited
vocal tract, and thus the resonance pattern which it produces, carries information
about the vowel which was spoken. This is the source-filter model of speech pro-
duction (Dudley, 1939).

Pulse-resonance communication sounds are used as a primary means of communic-
ation, in one form or another, by most animals. The production system is similar in
each case, a sharp pulse or series of pulses excites resonances in the body of the an-
imal, and these resonances carry distinctive information about the shape and size
of the resonating body (Patterson, Smith, van Dinther & Walters, 2008)1.

Figure 1.3 (as published in Patterson et al., 2008) shows the communication ‘syl-
lables’ of four different animals. Each ‘syllable’ is an example of a pulse-resonance
sound. In each case the pulse-rate is different, and the form of the resonance fol-
lowing each pulse is different. The pulse rate determines the pitch of the sound,
and the form of the resonance contains information about the shape and the size
of the resonating structures in the body of the animal.

The pulse production mechanisms used by the fish, the frog and the mammals in
this example are very different. Both of the mammals use the vocal folds in the
larynx to periodically interrupt the flow of air from the lungs. The frog pushes air
between its lungs and an air sac, causing a resonance in its tympanic membrane
(Purgue, 1997), and fish employ mechanisms such as swift contraction of a ring of
muscle around the swimbladder (Sprague, 2000).

In addition to human and animal vocalisations, van Dinther & Patterson (2006)
suggest that the sounds produced by sustained-tone instruments can also be well

1For the first reference to publications that I have been personally involved with, I cite the
author list in full to emphasise that I was involved in the work during the course of my PhD.
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1. INTRODUCTION

Figure 1.2: Cross-section of the human vocal tract, taken from Gray’s Anatomy
(Gray, 1918). The pulses are produced by the vocal folds, and these cause the
vocal tract above to resonate.
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1.1	Communication	sounds

~ 0.5 s

Fish

Frog

Human

Macaque

Figure 1.3: Communication ‘syllables’ of four different animals. They are the calls
of a Jamaica weakfish (Cynoscion  jamaicensis), a North American bullfrog (Rana
catesbeiana), a macaque (Macaca mulatta) and a human adult saying the syllable /ma/.
All the sounds in the figure may be heard on the CNBH acoustic scale wiki. The
Jamaica weakfish call is originally from fishecology.org/soniferous/justsounds.htm.
The  bullfrog  and  macaque  calls  were  kindly  provided  by  Mark  Bee  and  Asif
Ghazanfar respectively.
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Figure 1.4: Waveform and spectrum of a synthetic /a/ vowel as might be spoken by
a child

modelled as pulse-resonance sounds. This means that a wide range of the sounds
which are encountered by humans in their everyday life take this form.

1.1.1 Size	information	in	communication	sounds

When a pulse excites resonances in the body of a calling animal, the form of the
resonances provides information about the resonating body. The shape and struc-
ture of the body make a major contribution to the form of the resonance, but so
too does the overall size of the resonating body. If two animals of the same species
make the same call, then the major factor that distinguishes the two calls will be
the sizes of the calling individuals. Figure 1.4 shows a short section of the wave-
form (upper panel) and spectrum (lower panel) of a synthetic /a/ vowel, as might
be spoken by a child. The waveform shows that the vowel is composed of a series
of glottal pulses, followed by decaying resonances. The Fourier magnitude spec-
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1.1	Communication	sounds

trum in the lower panel is shown as a set of vertical lines, and the spectral envelope
is shown as a dashed line connecting the peaks of the magnitude spectrum. The
shape of this envelope corresponds to the form of the damped resonance following
each pulse, and the spacing of the harmonic peaks is determined by the pulse rate.
As a child grows into an adult, the length of the vocal tract increases and the aver-
age glottal pulse rate (GPR) decreases as the vocal cords develop (Lee et al., 1999).
Vocal tract length (VTL) increases in proportion to height (Fitch & Giedd, 1999;
Turner & Patterson, 2003; Turner et al., 2009), and people approximately double
in height from the time that they start speaking to the time they are fully grown,
meaning that formant frequencies approximately halve over this time. An increase
in vocal tract length causes the resonance following each pulse to ring longer and
decay more slowly. In the frequency domain, this corresponds to a shift of the
spectral envelope on a log-frequency scale. A decrease in glottal pulse rate causes
the time between pulses to increase; in the frequency domain this leads to the har-
monic peaks becoming more closely spaced. Figure 1.5 shows the waveforms for
real human vowels, which have been scaled to simulate these changes in GPR (left)
and VTL (right).

A reanalysis of the classic formant data of Peterson & Barney (1952) by Turner,
Walters, Monaghan & Patterson (2009) showed that the relative formant pattern
that defines a particular vowel remains approximately unchanged as children grow
into adults. Turner et al. also developed a technique to infer VTL values from
the formant frequency data of Peterson & Barney and Huber et al. (1999) allowing
them to plot the position of men, women and children in the GPR-VTL plane,
and show the trajectories that humans pass through in the space as they develop.
Figure 1.6 is taken from Turner et al.. The ellipses show the position of, from
left to right, men, women and children in the GPR-VTL plane. They are plotted
at two standard deviations, so they enclose around 80% of the speakers in that
particular class. The solid lines are regression lines though the data points from
Huber et al.. All speakers, boys and girls, start off at the top right of the space,
as boys and girls grow up, their voices develop in the same way initially, but at
puberty there is a sudden drop in pitch in the boys’ voices and they end up moving
very quickly to their final position with a much lower GPR and slightly longer VTL
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1.1	Communication	sounds

Figure 1.6: The VTL-GPR plane. Ellipses show the position of adult men, adult
women and children in the space. The lines show the developmental path as chil-
dren grow into adults, and the individual red and blue data points show the VTL-
GPR combinations for males and females at different ages. This figure is adapted
from figure 13 in Turner et al. (2009)

than women.

Size information is also seen in the calls of animals, for example there is a strong
correlation between the body size of the North American bullfrog (Rana catesbi-
ana) and the fundamental frequency of its call (Gomersall, Walters & Patterson,
2005).

1.1.2 The	scaling	of	communication	sounds

STRAIGHT (Kawahara & Irino, 2004; Kawahara et al., 1999) is a high-quality vo-
coder that is capable of analysing speech with glottal-cycle resolution. STRAIGHT’s
processing scheme is based on the classic source-filter model of speech production
(Dudley, 1939). Speech sounds are modelled as being a stream of glottal pulses,
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1. INTRODUCTION

the source, which pass through the vocal tract, the filter. STRAIGHT is able to
independently extract the pitch track and the spectral envelope from human vocal-
isations. The pitch track and spectral envelope can then be manipulated independ-
ently before the sound is re-synthesised. Using STRAIGHT it is therefore pos-
sible to scale human vocalisations in the GPR and VTL dimensions independently.
This has proved an invaluable tool for research into both human perception and
normalisation of communication sounds (Ives, Smith & Patterson, 2005; Smith &
Patterson, 2005; Smith, Patterson, Turner, Kawahara & Irino, 2005; Smith, Wal-
ters & Patterson, 2007; Walters, Gomersall, Turner & Patterson, 2008) and into
speaker-independent automatic speech recognition (Feldbauer, Monaghan & Pat-
terson, 2008; Monaghan, Feldbauer, Walters & Patterson, 2008).

STRAIGHT works by first extracting a pitch, or fundamental frequency (f0) track
for a sound. This is done by a combination of spectral and temporal analysis. In the
frequency domain, instantaneous f0 extraction is performed using an analysis wave-
let that encodes prior information about the expected shape of the distribution of
harmonics in a voiced speech sound. This is combined with a time-domain normal-
ised autocorrelation analysis to reduce f0 errors. Once an accurate pitch track has
been extracted, the sound is re-analysed using a pitch-synchronous window. Typ-
ically when a periodic sound is analysed using a short-window Fourier transform,
the periodicity of the waveform and the window size interfere to create a periodic
temporal structure in the extracted spectrogram. STRAIGHT uses a smooth win-
dowing function that is temporally modulated with the periodicity of the incoming
audio signal. This leads to a temporally smooth spectrogram. The harmonic struc-
ture of the spectrogram is then removed using a spline-based smoothing technique,
leaving the reconstructed spectral envelope, independent of the pitch.

1.1.3 Human	perception	of	size

Humans are remarkably good at understanding the content of vocalisations that
come from a wide range of speakers. Smith, Patterson, Turner, Kawahara & Irino
(2005) demonstrated that humans could accurately identify vowel sounds that had
been scaled to VTL and GPR values well outside the range of normal experience.
In that study, Smith et al. presented scaled versions of five human vowels (/a/, /e/,
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1.1	Communication	sounds

/i/, /o/ and /u/) to human subjects in a 5-alternative forced-choice experiment. The
vowels were scaled in GPR and VTL using the vocoder STRAIGHT (Kawahara
et al., 1999). The scaling encompassed VTL values corresponding to humans from
one-third the height to twice the height of an average man, and GPR values from
10Hz to 640Hz. At 10Hz, the sounds were below the lower limit of pitch, but
subjects were still able to detect the vowel type from the individual pulses and
resonances. Smith et al. found that combined recognition performance fell to 50%
(still better than chance) only at the very far extremes of the GPR and VTL range,
despite the fact that these are well outside the range of normal experience. While it
is possible that humans simply learn to recognise speech by hearing examples from
a wide variety of sizes of speaker, the fact that recognition performance continues
to be high well outside the range of normal experience suggests that there may
be some sort of automatic size-normalisation system within the human auditory
system.

Ives et al. (2005) extended the stimuli from the study of Smith et al. (2005) to a
large database of 180 consonant-vowel and vowel-consonant syllables. They again
showed that recognition performance was extremely good across the entire range
of GPR and VTL; indeed, performance was better than for the vowels alone.

In a related study, Smith & Patterson (2005), again using scaled vowels, demon-
strated that VTL has a strong effect on the perception of speaker size. In this
experiment, listeners were asked to judge the height of a speaker with a given com-
bination of GPR and VTL on a seven-point scale from ‘very tall’ to ‘very short’.
Listeners were also asked to judge the sex and the age of the presented speakers
from four choices: ‘man’, ‘woman’, ‘boy’ and ‘girl’. Size judgements were strongly
affected by VTL and only slightly affected by GPR. Sex and age judgements for
vowels with GPR and VTL values in the range of normally-encountered speakers
were influenced about equally by both variables, but for vowels with low GPR and
short VTL, VTL played a greater role in the decision.

Extending from this study, Walters, Gomersall, Turner & Patterson (2008) attemp-
ted to identify the ‘trading relationship’ between VTL and GPR in making judge-
ments of speaker size. Listeners compared sequences of vowels scaled in GPR and
VTL to represent speakers with slightly different sizes. The experiment was of
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1. INTRODUCTION

a two-alternative forced-choice design, in which subjects were required to choose
the interval with the smaller speaker. By comparing speakers around a point in the
GPR-VTL plane, an estimate of the gradient of the VTL-GPR plane at that point
was made. The vectors across the GPR-VTL plane were integrated to estimate
the size surface. The results indicated that the size surface would be essentially
planar if determined by size discrimination alone. This suggests that relative size
judgements are different from absolute size judgements.

The stimuli in all the above experiments were synthesised from a single speaker.
Smith, Walters & Patterson (2007) investigated the role of the input speaker on the
perception of speaker size. In this study, sustained vowels from men, women and
male and female children were scaled using STRAIGHT to a range of VTLs and
GPRs. Subjects were then asked to identify whether they thought the vowel had
come from a man, a woman, a boy, or a girl. Smith et al. found that while the sex of
the input speaker did not make a significant difference to the judgement, the age of
the speaker did. This prompted them to suggest that the differences in the ratio of
the sizes of the oral cavity and pharynx between children and adults may account
for the difference. However, vowel formant ratios are known to remain largely
fixed as children grow up. Taken together, these two pieces of evidence suggest
that speakers may actively vary the position of their tongue in the oral cavity to
maintain a fixed formant ratio, regardless of anatomical differences.

van Dinther & Patterson (2006) performed a similar study to those described above,
but used musical instrument sounds as the input pulse-resonance signals for size
discrimination. They demonstrated that, as with human vocalisations, subjects
were able to detect relatively small changes in the scale of the resonance in the
notes of sustained tones from string, woodwind and brass instruments, and singing
voices. This suggests that the normalisation mechanisms at work may be the same
for human voices and for other pulse-resonance sounds.

The problem of automatic vocal tract length normalisation (VTLN) is an area of
active research in speech recognition. Approaches to VTLN include warping the
frequency spectrum of the input sound before feature computation (Welling et al.,
2002) to more complex systems such as cross-correlation of the spectra at various
points in time to extract a locally-normalised spectrum (Mertins & Rademacher,

14



1.2	The	auditory	image	model

2005). Inspired by the observation that humans appear to be able to perform
VTLN automatically on the incoming signal, in chapter 2, an alternative feature
representation for machine hearing which is invariant to changes in the size of the
source is developed and tested.

1.2 The	auditory	image	model

The auditory image model (AIM) (Patterson et al., 1992, 1995) is a computational
model of auditory processing. It is the basis for most of the work in this thesis.
AIM is a functional model of the signal processing performed in the auditory path-
way; it consists of modules which simulate the stages of processing which occur as
the system converts a sound wave into the initial percept which a human experi-
ences when presented with a sound, but before any semantic meaning is attached
to the sound. The first three stages of the model simulate the effect on the sig-
nal of the outer and middle ear, the cochlea, and the hair cells which translate the
motion of the cochlear partition into neural impulses. These stages are all based
on the physical properties of the various structures and systems which perform the
processing. The subsequent stages of the model are based less upon observations of
the physical processes and more upon observations of human perception of sounds.
These latter stages convert the incoming sound into a ‘stabilised auditory image’
(SAI). This is a representation in which sounds that are perceived as stable by hu-
mans give rise to stable auditory images. The SAI is a ‘movie’ with 2-dimensional
frames along the time dimension; each frame has two dimensions: cochlear chan-
nel and time interval. The pulse rate (pitch), the resonance scale (size) and the
form of the resonance (the message) of the incoming sound are segregated as far as
possible into covariant dimensions in this representation.

1.2.1 The	human	auditory	system

The human auditory system is an immensely powerful signal processing system. It
can deal with sounds from a whisper to a rock concert – over 10 orders of mag-
nitude difference in intensity (Moore, 2003) – and it can extract meaning from
sounds which have been heavily degraded by the addition of background noise or
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Figure 1.7: Anatomy of the human ear. Originally by Chittka L. Brockmann. Used
under Creative Commons Attribution 2.5 Licence

sounds from competing sources (Miller & Licklider, 1950). The anatomy of the
peripheral auditory system is illustrated in Figure 1.7.

One of the central premises of this thesis is that a great deal may be learned from
the auditory system about the best strategies for the extraction of salient informa-
tion from sounds. Models of aspects of auditory processing are used as the basis for
audio compression schemes including MP3 and AAC (Brandenburg & Stoll, 1994;
ISO/IEC, 1993, 1997) and auditory models have been recommended for the en-
hancement and segregation of speech sounds in noisy environments (Irino et al.,
2006; Slaney et al., 1994). However, the standard features used for content-based
audio analysis tasks, such as speech recognition (Young et al., 2005) and music in-
formation retrieval (Bergstra et al., 2006), are usually based on the more simple
short-window Fourier transform as a first processing step.

1.2.2 Example	stimuli

In the next few sections, the workings of AIM will be discussed. In order to il-
lustrate each stage, four STRAIGHT-scaled vowel sounds will be processed using
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Figure 1.8: Short sections of the waveform for four examples of the vowel /a/. In
the upper panels are vowels as might be spoken by a person with a vocal tract length
(VTL) of around 12.7cm; in the lower panels, the VTL is around 17.5cm. In the
left panels, the glottal pulse rate (GPR) is 110Hz and in the right panels the GPR
is 256Hz.
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the model, and plotted side-by-side for comparison. The four vowels are shown in
Figure 1.8; each is an /a/ vowel. Each subfigure of Figure 1.8 shows the waveform
from a different speaker uttering the vowel sound. In the lower subfigures, the
waveforms have a resonance rate of 89% of that of the original speaker. This cor-
responds to a person with a VTL of approximately 17.5cm or of height of 194cm.
In the upper subfigures are the waveforms for a resonance rate of 122% (VTL
12.7cm; height 142cm). The left subfigures are for a GPR of 110 Hz and the
right subfigures for a GPR of 256 Hz.

1.2.3 Outer	and	middle	ear

The first structures of the auditory system which are encountered by an incoming
sound wave are the outer and middle ear. The pre-cochlear processing (PCP) mod-
ule applies a filter to the input signal to simulate the transfer function from the
sound field to the oval window of the cochlea. The purpose is to compensate for
the frequency-dependent transmission characteristics of the outer ear (pinna and
ear canal), the tympanic membrane, and the middle ear (ossicular bones). At abso-
lute threshold, the transducers in the cochlea are assumed to be equally sensitive
to audible sounds, so the pre-processing filters apply a transfer function similar to
the shape of hearing threshold. The default version of PCP applies the function
described by Glasberg & Moore (2002).

1.2.4 The	cochlea

The basilar membrane motion (BMM) module in AIM simulates the spectral ana-
lysis performed in the cochlea with an auditory filterbank. Figure 1.9 shows the
output of the AIM BMM module for the four input sounds from above. The out-
put of the BMM stage is a multi-channel representation of the incoming sound;
the output channels correspond to the motion over time of points spaced equally
along the length of the basilar membrane. The configuration of the basilar mem-
brane is such that equally spaced points respond preferentially to frequencies which
are spaced along a quasi-logarithmic scale such as the ERB scale (Smith & Abel,
1999). There is essentially no temporal averaging, in contrast to spectrographic
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Figure 1.9: Basilar membrane motion plots for the four vowels shown in Figure 1.8.
The horizontal axis in each panel is time, as before. The vertical axis is cochlear
channel, from low frequency at the bottom to high frequency at the top. A 50-
channel dynamic compressive gammachirp (dcGC) filterbank, with filter centre
frequencies ranging from 100Hz to 6kHz on an ERB scale was used to generate
the figures.
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representations where segments of sound 10 to 40 ms in duration are summarised
in a spectral vector of magnitude values. There exist several different filterbanks
in AIM; the default, the gammatone (Patterson & Moore, 1986), is a passive linear
filter which does not simulate any of the level-dependent properties of auditory fil-
tering. More realistic and more complex models of the auditory filter are provided
by the dynamic compressive gammachirp (dcGC) (Irino & Patterson, 2006) and
pole-zero filter cascade (PZFC) (Lyon et al., 2010a). Both of these models include
level-dependent asymmetry, and fast acting compression. The BMM plots in Fig-
ure 1.9 were generated using the dcGC filterbank. In the plots, time runs along
the horizontal axis, and cochlear channel is along the vertical axis. The higher-
frequency cochlear channels are at the top of the plot. The pulse-resonance struc-
ture of the vowel sounds is clearly visible; the pulses excite filters at all frequencies,
leading to a periodic curved ridge in the plots. For the high glottal pulse rate (right
panels), the pulses occur more frequently. After the pulse, the filters in all chan-
nels then ring. The resonances that follow the pulses in the input sound put energy
into the filters at some frequencies, causing them to ring for longer and decay more
slowly. These resonances are the formants of speech. For the short VTL (upper
panels), the entire pattern of formants is shifted up in frequency and decays faster
in time. Chapter 5 investigates the benefits of using a compressive filterbank for
the task of pitch detection.

1.2.5 Neural	activity	pattern

The basilar membrane motion is converted into a simulation of the neural activity
pattern (NAP) observed in the auditory nerve using a model of the neural transduc-
tion that occurs in the hair cells of the cochlea. The most important feature of this
stage is that the signal is half-wave rectified, mimicking the unipolar response of
the hair cell, while keeping it phase-locked to the peaks in the wave. Experiments
on pitch perception indicate that the fine structure retained by phase-locking is
required to predict the pitch shift of the residue (Yost et al., 1998). Other recti-
fication algorithms like squaring, full-wave rectification and the Hilbert transform
only preserve the envelope. At this stage, it is also possible to apply compression
to the waveform. The compression is intended to simulate the cochlear compres-
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Figure 1.10: Neural activity patterns generated from the basilar membrane mo-
tions shown in Figure 1.9 for the four example vowels. Here, the output of the
dcGC filterbank is half-wave rectified and low-pass filtered (but no further com-
pression is applied).
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Figure 1.11: A dynamic threshold applied to each NAP channel individually is used
to identify strobe points.

sion which is essential to cope with the large dynamic range of natural sounds.This
compression is already present in the dcGC and PZFC filters, but is absent in the
gammatone filters. Figure 1.10 shows the results of NAP processing on the four
vowels.

1.2.6 Strobed	temporal	integration

The next stage of the model is the identification of significant or ‘strobe’ points in
the NAP. Perceptual research on pitch and timbre indicates that at least some of
the fine-grain time-interval information in the NAP survives to later stages of the
auditory pathway (Krumbholz et al., 2003; Patterson, 1994a,b; Yost et al., 1998).
This means that the temporal integration that occurs in the auditory system can-
not be simulated by a running temporal average process, since averaging over time
destroys the temporal fine structure within the averaging window (Patterson et al.,
1995). Patterson et al. (1992) argued that it is the fine-structure of periodic sounds
that is preserved rather than the fine-structure of noises, and they showed that this
information could be preserved by finding peaks in the neural activity as it flows
from the cochlea, measuring time intervals from these strobe points to smaller
peaks, and forming a histogram of the time-intervals, one for each channel of the
filterbank. This two-stage temporal integration process is referred to as strobed
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Figure 1.12: Strobe points overlaid on the four NAPs in Figure 1.10

temporal integration (STI). The strobe-point-finding (or ‘strobing’) process identi-
fies certain peaks in the NAP and the timings of these strobe points are used to ini-
tiate a temporal integration process in the following stage. The strobe pulses enable
the segregation of the pulse and resonance information and they control pulse-rate
normalisation. For ideal pulse-rate normalisation, the chosen NAP peaks should
correspond to the onset of a pulse in the input sound. However, auditory image
construction is robust, in the sense that strobing does not have to occur exactly
once per cycle to be effective.

Strobe detection in AIM is performed using a dynamic thresholding technique.
Figure 1.11 shows the ‘parabola’ dynamic thresholding algorithm applied to a NAP.
A threshold which decays linearly over time is placed on the signal; when the signal
exceeds the threshold a strobe point is issued, and the threshold rises briefly above
the level of the signal at that point. The threshold then decays again until it meets
the signal and the process repeats. This has the effect of causing strobes to be
issued only on certain peaks in the NAP.
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Figure 1.12 shows the results of applying the same algorithm to the NAP output
for the four vowels. The strobe points clearly cluster around the glottal pulses, but
they do not occur exclusively at those times.

The SAI module uses the strobe points to convert the NAP into an auditory image,
in which the pulse-resonance pattern of a periodic sound is stabilised using the
strobe points generated in the previous stage.

The ‘ti2003’ algorithm is the default method for generating SAIs in the software
packages AIM-MAT and AIM-C (which are discussed below). It works in the
following way. When a strobe occurs it initiates a temporal integration process
during which NAP values are added into the corresponding channel of the SAI
as they are generated; the time interval between the strobe and a given NAP value
determines the position where the NAP value is entered in the SAI. In the absence
of any succeeding strobes, the process continues for 35ms and then terminates. If
more strobes appear within 35 ms, as they usually do in music and speech, then
each strobe initiates a new temporal integration process. Each process is given a
weight with which NAP values from that process are added to the SAI. Initially
these weights are inversely proportional to the index of the strobe in the series so,
for example, if there are three active strobes, the oldest strobe is added with weight
1/3 relative to the most recent strobe which is added with weight 1. Finally, the
weight set is normalised to sum to unity so that the overall level of the auditory
image is normalised to that of the NAP.

STI converts the time dimension of the NAP into a time-interval dimension in
the stabilised auditory image (SAI). A series of vertical ridges appear in the audit-
ory image. These are associated with the repetition rate of the source and can be
used to identify the start point for any resonance in that channel. It is this prop-
erty which makes it possible to segregate the glottal pulse rate from the resonance
structure of the vocal tract in the SAI.

In chapter 3, the properties of an ‘ideal’ strobe detection system are defined, and
a number of strobe detection systems are presented and analysed based on this
definition.

Figure 1.13 shows the results of the STI process for the four vowels. The zero-lag
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Figure 1.13: Stabilised auditory images (SAIs) generated from the four sounds in
Figure 1.8. The horizontal axis is now time interval rather than time.

point is not shown in this representation, but the vertical ridge due to the pulse
rate of the original waveform is clearly visible, and can be seen to shift as the pulse
rate changes. The formants appear as ‘flags’ running horizontally from the vertical
pitch ridge. The formats shift up in frequency and get narrower in the time-interval
dimension from the long VTL waveforms to the short VTL.

The STI process can be thought of as a modified form of autocorrelation. In
autocorrelation, a signal is cross-correlated with itself to yield a measure of how
well-correlated the signal is with itself when delayed by a range of different ‘lags’.
Zero-lag is at the centre of the output, and the function is symmetrical about this
point. In STI, the signal is instead cross-correlated with a function that is zero
everywhere except at the strobe points. The height of the signal at these strobe
points determines the weight with which that time interval is represented in the
output. The process is less computationally intensive than autocorrelation, as one
of the signals is sparse, being composed mostly of zeros. Unlike autocorrelation,
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Figure 1.14: Correlograms (positive side only) for the four vowel sounds. Note that
the correlogram representation is more symmetrical than the stabilised auditory
image. The correlograms were generated by processing the AIM NAP output using
Slaney’s auditory toolbox (Slaney, 1993a).

the resulting output is no longer symmetrical about the zero-lag point (Irino & Pat-
terson, 1997), and any temporal asymmetry in the input signal is preserved. This is
an important feature of the SAI, as temporal asymmetry is a key feature of pulse-
resonance sounds (Patterson & Irino, 1998). Figure 1.14 shows correlograms for
the four vowel sounds. The zero-lag line is at the left of the image. Each of the
structures due to the pulse repetition rate is more symmetrical in the correlogram
than in the stabilised auditory image.

It is worth noting that a huge increase in the data rate passing through the model
takes place as the waveform is converted to a SAI through the AIM processes. In
a standard simulation, a single time-domain waveform might be split into 50 time-
domain channels, each with the same data-rate as the original waveform. SAIs can
then be generated from these data at an arbitrarily high rate. Superficially, this
seems like an extremely wasteful set of transformations to perform on a signal, but
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the benefit of this approach is that the space that the signal lies in after these trans-
formations has the property that the pulse-rate and resonance information appear
into two largely orthogonal dimensions – a key property of the auditory model. The
challenge in using such a representation for content-based audio analysis tasks is
to reduce this data rate to a manageable level in a principled way, so that the useful
properties of the space are preserved, but the feature size is not overwhelming for
whatever machine learning system is subsequently used. Chapters 4 and 6 of this
thesis examine two approaches to performing this data rate reduction.

1.3 Software

The two major software tools used in this thesis are AIM-MAT (Bleeck et al.,
2004) and AIM-C, the MATLAB and C++ implementations of AIM. The imple-
mentations are in many ways complementary. AIM-MAT provides an environ-
ment in which processing modules can easily be tested and compared, and it makes
it extremely easy to visualise the results of processing. AIM-C by contrast provides
capabilities for the fast processing of long audio files through a pre-prepared set
of modules. Both AIM-MAT and AIM-C were written in the CNBH lab in Cam-
bridge. AIM-MAT was written by Stefan Bleeck and was released in 2004. I wrote
AIM-C between 2006 and 2009. I worked on the initial design and much of the
early infrastructure code with Willem van Engen, a Masters student whom I su-
pervised in 2006.

Both AIM-MAT and AIM-C have a modular architecture. The individual stages of
the auditory image model (PCP, BMM, NAP, Strobes and SAI) are implemented as
separate, interchangeable modules. With this design, it is simple to write and test
individual modules for the different stages of processing, and to easily test different
combinations of these modules. In AIM-MAT it is possible to easily visualise the
output of the different modules by use of the graphical user interface. The main
motivation for the development of AIM-C was to improve the speed of processing
available. One major design limitation of AIM-MAT is that all the processing for
one module is performed before the next module, so if a long sound is processed
it must be run in its entirety through the BMM module, for example, before being
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passed on to the later modules. This means that the entire processed output must
be stored in memory at each stage. Given the massive increase in data rate that
happens at the BMM and SAI stages of the model, this means that only short
sounds (on the order of a few seconds) can be processed before the host computer
runs out of RAM. AIM-C, by contrast, has a block-based ‘pipeline’ architecture in
which short segments of the audio are processed through each stage of the model
in turn, and stored only at the end. This allows AIM-C to process arbitrarily long
pieces of audio, limited only by the available hard drive space of the host machine.
AIM-C is also significantly faster at processing sounds, since it is written in C++
rather than MATLAB. On a modern machine, AIM-C is capable of processing
audio in realtime, with a 30-channel filterbank, and displaying the generated SAI
with only a short delay of around 50ms.

AIM-C includes modules for the gammatone, dcGC and PZFC filterbanks and for
various strobed temporal integration algorithms. The filterbank implementations
in AIM-C run considerably faster than the equivalent versions in AIM-MAT. In
general, there is at least an order of magnitude improvement in speed available in
using AIM-C over AIM-MAT. This speed increase is crucial when processing large
datasets. It is AIM-C that made it possible to perform the syllable recognition
studies presented in chapters 2 and 4.

1.4 Invariance	properties	of	the	auditory	system

The auditory system has two important invariance properties in its processing of
sounds. The first is that it is time shift invariant: the sound we hear is independent
of the time that it occurs1. The second property is that, over a wide range of values,
it is scale invariant with respect to the message: the same message can be perceived
over a range of time-scalings of the input signal.

Time-shift invariance may seem obvious, but it is an important property of the sys-
tem and leads to certain mathematical constraints. In the case of a time-scaling of

1From a perceptual point of view, it is not necessarily always the case that the auditory sys-
tem is fully time-shift invariant; the experiments of Ladefoged & Broadbent (1957), for example,
demonstrate that perceptual effects can come into play depending on the relative timing of stimuli.
However, these effects occur at a much later stage in the auditory pathway.
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the signal, there is a clearly perceptible change in the sound itself, but the message
information itself is relatively unaffected by the scaling.

In its simplest form, scale invariance can be seen as an invariance to changing the
‘tape speed’ of a signal. Imagine a tape or vinyl recording of speech which is played
back at the wrong speed. For a wide range of playback speeds, it is still easily
possible to discern what the speaker is saying, even if other characteristics of the
voice (such as the perceived size or age of the speaker) may change wildly. This
is an important observation, as it encompasses both aspects of the size normal-
isation which we believe that the auditory system must perform. The ‘tape speed
transform’ simultaneously simulates a change in glottal pulse rate, a corresponding
change in vocal tract length and a change in the rate of speaking. However, it is also
possible for these three properties to change independently: a speaker changes the
pitch of their voice through an utterance, people with different vocal tract lengths
may speak the same phrase with the same pitch, and the same sentence may be
uttered at a faster or slower rate. For the purposes of investigating the properties
of the early stages of the auditory system, it is only the first two of these properties
that are of interest to us since longer-term temporal variations are dealt with at a
later stage of processing. Given the observation that the pulse rate and the res-
onance scale of the system can vary independently, but lead to the same message
being perceived, the invariance properties of the system must be more complex
than simple time-scale invariance, as the system is invariant to changes in scale on
the longer time scale of glottal pulse rate and to changes in the microstructure of
the resonances that the glottal pulses excite.

One conclusion from these observations could be that the system must perform
some form of deconvolution of the glottal pulses from their associated resonances.
In the auditory image model, this deconvolution occurs at the strobe-finding stage.
Furthermore, there must be some process that is able to normalise the signal both
for changes in pulse rate and changes in resonance scale. In the SAI changes of
pulse rate correspond to a change in the horizontal spacing of the vertical pitch
ridges, and changes of resonance scale correspond to changes in the vertical po-
sition of the resonance structure. So, to a certain extent, the SAI segregates the
two forms of scale information into two dimensions of the auditory image. The
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SAI is also a reasonable representation from a physiological point of view. A two-
dimensional frequency-periodicity mapping, like that seen in the auditory image
and the correlogram, has been observed in the inferior colliculus of the mammalian
brain (Schreiner & Langner, 1988).

The ‘size-shape’ image (SSI), introduced in chapter 4, processes the SAI further by
truncating the signal in each channel after the first pitch ridge, and by scaling the
time axis of each channel independently by an amount proportional to the centre
frequency of the filter in that channel. This produces a representation that is, as far
as possible, pitch invariant and is scale-shift covariant; changes in resonance scale
correspond to a simple shift of the image in the vertical dimension. The question
of how best to transform the SSI from a pitch-invariant, scale-shift covariant rep-
resentation to a pitch-invariant, scale-shift invariant representation is still an open
one. The Mellin image (Irino & Patterson, 2002) has been suggested as a possible
scale-shift invariant representation. The techniques employed in chapters 2 and 4
(to generate features from auditory models for a speech recognition system) pro-
duce a representation of the spectral profile of the auditory image that is scale-shift
invariant.

1.4.1 Time-frequency	and	time-scale	uncertainty	relations

The short-time Fourier transform (STFT) is a joint time-frequency representa-
tion of a signal: it transforms a 1-dimensional signal into a 2-dimensional time-
frequency representation. Using methods from operator theory, it is possible to
show that there is an uncertainty relation between time and frequency (since the
time and frequency operators have a nonzero commutator), and it is possible to
derive the set of functions which satisfy the conditions for minimal uncertainty.
In the case of the joint time-frequency representation, the minimum uncertainty
function is the Gabor function. Similarly, Cohen (1993) has investigated oper-
ator methods for a joint time-scale representation of a signal, where scale is seen
as a physical property of the signal, just like frequency. Irino and Patterson (Irino
& Patterson, 1997) employed these methods in their development of the gam-
machirp auditory filter. The gammachirp is in fact the minimal uncertainty func-
tion for a joint time-scale representation of a signal.
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1.5 MFCCs

When designing new representations of sounds for content-based analysis, it is im-
portant to understand the systems which are currently used for these tasks. Mel-
frequency cepstral coefficients (MFCCs) (Bridle & Brown, 1974; Davis & Mermel-
stein, 1990; Mermelstein, 1976) have been used for years as one of the primary
representations of audio for speech recognition (Huang et al., 2001) and speaker
recognition (Ganchev et al., 2005), and have found applications in many other
content-based audio analysis tasks such as music genre classification (Bergstra et al.,
2006). MFCCs have some excellent properties: they are cheap to compute, they
produce coefficients that are reasonably independent of one another (a useful prop-
erty for many machine-learning systems), and they have been applied extremely
successfully to many applications.

MFCCs are calculated by taking the Fourier spectrum of a short, windowed por-
tion of a signal (typically around 25ms). The frequency spectrum is then mapped
onto the mel scale (Stevens et al., 1937) by means of a bank of triangular filters,
and the logarithm of the power at each of the mel frequencies is taken. A dis-
crete cosine transform (DCT) is then performed on the log filterbank output. This
transformed representation is known as the ‘cepstrum’ (a play on the word ‘spec-
trum’). Taking the logarithm of the power spectrum means that a convolution in
the time domain corresponds to summation in this log-frequency domain. This is
a useful property, since if the input audio is a pulse-resonance sound, in which a
train of pulses is convolved with a resonance, then the log-spectrum can be viewed
as a sum of the contribution from the pulse train and a contribution from the fil-
ter. This summation property also holds for the cepstrum. Akin to filtering in the
frequency domain, ‘liftering’ can be applied in the cepstral domain. Typically the
mel-frequency cepstrum is low-pass liftered by discarding all but the lowest DCT
coefficients (in many standard implementations, the first 13 coefficients are re-
tained). These DCT coefficients are the mel-frequency cepstral coefficients. The
low-pass liftering of the cepstrum removes much of the harmonic structure present
in the original spectrum, meaning that the MFCCs capture the overall spectral
shape of a sound well, but they are not very sensitive to pitch.
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1.6 This	thesis

In this thesis, I evaluate and develop some of the many aspects of the auditory im-
age model, with a focus on using AIM to generate features that provide useful and
salient information about the content of sound to machine learning systems. To do
this, it is necessary to find a balance between accurately simulating the physiology
and developing practical systems. In order to make these decisions, it is necessary
to have a good understanding of the properties of all aspects of the system that
might help them improve audio analysis tasks. In this thesis, I model a number
of properties of the auditory system, from macroscopic, behavioural observations,
right down to the analysis of fine timing in the cochlea, and assess systems based
on these models on audio analysis tasks. As the observations and investigations be-
come more low-level, the mode of evaluation changes, but the goal is to gain useful
information about the behaviour of the system at each level. Finally, a complete
audio analysis system is constructed which draws together many of the aspects in-
vestigated in the previous chapters. In this thesis I do not, and could not, attempt
to assess the effect of every minute parameter change in every subsystem on the
overall behaviour of a larger machine hearing system, but rather to assess some of
the individual subsystems at the level at which it is most useful to do so.

In chapter 2, a simple syllable recognition system is developed which has the im-
portant property of scale-shift invariance. The scale-shift invariant features were
motivated by the observation that human listeners can apparently automatically
normalise communication sounds for differences in source size. The system uses a
linear gammatone filterbank, which is a good first approximation to the cochlear
filterbank, but which lacks the fast-acting compression which is known to exist in
the cochlea. This system also makes no attempt to use the strobed temporal integ-
ration from AIM. This system is an initial proof-of-concept which demonstrates
the potential utility of modelling a high-level aspect of auditory processing.

In chapter 3, the strobed temporal integration process is reviewed, refined and then
in chapter 4, it is put to use to improve the noise-robustness of the experimental
system described in chapter 2, demonstrating one of the benefits of the stabilised
auditory image representation.
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Chapter 5 deals with producing a system that accurately models the compressive
properties of the human cochlea. Based on the observation that compressive fil-
terbanks are able to more accurately model the human perception of stimuli with
a weak pitch cue, the effectiveness of a pitch-strength detection system is tested
using the linear gammatone filterbank, and the compressive dcGC and PZFC fil-
terbanks as the cochlear front-ends for the model.

In chapter 6, a complete sound analysis system is constructed and analysed. The
system uses AIM in one of its variants to generate features from audio to pass
to a machine learning system. The technology has not previously existed to run
AIM-like models on large databases of sounds. In AIM-C and the machine hear-
ing systems developed at Google, we now have the technology to investigate the
application of AIM to large-scale problems. This is an important and notable step
forward in the field. Previously the use of AIM had been limited to the analysis
of small datasets. The system described is able to process days of audio data in a
matter of a few hours by the combination of efficient code and large computing
resources.

The overall goal is to define and build a system that can be used for real applications.
The system must model the processing performed in the auditory system with a
degree of fidelity that reflects the aspects of auditory processing which make it
robust and effective in processing communication sounds. However, it must still
be possible to implement the system for use in practical applications which benefit
from the improved auditory processing.
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Chapter	2

Scale-shift	Invariant	Auditory
Features

The introductory chapter showed how pulse-resonance communication sounds
could be normalized for acoustic scale, both in terms of the pulse-rate and the
resonance-scale, and papers from the perceptual literature were presented which
suggested that the human auditory system includes some form of automatic scale
normalisation for both pulse-rate and resonance-scale. This chapter describes a
method for extracting scale-shift invariant features using an auditory model and
a simple syllable-recognition system designed to compare the value of these nor-
malized auditory features with those commonly used in automatic speech recogni-
tion.

In this initial auditory model, the normalized feature representation is generated
from the output of a simple, linear auditory filterbank without image stabiliza-
tion. A linear filterbank provides a reasonable simulation of cochlear processing for
wideband sounds that do not vary markedly in level which is the case for the syllable
recognition task used to evaluate the normalized auditory features. The output of
the simple cochlear model is passed to the feature-generation system with no at-
tempt to model any further stages of the auditory processing, other than the higher-
level property of normalization. This initial model is clearly overly simplistic, but
it serves to demonstrate the value of automatic normalization for the processing of
communication sounds, and it provides a baseline level of performance to compare
with that achieved by a more complex machine hearing system described in a later
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chapter.

2.1 Introduction

In standard speech recognition systems, the acoustic features used to represent the
speech change with the vocal tract length of the speaker. This means that a recog-
nition system trained exclusively on utterances from one speaker with a fixed vocal
tract length (VTL), or a fixed set of speakers with a limited range of VTLs, cannot
be expected to generalise to the speech of speakers with arbitrary VTLs. By con-
trast, the human auditory system is exceptionally robust to changes in VTL, even
when the test VTL is well outside the range of normal experience (Ives et al., 2005;
Smith et al., 2005). In an attempt to improve the robustness of ASR, modern re-
cognition systems often use a process of vocal tract length normalisation (VTLN)
to warp the frequency spectrum of the incoming speech to bring the features more
into line with those used to train the system (Welling et al., 2002). However, this
process requires that the system optimise over a set of possible warpings of the
frequency axis. A standard approach in such systems is to make two passes over
the input waveform. In the first pass, the un-normalised version of the signal is
used, and then in the second pass, the system attempts to find the optimal warping
to improve recognition. Such processing adds another layer of complexity to the
system, and a speaker-dependent free parameter which must be determined.

In this chapter, taking inspiration from the apparent ability of the human audit-
ory system to summarize speech in features which are automatically normalised
for vocal tract length, we developed a scale-shift invariant feature representation
for use with a simple syllable recogniser. The features are generated from the out-
put of an auditory filterbank, which provides the quasi-logarithmic frequency scale
required for scale-shift invariance. The features are designed so that they do not
vary with changes in the VTL of the speaker. The recognition system is assembled
using HTK, a standard toolkit used for developing prototype speech recognition
systems. The recogniser was trained on a database of syllables with a fixed VTL
and glottal pulse rate (GPR). It was then tested on both the training syllables and
syllables which had been scaled both in VTL and in GPR. With such features, no

36



2.1	Introduction

5 10 15 20 2512

14

16

18

20

22

24

26

28

Filterbank Channel Number

Lo
g 

Am
pli

tu
de

 

 
scale 1.33
scale 1.0
scale 0.8

Figure 2.1: Smoothed spectra of three human /i/ vowels from speakers with differ-
ent VTLs. The component corresponding to the 8th DCT coefficient is shown in
the lower part of the image.

VTLN is required in the recognition system as the feature is already invariant to
such changes.

The feature representation described in this chapter takes the output of a simple
auditory filterbank as its input; there are no extra stages of processing in this aud-
itory model. In the context of this thesis, the model serves two important goals.
The first is to demonstrate clearly that traditional speach features (MFCCs) are
not VTL-invariant; the second is to provide a baseline system for the assessment
of machine hearing systems decribed later in the thesis. Specifically, in chapter 4,
the features developed here are computed on the output of an auditory model that
includes strobed temporal integration in order to determine whether stabilization
might improve the noise-robustness of recognitions systems.
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Male

Female Child

Figure 2.2: The effect of source-size variation on three of the cepstral coefficents
(CCs). The triangle, circle and square denote the middle of the distribution of
male, female and child speakers respectively. The male speakers are coloured red,
the female speakers green and the children blue.

2.1.1 Size	information	in	MFCCs

Mel-frequency cepstral coefficients (MFCCs) are the representation typically used
for speech recognition and other audio classification and data-mining. MFCCs
are generated by taking a short-term Fourier transform of a windowed section of
the signal (normally around 20ms); the Fourier spectrum is then mapped to a mel-
frequency scale using a triangular filterbank, and the logarithm of each output band
is taken. A discrete cosine transform (DCT) is then applied to this log mel fre-
quency spectrum to produce a ‘cepstrum’, and a number of the lowest-frequency
DCT coefficients, normally the first 13, are taken as the MFCCs.

Taking the lowest 13 components has the effect of retaining the envelope of the
spectrum while removing most of the harmonic structure, making the MFCCs
largely invariant to pitch variability in the incoming signal. The upper lines in
Figure 2.1 show smoothed spectra of three human /i/ vowels from speakers with
different VTLs, as represented by the first 13 MFCC coefficients. To generate the
smoothed spectra, the MFCCs were first calculated in the normal way, then the
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2.1	Introduction

first 13 coefficients were retained and the inverse DCT of these coefficients was
taken. The MFCC feature vector clearly contains a distinctive formant pattern:
the information that the vowel is an /i/ in all three cases.

The MFCC spectrum also contains information about the relative length of the
speakers’ vocal tract in the position of the spectrum along the channel dimen-
sion. The MFCC representation is not invariant to variability in source size, which
shows up as the shift of the spectrum on a logarithmic scale like the ERB scale. The
cosines associated with the 8th coefficient of the three feature vectors are shown
in the lower part of Figure 2.1. Since the DCT basis functions are cosines, they
cannot change phase and are all constrained to have a maximum at zero. Clearly the
optimal way for the basis functions to change in response to a shift of the spectrum
would be to retain the same amplitude, and to shift by changing their phase. Since
this behaviour is not possible, the amplitudes of the components have to change
as the source size changes, and they do so non-monotonically.

The problem remains that the individual cepstral coefficients all contain a mixture
of both vowel-type and VTL information. Performing a DCT, where only the mag-
nitude and not the phase of the basis functions may vary, means that they are spe-
cifically prohibited from shifting with acoustic scale. The maxima of a given cosine
fit a set of formant peaks for a vowel with a given VTL, but they cannot shift to fol-
low the formant peak pattern as it shifts with VTL. For example, the lower section
of Figure 2.1 shows that the magnitude of the 8th coefficient changes markedly
with changes in VTL.

The problem that MFCC feature vectors pose for the recogniser is illustrated in
Figure 2.2 (redrawn from an original figure by Christian Feldbauer, and published
in Patterson, Walters, Monaghan, Feldbauer & Irino (2010)). It shows the fea-
ture space formed by the 7th, 8th, and 9th cepstral coefficients for the vowel /i/ as
VTL varies over the range of human lengths. Whereas the mel-frequency spectrum
shifts in an approximately linear way as VTL increases with height, the magnitudes
of the individual components change in a nonlinear way. The square, circle and tri-
angle show average values for children, women and men respectively. A recogniser
trained on the /i/ vowels of a group of adult males (in the region of the triangle) is
unlikely to recognise the /i/ of a woman (in the region of the circle) or the /i/ of a
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child (in the region of the square) as being within the cluster it learned for /i/.

2.1.2 Scale-shift	invariant	representations

Benzeghiba et al. (2007) cite a number of alternative approaches to VTLN. Most
of these approaches involve some form of warping of the frequency axis or the nor-
malisation of the frequency spectrum to some ‘canonical’ speaker. Alternatively,
Mertins & Rademacher (2005) present a VTL-independent feature based on the
cross-correlation between adjacent frames of the spectrum. The system relies on
the fact that the spectral centroid of an utterance will shift as a function of vocal
tract length. Cross-correlating adjacent frames will tend to ‘normalise’ the spec-
trum (while blurring it), shifting the spectrum of a frame towards the overall spec-
tral centroid and thus giving a signal which is more resistant to shifts in VTL. The
features developed in this section are designed to summarise the speech informa-
tion directly in a shift-independent manner, rather than distorting the tonotopic
axis of the auditory model, which is the equivalent of the spectral axis in MFCC
systems. In the system described here, the information in the cochleogram is sum-
marised by its spectral profile and fitted with a mixture of Gaussians, and several
constraints are applied to ensure that they fit only large and well-spaced spectral
peaks. As a result, a shift in VTL simply corresponds to a shift of the centres of
the Gaussian functions as a group.

2.2 Features	for	size-independent	speech	recognition

Note: Parts  of  the  work  in  this  section  was  performed  in  collaboration  with  Jessica  J.
M.  Monaghan  and  Christian  Feldbauer. The  collaborative  work  was  presented  in
Monaghan, Feldbauer, Walters & Patterson (2008)

2.2.1 Introduction

As demonstrated above, the standard MFCC features normally used for speech
recognition have a problem in that they do not vary in an easily predictable way
with speaker VTL. Therefore, we would expect that a standard speech recognition
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2.2	Features	for	size-independent	speech	recognition

system based on MFCCs would perform poorly when trained on a single speaker
(or small group of speakers with similar VTLs), and then tested on a speaker with
a different VTL.

Turner, Walters & Patterson (2004) demonstrated that around 90% of the variabil-
ity in the formant structure of vowels of different speakers is due to VTL changes,
so speaker-independent speech recognition is, to a good first approximation, equi-
valent to VTL-independent speech recognition. Furthermore, Turner, Walters,
Monaghan & Patterson (2009) demonstrated that formant scaling is linear, mean-
ing that changes in VTL correspond to simple shifts of the spectrum on a logar-
ithmic scale. Therefore, if it is possible to find a representation of the spectrum
that is, to some degree, invariant to shifts in the spectral dimension, then this rep-
resentation should perform better than the MFCCs when used as a feature for a
size-invariant speech recognition system.

In order to demonstrate these effects, we set up a hidden Markov model (HMM)
syllable recognition system based on HTK (the HMM toolkit), a standard tool
for speech recognition research. The syllable recogniser was set up to use either
MFCCs, or features generated from a cochlear filterbank. The training data were
human syllables from a single talker, and the test data were the same human syl-
lables scaled using STRAIGHT to a range of VTL and GPR combinations. In what
follows, the word ‘speaker’ refers to utterances resynthesised from the single talker
but with theoretical vocal-tract length chosen from a range of values. Features that
are more robust to changes in the source size will give better performance when
trained on data from a speaker of one size, and then tested on a range of speakers
of different sizes.

The VTL-invariant features developed here also serve as a baseline system for a
set of features developed in chapter 4, where the auditory model is extended to
incorporate the noise-robustness exhibited by the stabilised auditory image.

2.2.2 Scaled	syllables

A database of 185 human utterances, consisting of 180 syllables and five vowels,
was used as the basis for the experiments. The database consists of five strong vow-
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Figure 2.3: The spoke pattern of scaled syllables in GPR-VTL space.
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2.2	Features	for	size-independent	speech	recognition

els (/a/, /e/, /i/, /o/, /u/) crossed with 6 sonorant consonants, 6 fricative consonants
and 6 stop consonants to produce 90 consonant-vowel and 90 vowel-consonant
pairs. In addition, the five sustained vowels are included in the set (Ives et al.,
2005). STRAIGHT was used to generate 57 versions of the syllable database (re-
ferred to as ‘speakers’) in which the syllables were all transformed to have a spe-
cific combination of VTL and GPR. There was a ‘central’ speaker with a GPR
of 171.7 Hz and a VTL of approximately 15 cm, and seven speakers on each of
eight spokes radiating out from the central speaker in log(GPR)-log(VTL) space
as shown in Figure 2.3. The seven speakers along each spoke are spaced logar-
ithmically in log(GPR)-log(VTL) space. The entire spoke pattern is rotated 12.5
degrees clockwise from the axes, ensuring that there is both a VTL change and
a GPR change between any pair of stimuli. This rotation was chosen as it causes
one spoke to lie parallel to the line connecting the average woman and the average
man in the GPR-VTL plane. This same configuration of scaled stimuli was used
by Vestergaard et al. (2009) for the evaluation of human perception of concurrent
syllables.

2.2.3 Scale-shift	invariant	features

When plotted on a logarithmic scale, such as the ERB scale used in the gammatone,
dcGC and PZFC filterbanks, the formants of speech have a shape that is roughly
Gaussian. Furthermore, since the bandwidth of formants increases as their centre
frequency increases (Hawks & Miller, 1995), the variance of the Gaussian remains
roughly the same as a function of centre frequency. Given these observations, a
Gaussian mixture model (GMM) was used to summarise the information in the
spectral profile of the auditory image. The spectral profile is modelled as a prob-
ability distribution, and fitted with a set of Gaussians of fixed variances. The profile
is then described by its overall energy, and the means and amplitudes of the Gaus-
sians used to fit it.

Gaussian features have previously been shown to be effective in single speaker sys-
tems (Stuttle & Gales, 2001; Zolfaghari et al., 2006), and so should provide a suc-
cinct, low-dimensional, representation of the spectral profile.
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Figure 2.4: Scale-shift invariant features for two scaled vowel sounds
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Figure 2.4 shows the results of fitting four Gaussians to spectral profiles for two /i/
vowels from speakers with different VTLs. There are several major concentrations
of energy, the formants, in vowels. The largest three of these are fitted by three of
the Gaussians. The remaining distribution is of low energy and acts as a ‘spacer’,
encoding the presence of a spectral gap.

Expectation	maximisation	for	Gaussian	fitting

The expectation maximisation (EM) algorithm (Dempster et al., 1977) was used
to fit Gaussian components to the AIM spectral profile. The EM algorithm is an
iterative process which seeks to find the set of parameters for the Gaussian com-
ponents which allows them to fit the spectral profile as closely as possible. The
algorithm has two steps, the expectation step, in which the probability that each
point in the spectral profile came from each of the current Gaussian components is
calculated, and the maximisation step which updates the parameters of the Gaus-
sian components to best reflect the estimate. These two steps are repeated until
the Gaussians provide a good enough fit to the data. In order to ensure a good
fit, it was necessary to constrain the standard EM algorithm in a number of ways,
based on prior knowledge of the form of a vowel spectrum, and some heuristics.
These modifications to the EM fitting procedure were made by Christian Feld-
bauer.

As discussed above, formant bandwidth increases with frequency, such that when
plotted on a logarithmic scale the width remains relatively constant. For this reason,
it is possible to constrain the Gaussians to have a fixed standard deviation. The
optimal choice of this standard deviation was found to be around 10.7 channels
(a variance of 115 channels squared) in initial experiments on a constrained set of
vowel sounds. Given that the majority of energy in speech is carried in the vowels
(Greenberg & Ainsworth, 2006), this approach seems reasonable as a first approx-
imation.

The second modification introduces a ‘repulsion’ term between the Gaussians, which
adds a penalty for too much overlap between the individual components. This is
achieved by expanding and then re-normalising the conditional probabilities of the
mixture components at each iteration of the EM algorithm. This expansion is ac-
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cording to a power-law with an exponent of 0.6. This parameter was again chosen
in initial testing with vowel sounds only.

Finally, an initialisation stage was introduced distribute the Gaussians across the
whole frequency range at the start of the EM process and preclude their converging
on specral peaks associated with resolved harmonics of the GPR. In this step, a pair
of Gaussians is first fitted to the whole spectrum using the modified EM algorithm
described above. Then, the initial locations for the four Gaussians in the main
fitting stage are chosen relative to the final locations of the two components in the
initial fitting stage.

Calculating	spectral	profiles

Spectral profiles from AIM were produced by low-pass filtering the NAP to blur
short-term fluctuations in its level, and then summing short sections to obtain the
desired frame length. Profiles of the NAP were calculated for 20-ms frames of
each syllable file in the scaled syllable corpus. The linear gammatone filterbank
was used as the cochlear model, the NAP was generated by half-wave rectification
and was then low-pass filtered with a second-order filter with a cutoff frequency of
100Hz. Feature vectors were generated by first applying power-law compression
with an exponent of 0.8 to the profile magnitude and normalising them to sum to
unity. This power-law compression was found to improve recognition accuracy in
preliminary testing.

Feature	vectors

Employing four Gaussian components to fit the spectral profile, and using the tech-
nique described above, there are, in total, seven degrees of freedom that can be fit-
ted by the model: the location of the means of the four Gaussians, and the weights
of three of the four Gaussians (the weight of the fourth is fixed, since the pro-
file is normalised before fitting). In addition to these seven degrees of freedom,
the energy of the profile before normalisation is also available as a further piece of
information.

The weights of the Gaussians are scale-independent as they are, but the means of
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the Gaussians are not. The pattern of formants moves approximately as a unit
on the quasi-logarithmic ERB frequency scale (see chapter 1), which means that
vowel-type information will be encoded by the pattern of distances between the
means of the Gaussians, providing the lowest and the highest Gaussian are allowed
to move far enough to encode the scale shifts as they arise in the spectral profile.
This means that we should also consider adding the three differences between the
means of the Gaussian components to the feature vector. In practice, for the fairly
simple task of scaled syllable recognition, it was found that four components of
this set, the weights of the three Gaussians, and the total energy were enough to
provide good recognition results.

In the same way as for the MFCCs, first and second difference coefficients were
computed between temporally adjacent feature vectors and added to the feature
vector in all cases. Thus, the length of the AIM feature vectors passed to the re-
cogniser was 12 components, whereas it was 39 components for the MFCC fea-
ture vectors. Having feature vectors with a lower dimensionality substantially re-
duces the time taken to run the training and recognition algorithms in full-scale
systems.

2.2.4 HTK for	syllable	recognition

The hidden Markov model toolkit (HTK) (Young et al., 2005) was used as the
machine learning system for these experiments. HTK is a research tool for invest-
igating hidden Markov models (HMMs), and is most commonly used in speech
recognition research. In an HMM speech recognition system, the speech signal is
modelled as a sequence of stationary ‘frames’ of audio which have been generated
by an underlying Markov model. The frames of speech are represented as ‘feature
vectors’ – some low-dimensional summary of a short segment of audio. A Markov
model is a probabilistic finite state machine, consisting of a sequence of states, and
a set of transition probabilities between those states, aij (where i and j are state
indices). When the system is in an ‘emitting’ state, i, it will emit a given feature
vector ot with probability bi(ot). HTK uses a Gaussian mixture model (GMM)
as a continuous density multivariate output distribution to model the continuous
variables from the feature vectors. Figure 2.5 shows the topology of a three-state
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Figure 2.5: Topology of a three-emitting-state HMM. The aij are the transition
probabilities and the bi(ot) are the emission probabilities.

HMM.

In the case of a simple syllable recogniser, each possible syllable is represented by
a single HMM. At training time, the transition probabilities and emission probab-
ility distribution for each HMM are learned.

2.2.5 Experiments

The models were trained on the reference speaker at the centre of the spoke pat-
tern (Figure 2.3) and the eight speakers closest to the reference speakers to simu-
late the training of a standard, speaker-specific automatic speech recognition sys-
tem.

The complete set of audio for all syllables and all speakers consists of 10,260 au-
dio clips, each of around 600ms. All the audio was converted to both MFCCs and
scale-shift invariant features. The MFCCs were produced using HTK’s HCopy
command and the scale-shift invariant features were produced using AIM-C, em-
ploying modules for the gammatone filterbank, the NAP and the Gaussian fitting
procedure.

In training, the parameters of each syllable model were estimated from the nine
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speakers in the training set. The recognisers were then tested on the complete set
of scaled speakers without further training. The voices used in training were also
added to the test set for completeness, but reported results are for the standard
test set only.

The HMM topology, number of components in the output distribution, and num-
ber of training iterations of the HMM all contribute to the overall recognition
performance. In order to optimise these variables, and to provide a suitable com-
parison between systems, an exhaustive search was performed over all these vari-
ables for each of the two datasets. HMM topologies from 1 to 6 emitting states,
and from 1 to 7 Gaussians in the output distribution were tested. 15 training it-
erations were performed, and every configuration was tested after each training
iteration from 5 to 15.

2.2.6 Results

Tuning	HMM parameters

Overall recognition performance was tested over the full range of HMM configur-
ations described above. Recognition performance is reported as the percentage of
the test syllables which were correctly identified by the recogniser. Performance
of the HMM-based recogniser on the two sets of features was markedly different,
leading to overall differences in recognition rate which were in general much larger
than those due to the changes in the HMM parameters. Optimum performance, of
72.3% syllable accuracy on the MFCC features, was achieved with an HMM with
2 emitting states and with 4 components in the output distribution. This per-
formance was achieved after 15 iterations of the training algorithm. For the AIM
features, the optimum recognition performance was 93.2% across all syllables us-
ing an HMM with 2 emitting states, 6 output distribution components and after
10 training iterations. Figure 2.6 shows the overall syllable recognition rate for the
MFCCs and AIM features respectively as a function of the various HMM para-
meters. For the MFCCs, the performance after 2 more training iterations for all
HMM parameters shown in the plot is between 64% and 72.3%. For the same set
of parameters with the AIM features, performance is between 78% and 93.2%.
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Figure 2.6: Performance of HMMs with varying parameters, trained using AIM
features (black) and MFCCs (red). The vertical axis shows overall recognition per-
formance. The horizontal axis shows the number of HMM training iterations.
Solid lines denote HMMs with 2 emitting states, dashed lines 4 emitting states
and dotted lines 6 emitting states. Stars show performance with 2 Gaussian com-
ponents in the output distribution, circles are for 4 components and plus symbols
show performance with 6 components).

Performance is consistently better for the AIM features across all tested HMM
configurations. (In addition to the HMM configurations shown in this graph, odd-
numbered values of the HMM parameters were also tried but, for simplicity of
presentation, they are not plotted here. These results cluster in the same way.)

Feature	comparison

For the AIM features, 92.6% accuracy was achieved with the 2 emitting state, 4
component HMM model after 15 training iterations. Since this performance is
almost at the ceiling for the AIM features, and the same HMM parameters lead
to optimal performance for the MFCC features, all further comparisons are made
using recognition results for an HMM with these parameters. This allows for a
direct comparison of the features using an otherwise identical recognition system.
Recognition performance as a function of speaker GPR and VTL for the MFCC
features is plotted in Figure 2.7, and recognition performance for the AIM features
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Figure 2.7: Recognition results for the MFCC features for a 2-emitting-state
HMM with 4 output distribution components after 15 training iterations.

is plotted in Figure 2.8.

For both feature types, recognition performance is best for the central speakers
around the training voices, and becomes worse as the speakers change in VTL and
GPR from the training region. However, the pattern of the reduction in perform-
ance is markedly different between the two feature types. Overall recognition per-
formance with the MFCC feature vectors was 70.9% correct. Performance holds
up well along the spokes where VTL does not vary much from that of the reference
speaker. This subset of the results illustrates the standard finding that MFCCs are
robust to changes in GPR, primarily because the process of extracting MFCCs
eliminates most of the GPR information from the features. However, as VTL
varies further from the training values, performance degrades rapidly, particularly
on the spokes with large VTL change, where recognition falls to a minimum of
3.2% for the extreme VTL values. This provides a practical demonstration of the
known lack of robustness to changes in VTL associated with the lack of scale-shift
covariance in MFCCs.

Overall recognition performance with the auditory feature vectors was 92.6%. As
with the MFCCs, performance remains high along the spokes associated with ma-
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Figure 2.8: Recognition results for the AIM features for a 2 emitting-state HMM
with 4 output distribution components after 15 training iterations.

jor changes in GPR. However, performance along all of the spokes also remains
near ceiling, and only drops off significantly at the extremes of VTL. Recognition
accuracy both at the longest and the shortest VTL was 71.9%, which compares
with 3.2% and 4.9% respectively in the MFCC case.

2.2.7 Comparison	with	standard	VTLN

The standard approach to VTLN involves applying a piecewise linear warping to
the frequency axis of the mel filterbank before the MFCC coefficients are com-
puted. With the correct per-speaker choice of warp factor, it is possible to map
the format patterns for different VTLs to the same pattern. However, in order for
this method to be successful, the correct warping factor must first be found and
MFCC features must be computed using this factor. In order to do this, it is usual
to use a two-pass recognition process where basic recognition is performed on an
un-normalised version of the features in the first pass, and then this information is
used to help find the optimal warping factor for the second pass of processing.

Figure 2.9 shows the warping scheme used by HTK’s HCopy tool when computing
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fscaled

forigfL fH

Figure 2.9: Warping the frequency axis for VTLN. The warping factor α controls
the gradient of the centre part of the line. fL and fH control the lower and upper
‘break’ points of the line respectively, such that the full range of input frequencies
are mapped to the full range of output frequencies. This figure is redrawn from
the HTK book (Young et al., 2005).
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Figure 2.10: Recognition results for the syllables database using optimally VTL-
warped MFCC features. Performance is consistently good across the whole range
of speakers because prior information about the VTL of the speaker is provided
when computing the features.

MFCCs. A frequency warping factor, α, controls the gradient of the central part
of the line, and two parameters control the upper and lower frequencies bounding
this line. Outside this range the gradient is such that DC input maps to DC output,
and input at the Nyquist frequency maps to output at that same frequency.

If a VTLN system performs optimally, then it should be possible to infer the ideal
warp factor for every speaker at test time. In the case of the syllables database the
optimal frequency warping factor is already known, since the input syllables are
themselves scaled. From the original VTL values, it is easily possible to calculate
the optimal warp factors and so it is possible to simulate the effect of a perfect
VTLN preprocessor.

These optimal factors were calculated for the syllables database, and per-speaker
MFCC features were generated. fL was set at 10Hz and fH was set at 10500Hz,
to encompass almost the full range of frequencies when a 22kHz sampling rate is
used for the input. The scaled MFCC features were then used to train a standard 2
emitting-state, 4 mixture-component HMM. The normal training set of the cent-

54



2.2	Features	for	size-independent	speech	recognition

ral speakers was used. Recognition performance was 99.0% across the whole test
set, with the most errors being made on the speaker with the shortest VTL, where
performance fell to 84.9%. Figure 2.10 shows the results for these optimally-
warped features as a function of VTL and GPR. From this result we see that, if
it is possible to perform good VTLN, then the MFCCs perform very well indeed.
In practice such a system would require the computation of MFCCs with a number
of warping factors for each utterance; the recognition system would then attempt
to find the warping of the features which minimises the recognition error.

2.2.8 Comparison	of	computational	complexity

While the AIM Gaussian mixture features provide better recognition performance
than standard MFCC features, they are considerably more costly to compute. To
compute the AIM features for the entire scaled syllables database of around 10,000
600ms sounds (100 minutes of audio) takes approximately 160 minutes of CPU
time on a modern, single-core computer. By comparison, it takes just 5 minutes to
compute the MFCC features using the same system, so the AIM features are ap-
proximately 32 times more costly to compute. However, there are several factors
that need to be taken into account when considering whether or not this has a signi-
ficant impact on the usefulness of the features. Firstly, the MFCCs were computed
using HCopy, which has been progressively optimised over years of use; AIM-C,
by contrast, is relatively fast as auditory models go, but it has not yet been optim-
ised for speech recognition. Furthermore, in order for a VTLN system to be useful,
warped MFCCs would have to be calculated for a range of warping factors. Welling
et al. (2002) applied a total of 13 different VTL warpings to each utterance to as-
sess their VTLN system. If this many warpings are required for good performance,
then the computational cost of the AIM features becomes more competitive. It
is also the case that AIM’s VTL-invariant features make it possible to reduce the
complexity of the recognition system, and training times.
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Figure 2.11: Recognition results for MFCC features when trained on the extreme
outer speaker on each spoke of the pattern. Performance is highest immediately
around the training data, and falls slightly further from the training speaker, reach-
ing a low of 93.0%.

2.2.9 Comparison	with	wide-range	training

Performance of the standard MFCC features was low when the recognizer was
trained on only the central speakers. This result is expected, since the MFCCs
are not scale-invariant. However, in real speech recognition systems, it may be
possible to train on a range of speakers. It is possible to compare performance of
the MFCCs and AIM features on a wider range of speakers by training the HMM
using the speakers from the outer end of each spoke in the spoke pattern.

The syllable recognition experiments were repeated using these speakers for train-
ing, giving a wide variety of different VTL-GPR combinations to train on. The
results for the VTL-invariant features are shown in Figure 2.12 and the results for
MFCCs are shown in Figure 2.11. For the AIM features, performance was 98.4%
and for the MFCC features performance was 97.3%. In both cases, performance
is best closest to the training speakers, and then ‘sags’ slightly in the middle of the
range, at the largest distance from the training data. For the MFCC features, that
sag is slightly more pronounced, with recognition performance falling to 93.0%
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Figure 2.12: Recognition results for the VTL-invariant AIM features when trained
on the extreme outer speaker on each spoke of the pattern. Performance is highest
immediately around the training data, and falls slightly further from the training
speaker, reaching a low of 97.3%.

around the central speakers. By contrast performance only falls to 97.3% for the
AIM features.

For completeness, the MFCC features with optimal VTLN were used with the
same train/test configuration. In this case, recognition performance was 100%
correct across the entire space. The results are shown in Figure 2.13.

This result suggests that the HMM used in these experiments is more than cap-
able of learning the variability of the database, so if there is a reasonable range
of training data then there may be little utility in pre-warping the features. This
suggests that when the training data for a multi-speaker recognition is limited to
a small number of speakers, it would probably prove useful to begin by warping
the VTL and GPR of the speakers to the range of values likely to be encountered
by the system, and then train on all the warped utterances as well as the original
utterances.
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Figure 2.13: Recognition results  for MFCC features with optimal  vocal-tract
length normalisation when trained on the extreme outer speaker on each spoke
of the pattern. Performance is perfect across all speakers.

2.2.10 Conclusions

This chapter focuses on the observation that human speech recognition is highly
robust to changes in VTL and GPR, and the discovery that a GMM can be used
to extract features that are largely invariant to changes in VTL and GPR from
the output of a common auditory filterbank. These auditory features were com-
pared to standard MFCC features using a simple syllable recognition task and a
database of syllables scaled over a large range of both GPR and VTL values. The
scale-invariant features were found to be considerably more robust to changes in
speaker VTL than MFCCs, and equally robust to changes in GPR. The experiment
focuses attention on this well known deficiency in MFCC features. The success
of the recognition system with VTL-invariant features appears to depend almost
entirely on the features themselves, rather than the recognition system used to
compare the two forms of features. Changing the parameters of the HMM recog-
nition system has only a minor effect on performance compared with changing the
features themselves. However, when scaled training data are made available to the
recognition system, performance with MFCCs becomes comparable to that with

58



2.2	Features	for	size-independent	speech	recognition

the VTL-invariant features, as might be expected.

A procedure to perform VTLN on MFCCs (Welling et al., 2002) was evaluated
using the scaled-syllable database of Ives & Patterson (2008). Since the original
scaling factors are known it is possible to perform ‘optimal’ VTL warping when
generating MFCC features for use with the recognizer, and so determine the best
performance attainable with a VTLN system. With this optimal VTLN, recogni-
tion performance with MFCCs is extremely good. This validates the theory behind
this form of VTLN, however, it should be noted that this form of VTLN is compu-
tationally expensive, and good performance can only be achieved if the recognition
system correctly identifies the precise scaling factor for every speaker. The VTL-
invariant AIM features currently take around 30 times more computing power to
calculate than the MFCC features, but they provide a representation which does
not require any further processing to be used in a standard speech recogniser. By
contrast for VTLN, MFCC features would have to be computed with a range of
around 10 different VTL warpings and then be passed to a more complex recog-
nition system in order to be useful.

The scale-shift ”invariant” features derived with AIM exhibit some residual sensit-
ivity to change in VTL. Since it affects only the extreme VTL conditions, it seems
likely that the sensitivity is due to edge effects at the Gaussian fitting stage. That
is, when a formant occurs near the edge of the spectrum, the tail of the Gaussian
used to fit the formant prevents it from shifting sufficiently to centre the Gaussian
on the formant. If this proves to be the reason, it suggests that performance is not
limited by the underlying auditory representation but rather by a limitation in the
feature extraction process.

The scale-shift invariant features described in this chapter were generated from
the output of an auditory filterbank, but beyond this, the processing bears little
resemblance to that performed in the auditory system. Rather the features demon-
strate a macroscopic property of the auditory system. In the following chapter, I
look in detail at a proposed model of the processing performed in the early stages
of the auditory pathway. The auditory image model (AIM) describes a process of
strobed temporal integration in which signals from the cochlea are ‘stabilised’ with
respect to the pulses in the input sound in order to generate a stabilised auditory
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image (SAI), which changes over time. In chapter 3, I concentrate particularly on
systems for strobe point identification. One hypothesised benefit of AIM is that
the SAIs which it produces are more robust to interfering noise than simple spec-
tral representations. In chapter 4, the feature-generation system developed in this
chapter is extended for use with the SAI representations developed in chapter 3.
The procedure developed in the current chapter for comparing auditory features
with MFCCs is used in chapter 4 to compare the performance supported by various
SAI-based representations with the performance of MFCCs as the speech signal
sinks into background noise.
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Chapter	3

Strobes	and	Stabilised	Auditory
Images

The last chapter introduced a feature representation based on the smoothed out-
put from a simulation of the cochlea and a simple hair-cell model. The signal was
temporally averaged over a short window by means of a low-pass filter. Strobed
temporal integration, leading to a stabilised auditory image (SAI), is an alternat-
ive, more complex, system for processing the signal leaving the cochlea. Strobe
points are identified in each channel of the filterbank output, and these points act
as triggers for a temporal integration process in which shifted copies of the signal
are overlaid on one another.

Since strobe points tend to occur at or near the pulses in a pulse-resonance sound,
representing a signal containing a pulse-resonance sound as an SAI will tend to ac-
centuate the periodic, pulse-resonance components of a signal relative to any back-
ground noise. Noise-robustness is an extremely useful property in any machine
hearing system, and so we wanted to incorporate the inherent noise-robustness of
the SAI into our auditory model. In this chapter, existing mechanisms for strobed
temporal integration are assessed and compared, and the theoretical basis of this
mode of temporal integration is investigated in an effort to identify a simple cri-
terion for optimal strobe generation. The goal was to create a stabilised auditory
image for a noise-robust machine hearing system.
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Figure 3.1: Neural activity pattern for a short segment of the vowel /a/.

3.1 Strobe	finding	in	AIM

In the auditory image model, stabilised auditory images are produced by strobed
temporal integration. An image is built up by repeatedly adding sections of a NAP
signal to a buffer. Each time a ‘significant’ event or ‘strobe’ occurs in the signal,
the process restarts, adding the signal following the strobe to the buffer, starting
at zero. Strobed temporal integration is central to the production of SAIs.

When processing a pulse-resonance communication sound in AIM, it is desirable
that the strobe points should fall at points in the NAP signal which were caused
by a pulse in the original sound. When this occurs, the resonances following each
pulse are added exactly in phase in the auditory image, such that the resonances
following each vertical ridge in the image resemble as closely as possible the ori-
ginal resonances in the sound. However, this requirement is somewhat ambiguous
because the response of the auditory filterbank to a pulse is not a single peak, but
a series of peaks within an envelope.

In practice, it is not necessary for the strobe finding to be perfectly accurate in or-
der that a good SAI be built up from a pulse-resonance sound. The exact choice of
which peak of the filter’s impulse response to strobe on does not make a significant
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Figure 3.2: Strobe points detected for the NAP shown in Figure 3.1

difference to the auditory image that is produced, and there does not have to be ex-
actly one strobe for each glottal cycle. However, the closer that it is possible to get
these requirements, the more accurate the SAI will be. It is desirable that there
should be roughly one strobe per pulse, that the choice of strobe points should
be reasonably consistent across channels and across pulses and that strobe timing
should not be affected too greatly by the exact form of the resonance following
each pulse.

Figure 3.1 shows the neural activity pattern (NAP) from a short segment of an /a/
vowel. Figure 3.2 shows a set of strobe points on that NAP. There is exactly one
strobe point per cycle in each channel, and the strobe points occur consistently at
the peak of the envelope in each channel, so in some sense the algorithm applied
here has found the optimal set of strobe points for this signal.

3.1.1 Relationship	to	pitch	detection

Strobe-point detection is, in some respects, a similar process to pitch determina-
tion of a time-domain signal (albeit a signal which may have been passed through
a nonlinear filter). Computational auditory models which can extract the pitch of
complex sounds (see, for example, Brown & Cooke, 1994) must, necessarily, in-
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tegrate over a few cycles of the pitch period to get a result. Robinson & Patterson
(1995) showed that humans take between four and eight cycles of the waveform to
extract useful pitch information, but the information required to identify a vowel
can be extracted from a single cycle of the wave, and so it is unlikely that long-term
pitch extraction can play a direct role in timbre extraction. However, the task of
instantaneous detection of peaks in the time-domain waveform is still related to
that of pitch detection in the time domain.

There is a rich literature on the subject of pitch detection in time-domain signals
and Hess (1983) provides an excellent overview of the state of the field at that
time.

Hess identifies four significant features from which periodicity in a signal can be
derived in the time domain. The first two of these features are:

• The presence of a fundamental harmonic.

• A structural pattern which repeats from period to period.

The second pair of features is derived from the linear model of speech production,
which is the production mechanism for pulse-resonance communication sounds
described in chapter 1. Using this model, Hess identifies the following:

• High amplitudes at the start of a period and low amplitudes at the end, since
the vocal tract can be assumed to be a linear passive system whose impulse
response consists of exponentially decaying sinusoids (Fant, 1960).

• Discontinuities in the signal or its derivatives at the instants where individual
pulses occur.

The pitch determination algorithms reviewed by Hess are, of course, all based on
analysis of the original waveform, rather than the output of an auditory filterbank,
but the principles in each case are similar, and the temporal features which he
describes translate to the filtered case.

The majority of algorithms for strobe finding employed in AIM rely on the third
of Hess’s features to perform their classification of strobe points. When a pulse ex-
cites resonances which decay with a finite time constant, an exponential threshold
which decays more slowly than the resonance can be applied to the signal to ‘fol-

64



3.1	Strobe	finding	in	AIM

45 50 55 60 65 70 75 80
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

time (ms)

am
pl

itu
de

Figure 3.3: ‘Peak’ strobing criterion – strobes are issued on all local maxima of the
NAP.

low’ the decaying resonances. When this threshold is exceeded, a pulse is deemed
to have occurred. This simple idea has been proposed and implemented many
times; indeed Hess cites over 20 references to proposals for analogue versions of
this scheme dating from 1949 to 1977.

In this section, I review some of the basic properties of the auditory filterbank and
human vocalisations to help derive the correct constraints for a strobing scheme
that is in some sense optimal for a given filterbank and expected class of signals.

3.1.2 Thresholding

The basic mode of operation of strobing systems is to place a decaying threshold on
the incoming NAP signal. The threshold starts off at zero activity, and it is updated
constantly. When the level of an incoming NAP peak exceeds the threshold, the
threshold is raised to that level, and a strobe may be issued at that time. After the
peak, the threshold decays in some way with time, and any NAP peaks which are
under the threshold are ignored. A strobe can be issued on every NAP peak which
is above the threshold, or only on a subset of those peaks, based on some other
criteria. The versions of AIM software over the years have, for the most part, used
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Figure 3.4: ‘Temporal shadow’ strobing criterion – strobes are issued on each local
maximum if it exceeds a decaying threshold.
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Figure 3.5: ‘Temporal shadow with timeout’ strobing criterion – strobes are issued
as in the ‘temporal shadow’ case, but there is a 5ms timeout imposed after each
strobe which prevents another strobe from occurring in that time.
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Figure 3.6: ‘Parabola’ strobe criterion – here the timeout is encoded explicitly as a
parabola that can ‘jump over’ intervening peaks.
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Figure 3.7: ‘Bunt’ criterion – after each strobe, the threshold jumps up by a random
amount
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variations on this basic scheme as the basis of their strobing systems. The major
differences between the strobing schemes are in the form of the threshold that is
used. These various criteria are presented in the documentation for AIM1992 and
AIM-MAT, and I present the basics of each system below.

Various strobe detection schemes have been added to AIM over the years. The
initial version of AIM, AIM92, was written by John Holdsworth and Mike Al-
lerhand, with contributions from Christian Giguere and Michael Akeroyd. This
version included the ‘peak’, ‘temporal shadow’ and ‘local maximum’ strobe criteria.
AIM-MAT, which was released in 2003, was written by Stefan Bleeck. This ver-
sion added the ‘bunt’ and ‘parabola’ mechanisms in addition to the strobe criteria
from AIM92.

Figure 3.3, Figure 3.4, Figure 3.5, Figure 3.6 and Figure 3.7 show the form of
threshold in each of the various strobe algorithms employed in AIM1992 and
AIM-MAT. The simplest strobe criterion (not shown here) is just to issue a strobe
point at every nonzero point in the NAP. This leads to a representation which is
very similar to a correlogram. The next simplest is to issue a strobe on each local
maximum in the NAP — the ‘peak’ strobe criterion. In this case as well, much of
the asymmetry in the NAP is not preserved in the auditory image generated, leav-
ing a representation that looks similar to a correlogram, once again. The benefit
of this method, however, is a significant reduction in the rate of strobe points, and
so a similar reduction in the computational complexity of the SAI generation pro-
cess. This computational efficiency is one of the major practical benefits of strobed
temporal integration above autocorrelation.

The next, more complex, systems add the decaying threshold to the NAP to de-
cide whether a strobe should be issued or not. In applying a decaying threshold,
some prior knowledge of the form of the information in the NAP is applied to
the processing. By applying this threshold, the assumption is that the input sound
has a pulse-resonance structure with strong onsets and decaying resonances. As
we have seen, this is an entirely reasonable assumption to make about the sounds
encountered in everyday life (although it is always possible to construct ‘patholo-
gical’ stimuli that break this assumption, for example the ramped sounds presented
below).
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The ‘temporal shadow’ criterion is the simplest of these thresholded criteria. In
this case, a decaying threshold is placed on the signal. This threshold is reset to
the level of the NAP at the time when a strobe is issued, and then decays linearly
such that it is zero after a predetermined time period. However, this system does
not take into account the finite rise time of the auditory filter and issues strobes
on all NAP peaks within the rising edge of envelope maxima.

In order to combat this, a timeout can be added which prevents the system from
issuing a strobe in a short window after a previous strobe point. This means that
the first peak in the rising edge of a new pulse is the strobe point, and as long as
the rise time of the filter’s impulse response is short enough, no more strobes will
be issued on this peak. In this case, the strobe threshold is reset on each strobe
candidate, rather than each strobe point. The timeout, however, has the effect of
suppressing strobe points on the local maximum of the envelope. The system will
issue a strobe point on the first NAP peak in a rising edge, and the timeout will
prevent subsequent strobes.

Further variations come in the form of the ‘parabola’ and ‘bunt’ strobe criteria
found in the sf2003 module of AIM-MAT. In these systems, the timeout is more
explicitly encoded in the threshold. In the ‘parabola’ case, the threshold is ‘thrown’
up from a strobe peak in a parabolic shape. The parabola is then truncated after
some period of time and the threshold then decays linearly. In the ‘bunt’ case, the
threshold jumps up by a random amount after a strobe point and then falls linearly
from its new maximum.

In all these cases, the designers were implicitly adding more prior information
about their knowledge of the form of the signal emerging from the auditory fil-
terbank, and attempting to tailor the strobe criterion to that form. Later in this
chapter, I attempt to place these implicit constraints on a firmer theoretical basis in
order to choose the best parameters of a strobing scheme in a principled way.

3.1.3 Windowing

An alternative simple strobe detection system was developed by Dick Lyon for use
in the sound effects ranking experiments described in chapter 6. In this system,
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the signal in each channel is multiplied pointwise by a windowing function. The
maximum point in the windowed signal is the strobe point. The window is then
shifted by 4ms and the process is repeated. The window used is an inverted para-
bola of 40ms width. Thus, there is guaranteed to be an average of one strobe point
every 4ms, but it is possible for multiple strobes to occur at one point in the signal,
since the windows overlap. The performance of this system is evaluated along with
that of the other systems later in this chapter.

3.1.4 Look-ahead

The major distinction between different models of strobing is whether or not a
model needs to look at the signal beyond a point in time in order to classify that
point as a strobe or not. In a causal system with no delay, a NAP peak may only
be classified as a strobe on the basis of the information in the NAP up to and
including that point; that is, strobe points may not be identified retrospectively.
Any system that relies on positively identifying NAP peaks cannot have zero delay
since identification of a turning point requires knowing the value of the subsequent
sample.

If a process akin to strobed temporal integration is performed on the auditory sig-
nals in the brain, then strobe detection must occur with only a small delay of the
order of a few milliseconds, as strobe points must be identified and acted upon
without any temporal integration. If any temporal integration was required to
perform strobe detection, then the main benefit of strobed temporal integration
would be lost, and one might as well deal with more advanced pitch detection al-
gorithms.

The various previously existing strobe finding algorithms described above require
either simple identification of NAP peaks or a short delay of a few milliseconds
before positively identifying a NAP peak as a strobe, apart from the Lyon parabola
system, which may look up to 40ms ahead. The main system which I develop here
is a variant on these previously existing systems, and also requires a delay of up to
six milliseconds before positively identifying strobe peaks. Delays of the order of
10ms at this stage of the system are entirely reasonable from the point of view of
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Figure 3.8: A ‘ramped’ stimulus is a time-reversed pulse-resonance sound. The
slow onset can confuse strobe detection systems.

auditory perception.

As an additional example, I present a strobe detection system that processes whole
sections of the NAP across multiple channels. In this case it is necessary to look
ahead on the order of 20-30ms in order to issue strobes. While this approach is
reasonable in a computational system, it may bear less resemblance to the pro-
cessing performed by the auditory system.

3.1.5 Noises	and	damped/ramped	sounds

One major concern for a strobing system is that it should be able to ‘degrade grace-
fully’ in the presence of a sound that is not of the type that it is optimised to deal
with. In the case of noises, strobe points can occur at random, but the rate of
strobes should be high enough that an SAI is still built up.

Time-reversed pulse-resonance sounds present an interesting problem for a sys-
tem that is optimised for normal pulse-resonance communication sounds. These
‘ramped’ stimuli are characterised by an exponentially increasing envelope that is
suddenly truncated and falls to zero. Figure 3.8 shows an example of the waveform
for an idealised ramped sound, and Figure 3.9 shows the equivalent damped sound.
Ramped sounds are perceived differently by the listener to the equivalent damped
sounds, and the SAI produced by these sounds should retain the asymmetry seen
in the NAP for each sound (Patterson, 1994a,b).
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Figure 3.9: A ‘damped’ stimulus has the form of a normal pulse-resonance sound.

A simple strobe criterion like the temporal shadow method will end up strobing on
every peak of the rising envelope, producing a highly symmetrical SAI for a very
asymmetrical stimulus. Therefore, various modifications to the strobing system
were suggested to deal with this class of stimulus. The simplest approach is to wait
for some period of time before classifying a potential strobe peak as a strobe point.
Such systems look ahead to see if there is a larger peak within some fixed time after
the current candidate. An alternative approach is to have a strobe ‘lockout’ that
occurs after a strobe is issued, that prevents the system from issuing a strobe for
some fixed period of time.

3.1.6 Cross-channel	constraints

So far, all the strobing systems discussed have not made any use of the obvious con-
straints between channels. If a pulse-resonance sound hits a filterbank, then the
pulse, which is by its very nature broadband, will excite channels at a whole range
of  frequencies. Indeed, unless the stimulus has been heavily bandpass-filtered,
it will have a significant effect across the whole filterbank. It seems an obvious
idea, then, to look across multiple frequency channels when trying to detect strobe
points.

3.1.7 A set	of	criteria	for	good	strobe	detection

Having discussed the various desirable features of a strobe system, we can draw up
a set of criteria for a good strobing system that is both computationally efficient
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and physiologically plausible:

1. Strobes should be issued on peaks of the NAP only.

2. For pulse-resonance sounds, strobes should be issued at a peak of the NAP
that corresponds to a pulse in the input sound.

3. In sounds with a repeating pulse-resonance structure, only one strobe should
be issued for each cycle, in each channel.

4. Strobes should be consistently issued on the same NAP peak within a cycle.

5. NAP peaks should be identified as strobes within a few milliseconds of en-
tering the processing system.

3.2 Choosing	the	correct	threshold

The initial problem is that of identifying the points in time at which glottal pulses
occurred in a human vocalisation, given the output of an auditory filterbank excited
by that vocalisation. This problem is known as event detection. Initially we deal
with the simple case of a single speaker with no background noise as the input
sound, and then the analysis is extended to cope with the case of a single speaker
in noise, and then to multiple speakers in noise.

This process is simply a formalisation of the heuristic approach taken in the design
of previous strobe detection systems. In all the systems discussed above there is
an implicit assumption about the form of the sound that the system is dealing
with. Event detection in the output of the auditory filterbank is informed by both
the characteristics of the filterbank itself, and the characteristics of the class of
sounds expected as input to that filterbank. The filterbank impulse response and
the impulse response of the human vocal tract are similar in form; the form of
human vocal resonances is that of any physical resonant system which is excited
by pulsive excitation. This knowledge of the system can be used to constrain the
problem in a way which gives reasonable event-detection behaviour for normal,
physically-realisable, inputs and ‘degrades gracefully’ in the case of unusual inputs
so that in the worst case the system simply acts as a spectrum analyser.
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In this section, I use the gammatone as an example filterbank. I use the charac-
teristics of the gammatone itself, and a simple model of pulse-resonance sounds,
to derive some constraints on the signal in each channel of the NAP. These con-
straints are then used to choose parameters for a system that performs dynamic
thresholding of the signal, as with previous schemes. It requires a small ‘look ahead’
over 10-15ms of the stimulus (and does not perform any cross-channel integra-
tion).

Additionally, I present a system which strongly enforces cross-channel constraints
to infer the original pulse times in the stimulus (but which is less computationally
efficient and which requires a greater ‘look-ahead’ time).

3.2.1 Filterbank	and	vocal	tract	impulse	responses

For this analysis, it is assumed that the auditory filter is a simple gammatone or
gammachirp filter, without any compression built in. This means that the filter has
a known envelope of the form ga(t) = aat

na−1e−tαa where the subscript a refers to
the fact that this is the auditory filter. The terms of this equation are as follows:
aa gives an overall amplitude, the tna−1 gives a finite rise time and the e−tαa gives
the decay. The time that the maximum occurs can be found by differentiating
the filter envelope, and is found to be at t = (na − 1)/αa. This envelope, with a
sinusoidal carrier – a gammatone filter – can be seen in Figure 3.10. The envelope
of the resonance of the vocal tract is taken to be a simple damped exponential:
gv(t) = ave

−tαv , with the v referring to the vocal tract filter. We assume that
the entire system of vocal tract resonator followed by auditory filter is struck by a
stream of pulses which are modelled as single delta-functions p(t) =

∑∞
p=0 δ(t− tp)

where the tp are the pulse times. This is clearly a simplistic model of the resonances
of the vocal tract, since the vocal filter cannot have an instantaneous rise time,
but it will suffice for the purposes of defining constraints on the response of the
system.

To simulate the output of the cochlea to the auditory nerve, the output of the
basilar membrane is half-wave rectified. In many models, there is also a low-pass
filter applied to the signal which simulates the loss of phase-locking in the hair cells
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Figure 3.10: Envelope (blue) and impulse response (green) of the gammatone filter.
This is the response of the filter to a single-pulse excitation at time t = 0, marked
by the red cross.

at high frequencies. Since the NAP is monopolar, lowpass filtering is equivalent to
leaky integration of the signal. For a first treatment of the problem, the low-pass
filtering will be put aside, and signals which have simply been half-wave rectified
will be considered. This class of signal is known as the Neural Activity Pattern,
or NAP. Once an initial version of the model has been developed, the effect of
low-pass filtering can be considered again.

3.2.2 Single-pulse	excitation

In the case of a single pulse exciting the filterbank, the response in a single chan-
nel is simply the impulse response shown above. This is the most simple form of
excitation, and provides a good basis for developing an algorithm which will ul-
timately extract the timings and amplitudes of filtered pulses. Figure 3.11 shows
a simulated NAP for the 1000Hz channel of a gammatone filterbank which has
been struck by a single pulse at time t = 0. This input is received as a function
of time by the strobe finding mechanism. In the ideal case, the mechanism will
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Figure 3.11: Simulation of the NAP produced in the 1000Hz channel by a single
pulse at time t = 0, marked by the red cross. The NAP maxima are marked by red
dots.

wait as the amplitude of successive peaks gradually rises, and then fire a strobe at
the top of the highest peak in the NAP. This requires the system to look ahead a
certain amount of time to determine if it is indeed dealing with a rising set of peaks
due to a pulse. However, the rise time of the filter is known; for a gammatone filter
with a given centre frequency, the peak of the filter envelope is at t = (na − 1)/αa

after the pulse, as shown above. This means that a simple constraint can be placed
on the strobing system: in each channel, the system should wait for a maximum of
(na − 1)/αa to see if a higher peak occurs during that time. In the high frequency
channels, this time is short, but as the channel centre frequency decreases, this
‘look-ahead’ time becomes longer.

This rise time of the filter runs from a maximum of about 15.6ms for a gammatone
filter at 50Hz, to 0.83ms for a gammatone filter at 5kHz. Thus, looking forward as
far as the rise time of the lowest gammatone filter requires a maximum look-ahead
of about 16ms. After this time, a firm decision can be made on whether an event
occurred at a certain time.
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Once a strobe has occurred and the filter response starts to fall, the system can
simply ‘follow‘ the decaying envelope of the filter down. Any peaks at or below the
envelope of the decaying filter’s response at a certain time after the strobe can be
ignored. This is the system used in the decaying threshold of previous strobe find-
ing algorithms. The decay parameters of the filter are already known: the envelope
decays from a maximum at t = (na − 1)/αa following a gamma envelope.

3.2.3 Pulse-resonance	excitation

The case of pulse-resonance excitation is an extension of the filtered pulse case. In
this version, the pulse is filtered first by a resonance, and then by the auditory filter.
The form of the vocal tract filter is taken to be the same as that of a gammatone
filter, but with different coefficients.

The form of the envelope of this filtered response can be derived by convolving the
envelopes of the impulse responses of the auditory filter and the vocal tract filter.
Merely convolving the envelopes to get the combined envelope holds only when
the carrier frequency of both the vocal tract and auditory filters are the same, but
the on-frequency response of the filter provides an upper bound on the envelope
of the response, as shown in section 3.2.4.

This convolution can be achieved in the Laplace domain. The Laplace transform
of the function ga(t) = aat

na−1e−tαa is

Ga(s) = aa
Γ(na)

(s+ αa)na
s > −αa

and the transform of gv(t) = ave
−tαv is just Gv(s) = av

1
s+αv

s > −αv

To perform a time domain convolution, the Laplace transforms of the two func-
tions are simply multiplied to give

Ga(s)Gv(s) = aaav
Γ(na)

(s+ αa)na(s+ αv)

It is possible to calculate the inverse Laplace transform explicitly for certain nu-
merical values of the constant na (the general solution is also possible, but it is not
particularly useful in this case). na is difficult to generalise over, as it appears in the
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power in the denominator of the function in the Laplace domain. For the simple
case of a damped exponential vocal tract resonance and a standard gammatone fil-
ter (na = 4) an explicit case of the general equation can be found. This is:

gav(t) =
6 (e−αat − eαvt)

(αa − αv)4
+

(3(αa − αv)t+ t2(αa − αv)
2 + 6) e−αatt

(αv − αa)3

which has a similar form to the gamma envelope, but with exponents of both αa

and αv and a polynomial in t rather than a single power of t.

This, then, is the form of the envelope of a gammatone auditory filter struck with a
decaying exponential resonance. Formant bandwidths are of the order 50-125Hz
(Hawks & Miller, 1995) for frequencies up to about 3kHz. The longest decay times
will be associated with the smallest formant bandwidths, so for a 50Hz formant
bandwidth, αv will be around 50π ≃ 157. This gives an upper bound on the expec-
ted envelope of the filter response when it is driven by a formant of speech. If the
minimum formant bandwidth is taken as being 50Hz, then for a gammatone filter
at 1000Hz, driven by a formant at 1000Hz with a 50Hz bandwidth, the rise time
goes from about 4ms to about 7ms (4 cycles to 7 cycles). This maximum rise time
can be calculated in each channel in the same way.

3.2.4 Adding	a	carrier

This analysis has so far been carried out only for the envelopes of the functions
involved. If the carrier is included in the calculation as well, the ensuing expres-
sion becomes even more complicated. However, since we wish only to find upper
and lower bounds on the decay time of the NAP peaks in response to a damped
resonance, a simple heuristic analysis will suffice.

Figure 3.12 shows the effect of sweeping a damped formant through the filter with
a centre frequency of 1000Hz. The formant has a frequency of 800, 900, 1000,
1100 and 1200 Hz in the five panels. The maximum temporal extent of the filter
envelope is when it is driven exactly on frequency; the decaying resonance has the
same carrier frequency as that of the channel of the filterbank which is being ob-
served. In the off-frequency cases, the response of the filterbank will decay faster
than in the on-frequency case, and will rise to its highest value faster. On-frequency
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Figure 3.12: An auditory filter with a centre frequency of 1000Hz excited by a
decaying resonance with a carriers of 800, 900, 1000, 1100 and 1200Hz. The en-
velope of the impulse response is the dotted blue line and the theoretical maximum
envelope is the solid blue line.
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Figure 3.13: The response of the filterbank to noise (blue line) and a click (green
line). The amplitudes and positions of the peaks are plotted in each case. The click
in this case occurs at 2ms on the time axis. The frequency and phase of the filtered
noise signal are not necessarily the same as those of the impulse response.

excitation is the extremal case, both for the onset and the decay characteristics of
the excited filter, and so the envelopes calculated above for a gammatone filter and
a damped resonance are the limit of the expected response of the auditory filters
when excited with damped resonances.

3.2.5 Multiple	pulses

The system needs to be able to identify a series of pulses followed by resonances.
If the pulse rate is high enough, new pulses will interfere with the tails of previous
resonances. The interaction of a given resonance decay with the onset of the next
pulse makes it somewhat more difficult both to identify pulses and to track the rise
and fall of vocal tract resonances.
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3.2.6 Noise	excitation

Another important input signal to consider is noise, as it can form part of a com-
munication sound (for example fricatives in human speech) or be added to a signal
which is to be retrieved. Figure 3.13 shows the effect of exciting one channel of
a filterbank with Gaussian noise. Note that the output of the filter, when driven
by a noise, is not necessarily at the same frequency as the filter’s impulse response,
and that the output frequency varies with time. In the case of bandpass filtered
noise, there will be a general rise in the level of excitation for all filters in the re-
gion of the passband. A strobing system should degrade gracefully when processing
any stimulus that is not a periodic, pulse-resonance signal. It should continue to
issue strobes at a reasonable rate, but essentially at random. If there is no temporal
structure to the input signal, then there will be no temporal structure in the SAI. In
fact, the process of strobed temporal integration actively damps down noises in the
SAI relative to pulse-resonance sounds. This happens because, in a noise, strobes
will occur randomly, and the activity in each channel will tend to have a random
phase. This means that the characteristic peaks and troughs in each SAI channel
will become smeared out relative to the pattern for a pulse-resonance sound, and
the overall level of activity in the SAI will be lower and the dynamic rage smaller
than for a pulse-resonance sound. In this case, strobed temporal integration re-
verts to a form of spectrum analysis. The SAI for a noise will consist of sustained
activity, proportional to the energy present in each channel.

3.2.7 The	effect	of	low-pass	filtering	and	compression

After the filterbank stage in AIM, the NAP stage simulates the response of the
inner hair cells to the motion of the basilar membrane. The signal is first half-
wave rectified to simulate the monopolar response of the hair cells. The loss of
phase-locking at higher frequencies is then simulated with a low-pass filter, and
since the signal has already been half-wave rectified at this point, this reduces to
a simple leaky integrator. Loss of phase-locking is associated with the capacitance
of the hair-cell synapse. The standard low-pass filter in AIM is a two-stage filter
with a cutoff frequency of 1200Hz, meaning that the filter skirt is 24dB down
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by 4800Hz. For non-compressive filterbanks, such as the gammatone filter, com-
pression is also added at this stage. For the gammatone, logarithmic compression
is applied to the filter output before the rectification and filtering stages. To find
the response of a driven filter, the envelope derived above can simply be processed
in the same way as the output signal is.

3.3 A candidate	system: Low-latency	thresholding	with
constraints

Using the constraints described above, it is fairly simple to modify the parameters
of some of the existing strobing systems to fulfil these constraints. A set of simple
rules define the strobe system:

• All points which are not local maxima are ignored.

• When the signal exceeds threshold, the threshold is set to the level of the
signal at that time, and that point is labelled as a strobe candidate.

• The threshold decays according to the longest possible decay of the filter in
that channel when struck with a damped formant.

• If there are no larger strobe candidates within the rise time of the driven
filter, then the candidate is labelled as a strobe.

To promote the propagation of strobes across multiple channels, an additional rule
may be added:

• If a strobe is known to have occurred in a higher frequency channel, then
the threshold in the current channel is lowered by a set proportion for each
higher channel in which a strobe occurred. The threshold is lowered in a
region around the time that a strobe is expected to occur.

In practice, this system modifies the thresholding functions from previous systems
to include two filter-dependent parameters: the decay rate (and trajectory), and
the ‘look-ahead’ time, which is determined by the rise time of the filter. In practice
this leads to a non-causal system, where there is a short delay in classifying strobe
points. The parameters of the lower-frequency channels will determine the max-
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imum values for the look-ahead time. If some maximum look-ahead is desired, then
the look-ahead can be truncated in the low-frequency channels, at the expense of
accuracy.

3.3.1 Time	constants	in	each	channel

For each channel of the filterbank, there are three parameters of interest in the re-
sponse: these are the filter centre frequency (which determines the timing between
NAP peaks), the maximum rise time of a driven filter (which determines the max-
imum look-ahead needed before classifying a strobe point), and the slowest decay
rate of a driven filter (which determines the decay rate of the threshold). Given
these parameters, the ‘temporal shadow’ strobe criterion can be updated to take
into account the known properties of the filter in each channel.

To determine the time constants in each channel, the filter response derived above
is processed to mimic the effect of the NAP stage on the filter output. The fil-
ter envelope derived above is correct for a gammatone filterbank, and is low-pass
filtered to simulate the NAP. The other filterbanks used in AIM, the PZFC and
dcGC, do not have exactly the same impulse response as the gammatone, but to a
first approximation the response is similar enough to allow for improved strobing.
The compression applied by these filterbanks is less aggressive than the logarithmic
compression used in the gammatone, so this stage can be left out when calculating
the parameters of the envelope for these filterbanks. In practice, the parameters
derived and used in the experiments below are for a low-pass filtered gammatone
filter with no compression in all cases. The PZFC and dcGC filternbanks are de-
scribed in detail in chapter 5; the methods and main results presented here are
based on the use of the gammatone filterbank, but the experimental results also
include values for the compressive dcGC and PZFC filterbanks for comparison
purposes.

Once the envelope has been calculated, the maximum of the envelope can be found.
The time to the maximum is the filter rise time. All the parameters for the strob-
ing system can be pre-calculated once for a given set of filterbank parameters, and
then reused. The parameters to be saved are the rise time, the filter centre fre-
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Figure 3.14: The rise time, trise, and decay time, tdecay, for a gammatone filter ex-
cited by an on-frequency formant. The rise time is the time taken for the filter
envelope to reach its maximum value. The decay time is the time required for the
filter envelope to fall to some small proportion of its maximum height. Two pos-
sible thresholds are shown. The linear threshold passes through the peak and the
next highest peak after it. The nonlinear threshold is the driven filter envelope,
shifted to take account of the cases in which the highest NAP peak occurs before
the maximum of the filter envelope.

quency, and the form of the decaying threshold (this is used rather than a decay
rate, since the absolute amplitude of the filter response will change on the basis of
the input).

Figure 3.14 shows the envelope of a damped formant exciting a channel of a gam-
matone filter. The rise time trise is calculated in each channel. The system then
waits for trise after each strobe candidate to see if any larger strobes occur in that
time. If a larger NAP peak does occur, then the new peak is marked as a candid-
ate. Once trise has passed since the first candidate, the last identified candidate is
marked as the strobe point. Figure 3.15 shows the rise times for the channels of the
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Figure 3.15: Rise time of a gammatone filter driven by an on-frequency damped
formant as a function of filter centre-frequency.

standard gammatone filterbank when driven by an on-frequency formant.

There is a problem with such a simple lockout system. If the pulse-rate is faster
than the lockout time, the system will not produce strobes on every pulse. To
prevent the lockout from interfering with the pulse rate of the audio, a maximum
lockout time can be set. This increases the chance of the system incorrectly identi-
fying points on a rising edge in the low-frequency channels, but allows the system
to strobe accurately on each peak of higher-pitched sounds. The maximum lockout
is a configurable parameter. In testing it was found that good results are achieved
when the strobe lockout is limited to a maximum of 6ms. This means that there is
a maximum of 6ms delay between a NAP peak being identified, and being marked
as a strobe point. It does, however, mean that the maximum rise time can be lar-
ger than the lockout for around two-thirds of the channels. In practice, this is
not such a problem, since only a few channels will be driven strongly on-frequency
at any given time. Looking at undriven filter rise times, we see that a 6ms rise
time lockout only affects channels below about 450Hz. Furthermore, in the low-
frequency channels there are few NAP peaks per pulse, and so the exact choice of
NAP peak for strobing on is less important.

For simplicity, the temporal shadow strobe criterion (and all other previous strobe
criteria) used a linearly decaying threshold from the highest NAP peak. This is
simple to implement, but does not follow well the form of the actual filter decay.
In initial testing of the new algorithm, it was found that strobing accuracy could
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be improved slightly by using a threshold that matches more closely the form of
the driven filter envelope. Computationally, this approach is only slightly more
expensive, but the increase is not significant because the form of the threshold
in each channel can be pre-calculated and stored. Figure 3.16 shows the effect
of applying the new constrained threshold in one channel of the filterbank. The
threshold can be seen to rise a small amount before it falls. This occurs because
the threshold is taken from being one NAP cycle (1/centre frequency) before the
peak of the envelope, allowing for the case where the NAP peaks are out of phase
with the envelope peak.

This new ‘constrained thresholding’ strobe detection has three major improve-
ments over the older strobe detection systems. Firstly, all the parameters of the sys-
tem are calculated from the derived envelopes of driven gammatone filters. These
parameters provide an upper bound on the expected temporal characteristics of
the filter response. Secondly, the ‘lockout’ system allows the system to follow a
rising edge for a short period, and not issue a strobe point until the top of a rising
edge. This means that the system will tend to issue strobe points on true local
maxima of the filter envelope, rather than at the start of a rising edge (as the ‘local
maximum’ criterion does). Finally, the form of the threshold in each channel is
pre-calculated to follow the form of the decaying envelope of a driven filter in that
channel. This threshold follows the real envelope of the NAP more closely than a
linear threshold. The system, as described above, was implemented in AIM-MAT,
and it is tested in the experiments below. Figure 3.17 shows the effect of running
the system on a pulse train input with an 8ms interval between pulses.

3.4 A candidate	system: Event-time	back-projection

Given knowledge of the rise time and decay characteristics of the filter, it is pos-
sible to make an estimate of when an event occurred based on the amplitudes
and timings of consecutive peaks of the NAP. This algorithm calculates a distance
measure from the impulse response of the system to the current state at every point
in time. This has the effect of tying together the responses of all channels and de-
termining a single strobe time across the entire filterbank. The system marks the
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Figure 3.16: The constrained threshold system at work in a single channel. Notable
features are the suppression of strobe points on the rising edge of the filter response
and the non-linear decaying threshold.

Figure 3.17: Strobes detected by the constrained threshold strobe detection system
for a pulse train with an 8ms interval.
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Figure 3.18: Results of applying the back-projection algorithm to a pulse train stim-
ulus.

presence of a pulse in all channels, even if it is masked by other energy in some
of those channels. To calculate strobes in this system, a summary statistic for the
entire NAP is produced, by calculating a distance measure from the NAP at time
t to the impulse response of the gammatone filterbank.

The impulse response of the filterbank is calculated for each channel. Then a sum-
mary statistic, the probability that the last section of the NAP was caused by a
glottal pulse, is calculated. This summary probability is summed across channels
to produce a single probability signal for the whole input, which represents the
probability that the incoming signal was produced by a glottal pulse at that point.
To calculate the probability, a pulse is first pre-processed through the filterbank,
then the distance between the ‘pulse NAP’ and the current NAP state at each time
is calculated. This summary signal is passed to the simple ‘local maximum’ decay-
ing threshold strobe algorithm described earlier. The strobe points are then placed,
based upon the known peaks in the impulse response of the filterbank for different
channels. In this way it is possible to achieve continuous ‘strands’ of strobe points
across all channels. In this case, the strobe points are placed on the NAP peak
closest to the detected strobe time.

Figure 3.18 shows the strobes generated by this back-projection algorithm for a
small segment of a pulse train stimulus. The main notable feature of this system
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is that strobes always occur in all channels. The strobe position in each channel
is set to be the NAP peak which is closest to the ideal strobe point in the ‘pulse
NAP’.

This approach is considerably more computationally expensive than a simple threshold-
ing approach, since a section of the NAP must be compared against an entire saved
impulse response for every time step. This increases the computational complex-
ity of the system by several orders of magnitude. The system was implemented in
AIM-MAT as described, but is not intended for use in a large-scale system. It is
compared against the alternative systems below.

In preliminary testing of this system, the default parameters of the ‘local maximum’
strobe threshold (5ms lockout, 20ms decay time) were found to work well for all
filterbanks apart from the PZFC. In the case of the PZFC, the dynamic range of
the thresholded strobe probability signal was about half that of the other systems.
In order to combat this effect, the decay time was extended to 50ms when using
the PZFC with the back-projection strobe system.

The likely explanation for this behaviour is that the calculated impulse response of
the PZFC filterbank does not match up well with the real impulse responses seen
in the filterbank. The impulse response of the filterbank is calculated while the
filterbank is in its initial state, before any adaptation has taken place. The ‘cold’
AGC in the PZFC will be in a different state to that when it has adapted to the
incoming stimulus.

3.5 Testing	strobe	detection

3.5.1 Test	stimuli

In order to test a strobe detection system, a set of stimuli with known pulse times
is required. The effectiveness of the strobing system can then be measured with
reference to the known pulse times of the original stimuli. Effectiveness can be
assessed in terms of strobe rate or the precision of the predicted stimulus pulse
times. Pulse trains and synthetic vowels were used to assess the effectiveness of
the strobing systems.

89



3. STROBES AND STABILISED AUDITORY IMAGES

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
1

0.5

0

0.5

1

Time /s

Le
ve

l

Figure 3.19: A pulse train with a pulse rate of 125Hz (8ms pulse interval) (blue)
and the pulse times (red).
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Figure 3.20: A synthetic, three-formant, /a/ vowel with a pulse rate of 125Hz (8ms
pulse interval) (blue) and the associated pulse times (red).

In the case of the click train and synthetic vowels, it is simple to ensure that the
pulse times are known exactly. In the case of the real stimuli, it is possible to gener-
ate stimuli with known pulse times by first analysing the signal with STRAIGHT,
and then re-synthesising with a known pitch track. Examples of the various syn-
thetic stimuli and associated pulse times are shown in Figure 3.19 and Figure 3.20.

An added attraction of these stimuli is that they can easily be added together to
create composite stimuli in order to test the effectiveness of strobing systems in
multi-source environments, or even to test future systems that segregate stimuli on
the basis of the source characteristics.

3.5.2 Methods

Using the synthetic stimuli detailed above, it is possible to test the various strobing
systems on some basic criteria. We are interested in how many strobes there are in
each channel for each pulse of the input sound, and what proportion of the pulses
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3.5	Testing	strobe	detection

Figure 3.21: Windowing system for assessing the accuracy of strobe detection sys-
tems. There should be one strobe point in each channel within each of the four
coloured windows if the system is working perfectly.

are correctly strobed upon. This gives a reasonable measure of how the strobe
detection system is performing.

To test for the number of strobes per cycle in a single-source sound, a simple sliding
window approach can be taken. The NAP and strobes are windowed into sections
that are the width of the inter-pulse interval. Each section starts at the known
pulse time, and the number of strobes in each section is counted. The system is
deemed to be working correctly if there is exactly one strobe in each channel for
each windowed section.

Figure 3.21 shows the windowed segments used by the single-source strobe detec-
tion system. If there is a one strobe per section in each channel, then the system is
deemed to be working perfectly.

For multi-source sounds, this evaluation becomes slightly more complex, as the
windows of interest are different for the different sources. In this case, the NAP
and strobes are analysed sequentially. The pulse times are arranged in the order in
which they occur (regardless of which source they came from). The system then
iterates through the sequentially-ordered pulse-times, looking forward from the
pulse time in each channel, and assigns the first strobe that it finds within the
interval to that pulse. That strobe is then ‘claimed’ by the strobe process, and
cannot be used again. Once the complete sound has been processed, the system
iterates over the remaining strobe points, and finds those intervals where there are
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3. STROBES AND STABILISED AUDITORY IMAGES

unclaimed strobes. These intervals are marked as containing errors. This tests that
the total number of strobes is roughly the same as the total number of pulses, and
that the strobes occur at a reasonable rate. However, due to the slightly different
methodology between the single-source and multi-source cases, the two sets of
results cannot be compared directly.

3.5.3 Results

The following configurations of source stimulus were tested with various strobe
algorithms and filterbanks:

• Single-rate pulse train

• Frequency-swept pulse train

• Synthetic vowel

• Two pulse trains with different rates

• Two synthetic vowels with different rates

For the single-source stimuli, all the available strobe algorithms were tested, in-
cluding the ‘constrained thresholding’ and ‘event time back-projection’ schemes
described above. For the two-source cases, the best-performing systems from the
single-source tests were tested again. These were the ‘local maximum’ system and
the two newly-developed systems.

Each of the algorithm variants is given a score from 0 to 100% on its ability to
get the timing of the strobe points right, and the mean number of strobes per
pulse is reported. This value is expected to be around 1 if the system is performing
well.

Single-source	stimuli

In the first experiment, a 200ms click train with 8ms between clicks was used as
the input stimulus to a set of filterbanks and strobing algorithms. Each system was
assessed with a percentage score for the proportion of windowed sections with
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3.5	Testing	strobe	detection

exactly one strobe in each channel, and an overall number of strobes per pulse in
each channel. Table 3.1 shows the results from this experiment.

Table 3.1: Pulse train - 200ms length, 8ms repetition rate. Line 1: percentage of
pulses correctly identified. Line 2: mean number of strobes per pulse

Algorithm dcGC PZFC log(gammatone) linear gammatone
peak 13.8% 9.1% 9.9% 10.1%

6.82 9.92 10.1 9.47
temporal shadow 56.4% 24.1% 9.0% 12.2%

1.40 1.82 3.65 2.17
local maximum 95.6% 92.9% 89.5% 94.2%

0.96 0.93 1.02 0.98
constrained threshold 95.9% 93.7% 92.7% 95.6%

0.97 0.94 1.00 0.97
back-projection 90.3% 84.6% 92.0% 88.9%

0.92 1.00 0.92 0.92
parabola 87.9% 80.3% 72.9% 86.1%

1.00 0.96 1.11 1.04
bunt 89.3% 85.8% 59.5% 81.5%

0.94 0.90 1.01 0.91
lyon 0.0% 0.0% 0.1% 0.1%

4.23 4.23 4.23 4.23

In the second experiment, the pulse train was swept in pulse interval from 10ms
between pulses to 5ms between pulses. The total stimulus duration is 1 second.
Table 3.2 shows the results from this experiment.

In the third experiment, a synthetic three-formant /a/ vowel was used. The stim-
ulus duration was 200ms and the pulse interval was fixed at 8ms. Table 3.3 shows
the results from this experiment.

Multi-source	stimuli

The test system described above is less robust for the multi-source stimuli than
it is for the single-source stimuli. For this reason, only those systems which were
seen to perform particularly well with the single-source stimuli are assessed in this
section. The three systems assessed are the ‘local maximum’ criterion and the new
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3. STROBES AND STABILISED AUDITORY IMAGES

Table 3.2: Swept pulse train - 1000ms length, 10ms - 5ms repetition rate. Line
1: percentage of pulses correctly identified. Line 2: mean number of strobes per
pulse

Algorithm dcGC PZFC log(gammatone) linear gammatone
peak 14.3% 9.2% 10.4% 10.4%

6.43 9.14 9.9 9.07
temporal shadow 63.7% 32.6% 11.5% 15.2%

1.36 1.77 3.62 2.10
local maximum 98.9% 96.8% 94.3% 98.2%

1.00 0.97 1.05 1.00
constrained threshold 93.4% 92.3% 91.4% 93.1%

0.94 0.93 0.99 0.95
back-projection 94.9% 95.4% 96.8% 91.7%

0.99 1.00 1.00 0.99
parabola 91.0% 85.1% 77.8% 85.9%

0.94 0.95 1.05 0.99
bunt 89.5% 88.0% 60.7% 83.1%

0.94 0.92 1.01 0.91
lyon 5.5% 5.1% 5.4% 5.5%

3.99 3.99 3.99 3.99

‘constrained threshold’ and ‘back-projection’ systems. The results in this section are
not directly comparable to the results for single-source stimuli, but these results
do allow for basic comparison between algorithms.

The first stimulus is two pulse trains of the same amplitude, one with a repetition
rate of 5ms and one with a repetition rate of 8ms. The total duration was 200ms.
Table 3.4 shows the results from this experiment.

The second stimulus is two synthetic vowels, an /a/ vowel with an 8ms pulse rate
and an /i/ vowel with a 5ms pulse rate. The two vowels had the same amplitude.
Table 3.5 shows the results.

3.5.4 Discussion

The new constrained threshold and back-projection algorithms work well, both for
single sources and combined sources. For single sources, the local maximum strobe
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Table 3.3: Synthetic vowel - 200ms length, 8ms repetition rate. Line 1: percentage
of pulses correctly identified. Line 2: mean number of strobes per pulse

Algorithm dcGC PZFC log(gammatone) linear gammatone
peak 10.3% 5.1% 10.2% 8.5%

9.15 9.33 11.56 10.90
temporal shadow 40.9% 19.1% 9.0% 19.1%

1.82 1.93 4.21 2.38
local maximum 95.2% 82.1% 82.2% 92.9%

0.97 0.84 1.10 0.99
constrained threshold 95.7% 82.5% 72.5% 94.9%

0.97 0.84 1.21 0.98
back-projection 87.4% 3.35% 88.3% 88.2%

0.96 1.73 0.96 0.96
parabola 85.5% 72.7% 66.9% 76.2%

1.03 0.93 1.18 1.16
bunt 61.5% 75.6% 44.4% 80.1%

1.24 0.91 1.10 0.94
lyon 0.0% 0.0% 0.1% 0.1%

4.23 4.23 4.23 4.23

criterion and the constrained threshold system exhibit very similar performance.
This is, in many ways, unsurprising. It shows that the designers of the local max-
imum system were sensible in their choice of constraints, and used values which
were already near optimal.

The performance of the local maximum and constrained threshold are comparable
for single sources. For multiple sources, the constrained threshold system performs
better (due to the faster decay rates in high-frequency channels) but the improve-
ment is only very slight. The back-projection system works well (except in the case
of the PZFC) and is much better than the others in the multi-source case. However,
it remains a computationally expensive alternative. For the purposes of large-scale
processing of datasets, computational load is a critical concern. As a rough bench-
mark, the constrained threshold strobe system takes about 10 seconds to process
a 2 second noise in AIM-MAT on a 2.4GHz Intel Core 2 Processor. The back-
projection system takes around 100 seconds to run on the same stimulus, so there
is roughly an order of magnitude performance decrease associated with using back
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Table 3.4: Two click trains - 200ms length, 8ms repetition rate and 5ms repetition
rate Line 1: percentage of pulses correctly identified. Line 2: mean number of
strobes per pulse

Algorithm dcGC PZFC log(gammatone) linear gammatone
local maximum 32.9% 30.3% 46.5% 33.7%

0.33 0.30 0.46 0.34
constrained threshold 43.6% 52.2% 50.8% 43.3%

0.39 0.54 0.51 0.43
back-projection 56.9% 50.7% 66.7% 57.2%

0.58 1.06 0.70 0.58

Table 3.5: Two synthetic vowels - 200ms length, 8ms repetition rate /a/ vowel
and 5ms repetition rate /i/ vowel. Line 1: percentage of pulses correctly identified.
Line 2: mean number of strobes per pulse

Algorithm dcGC PZFC log(gammatone) linear gammatone
local maximum 37.9% 33.4% 47.6% 38.8%

0.38 0.33 0.48 0.39
constrained threshold 44.1% 55.3% 52.8% 44.3%

0.44 0.69 0.53 0.48
back-projection 62.8% 18.5% 60.4% 64.4%

0.81 1.46 0.63 0.70

projection.

The back-projection system does not work well with the PZFC filterbank in all
cases. As discussed above, it was necessary to increase the strobe threshold decay
time for the thresholding system in the PZFC case because the dynamic range of
the measured strobe probability was smaller than for the other filterbanks. Des-
pite increasing the decay time, the back-projection system fails on the single-source
vowel stimulus because the dynamic range is still too small. Further work to im-
prove the performance of the PZFC with the back-projection strobe algorithm
should be directed towards defining a ‘canonical’ filterbank impulse response from
the PZFC, which can be compared with the impulse response in a range of AGC
configurations. It is also the case that the zero-crossings of the PZFC shift with
level in the current implementation. Replacing the current PZFC with a version
where the zero-crossings do not shift with level may help aleviate the strobing prob-
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lem.

The Lyon strobe detection system with a parabolic window performs very badly
with respect to the criteria for a good strobe mechanism. The strobes-per-pulse
values are identical for all filterbanks since the system has to produce a fixed num-
ber of strobes for a given stimulus length, and so performance can never be optimal.
However, when this system was incorporated into the sound-effects recognition
system described in chapter 6, it was found that performance with a SAI based
on this system is actually slightly better than performance with a SAI which uses
strobes from a simple thresholding based system. In this case, at least, is seems
that optimal strobe detection is not such an important requirement.

3.5.5 Conclusions

Performance with the new strobe finding mechanisms based either on ‘constrained
thresholding’ or ‘event time back-projection’ shows some slight improvements over
previous systems. However, the change is not that great, and the ‘local maximum’
variant of the ‘temporal shadow’ strobe criterion performs almost as well as the
new mechanisms in many cases. The default parameters for the temporal shadow
criterion do not vary as a function of channel centre frequency, but they are sim-
ilar to the parameters determined by the constraints described above for mid-range
centre frequencies; the 5ms default strobe lag of the ‘local maximum’ system cor-
responds to the rise time of a driven filter at around 1600Hz, or an undriven filter
at around 600Hz. The designers of previous strobe detection systems were careful
to choose parameters which gave the best results possible, and succeeded in cor-
rectly identifying a good set of parameters for the dynamics of the filterbank they
were using.

In this analysis, I have placed assumptions implicit in previous strobe detection
systems on a firmer theoretical basis, and confirmed that the choice of constants
made for these systems was reasonable. While the improvement gained by the
‘constrained threshold’ system described here over previous systems is small, the
understanding of filterbank dynamics should prove useful for the development of
future strobe detection systems.
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An alternative strobe detection system was also introduced that compares the NAP
to the impulse response of the filterbank at every time step. While this system is
extremely effective at ‘back-projecting’ to find the original strobe time, it is ineffi-
cient and so cannot be used in a large-scale machine hearing system at this point in
time. Further work would also be required to tune the parameters of this system
in order to make it work correctly with the PZFC filterbank.

In the next chapter, the features developed in chapter 2 are computed from the
stabilized auditory image, rather than from the cochleogram. We hypothesise that
the stabilized features produced with strobed temporal integration will be more
noise-robust than those generated from the NAP. The syllable recognition sys-
tem developed in chapter 2 provides an excellent test-bed for the alternative fea-
tures.
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Chapter	4

Features	from	the	Auditory	Image

In chapter 2 of this thesis, I took an observed property of the human auditory sys-
tem – that it is capable of correctly recognising pulse-resonance sounds which have
had their resonance scale modified to well beyond the normal range of experience
– as the inspiration for a scale-shift invariant feature representation. The features
were tested using a database of syllables which had been scaled to simulate speakers
with a range of vocal tract lengths and glottal pulse rates. In chapter 3, I focused on
the properties of strobed temporal integration, a mechanism whereby the auditory
system might generate a stabilized representation of the neural patterns coming
from the cochlea. In this chapter the feature representation developed in chapter
2 and the stabilised auditory images generated by strobed temporal integration are
combined to create a feature representation which we hypothesise should have the
scale-invariance properties of the original features and the noise-robustness prop-
erties of the stabilised auditory image. The various feature variants are compared
with each other and with the standard MFCC features used in chapter 2.

4.1 The	stabilised	auditory	image

The auditory image model (AIM) (Patterson et al., 1995) provides a framework
for creating a stabilized auditory image (SAI) from the output of a filterbank. This
representation of the signal is stable for sounds which are perceived by listeners
as being stable. Theoretically, it is also more noise-robust than a simple filterb-
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ank representation (Patterson, 1994b; Patterson et al., 1992), since the strobed
temporal integration process causes the neural patterns associated with successive
cycles of a periodic sound to reinforce each other in the SAI.

The stabilised auditory image (SAI) is a two-dimensional representation of an input
sound. A single SAI is a snapshot of the audio in a short window around a point
in time. The SAI changes continuously with time, and successive snapshots can
be concatenated to make a movie of these two-dimensional frames. The first di-
mension of an SAI frame is simply the spectral dimension added by the filterbank.
The second dimension comes from the strobed temporal integration process by
which an SAI is generated. Strobed temporal integration works by locating prom-
inent peaks, or ‘strobes’, in the incoming signal and calculating ‘lags’ relative to
these times. These peaks are most commonly associated with the pulses in pulse-
resonance sounds, for example the glottal pulses in speech. When a strobe occurs
in a channel, a short segment of the signal following the peak in that channel is
added to a buffer, starting at zero lag. The signals following multiple strobe points
add constructively in the buffer. This process leads to a stable spectro-temporal
representation of the microstructure in the signal following each pulse in the input
sound.

The SAI was introduced in chapter 1, and the process by which strobe points can
be detected was discussed at length in chapter 3. In this chapter, features generated
from SAI-based representations are developed and tested. A useful property of the
SAI is that it is stable when the input sound is perceived as being stable. Temporal
averaging is performed in a ‘smart’ way - such that there is no ‘beating’ between the
windowing function and the pulse rate of the incoming signal (Kawahara & Irino,
2004). The strobed temporal integration process also makes the representation
of pulse-resonance sounds robust to interfering noise; pulse-resonance sounds will
tend to be accentuated in this representation, since the strobed temporal integra-
tion process will lead to multiple pulses and resonances being placed on top of one
another in the SAI, causing them to interfere constructively. By contrast, noises
which have no temporal regularity will not be reinforced in this way, and will ap-
pear at a lower level relative to the pulse-resonance sounds since they will not, in
general, interfere constructively.
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Figure 4.1: An SAI with its temporal and spectral profiles

In this section, the noise-robustness of the SAI is tested, using the syllable-recognition
task described in chapter 2. Instead of generating features from the NAP, AIM-C
was used to generate a SAI, which was then transformed into a size-shape image
(SSI). To generate features for use in a recognition system, various spectral profiles
of this image are computed and used as the input for the Gaussian fitting scheme
described in chapter 2.

4.1.1 SAI marginals

To a first approximation, it is possible to summarise the SAI by its marginals – that
is the vectors describing the mean of the SAI along its horizontal and vertical di-
mensions. These marginals are known as the ‘temporal profile’ and ‘spectral profile’
of the image. The SAI spectral profile is essentially a smoothed and temporally av-
eraged version of the filterbank output. The temporal profile summarises inform-
ation concerning the time intervals between prominent NAP pulses, and the time
intervals in the fine structure following prominent pulses. Figure 4.1 shows an SAI,
together with its temporal and spectral profiles.
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4.1.2 Undersampling

Having said that the SAI segregates the pulse rate information and the resonances,
it is still the case that changes in the pulse rate must have an effect on the struc-
ture of the resonances in the signal. This effect is easy to see by considering a
pulse-resonance signal in the frequency domain. In this domain, a single damped
resonance corresponds to some continuous frequency distribution. An idealised
pulse train will have a frequency spectrum that also looks like a pulse train, with all
harmonics of the pulse rate present in the spectrum. The pulse-resonance gener-
ation model has a stream of pulses exciting resonances of the vocal tract or other
body. The time-domain pulse train and resonance are convolved to give the pulse
resonance signal. This corresponds to a multiplication of the resonance envelope
by a comb of peaks in the frequency domain: the resonance is ‘sampled’ at the
harmonics of the driving function. Thus although the pulse-resonance production
mechanism allows a signal to be generated over longer time scales than the length
of a single damped resonance, in doing so it causes information about the struc-
ture of the resonance to be lost. At higher pulse rates, the spectrum is sampled
more sparsely, and so more information is lost. This ‘undersampling problem’ is
described in detail by de Cheveigné & Kawahara (1999).

4.1.3 The	SSI

The ‘scale-shift covariant’ or ‘size-shape’ image (SSI) is another two-dimensional
frame-based representation of the audio signal. It is obtained from a transforma-
tion of the SAI, and is a VTL covariant representation of the input signal. This
means that changes in VTL correspond to simple shifts of the image. Patterson
et al. (2007) provide an overview of the mathematics of the SSI and the process of
generating images.

The SSI is calculated from the SAI by taking the signal in each channel, and trun-
cating it to leave the portion between zero-lag and the first peak associated with
the next excitation pulse, that is the peak that completes the pitch period. This
peak can be found in most cases by looking for the next highest peak in the SAI
channel after the peak at zero-lag. Each of these truncated signals is then plotted as
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Figure 4.2: Four synthetic two-formant vowels, that differ in pitch and VTL. The
upper two vowels (a) and (b) are for a short VTL with low and high GPR respect-
ively. The lower two vowels (c) and (d) are for the same two GPRs with a longer
VTL. This figure was prepared by Ralph van Dinther in connection with Patterson
et al. (2007). Used with permission.
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Figure 4.3: Idealised SSIs for one cycle of four synthetic two-formant vowels, as
shown in Figure 4.2. This figure was redrawn from a figure by Ralph van Dinther.
Used with permission.
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a function of cycles  of  the  impulse  response for the filter in that particular channel.
In practice, this means that the time axis of each channel in the SAI is independ-
ently dilated by an amount proportional to the centre frequency of the filter in that
channel. This has the effect of lining up the cycles of the impulse response of the
filters. Interestingly, this transformation also has the effect of normalising out the
faster decay rate of higher-frequency resonances in pulse-resonance sounds. This
means that for a simple VTL change, because the auditory filterbank introduces a
quasi-logarithmic scale on the vertical axis of the SSI, the pattern of formants in
the SSI will shift as a unit up and down the vertical (cochlear place) axis of the im-
age. With a logarithmic horizontal ‘cycles’ axis as well, the truncation of the signal
at the pitch period of the incoming waveform has the effect of placing a diagonal
‘cutoff line’ in the SSI at the point where the next pitch period begins. As pitch
changes, this cutoff line retains the same gradient, but shifts its position up and
down the image.

Figure 4.3 shows idealised SSIs for the four vowels in Figure 4.2. The SSIs are
‘idealised’ in the sense that they are generated from a single cycle of the source
vowel. The blue diagonal line in each case shows the cutoff line where the next
pitch period would begin. In panel (d) where the source vowel has a high pitch
and is from a long vocal tract, the pitch cutoff line clearly interferes strongly with
the formant pattern. This is another manifestation of the undersampling prob-
lem.

Figure 4.4 shows an SSI for a real human /a/ vowel. The pitch cutoff line is clearly
visible as a strong diagonal in the image. Beyond this line, subsequent cycles of the
waveform are squashed into a smaller and smaller space. The useful information
in such an image is all in the area to the left and above the pitch cutoff line.

If it is possible to do accurate pitch detection in the SAI, then the SSI can be
truncated at the pitch-cutoff line as it is generated. Accurate pitch detection is
straightforward for single-source problems, however for images that contain mul-
tiple independent sources, the problem becomes more challenging.
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Figure 4.4: SSI for a real human /a/ vowel.
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Figure 4.5: The form of the information in the SSI.

4.1.4 The	form	of	the	information	in	the	SSI

Figure 4.5 shows the points in the SSI where the information in pulse-resonance
sounds is concentrated. Channel centre frequency is along the vertical dimension
and time interval along the horizontal dimension. The units in the vertical dimen-
sion are harmonics of the fundamental. The units in the horizontal dimension are
cycles of the impulse response.

In the frequency dimension, the points of interest are dictated by the pulse rate
of the waveform. We have seen previously that for a pulse-resonance sound with
a nonzero pulse rate, the spectral envelope will be sampled at the harmonics of
the pulse rate. These harmonics are logarithmically spaced on the ERB axis of the
auditory filterbank. This leads to the logarithmic spacing of points in the frequency
dimension. In the time-interval dimension, the main points of interest are the
peaks of the cycles of the impulse response in each channel. The response of the
filter can be approximated by the amplitudes of the time domain peaks.
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4.1.5 Dimensionality	reduction

The transforms that convert a sound into an auditory image are intended to pro-
ject the incoming signal into a space where pulse-resonance sounds are enhanced
relative to background noise, and changes in acoustic scale leave the pattern of
information largely unchanged, save for a spatial shift. While noise robustness
and scale invariance are attractive properties, the transforms used to construct the
space produce an explosion in the data rate which is a serious problem for an en-
gineer trying to develop a speech recognizer. Whereas the data rate of the original
sound is on the order of 300kbps, the data rate of the auditory image is on the
order of 30Mbps. There are clearly substantial redundancies in the SAI and it be-
hoves us to try and find a compact vector of features that summarises the signal and
reduces the data-rate burden, if the SAI is to be used as the basis of a recognition
system.

Chapter 6 details a method of producing a compact summary of features from the
output of AIM-like models, and compares them to MFCCs, the traditional fea-
tures in automatic speech recognition and sound classification. In the remainder
of this chapter, the Gaussian features developed in chapter 2 are used to summarise
spectral slices of the SSI, and the robustness of these features to noise is compared
with that of the MFCCs and the features derived from the NAP in chapter 2.

4.1.6 Profiles	and	slices	of	the	size-shape	image

The SSI can be generated either with or without the pitch cut-off line. In the
case of an SSI without the pitch cutoff, the second and subsequent pitch periods
are ‘squashed’ together in the lower right corner of the image. To generate the
pitch cutoff for the experimental features described below, the temporal profile
of the SAI was taken and the largest peak after the zero-lag peak is taken as the
most prominent pitch period in the signal. There is a short ‘lockout’ period of
4.6ms after the zero-lag peak, during which peak detection is suppressed, to allow
the temporal profile to decay sufficiently. This allows detection of pitches up to
around 217Hz. This allows for coverage of all pitches in the syllable database used
for training and testing. However, more generally, spoken pitches may exceed this
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value and so the system would need to be modified to include a more robust pitch
tracker in order to use the truncated SSI for features.

For both the full SSI and the truncated SSI, features were generated in two dif-
ferent ways. In each case, a spectral profile was constructed from the SSI and this
was used with the Gaussian fitting procedure introduced in chapter 2. In the first
variant, the spectral profile of the complete SSI was taken and used for fitting. In
the second variant, a vertical ‘slice’ of the SSI around the peak of the first cycle
of the impulse response was taken, and the spectral profile of just this slice was
taken.

In the case of the pitch-truncated SSI, for higher pitches, the lower-frequency re-
gions of both these profiles may be zeroed-out. This can lead to a discontinuity in
the spectral profile at that point. No attempt was made to smooth out this discon-
tinuity before passing the profile to the Gaussian fitting procedure.

Figure 4.6 shows the regions of the SSI used to calculate the four feature variants
used in the experiments, and the spectral profile for each region.

4.2 Experiments

4.2.1 Comparison	with	features	from	the	NAP

Recognition performance with these new SSI-based features was compared with
that of the NAP-based features of chapter 2, using the syllable recognition task of
chapter 2. The NAP features were compared with each of the four feature vari-
ants derived from the SSI. In these initial experiments, there was no noise back-
ground.

For each of the variants, the spectral profiles of successive image frames were fit-
ted using the Gaussian fitting procedure described in chapter 2. This generates a
4-dimensional feature vector, containing the three relative weights of the Gaus-
sians and a total energy term, as before. Delta, and delta-delta coefficients were
calculated from these features, and the complete 12-dimensional feature vector
was passed to the HMM recognition system described in chapter 2.
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Figure 4.6: The four SSI variants used in the experiments. Each SSI is for the same
/i/ vowel, spoken by a male. The left-hand SSIs are without the pitch cutoff, the
right-hand SSIs are with the pitch cutoff. The grey boxes denote the region which
is included in the spectral profile calculation. Spectral profiles for the region in
the grey box are plotted to the right of each SSI. The large boxes cover the whole
image, the small boxes just cover the first cycle of the filter impulse response in
each channel.
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Figure 4.7: Scaled syllable recognition performance on the full SSI profile with no
pitch cutoff.
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Figure 4.8: Scaled syllable recognition performance on the full SSI profile with the
pitch cutoff.
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Figure 4.9: Scaled syllable recognition performance on the original NAP-based
features.

Figure 4.7 shows the performance of the whole-SSI features with no pitch cutoff on
the syllable database. Performance is 84.8% overall, falling to a low of 31.6% at the
shortest VTL. Figure 4.8 shows the performance for the SSI features with the pitch
cutoff. Performance in this case is somewhat improved, rising to 86.7% overall, and
37.8% at the shortest VTL. The improvement in performance is mainly due to the
stability of the results across the pitch dimension when there is a pitch cutoff on
the SSI.

Overall performance on the NAP-based features was 93.8%, falling to a low of
71.9% for the speaker with the shortest vocal tract. The data are replotted from
chapter 2 in Figure 4.9 for comparison. So, in clean speech, overall performance
with NAP-based features is somewhat better than for SSI-based features derived
from the whole SSI.

Figure 4.10 and Figure 4.11 show the results (with and without the pitch cutoff,
respectively) for the features generated from the cycle-1 slice of the SSI. Overall
performance with no pitch cutoff is 79.0%, and 81.3% with the pitch cutoff. In the
no pitch cutoff case, performance is again lowest for the speaker with the shortest
vocal tract, falling to 27.0%. For the pitch cutoff case, performance is lowest on
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Figure 4.10: Scaled syllable recognition performance on the SSI cycle-1 profile
with no pitch cutoff.

the speaker with the longest vocal tract at 27.6%.

In general, then, when there is no background noise, performance with the SSI-
based features is lower than for the NAP-based features, and the SSI-based features
are more susceptible to changes both in pitch and in VTL. This is a somewhat
surprising result, since to a large extent, the energy distribution in the SSI profile
is the same as that in the NAP. Performance is still better than with the MFCCs
without VTLN, however, where overall performance was 75.5%. Performance
with the SSI features does not approach that of MFCCs with optimal VTLN at
99.2%.

4.2.2 Testing	in	noise

So far, the recognition experiments in this thesis have all been performed on clean
audio data. However, how a system performs in noise is also an important consid-
eration for practical speech recognition. As discussed above, the SSI is expected
to provide a representation of the input signal which is more robust to interfering
noise than a purely spectral representation like the smoothed NAP profile or the
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Figure 4.11: Scaled syllable recognition performance on the SSI cycle-1 profile
with the pitch cutoff.

mel-frequency spectrum. This hypothesis was tested by training and testing the
syllable recognition system in noise. The recogniser was trained on features gen-
erated from syllables presented in a background of noise at a range of levels, and
then testing performance of the same recognition system on each noise level in
turn, and recognition performance on the features was measured as a function of
signal-to-noise ratio (SNR).

To create the noisy data set, the syllables in the database were mixed with pink
(1 / f) noise using the ‘sox’ sound processing tool. The normalised RMS level of
the voiced portion of the syllable was used as the reference level to establish SNR.
Stimuli were generated with SNRs from +42 dB down to 0 dB, in 6 dB increments.
SSIs were generated from the input sounds using AIM-C, and MFCCs were gen-
erated using HTK, as before. The four different types of SSI features (whole SSI
profiles and cycle-1 slices, with and without the pitch cutoff) were computed for all
SNRs. MFCC features, with and without optimal VTLN, were also computed for
all SNRs. HMMs were trained on the nine inner speakers from the spoke pattern,
as before. However, in this case each training example was presented with an SNR
picked randomly and uniformly from the complete range of SNRs. Testing was per-
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Figure 4.12: Recognition results for the AIM NAP profile and MFCC features,
where the model was trained and tested in noise.

formed with all examples from the same SNR. As in chapter 2, a range of HMM
configurations were tested. As before, the pattern of performance was found to be
similar across a wide range of HMM configurations, and the results are presented
on a representative point in the feature space where performance was found to be
near optimal for all the feature types, in this case a 2-emitting-state HMM with 4
output components after 8 training iterations of the HMM.

Figure 4.12 shows overall recognition performance as a function of SNR for MFCC
features, with and without optimal VTLN, and for the features from the AIM
NAP. As in the case of clean speech, performance is low on the standard MFCCs
due to their lack of scale-shift invariance, and is high for MFCCs with VTLN. For
the features from the AIM NAP, performance is consistently slightly lower than
for the features with VTLN, and the two curves follow the same trajectory as noise
level increases.

Figure 4.13 and Figure 4.14 show the results for the whole-SSI profile and SSI
cycle-1 slice features respectively. In each plot, results are shown both with and
without the pitch cutoff. In each case, the results vary very little depending on
whether the pitch cutoff is used or not. In each case, there is a very slight benefit
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Figure 4.13: Recognition results for the whole-SSI profile AIM features, where
the model was trained and tested in noise.

to using the pitch cutoff at high SNRs, but the cutoff is detrimental at low SNRs.
This change is likely to be due to the simple algorithm used to compute the cutoff
line, which just finds the highest peak in the temporal profile of the SAI, and takes
this to be the most salient pitch in the input signal, making a hard decision on the
input pitch. Once noise is added, this process will become less robust, and less
consistent across different utterances so as the noise level increases the process
starts to do more harm than good. A potential way of countering this effect would
be to make a ‘softer’ pitch decision; this could take the form of a simple roll-off
function that is applied to the edge of the SSI (for example a tanh window). The
width of the roll-off could be modified depending on the pitch strength of the
dominant signal pitch.

Figure 4.15 shows the results for the AIM SSI features (without pitch cutoff) and
the AIM NAP features for comparison. Performance with the SSI-based features
starts from a lower baseline, as as seen in the experiments on clean syllables. How-
ever, interestingly, performance degrades far less rapidly as the noise level increases
for the SSI-based features, such that by 24dB SNR, the SSI-based features are
outperforming the NAP-based features. Performance with the SSI-based features
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Figure 4.14: Recognition results for the SSI-slice profile AIM features, where the
model was trained and tested in noise.

remains consistently higher right down the 0dB SNR. Furthermore, at SNRs of
12dB and below, the SSI slice-based features have the best performance, despite
having started off with the lowest recognition rates in clean speech.

4.3 Conclusions

The results with the SSI-based features suggest that there is indeed a benefit to
using a representation of audio based upon the stabilised auditory image to improve
noise-robustness in audio analysis tasks - however, baseline performance of the
SSI-based systems is lower for clean input than that with simpler spectral-based
representations. These results clearly point the direction for further research into
the use of auditory models for content-based audio analysis tasks. The next step
will be to explore whether it is possible to improve recognition performance on
the SSI to bring it in line with that on the NAP alone. Initial inspection of the
SSI profiles suggests that there is increased variability in these profiles relative to
the smoothed NAP profile. This increased variability appears to be due in part
to a feature of the strobed temporal integration process chosen to generate the
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Figure 4.15: Recognition results for variants of the AIM features, where the model
was trained and tested in noise.

images. In the version of strobed temporal integration used, SAIs are generated
taking into account all strobe points which occurred before the snapshot of the
auditory image is taken. This can lead to cases in which an SAI is generated when
a strobe has recently occurred and only some data is available about what follows
that strobe. If there is not enough signal available in a given channel to fill the
complete width of the SSI, then the signal will be added up to the point where the
signal stops, which can lead to small discontinuities in the generated image.

In the experiments in this chapter and in chapter 2, two important properties of
auditory models have been demonstrated. First a macroscopic observed property
of the auditory system, that it appears to perform automatic scale-normalisation,
was used to inform the development of scale-shift invariance of the features. Secondly,
a predicted property of the image stabilization process, that it creates auditory im-
ages which are more robust to interfering noise, was tested with the scale-shift
invariant auditory features. However, these two properties of the auditory fea-
tures are independent of one another, and it should be possible to demonstrate
these two effects independently. One possible way to do this would be to summar-
ise the spectral profile of the NAP and SSI by a more MFCC-like representation

118



4.4	Further	work

that does not have the scale-shift invariance properties of the Gaussian fitting pro-
cedure used in the above experiments. This could be done by taking a DCT over
the logarithmically-compressed spectral profile of the NAP or SSI. Given the res-
ults presented above, the features generated from the SSI would be expected to be
more noise-robust that those generated from the NAP.

4.4 Further	work

In this chapter I have tested one possible feature representation generated from
the SAI in a constrained task. However, there are many opportunities for creating
a richer feature representation from the stabilised auditory image representation.
Given the effectiveness of the DCT in lowering the dimensionality of the spec-
trum in MFCCs, a potential feature of interest might be created by taking the first
DCT coefficient from each column of the SSI - generating a per-cycle MFCC-like
representation. To include scale-shift invariance, the DCT could be replaced with
a Fourier transform, and the phase discarded. Such features would correspond to a
subset of the Mellin image (Irino & Patterson, 2002). These more general features
could be assessed by trying them in a range of tasks where MFCCs are normally
used.

Looking at the wider problem of how to process SAI-based representations into
usable features, the major concern is how to perform dimensionality reduction in
a manner which retains as much of the interesting information that it contains
as possible while producing a feature vector which is sufficiently compact to be
useful.

In chapter 6, one such system is developed: each SAI frame is decomposed into a
set of blocks of different scales, and the contents of each block is converted into a
sparse vector by use of a ‘codebook’ of common patterns seen in that block. This
multi-scale approach to the problem of feature extraction is a crude but effective
way of analysing different parts of the SAI in an independent manner, and removes
the dependence of the current systems on the expensive fitting of spectral profiles
with a constrained GMM. The feature representation developed in chapter 6 is
considerably richer than these simple GMM-based features and allows for its use
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on a more open-ended task.
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Chapter	5

Compressive	Auditory	Filtering

So far, this thesis has studied the properties of the human auditory system in
gradually increasing levels of detail. At the largest scale, the feature representa-
tion developed in chapter 2 aimed to emulate the observed behaviour of the sys-
tem as a scale-invariant preprocessor, which can provide a representation of pulse-
resonance communication sounds independent of the pulse rate and the resonance
scale of the sound.

‘Zooming in’ to look at another level of detail, in chapter 3 the process of strobed
temporal integration was investigated and placed on firmer theoretical ground. In
doing this, it was hypothesised that the auditory images generated using strobed
temporal integration should be more robust to noise than features generated from
more simple, purely spectral models. This hypothesis was investigated in chapter
4 by adapting the auditory features developed in chapter 2.

Having modelled and observed the large-scale behaviour of the auditory system,
and then developed a particular model of the post-cochlear neural processing, this
chapter ‘zooms in’ again to look in finer detail at the behaviour of the cochlea,
and in particular its response at very short timescales. The cochlea is perhaps one
of the more well-understood components of the auditory system, and there is a
wealth of data on the spectral shape of the human auditory filter, and the fine-
timing properties of the mammalian cochlea.

The dynamic range of audio signals is orders of magnitude larger than the dynamic
range available to encode those signals in the auditory nerve. This means that the
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auditory system has to perform some sort of compression on the incoming signal
in order to represent it effectively with a neural code. It is perhaps surprising to
find that the auditory system performs this compression within the auditory filter
itself; it uses mechanical feedback from the outer hair cells (OHCs) to dynamically
modify the motion of the basilar membrane, and so the signal encoded by the inner
hair cells. One important advantage of this approach is that it makes it possible
to perform the dynamic range compression with an extremely fast time-constant.
The auditory filter is able to compress the peaks of the waveform within a single
cycle, and leave the zero-crossings effectively unchanged.

Models of auditory filtering attempt to describe mathematically the processing
performed by the cochlea on an incoming sound, which ultimately leads to a neural
response. They are a mathematical abstraction of the response of the complex
physiological systems in the cochlea to stimulation by an incoming pressure wave.
There exist a number of excellent descriptions of various parts of the history of
these models, for example Lyon (1996) and Patterson et al. (2003). The intro-
duction to this chapter briefly covers the major points of the various models, and
introduces a set of increasingly more complex criteria that an auditory model must
fulfil in order to accurately model the human auditory system.

An important feature of the more recent models of the auditory filter is their abil-
ity to deal with dynamic compression performed by the cochlea. In this chapter,
two recent models of the auditory filter that perform dynamic compression are
discussed and analysed. The models are the dynamic, compressive gammachirp
(dcGC) (Irino & Patterson, 2006; Irino, Walters & Patterson, 2007) and the pole-
zero filter cascade (PZFC) (Lyon et al., 2010a). The two filter models are compared
in their response to a number of test stimuli to assess the response of the dynamic,
time-varying compression that they both implement.

The studies presented in this chapter provide some evidence that dynamic, within-
cycle, compression is a feature of auditory processing which is important for cor-
rectly modelling human perception of certain stimuli. The stimuli used in this
chapter are iterated rippled noise (IRN) and high-pass filtered harmonic complexes
in which the fundamental and lower harmonics of the stimulus are not present.
These stimuli illustrate well the ability of the auditory system to process temporal
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regularity in a signal despite the lack of a strong fundamental harmonic, and thus
provide a good test for temporal models of audition.

This chapter does not directly address the problem of whether compressive fil-
tering is a crucial element for a good machine-hearing system, but rather looks at
the application of compressive filtering to a particular class of stimuli, the correct
representation of which is required in a system which accurately models human
auditory perception. This is an incremental step towards understanding exactly
which aspects of human auditory processing are necessary for effective machine
hearing.

5.1 A short	history	of	models	of	auditory	filtering

The presence of a set of simple damped resonances, or filters, in the cochlea was
conjectured by von Helmholtz (1875), but the idea of resonances in the human
auditory system had been discussed as early as 1605 (Wever, 1949). Fletcher
(1940) suggested that the peripheral auditory system could be modelled as a bank
of bandpass filters with overlapping passbands, on the basis of his measurements of
the threshold for detection of a sinusoid when masked by a bandpass noise with a
controlled bandwidth. Descriptions of the response of the auditory filter in the fre-
quency domain, based on the results of tone-in-noise masking experiments, came
to be known as the ‘power-spectrum model of masking’ Moore (1995). Power spec-
trum models deal only with stimuli that are static in time, and which only describe
the shape of the magnitude spectrum of the auditory filter in the frequency do-
main; however, this is enough to quantify the overall shape of the filter’s transfer
function.

The cochlea is known to have a degree of nonlinearity. The fact that the band-
width of auditory filters exhibits level-dependence, and the presence of distortion
products (Kim et al., 1980), particularly in otoacoustic emissions (Moore, 2003),
suggests that there is some sort of ‘instantaneous nonlinearity’ in addition to an
overall compression function (Lyon et al., 2010a). Another effect that a cochlear
model should be able to account for is two-tone suppression (Moore, 2003; Sachs
& Kiang, 1968), where an off-frequency stimulus can cause suppression of the on-

123



5. COMPRESSIVE AUDITORY FILTERING

frequency response of an auditory neuron. Although the effect was first measured
in neurons, there is strong evidence to suggest that it occurs in the cochlea (Rhode
& Cooper, 1993; Rhode & Robles, 1974; Ruggero et al., 1992).

A set of desirable properties of a practical auditory filter are set out by Lyon et al.
(2010a). The list is as follows:

1. Simplicity of description. Either in the time domain, the frequency domain
or in the Laplace domain.

2. Bandwidth control. Filter bandwidth varies as a function of cochlear place,
and of sound level.

3. Realistic and controllable relationship between peak shape and skirts. After
bandwidth, the shape of the filter near the edges of its band is the next most
important feature, and this should vary with level.

4. Filter shape asymmetry.

5. Gain variation. Gain, as well as bandwidth, varies as a function of level.

6. Stable low-frequency tail. In order to provide a good match to physiological
data, the gain of the low-frequency tail of the filter should not vary much as
a function of input level.

7. Ease of implementation as digital filters. In order to make a good digital
filter, the model either needs to be described in terms of poles and zeros, be
convertible to such a description, or be approximated by such a description.

8. Connection to the underlying assumptions about the travelling-wave hydro-
dynamics of the cochlea.

9. Good impulse-response timing and phase characteristics: for comparison
with physiological measurements, across a range of levels, details such as
zero-crossing times can be diagnostic of whether the model is faithful to the
mechanics.

10. Dynamic. In addition to being parameterised by level, the filter should be dy-
namically variable with a fast time constant, such that the filter can compress
the glottal pulses in a pulse-resonance sound.
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The auditory models set out below attempt to characterise temporal and spectral
characteristics of the auditory filter with varying degrees of fidelity, in order to
explain the psychophysical data available on masking, compression and two-tone
suppression, and electrophysiological data available on the temporal characteristics
of auditory filters.

5.1.1 Roex	filters	for	frequency-domain	fits

Early efforts to quantify the shape of the auditory filter in the frequency domain
employed the ‘roex’ (‘rounded exponential’) function to describe data from notched-
noise masking experiments in humans (Patterson et al., 1982). While the mag-
nitude of the basic roex has a simple description in the frequency domain (a pair of
back-to-back exponentials with a rounded top), the phase response is not defined.
This in turn leaves the impulse response undefined and so the roex, like other
simple descriptions of the frequency spectrum of an auditory filter, cannot be used
to make a time-domain filterbank (Patterson et al., 2003). The initial versions of
the roex filter, the roex(p) and roex(p, r) were symmetrical in their frequency re-
sponse, with the latter adding a second parameter to control the shape of the skirts
of the filter. The roex(pu, pl, r) added independent control of the parameters for
the upper and lower sides of the filter in order to take into account the known
asymmetry in filter shape, and the roex(p, w, t) also added asymmetry. Various
more complicated versions of the filter emerged, with up to six free parameters. In
this way, the roex family could be used to fit human masking data very accurately,
but at the expense of adding many additional free parameters.

5.1.2 The	gammatone	family

In the time domain, the gammatone function had been used for many years to
model various forms of auditory response. The gammatone is defined in terms of a
gamma-distribution (Atn−1 exp(−bt)) multiplied by a sinusoidal tone (cos(ωrt+ψ)),
and was first used as a model of basilar membrane displacement by Flanagan &
Guttman (1960). The function was reintroduced by Johannesma (1972), who used
it to characterise the response of the cochlear nucleus, and by de Boer (1975) to
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Figure 5.1: Impulse responses of a gammatone filter (solid line) and a gammachirp
filter (dotted line). The chirp parameter, c, is 0 for the gammatone and −2.0 for
the gammachirp

describe the cochlear impulse response measured in cats. The term ‘gammatone’
was first used to describe the function in 1980 by Aertsen & Johannesma (1980).
Schofield (1985) demonstrated that the magnitude response of the gammatone
could be used to explain human masking data, and Patterson et al. (1988) then
highlighted the similarities between the gammatone magnitude response and the
shape of the roex function. Thus the gammatone came to be accepted as a model of
the human auditory filter, in both the time domain and the frequency domain.

Since the gammatone had a well-defined impulse response, producing systems to
model auditory filters was now possible. Martin Cooke produced an early gam-
matone filterbank while working with Schofield at the National Physical Labor-
atory (Cooke, 1993), and John Holdsworth produced the Cambridge gammatone
filterbank code while working with Roy Patterson. Practical implementations of
the gammatone filter exist both as IIR and FIR filterbanks, and many people use
the IIR implementation of Slaney which has the attraction of an accompanying
Mathematica workbook (Slaney, 1993b). Holdsworth’s filterbank code was used
successfully over many years as the filterbank in AIM (Patterson et al., 1995).

In its simplest form, however, the gammatone filter is linear, and has a near-symmetrical
frequency response around its centre frequency. These properties mean that alone
it cannot simulate either the compressive behaviour exhibited by the cochlea, or
the asymmetry seen in the auditory filter at high input levels.

To extend the gammatone, Irino & Patterson (1997) derived the gammachirp fil-
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ter as the minimum-uncertainty operator for a joint time-scale representation of
signals (Cohen, 1993). The derivation is analogous to that of the Gabor func-
tion as the minimum-uncertainty operator for a joint time-frequency representa-
tion. This is a very deep result, and reinforces the underlying importance of scale
in the auditory system. In practice, the gammachirp extends the gammatone by
adding a parameter, c, which controls the addition of a log-time term to the carrier
(cos(ωrt+ψ+c log(t))). This has the effect of making the filter ‘chirp’ in frequency
as a function of time, and adds an asymmetry to the frequency response of the fil-
ter. Figure 5.1 shows the impulse responses of the gammatone and gammachirp
filters. The compressive gammachirp (cGC) was first used to fit the simultaneous
masking data of Rosen & Baker (1994) and subsets of the masking data from Lutfi
& Patterson (1984) and Moore et al. (1990), with the parameter c being allowed to
vary as a function of level. They found that it was possible to achieve a similar fit
to the masking data with a 4-parameter cGC model as could be achieved with a 6-
parameter roex model. Furthermore, the cGC has a well-defined impulse response
that can be used to construct a time-domain auditory filterbank.

In practical terms, the cGC can be implemented as a gammachirp filter with an
arbitrary value of the chirp parameter, c, cascaded with an ‘asymmetry function’,
which is either high-pass or low-pass, depending on c (Patterson et al., 2003). This
means in practice that the passive gammachirp filter can be reduced to a static
gammatone filter (a gammachirp with c = 0) and a lowpass asymmetry function.
The addition of a complementary high-pass asymmetry function in which centre
frequency varies as a function of level allows for a practical cGC filter. Further-
more, the asymmetry functions can be implemented as IIR filters, allowing for an
efficient implementation of the filterbank (Unoki et al., 2001).

The dynamic compressive gammachirp filterbank (dcGC) of Irino & Patterson
(2006) is a direct descendant of the cGC filter, which models the compressive
nonlinearities in the human auditory system. The dcGC is based on the compress-
ive gammachirp (cGC) filterbank Patterson et al. (2003). The dcGC filterbank
includes a system for dynamic modification of the cGC filterbank compression
parameters in response to the input audio.
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Simple	representations	of	the	gammatone	family	in	the	Laplace	domain

Lyon (1997) noted that the representation of the gammatone filter could be simpli-
fied by discarding the zeros from the S-plane transfer function to yield an ‘all-pole’
gammatone filter (APGF). The APGF has fewer parameters than the equivalent
gammatone, and has a more controlled behaviour in the tail of the filter. Allowing
one zero back into the APGF transfer function yields the one-zero gammatone fil-
ter (OZGF); the zero is constrained to lie along the real axis. The special case where
the OZGF has its zero at the origin in the S-plane is known as the differentiated
all-pole gammatone filter (DAPGF). This extra zero allows more control over the
tail of the function than is possible with the standard gammatone function. Fur-
thermore, it provides a simpler way to model the level-dependent gain, bandwidth,
asymmetry and centre-frequency shift exhibited by human auditory filters.

5.1.3 Filter	cascade	models

When considering the analogy between the cochlea and auditory filterbanks, it is
important to remember that the cochlea is in fact a complex hydrodynamic system,
in which a wave travels along a continuous medium from base to apex. The mechan-
ical properties of the basilar membrane (BM) vary from the basal end to the apical
end, and the response of the BM to different frequencies along its length is largely
determined by this change (Moore, 2003; von Békésy, 1960). Transmission-line,
and more recently, filter cascade models of the cochlea attempt to capture this
continuous structure, and describe it as a cascaded sequence of filters. Zweig et al.
(1976) used the WKB approximation1 to show that small segments of the cochlea
can be seen to act as local filters on the waves propagating down its length, and so
it is possible to describe the continuous cochlea as a set of cascaded filters. This led
the way for a set of cochlear models known as ‘cascade filterbanks’ (Lyon, 1998)

1The Wentzel–Kramers–Brillouin (WKB) approximation is  a  technique for approximating
the solution of a wave equation, which was originally developed in quantum mechanics. For a
wave equation W (x, t) = A exp(i(kx − ωt)), the WKB approximation states that W (x, t) ≃
A(x) exp(i(

∫
kdx − ωt)). When k is independent of x, the solution is exact, and as long as k

varies only slowly with x, the approximation remains valid. This is equivalent to modelling the
slowly-varying properties of the cochlea as a series of discrete filters. See Lyon & Mead (1988) for
a complete treatment of the mathematics.
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in which the continuous BM is modelled as a chain of discrete filters with output
‘taps’ between successive stages (Lyon, 1998).

Such models can provide an efficient method of simulating cochlear dynamics. For
example, in a simple fourth-order all-pole gammatone filterbank, each auditory
filter is modelled by a cascade of four identical pole-pair filters. A filter cascade
has the same architecture, but the stages are non-identical and there is an output at
each step. Thus the equivalent cascade architecture would contain only one quarter
the number of filter stages as the parallel architecture, for a given number of output
channels. This simplicity makes the design an excellent choice for implementation
in analogue electronics, and indeed Lyon & Mead (1988) designed an analogue
VLSI chip in which each stage was an order-1 (2-pole) APGF.

Lyon (1998) discussed a set of four different transfer functions as possible stages
for a filter cascade model of the cochlea. The simplest of these was the 2-pole
function. Extra sharpness can be given to the individual filter stages by adding
either extra poles or extra zeros to the transfer function. Lyon also presented a
three-pole system, and a pair of two-pole, two-zero filters. The sharper of these
two-pole, two-zero filters places the pole and zero close to each other and near,
but not on, the imaginary axis of the S-plane.

5.2 The	pole-zero	filter	cascade

The pole-zero filter cascade (PZFC) (Lyon et al., 2010a) is a cascade filterbank
in which each stage is described in the Laplace domain by a complex-conjugate
pole pair and a similar conjugate zero pair. The stage frequency response is closest
to the ‘sharper’ two-pole, two-zero configuration presented in Lyon (1998). The
PZFC frequency response consists of a peak due to the pole, which can be varied by
changing the pole quality factor,Q, and a dip caused by the zero. The zero is placed
close to the pole on the high-frequency side to give a steep drop in the response
above peak frequency. When these segments are cascaded, this approximates the
sharp high-frequency cutoff on the auditory filter. The pole Q, or equivalently the
pole damping ξ, is varied dynamically to modify the filterbank properties. The
filterbank consists of a cascade of these two-pole, two-zero stages and a dynamic
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Figure 5.2: Cascade structure and smoothing network for the PZFC.

smoothing network, as shown in Figure 5.2. This network takes the output of all
the channels, and allows the output of each channel to propagate out over time
to affect the pole positions for stages of the filterbank. This dynamic smoothing
network allows the filterbank to adapt rapidly to changes in input level and spectral
content.

The various parameters of the PZFC can be chosen to give the best fit to vari-
ous pieces of physiological and psychophysical data. These fits are presented in a
later section, but throughout this section I will refer to the ‘baseline’ parameters,
which are the parameters used before fitting. This is the parameter set used in the
experiments described in section 2 of chapter 4.

The PZFC was developed by Dick Lyon, based on his previous work on cascade
filterbanks. I developed versions of the PZFC filterbank for AIM-MAT and AIM-
C, based on Lyon’s original implementation.

5.2.1 Pole	and	zero	positions

The pole and zero positions are specified in terms of their natural frequencies (ωp

and ωz, for the pole and zero, respectively) and their damping constants (ξp and
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Figure 5.3: Diagrammatic representation of the placement of the poles and zeros
in the S-plane for the PZFC. The dotted circles show the trajectory of the pole and
zero motion as a function of the damping parameter ξ.
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Figure 5.4: PZFC filterbank stages.

ξz). As the damping is increased from zero, the pole and zero move on a circle in
the S-plane. Figure 5.3 shows the conjugate pole and zero pair; ωp is the natural
frequency of the pole,ωc is the instantaneous centre frequency for a given damping,
and ξpωp gives the pole attenuation (distance from the imaginary axis). The system
is described by the following transfer function:

H(s) =
s2/ω2

z + 2ξzs/ωz + 1

s2/ω2
p + 2ξps/ωp + 1

The natural frequencies of the pole and the zero are constants, decreasing from one
stage to the next, along a cochlear frequency–place map, or ERB-rate scale. At each
stage ωz is fixed at fz×ωp, where fz is the ‘z factor’, and is set at 1.4 in the baseline
case. The channel density for the filterbank is set by a step factor, which determines
the channel density as number of channels per ERB. The channel density is set at 3
channels per ERB in the baseline case. Figure 5.4 shows the individual filter stages
of the PZFC before any adaptation due to the smoothing network, and Figure 5.5
shows the overall frequency response of the PZFC filterbank at each output.

Two parameters,Pdamp and Zdamp, set the damping factors for the pole and the zero
respectively. The pole damping varies dynamically as ξp = Pdamp(1+AGC) (where
AGC is a function of the state of the automatic gain control circuit described be-
low) and the Zdamp parameter sets the zero damping directly: ξz = Zdamp. In the
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Figure 5.5: PZFC filterbank overall response before any level modification due to
the AGC network.

baseline case, Pdamp is set at 0.12 and Zdamp is set at 0.2. Figure 5.6 shows the ef-
fect of changing the two damping parameters on the peak of the stage frequency
response.

5.2.2 Automatic	gain	control

The PZFC automatic gain control (AGC) is achieved by a temporal and spatial
smoothing network. This network takes the output of all the channels, applies
smoothing in both the time and frequency dimensions, and uses both global and the
local averages of the filterbank response to affect the pole damping, ξp at each stage.
In Lyon’s implementation, the dynamic smoothing network allows the filterbank to
adapt to changes in the input on time scales from the order of a few milliseconds up
to hundreds of milliseconds. While it is useful, in practical terms, to ascribe AGC
timescales on the order of hundreds of milliseconds to processes in the cochlea, it
is not physiologically realistic. Adaptation that occurs on this timescale is likely to
originate more centrally.

The smoothing network takes the form of a four-stage filtering process. The out-
put of each filter channel is first half-wave rectified and weakly compressed using a
cubic nonlinearity. This monopolar signal is then passed through a set of low-pass
filters, which have the effect of smoothing the signal. Four first-order filter stages
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Figure 5.6: Effect of modifying the damping parameters on the PZFC frequency
response. When Pdamp is varied,Zdamp is held at 0.2, and whenZdamp is varied,Pdamp
is held at 0.12.
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Figure 5.7: Impulse response of one of the four sets of parameters in the AGC
smoothing network. The activity diffuses out in space and decays exponentially in
time.
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Figure 5.8: PZFC filterbank stage at three different levels

are arranged in parallel, each having one state variable per channel. Each stage has a
different time constant, which determines how much the state in a channel should
be affected by the current filter output. Spatial smoothing is achieved by coupling
the states to their neighbours at adjacent channels — a simple filter convolves the
AGC state for each stage with a three-channel wide triangular window, once per
sample. This has the effect of causing the signal in one channel to gradually dif-
fuse out to affect the control parameters in other channels. An application was
designed to reveal the spread of adaptation in frequency and time, in preparation
for experiments designed to examine the physiological plausibility of the smooth-
ing network, which is unlikely to be symmetric in the cochlea. Figure 5.7 shows
the impulse response of the smoothing network. Note the exponential decay in
the centre channel, and the symmetrical diffusion of activity out to more distant
channels. Figure 5.8 shows the response of a single filter stage as the pole position
is modified by the AGC system.

The pole dampings in each channel are scaled (increased from their values in quiet)
by a factor proportional to the mean of the four AGC stages in that channel. Thus,
a sustained high input level in a channel will cause the poles for the associated
filterbank stage, and those around it, to move further from the imaginary axis in the
S-plane, reducing the gain and sharpness of the combined filter in that channel and
those around it. As time passes, this damping effect will propagate to more distant

135



5. COMPRESSIVE AUDITORY FILTERING

Figure 5.9: PZFC filterbank stages after processing several seconds of audio. The
AGC network has caused the response of the individual stages to change.

channels, until an equilibrium state is reached. Figure 5.9 shows the response of
the individual filter stages after adaptation to a human /a/ vowel, and Figure 5.10
shows the overall filterbank response after adaptation. The original response of
the filter stages, before adaptation, is seen in Figure 5.4.

The smoothing network is intended to simulate the active mechanism in the coch-
lea, whereby the outer hair cells (OHCs) dynamically modify the response of the
basilar membrane to a stimulus. The cascade architecture of the PZFC mimics
transmission-line architecture of the cochlea, in which the incoming wave travels
along a medium with slowly-changing properties. This makes the filterbank a more
physiologically plausible model of the processing actually occurring in the cochlea.
However, as it stands, the AGC mechanism does not model the physiological sys-
tem particularly accurately. There is currently no known physiological analogue
for a mechanism by which gain control information propagates symmetrically out
from a point on the basilar membrane to points both higher and lower in fre-
quency.
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Figure 5.10: Overall PZFC filterbank response after processing several seconds of
audio.

5.2.3 Fitting	the	PZFC to	human	masking	data

Two studies, by Baker et al. (1998) and Glasberg & Moore (2000), measured the
threshold in humans for detection of a sinusoid in asymmetric notched noise. Both
studies covered a large range of frequencies and levels, spanning most of the normal
range of hearing. The data from these studies were used by Patterson et al. (2003)
to fit a set of parameters for the cGC filter; they describe a fitting technique for
auditory filters, based on the ‘polyfit’ procedure which was used by Baker et al. to
fit roex functions to their original data.

The polyfit procedure attempts to fit a frequency-domain auditory filter to a set
of masking data obtained with a single probe frequency at a wide range of probe
levels. Patterson et al. (2003) extended the technique to allow fitting to data from
multiple probe frequencies simultaneously. The updated procedure makes the as-
sumption that the variation of any of the filter parameters with probe frequency
can be represented as a linear function of the frequency in ERBs.

In the case of the gammachirp filter, the procedure fits a total of five filter paramet-
ers with constants or linear functions. The total number of free parameters used for
the filterbank can be set by choosing how many of the filter parameters to represent
as constants, and how many as linear functions. A further two non-filter parameters
are fitted with parabolic functions, rather than linear functions. These non-filter
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Figure 5.11: Results of a fit of human masking data to a PZFC with 10 free para-
meters. (Fit 517 from Figure 5.12). Panel (a) shows the absolute frequency re-
sponse of the filters as a function of stimulus level. Panel (b) shows the responses
at a single stimulus level with the filter tail tied at 0dB gain. Panel (c) shows the
equivalent rectangular bandwidth of the filter (ERB) as a function of centre fre-
quency, for three different probe levels. Panel (d) shows the input-output curve
for the filterbank as a function of level. In this panel, the dotted line shows a linear
response, and the red lines correspond to the different filter centre frequencies.
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parameters, K and P0, define the efficiency of the detection mechanism following
the cochlear filter, and the lower limit on the threshold respectively.

Lyon used the fitting routines employed by Patterson et al. to fit the PZFC to
human masking data. In order to fit the human masking data of Baker et al. and
Glasberg & Moore with the PZFC, a number of modifications were made to the
fitting technique described by Patterson et al.. K, the measure of detection mech-
anism efficiency, was removed from the search space as it can be determined from
the other parameters. In addition to this, search over centre frequencies was made
near-continuous to minimise confusion of estimated gradients, and the robustness
in small-signal behaviour was improved.

Figure 5.11 shows the results of fitting the PZFC to the masking data of Baker
et al. (1998) and Glasberg & Moore (2000). The four panels show various aspects
of the response of the filterbank. The top-left panel shows the absolute frequency
response of the filters as a function of stimulus level. The bottom-left panel shows
the responses with the filter tail tied at 0dB gain. The filter gain increases in the
low ERB range, and levels off in the higher ERB range. The top-right panel shows
the equivalent rectangular bandwidth of the filter (ERB) as a function of centre
frequency, for three different probe levels. Filter bandwidth is seen to increase
as a function of level, but even at the lowest level, the bandwidth is above that
estimated with the gammatone. The bottom-right panel shows the input-output
curve for the filterbank as a function of level. In this panel, the dotted line shows a
linear response, and the red lines correspond to the different filter centre frequen-
cies.

Figure 5.12 shows the RMS fitting error as a function of number of parameters,
for a number of filter types. The plot was generated using Lyon’s updated filter
fitting routines, and it shows that the PZFC can fit the human masking data more
accurately with fewer parameters than the parallel and cascade versions of the com-
pressive gammachirp filterbank.

Figure 5.13 shows the characteristics of the compressive gammachirp (cGC) filter-
bank in the same format as presented in Figure 5.11 for the PZFC. This allows for
comparison of the two filterbank responses in a greater level of detail. The cGC is
the filterbank upon which the dynamic compressive gammachirp (dcGC) is based.
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Figure 5.12: RMS fitting error as a function of number of parameters, for a number
of filter types. This plot was generated using Lyon’s updated filter fitting routines.
‘OZGF’ is the one-zero gammatone filterbank and ‘PrlGC’ and ‘CasGC’ are parallel
and cascade gammachirp filterbanks respectively. In the ‘-fb’ variants, feedback
from the output in a filter channel controls the gain of the filterbank in that channel
(a potentially unstable configuration).
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Figure 5.13: Results from fitting the compressive gammachirp filterbank to human
masking data. The figure is taken from Unoki et al. (2006). Panel (a) shows the
absolute frequency response of the filters as a function of stimulus level. Panel (b)
shows the responses of the component filters of the cGC. The solid lines show the
response of the passive gammachirp filter, and the dotted lines show the response of
the active filter. Panel (c) shows the equivalent rectangular bandwidth of the filter
(ERB) as a function of centre frequency, for three different probe levels. Panel (d)
shows the input-output curve for the filterbank as a function of level for a range
of different centre frequencies, Pgcp is the output level of the passive gammachirp
filter.
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While the results for the PZFC and the cGC are similar, there are some differ-
ences between the responses of the two filterbanks. In panel (a), the cGC is seen
to have a steeper high side to the filter. Panel (c) shows the bandwidth as a func-
tion of filter centre frequency. In both cases, the filter bandwidths are wider for
louder signals, as would be expected, and they both follow the form of the measured
ERB function in humans well. However, the PZFC has a smaller range of variation
in bandwidth as a function of level. The compression functions (shown in panel
(d)) show a smaller spread as a function of frequency in the PZFC compared to
the cGC. The PZFC also has a less well-organised structure to the compression
functions than the cGC. Overall, the PZFC fits the masking data well using fewer
parameters than the dcGC, but the compression functions are not as orderly, and
the upper side of the PZFC is probably not quite as sharp as it should be.

5.3 The	dynamic	compressive	gammachirp

The dynamic compressive gammachirp (dcGC) filterbank is a parallel-architecture
filterbank with a cascaded control channel (Irino & Patterson, 2006).

It was demonstrated by Irino & Unoki (1999) and Unoki et al. (2001) that the
gammachirp filter can be decomposed into a cascade of a gammatone filter and an
asymmetric compensation function that controls the effective value of the chirp
parameter, c. Indeed, the chirp parameter of any gammachirp filter can be modified
by cascading it with an asymmetric compensation function of the correct form.
Such a cascade architecture is used in the dcGC filterbank to dynamically modify
the chirp parameter of each filterbank stage independently as a function of the
input signal. Figure 5.14 shows the response of the passive gammachirp filter, the
high-pass asymmetric compensation filter for different levels, and the response of
the combined compressive gammachirp (cGC) filter.

In the first, passive, stage, the incoming signal is passed through a gammachirp
filterbank that has no level-dependence. In the active part, the output of each
channel is passed through a dynamically controlled asymmetric compensation fil-
ter that modifies the bandwidth and peak frequency of the overall composite filter.
The parameters of this active asymmetric compensation filter are controlled by the
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Figure 5.14: Response of the passive gammachirp filter (pGC), the high-pass asym-
metry function (HP-AF), and the compressive gammachirp (cGC) filter for probe
levels of 30, 40, 50, 60, and 70 dB. Figure taken from Irino & Patterson (2006)
used with permission of the authors.
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Figure 5.15: Architecture of the dcGC filterbank

processed output of a higher-frequency channel in the filterbank. The control para-
meter is an estimate of the instantaneous output level of the control channel. This
level estimate is calculated from a linear combination of the original passive filter
output, and the output of an asymmetric compensation filter with fixed parameters
acting on that output.

Figure 5.15 shows the architecture of the dcGC. The active part is shown for only
one channel of the filterbank. The solid lines show the path of the signal through
the filterbank, and the dotted line shows the control parameter for the active high-
pass asymmetry function. Since the control parameter is updated instantaneously
(on a sample-by-sample basis in the digital implementation), the filterbank exhibits
extremely fast-acting compression at sub-millisecond timescales. This compres-
sion allows the filterbank to compress the individual glottal cycles in human vocal-
isations, while allowing the resonance that follows them to ring. Thus the dcGC
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can effectively reduce the dynamic range of an input signal, and facilitate the ana-
lysis of the resonance information following a pulse. The various parameters of the
dcGC filterbank have been fitted to human masking data over several studies (Irino
& Patterson, 2001, 2006; Patterson et al., 2003; Unoki et al., 2001, 2006).

5.4 Comparing	the	PZFC and	the	dcGC

The architecture of the dcGC is fundamentally different from that of the PZFC.
Whereas the dcGC is essentially a parallel filterbank wherein all filters get the
same input signal, the PZFC is a cascade filterbank with each filter fed by the one
before it in the cascade. A further major difference is in the flow of activity in the
AGC circuits. In the PZFC, activity from a filter spreads out in both directions
symmetrically to influence the response of both lower and higher frequency filters.
In the dcGC, the activity in each channel affects only one other channel in the
filterbank, as the control signal always flows from a higher-frequency channel to a
lower-frequency channel.

The major benefits of the PZFC are that it is efficient to implement, either in hard-
ware or in software (because it consists of a simple cascade of second-order filters)
and that it accurately models the travelling wave in the cochlea. By contrast, the
dcGC, while still efficient, uses a fourth-order filter cascaded with a set of four
second-order asymmetry functions for the signal path in each stage, and another
four second-order asymmetry functions for the level estimation path. However,
the dcGC has a sound theoretical basis from the point of view of the optimal pro-
cessing of pulse-resonance sounds; the automatic gain control bears more resemb-
lance to that seen in the cochlea, and it has been well tested in several models. It is
for these last two reasons that the PZFC needs more testing and improving before
it can be considered as good as the dcGC for modelling auditory processing.

A further problem with the PZFC is that, in the design detailed in this thesis, it
is not able to successfully model the data on zero-crossings of the auditory filter
response. Studies have shown that the chirp rate of the auditory filter does not
vary with the level of the stimulus (Carney et al., 1999), and so the zero-crossings
of the impulse response should remain fixed in time as the level changes. However,
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Figure 5.16: ‘Cochleagrams’ of the output of the PZFC, dcGC and gammatone
filterbanks for the word ‘washwater’ spoken by a woman. The level in each plot is
scaled such that the darkest greyscale value corresponds to the highest output level
for each filterbank, and the greyscale level decays from there to zero for pure white.
This allows for comparison of the relative dynamic range of each of the filterbanks.

because the AGC causes the poles of the filter to move in circular trajectories in
the S-plane, the zero-crossings of the PZFC impulse response do shift with level.
Recently, Lyon (personal communication) has shown that the positions of the zero
crossings can be fixed by making the poles move parallel to the real axis, but details
of this change are not currently available.

The main benefits of a compressive filterbank come from its ability to actively and
quickly compress the pulses in a pulse-resonance sound, and then to recover quickly
in order to retain the resonance information that follows. Figure 5.16 shows ‘coch-
leagrams’ for the word ‘washwater’ after processing through the PZFC, dcGC and
gammatone filterbanks. A ‘cochleagram’ has the same dimensions as the spectro-
gram, but the output is continuous in each filter channel, unlike the spectrogram
where the output is quantised into ‘frames’ by the window time-step. No external
compression was applied to the output of the filterbanks. The dcGC and PZFC
filterbanks compress the output into a smaller dynamic range than the simple gam-
matone filterbank. The dcGC is particularly effective in bringing up the level of
the formants relative to the glottal pulses for the voiced sections. However the
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Figure 5.17: ‘Cochleagrams’ of the output of the PZFC, dcGC and gammatone fil-
terbanks for a two-formant synthetic vowel. The level of the stimulus was ramped
down linearly (on a dB scale) from a maximum to -48dB over the course of one
second. Scaling is as in Figure 5.16 so that dynamic range can be compared.

PZFC is better at enhancing the level of the unvoiced sections, particularity the
‘sh’ sound between about 200 and 360ms. These effects are likely to be due to the
different time constants employed in the gain control circuits of the two filterb-
anks. The dcGC has very fast-acting compression, but no time constants that are
longer than a few milliseconds. This means that it is very effective in compressing
the glottal pulses, but it does not have much effect on the longer-term dynamics
of the stimulus. The PZFC, by contrast, has AGC time constants up to the order
of hundreds of milliseconds, and so is able to affect the relative level of the out-
put on syllable-length timescales. From this, it seems that there may be a trade-off
between fast-acting compression and longer-term gain control.

Figure 5.17 and Figure 5.18 show the responses of the PZFC, dcGC and gam-
matone filterbanks to a two-formant synthetic vowel that changes rapidly in level
over the course of a second. In both cases, the PZFC compresses the output most
strongly, leading to the longest visible patterns of activity in the image.

In the remainder of this section, the detection of periodicity in various stimuli is
used to compare the temporal dynamics of the dcGC and the PZFC filterbanks.
It seems that dynamic, compressive filterbanks produce better features for mod-
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Figure 5.18: ‘Cochleagrams’ of the output of the PZFC, dcGC and gammatone fil-
terbanks for a two-formant synthetic vowel. The level of the stimulus was ramped
up linearly (on a dB scale) from a minimum of -48dB to the maximum amplitude
possible over the course of one second. Scaling is as in Figure 5.16 so that dynamic
range can be compared.

elling pitch strength within time-domain models such as AIM. Specifically, use
of the PZFC or the dcGC filterbank within AIM was found to provide a more
pronounced peak in the temporal profile of the auditory image than the standard
gammatone filterbank, for complex sounds like iterated rippled noise (IRN).

The mechanism that sharpens the peak is not immediately clear, but what is clear
is that time-varying compression is an important factor in the processing of these
stimuli. In the following sections I detail a number of experiments performed to
judge the ability of an AIM-based model with a dcGC or PZFC filterbank to detect
the dominant periodicity in these stimuli.

5.4.1 Stimuli

Iterated	rippled	noise

Iterated rippled noise (IRN) is a stimulus that is frequently used as a test of audit-
ory models. It has a power spectrum that resembles that of a noise, but gives rise to
a pitch percept in the auditory system. IRN is created by repeatedly time-shifting
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Figure 5.19: Circuit for generating IRN. Two iterations shown. Figure redrawn
from Yost et al. (1996).

and summing a block of white noise. This has the effect of adding a repeating
temporal structure to the noise. After several iterations of this delay-and-sum pro-
cess, a weak pitch is observed in the stimulus, which gradually becomes stronger as
more iterations are performed. Figure 5.19 shows a circuit for generating IRN by
repeatedly adding a delayed version of the waveform to itself. In the spectral do-
main, the delay-and-sum process adds a small ‘ripple’ to the spectrum of the sound,
which gives it a weak harmonic structure. Repeated iterations of the delay-and-sum
process enhance the depth of the ripple.

The phenomenon of a repeated noise giving rise to a pitch was first reported by
Huygens (1693), who observed that a pitch was present in the sound of a fountain
opposite a flight of stone steps. Huygens determined that the pitch of the sound
was equivalent to that generated by a small organ pipe of the same length as an
individual step. The multiple reflections of the fountain noise from the vertical
surfaces of the staircase had the effect of summing multiple copies of the noise
waveform, giving rise to what we would now call IRN. A similar effect has been
observed in Mexican step pyramids, where a handclap elicits a chirping noise re-
flected from the vertical surfaces (Bilsen, 2006).

IRN is an excellent stimulus for testing the characteristics of filterbanks and strobed
temporal integration mechanisms (see chapter 3). IRN has been a challenging
stimulus for spectral models of pitch perception (Yost & Hill, 1979). Pitch extrac-
tion in AIM is based on the temporal fine structure of a sound, and pitch strength
corresponds to the peak height in the temporal profile of the SAI. Thus, the aud-
itory image model gives a specific way of modelling the pitch strength of stimuli
which lack a strong spectral structure.
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Figure 5.20: NAPs and SAIs generated from a 16-iteration IRN stimulus using
the PZFC and gammatone filterbanks. The PZFC output is half-wave rectified
and lowpass filtered (hl), the gammatone filterbank output is logarithmically com-
pressed as well as being half-wave rectified and low-pass filtered (hcl).
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Figure 5.21: The output of the 770Hz channel in Figure 5.20
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Figure 5.20 and Figure 5.21 show the response of the PZFC and gammatone filter-
banks to the same IRN stimulus, and the resulting SAIs generated from the signal.
The pitch feature in the SAI of the PZFC is better defined than that in the SAI of
the simple gammatone filterbank.

5.4.2 Measures	of	pitch	strength

In order to further investigate the pitch strengths produced by the three filterbanks
it is necessary to have some absolute measure of pitch strength in the SAI temporal
profile. Ives & Patterson (2008) developed just such a measure, which estimates
the pitch strength of harmonic complexes from the vertical ridge of activity that
appears in the SAI at the time interval associated with the pitch. Their measure
was simple: they computed the temporal profile and found the largest peak in the
region of the time-interval associated with the pitch. They then found the two
local minima immediately adjacent to this peak, and took the mean of the levels
of the two minima. This mean minimum level was then subtracted from the level
of the maximum to get a local peak height. This was taken as the pitch strength.
Ives & Patterson (2008) used this to study the relative pitch strength from a model
using the dcGC filterbank and the gammatone filter.

This pitch strength measure was used to estimate pitch strength from the temporal
profiles of auditory images. The technique of Ives & Patterson (2008) was modified
slightly in two ways. Since the repetition rate of the stimuli was already known,
the search space for a local maximum in the SAI temporal profile was limited to a
region around the fundamental. The search space for a maximum was 1.5ms each
side of the repetition rate. In order to compare the output of different filterbanks,
the SAI temporal profiles were all normalised such that the local maximum in the
region of the pitch was at 1. Since the SAI profiles were truncated at 0.5ms (the
standard parameter for the ti2003 AIM-MAT module), this led in many cases to
the peak due to the repetition rate being the highest point in the temporal profile.
However, in some cases, particularly for the PZFC, the decay rate in the SAI profile
after the zero-lag peak was such that the SAI profile was at a higher value near
the zero-lag line. This effect is visible in some panels of Figure 5.26, where the
temporal profile is ‘clipped’ at the low-lag end. Figure 5.22 shows how the measure
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Figure 5.22: Pitch strength measure used by Ives & Patterson (2008). This figure
is modelled on figure 6 from Ives & Patterson (2008).

is calculated from the peak and adjacent troughs.

Comparison	to	human	pitch	perception

The normalised pitch-strength measured for IRN stimuli was compared with the
pitch strength measured for IRN in perceptual experiments. Patterson et al. (1996)
performed a series of experiments on the human perception of IRN by comparing
the pitch strength of IRN stimuli and tonal stimuli masked with noise (Handel
& Patterson, 2000; Patterson et al., 2000; Yost, 1996; Yost et al., 1998). Sub-
jects compared IRN with different numbers of iterations to a tonal stimulus (256-
iteration IRN with a 16ms delay time) masked with noise. Subjects were asked
to select the stimulus with the stronger pitch strength as the SNR of the noise-
masked tonal stimulus was changed. In their experiments two conditions were
tested, in which the stimuli were high-pass filtered with a cutoff frequency of either
50Hz or 800Hz. The 800Hz filter condition was designed to exclude the resolved
harmonics from the stimulus. The pitch strength measure described above was
used to model the data of Patterson et al. (1996), using the techniques described in
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Figure 5.23: Psychometric functions for test IRNs from Patterson et al. (1996)
(Figure 1).

that study. The original results from the perceptual experiment are plotted in Fig-
ure 5.23, the predictions made by Patterson and Yost’s model are shown in figure
Figure 5.24 and the predictions made using the current measure on an SAI made
using a PZFC filterbank are plotted in Figure 5.25. In each case, the horizontal
axis is the tone to noise ratio, and the vertical axis is the predicted proportion
of the time that the standard noise-masked tonal stimulus was picked as having a
higher pitch strength than the IRN stimulus. In practice the results of Patterson
et al. (1996) did not show much difference between the 50Hz and 800Hz condi-
tion, and a similar result was seen when using the pitch strength measure described
here, so only the more challenging 800Hz condition is compared. The predictions
made by the normalized pitch strength measure in Figure 5.25 have the same form
as the perceptual results reported in Patterson et al. (1996). The form of the res-
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Figure 5.24: Pitch strength predictions for the perception of IRN in noise, from
the autocorrelation model ofPatterson et al. (1996) (Figure 5).
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Figure 5.25: Predictions (dashed lines) of the perceptual data of Patterson et al.
(1996) (solid lines) made using the normalised pitch strength measure employed in
the experiments in this section applied to auditory images generated with a PZFC
filterbank. The results follow the same pattern as the perceptual results reported
in Patterson et al. (1996), but the measure is slightly noisier than the model used
in that paper.
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Figure 5.26: SAI temporal profiles generated with four different sets of filterbank
/ NAP parameters for an IRN stimulus with a delay of 8ms. The leftmost column
shows the SAI temporal profile for a zero-iteration IRN, which is a noise. The
remaining columns show the response for 1, 2, and 4 iteration IRN stimuli. For
the 1, 2 and 4 iteration IRN, a peak is expected in the temporal profile at 8ms
time interval.

ults for the other filterbanks is similar. The curves predicted by this model are a
little noisier than those from the model of Patterson et al. (1996), but the model
has the advantage of being normalised making it easier to compare results across
filterbanks when their output levels differ.

5.4.3 Experiments

Comparing	pitch	strength	estimates	using	IRN

Figure 5.26 shows SAI temporal profiles generated with the dcGC, the PZFC
and the gammatone filterbank with and without logarithmic compression for IRN
stimuli. The profiles for the zero-iteration IRN (just noise) show little temporal
structure, as we would expect. It is clear from inspection that the gammatone
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filterbank with logarithmic compression produces profiles in which the peak in
the profile which corresponds to the perceived pitch is much less strong than for
the other filterbanks. For comparison, the results from the gammatone filterb-
ank without logarithmic compression are included. The pitch strength estimates
are stronger than for the log-compressed gammatone, but the linear gammatone is
not a physiologically reasonable auditory filter model as it has no compression, and
it is included in these experiments only for comparison with the other compressive
filterbanks.

While the dcGC might be considered to give slightly higher pitch strength es-
timates based on the data in the figure, there is not any clearly visible difference
between the PZFC, the dcGC and the linear gammatone models.

Auditory images were generated from IRN stimuli with 0, 1, 2 and 4 iterations, as
described above. The IRN stimuli (specifically IRNo, see Yost et al. (1996)) were
generated using the ‘gen_IRNo’ function in AIM-MAT, and were used to assess the
effect of overall pitch saliency on the pitch strength measures extracted from the
SAI. The IRN was generated with a delay of 8ms, leading to a 125Hz pitch in the
output. The output was band pass filtered with a pass band between 500Hz and
2kHz. The pass band was ramped up over 200Hz and down over 1.6kHz using a
raised cosine window; therefore the region of the spectrum containing energy went
from 300Hz to 3.6kHz. This bandpass filtering serves to remove the fundamental
and second harmonic of the pitch period from the spectrum completely.

Results

Table 5.1 shows the mean results from application of the pitch strength estima-
tion algorithm to 20 randomly generated IRN stimuli using the above parameters.
It is clear from these results that the dcGC gives rise to a considerably stronger
pitch feature in the temporal profile of an IRN stimulus than do the other fil-
terbanks. While the pitch feature from the PZFC is stronger than that from the
log(gammatone) filterbank, the results are on a par with the results from the lin-
ear gammatone. Standard deviations for the pitch strength measures are given in
brackets after each value.
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Table 5.1: Mean pitch strength estimates for 20 randomly-generated IRN stimuli
using four filterbanks and 1, 2 and 4 iterations when generating the IRN.

dcGC PZFC log(gammatone) gammatone
1 Iteration 0.553 (0.055) 0.441 (0.056) 0.297 (0.040) 0.421 (0.044)
2 Iterations 0.566 (0.089) 0.461 (0.056) 0.313 (0.049) 0.432 (0.061)
4 Iterations 0.633 (0.051) 0.504 (0.055) 0.342 (0.058) 0.502 (0.049)

The results suggest that the processing performed by the dcGC is fundamentally
different to that performed by the PZFC for these stimuli. In order to determ-
ine why performance with the PZFC is inferior to that with the dcGC, we now
turn to a deterministic signal to perform several experiments on the AGC of the
PZFC.

Harmonic	complexes

Clara Suied generated an interesting set of bandpass-filtered harmonic complexes
for an experiment on the perception of pitch height. These stimuli were 125Hz
harmonic tones, in which the 9th harmonic was the lowest component. The en-
velope of the amplitude spectrum was flat in a pass band which was six ERBs wide.
This is a stimulus design suggested by Krumbholz et al. (2000). Above the flat
pass band, the envelope of the amplitude spectrum was smoothly attenuated to
zero with a quarter-cycle cosine envelope function. Below the passband, the envel-
ope was simiarly raised from zero with a quarter-cycle sine envelope. The width of
the envelope function below the passband was 2 ERBs, and above the passband it
was 4 ERBs.

In the experiments below, Suied’s baseline stimulus is used to experiment with
modifications to the PZFC automatic gain control (AGC). For quantitative meas-
urement of the effect of changes on the PZFC parameters, these stimuli are easier
to deal with than IRN because IRN is inherently a noisy stimulus, and it would
be necessary to average over stimuli to achieve measurements that can be used for
comparison.
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Modified	PZFC AGC parameters

The base harmonic complex stimulus (0 degrees phase shift, no spectral envelope
shift) was used to further assess the effect of changing the PZFC parameters on
the pitch strength measures produced with that filterbank.

Temporal smoothing in the PZFC AGC is implemented with a smoothing filter
that is convolved with the AGC activity once per sample. The filter is three chan-
nels wide and in the default configuration is triangular in form. Choosing the rel-
ative levels of the three coefficients changes the way in which energy is distributed
in the smoothing process.

The default configuration of the smoothing filter has the coefficients 0.3, 0.4 and
0.3 (left, centre and right). The parameters sum to unity in order to maintain
the overall activity within the AGC smoothing network. When these coefficients
are convolved with the smoothing network activity in each channel, the activity
spreads out equally to higher and lower frequencies. This default configuration is
tested as parameter set 0 in the experiments below.

To force the activity to spread asymmetrically, the experiments above were re-
peated with several different configurations of the AGC parameters. These config-
urations are designed to be weakly and strongly asymmetrical, preferentially push-
ing activity either to lower frequencies (as in the dcGC) or to higher frequencies.
The configurations of the parameters, along with the pitch strength estimates, are
shown in Table 5.2 as parameter sets 1 to 6. In the case of parameter sets 5 and
6, the activity does not diffuse along the spatial dimension but is actively ‘trans-
ported’, since one of the off-centre coefficients is larger than the central coeffi-
cient.

The AGC also has four temporal constants ϵn where n is from 1 to 4. These para-
meters determine the decay rate of activity in each of the four AGC channels. The
activity in the AGC channel is attenuated by a factor of 1−ϵn at each time step, and
the current activity from the filterbank channel is added with weight ϵn. In chan-
nels with a large constant, activity in a channel at a certain time dies away quickly.
Conversely, a small decay constant leads to activity affecting the AGC state for a
longer period of time.
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The default decay constants for the PZFC AGC are 0.0064, 0.0016, 0.0004 and
0.0001 per sample. At a sample rate of 44kHz, these constants correspond to
activity half-lives of roughly 2ms, 10ms, 40ms and 160ms. These constants can be
modified to change the integration time of the AGC.

Several alternative sets of constants were tried to test the temporal dynamics of
the filterbank. Since none of the AGC parameters were actually fitted when the
PZFC was fitted to the masking data, we are free to choose values which give the
best temporal dynamics for the filterbank. The modified AGC coefficients, and
pitch strength estimates, are shown in lines 7 to 11 of Table 5.2.

Table 5.2: Tested configurations of the PZFC spatial and temporal smoothing fil-
ters, and measured pitch strength for a harmonic complex using these parameters.
Spatial coefficients are from high frequency to low frequency.

Spatial ϵn Pitch strength
0 0.3, 0.4, 0.3 0.0064, 0.0016, 0.0004, 0.0001 0.698
1 0.1, 0.5, 0.4 0.0064, 0.0016, 0.0004, 0.0001 0.695
2 0.4, 0.5, 0.1 0.0064, 0.0016, 0.0004, 0.0001 0.702
3 0.0, 0.5, 0.5 0.0064, 0.0016, 0.0004, 0.0001 0.713
4 0.5, 0.5, 0.0 0.0064, 0.0016, 0.0004, 0.0001 0.716
5 0.0, 0.2, 0.8 0.0064, 0.0016, 0.0004, 0.0001 0.777
6 0.8, 0.2, 0.0 0.0064, 0.0016, 0.0004, 0.0001 0.691
7 0.3, 0.4, 0.3 0.0128, 0.0032, 0.0008, 0.0002 0.683
8 0.3, 0.4, 0.3 0.0256, 0.0064, 0.0016, 0.0004 0.682
9 0.3, 0.4, 0.3 0.4096, 0.2048, 0.0512, 0.0128 0.858
10 0.3, 0.4, 0.3 0.4096, 0.0128, 0.0128, 0.0128 0.836
11 0.3, 0.4, 0.3 0.4096, 0.4096, 0.4096, 0.4096 0.874

In order to compare the PZFC results against the other filterbanks, the baseline
measurements of pitch strength for the default configurations of the other filterb-
anks are shown in Table 5.3.

Table 5.3: Measured pitch strength for a harmonic complex using the dcGC and
gammatone filterbanks.

dcGC log(gammatone) linear gammatone
0.873 0.535 0.661

Figure 5.27, and Table 5.2, show the pitch strength estimates for the harmonic
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Figure 5.27: Pitch strength measures from SAI profiles generated from a harmonic
complex. The PZFC filterbank was used in all cases, and the automatic gain control
coefficients of the PZFC were varied.

complex stimulus with the baseline PZFC parameters and the 11 sets of modi-
fied parameters. Modification of both the spatial AGC parameters and the tem-
poral AGC parameters can lead to higher pitch strength estimates than those pro-
duced with the baseline configuration. Interestingly, the largest improvement oc-
curs when the time constants are much larger than the default values (leading to far
shorter half-lives for the AGC) and when the range of the half-lives is reduced. The
faster time constants are more like those seen in the dcGC filterbank. The largest
pitch strength estimate is achieved when the AGC employs the shortest time con-
stants, and it is larger than that for the dcGC operating on the same stimulus.
Modification of the spatial smoothing constants has a smaller effect on the pitch
strength estimate, but the case where the coefficients push the activity strongly
from higher-frequency channels to lower-frequency channels has the greatest ef-
fect. This is again what we would expect – activity in higher-frequency channels
affects activity in lower-frequency channels, but not vice versa.

Figure 5.28 shows cochleagrams for the baseline PZFC parameter set (top) and
the parameter sets 8 and 9 (middle and bottom) for the word ‘washwater’ once
again. Parameter set 9 produced a considerably higher pitch strength estimate
than parameter set 8 for the harmonic complex stimulus. In the cochleagrams,
parameter set 9 is seen to apply more compression to the signal than the baseline
parameters or parameter set 8. The upper formants of the vowel sounds are now
more clearly visible. Although this effect of increased compression has a positive
effect on pitch strength, it may in fact degrade the output signal, giving low-level
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Figure 5.28: Cochleagrams for the word ‘washwater’ using the baseline PZFC (top)
and PZFC parameter sets 8 and 9 (faster AGC time constants) (middle and bot-
tom). Scaling is as in Figure 5.16 so that dynamic range can be compared.

features too much weight relative to high-level ones. In the ‘sh’ sound, there is
considerable activity visible at low frequency, which does not reflect the energy
distribution in the input well.

While it is interesting to see that making the AGC of the PZFC react faster has a
positive effect in increasing its ability to resolve pitches, it is not immediately clear
why this should be the case. Since the effect of fast-acting compression should
be to compress glottal-pulses in the input stimulus, one might expect the pitch
strength to go down as the speed of the compression was increased. A full study
of this effect is beyond the immediate scope of this research, but it is something
that I intend to study more fully in the future.

5.5 Further	work	and	Conclusions

In this section I have introduced Lyon’s pole-zero filter cascade (PZFC) filterbank
as an efficient compressive auditory filterbank which can model well the masking
data from humans, and compared it to another compressive filterbank, the dy-
namic compressive gammachirp (dcGC). The PZFC filterbank was implemented
in AIM-C and AIM-MAT, using the original implementation by Lyon as a basis. It
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was tested against dcGC filterbank and the linear and log-compressed gammatone
filterbanks in two pitch-strength determination tasks. The PZFC was found to be
computationally efficient and to have compression characteristics that enable it
to extract pitch from stimuli that have traditionally been challenging to pitch de-
termination algorithms. A number of modifications were made to the automatic
gain control (AGC) parameters of the PZFC filterbank to improve its abilities in
this regard. These experiments point the way for future work on optimising the
PZFC.

The PZFC is an efficient and accurate implementation of an auditory filterbank,
and it has the benefit of being based firmly in the fluid dynamics of the cochlea.
However, the dcGC filterbank is a better-established filterbank which has been rig-
orously tested against a variety of psychophysical and physiological data. Currently,
the dcGC is better tuned to these data than the PZFC. However, the experiments
above demonstrate that it is possible to manipulate parameters of the PZFC AGC
to give better performance on certain real-world tasks. Using a similar analysis
framework and a wider range of stimuli, it is likely that the PZFC’s parameters can
be tuned to further improve its performance.

One interesting approach to this problem would be to modify the AGC of the
PZFC so that its architecture was more like that of the dcGC. The AGC activity
could be shifted so that the state of an AGC stage which takes input from one
frequency is used to affect the PZFC filter stage at a lower frequency. This would
align the PZFC AGC architecture more closely with models of compression in the
cochlea.

The experiments presented in this chapter do not, on their own, justify the use of
a compressive filterbank in a machine hearing system. However, they provide an
insight into the utility of compressive filterbanks in the processing of stimuli in
which the temporal fine structure is important.

A potential continuation of this work would be to use the compressive filterbanks
described above in combination with the features generated from the Gaussian
mixture model used in the earlier chapters of this thesis. Preliminary experiments
to this end, which directly swapped the gammatone filterbank for the PZFC fil-
terbank, led to recognition results which were significantly worse than the results
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gained with the gammatone filterbank. However the exact parameters of the Gaus-
sian fitting procedure were tuned to the output of a simple gammatone filterbank
and these parameters were not modified in the initial experiments. The tuning
of these parameters for use with the PZFC and dcGC filterbanks, ideally using a
complete search of the parameter space for the Gaussian fitting system, is another
potential direction for future work.

While tuning of the AGC circuits of the PZFC, and evaluation of compressive fil-
terbanks with a speech recognition task are probably both worthy of further study,
an outstanding opportunity to work with auditory features on a much larger scale
suddenly arose in the autumn of 2008. The research team of Dick Lyon at Google
had been investigating the use of MFCC features in a large-scale sound effects
recognition task, making use of the PAMIR machine learning system which is op-
timized for use on large datasets. The team was working to extend the model to
work with features generated from a version of the auditory image. I was invited to
join the team for an internship, working with them on the evaluation of auditory
features within the sound effects ranking task.

The system developed at Google was based on the PZFC filterbank and the strobed
temporal integration system developed by Dick Lyon and discussed in chapter 3.
The speed of the PZFC makes it possible to generate auditory features within a
large-scale systems. The efficiency of the filter cascade architecture and the AGC
network means that it can provide compressive filtering with not much more com-
putation than a linear gammatone filterbank. This in turn makes it possible for the
system to scale to datasets of the size required in Internet search tasks.
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Chapter	6

Content-based	Audio	Search

In the previous chapters of this thesis I have developed various parts of an complete
system for generating and using features from an auditory model in content-based
audio analysis tasks. Having worked on these various individual sections, I was
lucky enough to be able to work with a team of researchers at Google, develop-
ing an integrated machine hearing system based on auditory images. This system
combines variants of the various stages of processing studied in the previous sec-
tions into a complete content-based audio search system. The system uses sparse
features computed from the SAI, and learns a mapping from these audio feature
vectors to a sparse feature vector representing words associated with the sound. In
the experiments, two versions of the SAI are used: the ‘Lyon-SAI’ and the ‘AIM-
SAI’. The AIM-SAI uses the same combination of strobed temporal integration
and image stabilisation as developed in chapter 3, and employed in the syllable
recognition experiments in chapter 4. The Lyon-SAI uses the ‘Lyon’ strobe mech-
anism discussed in chapter 3, and a slightly different strobed temporal integration
process.

6.1 Content-based	audio	search

Note: The  work  in  this  section  was  performed  in  collaboration  with  Richard  F.  Lyon,
Martin  Rehn,Gal Chechik and Samy Bengio. Preliminary results were presented inRehn,
Lyon, Bengio, Walters & Chechik (2009). The  complete  study  was  published  in Lyon,
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Rehn, Bengio, Walters & Chechik (2010b).

6.1.1 Introduction

This study was undertaken as part of the ‘machine hearing’ research effort at Google.
The team at Google defines machine hearing research as developing ‘systems that
can process, identify and classify the full range of sounds that people are exposed
to’.

Developing such systems requires both efficient and effective algorithms for large-
scale machine learning of a range of sound categories, and a representation of the
sounds themselves that captures the full range of auditory features that humans
use to discriminate and identify different sounds. In this work, we used a content-
based audio search task as a method of assessing the quality of two representations
of sound: features generated by the auditory model and a simple MFCC repres-
entation.

When designing the system, it as important to keep in mind the problem of scalab-
ility: the systems used are both effective and efficient, as it is desirable to be able
to scale up the system to Internet-sized datasets.

Audio	search

Currently, when searching for sound effects on the Internet, one can either go to a
specialised sound effects site, such as Freesound or type a text query into a normal
search engine. In either case, the results returned are based not on the content of
the audio itself, but rather on metadata associated with the audio. Figure 6.1 shows
the results of typing the query ‘lion roar’ into Google (in June 2008). The results
are accurate, but only because the words ‘lion’ and ‘roar’ were found somewhere on
the page on which the sound was found.

Content-based	search

In the application developed here, the interface is very similar: a user enters a
textual search query, and in response is presented with an ordered list of sound
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Figure 6.1: Searching for a Lion’s roar using Google
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documents, ranked by relevance to the query. For instance, a user typing ‘lion’
will receive an ordered set of files, where the top ones should contain sounds of
roaring lions. However, in this case, text query terms are associated directly with
the content of the audio, and no text annotations or other metadata are used at
retrieval time.

At training time, a set of labelled sound documents is used, allowing the system
to learn to match the acoustic features of a lion’s roar to the text tag ‘lion’, and
similarly for a large set of potential sound-related text queries. This allows for the
searching of large unlabelled databases of audio by the use of text queries, using
only a small labelled dataset for training.

The machine learning system used is called PAMIR – the ‘passive-aggressive model
for image retrieval’ (Grangier & Bengio, 2008). As its name suggests, it was first
designed for content-based image search problems, but is equally well suited to
the problem of audio search. PAMIR uses high-dimensional sparse features to
represent both the audio input and the text terms describing that input. It then
learns a linear mapping from the feature space to the query term space.

6.1.2 Representations	of	sounds

In this study, we assessed the difference in performance between MFCC-based
features and two forms of SAI-based features. Figure 6.2 shows the complete sys-
tem used in the generation of auditory features summarising an audio document.
For the SAI-based features, the PZFC filterbank is used as a first stage as it has
good compressive properties and is very computationally efficient (1). The two
SAI representations (2) differ in the system used for strobed temporal integration.
The first system, referred to as the ‘Lyon-SAI’ uses a simpler strobe detection and
temporal integration scheme than is typically used in AIM-based models. The
second system is a standard AIM system, based on the sf1992 strobe-detection al-
gorithm (with various improvements discussed in chapter 3 of this thesis) and the
ti2003 temporal integration system. The next stage of processing (3) is the sparse
coding of the auditory image to produce a high-dimensional feature vector with
only a few nonzero elements. This is in accordance with some properties of neural
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Figure 6.2: Overview of the Machine Hearing system developed at Google Re-
search
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Figure 6.3: Example ‘Lyon-SAI’ for a human vowel.

coding (Olshausen & Field, 2004), and has significant computational benefits that
allow for the training of very large-scale models. The final stage of encoding (4) is
to create a histogram of the sparse-code vectors over the period of interest in the
audio. This yields a high-dimensional, but still fairly sparse representation of the
audio.

AIM processing

The PZFC filterbank was used as the cochlear model for all the auditory processing
in this study. In both cases, the filterbank had 95 channels, spanning a frequency
range from 40Hz to 9.3kHz. The NAP was calculated by simple half-wave recti-
fication of the filterbank output. There was no PCP applied.

Lyon-SAI Two techniques for generating SAIs were used in this study. The first,
known as ‘Lyon-SAI’ performs strobe detection using multiple overlapping para-
bolic windows on the NAP signal. The signal in each channel is multiplied point-
wise by the windowing function, a parabola of 40ms width. The maximum point
in the windowed signal is the strobe point. The window is then shifted by 4ms and
the process is repeated. Thus, there is guaranteed to be an average of one strobe
point every 4ms, or five per 20ms frame, but it is possible for multiple strobes
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Figure 6.4: Example ‘Lyon-SAI’ for a ringing telephone.

to occur at one point in the signal, since the windows overlap. Each SAI channel
is then calculated as the cross-correlation between the original signal and a signal
composed of delta-functions at the identified strobe points. This cross-correlation
is accomplished efficiently by simply sliding a piece of the waveform for each chan-
nel to move the strobe point to the centre, and adding up the five copies for the
five strobe points in the frame. The Lyon-SAI has its zero-lag line at the centre of
the time-interval axis and is truncated at ±26.6ms. Figure 6.3 shows an example of
a SAI frame for a human vowel using the Lyon-SAI technique, and for comparison,
Figure 6.4 shows a Lyon-SAI for a ringing telephone. The Lyon-SAI technique is
not strobed temporal integration in the sense that it is used in AIM, as the SAI
is generated afresh for each frame and there is no naturally occurring decay in the
time-interval dimension. However, for practical purposes, the Lyon SAI technique
is an effective and efficient method for generating an SAI.

AIM-SAI The AIM-SAI as used in this study uses a variant of the local maximum
algorithm (see chapter 3) for strobe-detection, and the ti2003 system (as employed
in both AIM-MAT and AIM-C) for SAI generation. Figure 6.5 shows an AIM-
SAI generated using this technique. In the variant of the strobe algorithm used
here, the strobe threshold starts at zero. When the signal exceeds threshold, a
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Figure 6.5: Example ‘AIM-SAI’ for a human vowel.

strobe point occurs and the threshold is raised to the level of the signal at the time
of the strobe. Following a strobe, the threshold decays linearly to zero over 20ms.
The time constant for the decay is set such that the threshold will decay more
slowly than the resonance following a pulse, and so the next supra-threshold peak
in the signal is likely to have been caused by a new incoming pulse. A 5ms lockout
period prevents a strobe from occurring immediately after the previous strobe; this
prevents multiple strobes from occurring on a fast-rising section of signal.

The SAI generation is the standard system from ti2003: when a strobe occurs,
the signal following the strobe starts to be added into the AIM-SAI buffer, start-
ing from zero time-interval. This process continues for 32ms after the strobe has
occurred (leading to an AIM-SAI width of 32ms, which is slightly wider than the
Lyon-SAI system described above). As time goes on, more strobes will occur, and
these too begin to be added into the buffer. When multiple strobes are active (that
is, when more than one strobe has occurred within a 32ms window), the signal fol-
lowing each strobe is weighted by an amount inversely proportional to the number
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A. Boxes tiled vertically
overlapping by half height

Figure 6.6: ‘Box-cutting’ part A. Rectangular regions are tiled vertically on the
image. The left edges of the rectangles are tied to the zero-lag line. The rectangles
overlap by half their heights.

of strobes currently active, before being added to the buffer. This ensures that the
overall level of the SAI remains equal to the level of cochlear model output, despite
the average strobe rate not being fixed.

‘Box	cutting’	and	sparse	coding

The sparse code used to represent an auditory image is based on identifying pat-
terns that typically appear in a SAI, and then representing the image as a histogram
of those patterns that could appear. Patterns that are due to certain sound sources
are likely to appear at specific positions in the auditory image. For example, the
call of a bird may appear as a band of energy in the higher-frequency channels of
the filterbank, whereas a deep musical note from, say, a tuba, would have as a ma-
jor feature, a set of widely-spaced vertical ridges due to the pulse-rate of the note.
At large scales in the SAI, there is information about the pitch and longer-term
temporal structure of a sound, and at small scales there is information about the
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B. Box height doubled
repeatedly until box
height is more than half
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Figure 6.7: ‘Box-cutting’ part B. The rectangle heights are doubled and the tiling
process from part A is repeated.

resonances following each pulse. Therefore, instead of looking for patterns only
in the whole auditory image, local patterns in different parts of the SAI, and at
different scales, are identified. To do this, we define a set of overlapping rectangles
of different scales that cover the whole SAI frame, and then the content of each
of those rectangles is independently encoded using a separate sparse coder.

Choice	of	rectangular	boxes The ‘baseline’ rectangle size was chosen to be 16
samples in the lag dimension, by 32 filterbank channels. From this size, both di-
mensions were multiplied up by powers of 2 up to the largest size box that fits
in the SAI frame. For each box size, the SAI space was tiled with boxes, starting
at the zero-lag line in the time-lag dimension and shifting in the cochlear channel
dimension by half a box width each time. Figure 6.6, Figure 6.7, Figure 6.8 and
Figure 6.9 show the process of tiling the SAI space with boxes.

Different box shapes and sizes capture different forms of information. Short, wide
boxes restrict the temporal pattern features to a localised frequency region and
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Figure 6.8: ‘Box-cutting’ part C. The width of each rectangle is doubled (with the
left edge still pinned to the zero-lag line). When the box width is wider than the
remaining space in the image, the box is shifted so the right edge is at the right
edge of the SAI.
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Figure 6.9: Example rectangle sizes. The smallest and largest boxes are shown.
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Figure 6.10: Downsampling and marginal calculations for the SAI blocks. The
left-hand image shows the full-resolution rectangle from the SAI. The right-hand
image shows the region downsampled to 16 × 32 pixels. The mean values of each
of the rows and columns of this image are then calculated. These are the marginals
which are used as the dense features.

capture local spectral shape. Taller, narrower boxes capture overall spectral shape
at different temporal resolutions. Intermediate sizes and shapes capture a variety of
localised features, so even when multiple sounds are present, some of the features
corresponding to regions of the SAI dominated by one sound or the other will
often still show a recognisable pattern.

Downsampling Given this choice of boxes, dense features are computed from
each one in turn. The image inside each box is downsampled to the size of the smal-
lest box. This rescaling causes the larger rectangles to be viewed at a coarser resolu-
tion. To further reduce the dimensionality, the marginals of the box are computed
by averaging over each of the two dimensions, and these two vectors are concaten-
ated to form the final, dense feature vector. For the standard small box size of 16
× 32 this is a 48 dimensional vector. The use of the marginals of each box reduces
the dimensionality into the following sparse-code extraction step, while preserving
much of the important information about spectral and temporal structure. Figure
6.10 shows the effect of performing downsampling and computing marginals for a
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region of the SAI.

Sparse	coding

In the next stage of processing, the low-dimensional dense feature vectors from
individual boxes are converted to sparse codes by use of vector quantisation (VQ)
(Gersho & Gray, 1992). In the training stage, a ‘codebook’ is learned over a range of
sounds using k-means clustering. Dense feature vectors are computed for a repres-
entative sample of the audio (in the case of these experiments, the entire training
set was used), and they are then assigned to ‘clusters’ in the high-dimensional dense
feature space. In the baseline case, 256 means were used for the k-means cluster-
ing. Once the codebooks are trained, encoding a dense feature vector is simply
a matter of assigning it to the closest cluster in the codebook. In this way, the
48-dimensional dense feature vector was encoded as a 256-element vector with all
elements being zero except a single one at the position of the chosen codeword.
Obviously it is trivial to encode such a vector as a single integer: the index of the
nonzero element.

Matching	pursuit In addition to the simple VQ scheme described above, we
also used a matching pursuit (MP) based encoding scheme to allow a less sparse,
but potentially richer representation to be used (Bergeaud & Mallat, 1995; Mallat
& Zhang, 1993). In matching pursuit, the dense feature vector to be encoded is
matched to the closest codeword in the codebook, as above. However, the process
then continues to encode the ‘residual’, the difference between the codeword and
the original input. The residual is calculated and is again matched to the closest
codeword. This process continues until either the residual is smaller than some
limiting value, or the maximum number of codewords is reached. The resulting
feature vector in this case is still sparse, in that most of the elements are still zero,
but the nonzero elements have values proportional to the amount of the original
signal encoded by that particular codeword.
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6.1.3 Sound	ranking

Using the process in the above stages, a sparse vector is computed for each of the
individual boxes tiling the image. These vectors are then concatenated to yield
a higher-dimensional sparse feature vector that summarises the entire SAI. This,
along with a representation of the text tags used to annotate the audio file, is the
input to the PAMIR learning system.

PAMIR

In order to rank audio documents, we wish to learn a scoring function, SW (q, a),
that scores every pair of audio document, a, and query, q. PAMIR (Grangier
& Bengio, 2008) uses a bilinear score SW (q, a) = qTWa. The PAMIR system
is based on the passive-aggressive family of learning algorithms (Crammer et al.,
2006).

The matrix W can be viewed as a linear mapping from audio features to query
words. Namely, the product Wa is viewed as a ‘bag of words’ description of the
audio document, and the dot product of this bag of words with the query words q
gives the score.

The scoring function, qTWa, is extremely efficient to compute when q and a are
sparse, because the matrix multiplication only requires O(|q||a|) operations where
|q| and |a| are the number of non-zero values in q and a respectively.

The learning goal is then to learn this matrix W , so that the scoring function gives
relevant documents a higher score than irrelevant ones.

SW (qi, a
+
i ) > SW (qi, a

−
i ) + 1∀ {qi, a+i , a−i }

where a+i is a document relevant to the query and a−i is a document not relevant
to the query.

To solve this, a loss function LW is defined.

LW =
∑

(qi,a
+
i ,a−i )

lW (qi, a
+
i , a

−
i )
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where
lW (qi, a

+
i , a

−
i ) = max

(
0, 1− SW (qi, a

+
i ) + SW (qi, a

−
i )
)

This is a ‘hinge’ loss function. The loss is only nonzero when the system makes a
mistake, and so updates to the matrix W only occur at that time.

So W 0 is initialised to 0, and then at each iteration of the algorithm, a random
triplet of (qi, a+i , a−i ) is picked andW is updated according to the following convex
optimisation problem:

W i = argminW

1

2
||W −W i−1||2Fro + ClW (qi, a

+
i , a

−
i )

Where ||.||Fro is the Frobenius norm (entry-wise l2 norm on the matrix). At each
iteration i, optimising W i achieves a trade-off between remaining close to the pre-
vious parametersW i−1 and minimising the loss on the current triplet lW (qi, a

+
i , a

−
i ).

The aggressiveness parameter C controls this trade-off.

6.1.4 Experiments

Dataset

The dataset used for the training and testing of the system consisted of 8,638
sound effects, from various sources. 3,855 of these were from commercial sound
effects libraries, and the rest from a range of websites1. Where sounds had text
descriptions provided, these were used as a basis for the tagging. Where there
was no text description provided, the sounds were listened to and tagged manually
with a few key words. Higher-level tags were also added to each file automatically,
so for example a file labelled ‘cat’ would have the tags ‘mammal’ and ‘feliformia’
added. Adding these higher-level terms provided some structure to the label space.
The text terms were then stemmed using the Porter stemmer for English (Porter,
1980), leaving a total of 3,268 unique tags. The sounds had an average of 3.2 tags
each.

1FindSounds, Partners  in  Rhyme, Acoustica, I Love  WAVs, SimplyTheBest  Sounds, wav-
sounds.com, wavsource.com, and wavlist.com
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Experimental	setup

Cross-validation was used to estimate performance of the learned ranking system.
Specifically, the set of audio documents was split in three equal parts, using two
thirds for training and the remaining third for testing. Training and testing were
repeated for all three splits of the data, in order to obtain an estimate of the per-
formance on all the documents. Queries that had fewer than 5 documents in either
the training set or the test set were removed from both sets, and the corresponding
documents were removed if these contained no other tag. A second level of cross
validation was used to determine the values of the aggressiveness parameter C, and
the number of training iterations. In general performance was good as long as C
was not too high, and lower C values required longer training. A value of C = 0.1
was selected, which was also found to work well in other applications (Grangier &
Bengio, 2008), and 10 million iterations. In preliminary experiments, we found
that the system was not very sensitive to the value of these parameters. The preci-
sion (fraction of positives) within the top k audio documents from the test set as
ranked for each query was used to evaluate the quality of the ranking obtained by
the learned model.

Auditory	features	parameters

The process of transformation of SAI frames into sparse codes has several paramet-
ers that can be varied. We defined a default parameter set and then performed ex-
periments in which one or a few parameters were varied from this default set.

The default parameters used the Lyon-SAI, cut into rectangles starting with the
smallest size of 16 lags by 32 channels, leading to a total of 49 rectangles. All the
rectangles were reduced to 48 marginal values each, and for each box a codebook of
size 256 was used, leading to a total of 49 × 256 = 12,544 feature dimensions.

From this default experiment, variations were made by systematic modification of
the smallest rectangle size used for sparse segmentation and by limiting the max-
imum number of rectangles used for the sparse segmentation (with variations fa-
vouring smaller rectangles and larger rectangles). Further variants used systematic
variation of the codebook sizes used in sparse coding (using both standard vector
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quantisation and matching pursuit). In addition, the AIM-SAI representation was
used with otherwise default parameters. The values of all the experimental para-
meters used are shown in Table 6.1.

In one group of experiments we varied the details of the box-cutting step. In our
baseline we use rectangles of size 16 × 32 and larger, each dimension being multi-
plied by powers of two, up to the largest size that fits in an SAI frame. We varied
the base size of the rectangle, starting from the sizes 8 × 16 and 32 × 64. We also
restricted the number of sizes, by limiting the doublings of each dimension. This
restriction serves to exclude the global features that are taken across a large part
of the auditory image frame. In a separate series of experiments we instead started
from a rectangle size equal to the dimensions of the SAI frame, working down-
wards by repeatedly cutting the horizontal and vertical dimensions in half. This
set excludes features that are very local in the auditory image. While the code-
book sizes remained fixed at 256, the total number of feature dimensions varied,
proportional to the number of boxes used, and performance within each series was
found to be monotonic with the total number of feature dimensions.

Table 6.1: Parameters used for the SAI experiments
Parameter Smallest Total Means VQ Box
Set Box Boxes Per Box MP Cutting
Default 32×16 49 256 VQ Up
Codebook Sizes 32×16 49 4, 16, 64, 256, VQ Up

512, 1024, 2048,
3000, 4096

Matching Pursuit 32×16 49 4, 16, 64, 256, MP Up
1024, 2048, 3000

Box Sizes (Down) 16×8 1, 8, 33, 44, 66 256 VQ Down
32×16 8, 12, 20, 24
64×32 1, 2, 3, 4, 5, 6

Box Sizes (Up) 16×8 32, 54, 72, 90, 108 256 VQ Up
32×16 5, 14, 28, 35, 42
64×32 2, 4, 6, 10, 12

AIM-SAI 32×16 42 256 VQ Up

183



6. CONTENT-BASED AUDIO SEARCH

102 103 104 105
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of features

Pr
ec

is
io

n 
at

 to
p 

1

 

 

MFCC
Baseline
Matching Pursuit
Box Sizes (down)
Box Sizes (up)
AIM−SAI
Codebook Sizes

1 box, 32x64 (up)

1 box, 32x64 (down)
1 box 8x16 (down)

5 boxes, 16x32 (up)

66 boxes, 8x16 (down)

4 means

4 means (MP)

16 means

3000 means (MP)

13 MFCCs, 15ms frames

16 means (MP)

40 MFCCs, 40ms frames
baseline

6000 means

4000 means

Figure 6.11: Precision at top-ranked result as a function of sparse feature vector
size. The convex hull joining the extremal points is shown to illustrate the maximal
precision for a given feature vector size. The different symbols highlight the ex-
periment sets varying different parameters. Parameters for some experiments are
shown on the plot.

Comparisons	with	MFCC

For comparison with the auditory features, standard MFCCs were calculated and
were converted into a sparse code in the same way as for the dense SAI features.
MFCCs were computed using a Hamming window, with the first and second de-
rivatives as additional features of each frame. The initial MFCC parameters were
chosen based on a configuration that was optimised for speech, and then three
of the parameters were systematically varied: the number of cepstral coefficients
(traditionally 13 for speech), the length of each frame (traditionally 25ms) and
the number of codebooks used to sparsify the MFCC of each frame. Optimal per-
formance was obtained with a codebook of size 5000, 40ms frames and 40 cepstral
coefficients. This configuration corresponds to much higher frequency resolution
than the standard MFCC features used for speech.

6.1.5 Results

The various parameters of SAI and MFCC feature extraction were varied as shown
in Table 6.1. Figure 6.11 shows the average precision of the top-ranked result
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Figure 6.12: Comparison of average precision for the SAI and MFCC features
across various query terms. The crosses are individual query terms, with some
marked. The plot is slightly skewed to higher precision for the SAI, but there is no
consistent bias to be seen in the types of query terms that are better represented by
MFCC or SAI features.
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against the length of the sparse feature vector. In each set of experiments, the
series of markers show the effect of changing the variable in question. In each ex-
perimental case, all other parameters were left at their ‘baseline’ values. Each set
of experiments is identified by a different marker. As the number of features be-
comes very large, performance begins to saturate. The top performance is for the
system with 73% at the top-ranked sound file, achieved with 4,000 codewords per
codebook and a total of 49 codebooks. This was significantly better than the best
MFCC result, which achieved 67% (Wilcoxon test for equal medians, p = 0.0078).
This reflects about 18% smaller error (from 33% to 27% error). SAI features
also achieve better precision-at-top-k consistently for all values of k, although with
lower relative precision improvement. Table 6.2 shows the improvement in preci-
sion at top-k for a number of values of k.

Table 6.2: Error reduction from MFCC to SAI features
top-k SAI MFCC Percent error reduction
1 27 33 18%
2 39 44 12%
5 60 62 4%
10 72 74 3%
20 81 84 4%

It is important to note that the parameters found (and the auditory model archi-
tecture in general) are not guaranteed to be optimal, and it is possible that further
refinement could further improve the retrieval precision.

Performance for the baseline AIM-SAI features (63.6% for 10,752-dimensional
features) was very similar to that for the baseline Lyon-SAI features (64.1% for
12,544-dimensional features).

The system described above works only with exact terms, and so related terms are
counted as a misclassification. However, people may use many different terms to
describe similar sounds. This means that the measured performance of the sys-
tem will be lower than the actual performance, since many sounds which would be
judged by a human listener to be similar are not regarded as such by the system.
Table 6.3 shows some examples of the terms that most frequently caused confu-
sion in the classification system. For each pair of queries we measure confusion by
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Table 6.3: Examples of misclassification. All pairs of true-label and confused labels
with total count above seven are listed.

Query Label Total Number of Errors
clock-tick cuckoo 8
door knock door 8
evil laugh laugh 7
laugh witch laugh 7
bell-bicycl bell 7
bee-insect insect 7

counting the number of sound files that were ranked within the top-k files for the
first query, but not for the second query, even though the second query appeared in
the labels for the file. For example, there were 7 sound files that were labelled ‘evil
laugh’ but were not ranked within the top k documents for the query ‘evil laugh’. At
the same time, these documents were ranked highly for the query ‘laugh’. Confused
queries are often semantically similar to the sound label, and so the errors made by
the ranking systems actually reflect the fact that the sound files have partial or in-
consistent labelling. In some cases, such as ‘clock-tick’ and ‘cuckoo’, the terms are
not immediately related, but it is easy to imagine how these sounds would occur
together. This effect demonstrates the power of content-based models to identify
examples that sound similar, even if their textual labels are incomplete or simply
wrong.

Figure 6.12 compares the performance of the SAI and MFCC systems. The crosses
are individual query terms, with some marked. The plot is slightly skewed to higher
precision for the SAI (there are more queries above the line than below it). This
plot was generated to test the hypothesis that the MFCC features and SAI features
might perform better for one class of queries or another. However, there is no
particular bias to be seen in which query terms are better represented by MFCC
or SAI features.

6.1.6 Conclusions

We developed a content-based sound ranking system that can learn a match between
acoustic features of the sound, and a set of text labels. Two different classes of
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acoustic features were investigated: MFCCs and features based on the SAI. The
best performance was achieved with the SAI-based features, although by extending
the time window used by the MFCCs, it was also possible to improve performance
above the baseline level. The major difference between the MFCC and SAI rep-
resentations is that SAIs retain better the fine timing information in the signal,
whereas MFCCs better preserve the fine spectral structure (especially when the
number of MFCC coefficients is large).

The finding that SAI features can give better performance than MFCCs lends sup-
port to the hypothesis that a preprocessor that mimics aspects of the human aud-
itory system can produce an effective representation for a machine hearing system.
However, the auditory model that we describe above may not always be optimal,
and there is potential for improved performance by better characterising the op-
timal parameters for specific tasks.

The processing performed to generate SAIs involves multiple nonlinear compon-
ents, and this could be one reason why the features generated from SAIs are more
discriminative than standard MFCC features. It is hard to assess exactly why the
test sounds appear to be better represented by the features from the auditory
model. One difference between SAI and MFCC representations is that SAIs retain
fine timing information, while MFCCs preserve fine spectral structure (when the
number of coefficients is large enough). However, further study will be required to
ascertain exactly what the key properties of the systems involved in going from a
sound to a sparse feature vector are, and how these affect performance.

The system described above currently uses only features from short windows. There
is much potential for employing methods that deal with the longer-term temporal
structure of sounds. Future work in this area should incorporate more dynamics of
the sound over longer times, perhaps representing repeating patterns that contain
more temporal context.

6.2 Conclusions

In this chapter, a full-scale machine-hearing system was developed and deployed for
a real content-based audio analysis task. The goal of the study in this chapter was
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to demonstrate the potential utility of machine hearing systems for audio analysis,
and to present a complete example system.

The study presented in this chapter, along with that in chapter 2, both demon-
strate a potential benefit in the use of carefully-constructed auditory features over
MFCCs for content-based audio analysis tasks. These are both encouraging find-
ings and both point the way for further research into auditory features. One re-
maining challenge is to find a feature set which is both constrained enough to retain
a set of scale-invariant features, and yet rich enough to allow accurate recognition
on more challenging datasets. The task of extending to larger-scale problems will
be made easier by some key pieces of technology and integration which were de-
veloped in the study detailed here. The open-source AIM-C software allows for
fast processing of large databases of audio. Coupled with HTK, and a set of scripts
allowing distributed processing, this experimental framework can easily be exten-
ded to test new AIM modules and new feature extraction mechanisms. AIM-C
also supports the ‘box-cutting’ algorithms developed in this chapter, and the AIM-
C systems have been ported to the open-source Marsyas framework for content-
based music audio analysis tasks.

The audio search system developed at Google demonstrates the effectiveness of
auditory features, and includes some very significant technological achievements.
The use of sparse features allows the system to scale to extremely large training
datasets through the use of PAMIR. The ‘box-cutting’ technique for multi-scale
analysis of the auditory image allows the capture of both temporal and spectral
fine-structure and larger-scale features, while keeping the data rate to a manage-
able level. There is much scope for further research on the exact form of the fea-
tures that are present in the auditory image, and what features of the sounds are
enhanced by processing through an auditory model.
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Chapter	7

Conclusions

The analysis of audio signals based on their content has typically been founded on
signal processing techniques chosen for mathematical and engineering expediency.
The short-window Fourier transform in particular has generally been used as the
first step in many audio processing tasks. However, in understanding sounds, the
human auditory system takes a very different approach, and one which has the
benefit of several hundred million years of the force of evolution behind it. In
this thesis I have investigated the hypothesis that, in order to build automated
systems that understand sounds, we would do well to make use of the many tricks
that the auditory system has developed over this time. Over the course of this
work, I have investigated aspects of the use of auditory models for the automated
analysis of sounds, and have obtained a number of results which suggest that taking
inspiration from the auditory system is not only a reasonable thing to do, but also
useful and technically feasible.

7.1 Scale-shift	invariant	fatures

The first aspect of the auditory system used for inspiration was its apparent abil-
ity to generate a stream of information that is invariant to changes in the scale
of the source. The results of Smith & Patterson (2005), Ives et al. (2005), Smith
et al. (2007) and van Dinther & Patterson (2006) demonstrate that humans are ex-
ceptionally good at recognising sounds which have been scaled both in pitch and
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vocal tract length (acoustic scale) to well beyond the range that is encountered in
everyday life. This observation led to the development of a scale-shift invariant
feature, which attempts to encode information about spectral shape in a scale-
invariant manner. This work was presented in chapter 2. The feature models the
smoothed output of an auditory filterbank with a constrained Gaussian mixture
model. The effectiveness of this approach was demonstrated in a simple syllable
recognition task, where scale-shift invariant features were compared with standard
MFCC features for recognising a set of 185 syllables generated from 57 different
simulated speakers. When the recogniser was trained on speakers with very sim-
ilar vocal tract lengths, recognition performance was high across the whole range
of speakers when using the scale-shift invariant features. When using standard
MFCCs, performance was high around the training speakers, but degraded rapidly
as the simulated vocal tract length of the speakers became either smaller or larger
than that of the speakers in the training set. However, when simulated, optimal,
vocal tract length normalisation (VTLN) was performed on the spectrum before
computing the MFCCs, performance was better than that with the auditory fea-
tures.

The system was capable of generalising well when trained on speakers with a range
of vocal tract lengths and glottal pulse rates. Performance both with the scale-shift
invariant features and with the MFCC features increased markedly when the sys-
tem was trained in this way, and overall recognition accuracy was around 99% with
either feature set. When VTLN was performed as well, performance rose to 100%
accuracy. This result underlines the known inability of MFCCs to normalise for
acoustic scale. It is not, however, a surprising result; the scale-shift invariant fea-
tures were specifically designed to have these properties and the MFCCs were not.
Once VTLN is performed, performance recovers and exceeds that obtained with
the scale-shift invariant features. This result is also not surprising. It is also import-
ant to note that, with the scale-shift invariant features, only one feature vector is
required per utterance. A system with optimal VTLN requires a feature vector
to be computed for all candidate warpings of the frequency axis, and the optimal
warping has to be identified in a separate recognition step. These processes add
complexity which suggests that scale-shift invariant features might prove most use-
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ful in speech recognition systems where there is no prior over the likely vocal tract
length of the speaker, or where speakers cannot be tracked well over time.

It is clear that the scale-shift invariant features proposed here require further re-
search before becoming a useful alternative to MFCCs, but the experiments also
make it clear that scale-shift invariant features warrant further research. The ra-
tionale for using Gaussians to fit the speech spectrum came from Zolfaghari et al.
(2006), who used a low-dimensional Gaussian mixture model to encode speech
by tracking formants and other spectral features. There are alternatives to this
approach; Mertins & Rademacher (2005), for example, presented an alternative
VTL-independent feature based on the cross-correlation between adjacent frames
of the spectrum. Their system relies on the fact that the spectral centroid of an
utterance will shift as a function of vocal tract length. Cross-correlating adjacent
frames will tend to ‘normalise’ the spectrum (while blurring it), shifting the spec-
trum of a frame towards the overall spectral centroid and thus giving a signal which
is more resistant to shifts in VTL. In future work, the relative benefits of the two
approaches could be compared. A further alternative to the Gaussian mixtures
might be to use the Fourier transform, rather than the cosine transform, to gener-
ate MFCC-like features in which the phase of the components is allowed to vary,
as in the Mellin transform described in chapter 4.

The syllable recognition task in this case is fairly limited, and slightly contrived,
since it relies on syllables which have been scaled in VTL to simulate the exact
effect which is then corrected for. The next step for these features will be to test
them on a larger-scale, real-world speech recognition task. Ideally, the features
would be assessed by training on one class of speakers, men for example, and then
testing on women and children. The system should also be tested against a full
VTLN system, and the time taken to compute the scale-shift invariant features
compared to the extra time taken to compute many features and optimise recog-
nition over VTL.
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7.2 Strobe	detection	for	strobed	temporal	integration

The scale-shift invariant feature representation used in the experiments in chapter
2 was based on the output of an auditory filterbank. However, no further pro-
cessing based on functional models of the auditory system was performed on the
filterbank output. The remaining work in this thesis was based on the auditory im-
age model of peripheral auditory processing (AIM) (Patterson et al., 1992, 1995).
The processing performed in AIM is based on a process known as strobed temporal
integration. The key to this process is to locate ‘strobe’ points in the signal coming
from each frequency band in the output of a cochlear model. These strobe points
are used to initiate an autocorrelation-like temporal integration process which sta-
bilizes the incoming signal. The process of strobe detection is key to generating the
stabilized auditory image (SAI). The SAI is a representation of audio as it might
appear in the early stages of the auditory pathway. It is a two-dimensional image
which is stable over time when the incoming sound is perceived as being stable.
In chapter 3, various systems of strobe point detection for strobed temporal in-
tegration were investigated, and a new system, based on the physical constraints
on the response of the auditory filters was developed. This new technique was
tested along with other strobe systems in a strobe detection task, and was found to
be approximately as effective as the best of the original techniques. The work in
chapter 3 makes explicit the assumptions being made about the process of strobed
temporal integration, thus placing it on a firmer theoretical basis.

One important question is to determine how important accurate strobe detection
is for content-based audio analysis systems. The evidence from chapter 6, where
a system based on a naive strobe model showed similar performance to that of a
system with optimal strobing (chapter 3), suggests that strobed temporal integra-
tion is robust, and there may not be a great deal to be gained by finding the optimal
strobe point in each channel on each cycle of the sound. However, there were many
other differences between the two systems tested in chapter 6, and so the effect
of the strobe systems is difficult to discern amongst all the variables. Neverthe-
less, the theoretical work in chapter 3 shows why current strobe detection systems
work well, and it places the choice of parameters on a firm theoretical footing. The
benefit of tightly specifying the strobe detection algorithm may be seen in systems
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designed to perform source separation by preferentially strobing on one source or
another. Irino & Patterson (2006) showed how strobes from one source in a mix-
ture could be located, and that this led to a stabilised auditory image in which the
activity of the target souce dominated. This suggests that it might be possible to
develop an auditory source separation system by dynamically constraining strobing
to a target source.

7.3 Features	from	the	stabilised	auditory	image

The stabilised auditory image is a model for an early-stage representation of the
incoming signal in the brain. As such, we would like to use it to extract auditory
features for machine hearing. In chapter 4, I presented the first of two studies
in which features generated from the SAI were used in this way. To compare the
SAI representation of audio with purely spectral-based representations, I took the
scale-shift independent features developed in chapter 2 and generated similar fea-
tures from the spectral profiles of various slices of the size-shape image (SSI) –
a representation derived directly from the SAI. I compared performance of the
features from the SSI with the features from the neural activity pattern (NAP),
derived from the cochlear output used in chapter 2. Performance on the features
was once again compared with that on MFCCs, with and without VTLN. In clean
speech, performance on the SSI-based features was reduced a little relative to that
with NAP-based features. Since the average spectral energy passed in each filter-
bank band is the same for the NAP and the SAI, this result suggests that better
tuning of the process by which the SSI is created from the SAI, and better tuning
of the GMM-based features to the SSI output, is required in order to realise their
full potential.

However, the performance of the features on the task of syllable recognition in
noise was markedly different. In the original syllable recognition experiments the
MFCC features performed reasonably well, and MFCCs with optimal VTLN per-
formed excellently. The task was then changed so that the syallable recogniser was
trained on a range of examples with different signal-to-noise-ratios (SNRs), and
then tested at each SNR in turn. In this case, performance on the NAP-based fea-
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tures was, overall, slightly worse than performance with the MFCC features with
optimal VTLN. However, despite starting from a lower baseline, performance of
the various SSI-based features degraded considerably more slowly as the level of
interfering noise increased, such that by a SNR of +12dB, the features computed
from the first slice of the SSI gave better recognition than all of the other features.
This result shows the potential benefit for SSI-based features in noise. The next
experimental step will be to decouple the use of the SSI from the use of the GMM
to generate scale-shift independent features, and instead generate DCT-based fea-
tures on a number of different slices of the SSI, and evaluate how they compare
with MFCCs on a more complicated speech recognition task such at the TIMIT
database.

7.4 Compressive	auditory	filtering

The cochlea performs dynamic level compression based on stimulus level. This
dynamic response was not included in the simple gammatone filterbank used in
the experiments of chapters 2 and 4. In chapter 5, I studied the performance of
two alternative cochlear models both of which perform dynamic level compression.
Based on an observation by Nick Clarke, that an auditory model with a compressive
PZFC filterbank was able to explain the results of a pitch strength detection ex-
periment better than a gammatone filterbank, I assessed the relative performance
of various auditory filterbanks on pitch-strength detection tasks.

The stimuli were high-pass filtered iterated rippled noise (IRN) and high-pass filtered
harmonic complexes. Both of these stimuli lack energy at the fundamental, but
both produce a good signal in temporal models of pitch perception, such as those
based on the stabilised auditory image. The well-established dynamic compressive
gammachirp (dcGC) filterbank, developed by Toshio Irino, was compared with the
pole-zero filter cascade (PZFC) of Dick Lyon, with regard to their ability to explain
the strong pitch produced by these stimuli. The dcGC and PZFC differ signific-
antly in their architecture and design. The dcGC is a parallel filterbank, in which
dynamic gain control is obtained by sampling the signal level in a higher-frequency
‘level estimation’ filter, and dynamically adjusting the gain based on that. By con-
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trast, the PZFC is a cascade of filters, in which the output of a high-frequency
band-pass filter is fed through a cascade of filters with successively lower peak fre-
quencies. In this case, automatic gain control (AGC) is achieved by a smoothing
network that monitors the output of the filterbank at each stage and propagates
activity coming from that stage to control the gain of filters in nearby stages.

In the pitch analysis task, the dcGC filterbank was found to produce the greater
pitch strength in its default state. However, it proved possible to modify the para-
meters of the PZFC and (a) make the automatic gain control network very fast-
acting, and (b) skew the processing to propagate compression to lower-frequency
channels. These modifications led to the PZFC producing similar results to those
obtained with the dcGC.

Like the evaluation of strobing systems, this analysis of the compressive proper-
ties of auditory filterbanks was necessarily confined to a more limited problem
than evaluation of a full machine hearing system. Nevertheless, the results suggest
that compression is required in auditory filterbanks if they are to explain human
pitch perception accurately. The PZFC is an extremely efficient filterbank imple-
mentation, due to its cascade structure, and performs dynamic level compression
efficiently. It also seems that its properties could be matched to those of the more
computationally-costly dcGC filterbank. The efficiency and dynamic level com-
pression used in the PZFC make it a good candidate for use in machine hearing
systems, and indeed it is the filterbank used in the complete system presented in
chapter 6.

The next step in the analysis of compressive auditory filterbanks in machine hear-
ing should be to test the overall performance of a machine hearing system with
and without the use of dynamic level compression. Of special interest would be to
find out which sounds, if any, particularly benefit from the use of a compressive
filterbank in the preprocessor.

7.5 Sparse	features	for	sound	effects	ranking

In the final chapter of this thesis, I presented a study undertaken at Google re-
search into building a complete, machine hearing based, sound effects search sys-
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tem. This system draws together aspects of the previous work in this thesis, and
demonstrates a complete content-based audio analysis system in which the fea-
tures are generated from a stabilised auditory image. Performance with the SAI-
based features exceeds that with MFCC-based features, even when the MFCCs
are extended to encompass a larger temporal window and higher spectral resolu-
tion.

The PZFC was used as the cochlear model in this system; it is an efficient com-
pressive auditory filterbank, and as demonstrated in chapter 5, can be made to
behave similarly to the more computationally demanding dcGC filterbank. In the
best-performing SAI-based system, the auditory images were generated using the
‘Lyon’ strobe detection mechanism discussed in chapter 3. This mechanism was,
found to be suboptimal for the specific task of accurate, on pulse, strobe detec-
tion. Thus, it was somewhat surprising to discover that the AIM-SAI system,
which made use of a better strobe finding mechanism, was found to support al-
most identical performance to the Lyon-SAI with baseline parameters. As dis-
cussed above, it seems that the exact choice of strobe mechanism is not of great
importance because strobed temporal integration is inherently a robust process.
It is difficult to tease apart the aspects of these systems which might lead to small
changes in overall performance on an open-ended task such as this. In future work,
I intend to assess the use of different strobe systems in a source separation task,
in order to fully understand the effect of strobe detection on the generation of
stabilised auditory images.

In the Google machine hearing system, the auditory features were extracted from
the SAI with ‘box-cutting’; that is, the SAI was broken up into overlapping boxes
of different scales and the contents of each box contributed independently to the
sparse code used to represent the image. The sparse features used in this study are
not, inherently, scale shift invariant. Rather, box-cutting followed by sparse coding
is intended to make it possible to identify spectro-temporal patterns in different
regions of the SAI. In future work, I intend to compute sparse multiscale features
for representations derived from the SAI such as the SSI and the Mellin image
(Irino & Patterson, 2002).
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7.6 Future	work

The field of machine hearing is a relatively new one, and this thesis covers a range of
interests within the field – from the low-level operation of the auditory filterbank,
to the choice of feature representation for a particular audio analysis task. From the
studies described here there are, of course, myriad possible research paths which
could be investigated. I have demonstrated some key applications of machine hear-
ing systems, highlighting the potential utility of such systems for scale-independent
speech recognition and content-based audio search.

I believe that the groundwork has been laid for the development of a ‘canonical’
baseline system for machine hearing systems. Such a system would likely combine
the PZFC, as an efficient compressive auditory filterbank, with the ‘local max-
imum’ strobe finding algorithm to generate stabilised auditory images. This SAI
could be used as the basis of a number of feature representations, either by warp-
ing the time-interval axes of the different filterbank channels independently to
generate the SSI, or by direct sampling of the SAI itself. The ‘box-cutting’ sparse
features described in chapter 6 present one future direction for feature represent-
ations from the SAI. These have been proven in a large-scale content-based audio
analysis task, but there are also many other possibilities for feature representations
from the SAI. As shown in chapter 5, the temporal profile of the SAI can provide
a pitch track, even for stimuli which lack a strong harmonic structure, and the
scale shift invariant features developed in chapter 2 show a potential route for the
scale-independent analysis of audio.

Many of the individual components of machine hearing systems are well-understood,
but the study of integrated machine hearing systems is still a developing field.
There is still much to be done to understand the exact effect that changes to the
low-level components of a machine hearing system have on the high-level behaviour
of the system, but given a strong baseline system to work from, I hope that this task
will become easier. Many of the tools developed in this thesis may prove useful for
the future study of machine hearing. The source code for AIM-C is available on-
line under the Apache 2.0 licence which allows for free copying and development
for both commercial and noncommercial applications. AIM-C contains modules
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which can be combined to generate the scale-shift invariant features used in the
syllable recognition task, and the AIM-SAI variant of the sparse feature represent-
ation described in chapter 6. Furthermore, there are also modules in AIM-C for
the generation of the box-cutting features and sparse codes. Many of the AIM-C
modules have been ported to the Marsyas framework for music analysis by Steven
Ness, and indeed the sparse features from box-cutting were used as the basis for
an entry to the 2010 MIREX music genre classification challenge. As such, the
AIM-C modules developed here provide an excellent basis for the future study of
machine hearing systems. I’m very excited by the future of machine hearing and I
look forward to testing the performance of, and putting to work, ever-improving
feature representations based on an understanding of human audition.
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