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Abstract

Density estimation is a fundamental statistical problem. Many methods are either

sensitive to model misspecification (parametric models) or difficult to calibrate, especially

for multivariate data (nonparametric smoothing methods). We propose an alternative

approach using maximum likelihood under a qualitative assumption on the shape of

the density, specifically log-concavity. The class of log-concave densities includes many

common parametric families and has desirable properties. For univariate data, these

estimators are relatively well understood, and are gaining in popularity in theory and

practice. We discuss extensions for multivariate data, which require different techniques.

After establishing existence and uniqueness of the log-concave maximum likelihood

estimator for multivariate data, we see that a reformulation allows us to compute it

using standard convex optimization techniques. Unlike kernel density estimation, or

other nonparametric smoothing methods, this is a fully automatic procedure, and no

additional tuning parameters are required.

Since the assumption of log-concavity is non-trivial, we introduce a method for

assessing the suitability of this shape constraint and apply it to several simulated datasets

and one real dataset. Density estimation is often one stage in a more complicated

statistical procedure. With this in mind, we show how the estimator may be used for

plug-in estimation of statistical functionals. A second important extension is the use of

log-concave components in mixture models. We illustrate how we may use an EM-style

algorithm to fit mixture models where the number of components is known. Applications

to visualization and classification are presented. In the latter case, improvement over a

Gaussian mixture model is demonstrated.

Performance for density estimation is evaluated in two ways. Firstly, we consider

Hellinger convergence (the usual metric of theoretical convergence results for nonpara-

metric maximum likelihood estimators). We prove consistency with respect to this metric

and heuristically discuss rates of convergence and model misspecification, supported

by empirical investigation. Secondly, we use the mean integrated squared error to

demonstrate favourable performance compared with kernel density estimates using a

variety of bandwidth selectors, including sophisticated adaptive methods.

Throughout, we emphasise the development of stable numerical procedures able to

handle the additional complexity of multivariate data.
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1 Introduction

1.1 Motivation

This thesis outlines one approach to the fundamental statistical problem of density

estimation. In the simplest case we are given an independent sample
�

X1, . . . , Xn
	

drawn

from some distribution assumed to have density f0 in Rd . Our task is to estimate the un-

derlying density. Applications include clustering, exploratory data analysis, classification,

and data display (Silverman, 1986; Thompson and Tapia, 1990).

There are many possible approaches to this problem, from the most restrictive

parametric models to the most flexible nonparametric methods. In recent years, there

has been considerable interest in the area of shape restricted maximum likelihood

inference (Balabdaoui, 2004; Groeneboom, Jongbloed, and Wellner, 2001b; Rufibach,

2007; Walther, 2002). We examine one form of shape restriction, namely log-concavity,

which has attracted particular attention (Balabdaoui, Rufibach, and Wellner, 2009;

Chang and Walther, 2007; Rufibach, 2007; Walther, 2008).

Development of a new technique for an old statistical problem requires both compu-

tational considerations (for we must be able to evaluate and compute with our estimator

if it is to be of any use) and an evaluation of theoretical and practical performance.

After some discussion to motivate our restriction to log-concave densities, we present

computational techniques for this estimator. We discuss how this estimator may be used,

and investigate the finite-sample performance through simulations.

In this chapter, we review some existing methods of density estimation (Sections 1.2.1

and 1.2.2), consider their advantages and disadvantages, and introduce the basic ideas

of shape-constrained maximum likelihood estimation (Section 1.2.3).

1.2 Methods of density estimation

1.2.1 Parametric models and maximum likelihood

One approach to the density estimation problem is to assume that f0 = f (·,θ0) belongs

to a family of densities

Fθ =
�

f (·;θ): θ ∈Θ
	

1



1.2 Methods of density estimation

indexed by a finite-dimensional parameter θ ∈Θ⊆ Rd , which, assuming our model is

identifiable, reduces our problem to that of constructing an estimate bθn of θ0. Once this

has been done, the density may be estimated by bfn(·) = f (·, bθn); under conditions on the

map θ 7→ f (·;θ), asymptotic results for parameter estimation carry over to the density

estimation setting.

There are many general methods for parametric estimation, including the method of

moments and maximum likelihood (Rice, 1995). The latter, introduced by Fisher (1922),

bases estimation on maximization of the likelihood function

Ln(θ) =
n
∏

i=1

f (X i;θ),

or equivalently the (averaged) log-likelihood

`n(θ) =
1

n

n
∑

i=1

log f (X i;θ) =

∫

log f (x;θ) dFn(x). (1.1)

Here Fn denotes the empirical distribution function.

The latter is often simpler to deal with in terms of calculating the maximum likelihood

estimator
bθn = argmax

θ∈Θ
`n(θ).

It also simplifies theoretical considerations because the behaviour of (1.1) is easier to

study asymptotically, thanks to the laws of large numbers and their generalizations.

The asymptotic properties of these estimators are well understood (at least in the

context of exponential families) (Pace and Salvan, 1997; Rice, 1995, and the references

therein), and widely used due to the desirable theoretical properties of the estimators (for

example, asymptotic efficiency, asymptotic normality and attainment of the Cramer-Rao

lower bound) which, under reasonable continuity assumptions, extend to the estimates

of the density function as well as those of the parameters. In more complicated models,

computational techniques such as the bootstrap (Efron and Tibshirani, 1993) may be

used to construct confidence intervals where closed-form theoretical analysis is not

possible.

It may be shown that, using ‖·‖2 to denote the Euclidean norm on Rd , under

regularity conditions






bθn− θ0







2
= Op(n

−1/2). (1.2)

As already discussed, under some conditions on the map θ 7→ f (·,θ) and for a suitable

choice of norm, the same holds for






bfn− f0




.

However, the maximum likelihood approach does nothing to address the problem

2



1.2 Methods of density estimation

of finding a suitable family Fθ , which Fisher (1922) called “entirely a matter for the

practical statistician”. The consequences of model misspecification can be severe (Huber,

1967; White, 1982), and there have been many attempts to make statistical estimation

procedures less sensitive to this (Huber and Ronchetti, 2009).

1.2.2 Nonparametric Smoothing

If no suitable parametric model is available, we may prefer to make fewer assumptions

about the underlying density. This comes at a price: our estimate will almost certainly

converge more slowly than the O(n−1/2) in (1.2), and computation is usually more

complicated or expensive than the finite-dimensional maximization problem of (1.1).

However, we will be free from making arbitrary assumptions about the shape of the

density and can more easily adapt to features of the data in a way that may not be

possible using a parametric model.

In a fully nonparametric setting (in which we make no assumptions about f0 at

all), the maximum likelihood approach breaks down. If we attempt to maximize the

log-likelihood (1.1) over all densities, we find that `n( f ) can be made arbitrarily large,

even if we place smoothness restrictions on our density. Informally, this is because we

can approximate
1

n
δ(x − X i),

a point mass at each observation point, arbitrarily closely.

For example, suppose X1, . . . , Xn is a 1-dimensional sample. Set

fh(x) =
1

n

n
∑

i=1

φh
�

x − X i
�

where φ is a standard normal density and

φh(x) =
1

h
φ

� x

h

�

.

Then

`n( fh) =
1

n

n
∑

i=1

log fh(X i)→∞

as h→ 0.

From this point of view, then, the empirical distribution function can be viewed

as the nonparametric maximum likelihood estimate (see Thompson and Tapia (1990)

for a more detailed discussion of this viewpoint). However, when our interest is in

estimating the density (for example, for classification or visualization purposes), a

3



1.2 Methods of density estimation

different approach is necessary.

Since density estimation is inevitably a tradeoff between fidelity (goodness-of-fit to

the data) and parsimony (a simple model), one approach is to simply add a penalty term

for “roughness” and maximize the penalized log-likelihood

`n( f ;λ,ρ) =
1

n

n
∑

i=1

log f (X i)−λρ( f )

where ρ is some roughness measure such as

ρ( f ) =

∫

( f
′′
(x))2 d x

and λ a parameter that must be chosen from the data, for example by cross-validation.

Perhaps the most popular nonparametric density estimator is the kernel density

estimator, introduced for univariate data by Fix and Hodges (1951) (see also Fix and

Hodges, 1989; Parzen, 1962; Rosenblatt, 1956). This is conceptually simple: we estimate

the f0, a density on R, using a function of the form

bfn(x; K , h) =
1

n

n
∑

i=1

Kh(x − X i)

where K is (typically) a symmetric density, h a strictly positive bandwidth, and

Kh(x) =
1

h
K
� x

h

�

.

Like many common nonparametric density estimates that at first glance appear to

have nothing to do with the likelihood approach, the kernel density estimator can also

be interpreted as a certain kind of maximum likelihood estimator. Specifically, we may

write the kernel estimator as the maximum smoothed likelihood estimator

arg max
f

`n,h( f ),

where

`n,h( f ) =
1

n

n
∑

i=1

(Kh ∗ log f )(X i).

and

( f ∗ g)(x) =

∫

f (x − y)g(y) d y.

This viewpoint is advocated by Eggermont and LaRiccia (2001).
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1.2 Methods of density estimation

The extension to multivariate data is, in theory, straightforward. In this case, K is

typically a spherically symmetric density, and the smoothing parameter H is a symmetric

positive definite matrix. The kernel density estimator is then

bfn(x; K , H) =
1

n

n
∑

i=1

KH(x − X i)

where

KH(x) =
1

|H|1/2
K
�

H−1/2 x
�

.

In order to use kernel density estimation in practice, K and h or H must be specified,

with the choice of smoothing parameter being particularly important. The ideal smooth-

ing parameter must strike a balance between a close fit to the data (requiring a small

bandwidth, leading to higher variance) and smoothness (requiring a large bandwidth,

leading to higher bias). Despite recent progress (surveyed in Section 5.5), choosing a

suitable smoothing parameter remains a practical problem.

If H is chosen appropriately, it may be shown that, under regularity conditions on

f and K, the asymptotic mean integrated squared error error is Op(n−4/(d+4)) (Scott,

1992; Wand and Jones, 1995). This compares with Op(n−1) for parametric methods as

discussed in the previous section.

There are many other smoothing methods, for example, wavelet methods (Donoho,

Johnstone, Kerkyacharian, and Picard, 1996), spline methods (Eubank, 1988; Wahba,

1990), penalized likelihood (Eggermont and LaRiccia, 2001), and vector support methods

(Vapnik and Mukherjee, 2000). For a review, see Ćwik and Koronacki (1997). However,

all suffer from the drawback that some smoothing parameter must be chosen, and the

optimal value typically depends on the unknown density. It can be difficult to achieve

the correct balance between high variance (caused by undersmoothing) and high bias

(caused by oversmoothing), especially when d > 1.

For nonparametric density estimation methods, the choice of error criterion can

have a significant effect on asymptotic results. Even (in)consistency can vary according

to choice of norm (van de Geer, 2000). L1, L2 and L∞ norms, the Kullback-Leibler

divergence and Hellinger distance have all been studied. Devroye and Györfi (1985)

argue in favour of the L1 norm, which is the only Lp norm invariant under affine

transformation. This is also true of the Hellinger distance and Kullback-Leibler divergence

(studied in Chapter 5), which are important for nonparametric maximum likelihood,

although they are not so readily interpretable. For kernel density estimation, the L2

norm has been preferred for its easy decomposition into bias and variance terms (Wand

and Jones, 1995). We use this in Section 5.5.
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1.2 Methods of density estimation

1.2.3 Shape-constrained maximum likelihood estimation

From the arguments at the start of Section 1.2.2, in order for maximum likelihood to be

used outside the parametric setting of Section 1.2.1 some restrictions are necessary to

ensure that the density does not get too “spiky”.

Shape-constrained maximum likelihood inference was first introduced by Grenander

(1956) in the context of estimating mortality under the assumption of monotonicity.

In this article, an explicit characterization of the nonparametric maximum likelihood

estimator as the least concave majorant of the empirical distribution function was given.

Since then a number of other shape constraints have been investigated, including

unimodality with known mode (Rao, 1969), convexity (Groeneboom et al., 2001b),

k-monotonicity, (Balabdaoui and Wellner, 2007) and log-concavity (Dümbgen and

Rufibach, 2008; Walther, 2002). Not all shape constraints are suitable for this approach

– for example, the nonparametric maximum likelihood estimator of a unimodal density

with unknown mode does not exist (Birgé, 1997).

In some cases a shape constraint may result from the physical problem under consid-

eration (Hampel, 1987; Wang, Woodroofe, Walker, Mateo, and Olzewski, 2005; Watson,

1971). In this case, it is natural to use a shape-constrained estimator. Even if no max-

imum likelihood estimator exists for the desired class (e.g. unimodal densities with

unknown mode, Birgé, 1997), a small additional restriction (e.g. log-concavity) may

enable us to use this technique. Even in the absence of a suitable physical model, the

lack of tuning parameters makes this approach an appealing alternative to a kernel den-

sity estimate. Empirical results (Section 5.5.6) support the claim that these estimators

perform well in practice.

Various asymptotic results for the Grenander estimator have been obtained. Pointwise

limiting distributional results have been provided by Rao (1969) (see also Groeneboom,

1983), and the L1 error has been shown to be asymptotically normal, and Op(n−1/3)

(Groeneboom, Hooghiemstra, and Lopuhaä, 2001a). This has been extended to the Lp

error (Kulikov and Lopuhaä, 2005), where the Grenander estimator was shown to be

inconsistent for p > 2.5 due to the inconsistency at 0 (identified by Woodroofe and Sun,

1993).

Maximum likelihood estimation for log-concave densities in one dimension was

suggested by Walther (2002) and further explored by Dümbgen and Rufibach (2008).

Computational issues for d = 1 were addressed by Rufibach (2007) and Dümbgen, Hüsler,

and Rufibach (2007). Pointwise limit theory was provided by Balabdaoui et al. (2009),

and Hellinger consistency has been proved by Pal, Woodroofe, and Meyer (2007). An

extension to mixtures of log-concave distributions using the EM algorithm was suggested

in Chang and Walther (2007).
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1.3 Outline

1.3 Outline

In Chapter 2, properties of log-concave densities are discussed. Natural applications of

log-concave densities are introduced, and we argue in favour of this class as a proxy

for other shape-constrained classes for which no maximum likelihood estimator exists

(for example, unimodal densities or densities with increasing hazard function). We

also argue that this is a suitable class for nonparametric modelling in a general setting.

In Section 2.4, we demonstrate the existence and uniqueness of the multivariate log-

concave maximum likelihood estimator. We also present some structural features of the

maximum likelihood estimator which will be important in Chapter 3.

Chapter 3 discusses the application of subgradient based optimization methods

(Kappel and Kuntsevich, 2000; Shor, 1985) to our likelihood maximization problem.

These methods were implemented as the package LogConcDEAD (Log-Concave Density

Estimation in Arbitrary Dimensions) in R (R Development Core Team, 2008), and are

discussed in detail in this chapter. We heuristically discuss computational complexity.

Further calculations using the maximum likelihood estimator (for example, to compute

marginal densities, to evaluate the estimator and to sample from the density) are

discussed. This chapter finishes with several examples of the use of LogConcDEAD

illustrating some important structural features of this estimator.

Log-concavity is a non-trivial assumption, so it is important to have a method for

assessing its suitability. The first part of Chapter 4 presents such a method. This is

applied to several simulated datasets and to a real dataset, for which we conclude a

single component log-concave model is inadequate. We then discuss application to

functional estimation using several examples. Finally, we discuss an EM-style algorithm

designed to fit finite mixtures of log-concave densities using maximum likelihood. This

is a significant extension of the log-concave model and greatly extends its practical

relevance. We apply this to the dataset introduced at the beginning of this chapter. We

also present an example application to clustering for a second real dataset, and see a

significant improvement in misclassification rate over a Gaussian mixture fitted using

the EM algorithm.

In Chapter 5, we discuss the asymptotic performance of the estimator. Two points of

view are considered. We review the standard approaches to consistency and convergence

rates of nonparametric maximum likelihood using empirical process theory. We extend

the result of Pal et al. (2007) to prove consistency of our estimator with respect to the

Hellinger distance for arbitrary d. Rates of convergence are discussed, and we present

simulation results using the Hellinger distance for several examples. Convergence

in the case of a misspecified model is also considered. In the second part of this

7



1.3 Outline

chapter, we compare the log-concave maximum likelihood estimator to a common

competitor, the kernel density estimator. A variety of bandwidth selectors are discussed,

and compared empirically with the log-concave maximum likelihood estimator using the

mean integrated squared error criterion. The log-concave maximum likelihood estimator

is shown to perform well in comparison with kernel methods.

Background material and definitions of terms from convex analysis and computa-

tional geometry are given in Appendix A. As an illustration of the package LogCon-

cDEAD, the R code used to produce the figures in Section 3.8 is given in Appendix B.

A summary of notation and symbols is given on page 125.
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2 Log-concave density estimation

2.1 Introduction

In this chapter, we discuss some basic properties of log-concave densities and their appli-

cations, and explain why we find this an attractive and flexible model for multivariate

density estimation. In Section 2.4, we prove existence and uniqueness of a maximum

likelihood estimator. The insight given by this proof into the structure of the maximum

likelihood estimator will be useful in Chapters 3 and 4.

2.1.1 Basic definitions

A function f : Rd → [0,∞) is said to be log-concave if log f is concave, that is, if

log f (λx + (1−λ)y)≥ λ log f (x) + (1−λ) log f (y) (2.1)

for all λ ∈ (0,1) and all x , y ∈ Rd . We adopt the convention log0=−∞.

Note that (2.1) is equivalent to the condition

f (λx + (1−λ)y)≥ f (x)λ f (y)1−λ.

We say a probability measure P onBd , the Borel σ-algebra in Rd , is log-concave if

P(λA+ (1−λ)B)≥ P(A)λP(B)1−λ (2.2)

for all λ ∈ (0,1) and all A, B ∈ Bd . A key result is that a probability measure P is

log-concave if and only if P is absolutely continuous with respect to the affine hull of

the support of P, and the corresponding density is log-concave in the sense of (2.1)

(Dharmadhikari and Joag-Dev, 1988, Theorem 2.8). We say an Rd -valued random

variable X is log-concave if the corresponding probability measure is log-concave. Since

we may change the density at a point without altering the probability measure, the

density of a log-concave random variable refers to the version of the density satisfying

(2.1) throughout. Karlin (1968) showed that the class of log-concave densities are

precisely the densities with Pólya frequency of order 2.
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2.2 Properties of log-concave random variables

2.1.2 Examples

Using the criterion (2.1), it is straightforward to verify that the class of log-concave

densities includes many common parametric families (at least for certain parameter

values). For d = 1, examples include the Gaussian distribution, uniform distribution,

Weibull(α) distribution for α ≥ 1, Γ(n,λ) distribution for n ≥ 1 and Beta(a, b) distri-

bution for a, b ≥ 1. For a more comprehensive list of one-dimensional examples, see

Bagnoli and Bergstrom (2005). Multivariate examples include the multivariate normal

distribution, Wishart distribution and the Dirichlet distribution.

2.2 Properties of log-concave random variables

The following general fact about log-concave functions gives rise to some additional

properties of log-concave densities.

Theorem 2.1 (Prékopa, 1973). Let f (x , y) be a log-concave function on Rm × Rn, with

x ∈ Rm and y ∈ Rn. Further, let A be a convex subset of Rn. Then

g(x) =

∫

A

f (x , y) d y

is a log-concave function on Rm.

2.2.1 Sums of log-concave random variables

Observing that the product of two log-concave functions is log-concave, we have the

following corollary to Theorem 2.1. If d = 1, this corollary also arises as a consequence

of Theorem 2.9.

Corollary 2.2. If f and g are two log-concave functions on Rm, then their convolution

product f ? g is log-concave. In particular, if X and Y are independent Rd -valued log-

concave random variables, then X + Y is log-concave.

The probabilistic interpretation of Corollary 2.2, namely that the sums of independent

log-concave random variables are log-concave, is an attractive feature of this class. As

will be seen in Section 2.2.7, this property is not shared by the class of unimodal random

variables.

2.2.2 Limits

Using the characterization (2.2), it is proved in Dharmadhikari and Joag-Dev (1988,

Theorem 2.10) that the property of log-concavity is preserved under weak limits. As
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2.2 Properties of log-concave random variables

a direct consequence of Rockafellar (1997, Theorem 10.8), log-concavity is preserved

under pointwise limits.

2.2.3 Product measures

It is proved in Dharmadhikari and Joag-Dev (1988, Theorem 2.7) that, if P and Q are

log-concave measures on Rp and Rq respectively, then P×Q is log-concave on Rp×q.

This fact is used to prove that log-concave random variables (in the sense of (2.2)) have

log-concave densities.

2.2.4 Marginals and conditionals

Let X denote a log-concave Rd -valued random variable, and let T = PX , where P is

the matrix of some orthogonal projection onto a k-dimensional subspace of Rd . By

performing a suitable orthogonal transformation (so that the projection is on to the first

k components of X ) and observing that {x : P x = t} is a convex set (Definition A.2) for

t ∈ Rd , we see immediately using Theorem 2.1 that the marginal density

fT (t) =

∫

{x : P x=t}

fX (x) d x

is log-concave. In particular, we have the following corollary.

Corollary 2.3. If f is a log-concave density on Rd , then all marginal densities are log-

concave.

Considering the same projection, the conditional density fX |T is given by

fX |T (x |t) =







fX (x)1{P x=t}

fT (t)
if fT (t)> 0

0 else.

Observe that if fT (t) = 0 then fX |T (x |t) = 0 for all x , so fX |T is log-concave. If fT (t)> 0,

then fX |T (x |t) is log-concave (as a function of x for fixed t) by Theorem 2.1, since

{x : P x = t} is a convex set.

Combining these two observations, we have the following

Theorem 2.4. Suppose X is an Rd -valued log-concave random variable with density f , and

T is the result of orthogonally projecting X onto some k-dimensional subspace of Rd . Then

the marginal density fT and the conditional density fX |T (·|t) (for fixed t) are log-concave.

For the converse, we may weaken the conditions slightly.
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2.2 Properties of log-concave random variables

Theorem 2.5. Suppose X is an Rd -valued random variable with density f such that, for

every projection onto a (d − 1)-dimensional subspace with corresponding projection matrix

P, the conditional density fX |T (·|t) is log-concave, where T = PX . Then f is log-concave.

Proof. Take two points x and y in Rd and λ ∈ (0,1). Set

V = {τ(x − y): τ ∈ R},

and let V⊥ denote the orthogonal complement of V . Let P be the matrix corresponding

to orthogonal projection onto V⊥, and set t = P x (= P y). If fT (t) = 0, we can set

fX (λx + (1−λ)y) = 0. If fT (t)> 0,

fX (λx + (1−λ)y) = fX |T (λx + (1−λ)y|t) fT (t)

so that fX is log-concave.

2.2.5 Existence of moments

Clearly a log-concave random variable must have light tails (the borderline case being

the exponential distribution). This is made precise by the following result. For d = 1, a

proof may be found in Dharmadhikari and Joag-Dev (1988) or Eggermont and LaRiccia

(2001).

Theorem 2.6. Suppose X is an Rd -valued log-concave random variable. Then there exists

θ0 > 0 such that, for all θ ∈ Rd with ‖θ‖2 < θ0, MX (θ) = E(eθ
T X )<∞.

Proof. First we consider the case d = 1. Suppose X is a real-valued random variable

with log-concave density f . Following Eggermont and LaRiccia (2001), observe that for

a and x ∈ R, we have

log f (x) = log f (a) +

∫ x

a

d

d y
log f (y) d y.

Since d
d x

log f (x) is nonincreasing, for x > a

log f (x)≤ log f (a) + (x − a)
d

d y
log f (y)

�

�

�

�

y=a

and for x < a

log f (x)≤ log f (a) + (a− x)
d

d y
log f (y)

�

�

�

�

y=a
,

12



2.2 Properties of log-concave random variables

so that

log f (x)≤ log f (a) + |x − a|
d

d y
log f (y)

�

�

�

�

y=a
.

Since f is integrable, we must have

d

d y
log f (y)

�

�

�

�

y=a
< 0

for at least one a ∈ R, so we conclude that for some strictly positive constants A and c

we have

f (x)≤ Aexp(−c |x |)

and the result follows, taking θ0 = c.

For the multivariate extension, observe that each of the marginal components 1, . . . , d

is log-concave (Theorem 2.4). Set ci and Ai to be constants such that, for component i,

the marginal density fi satisfies

fi(x)≤ Ai exp(−ci |x |),

and set c =min{c1, . . . , cd}. Then, for each nonzero θ ∈ Rd such that
∑
�

�θi

�

�< c,

MX (θ) = E
h

eθ
T X
i

= E
�

exp
�

θ1X1+ . . .+ θd Xd
��

= E



exp

 �

�θ1

�

� sgn(θ1)
∑
�

�θi

�

�

∑
�

�θi

�

�

X1+ . . .+

�

�θd

�

� sgn(θd)
∑
�

�θi

�

�

∑
�

�θi

�

�

Xd

!



≤

�

�θ1

�

�

∑
�

�θi

�

�

E
h

exp
�

sgn(θ1)
∑
�

�θi

�

�X1

�i

+ . . .

+

�

�θd

�

�

∑
�

�θi

�

�

E
h

exp
�

sgn(θd)
∑
�

�θi

�

�Xd

�i

<∞,

using Jensen’s inequality and the d = 1 result.

2.2.6 Mixtures

A mixture of log-concave densities may be log-concave, but in general it will not be.

This contrasts with the situation for log-convex densities, where mixtures are always

log-convex (An, 1995, 1998).
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2.2 Properties of log-concave random variables

The key to understanding mixtures of log-concave random variables is the following

proposition, proved in Walther (2002).

Proposition 2.7 (Walther, 2002). Let X1, . . . , Xk be log-concave random variables on Rd . Let

X i have density fi and support Si, and let S = ∩k
i=1Si. Then on any compact subset of S,

and for any πi > 0 with
∑k

i=1πi = 1, we have the following representation:

f (x) =
k
∑

i=1

πi fi(x) = exp(ϕ(x) + c ‖x‖22) (2.3)

for some c ≥ 0 and some concave function ϕ.

Clearly if the representation above holds for c = c0, then it also holds for c > c0

since the sum of two concave functions is concave (Rockafellar, 1997, Theorem 5.2).

Moreover, if this representation holds for all c > c0 for some c0, then

log f (x)− c0 ‖x‖
2
2 = inf

c>c0

¦

log f (x)− c ‖x‖22
©

so by Rockafellar (1997, Theorem 10.8), this also holds for c = c0. Thus the representa-

tion (2.3) holds if and only if c ∈ [ctrue,∞) for some ctrue ≥ 0.

The following example illustrates that mixtures of log-concave random variables may

be log-concave. In this case, we may also identify the values c for which (2.3) holds.

Example 2.8. Let φ denote a d-dimensional standard Gaussian density. Then the

mixture

f (x) = pφ(x) + qφ(x −µ)

(where q = 1− p and 0 < p < 1) is log-concave if and only if


µ




2 ≤ 2. Further, the

representation (2.3) holds if and only if

c ≥max
�

0,
1

4



µ




2
2− 1

�

Proof. A smooth function g : Rd → R is concave if and only if −∇∇T g(x) is positive

semi-definite for all x ∈ Rd (Rockafellar, 1997, Theorem 4.5). In this case, recalling that

∇φ(x) =−xφ(x)

and

∇∇Tφ(x) = (x x T − I)φ(x),
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2.2 Properties of log-concave random variables

we see that

∇ log f (x) =
−pφ(x)x − qφ(x −µ)(x −µ)

f (x)

and

∇∇T log f (x) =
−p2φ2(x)I − q2φ2(x −µ)I + pqφ(x)φ(x −µ)(µµT − 2I)

f 2(x)

=−h(x)
�

I − g(x)(µµT − 2I) + g2(x)I
�

=−h(x)
�

(g(x)I − A)(g(x)− I − A)T − AAT + I
�

where

h(x) =
p2φ2(x)

f 2(x)
,

g(x) =
qφ(x −µ)

pφ(x)
and

A=
1

2
µµT − I .

Note that h and g are both strictly positive functions, so −∇∇T log f (x) will be

positive definite if and only if

−(AAT − I) = I −
1

4

�

µµT − 2I
��

µµT − 2I
�T

= (1−
1

4



µ




2
2)µµ

T

is positive definite, which occurs if and only if

1−
1

4



µ




2
2 ≥ 0,

that is if


µ




2 ≤ 2. The preceding calculation shows that the smallest value of c satisfying

(2.3) is

max
�

0,
1

4



µ




2
2− 1

�

.

2.2.7 Connection with unimodality

One application of log-concave densities is as a proxy for the class of unimodal densities,

since this is a natural shape constraint, but the likelihood within this class is unbounded.

We say a function f : R→ R is unimodal if there exists a µ ∈ R such that f is nondecreas-
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2.2 Properties of log-concave random variables

ing on (−∞,µ) and nonincreasing on (µ,∞). We say a random variable is unimodal if

its density is unimodal.

There is no universally agreed extension of this definition to d > 1 (see Dharmad-

hikari and Joag-Dev, 1988, Chapter 2 for various possibilities). Following Ibragimov

(1956), we say a function f : Rd → R is unimodal if f is quasiconcave, that is, if for

each α ∈ R, {x : f (x)≥ α} is a convex set. This corresponds to what Dharmadhikari and

Joag-Dev (1988) calls convex unimodality. Note that this coincides with the definition

above if d = 1.

Any log-concave density is unimodal according to this definition, since for α > 0,

{x : f (x)≥ α}= {x : log f (x)≥ log(α)},

which is convex (Rockafellar, 1997, Theorem 4.6); however, the converse is false. For

example, the Cauchy density

f (x) =
1

π(1+ x2)
, x ∈ R

is unimodal according to this definition. However,

log f (x) =− log(π(1+ x2))

so that
d

d x
log f (x) =

−2x

1+ x2

and
d2

d x2 log f (x) =
2x2− 2

(1+ x2)2
.

This means
d2

d x2 log f (x)> 0 for |x |> 1,

so log f is not concave (Rockafellar, 1997, Theorem 4.5).

If d = 1, log-concave densities can be characterized as follows (Ibragimov, 1956,

discussed in Eggermont and LaRiccia (2001) and Barndorff-Nielsen (1978)).

Theorem 2.9 (Ibragimov, 1956). A density f on R is log-concave if and only if the convolution

f ? g is unimodal for any unimodal density g in R.

This has led to log-concave densities sometimes being referred to as strong unimodal

densities (Ibragimov, 1956). Note that this gives an alternative proof of Corollary 2.2 for

d = 1.

Closure under convolution does not hold for the class of unimodal distributions
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2.3 Applications of log-concave densities

as the following example, suggested by Feller (1971, page 168). A discussion, and

further examples, may be found in Dharmadhikari and Joag-Dev (1988). Consider two

independent random variables X1 and X2, both with density

g(x) =
1

2
1[0,1](x) +

1

2
1[0,5](x).

This is unimodal (as can be seen from Figure 2.1(a), displaying this density). However,

the density h of the random variable X1+ X2, shown in Figure 2.1(b), is not unimodal.
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(a) Density of X1 and X2 (independent)
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(b) Density of X1 + X2

Figure 2.1: Example showing the sum of independent unimodal random variables is not
necessarily unimodal.

2.3 Applications of log-concave densities

Applications of log-concavity have so far focused on the univariate setting. Useful general

references include Bagnoli and Bergstrom (2005), An (1998) and An (1995).

If d = 1, a log-concave density implies an increasing hazard function (the “new is

better than used” property, An, 1998), and this, combined with the flexibility of this

class, has made the class of log-concave densities an important tool for reliability theory

(Barlow and Proschan, 1975). An (1995) also introduced robust tests for this property.

There has also been interest in the field of econometrics (An, 1998; Bagnoli and

Bergstrom, 2005). Log-concavity of the generalized extreme value distribution and

the generalized Pareto distribution for important parameter values is demonstrated in

Müller and Rufibach (2007). Müller and Rufibach (2009) suggest replacing the empirical

distribution function with an integrated maximum likelihood density estimate to obtain
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2.4 Existence and uniqueness of maximum likelihood estimator

smooth tail index estimates. Log-concavity has also been used to improve convergence

of MCMC algorithms (Brooks, 1998).

Log-concave densities are a subclass of unimodal densities, and may be a useful

surrogate since estimation under the restriction of unimodality is difficult if the mode is

unknown (Birgé, 1997; Walther, 2008). Using the mode of the log-concave maximum

likelihood estimator as an estimator of the mode of a unimodal distribution has been

investigated in Balabdaoui et al. (2009).

In the multivariate setting, this is a flexible model, containing many common para-

metric families. As we have seen, the class has desirable theoretical properties, for

example closure under convolution and the taking of weak limits, the preservation of log-

concavity for marginal and conditional densities, and the preservation of log-concavity

under affine transformation (An, 1998). Unlike, for example, a Gaussian model, a

log-concave density can incorporate skewness or other asymmetry.

There are several fast algorithms available to compute the log-concave maximum

likelihood estimator for the univariate case (Dümbgen et al., 2007; Rufibach, 2007). The

lack of algorithms to compute the estimator for d > 1 has so far held back applications

for multivariate data. We go some way towards addressing this problem.

This is, of course, still a restrictive family, being unimodal with exponentially light

tails. However, the extension to mixtures discussed in Section 4.4 broaden the appeal of

this method.

2.4 Existence and uniqueness of maximum likelihood estimator

In this section, we demonstrate the existence and uniqueness of the log-concave maxi-

mum likelihood estimator
bfn = arg max

f ∈F
`n( f ),

for data {X1, . . . , Xn} in Rd , where F denotes the class of all log-concave densities. The

structure of the proof is similar to that used to treat other classes of shape-constrained

maximum likelihood estimators (Grenander, 1956; Groeneboom et al., 2001b). Firstly,

we show that likelihood maximization over the entire class is equivalent to likelihood

maximization over a particular finite-dimensional subclass. Secondly, we show (for

example, using the convexity of a modified objective function) the existence of a unique

maximizer within this class.

The case d = 1 was treated in Dümbgen and Rufibach (2008); Pal et al. (2007);

Rufibach (2006); Walther (2002). A proof using Theorem 2.9 was given in Eggermont

and LaRiccia (2001, p. 423).
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2.4 Existence and uniqueness of maximum likelihood estimator

The proof given here gives valuable insight into the structure of the maximum

likelihood estimator, which we use in Chapter 3. A summary of the relevant results and

definitions from convex analysis can be found in Appendix A.

2.4.1 Main theorem and proof

In this section we prove our main result.

Theorem 2.10. Suppose that X1, . . . , Xn are iid observations taking values in some subset

S ⊆ Rd (with n > d) drawn from a distribution with density f0 with respect to Lebesgue

measure. Then, with probability one, there is a unique log-concave maximum likelihood

estimator

bfn = arg max
f ∈F

1

n

n
∑

i=1

log f (X i)

where F is the class of all log-concave densities.

Proof. First, observe that, via an affine transformation taking S to a subset of Rd with the

last d − dim(S) components being zero, we may restrict attention to the case dim S = d.

With probability one, the observations X1, . . . , Xn will be distinct, and

Cn = conv
�

{X1, . . . , Xn}
�

,

the convex hull of the observations, will have dimension d.

Now write

G =
¦

f : Rd → R: f log-concave
©

for the class of all log-concave functions. In order to optimize over G rather than F , we

add a Lagrangian term and minimize

ψn( f ) =−
n
∑

i=1

1

n
log f (X i) +

∫

f (2.4)

over f ∈ G .

As a preliminary, for any vector y ∈ Rn, let

h̄y(x) = inf
�

h(x): h concave and h(X i)≥ yi for i = 1, . . . , n
	

(2.5)

and define

H =
¦

h̄y : y ∈ Rn
©

. (2.6)

We prove this theorem by showing that, if a function f ∈ G minimizes ψn over G , it also
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2.4 Existence and uniqueness of maximum likelihood estimator

has the following properties:

(1) f (x)> 0 for x ∈ Cn

(2) f (x) = 0 for x /∈ Cn

(3)
∫

f = 1

(4) log f ∈H , whereH is as defined in (2.6)

(5) ∃ M > 0 such that if maxi h̄y(X i)> M then ψn(exp(h̄y))>ψn( f )

This suffices to demonstrate existence, since in this case we may instead minimize

τ(y) =−
1

n

n
∑

i=1

h̄y(X i) +

∫

exp(h̄y(x)) d x (2.7)

over y ∈ [−M , M]n. We have dropped the explicit dependence of the objective function

τ on n for legibility, but it should be remembered that the objective function depends on

the data throughout. The function τ is continuous, and [−M , M]n is a compact set, so

the minimum must be attained by some y ∈ [−M , M]n.

To show (1), note that if f (x) = 0 for some x ∈ Cn, then by Theorem 17.1 of

Rockafellar (1997), we must have

−∞= log f (x)≥
r
∑

j=1

log f (X j)

for some λ j > 0 with
∑

j λ j = 1 and r < d. Thus we must have f (X i) = 0 for some i,

whence ψn( f ) =∞. For (2), note that

ψn( f 1Cn
) =ψn( f ) +

∫

(1Cn
(x)− 1) f (x) d x

≤ψn( f ),

with equality if and only if the effective domain (Definition A.7) of log f is Cn.

For (3), suppose that
∫

f = c. By virtue of (1) and (2), we may restrict attention to

the case c ∈ (0,∞), so let ef = 1
c

f . We then have

ψn(ef ) =ψn( f )− c+ 1+ log c

≤ψn( f )

with equality if and only if c = 1. Thus f must be a density.
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2.4 Existence and uniqueness of maximum likelihood estimator

Now, for any y ∈ Rn, let h̄y be as defined in (2.5). We can think of the setH as the

set of functions obtained by placing a pole of height yi at observation X i and stretching

a piece of rubber over them. This is illustrated in Figure 2.2.

Figure 2.2: The structure of a typical element ofH . The surface is divided into simplices on
which the function is piecewise affine.

Suppose that log f (X i) = yi for i = 1, . . . , n but log f 6= h̄y . Clearly log f (x)≥ h̄y(x)

for all x ∈ Rd . If log f (x0) > h̄y(x0) for some x0 in the interior of Cn, since f is

continuous at x0 (Rockafellar, 1997, Theorem 10.1) we have µd

�¦

log f 6= h̄y

©�

> 0,

where µd denotes Lebesgue measure on Rd .This means that

∫

f (x) d x >

∫

exp(h̄y(x)) d x ,

so that

ψn(exp(h̄y))<ψn( f ).

Thus log f = h̄y on the interior of Cn.

There remains the possibility that log f (x0)> h̄y(x0) for some x0 on the boundary

of Cn. But, writing cl(g) for the closure of a convex function (see Definition A.8),

h̄y = cl(h̄y) = cl(log f )≥ log f ,

by Corollary 17.2.1 and Corollary 7.3.4 of Rockafellar (1997), so that log f is closed and

log f ∈H .

Finally, for (5), consider a log-concave function g with maxi log g(X i) = M and

mini log g(X i) = m. Clearly as m→ −∞, we have ψn(g)→∞. We show that, for M

sufficiently large, we have ψn(g)≥ψn( f ), where f satisfies (1)–(4).
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2.4 Existence and uniqueness of maximum likelihood estimator

Observe that if x ∈ Cn and log g(Xk) = M ,

log g
�

Xk +
1

M −m
(x − Xk)

�

≥
1

M −m
log g(x) +

M −m− 1

M −m
log g(Xk)

≥
m

M −m
+
(M −m− 1)M

M −m
= M − 1,

so that

µd
��

x : log g(x)≥ M − 1
	�

≥ µd

��

Xk +
1

M −m
�

Cn− Xk
�

��

=
µd(Cn)

(M −m)d .

Therefore
∫

g ≥ eM−1 µd(Cn)

(M −m)d
.

This means that, for g to be a density, we must have

m≤−
1

2
e(M−1)/dµd(Cn)

1/d .

In this case,

ψn(g)≥−
M(n− 1)

n
+

1

2n
e(M−1)/dµd(Cn)

1/d − 1

→∞ as M →∞.

For uniqueness, observe that if f1 and f2 minimize ψn, and

g =
f 1/2
1 f 1/2

2
∫

f 1/2
1 f 1/2

2

,

we have

ψn(g) =
1

2
ψn( f1) +

1

2
ψn( f2)− log

∫

f 1/2
1 f 1/2

2 ,

so that by Cauchy–Schwarz

ψn(g)≤ψn( f1) =ψn( f2)

with equality if and only if f1 ≡ f2.
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2.5 Conclusion

2.4.2 Extension to binned observations and weighted log-likelihood

In practice our observations will be made only to finite precision so the observations

will not necessarily be distinct, even if the underlying distribution is not degenerate.

However, the same method of proof shows that, more generally, if X1, . . . , Xn are distinct

points in Rd and w1, . . . , wn are strictly positive weights satisfying
∑n

i=1 wi = 1, then

there is a unique log-concave density bfn with log f ∈H which satisfies

bfn = arg max
f ∈F

n
∑

i=1

wi log f (X i). (2.8)

Of course, this includes the case wi =
1
n

discussed above. However, this generalization

allows us to extend this methodology to binned observations. In more detail, if Y1, . . . , Ym

are independent and identically distributed according to a density f0 and distinct binned

values X1, . . . , Xn are observed, we may construct a maximum likelihood problem of the

form given in (2.8), setting

wi =
# of times value X i is observed

m
.

We also use this formulation in the EM-style algorithm of Section 4.4.

2.5 Conclusion

In this chapter, we saw that log-concave densities have many desirable properties and that

this model incorporates a wide range of common parametric distributions. We discussed

some univariate applications, and motivated our use of this model for multivariate data.

We proved the existence and uniqueness of a log-concave maximum likelihood estimator.

Computing, using and understanding this estimator are addressed in the next three

chapters.

23



24



3 Computation

3.1 Introduction

Having demonstrated the existence and uniqueness of a log-concave maximum likelihood

estimator in Section 2.4.1, our next task is to formulate and implement algorithms to

compute the estimator in practice.

In this chapter, X = {X1, . . . , Xn} denote an iid sample from a distribution on Rd

with log-concave density f0. The class of log-concave densities is denoted by F , and the

log-concave maximum likelihood estimator is denoted by bfn.

In light of step (4) in the proof of Theorem 2.10, we know that the likelihood

maximization may be reformulated as

minimize τ(y) subject to y ∈ Rn (3.1)

where

τ(y) =−
1

n

n
∑

i=1

h̄y(X i) +

∫

exp(h̄y(x)) d x . (3.2)

This appears simple, but there are two practical problems. First, in order to evaluate the

objective function we must compute the integral

∫

exp(h̄y(x)) d x . (3.3)

Secondly, the objective function is not convex and therefore optimization is expensive.

Indeed, preliminary experiments using general optimization techniques (such as simu-

lated annealing) were prohibitively slow. In addition, the dimension of the optimization

problem we must solve is n, rendering a straightforward approach infeasible even for

moderate sample sizes. We therefore need to take advantage of the special structure of

h̄y in order to compute the maximum likelihood estimator for reasonably sized examples.

3.2 Evaluation of objective function

In this section we discuss the evaluation of (3.3) for arbitrary y ∈ Rn. As a first step, we

seek to understand the structure of h̄y better. The following characterizations, which
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3.2 Evaluation of objective function

follow from Corollaries 17.1.3 and 19.1.2 of Rockafellar (1997), are useful:

h̄y(x) = sup

(

d+1
∑

l=1

λl y jl :
d+1
∑

l=1

λl X jl = x for some λl ≥ 0 with
d+1
∑

l=1

λl = 1

)

(3.4)

=min
¦

bT
1 x − β1, . . . , bT

m x − βm

©

−δCn
(x) (3.5)

for some b1, . . . , bm ∈ Rd and β1, . . . ,βm ∈ R, where

δCn
(x) =







0 if x ∈ Cn

−∞ if x /∈ Cn.

In fact, from our construction of h̄y , the sets

S j =
n

i : bT
j X i − β j = yi

o

, j = 1, . . . , m

form a subdivision ofX . Roughly speaking, a subdivision partitions the space into simple

shapes called polytopes; see Definitions A.19 and A.15. This is the subdivision induced

by projecting the upper hull of the points

�

(X1, y1), . . . , (Xn, yn)
	

onto the first d components (see Figure 2.2). We write S (y) for the subdivision

corresponding to a particular y . Note not all X ∈ X need be vertices of a polytope in S
(for example, point 4 in Figure 2.2).

We may further refine this subdivision to form a triangulation (a partition into

simplices, Definition A.20) T of X such that for each T ∈ T , h̄y is affine on conv(T).

We identify each such simplex with a (d + 1)-tuple j such that

conv(T ) = C j = conv
�

{X j0 , . . . , X jd }
�

,

and write J for the collection of all such j. In a slight abuse of notation, in the following

we swap between the two representations of the triangulation.

We may then write

h̄y(x) =
∑

j∈J
(bT

j x − β j)1C j
(x)−δCn

(x) (3.6)
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3.2 Evaluation of objective function

and therefore
bfn(x) =

∑

j∈J
exp(bT

j x − β j)1C j
(x). (3.7)

Given such a triangulation J , for each j ∈ J corresponding to a simplex with

vertices {X j0 , . . . , X jd }, we set

A j =
�

X j1 − X j0 | . . . |X jd − X j0

�

and a j = X j0 . (3.8)

Then the map w 7→ A jw+ a j sends the unit d-simplex Td to the simplex C j , where

Td =

(

x ∈ [0,∞)d :
d
∑

i=1

x i ≤ 1

)

.

Further, let z j ∈ Rd have components (y j1 − y j0 , . . . , y jd − y j0). After some calculation,

we have

b j = (A
T
j )
−1z j and β j = aT

j b j − y j0 . (3.9)

In light of this, using a change of variables we may write

∫

exp(h̄y(x)) d x =
∑

j∈J

∫

C j

exp(bT
j x − β j) d x

=
∑

j∈J

�

�A j

�

� e y j0

∫

Td

exp(zT
j w) dw

=
∑

j∈J

�

�A j

�

�

∫

Td

exp(y j0(1−w1− . . .−wd) + y j1 w1+ . . .+ y jd wd) dw

=
∑

j∈J

�

�A j

�

�

∫

Td

exp(y j0 w0+ . . .+ y jd wd) dw,

where w0 = 1−w1− . . .−wd .

3.2.1 Basic properties of Gd

In this section, we discuss the basic properties of the function

Gd(y0, . . . , yd) =

∫

Td

exp

 

d
∑

k=0

ykwk

!

dw (3.10)

where w0 = 1−w1− . . .−wd . This discussion follows closely Cule and Dümbgen (2008).

Some discussion of a similar function may also be found in Cule, Samworth, and Stewart
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3.2 Evaluation of objective function

(2008). We define

G0(y0) = exp(y0), (3.11)

and observe from direct computation that

G1(y0, y1) =







exp(y1)− exp(y0)
y1− y0

if y0 6= y1

exp(y0) if y0 = y1.
(3.12)

Note that this is precisely the expression used for the one-dimensional case by Dümbgen

et al. (2007).

It may be shown that

Gd(y0, . . . , yd) =
1

d!
E



exp

 

d
∑

i=0

Bi yi

!

 (3.13)

where

Bi =
Ei

∑d
i=0 Ei

and Ei , i = 0, . . . , d are independent standard exponential random variables. Therefore

Gd is symmetric in its arguments.

The key to computing Gd is the following proposition.

Proposition 3.1.

Gd(y0, . . . , yd) =











Gd−1(y1, y2, . . . , yd)− Gd−1(y0, y2, . . . , yd)
y1− y0

if y0 6= y1

∂

∂ y1
Gd−1(y1, . . . , yd) if y0 = y1.

(3.14)

Proof. If y0 6= y1, this follows by induction using the the base case (3.11), the recursive

identity

Gd(y0, . . . , yd) =

∫ 1

0

td−1Gd−1(t y1, . . . , t yd)exp((1− t)y0) d t

and the symmetry of Gd in its arguments.

If y1 = y0, we use the first part of (3.14) and a limiting argument. More precisely,

∂

∂ y1
Gd−1(y1, . . . , yd) = lim

t→0

Gd−1(y1+ t, y2, . . . , yd)− Gd−1(y1, y2, . . . , yd)
t

= lim
t→0

Gd(y1, y1+ t, y2, . . . , yd) (3.15)
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3.2 Evaluation of objective function

= Gd(y1, y1, . . . , yd).

3.2.2 Taylor expansion of Gd

In this section, we assume that y0 ≤ y1 ≤ . . .≤ yd . This is no loss of generality because

of the symmetry of Gd in its arguments, according to (3.13).

If yi − yi−1 is not too small for any i = 1, . . . , d, we may compute Gd(y0, . . . , yd)

recursively using the first part of (3.14) and the base case (3.11). For the other case, we

derive a Taylor expansion in terms of yd − y0.

First of all, observe that for any ey ∈ R,

Gd(y0, . . . , yd) = exp(ey)Gd(y0− ey , . . . , yd − ey).

Thus, letting ȳ = 1
d+1

∑d
i=0 yi and vi = yi − ȳ ,

Gd(y0, . . . , yd) = exp( ȳ)Gd(v0, . . . , vd)

and
∑d

i=0 vi = 0.

Then as ‖v‖2→ 0,

d!Gd(v0, . . . , vd) =

1+
d
∑

i=0

E(Bi)vi +
1

2

d
∑

i, j=0

E(BiB j)vi v j +
1

6

d
∑

i, j,k=0

E(BiB jBk)vi v j vk +O(‖v‖42).

After some computation using the formulation in (3.13), we find that

Gd(y0, . . . , yd) = exp( ȳ)

 

1

d!
+

1

2(d + 2)!

d
∑

i=0

v2
i +

1

3(d + 3)!

d
∑

i=0

v3
i +O(‖v‖42)

!

which allows us to compute appropriately if
�

�yd − y0

�

� is small (in our implementation,

this expansion was used when
�

�yd − y0

�

�< 10−3).

Combining this with (3.14), we obtain Algorithm 3.1 for computing Gd(y0, . . . , yd)

for d ≥ 1. Note that the requirement that y0 ≤ y1 ≤ . . . ≤ yd is for notational conve-

nience only, since Gd is symmetric in its arguments.
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3.2 Evaluation of objective function

Require: d, dimension
Require: y0 ≤ y1 ≤ . . .≤ yd
Require: ε > 0, tolerance

if d = 0 then
return exp(y0)

else if yd − y0 < ε then
ȳ =

∑d
i=0 yi/(d + 1)

v2 = 1
2

∑d
i=0(yi − ȳ)2

v3 = 1
3

∑d
i=0(yi − ȳ)3

return exp( ȳ)( 1
d!
+ v2

(d+2)! +
v3

(d+3)!)
else

return Gd−1(y0,...,yd−1)−Gd−1(y1,...,yd )
yd−y0

Algorithm 3.1: Computing Gd(y0, . . . , yd) if y0 ≤ y1 ≤ . . .≤ yd .

3.2.3 Finding an appropriate triangulation

Following Gelfand, Kapranov, and Zelevinsky (1994), for each triangulation T of X we

define hy,T to be the function obtained by linearly interpolating the points

�

(X1, y1), . . . , (Xn, yn)
	

over each simplex. For a subdivisionS , where possible we define hy,S similarly, although

this is not always well-defined.

Finding a triangulation T such that h̄y = hy,T is fundamental to our calculation.

In light of the view of S as the projection onto the first d components of the d + 1-

dimensional hull of the points (X1, y1), . . . , (Xn, yn), however, it is straightforward. We

augment the set
�

(X1, y1), . . . , (Xn, yn)
	

with auxiliary points

(X1, ymin− 1), . . . , (Xn, ymin− 1),

where

ymin = min
i∈{1,...,n}

yi .

We then compute the convex hull of this extended set of points. This produces a

list of (d + 1)-tuples triangulating the surface of the convex hull, exactly as required.

It is straightforward to remove those faces containing one of the points {(X1, ymin −
1), . . . , (Xn, ymin − 1)}, to be left with precisely the set of (d + 1)-tuples J . There are

many possible convex hull algorithms; in our particular implementation, we use the
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3.2 Evaluation of objective function

Quickhull algorithm (Barber, Dobkin, and Huhdanpaa, 1996; Grasman and Gramacy,

2008), described in detail in Section A.2.2.

It is conjectured by Barber et al. (1996, Conjecture 3.3) that the Quickhull algorithm

has worst case running time of O(n log n + nbd/2c). Note that, at least close to the

optimum by , we will be close to the worst case because all points will lie on the surface

of the convex hull.

For any subdivision S , we set C(S ) to be the set of y ∈ Rn such that

1. hy,S is well-defined and a concave function, and

2. for any i such that X i is not a point in some S ∈ S , hy,S (X i)≥ yi

We call triangulation regular if the interior of C(T ) is non-empty.

It is a classical fact of computational geometry (Gelfand et al., 1994, Proposition 1.5)

that the cones C(T ) of all regular triangulations T of a point set X of size n in Rd form

a complete polyhedral fan in Rn (that is, each C(T ) is a polyhedral cone, and the cones

partition Rn). Further, the relationship between triangulations T is intimately connected

to the structure of this fan in Rn. It turns out that two cones C(T ) and C( eT ) share an

(n− 1)-dimensional facet if and only if we may transform from one triangulation to

the other by a simple, local geometric operation called a flip (Definition A.22). This is

important for our later discussion of subgradients.

3.2.4 Possible improvement

Edelsbrunner and Shah (1996) describe an alternative method for constructing a regular

triangulation based on flipping. We expect that, in moving around Rn in accordance

with the subgradient algorithm, the triangulation from one stage to another will not

necessarily change very much, and it should be possible to update the triangulation

automatically.

Given any regular triangulation and a height vector y, we may update the trian-

gulation using flips as described in Algorithm 3.2. This is a simple modification of the

algorithm in Pournin and Liebling (2007) that allows for the insertion of new points,

since in our case points may be removed from the triangulation and re-inserted at a later

stage. Not surprisingly, this algorithm also has expected running time O(n log n+ nbd/2c).

According to Pournin and Liebling (2007), a flip may be performed in constant time.

Further, each face must be examined at least once. If d = 2, according to Euler’s formula

the number of faces is O(n); this could therefore represent an improvement over the

O(n log n) running time of Quickhull if no changes are made. However, for d > 2 there

are no such bounds on the number of faces in a triangulation. Further, the diameter of

the flip graph, which measures the maximum possible minimum distance between two
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3.3 Reformulation as a convex optimization problem

Require: T , triangulation
Require: y , new height
Require: E , list of edges
Require: P , list of indices p such that Xp /∈ T

for p ∈ P do
if yp > hy,T (Xp) then

Add p to triangulation
Update T and E

while Some E is irregular and flippable do
Flip E
Update T and E

Algorithm 3.2: Updating a regular triangulation.

triangulations, is not understood. Therefore this method has not been implemented as it

is unlikely to lead to a significant improvement in the speed of our algorithm, despite its

intuitive appeal.

3.3 Reformulation as a convex optimization problem

Now we are able to compute our objective function, we seek to reformulate (3.1) as a

convex optimization problem in order to evaluate the estimator in practice. In order to

do this, consider the (related) optimization problem

minimize σ(y) subject to y ∈ Rn (3.16)

where

σ(y) =−
1

n

n
∑

i=1

yi +

∫

exp(h̄y(x)) d x . (3.17)

This is useful in light of the following result:

Theorem 3.2. For X1, . . . , Xn ∈ Rd , the function σ defined in (3.17) is convex, and has a

unique minimum y∗ satisfying

exp(h̄y∗) = arg max
f ∈F

1

n

n
∑

i=1

log f (X i) (3.18)

where F is the class of log-concave densities on Rd .

Proof. Note that, for y, z ∈ Rn, λ ∈ (0,1) and all x ∈ Rd we have

h̄λy+(1−λ)z(x)≤ λh̄y(x) + (1−λ)h̄z(x).
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3.4 Subgradients and subgradient methods

Therefore

σ(λy + (1−λ)z) =−λ
1

n

n
∑

i=1

yi − (1−λ)
1

n

n
∑

i=1

zi +

∫

exp(h̄λy+(1−λ)z(x)) d x

≤−λ
1

n

n
∑

i=1

yi − (1−λ)
1

n

n
∑

i=1

zi +

∫

λexp(h̄y(x)) d x

+

∫

(1−λ)exp(h̄z(x)) d x

= λσ(y) + (1−λ)σ(z),

so that σ is a convex function.

To show (3.18), note that since

σ(y) = τ(y) +
1

n

n
∑

i=1

�

h̄y(X i)− yi

�

and the second term on the right hand side is nonnegative, we have σ(y)≥ τ(y), and if

by ∈ argmin
y∈Rn

τ(y)

we may set

y∗i = h̄
by(X i) for i = 1, . . . , n.

3.4 Subgradients and subgradient methods

As shown in Section 3.3, σ is a convex function. For smooth convex functions, there

are many optimization techniques available (Boyd and Vandenberghe, 2004, Chapter

11, and the references therein). However, as we will see, our objective function σ is

not smooth, so these techniques are not appropriate here. However, we may extend the

principle of descent methods to those based on subgradients (Shor, 1985), which enable

us to calculate the log-concave maximum likelihood estimator.

3.4.1 Subgradients

A subgradient of any function g : Rd → R at a point y is any vector ∂ g(y) such that, for

all z ∈ Rd ,

g(z)≥ g(y) + ∂ g(y)T (z− y)

(Rockafellar, 1997). At points where g is differentiable, there is exactly one subgradi-

ent (the derivative) but in general there may be many or no subgradients. However,
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3.4 Subgradients and subgradient methods

convex functions are always subdifferentiable in their relative interior (Definition A.14)

(Rockafellar, 1997, Theorem 23.3).

3.4.2 Computation of ∂ σ

In this section, we prove that σ is differentiable at y if and only if S (y) is a triangulation.

Further, we provide an explicit formula for ∂ σ(y).

Case 1: S (y) is a triangulation

In this case, C(S (y)) is full-dimensional (Gelfand, Kapranov, and Zelevinsky, 1990) and

y lies in the interior of this cone, so for any z ∈ Rn and for sufficiently small t > 0 we

have S (y + tz) = S (y).
By Theorem 25.2 of Rockafellar (1997), in order to prove that σ is differentiable at

y it suffices to show that all the partial derivatives ∂iσ(y) exist. Then the (sub)gradient

is given by the vector
�

∂1σ(y), . . . ,∂nσ(y)
�

From the expression (3.10) we see that

∂iσ(y) =−
1

n
+
∑

j∈Ji

�

�A j

�

�

∂

∂ yi
Gd(y j0 , . . . , y jd )

where Ji = { j ∈ J : jl = i for some l}. Therefore, in order to compute subgradients of

σ we must compute partial derivatives of Gd .

From (3.15)

∂ Gd(y0, . . . , yd)
∂ yk

= Gd+1(y0, . . . , yk, yk, . . . , yd),

and therefore

∂iσ(y) =−
1

n
+
∑

j∈Ji

�

�A j

�

�Gd+1(yi , y j0 , . . . , y jd ).

This computation may be done in a numerically stable way using Algorithm 3.1.

Case 2: S (y) not a triangulation

If S (y) is not a triangulation, the situation is a little more complicated. Since σ is a

convex function, directional derivatives

σ′(y; z) = lim
t↓0

σ(y + tz)−σ(y)
t
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3.4 Subgradients and subgradient methods

exist (Rockafellar, 1997, Theorem 23.1). Moreover, if the function is differentiable, we

must have

σ′(y; z) =−σ′(y;−z)

for all unit vectors z ∈ Rn.

We show that

σ′(y, ei) +σ
′(y,−ei)> 0 (3.19)

for some i ∈ {1, . . . , n}, thus showing that σ is not differentiable at y. Intuitively, this

is because in this case y lies on the boundary of more than one cone C(T ), and so in

general S (y+ tz) and S (y− tz) may be different, even for arbitrarily small values of t.

For notational simplicity, we consider the case where S (y) contains exactly one

polytope V with exactly d+2 vertices. The extension to multiple non-simplicial elements,

or those with more than d + 2 vertices, proceeds in exactly the same way.

By reordering if necessary, let 1, . . . , d + 2 be the indices of the non-simplicial d-

dimensional face of S . Note that, while we require that the face be d-dimensional, we

do not require that the points X1, . . . , Xd+2 be in general position. There are exactly

2 ways to triangulate d + 2 points in Rd (Lawson, 1986), and therefore there are 2

corresponding refinements of S . An example of possible refinements of 4 points in R2 is

given in Figure 3.1.

● ●

●

●

● ●

●

●

(a) Case 1

● ●

●●

● ●

●●

(b) Case 2

Figure 3.1: Two ways of triangulating four points in R2.

For each i = 1, . . . , d + 2 and sufficiently small t > 0, S (y + tei) and S (y − tei) are

triangulations, with index sets identical apart from those containing only terms from

{1, . . . , d + 2}.

From the definition of hy,T for a triangulation T given in Section 3.2.3,

h̄y+tei
(x) = h̄y(x) + thei ,S (y+tei)

and

h̄y−tei
(x) = h̄y(x) + th−ei ,S (y−tei)
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3.4 Subgradients and subgradient methods

so that

σ′(y; ei) +σ
′(y,−ei) =

∫

�

hei ,S (y+tei)(x)− h−ei ,S (y−tei)(x)
�

exp(h̄y(x)) d x .

Now from the way we have chosen S (y + tei) and S (y − tei), hei ,S (y+tei) and

−h−ei ,S (y−tei) correspond to the upper and lower hulls of the points

�

(X1, 0), . . . , (X i , 1), . . . , (Xd+2, 0)
	

,

so provided these points are in general position in Rd+1, the difference will be strictly

positive, and thus

σ′(y; ei) +σ
′(y,−ei)> 0.

Note that, even if the points X1, . . . , Xd+2 are not in general position in Rd , since

their convex hull is a d-dimensional face of S (y), for at least one i ∈ {1, . . . , d + 2} the

points
�

(X1, 0), . . . , (X i , 1), . . . , (Xd+2, 0)
	

will be in general position. Thus σ is not differentiable at y .

In order to find a subgradient, by Rockafellar (1997, Theorem 25.6), it suffices to

show that, for every ε > 0, we can find a point ey ∈ Rn satisfying


y − ey




2 < ε such that

σ is differentiable at ey and


∇σ(ey)− ∂ σ(y)




2 < ε. In light of the structure of the sets

C(S ), this may be done by perturbing y in a direction z by an amount t > 0 such that
fS = S (y + tz) is a triangulation that refines S (y), with index set eJ say. Then, we

may set

∂ σi(y) =−
1

n
+

∑

j∈ eJ : i∈ j

�

�A j

�

�Gd+1(yi , y j0 , . . . , y jd ).

In theory, it is necessary to check that the refinement of S (y) obtained by the

QuickHull algorithm corresponds to a regular triangulation (that is, to S (y + tz)

for some t > 0 and z ∈ Rn). In principle, the regularity of a triangulation may be

checked using the simplex method to determine the feasibility of a solution to to a linear

programming problem determined by each edge in the triangulation. In practice, this

was not found to be necessary. This is similar to the experience of Pournin and Liebling

(2007), who describe an incremental update procedure for triangulations and remark

that, even though in principle their algorithm requires a regular triangulation at each

step and their algorithm did not explicitly test this, in practice no problems occurred

over billions of test cases.
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3.4 Subgradients and subgradient methods

3.4.3 Subgradient-based optimization methods

The following theorem is fundamental to the theory of the optimization of nonsmooth

convex functions.

Theorem 3.3 (Shor, 1985). Let (hi) be a positive sequence with hi → 0 as i → ∞ and
∑∞

i=0 hi =∞. Then, for any convex function f , the sequence generated by the formula

yi+1 = yi − hi
∂ f (yi)
‖∂ f (yi)‖

has the property that either there exists an i0 and y∗ such that yi0 = y∗, or yi → y∗ and

σ(yi)→ σ(y∗) as i→∞.

We seem to have considerable freedom in our choice of h. In practice, Shor recognised

that, although appropriate choice of step size could improve the rate of convergence, with

this method it would never be better than linear (Shor, 1985, Chapter 2). This contrasts

with the quadratic convergence near the optimum for Newton’s method for smooth

convex functions (Boyd and Vandenberghe, 2004, Section 9.5). Slow convergence can

be caused by, at each stage, taking a step in a direction nearly orthogonal to the direction

towards the optimum, which means that simply adjusting the step size selection scheme

will never provide significant improvements in convergence rate.

One solution suggested by Shor (1985, Chapter 3) is to attempt to shrink the

angle between the subgradient and the direction towards the minimum through a

(necessarily nonorthogonal) linear transformation, and perform the subgradient step in

the transformed space. By analogy with Newton’s method for smooth convex functions,

an appropriate transformation would be some approximation to the inverse of the

Hessian matrix at y∗. This is not possible for nonsmooth problems, because the inverse

might not even exist (it does not exist at points at which the function is not differentiable,

for example, which may include the optimum).

Instead, we perform a sequence of dilations in the direction of the difference between

two successive subgradients, in the hope of improving the rate of convergence in the

worst-case scenario of steps nearly orthogonal to the direction towards y∗. The theory

of Shor (1985, Chapter 3) suggests that the convergence may be quadratic under fairly

general restrictions. However, unlike the original subgradient method, no formal proof

of convergence is available for this algorithm. It would in principle be possible to follow

this with the subgradient algorithm described above in order to guarantee convergence.

In practice this has not been found necessary.
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3.5 The special case d = 1

3.4.4 Stopping criteria

We terminate our algorithm when all of the following criteria are met:

|y t+1
i − y t

i | ≤ δ|y
t
i | for i = 1, . . . , n (3.20)

|σ(y t+1)−σ(y t)| ≤ ε|σ(y t)| (3.21)
�

�

�

�

�

∫

Cn

exp{h̄y t (x)} d x − 1

�

�

�

�

�

≤ η (3.22)

for some tolerances δ, ε and η that must be specified. The criteria (3.20) and (3.21)

were suggested by Kappel and Kuntsevich (2000). The criterion (3.22) is based on the

observation that the maximum likelihood estimator integrates to 1.

3.5 The special case d = 1

In this section we specifically consider the case d = 1, which has been considered in

some detail by Rufibach (2007) and Dümbgen et al. (2007). Let X(1), . . . , X(n) denote

the order statistics of the dataset

X =
�

X1, . . . , Xn
	

⊆ R.

Triangulations of R1 have a particularly simple structure, being a division into

intervals. Moreover, we know that at the optimum

by = arg min
y∈Rn

σ(y)

we have h̄
by(X i) = byi for all i = 1, . . . , n. We may explicitly characterize the collection of

points y ∈ Rn such that h̄y(X i) = yi for all i as

Z =
¨

y ∈ Rn :
y(i+1)− y(i)
X(i+1)− X(i)

≤
y(i)− y(i−1)

X(i)− X(i−1)
for i = 2, . . . , n

«

. (3.23)

This means that the likelihood maximization reduces to

minimize σ(y) subject to y ∈ Z .

This is optimization of a smooth function over a polyhedral convex cone; moreover, we

may write the constraints y ∈ Z in a form to which active set techniques, as well as more

general convex optimization methods, may be easily applied (Dümbgen et al., 2007;
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3.6 Other computational aspects

Rufibach, 2007). For multivariate data we cannot write these restrictions explicitly, and

hence these methods cannot be applied directly.

3.6 Other computational aspects

In this section we discuss some further computational methods that will be of use in

Chapter 4.

3.6.1 Sampling from density

Recall from Section 3.2 that log bfn ∈H , that is,

log bfn(x) =
∑

j∈J
exp(bT

j x − β j)1C j
(x)

for simplices C j in some triangulation J . Further, for each j ∈ J we may compute the

quantity

q j = P(X ∈ C j)

=

∫

C j

bfn(x) d x

=
�

�A j

�

�Gd(y j0 , . . . , y jd )

using Algorithm 3.1. The scheme described in Algorithm 3.3 may now be used to draw a

sample from the estimated density bfn.

Proof that this produces a sample from bfn. Observe that, by symmetry, U is uniformly

distributed on the unit simplex, so that A jU+α j is uniformly distributed on C j . Then the

density bfn (restricted to the simplex j) is dominated by a scalar multiple of the uniform

distribution on the simplex C j . Standard rejection sampling principles give the required

result.

3.6.2 Evaluation of density

The representation (3.5) allows us to evaluate the density at arbitrary points. Of course,

we could also use (3.7), but in this case we must locate which (if any) simplex the point

belongs to. There are a variety of techniques for doing this in triangulations in R2, some

of which generalize to d > 2. The most appropriate depends on the application, as there

is a tradeoff between preprocessing, storage and lookup time.
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3.6 Other computational aspects

Require: q j : j ∈ J
Require: A j : j ∈ J
Require: α j : j ∈ J

Draw U1, . . . , Ud ∼ Unif[0,1]
Set U = (U(1), U(2)− U(1), . . . , U(d)− U(d−1))
Draw W ∼ Unif[0, 1]
Select an i ∈ J , choosing j with probability q j
if

W <
exp(U T zi)

maxv∈Td
exp(vT zi)

then
return X = AiU +αi

else
Repeat

Algorithm 3.3: Sampling from bfn.

In our case, however, the number of polytopes m in S (log bfn(X1), . . . , log bfn(Xn))

is typically much smaller than the number of simplices in J (which is O(ndd/2e)).

This phenomenon has also been observed for d = 1 (Dümbgen and Rufibach, 2008).

Therefore there is little to be gained from using the representation (3.7) together with a

point location strategy over the simpler (3.5).

In order to quickly identify whether a point lies in Cn, we create a list of vectors

c1, . . . , cK ∈ Rd and values γ1, . . . ,γK ∈ R such that x ∈ Cn if and only if

cT
k x − γk ≤ 0 for all k = 1, . . . , K . (3.24)

These equations correspond to the facets (Definition A.16) of Cn, and there are O(nbd/2c)

of them, although typically far fewer (Seidel, 2004). We may therefore check easily

whether a given point w ∈ Cn, and, if so, the representation (3.5) holds, and bfn(w) may

be computed in O(m) time. If w /∈ Cn then bfn(w) = 0 (Section 2.4.1). This is summarised

in the pseudocode in Algorithm 3.4.

3.6.3 Evaluation of marginal and conditional densities

Once we have estimated the density, it may be of interest to evaluate the marginal

densities or conditional densities, for example for the purpose of visualising certain

aspects of the density estimate when d > 2. As in Section 2.2.4, let T = PX , where P is

the matrix of some orthogonal projection onto the k-dimensional subset T .

Dropping the subscript n for legibility, we denote the marginal density on T by bfT

and the conditional density by bfX |T .
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Require: c1, . . . , cK
Require: γ1, . . . ,γK
Require: b1, . . . , bm
Require: β1, . . . ,βm
Require: w ∈ Rd

if cT
k w− γk ≤ 0 for k = 1, . . . , K then

return exp
�

min j{bT
j w− β j}

�

else
return 0

Algorithm 3.4: Evaluation of density bfn at a point.

From the expression in (3.7), for any t ∈ T

bfT (t) =
∑

j∈J

∫

C j∩{x : P x=t}

exp(bT
j x − β j) d x

where integration is with respect to Lebesgue measure on {x : P x = t}.

In order to compute this integral, note that C j∩{x : P x = t} will be either empty or a

union of simplices. After triangulating the simplex appropriately (in our implementation

we used the Delaunay triangulation (Lee, 2004)), we may use Algorithm 3.1 to compute

the appropriate integral.

For the conditional density

bfX |T (x |t) =
bfn(x)1{y : P y=t}(x)

bfT (t)

normalization using the previous expression is needed.

3.6.4 Extension to binned observations and weighted log-likelihood

We may extend all of the above methodology to minimize the function

σw(y) =−
n
∑

i=1

wi yi +

∫

exp(h̄y(x)) d x ,

where wi are strictly positive and sum to 1. This easily seen to be equivalent to the

weighted log-likelihood maximization of Section 2.4.2. This will be particularly useful

when we come to use an EM-style algorithm in Section 4.4.
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3.7 Running time

In this section, we discuss the running time of the algorithm discussed above for various

problem sizes. We concentrate on small values of d because, although in principle this

method is valid for arbitrary d, in practice the curse of dimensionality, as well as time

constraints, make it less useful for d greater than about 4 (Scott, 1992, p.4-6).

Figure 3.2 illustrates the running times on a 1.86GHz/2GB RAM desktop PC (based

on the average of 10 runs using Nd(0, I) data for d = 1, 2, 3, 4). Figure 3.3(a) gives the

number of function evaluations required for the computation, and Figure 3.3(b) the

number of evaluations of σ required (each step may involve several function evaluations,

so these numbers are different). The stopping criteria δ = 10−3, ε = 10−6, η = 10−3

were used in all cases.

100 200 500 1000 2000

1
10

10
0

10
00

10
00

0

n

m
ea

n 
ru

nn
in

g 
tim

e 
in

 s
ec

on
ds

Figure 3.2: Running times for d = 1 (black), 2 (red), 3 (green) and 4 (blue) (average from 10
runs with Nd(0, I) data).

Figure 3.2 shows that, as we might expect, the running time increases with both

dimension and sample size. The running time appears to be polynomial in the sample

size, but this is nevertheless slow for large datasets. Figure 3.3(a) and Figure 3.3(b)

illustrate that the number of iterations and the number of function evaluations required

decrease with dimension for a fixed sample size. This suggests that each step becomes

progressively more expensive. This is not surprising considering the calculation of the

objective function requires a convex hull computation at each step. Indeed, a more
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(a) Iterations
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(b) Function evaluations

Figure 3.3: Number of iterations and number of function evaluations for d = 1 (black), 2 (red),
3 (blue) and 4(green) (average from 10 runs for Nd(0, I) data).

detailed breakdown of the running time reveals that most computational effort is spent

computing the convex hull. This suggests that one way to speed up the computation

would be to use a more sophisticated algorithm for finding the appropriate triangulation

of Cn, rather than simply computing the convex hull at each step.

For the one dimensional case, as discussed in Section 3.5, it is much faster to use

the active set algorithm of Dümbgen et al. (2007). This takes under one second for the

examples discussed here. However extension to d > 1 is complicated.

3.8 Examples

In this section we briefly illustrate the computational methods implemented in the

package LogConcDEAD using simple examples. The code to produce these plots, which

has been checked by R (R Development Core Team, 2008) using Sweave (Leisch, 2002),

is given in Appendix B.

Example: d = 1

We begin by demonstrating that, if d = 1, our estimator is the same as that produced by

the package logcondens (Rufibach and Dümbgen, 2006) which uses active set methods

to compute the maximum likelihood estimator. We will do this using 200 points drawn

from a Gamma(2,1) distrubtion.

As expected, the two methods produce the same estimate. They are plotted in
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(a) Density

0 1 2 3 4 5

−
3.

5
−

3.
0

−
2.

5
−

2.
0

−
1.

5
−

1.
0

X

lo
g 

de
ns

ity
 e

st
im

at
e

(b) Log density

Figure 3.4: Estimated and true density and log density based on 200 points from a Gamma(2,1)
distribution. The solid black line is the LogConcDEAD estimate, which coincides with the
logcondens estimate, and the red line is the true value.

Figure 3.4(a). In addition, Figure 3.4(b) illustrates the structure of the log-concave

maximum likelihood estimator: its logarithm is piecewise linear with changes of slope

only at observation points.

Example: d = 2

We will now illustrate the use of this method for multivariate data. We begin by

generating 500 points from a N2(0, I) distribution and computing the log-concave

maximum likelihood estimator. The resulting estimate is then used to produce the

contour plots of the true and estimated log density in in Figure 3.5, the surface plot

of the estimated density in Figure 3.6(a) and the surface plot of the log density in

Figure 3.7(a). For comparison, the true density and log density are shown in Figure 3.6(b)

and Figure 3.7(b) respectively.

These figures illustrate several important points about the structure of the maximum

likelihood estimator. The density is supported on the convex hull of the dataset. This

can be seen more clearly in Figure 3.8. From Figure 3.7(a), we can see the form of the

log estimator: as if a rubber sheet has been stretched over “tent poles” placed at the

observation points (see Figure 2.2). The data points used to generate this estimate are

visible in Figure 3.6(a) and Figure 3.7(a) to highlight this point.
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(a) Estimated density (b) Estimated log density

Figure 3.5: Contour plots of estimated density based on 500 points from a standard bivariate
normal distribution.

(a) Estimated density (b) True density

Figure 3.6: Surface plots of estimated and true density based on 500 points from a standard
bivariate normal distribution.

45



3.8 Examples

(a) Estimated log density (b) True log density

Figure 3.7: Surface plots of estimated and true log density based on 500 points from a standard
bivariate normal distribution.

Example: Binned data

In this section, we illustrate the extension of this algorithm to binned data, as discussed

in Section 3.6.4. As an example we use 500 points drawn from a N2(0,Σ) distribution,

where

Σ =

 

1 0.2

0.2 1

!

These are then rounded to the nearest 0.5. In total there are then 94 distinct observations.

In Figure 3.8 we show the density and log density estimates using a contour plot as

before.

Example: d = 3

In our final example, we illustrate the use of the log-concave maximum likelihood

for higher-dimensional data. In this case we integrate the density estimator to obtain

an estimate of the marginal densities, as described in Section 3.6.3. In this example,

we use 500 points from a 3-dimensional distribution with independent Gamma(2,1)

components. We plot the estimated marginal distributions, computed using the method

described in Section 3.6.3. The last panel in this plot shows the true density of each

component.
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(a) Density (b) Log density

Figure 3.8: Estimated density and log density based on 500 points from a bivariate normal
distribution in two dimensions (rounded to nearest 0.5).

3.9 Conclusion

In this chapter, we saw how a reformulation allows us to compute the log-concave

maximum likelihood estimator using convex optimization techniques. We discussed

some of the computational issues arising and proposed solutions. The proposed algo-

rithm has been implemented, and several examples were used to illustrate important

structural features of the density estimate. We touched on several computational issues

of practical importance, including extension to weighted likelihood, sampling from the

density estimate, evaluation of the density estimate, and computation of marginals and

conditionals.

We discussed the running time of the existing algorithm. We acknowledge that

this method is slower than existing methods for univariate data. However, as we saw,

extension of existing methods to higher dimensions is extremely difficult, whereas our

proposed technique works for arbitrary dimensional data.
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(b) Second marginal
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(c) Third marginal
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(d) True marginal

Figure 3.9: Estimated and true marginal densities for 3-dimensional-data based on 500 points
from a 3-dimensional Gamma distribution.
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4 Inference

4.1 Introduction

Having proved the existence and uniqueness of a log-concave maximum likelihood

estimator (Section 2.4) and discussed computational aspects (Chapter 3), we discuss its

statistical uses.

We present a multivariate extension of the multiscale test suggested in Walther

(2002). This enables us to assess the suitability of our assumption of log-concavity for a

particular dataset. It is designed to detect mixing more sensitively than nonparametric

procedures based on modality. We apply this to several simulated datasets and to one

real dataset, for which the assumption of a single log-concave component is found to be

inadequate.

Density estimation is often one stage in a more complicated statistical procedure.

With this in mind, in Section 4.3 we discuss the use of the log-concave maximum

likelihood estimator for plug-in estimation of statistical functionals. Three examples are

given, demonstrating the strengths and weaknesses of this compared with alternative

estimators. Where a kernel estimator was used, we used a 2-stage plug-in rule to choose

the bandwidth. We also tried other selectors but, as discussed further in Section 5.5,

their performance tended to be similar or worse, so they are not shown here.

As discussed in Chapter 2, an important extension of the class of log-concave densities

is the class of finite mixtures of log-concave densities. In Section 4.4, we discuss fitting

mixtures of this form where k is known using an EM-style algorithm. We fit this kind of

mixture to the UK university ranking dataset discussed in Section 4.2.2. We discuss a

natural clustering rule that arises from this kind of mixture, and apply this to a breast

cancer dataset for which k is known. For this problem, we see a significant improvement

over a Gaussian mixture.

4.1.1 Example densities

For our evaluation of functional estimation, we consider several example densities

chosen to illustrate a range of features. These densities will also be considered in our

convergence rate simulations in Chapter 5. For several densities, d = 1,2 and 3 are

considered to illustrate the effect of increasing dimension on the various quantities under
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4.1 Introduction

consideration. For d = 2, we also consider density G which has additional structure. We

consider sample sizes n= 100,200, 500,1000 and 2000.

Here Nd(µ,Σ) denotes a d-dimensional Gaussian distribution with mean µ and

covariance Σ. The densities are:

A Nd(0, I).

B (d > 1 only) Nd(0,Σ), where

Σi j =







1 if i = j

0.2 if i 6= j.

C Independent Γ(2,1) components.

D A mixture with each observation drawn from Nd(0, I) with probability 0.6, and

Nd(µ, I) with probability 0.4, where

µ=











1 if d = 1

(1, 0) if d = 2

(1, 0,0) if d = 3

(this is log-concave; see Section 2.2.6).

E As for D, but with

µ=











2 if d = 1

(2, 0) if d = 2

(2, 0,0) if d = 3

(this is log-concave; see Section 2.2.6).

F As for D, but with

µ=











3 if d = 1

(3, 0) if d = 2

(3, 0,0) if d = 3

(this is not log-concave; see Section 2.2.6).

G (d = 2 only) First component is Uniform(0,1); second component is Beta(2,4),

independently.

These features of these densities are summarized in Table 4.1.
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4.2 Assessing log-concavity

Density Log-c Depend Norm Mix Skewed Bded Edge
A Yes No Yes No No No No
B Yes Yes Yes No No No No
C Yes No No No Yes Yes No
D Yes No Yes Yes No No No
E Yes No Yes Yes No No Yes
F No No Yes Yes No No NA
G Yes No No No Yes Yes Yes

Table 4.1: Summary of features of example densities:
Log-c: Log-concave density.
Depend: Components are dependent.
Norm: Mixture of one or more Gaussian components.
Mix: Mixture of log-concave distributions.
Skewed: Nonzero skewness.
Bded: Support of the density is bounded in one or more directions.
Edge: Density is on boundary of space of log-concave densities.

4.2 Assessing log-concavity

An important prerequisite for using this density estimate is some means to assess the

validity of the assumption of log-concavity for a particular dataset. Log-concavity is an

inappropriate assumption for heavy-tailed or multimodal distributions, for example. This

has been discussed in detail in Chapter 2.

Moreover, for some applications, it is desirable to test whether data comes from a

single component distribution or from a mixture of two or more. Walther (2002) gives an

example from flow cytometry. Many parametric tests for mixing are based on a specific

exponential family. On the other hand, nonparametric tests are frequently less sensitive

to mixing, depending on detecting multimodality. A detailed discussion can be found in

Walther (2002).

In Walther (2002), a method is proposed for a multiscale test to detect the presence

of mixing using a nonparametric test. In this section, we extend this to multivariate data

and to assessing the suitability of a log-concave model, regardless of mixing.

Recall from Proposition 2.7 that a finite mixture of log-concave densities may be

represented in the form

f (x) =
k
∑

j=1

π j f j(x) = exp(c ‖x‖22+ϕ(x)), (4.1)

where ϕ is concave and c ≥ 0. In fact, the same representation holds for any smooth
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4.2 Assessing log-concavity

density f such that

sup
z∈Rd

sup
x∈dom( f )

zT
�

∇∇T log f (x)
�

z

is finite. This includes heavy tailed distributions such as the t distribution. An analogous

condition may also be developed for the case when f is not smooth.

Recall that the set values of c for which this representation is valid is of the form

[ctrue,∞) for some ctrue ∈ R (Section 2.2.6). We aim to test the hypothesis ctrue = 0. If we

reject this hypothesis, either a mixture or a different model would be more appropriate.

We note that the test cannot detect all mixing, because some mixtures of log-concave

distributions are log-concave (and thus satisfy (4.1) with ctrue = 0; see Section 2.2.6).

4.2.1 Description of log-concavity test

Given a sample X1, . . . , Xn, choose an equally spaced grid c0 = 0 < c1 < . . . < cM = C .

Suggested values are M = 11 and C = 3. For each value of c, we compute the c-maximum

likelihood estimator

bf c
n = arg max

f ∈Fc

1

n

n
∑

i=1

log f (X i),

where Fc is the set of densities of the form (4.1). This may be calculated using the

subgradient method described in Chapter 3 after a suitable modification of the objective

function and subgradient.

We then assess the deviation of log bf c
n from concavity for each value of c. For

univariate data, since a function is concave if and only if its derivative is nonincreasing,

Walther (2002) suggests the metric

d(g,M ) = inf
m∈M





(g −m)bf 0
n







∞
,

whereM is the class of all monotone decreasing functions, and g the left-hand derivative

of log bf c
n . The weight function bf 0

n is included to downweight the tails of the distribution

of the distribution, which is desirable for applications.

This metric cannot be extended directly to multivariate data. However, an alternative

is to measure the L1 distance between log bf c
n and its least concave majorant (the smallest

concave function exceeding log bf c
n everywhere), denoted by h̄:

Tn(c) =

∫

�

h̄(x)− log bf c
n (x)

�

bf 0
n (x) d x .

This captures both long, shallow deviations from concavity and short, deep deviations.

In order to generate a reference distribution, we draw B bootstrap samples of n repli-
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4.2 Assessing log-concavity

cates from bf 0
n . For each sample X ∗b1 , . . . , X ∗bn and each value c = c0, . . . , cM , we compute

the test statistic defined above, T ∗bn (c). For each value of c, we compute m(c) and s(c),

the sample mean and sample standard deviation respectively of T ∗1n (c), . . . , T ∗Bn (c). We

then standardize the statistics on each scale, computing

eTn(c) =
Tn(c)−m(c)

s(c)

and

eT ∗bn (c) =
T ∗bn (c)−m(c)

s(c)

for each c ∈ C and b = 1, . . . , B.

To perform the test we compute the (approximate) p-value

1

B+ 1
#
§

b : max
c∈C

eTn(c)>max
c∈C

eT ∗bn (c)
ª

.

4.2.2 Examples

In this section we apply the log-concavity test to several simulated examples and to a

real dataset.

Example: A single-peaked mixture

In order to illustrate this test, we used 500 samples from a mixture distribution. The

first component was a mixture with density

0.5φ0.25(x) + 0.5φ5(x − 2),

where φσ2 is the density of a N(0,σ2) random variable. The second component was an

independent Γ(2, 1) random variable. This is the type of mixture that presents difficulties

for both parametric tests (not being easy to capture with a single parametric family) and

for many nonparametric tests (having a single peak). Figure 4.1 is a contour plot of this

density. Mixing is not immediately apparent because of the combination of components

with very different variances.

We performed the test described above using B = 99, m = 11 and C = 3. Before

performing this test, both the data and the bootstrap samples were rescaled to have

variance 1 in each dimension. This was done because ctrue is not invariant under

rescaling, so we wish to have all dimensions on the same scale before performing the

test using our fixed grid C . The resulting p-value was less than 0.01. Figure 4.2 shows

the values of the test statistic for various values of c (on the standardized scale). The red
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4.2 Assessing log-concavity
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Figure 4.1: Contour plot for the mixture described in Section 4.2.2.

line corresponds to the data and the dashed black lines to the bootstrap samples.
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Figure 4.2: Assessing log-concavity for a single-peaked mixture as described in Section 4.2.2,
n = 500. The red line is the test statistic eTn(c). The other lines are the bootstrap samples
eT ∗bn (c) for b = 1, . . . , 99.

Example: A heavy-tailed distribution

For this example, we use a bivariate t4 distribution with covariance matrix

Σ =

 

1 0.4

0.4 1

!

.
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Figure 4.3: 500 points from a bivariate t4 distribution, after rescaling to have unit variance in
each dimension.

This is not log-concave due to its heavy tails. A plot of the data, after rescaling to have

unit variance in each dimension, is shown in Figure 4.3. As the data appear unimodal, it

is not immediately obvious whether our model is appropriate.

The test was performed, with rescaling, and the test statistics are shown in Figure 4.4.

This shows that the log-concave model is not appropriate in this situation (p-value less

than 0.01).
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Figure 4.4: Assessing log-concavity: a heavy tailed distribution (t4 distribution, d = 2, n =
500). The red line is the test statistic eTn(c). The other lines are the bootstrap samples eT ∗bn (c)
for b = 1, . . . , 99.
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4.2 Assessing log-concavity

Example: Log-concave distributions

As already mentioned, the test may not be able to detect all forms of mixing. To illustrate

this, Figure 4.5 shows the result of performing this test for 500 samples drawn from

density D. Once again, the data were rescaled to have variance 1 in each dimension.

We see that the test statistic is not significant, as can be expected. We also performed

this test for 500 N2(0, I) observations. The resulting values of eTn(c) and eT ∗bn (c) for

b = 1, . . . , 99, are shown in Figure 4.6. From this we see that for this example the test

does not produce a significant result. We can therefore be more confident in using a

log-concave distribution to model the data.
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Figure 4.5: Assessing log-concavity: an undetectable mixture (density D, d = 2, n = 500).
The red line is the test statistic eTn(c). The other lines are the bootstrap samples eT ∗bn (c) for
b = 1, . . . , 99.

Example: Universities data

In this section we apply this test to a dataset extracted from the Times 2008 Good

Universities Guide, April 28 2008 (The Times, 2008). This dataset gives several measures

of the quality of UK higher education institutions, which are combined into an annual

overall “ranking” of the universities by The Times newspaper. The measures are student

satisfaction, research quality, services and facilities spend, entry standards, completion

rate, percentage of students getting a good honours degree and graduate prospects.

Since student satisfaction had some missing values, this was ignored for this analysis.

The data were rescaled and projected onto the first 2 principal components. These

captured most (almost 80%) of the variability of the data. The first two scaled principal

components are shown in Figure 4.7.
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Figure 4.6: Assessing log-concavity: a log-concave distribution (density A, d = 2, n= 500).
The red line is the test statistic eTn(c). The other lines are the bootstrap samples eT ∗bn (c) for
b = 1, . . . , 99.

The test described above was performed to see whether it is reasonable to classify the

universities into groups. No rescaling was used since the data had already been rescaled

before performing the principal components analysis, and further rescaling could distort

the relationship among the covariates. The results of this are shown in Figure 4.8. The

p-value of less than 0.01 suggests that this dataset should be modelled as a mixture. We

return to this in Section 4.4.3.

4.2.3 Further investigation

We have seen how we may in principle use a multivariate extension of the technique

described in Walther (2002) to assess the suitability of a log-concave model for a

particular dataset. For larger-scale investigation of this procedure, including verifying

that the test has the required coverage under the null hypothesis and investigating the

power of this test, more efficient algorithms for computing the c-MLE will be required.

This is because the procedure described above is currently extremely computationally

intensive. However, this nonparametric test for mixing shows great potential for detecting

mixing in skewed multivariate samples, and may be of use in application areas such as

screening and flow cytometry.

4.3 Functional estimation

As well as density estimation for visualization or clustering purposes, we may be in-

terested in some statistical functional θ(F) depending on the underlying distribution
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Figure 4.7: First two principal components (rescaled) of the universities data.
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Figure 4.8: Assessing log-concavity: first two principal components of the universities data.
The red line is the test statistic eTn(c). The other lines are the bootstrap samples eT ∗bn (c) for
b = 1, . . . , 99.

function F , for example the mean and higher moments, level sets or highest density

regions, quantiles, differential entropy or tail index. A common method of estimating

such functionals is to “plug in” an estimate bFn of the distribution function, that is, to

estimate θ(F) by
bθn = θ(bFn).

Clearly there is great flexibility in our choice of estimatorcFn. If a continuous distribution

is not required, one method is to plug-in the empirical distribution function. However,

the functional may require a smooth density, for example the differential entropy or
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4.3 Functional estimation

highest density region. Even if this is not the case, Müller and Rufibach (2009) argue in

the context of tail index estimation that, if additional information on the structure of

the density is available, using the log-concave maximum likelihood estimate can lead to

significantly reduced variability in some cases. This may lead to better overall estimation.

For a functional that may be written in the form

θ(F) = E[g(X )]

for some function g, the plug-in estimator may be written as

bθn =

∫

g(x)bfn(x) d x , (4.2)

where bfn is some estimate of the density.

Due to the form of the density given in (3.6), we may write the integral in (4.2) as

bθn =
∑

j∈J

∫

C j

exp(bT
j x − β j)g(x) d x (4.3)

with appropriate choices of {b j} and {β j} as described in Section 3.2.

If g is sufficiently smooth, (4.3) is relatively easy to compute. Sophisticated adaptive

algorithms for integration over a simplex which make use of the invariant integration

formulae detailed in Stroud (1971) and Grundmann and Möller (1978) are available

(Genz, 1991; Genz and Cools, 2003). However, if g is sufficiently well-behaved and

d not too large (smaller than 4, say), it is sufficient to use a fixed multivariate Gaus-

sian quadrature method described in Press, Teukolsky, Vetterling, and Flannery (2007,

Section 4.8).

If g is not a smooth function, this approach is not suitable. However, as we can

sample easily and quickly from the density bfn (see Section 3.6.1), a Monte Carlo approach

also works. In more detail, we draw samples Z1, . . . , Zm from bfn and set

eθm =
1

m

m
∑

i=1

g(Zi).

By the central limit theorem, for large m, conditional on the observed data,

eθm
approx
∼ N

�

bθn,
σ2

n

m

�

, (4.4)

where

σ2
n = var(g(Z1)).
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4.3 Functional estimation

In order to construct an approximate confidence interval, we may approximate var(g(Z1))

by the sample variance of g(Z1), . . . , g(Zn) and use the approximation (4.4). This enables

us to choose a large enough m to achieve our desired approximation to bθn.

In the remainder of this section, we consider three examples of functional estimation

using the log-concave maximum likelihood estimator. These are estimation of covariance,

estimation of differential entropy, and estimation of highest density regions.

4.3.1 Estimation of covariance

In general, plug-in estimation may be performed using numerical approximations to the

integral
∫

bfn(x)g(x) d x .

In certain cases, such as the moments, the structure of the maximum likelihood estimator

means that this integral may be computed exactly. We use the notation of Section 3.2.

Recall that the function Gd was defined in Section 3.2.1. Let x r denote the rth component

of a vector x . Further, let w0 = 1−w1− . . .−wd .

For the first moment (the mean), we have

∫

x r
bfn(x) d x =

∑

j∈J

∫

C j

x r exp(bT
j x − β j) d x

=
∑

j∈J
|A j|
∫

Td

(A jw+α j)
r exp(y j0 w0+ . . .+ y jd wd) dw

=
∑

j∈J
|A j|
∫

Td

d
∑

i=0

X r
ji
wi exp(y j0 w0+ . . .+ y jd wd) dw.

Observe that

∂

∂ yk
Gd(y0, . . . , yd) = lim

t→0

1

t

∫

Td

�

exp(y0w0+ . . .+ (yk + t)wk + . . .+ yd wd)

− exp(y0w0+ . . .+ yd wd)
�

dw

= lim
t→0

1

t

∫

Td

exp(y0w0+ . . .+ yd wd)(exp(twk)− 1) dw

=

∫

Td

wk exp(y0w0+ . . .+ yd wd) dw.
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Thus, using the relationship in (3.14),

∫

x r
bfn(x) d x =

∑

j∈J
|A j|

d
∑

i=0

X r
ji
Gd+1(y ji , y j0 , . . . , y jd ).

This is easy to compute using Algorithm 3.1.

For the second moment, if r 6= s, by a similar calculation we have

∫

x r x s
bfn(x) d x =

∑

j∈J
|A j|

d
∑

i=0

d
∑

k=0

X r
ji
X s

jk
Gd+2(y ji , y jk , y j0 , . . . , y jd ).

Further,

∫

(x r)2 bfn(x) d x = 2
∑

j∈J
|A j|

d
∑

i=0

d
∑

k=0

X r
ji
X r

jk
Gd+2(y ji , y jk , y j0 , . . . , y jd ).

Using the above expressions, we may easily compute the covariance matrix bΣn of

the distribution corresponding to bfn. We illustrate the performance of this as a plug-in

estimate of the distribution covariance. As our error criterion we use the mean squared

error

MSE
�

bΣn,Σ
�

= E







1

d2

d
∑

i, j=1

�

bΣi j
n −Σ

i j
�2






,

where Σi j denotes the (i, j)th component of the covariance and bΣi j
n the (i, j)th component

of the estimated covariance. This has an appealing decomposition into variance and

squared bias terms

MSE
�

bΣn,Σ
�

=
1

d2

d
∑

i, j=1

E
�

bΣi j
n −EbΣ

i j
n

�2
+

1

d2

d
∑

i, j=1

�

EbΣi j
n −Σ

i j
�2

.

We have estimated this using 100 Monte Carlo samples for each of the densities,

dimensions and sample sizes listed in Section 4.1.1. For comparison, in each case we

also computed the sample covariance S. This has (i, j)th component

Si j =
1

n

n
∑

k=1

(X i
k − X̄ i)(X j

k − X̄ j),

where

X̄ i =
1

n

n
∑

k=1

X i
k.
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4.3 Functional estimation

A small selection of the results are presented in Figure 4.9. The remainder were

qualitatively similar.

In general, the two estimators had similar performance for log-concave densities.

This is illustrated by Figures 4.9(a), 4.9(b) and 4.9(c) which show the results for densities

A, B and C for d = 1, d = 2 and d = 3 respectively. This shows that the performance is

similar for d = 1, but the log-concave estimator underperforms in higher dimensions.

Other log-concave distributions performed similarly.

Although our estimator does not perform as well with respect to this criterion than

an empirical estimate, it is worth more investigation to see why this is the case, since

the errors are of the same order of magnitude for some examples. In Figure 4.10, we

give a breakdown of the MSE for distribution C for d = 2, broken down into bias and

variance terms. Here we see (since the black dashed line is almost directly underneath

the red dashed line) that, for the empirical estimate, almost all the error is due to

variance (not surprising as this estimator is asymptotically unbiased). For the log-

concave maximum likelihood estimator, although the bias is much larger there is a more

equal split into variance and bias terms. This more stable estimator may be preferred for

some applications. We see this phenomenon, which has also been observed by Müller

and Rufibach (2009), in Section 4.3.2.

4.3.2 Estimation of differential entropy

Differential entropy, introduced by Shannon (1948), is a common statistical functional.

A review of techniques for estimation and applications is given in Beirlant, Dudewicz,

Györfi, and van der Meulen (1997). One technique for estimation proposed in this article

is the (exact) plug-in estimate

bθn =−
∫

�

log bfn(x)
�

bfn(x) d x , (4.5)

where bfn is some estimate of the density f .

If we take bfn to be the log-concave maximum likelihood estimator by a similar

calculation to that in Section 2.2.5, we have

bθn =−
∫

�

log bfn(x)
�

bfn(x) d x

=−
∑

j∈J

∫

C j

(bT
j x − β j)exp(bT

j x − β j) d x

=−
∑

j∈J

∫

Td

�

�A j

�

� (y j0 w0+ . . .+ y jd wd)exp
�

y j0 w0+ . . .+ y jd wd

�

dw
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(a) Density A, d = 1
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(b) Density B, d = 2
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(c) Density C, d = 3

Figure 4.9: MSE of covariance matrix estimates. The solid lines are the log-concave maximum
likelihood estimate and the dashed lines are the sample covariance.
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Figure 4.10: Bias-variance decomposition of the MSE of covariance matrix estimates for
example distribution C and d = 2. The solid lines are the log-concave maximum likelihood
estimate and the dashed lines are the kernel estimate. The black lines are the MSE, the green
lines the squared bias and the red lines the variance. The red dashed line covers the black
dashed line.

=−
∑

j∈J

d
∑

i=0

y ji

�

�A j

�

�

∫

Td

wi exp
�

y j0 w0+ . . .+ y jd wd

�

dw

=−
∑

j∈J

d
∑

i=0

�

�A j

�

� y ji Gd+1(y ji , y j0 , . . . , y jd ).

Here w0 = 1−w1− . . .−wd , Gd is as defined in Section 3.2.1 and the rest of the notation

is as in Section 3.2.

For other density estimates, computing (4.5) is computationally intensive, especially

for d > 1 or if the density estimate is multimodal. Therefore several alternatives have

been proposed (Beirlant et al., 1997, and the references therein). One alternative is the

so-called resubstitution estimate

eθn =
1

n

n
∑

i=1

log(bfn(X i)). (4.6)

For the log-concave maximum likelihood estimate, this gives similar results to the

integrated plug-in estimate (typically less than 1% difference), so we do not expect this

to make much difference.

The plug-in method was implemented for the densities, dimensions and sample sizes

listed in Section 4.1. An estimate of the MSE, based on 100 Monte Carlo replications, is

shown in Figure 4.11.
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4.3 Functional estimation

For comparison, we have also computed differential entropy estimates based on

a (Gaussian) kernel estimate with bandwidth selected according to a 2-stage plug-in

rule. For computational reasons we use the empirical plug-in estimator (4.6) rather

than the integrated plug-in estimator (4.5). For the sample size we are considering

this effect of using the empirical plug-in estimator rather than the integrated estimator

is likely to be negligible. It is true that this kernel and bandwidth are known to be

suboptimal for this estimation problem, and more sophisticated methods have been

suggested (Beirlant et al., 1997). However, a detailed discussion of the optimal kernel

and optimal bandwidth is far outside the scope of this thesis.

Selected results are illustrated in Figure 4.11. As before, a solid line denotes the log-

concave maximum likelihood estimate, and a dashed line denotes the kernel estimate.

From Figure 4.11(a), we see that for simple one-dimensional data the performance

of the two methods is similar, with the kernel enjoying a slight advantage. In higher

dimensions, illustrated by Figure 4.11(b) for density C and d = 2, the log-concave

maximum likelihood estimator performs better than a kernel density estimator for

larger sample sizes. The rate of decrease of the MSE is greater for the log-concave

maximum likelihood estimator. This effect is particularly strong for our multivariate

Beta distribution, shown in Figure 4.11(c) (density G, d = 2). This suggests that this

is partly due to the well-known boundary bias of the kernel density estimator at the

boundary of the support of the density. However, even in situations for which the kernel

density estimator is ideally suited (illustrated in Figure 4.11(d), density B, d = 3), the

log-concave estimator performs better for larger sample sizes.

In order to better understand this phenomenon, we display for two of our examples a

decomposition of the estimated MSE into estimated squared bias and estimated variance

terms. In Figure 4.12(a), we show this decomposition for density A and d = 2. For

the log-concave maximum likelihood estimate, we see that the squared bias is much

bigger than the variance, and decreases more rapidly with sample size. This helps to

explain the better performance of the log-concave maximum likelihood estimate for

larger sample sizes. For the kernel estimate, the squared bias and variance are of the

same order of magnitude. A bias-variance breakdown for density G and d = 2 is shown

in Figure 4.12(b). Here it is obvious that the main contributor to the poor performance

of the kernel estimator is bias, likely to be due to boundary effects for this density.

4.3.3 Level sets, quantiles and highest density regions

Several authors have argued in favour of level sets and related quantities as quick and

informative summaries of multivariate data (Hyndman, 1996, and references therein). A
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(a) Density A, d = 1
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(b) Density B, d = 2
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(c) Density G, d = 2
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(d) Density F, d = 3

Figure 4.11: MSE of the differential entropy estimates. The solid lines are the log-concave
maximum likelihood estimate and the dashed lines are the kernel estimate.
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(a) Density A, d = 2
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(b) Density G, d = 2

Figure 4.12: Bias-variance decomposition of the MSE of the differential entropy estimates for
densities A and G and d = 2. The solid lines are the log-concave maximum likelihood estimate
and the dashed lines are the kernel estimate. The black lines are the MSE, the green lines the
squared bias and the red lines the variance.

level set of a density f at level y is defined as

R( f , y) =
�

x : f (x)≥ y
	

.

Setting fα to be the largest constant such that

P(X ∈ R( f , fα))≥ 1−α,

R( f , fα) is defined by Hyndman (1996) to be the (1− α) highest density region. This

has the appealing properties that it is the smallest volume set with coverage (1−α), and

that the density of any point outside this region is smaller than the density of any point

inside this region. This summary can reveal interesting features in the density not shown

by symmetric regions or quantiles, such as multimodality.

Note that fα is the (1− α) quantile of the distribution f (X ), where X has density

f . While in principle this may be computed directly, this is difficult, especially for

multivariate data. However, this formulation immediately suggests a Monte Carlo

approach to calculating fα. We draw m independent samples Z1, . . . , Zm from f and

estimate fα with
efα,m = f(bαmc),

where f( j) is the j/n sample quantile of { f (Z1), . . . , f (Zm)}. To find a confidence interval
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4.3 Functional estimation

for this Monte Carlo estimate and the resulting region, we may generalize the results of

Hyndman (1996, Section 3.3) to multivariate data. Define

S(y) =
�

x : f (x) = y
	

.

Provided f is reasonably behaved, this defines a surface in Rd . Define

A(y) =

∫

R( f ,y)
f (x) d x .

For small δ

A(y +δ) = A(y)−δ y

∫

S(y)

�

�∇ f (x)T n
�

�

−1
dS +O(δ2)

where n denotes the outward unit normal vector of S(y) and the integral is over the

surface S(y). Then, since P(Y ≤ y) = 1− A(y), the density of Y is given by

h(y) = y

∫

S(y)

�

�∇ f (x)T n
�

�

−1
dS. (4.7)

This coincides precisely with the one-dimensional expression from this paper.

By standard arguments involving quantiles (Cox and Hinkley, 1979), efα,m has the

approximate distribution

N
�

fα,
α(1−α)
mh2( fα)

�

. (4.8)

Finding the corresponding regions of R( f , efα,m) is straightforward.

Since (4.7) depends on the unknown density, we are unable to compute a confidence

interval directly. However, we may use a bootstrap approximation to the standard error

in (4.8) to compute a bootstrap confidence interval (Efron and Tibshirani, 1993). This

in turn leads to uniform confidence bands for S( fα), the boundary of R( f , fα). This

is illustrated in Figure 4.13. Here, we used m = 500 observations from density G to

estimate fα for α= 0.25, 0.5 and 0.75. The estimated highest density regions, together

with uniform confidence bands, are illustrated. Using larger values of m obviously leads

to narrower confidence bands. We found m = 50000 was fast to run and led to very

narrow bands. This value of m was therefore used in our further experiments.

Of course, in general we are given a dataset and wish to estimate the highest density

regions, which first requires a density estimate. From the outline above, by use of a

sufficient number of Monte Carlo samples we may attain accuracy arbitrarily close to

the true value for the estimated density. Moreover, the sampling may be done efficiently

as described in Section 3.6.1. We used m= 50000 to produce the following examples;
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Figure 4.13: Bootstrap confidence bands for density G for the 25%, 50% and 75% highest
density region using m= 500. The estimated contours are the solid lines.

the resulting confidence bands were so small they are not visible on the plots and so

are omitted. The remaining variability is due to our approximation procedure for the

density.

In practice, the density f will not be known, so even if we compute the confidence

regions exactly, there will be added uncertainty in our confidence region estimate due

to the replacement of f with bfn. Quantifying this remains an important open problem,

and obviously the first steps will be consistency and convergence results for bfn. The

difficulties of this are discussed in Section 5.3.

As an illustration, in Figure 4.14 we used 2000 observations from density G to

compute the log-concave maximum likelihood estimate and a kernel density estimate.

We then computed the 25%, 50% and 75% highest density regions for

a. the true density,

b. the log-concave maximum likelihood estimate, and

c. a kernel density estimate using a 2-stage plug-in bandwidth.

Here, we see that the log-concave maximum likelihood estimate captures the shape of

the density. Note that, since the true density is log-concave, the highest density regions

are convex. This is captured by the log-concave maximum likelihood estimate, and not

the kernel estimate.

To test this method, for the example densities listed in Section 4.1 we computed

the highest density region based on the log-concave maximum likelihood estimate for

α= 0.25, 0.5 and 0.75. We also computed the highest density region based on a kernel
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Figure 4.14: Highest density regions for density G and n = 2000. The highest density regions
were computed using the Monte Carlo method described above with m= 50000.
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density estimate with a Gaussian kernel and using a 2-stage plug-in rule to compute the

bandwidth. These estimates were compared to the true highest density region using the

error criterion
∫

f (x)∆(x) d x ,

where

∆(x) =







1 if x in exactly one of R( f , fα) and R(bfn, bfn,α),

0 else.

This is motivated by a desire to treat both errors symmetrically, and to weight according

to the true density.

The results for several densities are summarized in Figure 4.15. The results for all

example densities were largely similar.

For d = 1, there is similar performance for the kernel density estimator and the log-

concave maximum likelihood estimator. Figure 4.15(a) illustrates this for the Gaussian

data. For the larger (75%) region, the kernel performs better; for the median and upper

regions (50% and 25%) the performance is similar, with the log-concave maximum

likelihood estimator offering a slight improvement. For densities with bounded support,

however, the fact that the log-concave maximum likelihood estimate did not suffer from

boundary bias means that it was better able to capture the shape of the density. This is

illustrated by the density C (Figure 4.15(b)), which is supported on [0,∞).

For d > 1, we see that the performance of the log-concave maximum likelihood

estimator is even more impressive. Even for densities that are easy for the kernel density

estimate to capture, such a Gaussian mixture that is only just log-concave (density E,

Figure 4.15(c)), the log-concave maximum likelihood estimate performs at least as well

as the kernel density estimator. It does a significantly better job of estimating the smaller

regions, and improves more rapidly with increasing sample size. As before, we see a

strong boundary effect for density G (Figure 4.15(d)).

For d = 3, the story is similar but the effects are more pronounced, and the im-

provement afforded by using the log-concave maximum likelihood estimator rather than

a kernel density estimate is more dramatic. Again, the effect is present for simpler

Gaussian data (such as density B, Figure 4.15(e)), and more dramatic for skewed data

with a finite boundary (density C, Figure 4.15(f)).

Moreover, once the density estimate has been computed, estimating bfn,α, and the

corresponding highest density regions is significantly less computationally expensive.

This is because sampling from the density and evaluating the density at that point may

be done in (effectively) constant time. This may be contrasted with the situation for the
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n

er
ro

r

100 200 500 1000 2000

0.
04

0.
06

0.
08

0.
10

0.
12

0.
16

(e) Density B, d = 3
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Figure 4.15: Mean error of highest density region estimates. Black is 25% HDR, red is 50%
HDR, green is 75% HDR. Solid lines are log-concave maximum likelihood estimate and dashed
lines are kernel density estimate.
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kernel estimate, where O(n) operations are needed to evaluate the density estimate once

a sample has been drawn.

4.4 Finite mixture models

It may seem that the assumption that f belongs to the class of log-concave densities is

rather restrictive: we cannot model multimodal distributions, for example. However, as

we have already discussed in Chapter 1, some restriction is necessary if we are to avoid

the need to select smoothing parameters for density estimation. A possible extension of

the log-concave model is to extend to finite mixtures of log-concave densities, that is, to

densities of the form

f (x) =
k
∑

j=1

π j f j(x), (4.9)

where the π j > 0,
∑

j π j = 1 and each f j ∈ F .

In this section, we discuss how to estimate the mixture using an EM-style algorithm

for fixed k. There is a large literature on choice of k for both parametric and nonpara-

metric models (see McLachlan and Peel (2000) for an introduction with many examples).

Information criteria such as AIC or BIC are commonly used. These are based on an

asymptotic approximation to

E
�
∫

log bfn d(Fn− F0)

�

. (4.10)

Unfortunately, these approximations are based on the number of parameters, for which

there is no easy analogue in the nonparametric setting. An alternative is Efron’s infor-

mation criterion (EIC), which approximates (4.10) directly using the bootstrap (Konishi

and Kitagawa, 2008, Chapter 8). This has the advantage that we could also compare a

log-concave mixture with, say, a Gaussian mixture. However, this is too computationally

intensive to be realistically used with our algorithm. We therefore leave this issue as a

topic for future research, alongside development of faster algorithms for d > 1.

4.4.1 The EM algorithm

For parametric models, the expectation-maximization (EM) algorithm is commonly used

to estimate mixture densities of the form (4.9), where the components f j are assumed

to have a particular parametric form (such as Gaussian) (Dempster, Laird, and Rubin,

1977). However, this approach depends critically on the selection of an appropriate

parametric model for the components which can be difficult to assess, particularly in the

multivariate context.
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4.4 Finite mixture models

Chang and Walther (2007) suggest using log-concave components in the EM frame-

work. Simulation results in the one-dimensional case were promising, showing an

improvement over a Gaussian model where this was inadequate and no appreciable loss

of performance even for Gaussian mixtures. For the multivariate case a more restricted

model (with log-concave components and a copula dependence structure) was used due

to the lack of an algorithm for computing the log-concave maximum likelihood estimator.

We show in this section how to extend this to model general log-concave mixtures for

multivariate data.

In order to derive the EM algorithm, we artificially augment the data so that each

observation consists of a pair (X i , Zi), with Zi ∈ {1, . . . , k} being the (unobserved)

component from which observation i was drawn. Then the log-likelihood for the whole

model is given by

`n(π, f ) =
1

n

n
∑

i=1

logπZi
fZi
(X i).

Since the values of Zi are unknown, at each iteration we replace them with their

expected values under the current model. In more detail, given current estimates f (t)j

and π(t)j of f j and π j respectively, we compute the expected log-likelihood under this

distribution, conditional on X i , namely

`(t)n (π, f ) =
1

n

n
∑

i=1

k
∑

j=1

θ
(t)
j,i

�

logπi + log f j(X i)
�

,

where

θ
(t)
j,i =

π
(t)
j f (t)j (X i)

∑k
l=1π

(t)
l f (t)l (X i)

is the conditional probability that Zi = j, given X i. This is the so-called “expectation”

step.

We then maximize this expected log-likelihood, that is, we set

(π(t+1), f (t+1)) = arg max`(t)n (π, f ),

where the maximization is over {π ≥ 0:
∑

πl = 1} and F for π and f respectively. A

standard calculation involving the addition of a Lagrangian term to enforce
∑

i πi = 1

leads to the estimates

π
(t+1)
j =

∑n
i=1 θ

(t)
j,i

∑n
i=1

∑k
l=1 θ

(t)
l,i
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and

f (t+1)
j = argmax

f ∈F

n
∑

i=1

w j,i f (X i),

where F is the class of all log-concave densities and

w j,i =
θ
(t)
j,i

∑n
l=1 θ

(t)
j,l

are weights. From Section 3.6.4, we see that the weights w j,i may readily be incorporated

into our existing method.

In the parametric case, the expectation and maximization steps are alternated until a

local maximum is reached. The algorithm is guaranteed to converge to a local maximum.

We mimic these alternating steps in the nonparametric case.

4.4.2 Implementation details

As usual for mixture models, the likelihood may be made arbitrarily large by choosing

one extremely narrow component and one wide component. We therefore seek a local

maximum in the likelihood surface with both components having a variance strictly

greater than some ε > 0. In order to start our search at a suitable point in the parameter

space, as we initially fitted k clusters using a hierarchical clustering algorithm. We then

modelled each of these clusters as a multivariate normal distribution, with the sample

mean and variance of the cluster used for the mean and variance of each Gaussian

component. This is the starting point suggested for the Gaussian EM algorithm in the R

package mclust (Fraley and Raftery, 2008). Chang and Walther (2007) suggested using

the maximum found by the Gaussian EM algorithm as a starting point. However, for

multivariate data we found that this did not offer sufficient flexibility and our EM-style

algorithm got stuck (in a local maximum of the likelihood function) at a distribution

close to the Gaussian mixture, leading to little improvement.

In contrast to the case for parametric components, there is no formal proof of

convergence of the nonparametric EM-style algorithm. Therefore, we run the algorithm

until the relative increase in the log likelihood was smaller than some ε`. We used the

value ε` = 10−2. We also placed an upper bound Nmax = 10 on the number of iterations.

This appeared to be sufficient to capture the shape of the distributions.

4.4.3 Application to visualization

For bivariate data, plotting the estimate can give some insight into the structure of the

data. We illustrate that here with the universities data described in Section 4.2.2.
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4.4 Finite mixture models

Example: Universities data revisited

The results of the Section 4.2.2 suggest a single log-concave component is insufficient to

capture all the features of the universities dataset. We therefore applied our clustering

technique to the first two principal components of the universities dataset described in

Section 4.2.2. The resulting estimate is shown in Figure 4.16.

If we examine the two groups more closely, we see that, of the 63 universities for

which

bπ1
bf1(X i)> bπ2

bf2(X i),

59 are in the top 60 of the Times Universities ranking. This suggests that there is a

“break point” part way down the list splitting the universities into two broad groups.

4.4.4 Application to clustering

Given an observation X from a distribution with a density of the form (4.9), the Bayes

clustering rule assigns this observation to

arg max
l∈{1,...,k}

πl fl(X ).

This observation immediately suggests a plug-in rule for clustering. First, fit a density

estimate, and then assign observation i to cluster j, where

j = arg max
l∈{1,...,k}

bπl
bfl(X i). (4.11)

This classification rule is a plug-in version of the optimal Bayes rule for the mixture. This

method not only clusters the groups, but also gives a posterior estimate of the probability

that an observation comes from each of the two groups, namely

τ j(X i) =
bπ j
bf j(X i)

∑k
l=1 bπl

bfl(X i)
.

Example: Breast cancer data

To illustrate this, we use the Wisconsin breast cancer diagnostic dataset (Street, Wolberg,

and Mangasarian, 1993) available from the UCI machine learning repository (Asuncion

and Newman, 2007). The dataset consists of several measurements from a digitized

image of a fine needle aspirate of a breast mass, describing characteristics of the cell

nucleus. In total, measurements from 569 individuals were taken, 357 being benign

and 212 malignant. The full dataset consists 30 real values for each patient. These are
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(a) Surface plot

(b) Contour plot

Figure 4.16: Density estimate for universities dataset.
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Figure 4.17: First two principal components of the Wisconsin breast cancer dataset. Red
triangles are malignant, and green squares are benign.

the mean, standard error and worst (mean of 3 largest values) of ten aspects of the

image. In order to use this dataset, we first projected the (rescaled) dataset onto its

first two principal components (after rescaling the data to lie on the same scale in each

dimension). Because of the inclusion of standard error information, we might expect

that a log-concave mixture would better be able to capture the shape of the clusters than

a Gaussian mixture. A plot of the first two principal components is given in Figure 4.17

below. These two components capture 63% of the variation in the data. Malignant

instances are shown as red triangles, and benign as green squares. Some clustering is

clearly present, but as the clusters are skewed a Gaussian mixture may not be adequate.

A log-transform of the standard deviation measurements was considered, but was not

appropriate because some of the observations had standard deviation zero.

To test the procedure, we fitted a two-component mixture using both the Gaussian

and log-concave EM algorithms to the unlabelled dataset. For both the Gaussian and

log-concave mixtures, the initial point was chosen by using hierarchical clustering to

identify initial groups, and fitting a Gaussian distribution to each cluster. The variances

of the Gaussian mixture were unrestricted. After fitting the mixture, we classified each

observation according the the plug-in Bayes rule (4.11). To assess the performance

of each method, we compared this to the known true classification and counted the

number of misclassifications. The two components of the fitted mixture are illustrated
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(a) Gaussian mixture using EM algorithm
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(b) Log-concave mixture fitted using EM-style algo-
rithm

Figure 4.18: Contours of the components of a two-component mixture fitted to the Wisconsin
breast cancer dataset. Misclassified points are shown. Red triangles are malignant, and green
squares are benign.

in Figure 4.18(a) for the Gaussian mixture, and Figure 4.18(b) for the log-concave

mixture. We see that the log-concave mixture is better able to capture the shape of

the two components. The “malignant” component has an artificially large variance in

order to capture the skewed part of the data, and this leads to greater classification

error. However, the log-concave mixture is able to adapt automatically to the shape of

the density. The misclassification rate was reduced from 59/569 to 48/569. In both

Figure 4.18(a) and Figure 4.18(b), only misclassified points are shown.

4.5 Conclusion

In this chapter, we saw that, besides being a simple and parsimonious density esti-

mator, the log-concave maximum likelihood may be used for many more complicated

applications.

We presented a method, extending the work of Walther (2002), of assessing the

suitability of a log-concave model for a particular dataset. We tested the adequacy of a

single log-concave component using a multiscale test. We successfully detected heavy

tails and mixing on simulated examples, and did not produce a significant result when

log-concavity was appropriate. This method was also applied to a real dataset, where we

found a single log-concave component was not able to adequately model the data. This

informed our decision to use a mixture for this dataset in Section 4.4.
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We considered plug-in estimation of 3 different quantities: the covariance, the

differential entropy and the highest density region. For the covariance, an empirical plug-

in estimator was found to have superior performance in terms of the mean squared error.

However, the log-concave maximum likelihood estimate showed smaller variance, a

property that has been found elsewhere. For a more complicated example, the differential

entropy, we observed favourable performance compared to a common competitor, the

kernel density estimator. A range of bandwidth selectors were tried, and in each case we

found that the log-concave maximum likelihood estimator performed better, especially

for large sample sizes or higher dimensions. Once again, by decomposing the mean

squared error into bias and variance terms we saw that the log-concave estimator was

more stable. It also did not suffer from boundary bias where the distribution had

bounded support.

The final plug-in estimator considered was for highest density regions. Once again,

for multivariate data the log-concave estimator performed well compared to the kernel

density estimate. It has the added advantage of producing convex highest density regions,

meaning it is well able to capture the essential structure of the density.

Finally, we discussed how an EM-style algorithm may be used to fit mixtures where

the number of components is known. This was applied to two examples. Firstly, we fitted

a mixture to the universities dataset from the previous section, guided by our previous

assessment. Secondly, we investigated the use of this method for clustering using a

plug-in Bayes rule using a breast cancer dataset. We saw a significant improvement over

a Gaussian mixture because of the improved adaption to the shape of the underlying

clusters.

In summary, while acknowledging the computational limitations of our current

methods, we have developed a variety of useful applications of this estimator.
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5 Performance

5.1 Introduction

In this chapter we examine the asymptotic performance of the log-concave maximum

likelihood estimator from two different points of view. Firstly, we discuss convergence

in terms of the Hellinger metric. This is motivated by general considerations of the

maximum likelihood estimation in Section 5.2. We prove Hellinger consistency in

Section 5.3 via a uniform law of large numbers for a suitable class of sets. By bounding

the “size” of the class of log-concave functions, in Section 5.4 we derive a rate of

convergence of a restricted log-concave maximum likelihood estimator with respect to

the Hellinger distance. This is supplemented by simulation results for several example

densities.

Secondly, in Section 5.5 we compare the performance of the log-concave maximum

likelihood estimator with that of one of its main competitors, the kernel density estimator

introduced in Chapter 1. Since using this estimator in practice depends on careful

choice of a bandwidth matrix, we compare several possibilities for bandwidth selection,

including sophisticated adaptive methods. The results reveal favourable performance of

the log-concave maximum likelihood estimator in a range of settings.

5.1.1 Asymptotic behaviour of log-concave maximum likelihood estimators

For the special case d = 1, there has already been some interest in the asymptotic

performance of log-concave maximum likelihood estimators. Balabdaoui et al. (2009)

have provided a pointwise limiting distribution in terms of derivatives at 0 of the “lower

invelope” of an integrated Brownian motion minus a drift term. This leads to a pointwise

rate of convergence of Op(n−k/(2k+1)) at a point x0, where k is the smallest integer ≥ 2

such that
dk

d xk
log f0(x0) 6= 0.

They also prove consistency of the mode of bfn as an estimator of the mode of f0.

Uniform convergence at a rate Op((log n/n)α) on compact intervals strictly contained

within the support of f0, with α ∈ [1/3,2/5] depending on the smoothness of f0, has

been provided by Dümbgen and Rufibach (2008). In detail, it is shown that if f0 is Hölder

continuous with exponent β ∈ [1, 2], we may set α= β/(2β + 1). As a corollary of this,
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5.2 Nonparametric maximum likelihood estimation

the authors obtain L1-consistency of the maximum likelihood estimator and uniform

consistency of the integrated density as an estimator of the distribution function. Further,
�

�
bFn(x)− Fn(x)

�

� is shown to converge at rate Op(n3β/(4β+2)) on compact subintervals of

the support of f0, where bFn is the integrated log-concave maximum likelihood estimator.

Pal et al. (2007) have proved consistency of the log-concave maximum likelihood

estimator with respect to the Hellinger metric, although no rate is provided.

These results rely on the special structure of the space of log-concave densities when

d = 1. This was mentioned in Section 3.5. In general, results for d > 1 require different

techniques.

5.2 Nonparametric maximum likelihood estimation

In this section we introduce some tools for understanding convergence of nonparametric

likelihood estimators. Key references on this subject are Pollard (1984, Chapter II),

van der Vaart and Wellner (1996) and van de Geer (2000). The discussion in Evans

(2007) has also been useful.

5.2.1 Consistency

For any class of densities F and f0 ∈ F ,

f0 = argmax
f ∈F

∫

log f dF0. (5.1)

We may therefore interpret bfn as solving (5.1), where we have replaced F0 with the

empirical distribution function Fn. Note that (5.1) implies that, for all f ∈ F ,

∫

log
bfn

f0
dFn ≥ 0.

Combining this with (5.1), we see that

0≤
∫

log
f0
bfn

dF0

≤
∫

log
f0
bfn

dF0−
∫

log
f0
bfn

dFn

=

∫

log
f0
bfn

d(F0− Fn).
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5.2 Nonparametric maximum likelihood estimation

Note that, for a fixed measurable function g with
∫ �

�g
�

� dF0 <∞, by the law of large

numbers as n→∞
�

�

�

�

∫

g d(F0− Fn)

�

�

�

�

a.s.→ 0.

If we can show that this holds uniformly for g in

G =
�

log
f0
f

: f ∈ F
�

,

i.e.

sup
g∈G

�

�

�

�

∫

g d(F0− Fn)

�

�

�

�

a.s.→ 0

as n→∞, then we certainly have consistency of the maximum likelihood estimator. In

this case, we say that the class G satisfies a uniform law of large numbers.

In certain special cases it may suffice to provide a bound on some different class of

functions arising from a different transformation of F . Several examples are given in

van de Geer (2000, Chapter 4). Identifying and proving a suitable law of large numbers

can be delicate. In the next section, we make a minor diversion into uniform laws of

large numbers which is important later.

5.2.2 Uniform laws of large numbers

In the previous section, we said that a class of functions G satisfied a uniform law of

large numbers (ULLN) for f0 if

sup
g∈G

�

�

�

�

∫

g d(F0− Fn)

�

�

�

�

a.s.→ 0

as n→∞. In the special case

G = {1A : A∈A}

for some collectionA of subsets of Rd , we sayA satisfies a ULLN if

sup
A∈A

�

�P(A)− Pn(A)
�

�

a.s.→ 0

where

P(A) = P0(A) =

∫

1A dF0
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5.2 Nonparametric maximum likelihood estimation

and Pn is defined similarly for the empirical measure. An example of such a result is the

classical (multivariate) Glivenko-Cantelli theorem, for which

A =
¦

(−∞, x1]× . . .× (−∞, xd] : (x1, . . . , xd) ∈ Rd
©

.

Proving a law of large numbers depends on the ability of sets inA to pick out subsets

of points in Rd . To state this more precisely, we require an additional definition. Given

a set of points Z = {ζ1, . . . ,ζn} ⊆ Rd , we say thatA shatters Z if every Z ⊆Z can be

written in the form Z ∩ A for some A∈A . The exact relationship between shattering

and uniform laws of large numbers is provided by the following theorem.

Theorem 5.1 (Pollard, 1984, Chapter II, Theorem 21). LetA be a class of measurable subsets

of Rd . A necessary and sufficient condition for

sup
A∈A
|Pn(A)− P(A)|

a.s.→ 0

is that
1

n
Sn

p
→ 0

where Sn = Sn(ζ1, . . . ,ζn) is the smallest integer such thatA shatters no collection of Sn

points from {ζ1, . . . ,ζn} ⊆ Rd .

We use this in Section 5.3.1.

5.2.3 Hellinger distance

The Kullback-Leibler divergence

KL(g, f ) =

∫

log
g

f
dF

does not define a distance function. However, it is closely related to the Hellinger

distance, defined for two nonnegative functions f and g on Rd to be

h( f , g) =

�
∫

�

f 1/2(x)− g1/2(x)
�2

d x

�1/2

If f and g are densities, h2( f , g)≤ 2 (some authors normalise so that h2( f , g)≤ 1).

This is less interpretable than the more common Lp norms (particularly for p = 1,2 or

∞), but is particularly useful for nonparametric convergence rates due to the following

inequality.
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Lemma 5.2 (van de Geer, 2000, Lemma 1.3). For densities f and g on Rd ,

h2(g, f )≤ KL(g, f )

Proof. Noting that, for y > 0, log y ≤ y − 1, and applying this to y2 = f (x)
g(x) , we have

log
f (x)
g(x)

≤ 2

�

f 1/2(x)

g1/2(x)
− 1

�

so that

KL(g, f ) =

∫

log
�

g

f

�

dF

≥ 2− 2

∫

f

�

g1/2

f 1/2

�

= 2− 2

∫

f 1/2 g1/2

= h2(g, f )

In light of the discussion in Section 5.2.1, a suitable ULLN therefore implies Hellinger

consistency. As remarked by van de Geer (2000, p.8), this is far from a necessary

condition.

5.2.4 Entropy and bracketing entropy

The rate of convergence of the maximum likelihood estimator over a classF is intimately

connected to the “size” of the F , measured via the notion of the entropy.

The entropy of a metric space (Y , d) is defined as follows. Fix ε > 0 and consider a

collection of points x1, . . . , xN (not necessarily in Y ) such that, for every x ∈ Y , there

is some i such that d(x , x i) ≤ ε. This is called a covering of Y . Let N(ε,Y , d) be the

smallest such N ; then the ε-entropy is defined as

H(ε,Y , d) = log N(ε,Y , d).

We need to extend this notion in the special case in which Y is a space of real-valued

functions G on some metric space Y , in our case Rd . As before, fix ε > 0 and let NB be

the smallest number such that there exist pairs

{(g L
i , gU

i ), i = 1, . . . , NB}
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(not necessarily in G ) such that d(g L
i , gU

i )≤ ε and, for every g ∈ G , there is some j such

that

g L
j (y)≤ g(y)≤ gU

j (y) for all y ∈ Y.

Then HB(ε,G , d) = log NB(ε,G , d) is the ε-entropy with bracketing of (G , d).

5.2.5 Connection between bracketing entropy and rate of convergence

The relationship between the bracketing entropy of a space of functions as defined in the

previous section and the rate of convergence of the maximum likelihood in this space is

provided by Wong and Shen (1995), and explored further in van de Geer (2000).

The key result is as follows.

Theorem 5.3 (Wong and Shen, 1995, Theorem 2). Let F be a class of densities and let bfn be

a sequence of maximum likelihood estimators. Then there exist positive constants c1, . . . , c4

such that, for δn > 0, if

∫

p
2δn

δ2
n/2

8

H1/2
B (u/c1,F , h) du≤ c2n1/2δ2

n,

then for sufficiently large n,

P(h(bfn, f0)≥ δn)≤ c3 exp(−c4nδ2
n).

This shows that the rate of convergence is essentially determined by δn, the smallest

δ such that
∫ δ

δ2

H1/2
B (u,F , h) du≤ n1/2δ2. (5.2)

5.2.6 Sieves

In some cases it may be possible to improve upon the rate given by Theorem 5.3 by

approximating F by a sequence of spaces Fn with smaller bracketing entropy. Given

such a sequence, it may be possible to define a sequence of sieved maximum likelihood

estimators

efn = arg max
f ∈Fn

∫

log f dFn.

Given a class of functions Fn ⊆F , a suitable index of the degree to which Fn approxi-

mates a given f0 ∈ F is given for α ∈ (0, 1] by

inf
f ∈Fn

ρα( f0, f ),
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where, for α ∈ [−1,1]

ρα( f0, f ) =











1

α

�

E
�

f0
f

�α

− 1

�

if α 6= 0

E
�

log
�

f0
f

��

else.

Here expectation is under f0.

The following theorem tells us that the rate of convergence of efn to f0 is determined

by the entropy of Fn, and the distance between f0 and Fn. Along the same lines as

Theorem 5.3, the link with the first quantity is via δn, the smallest δ such that

∫ δ

δ2

H1/2
B (u,Fn, h) du≤ n1/2δ2. (5.3)

Theorem 5.4 (Wong and Shen, 1995, Theorem 4). Let Fn be a sieve, and efn be the corre-

sponding sieved maximum likelihood estimators. Let

τn(α) = inf
f ∈Fn

ρα( f0, f ),

and suppose that, for some α ∈ (0,1],

τn(α)≤
1

α
.

Then there exist constants c1, . . . , c5 such that if

∫

p
2δn

δ2
n/2

8

H1/2
B (u/c1,Fn, h) du≤ c2n1/2δ2

n

and

εn =min

 

δn,
�

4τn(α)
c3

�1/2
!

then

P(h( f0, efn)≥ εn)≤ c4 exp(−c5nε2
n).

When choosing our sieve, if we wish to ensure the optimal rate of convergence we

must ensure that

τn � δ2
n.

A useful application of this is to correct a suboptimal rate that sometimes arises in
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5.3 Consistency of the log-concave maximum likelihood estimator

an attempt to apply Theorem 5.3. This is part of Example 4 in Wong and Shen (1995).

If the Hellinger bracketing entropy HB(δ,F , h) is finite for some class F , it is shown in

this example that we may, for a suitable choice of τn, use a sieve based on the bracketing

Gn =
n

( f L
j , f U

j ): j = 1, . . . , N = exp(HB(τn,F , h))
o

to improve the rate of convergence. The sieve is

Fn =







f U
j,n

∫

f U
j,n

: j = 1, . . . , N







.

It may be shown that the rate of Hellinger convergence is then O(δn), where

HB(δn,F , h)� nδ2
n.

5.2.7 Effect of model misspecification

If f0 /∈ F , the arguments above lead to a rate of convergence for h(efn, f ∗n ), where

f ∗n = argmax
f ∈Fn

∫

log f dF0.

This is the closest approximation to f0 within the class Fn. Thus, if the model is

misspecified, the maximum likelihood estimator converges to the closest approximation

to the true density (in the Kullback-Leibler sense). For our purposes this is a desirable

robustness property.

5.3 Consistency of the log-concave maximum likelihood estima-

tor

In this section we prove that the maximum likelihood estimator is consistent with respect

to the Hellinger distance. The motivation for using this distance function was given in

Section 5.2.3. Our result follow Pal et al. (2007), which proved Hellinger consistency if

d = 1. We first prove a suitable ULLN and several technical results. We combine these to

establish consistency in Theorem 5.11.
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5.3 Consistency of the log-concave maximum likelihood estimator

5.3.1 A uniform law of large numbers

In this section, we prove a uniform Glivenko-Cantelli result needed in the sequel. This

proof closely follows Pollard (1984, Example 22, Chapter II), which considered the

special case d = 2 and f = 1C , where C = [0, 1]2. An equivalent result is Theorem 2.1.1

of Bhattacharya and Rao (1976).

Theorem 5.5. Let f be a density on Rd , and P the corresponding measure. Then the class

A of all measurable convex subsets of Rd satisfies a uniform strong law of large numbers,

that is,

sup
A∈A
|Pn(A)− P(A)|

a.s.→ 0

Proof. We use the notation of Theorem 5.1. Suppose for a contradiction that for some

ε > 0

P
�

1

n
Sn ≥ ε

�

≥ ε infinitely often. (5.4)

For m, l ∈ N, consider a grid dividing the hypercube [−m, m]d into ld hypercubes of side

length δ = 2m
l

. LetBm,l be the collection of all subsets of this collection of hypercubes

together with Rd\[−m, m]d . Since this is a finite collection of measurable sets,

P

 

sup
B∈Bm,l

�

�Pn(B)− P(B)
�

�≥
ε

2

!

<
ε

2

for sufficiently large n. Combining this with (5.4), for suitable n,

P

 

1

n
Sn ≥ ε and sup

B∈Bm,δ

|Pn(B)− P(B)| ≤
1

2
ε

!

≥
1

2
ε.

This set cannot be empty, so for some configuration of sample pointsA must shatter at

least nε points, and |Pn(B)− P(B)| must be less than 1
2
ε for each B ∈Bm,l . Write H for

the convex hull of a shattered set of size at least nε and

BH =
⋂

{B ∈Bm,l : H ⊆ B}.

Note that BH ∈Bm,l . Further, Pn(BH)≥ ε (since H contains at least nε points) and

|Pn(BH)− P(BH)| ≤
1

2
ε

(since BH ∈Bm,δ). Therefore P(BH)≥
1
2
ε.

This gives us our desired contradiction. Fix m so that all the sample points lie in

[−m, m]d . Consider l = 3k for k = 1, 2, . . .. For k = 1, no convex set can have boundary
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points in all 3d of the hypercubes inBm,l that partition [−m, m]d , so

P(BH)≤
c(2m)d(3d − 1)

3d
.

Applying the same argument to each hypercube and repeating k times, we find that for

k = 1,2, . . .,

P(BH)≤
c(2m)d(3d − 1)k

3dk
.

Choosing k sufficiently large leads to the desired contradiction.

5.3.2 Technical preliminaries

We begin with a lemma.

Lemma 5.6 (Pal et al., 2007, Lemma 1). If f and g are densities on Rd , F is the distribution

function of f and b > 0, then

h2( f , g)≤
∫

log
�

f (x) + b

g(x) + b

�

dF(x) + ε(b)

where

ε(b) = 2

∫
�

b

f (x) + b

�1/2

dF(x).

Proof.

∫

log
�

g(x) + b

f (x) + b

�

dF(x)≤ 2





∫
�

g(x) + b

f (x) + b

�1/2

dF(x)− 1





≤ 2





∫
�

b

f (x) + b

�1/2

dF(x) +

∫
�

g(x)
f (x) + b

�1/2

dF(x)− 1





≤ ε(b) + 2

�
∫

�

f (x)g(x)
�1/2 d x − 1

�

≤ ε(b)− h2( f , g)

Our second lemma is closely related to the second lemma of Pal et al. (2007).

Lemma 5.7. Let b > 0 and 0 < c <∞. Let f be a density on Rd . Let X1, . . . , Xn an iid

sample from f . Denote the empirical distribution function of X1, . . . , Xn by Fn, and the

distribution function corresponding to f by F. Let g be a log-concave function on Rd with

sup
x∈Rd

g(x)≤ c.
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5.3 Consistency of the log-concave maximum likelihood estimator

Then
�

�

�

�

∫

log(g(x) + b) d(Fn(x)− F(x))

�

�

�

�

a.s.→ 0.

Proof. LetA denote the class of all convex (measurable) subsets of Rd . Then by Fubini’s

theorem, we have

�

�

�

�

∫

log(g(x) + b) d(Fn(x)− F(x))

�

�

�

�

≤ sup
A∈A

�

�Pn(A)− P(A)
�

� log
�

1+
c

b

�

The result follows by Theorem 5.5.

Our next task is to show that, with probability 1, the sequence

Mn =max
x∈Rd

bfn(x)

is bounded. We accomplish this by generalizing the arguments in Pal et al. (2007). We

start with a generalization of their Lemma 4.

Lemma 5.8. If ai , x > 0 and

x ≤
k
∑

i=0

ai(log x)i (5.5)

then

x ≤ (d + 1)
k
∑

i=0

2iai log((d + 1)ai i
i)i .

Proof. For 1≤ m≤ k, let λ= (d + 1)mm. Then, for a > 0,

a(log x)m = a(m log(x1/m))m

≤ a

�

m log

�

(λa)1/m
�

1+
� x

λa

�1/m
���m

≤ a

�

m

�

log((λa)1/m) +
� x

λa

�1/m
��m

≤ 2mamm
�

log
�

(λa)1/m
�m
+

x

λa

�

= 2ma log(λa)m+
x

d + 1

Applying this to each term of (5.5) with i > 0 and rearranging, we obtain the result.

We now need a bound on log-concave densities.
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5.3 Consistency of the log-concave maximum likelihood estimator

Lemma 5.9. Let X1, . . . , Xk be points in Rd and let g be a log-concave density on Rd . Let

a =min
j

log g(X j) and c =max
j

log g(X j).

Then

ec ≤
1

Vk

 

d−1
∑

i=0

(c− a)i

i!
+ (c− a)d

!

.

where Vk is the volume of the convex hull of X1, . . . , Xk.

Proof. Without loss of generality suppose that log g(X1) = a and log g(Xk) = c. If a = c

or a = −∞ the result is trivial, so assume that neither is the case. Let Ck denote the

convex hull of the points X1, . . . , Xk. Divide this into simplices T1, . . . , Tp such that each

has Xk as a vertex and the simplices form a triangulation of Ck. Then, for each T j , using

the expression (3.10) and the notation of (3.8), we have

∫

T j

g(x) d x ≥
�

�A j

�

�Gd(c, a, . . . , a)

≥
�

�A j

�

� ea







ec−a −
�

∑d−1
i=0

(c−a)i

i!

�

(c− a)d







Adding up the contributions from all T j and using the fact that
∫

g = 1, we obtain

ec ≤
(c− a)d

Vk
+ ea

 

d−1
∑

i=0

(c− a)i

i!

!

.

Using the fact that ea ≤ 1
Vk

(since
∫

g = 1), we obtain the result.

We now combine these results to control the rate of growth of Mn.

Lemma 5.10. Let f0 be a log-concave density on Rd and let X1, X2, . . . be an iid sample from

f0. Let bfn the maximum likelihood estimate based on the first n observations. Let

Mn = sup
x

log bfn(x).

Then with probability 1, there exists a constant C such that Mn ≤ C for sufficiently large n.

Proof. Since f0 is log-concave, we automatically have
∫ �

�log f0
�

� dF0 <∞. Let Kn = d
n
2
e.
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5.3 Consistency of the log-concave maximum likelihood estimator

Without loss of generality, assume that bfn(X1)≤ bfn(X2)≤ . . .≤ bfn(Xn). Then we have

`n( f0)≤ `n(bfn)

≤
�

1−
Kn

n

�

log(bfn(Xn)) +
Kn

n
log(bfn(XKn

)),

so that

log

 

bfn(Xn)
bfn(XKn

)

!

≤
n

Kn
log
�

bf (Xn)
�

−
n

Kn
`n( f0)

≤ 2 log(bfn(Xn))− `n( f0). (5.6)

Moreover, letting VKn
denote the volume of the convex hull of {X1, . . . , XKn

}, we have by

Lemma 5.9,

bfn(Xn)≤
1

VKn







d−1
∑

i=0

1

i!



log

 

bfn(Xn)
bfn(XKn

)

!



i

+ 2



log

 

bfn(Xn)
bfn(XKn

)

!



d





.

Combining this with (5.6),

bfn(Xn)≤
1

VKn



1+
d−1
∑

i=0

1

i!

�

2 log
h

�

bfn(Xn)− `n( f0)
�i�

+
�

log bfn(Xn)− `n( f0)
�d
�



 .

This is precisely of the form to which we may apply Lemma 5.8. By the strong law of

large numbers,

`n( f0)
a.s.→
∫

log f0 dF0

which is finite since f0 is assumed log-concave. Moreover, the convex hull of X1, . . . , XKn

is convex and has empirical measure that is certainly greater than 1
3
, say. Also, the volume

of any set of probability at least 1
3

under f0 is bounded below by some strictly positive

value. Therefore VKn
is almost surely bounded away from zero eventually. Combining

this with Lemma 5.8 yields the result.

5.3.3 Consistency

We now join all the pieces in a manner which closely resembles Theorem 3.1 of Pal et al.

(2007).

Theorem 5.11. Let f0 be a log-concave density and let bfn denote the log-concave maximum

likelihood estimator. Then, with probability 1, h( f0, bfn)→ 0 as n→∞.
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5.3 Consistency of the log-concave maximum likelihood estimator

Proof. First observe that f0 must be bounded since it is log-concave and integrates to 1.

Thus we may apply any of the results from the previous section.

If f0 is log-concave and b > 0, then by Lemma 5.6,

h2( f0, bfn)≤ ε(b) +
∫

log

�

f0(x) + b
bfn(x) + b

�

dF0(x)

= ε(b) +

∫

log( f0(x) + b) dF0(x)−
∫

log(bfn(x) + b) dF0(x)+
∫

log(bfn(x) + b) dFn(x)−
∫

log(bfn(x) + b) dFn(x)+
∫

log( f0(x)) dFn(x)−
∫

log f0(x) dFn(x)

= ε(b) + An+ Bn+ Cn

where

An =

∫

log(bfn(x) + b) d(Fn(x)− F0(x)),

Bn =

∫

[log f0(x)− log(bfn(x) + b)] dFn(x)

and

Cn =

∫

log( f0(x) + b) dF0(x)−
∫

log f0(x) dFn(x).

Now by Lemma 5.10, bfn is (uniformly) bounded above, so we may apply Lemma 5.7 to

conclude that with probability 1,
�

�An

�

�→ 0.

Now observe that

Bn ≤
∫

[log f0(x)− log bfn(x)] dFn(x)

≤ 0.

Further, by the strong law of large numbers,

Cn
a.s.→
∫

�

log( f0(x) + b)− log( f0(x))
�

dF0(x)
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5.4 Rate of convergence of the log-concave maximum likelihood estimator

Rearranging, with probability 1

lim sup h2( f0, bfn)≤
∫

�

log( f0(x) + b)− log f0(x)
�

dF0(x) + ε(b)

for each b > 0. However, each term on the right hand side approaches 0 as b→ 0, so

that

h2( f0, bfn)
a.s.→ 0.

5.4 Rate of convergence of the log-concave maximum likelihood

estimator

The general results described in Section 5.2 are intuitively reasonable. We expect the

rate of convergence to depend on the size of the parameter space. This link is provided

by the Hellinger bracketing entropy. However, bounding the bracketing entropy of a

particular class of functions is well recognised to be a difficult problem. Therefore, in

this section we consider a restricted subclass of log-concave densities for which a bound

on the bracketing entropy may be derived relatively easily. Combined with sieving, this

leads to a rate of convergence for the maximum likelihood estimator within this class.

We finish with a small simulation experiment to illustrate the rates achieved in practice,

even when the aforementioned restrictions are not satisfied.

5.4.1 Bracketing entropy of the space of log-concave functions

In this section, F denotes the class of log-concave densities on Rd . Let S ⊆ Rd be convex

and bounded, and let a < b and c > 0 be real numbers. Let L (a, b, c, S) denote the class

of all concave functions l : Rd → [0,∞) such that, for some fixed subset C ⊆ S, we have

inf
x∈C

l(x)≥ a and sup
x∈C

l(x)≤ b,

and the restriction of l to C is Lipschitz with constant c. Further, let

F (a, b, c; S) =
�

f ∈ F : log f ∈ L (a, b, c; S)
	

.

A minor modification of the proof of Corollary 2.7.10 in van der Vaart and Wellner

(1996) (which concerns the special case C = S) allows us to conclude that for ε > 0,

H(ε,L (0, 1, c; S),‖·‖∞)≤ K
�

1+ c

ε

�d/2

,
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5.4 Rate of convergence of the log-concave maximum likelihood estimator

where K depends on S and d only.

There is a one-to-one correspondence between ε-balls in L (a, b, c; S) and ε/(b− a)-

balls in L (0, 1, c/(b− a); S), so

H(ε,L (a, b, c; S),‖·‖∞)≤ K
�

b− a+ c

ε

�d/2

.

We can use the centres of the balls forming an ε/2-covering to form an ε-bracketing

of L (a, b, c;S) with respect to ‖·‖∞. If {`i} are the centres of the ε-balls covering Y ,

then
¦

[`L
i ,`U

i ]
©

=
�

[`i − ε/2,`i + ε/2]
	

form an ε-bracketing with respect to the supremum norm.

For each ` ∈ L (a, b, c; S), define a function f : Rd → [0,∞) such that

f (x) =







exp(`(x)) if x ∈ cl({y : l(y)> a})

0 else.

Define f L and f U corresponding to `L and `U similarly.

Given an ε-bracket [ f L , f U] such that, for some f L ≤ f ≤ f U we have
∫

f = 1,

observe that

h2( f U , f L) =

∫

�

( f U)1/2− ( f L)1/2
�2

=

∫

f U



1−
�

f L

f U

�1/2




2

≤
ε2

4

∫

f U

≤
ε2

4

∫

eε f

≤
ε2

4
eε

≤ ε2,

provided we choose ε so that eε/4≤ 1, i.e. ε≤ log4.

Therefore

HB(ε,F (a, b, c; S), h)≤ H(ε/2,L (a, b, c; S),‖·‖∞)
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5.4 Rate of convergence of the log-concave maximum likelihood estimator

≤ K
�

b− a+ c

ε

�d/2

.

5.4.2 Rate of convergence

Let f0 ∈ F (a, b, c; S), and

bfn = argmax
f ∈F (a,b,c;S)

∫

log f dFn.

Note that existence and uniqueness of such an estimator may be established in exactly

the same way as that of the unrestricted estimator in Theorem 2.10, since

¦

y ∈ Rn : h̄y ∈ L (a, b, c; S)
©

is convex.

Now we may apply Theorem 5.3 to conclude that

h(bfn, f0) = Op(δn),

where

δn =











n−2/(d+4) d < 4

n−1/4(log n)1/2 d = 4

n−1/d d > 4.

Using the method of sieves from Section 5.2.6, we may improve on the suboptimal rates

for d > 4. Recall that the rates are essentially determined by the solution to

HB(εn,F (a, b, c; S), h)� nε2
n

which gives a rate of Op(n−2/(d+4)) for all d.

We conjecture that, even without the additional restrictions imposed in this section,

h(bfn, f0) will be O(n−d/(d+4)). However, bounding bracketing entropy, particularly for

the Hellinger metric, is well known to be a difficult problem (van de Geer, 2000). This

conjecture will be supported by our simulation results in Section 5.4.3, which include a

favourable convergence rate with respect to the Hellinger distance even for densities not

satisfying the additional restrictions of this section.
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5.4 Rate of convergence of the log-concave maximum likelihood estimator

5.4.3 Simulation results

In this section, we study the distance h(bfn, f0) empirically for the densities, dimensions

and sample sizes listed in Section 4.1.1. For each density, n and d we computed

the Hellinger distance h(bfn, f0) for 100 samples. Densities E and G are of particular

interest because they lie on the boundary of the class of log-concave densities. It has

been observed that pointwise convergence occurs at a slower rate where derivatives

vanish when d = 1 (Balabdaoui et al., 2009). However, we do not observe the same

phenomenon here.

Dümbgen and Rufibach (2008) observe that, while their theoretical results only hold

for compact intervals, in fact good behaviour is observed over the whole space. In our

case, while our theoretical results hold only in a restricted setting, we see good behaviour

even when the restrictions are not satisfied.

Recall from Section 2.4.1 that bfn(x) = exp(h̄y(x)) for some y ∈ Rn. Clearly

bf 1/2
n (x) = exp(h̄y/2(x))

so computing the integral
∫

bf 1/2
n f 1/2

0

is straightforward using the numerical techniques of Section 4.3. It follows that comput-

ing the Hellinger distance

h2(bfn, f0) =

∫

(bf 1/2
n − f 1/2

0 )2

= 2− 2

∫

bf 1/2
n f 1/2

0

is also straightforward.

Some of these results are shown in Figure 5.1. In Figure 5.1(a), we show the results

for density C. We can see that the rate of convergence is slightly slower for larger d,

although not as much as predicted by the above asymptotic analysis. We suggest this is a

finite sample effect. The other densities exhibited similar performance. In Figure 5.1(c),

we show the results for density G for d = 2. This density does have compact support.

The rate of convergence observed empirically was not affected much by the features

noted in Table 4.1.

In Figure 5.1(b), we show the results for density F. This is not a log-concave density,

and we conjectured in Section 5.2.7 that in this case h(bfn, f0) converge to a finite non-

zero value. This can be seen for d = 1. It is less obvious for higher dimensions, but this
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5.5 Comparison with kernel density estimation

could be because we did not consider a sufficiently large sample size.

In Table 5.1, the right-hand column shows the approximate rate of convergence

based on these simulations for density A. The first column gives the rate of convergence

conjectured above for comparison. We see that in practice the rate achieved is at least as

fast as the rate we have conjectured. We expect that the rate of convergence would be

slower for larger d, but computational considerations currently prohibit experimental

verification.

d −2/(d + 4) Slope
1 −0.4 −0.465
2 −0.333 −0.420
3 −0.286 −0.379

Table 5.1: Conjectured and empirical rates of convergence for Nd(0, I) random variables,
d = 1, 2,3.

5.5 Comparison with kernel density estimation

In this section, we compare the performance of the log-concave maximum likelihood

estimator with one common competitor, namely the kernel density estimator introduced

in Section 1.2.2. Recall that the multivariate kernel density estimator is defined by

bfn(x; H) =
1

n

n
∑

i=1

KH(x − X i). (5.7)

Here H is a positive definite d×d matrix and K a kernel, typically a spherically symmetric

density, and

KH(x) =
1

|H|1/2
K(H−1/2 x).

If d = 1, we usually write h for the smoothing parameter, and

bfn(x; h) =
1

n

n
∑

i=1

Kh(x − X i)

for the density estimate, where

Kh(x) =
1

h
K
� x

h

�

.

The scalar h or matrix H is known as the bandwidth, and controls the degree of smoothing

performed by the density estimator. Choosing a suitable bandwidth is important to ensure
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(a) Density C
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(b) Density F
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(c) Density G

Figure 5.1: Hellinger error (estimated). d = 1 is black, d = 2 red and d = 3 green.

good performance of the estimator.

In common with most practitioners, we use a Gaussian kernel

K(x) =
1

(2π)d/2
exp
�

−
1

2
x T x

�

though the choice of kernel does not strongly influence the asymptotic performance

(Scott, 1992, Section 6.2.3). This kernel is often used for its smoothness (leading to a

smooth estimate) and for its computational tractability.

In common with most literature on density estimation, in this section our error
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5.5 Comparison with kernel density estimation

criterion is the mean integrated squared error (MISE)

MISE
�

bfn, f0
�

= E
�
∫

�

f0(x)− bfn(x)
�2

d x

�

.

This is preferred for its ease of computation and intepretability. This is due to the

following breakdown into integrated variance and integrated squared bias terms:

MISE
�

bfn, f0
�

=

∫

E
h

�

bfn(x)−Ebfn(x)
�2i

d x +

∫

�

f0(x)−Ebfn(x)
�2

d x (5.8)

As already mentioned, a rate of convergence of O(n−4/(d+4)) for the MISE is at-

tainable if H is chosen appropriately. In Section 5.5.1, we discuss bandwidths that

in theory allow us to achieve the optimal rate of convergence, at least asymptotically.

However, these depend on the unknown density f0. In Section 5.5.4, we introduce three

conceptually simple techniques for data-driven bandwidth selection. In Section 5.5.5,

we suggest an extension allowing H to vary over the sample space and discuss how this

influences the performance of these estimators. Finally, we present some simulation

results in Section 5.5.6 comparing the performance of a kernel density estimator with

that of the log-concave maximum likelihood estimator.

For a discussion of the added difficulties for d > 1, see Duong (2004). Multivariate

bandwidth selection is an area of active research. The main references for Section 5.5.4

are Duong and Hazelton (2003), Duong and Hazelton (2005) and Duong (2007b).

Other recent innovations include Zhang, King, and Hyndman (2006), Chacón, Wand,

and Duong (2008) and Chacón (2009). Most of there results are generalizations, at least

in spirit, of well-studied univariate techniques. A survey of some alternative multivariate

techniques can be found in Ćwik and Koronacki (1997).

Extensions that adapt to local smoothness began with Breiman, Meisel, and Purcell

(1977) and Abramson (1982). A review of several adaptive methods for univariate data

may be found in Sain and Scott (1996). Further multivariate adaptive methods are

presented in Sain (2002) and Scott and Sain (2004).
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5.5 Comparison with kernel density estimation

5.5.1 Theoretically optimal bandwidths

The MISE of a univariate kernel density estimator with kernel K and bandwidth h is

given by

MISE
�

bfn(·, h), f0
�

=
1

nh

∫

K2(x) d x +
n− 1

n

∫

(Kh ? f0)
2(x) d x

− 2

∫

(Kh ? f0)(x) f0(x) d x +

∫

f 2
0 (x) d x .

(5.9)

Since this depends on the bandwidth h in a complicated way, it is common to use an

asymptotic expansion of the MISE, for which analysis is easier. For d = 1, the asymptotic

mean integrated squared error (AMISE) of a kernel density estimate with kernel K and

bandwidth h is given by

AMISE
�

bfn(·, h), f0
�

=
1

nh
R(K) +

1

4
h4m2(K)

2R( f
′′

0 ) (5.10)

where for a density g with finite second moment,

m2(g) =

∫

x2 g(x) d x

and for a square integrable function h

R(h) =

∫

h2(x) d x .

In this case, the optimal bandwidth is given by

hn =





R(K)

m2(K)2R( f
′′

0 )





1/5

n−4/5.

Plugging this into (5.10), we see that the optimal AMISE is

inf
h>0

AMISE
�

bfn(·, h), f0
�

=
5

4

�

m2(K)
2R(K)4R( f

′′

0 )
�1/5

n−4/5.

This is consistent with the rate of O(n−4/(d+4)) mentioned in the introduction. Observe

that the optimal bandwidth depends on the density f0.

In the special case that f0 is a finite Gaussian mixture and K a Gaussian kernel, it

is possible to compute the convolution integrals in (5.9) exactly and a MISE-optimal

bandwidth may be computed by numerically optimizing (5.9) (Wand and Jones, 1995,
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5.5 Comparison with kernel density estimation

Section 2.6).

In the multivariate case, the calculations are somewhat more intricate. The AMISE is

given by

AMISE
�

bf (·; H), f0
�

=
1

n
R(K) |H|−1/2+

1

4
m2(K)[vech H]TΨ( f0)[vech H] (5.11)

where vech is the vector half operator. For a general m×m matrix A= (ai j), this stacks

the columns of the lower triangle, that is,

vech A= (a11, a21, . . . , am1, a22, a32, . . . , amm)
T .

The matrix Ψ( f ) is defined as

Ψ( f ) =

∫

w(x)w(x)T d x ,

where

w(x) = vech
�

2∇∇T f (x)− diag∇∇T f (x)
�

,

and for a matrix A,

(diag A)i j =







Aii if i = j

0 else.

For smooth densities f , it may be shown that Ψ( f ) depends on f through quantities of

the form

ψr( f ) =

∫

f (r)(x) f (x) d x . (5.12)

where r = (r1, . . . , rd), |r|=
∑d

i=1 rd and

f (r)(x) =
∂ |r|

∂ x r1
1 , . . . , x rd

d

f (x).

Once more, in the special case that f0 is a finite Gaussian mixture no asymptotic

expansion is required (Wand and Jones, 1995, Section 4.4).

If d > 1, it is not possible to find a general expression for the AMISE-optimal H, so

(5.11) must be minimized numerically.
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5.5.2 Restrictions and pre-transformation

In the above discussion, we have made no restriction beyond requiring that H be

positive definite. Additional restrictions on the shape of H can simplify the computation

considerably. For example, writing H3 for the class of all positive-definite matrices,

further restrictions include

H ∈H2 =
�

H : H diagonal and H ∈H3
	

or

H ∈H1 =
¦

H : H = h2 I for some h> 0
©

.

We have already remarked that, in general, there is no closed-form expression for the

AMISE-optimal bandwidth matrix. However, in the special case H ∈H1, we may show

that the optimal bandwidth matrix is

h= hn =
�

dR(K)
m2(K)2R(∇2 f )n

�1/(d+4)

.

These restrictions can lead to inferior performance, and are not generally recommended

unless the data are known to have a simple structure (Duong, 2007b).

To improve the performance of the kernel density estimate, pre-transforming the data

has been suggested Silverman (1986). The idea is to compute a bandwidth matrix (in

H1 orH2) for the transformed dataset, which may be transformed back to the original

scale. This aim is to enjoy the advantages of a simpler bandwidth matrix in terms of

computation and stability, while adapting correctly to the underlying structure of the

data.

Two pre-transformations are considered. Sphering transforms the data so that

the covariance is I , that is, X ∗ = S−1/2X , where S is the sample covariance matrix.

Scaling transforms only the marginal variances, that is, X ∗ = (diag S)−1/2X , and does

not alter the correlation structure. The bandwidth matrix H∗ for the transformed data

may be translated back to one for the original dataset by inverting the transformation

(H = S1/2H∗S1/2 or H = (diag S)1/2H∗(diag S)1/2 for sphering and scaling respectively).

However, Duong (2007b) advises caution using this approach, especially in conjunction

with the assumption H∗ ∈H1, since the sample covariance may not adequately capture

the structure of the dataset.
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5.5.3 Normal scale rule

A crude method for practical bandwidth selection is the normal scale rule. This method

uses the AMISE-optimal bandwidth for normal data on the same scale as the sample.

For multivariate data, we assume the components are independent and that H ∈ H2.

Writing (hi)2 for the ith component of diag H, we set

hi
n = bσi

�

4

d + 2

�1/(d+4)

n−1/(d+4)

where bσi is some estimate of the marginal standard deviation, for example the sample

marginal standard deviation. This has a tendency to oversmooth the data but is a useful

rule of thumb for plug-in estimators, where the choice of bandwidth is less critical.

5.5.4 Fixed bandwidth selectors

As discussed in Section 5.5.1, the (asymptotically) optimal bandwidth for a multivariate

density can be found by minimizing (5.11). However, this bandwidth depends on

f0, which is unknown in practice. For univariate data, there are two main classes of

bandwidth selector used in practice: plug-in selectors and cross-validation selectors.

Multivariate counterparts have been developed for both types, with various restrictions

on H (Duong and Hazelton, 2003, 2005).

Plug-in methods aim to approximate (5.11) by “plugging in” preliminary estimates

of the unknown quantities. Terms of the form (5.12) may be written ψr = E[ f (r)(X )],
so we have a natural estimator of ψr (depending on a so-called “pilot” bandwidth G)

bψr(G) =
1

n

n
∑

i=1

bf (r)n (X i; G)

=
1

n2

n
∑

i=1

n
∑

j=1

K(r)G (X i − X j).

We typically assume G ∈ H1, leaving a single parameter to select. Although this

assumption is problematic when choosing H, it appears not to matter so much for the

pilot estimate. Duong and Hazelton (2003) observed choosing a different G for each r

can lead to bandwidth matrices that are not positive definite, and proposed choosing a

single pilot bandwidth matrix G according to the sum of asymptotic mean squared error

(SAMSE) criterion

SAMSEk(G) =
∑

r : |r|=k

E[( bψr(G)−ψr)
2].

Duong and Hazelton (2003) provide a closed-form expression for the optimal value
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5.5 Comparison with kernel density estimation

of G, and show that if |r| = k, it depends on terms of the type ψs where |s| = k+ 2.

These terms may be estimated using another plug-in estimator, requiring a further pilot

bandwidth G2. This may be iterated indefinitely. In practice, we choose some fixed

number of stages m and use a simple estimate of the corresponding ψr , which may be

plugged in the previous stages. Duong and Hazelton (2003) suggest a normal scale rule

bψNR
r = (−1)|r|φ(r)2S (0),

whereφΣ is a normal density with mean 0 and covariance Σ, and S the sample covariance

matrix, after 1 or 2 stages.

The second class of bandwidth selectors uses cross-validation to choose the optimal

bandwidth. This approach may be motivated by the alternative integrated squared error

(ISE) criterion

ISE
�

bfn, f0
�

=

∫

�

f0(x)− bfn(x)
�2

d x

=

∫

f 2
0 (x) d x − 2

∫

f0(x)bfn(x) d x +

∫

bf 2
n (x).

The first term does not depend on the estimated density, so may be ignored. In the

second, we replace the unknown f0 with an estimate of the density. For least squares (or

unbiased) cross validation (LSCV), we use the leave-one-out density estimate

1

n

n
∑

j=1

bf (− j)
n (·, H),

where
bf (− j)
n (x; H) =

1

n− 1

∑

k 6= j

KH(x − Xk)

is the kernel estimate based on the sample excluding X j . This leads to the LSCV criterion

LSCV(H) =

∫

bf 2
n (x; H) d x −

2

n

n
∑

i=1

bf (−i)
n (X i; H).

The bandwidth matrix is chosen by minimizing this criterion. Restriction to H inH1 or

H2 is straightforward. This is a simple criterion, and is unbiased in the sense that

E
�

LSCV(H) +

∫

f 2
0

�

=MISE
�

bfn(·; H), f0
�

.

However, it can be quite unstable (especially allowing H ∈H3) and tends to undersmooth
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5.5 Comparison with kernel density estimation

the data (Wand and Jones, 1995).

For a Gaussian kernel, the smoothed cross-validation criterion is given by

SCV(H) =

1

n
R(K) |H|−1/2+

1

n2

n
∑

i=1

n
∑

j=1

�

K2H+2G(X i − X j) −2KH+2G(X i − X j) + K2G(X i − X j)
�

,

where once more G is a pilot bandwidth. In the degenerate case G = 0, this is closely

related to LSCV, so the SCV criterion may be interpreted as a smoothed version of LSCV,

with G controlling the degree of smoothing. The above discussion on selection of a pilot

bandwidth matrix also applies in this case.

A further variant, biased cross-validation, was also explored in Duong and Hazelton

(2005), but will not be pursued here because of its poor practical performance and heavy

computational burden.

5.5.5 Variable bandwidth selectors

A single bandwidth matrix is necessarily a compromise between the requirements of

different regions. Therefore, an obvious extension is to allow the bandwidth matrix to

vary over the sample space, that is, to replace the estimator (5.7) with

bfn(x; H(·)) =
1

n

n
∑

i=1

KH(X i)(x − X i).

This has the advantage that the degree of smoothing can adapt to the amount of data

in each region: where data are sparse, we may use a larger bandwidth (to reduce the

variance), whereas in regions of high intensity we may choose a smaller bandwidth (to

reduce the bias).

In its most general form, this estimator requires the specification of nd(d + 1)/2

parameters. For a practical calibration some additional structure is therefore required.

Breiman et al. (1977) suggested choosing a bandwidth proportional to f −1/d(X i); Abram-

son (1982) suggest using f −1/2(X i) independent of d. In practice, this means the band-

width matrix should be chosen to be hf −1/2(X i)A, where A is some shape matrix and h

a parameter controlling the global degree of smoothing. Choosing A= I or A diagonal

leads to the restrictions already discussed. An alternative is to scale or sphere the data

as discussed Section 5.5.2.

In order to use this method in practice, a pilot estimate for f is required. As in

Section 5.5.4, choice of pilot bandwidth for the pilot estimate appears to be less critical

than that for the density estimate. We use a diagonal bandwidth matrix and a normal
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5.5 Comparison with kernel density estimation

scale rule (Section 5.5.3) for the pilot bandwidth. We also pre-scale the data. This is

equivalent to choosing A= diag(S). The global smoothing parameter h is then chosen by

cross-validation.

The Abramson estimator allows the degree of smoothing to adapt to the height

of the density, but makes no allowance for curvature. For this reason, Sain (2002)

suggested partitioning the data into m bins and using a constant bandwidth matrix on

each partition. The bandwidth matrices H1, . . . , Hm may then be chosen by least squares

cross-validation. Restriction to Hi ∈H1 or Hi ∈H2 is possible to simplify computation

and improve stability. Duong (2004) investigated several binning rules and concluded

that calibrating this density estimate was very difficult.

5.5.6 Simulation results

In this section, we study the MISE empirically for the densities, dimensions and sample

sizes listed in Section 4.1.1 to compare the performance of the log-concave maximum

likelihood estimator and various kernel estimators. It is important to remember that

the log-concave estimator is fully automatic, requiring no tuning parameters. For the

kernel estimator, on the other hand, a large number of decisions must be made by the

practitioner: a fixed or variable bandwidth, whether to pre-transform the data, whether

to choose bandwidth matrix or matrices inH1,H2 orH3, and which selection criterion

to use. In the case of a variable bandwidth, the situation is even more complicated,

with the additional choice of pilot estimate for the Abramson estimator and choice of

binning rule for the Sain estimator. It is outside the scope of this thesis to examine every

possibility. As we shall see, the choices made can have a big impact on the performance

of the estimator, and different methods may be appropriate in different situations. For a

detailed discussion of the various options, we refer the reader to Duong and Hazelton

(2003, 2005); Scott and Sain (2004).

We illustrate the following bandwidth selectors.

LSCV Least squares cross-validation, H ∈H3

SCV Smoothed cross-validation, H ∈H3

PI 2-stage plug-in with pilot bandwidth chosen by SAMSE and with pre-sphering for

the pilot bandwidth

Abr Abramson estimator with normal scale rule for choice of pilot bandwidth, pre-

scaling and global smoothing parameter chosen by LSCV

Sain Binned Sain estimator with a fixed number (7) of equally spaced bins in each

dimension, Hi ∈H1 for i = 1, . . . , 7d , and bandwidths chosen by LSCV
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5.5 Comparison with kernel density estimation

Bandwidths LSCV, SCV and PI were computed using the package ks (Duong, 2007a).

Code to compute Abr and Sain was based on code kindly provided by Tarn Duong.

The log-concave estimator was computed using the package logcondens for d = 1 and

LogConcDEAD for d > 1. For each density, dimension and sample size, 100 Monte

Carlo simulations were performed. For each, the ISE was estimated using a similar

method to Section 4.3 for the log-concave maximum likelihood estimator. For finite

Gaussian mixtures, the ISE may be computed exactly using formulae in Wand and Jones

(1995). For others, Monte Carlo integration was used to compute the ISE. The MISE was

estimated using the mean of these samples.

Figure 5.2 shows 2 examples for d = 1. In Figure 5.2(a), we see that even for

a univariate normal density, the log-concave maximum likelihood estimator performs

at least as well as the other estimators. The only competitive kernel estimator is the

Abramson estimator. The Sain estimator is worse. Fixed bandwidth selectors all perform

worse than the log-concave maximum likelihood estimator, with PI and SCV displaying

similar performance, and LSCV being considerably worse for small sample sizes.

Figure 5.2(b) shows a similar performance for density E, which is “only just” log-

concave. Again, the log-concave estimator performs best. Among the kernels, the

Abramson estimator performs best, with LSCV worst. PI and SCV are similar. The Sain

estimator improves with sample size but is never as good as the Abramson estimator and

never close to the log-concave maximum likelihood estimator.

Figure 5.3 shows two examples for d = 2. Figure 5.3(a) shows density B which has

some dependence structure. In this case, the performance of PI, SCV, the Abramson

estimator and the log-concave maximum likelihood estimator are similar. For larger

sample sizes, the log-concave estimator is slightly better. Again, LSCV and Sain perform

worst.

Figure 5.3(b) shows the results for density G. We expect this situation to be more

difficult for the kernel density estimator due to the boundary bias. The performance of all

the fixed bandwidth estimators is similar. The Abramson estimator performs best among

the kernel estimators but its rate of decrease is slow. Once again the Sain estimator is

worse, especially for smaller values of n. The log-concave maximum likelihood estimator,

on the other hand, does not suffer from these problems. Although initially the error

is larger than that of the Abramson estimator, it decreases much faster, and does not

appear to have the same difficulties due to the boundary effects.

Figure 5.4 shows two 3-dimensional examples. As in Figure 5.3(a), we see that the

Abramson estimator has lost the advantage over PI and SCV that it enjoyed when d = 1.

PI, SCV and Abr have similar performance, with LSCV and Sain being worse, especially

for smaller n. The log-concave estimator is initially slightly worse than PI, SCV and Abr
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(a) Density A
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(b) Density E

Figure 5.2: Estimated MISE, d = 1. Black is log-concave maximum likelihood estimator. The
rest are kernel density estimators, with bandwidth chosen by PI (red solid), LSCV (red dashed),
SCV (red dotted), Abr (blue) or Sain (green).

but soon recovers its advantage. The situation in Figure 5.4(b), which illustrates density

D, is almost identical.

Finally, Figure 5.5 shows what happens when the assumption of log-concavity is

violated. By analogy with our conjectures in Section 5.2.7, we might expect the MISE

of the log-concave maximum likelihood estimator to converge to a nonzero value. This

appears to be the case. Once more, PI, SCV and Abr all have similar performance, with

LSCV being slightly worse and Sain more erratic, especially for small n.

Summarising our findings from this small study, we see that, when the true density

is log-concave, the log-concave maximum likelihood estimator performs at least as well

as a kernel density estimator. The difference can be quite dramatic if there are strong

boundary effects or the data are skewed. PI and SCV had similar performance, and, as

expected from previous work (summarized in Wand and Jones (1995)), LSCV did not

perform as well as these methods. We also compared with adaptive bandwidth methods.

When d = 1, the Abramson estimator gave an improvement over PI and SCV, but this

was mostly lost for d > 1. The Sain estimator performed poorly.

5.6 Conclusion

In this chapter, we have studied the asymptotic performance of the log-concave maximum

likelihood estimator from two different points of view.

In the first part, we discussed some standard results concerning the rate of conver-
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(b) Density G

Figure 5.3: Estimated MISE, d = 2. Black is log-concave maximum likelihood estimator. The
rest are kernel density estimators, with bandwidth chosen by PI (red solid), LSCV (red dashed),
SCV (red dotted), Abr (blue) or Sain (green).
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(a) Density C
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(b) Density D

Figure 5.4: Estimated MISE, d = 3. Black is log-concave maximum likelihood estimator. The
rest are kernel density estimators, with bandwidth chosen by PI (red solid), LSCV (red dashed),
SCV (red dotted), Abr (blue) or Sain (green).
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Figure 5.5: Estimated MISE, density F, d = 2. Black is log-concave maximum likelihood
estimator. The rest are kernel density estimators, with bandwidth chosen by PI (red solid),
LSCV (red dashed), SCV (red dotted), Abr (blue) or Sain (green).

gence of maximum likelihood estimators with respect to the Hellinger distance. We then

proved a uniform law of large numbers for a suitable class of sets, which enabled us to ex-

tend the results of Pal et al. (2007) and prove consistency of the multivariate log-concave

maximum likelihood estimator. We proved a rate of convergence of Op(n−2/(d+4)) with

respect to the Hellinger metric for a restricted model and conjectured that this will also

hold for the full class of log-concave densities. We heuristically discussed model mis-

specification. Our conjectures about rate of convergence were supported by simulation

results for several example densities.

In the second part, we compared our estimator with a kernel density estimator

using the MISE error criterion. Bandwidth selection is well known to be crucial for this

problem, so we introduced several different bandwidth selectors and compared them

across a range of densities, dimensions and sample sizes. These included fixed bandwidth

selectors (plug-in, least squares cross-validation and smoothed cross-validation) and two

adaptive bandwidths (Abramson and Sain). We found that the log-concave maximum

likelihood estimator performed at least as well as the kernel density estimator, even with

an adaptive bandwidth. In fact the performance of the Sain estimator was somewhat

disappointing, with its ability to adapt to the amount of data in each region cancelled out

by the difficulty of calibrating the bandwidths in practice. It may be possible to improve

performance using a different binning rule, but this is highly problem-dependent. We

agree that with Duong (2004) that, although in principle it would be desirable to adapt

to the amount of data in a region, in practice this is very difficult. We also saw support

for our conjecture of convergence in the case of misspecification.
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5.6 Conclusion

In summary, we have opened the door for further work on the theoretical performance

of log-concave maximum likelihood estimators, and demonstrated good performance

(at least comparable with a widely used competitor) in practice in a range of situations.

There was a particular advantage where boundary effects are important. Moreover,

we saw that choice of bandwidth has a big influence on the performance of the kernel

estimator. There are a range of options, and no one method is best in all situations,

leading to a difficult decision for the practitioner. The log-concave maximum likelihood

estimator typically performs at least as well as the best kernel density estimator, and

sometimes much better, when the density is log-concave.
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6 Conclusion

We have explored a novel approach to nonparametric density estimation, using maximum

likelihood under the shape restriction of log-concavity. We were motivated by the

problems of existing methods of density estimation, and aimed to capture both the

flexibility of nonparametric methods and the parsimony of parametric models. We

began by surveying some recent developments in shape constrained maximum likelihood

estimation, and saw that novel theoretical and computational tools are needed to extend

existing methods.

We discussed log-concavity and its consequences. We argued that this is a natural

shape restriction for many situations, with desirable properties, and gave some examples

of the many parametric families that fall within this model. We proved that a unique

log-concave maximum likelihood estimator exists for multivariate data. In the course of

this proof we gained insight into the structure of the estimator which was crucial to the

rest of the project.

A large part of this work was the development of a stable numerical procedure

to compute the log-concave maximum likelihood estimator for multivariate data. We

discussed in detail how to exploit the special structure of the maximum likelihood

estimator to achieve this. We mentioned methods for one-dimensional data and discussed

why they cannot be directly extended to the multivariate case. We considered other

computational aspects, including sampling from the maximum likelihood estimator and

evaluation of conditional and marginal densities. This was implemented in R in the

package LogConcDEAD (Log-Concave Density Estimation in Arbitrary Dimensions).

We then turned our attention to inference using the log-concave maximum likelihood

estimator. A key development was a method of assessing the suitability of our assumption

of log-concavity, in the form of a hypothesis test against the general alternative of

local regions of log-convexity. This successfully detected two key departures from log-

concavity, heavy tails and mixing, for simulated datasets. We applied this test to a dataset

of university rankings and found a single component model to be inadequate.

We presented several examples of functional estimation and demonstrated compa-

rable or improved performance compared to a kernel density estimator for differential

entropy and highest density region estimation. We saw that the log-concave maxi-

mum likelihood estimator often gives rise to estimates with lower variance, although

sometimes at the price of inflated bias.
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6 Conclusion

We discussed an extension to finite mixtures of log-concave densities, and proposed

an EM-style algorithm which aims to find approximate local maxima in the likelihood

function. We used this to fit a 2-component mixture to the universities dataset of the

previous section. One major application of mixture models is clustering, and we saw that

this method may be used in a similar way to a Gaussian mixture to cluster unlabelled

data. We illustrated this using the Wisconsin breast cancer dataset, and saw improved

performance over a Gaussian mixture. We attribute this to the fact that the log-concave

components can better capture the shape of the distribution, as they are not forced to

compensate for skewness by overestimating the variance.

In the last chapter, we investigated the asymptotic performance of the log-concave

maximum likelihood estimator. We introduced standard tools for the study of nonpara-

metric maximum likelihood estimators, and used these to generalize an earlier result for

one-dimensional data to prove Hellinger consistency of our estimator. We also mentioned

the rate of convergence for a related, restricted class of estimators. We conjecture that

the same rate holds for the class of all log-concave densities. This was supported by

simulation results for various log-concave densities, and is suggested as an area for

further investigation. Behaviour in the case of model misspecification was also discussed.

Finally, we compared the performance of our estimator with that of a common

competitor, the kernel density estimator introduced in the first chapter. Because the

choice of bandwidth is critical for good performance of the kernel density estimator, we

included several possible bandwidth selectors in our comparison. We demonstrated that

our estimator performs at least as well as the best of our kernel density estimators in most

situations, and considerably better where boundary effects are significant or the data are

skewed. We included in our comparison two bandwidth selectors that aim to adapt to

the amount of data in a region. This did not lead to much improvement in performance

because in practice calibrating these bandwidths proved difficult. This highlights one of

the main advantages of our estimator, namely its fully automatic nature.

We hope that this work will stimulate future activity in this area, as we have seen

that log-concave density estimation is an attractive alternative to existing methods. We

suggest further development of computational methods would make this method more

widely applicable. This would allow the use of more numerically intensive techniques,

such as the bootstrap, to assess uncertainty of functional estimates and obtain empirical

confidence bounds. Obtaining stronger or more general theoretical results is the second

area of particular interest and current activity.
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A Definitions and background

material

This section is a review of fundamental concepts from convex analysis and computational

geometry used in the text. Key references are Rockafellar (1997) for convex analysis and

Bern (2004), Seidel (2004), Snoeyink (2004) and Gelfand et al. (1994) for computational

geometry and triangulation of point sets. Many more references may be found in these

surveys.

A.1 Convex analysis

Definition A.1 (Affine set). A set A⊆ Rd is affine if

λx + (1−λ)y ∈ A

for every x , y ∈ A and λ ∈ R.

Definition A.2 (Convex set). A set C ⊆ Rd is convex if, for all x , y ∈ C and λ ∈ [0, 1], we

have

λx + (1−λ)y ∈ C .

Definition A.3 (Convex or concave function). A function f : Rd → (−∞,∞] is convex if

f (x)<∞ for at least one x ∈ Rd and, for all x , y ∈ Rd and λ ∈ [0, 1], we have

f (λx + (1−λ)y)≤ λ f (x) + (1−λ) f (y).

We say f is concave if − f is convex.

Note that if f is a convex function from some (convex) set C ⊆ Rd to (−∞,∞], we

may extend f to a convex function on all of Rd by setting f (x) =∞ for x /∈ C (for the

corresponding extension of a concave function, we set f (x) =−∞ for x /∈ C). Therefore

there is no loss of generality in assuming the domain of a convex or concave function is

all of Rd . This corresponds to what Rockafellar (1997) calls a proper convex function.
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A.1 Convex analysis

Definition A.4 (Epigraph). The epigraph of a convex function f : Rd → (−∞,∞] is

epi f = {(x ,µ) ∈ Rd+1 : f (x)≤ µ}.

For a concave function f : Rd → [−∞,∞),

epi f = {(x ,µ) ∈ Rd+1 : f (x)≥ µ}.

Definition A.5 (Log-concave function). A function f : Rd → [0,∞) is log-concave if log f

is concave (Definition A.3) (with the convention that log 0=−∞).

Definition A.6 (Quasiconcave or quasiconvex). A function f : Rd → (−∞,∞] is quasicon-

vex if, for every a ∈ R,
�

x : f (x)≤ a
	

is a convex set. f is quasiconcave if − f is quasiconvex.

This is sometimes used as a definition of multivariate unimodality; see Section 2.2.7

for a discussion.

Definition A.7 (Effective domain). The effective domain of a function f : Rd → (−∞,∞]
is

dom f =
¦

x ∈ Rd : f (x)<∞
©

Definition A.8 (Closed convex function, closure of a convex function). A convex (resp.

concave) function is closed if its epigraph is a closed set. The closure of a convex (resp.

concave) function is the function cl f such that epi cl f = cl epi f .

Definition A.9 (Least concave majorant). The least concave majorant of a function

f : Rd → R is the smallest concave function g such that g(x)≥ f (x) for all x ∈ R.

Definition A.10 (Convex hull). The convex hull of a set S ⊆ Rd is

conv(S) =
⋂
¦

C ⊆ Rd : S ⊆ C and C convex
©

,

that is, the smallest convex set containing S.

Definition A.11 (Affine hull). The affine hull of a set S ⊆ Rd is

aff S =
⋂
¦

A⊆ Rd : S ⊆ S and A affine
©

,

that is, the smallest affine set containing S.
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A.2 Computational geometry

Definition A.12 (Affine independence). A collection of m+ 1 points X0, . . . , Xm in Rd is

affinely independent if

dimaff{X0, . . . , Xm}= m.

Definition A.13 (General position). A collection X = {X1, . . . , Xn} of points in Rd are in

general position if, for every Y ⊆X of size d + 1, dimconv(Y ) = d.

Definition A.14 (Relative Interior). The relative interior of a convex set C is its interior

when regarded as a subset of its affine hull.

Definition A.15 (Polytope). A polytope is the convex hull of a finite number of points in

Rd .

Definition A.16 (Face). The intersection of a polytope P and the boundary hyperplane

of a halfspace containing P is called a face of P. Facets are faces of dimension dim P − 1.

Vertices are faces of dimension 0.

Definition A.17 (Simplex). A simplex is the convex hull of a set X of d + 1 affinely

independent points in Rd , denoted σ(X ), say.

The unit simplex in Rd is

σ
�

{0, e1, . . . , ed}
�

where ei denotes the ith coordinate vector, and 0 denotes the origin. This is denoted by

Td .

Definition A.18 (Cone). A cone is a set C ⊆ Rn which is under positive scalar combination,

i.e. with the property that, for each x , y ∈ C and scalars λ,µ > 0, λx +µy ∈ C .

A.2 Computational geometry

Definition A.19 (Subdivision). A subdivision of a finite point set X ⊆ Rd is a collection

of subsets V = {V1, . . . , Vm} of X such that

1 conv(Vi) is a d-dimensional polytope for each i = 1, . . . , m

2
m
⋃

i=1

conv(Vi) = conv(X )

3 If i 6= j then conv(Vi ∩ Vj) is a face of both conv(Vi) and conv(Vj).

Note that not every point in X need appear in some Vi .
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A.2 Computational geometry

Definition A.20 (Triangulation). A triangulation of a point set X ⊆ Rd is a subdivision

such that each Vi has d + 1 elements. Note that, as in Definition A.19, not every point in

X need appear in some Vi .

Definition A.21 (Refinement). A subdivision V refines eV if, for every V ∈ V , there is

some eV ∈ eV such that V ⊆ eV .

Definition A.22 (Flip). Given a set X = {X1, . . . , Xd+2} of size d + 2, there are precisely

two ways to triangulate X , corresponding to the lower and upper hulls of the points

n

(X1,


X1





2
), . . . , (Xd+2,



Xd+2





2
)
o

in Rd+1 (Lawson, 1986). An example is given in Figure 3.1. A flip is an operation on (a

subset of) the simplices in a triangulation that, if possible without altering the rest of the

triangulation, replaces one of these within a triangulation with the other.

A.2.1 Construction of triangulations

We construct a triangulation refining S (y) by finding the convex hull of points in Rd+1.

There are many possible algorithms; see Seidel (2004) for some alternatives. We use the

Quickull algorithm. The following description follows closely Barber et al. (1996).

It is also worth mentioning that algorithms exist for directly constructing a suitable

weighted Delaunay triangulation, for example Edelsbrunner and Shah (1996), which

uses the notion of a flip (Definition A.22).

A.2.2 Description of Quickhull algorithm

This algorithm is incremental, in the sense that we begin with an initial simplex and

a list of points not in the simplex. We then process the outside points one by one and

update the convex hull until all the points have been included. We may assume without

loss of generality that 0 ∈ conv(X ) (if not, a change of origin will enforce this).

The convex hull is represented as a list of faces Fi and a list of the adjacent faces

(that is, faces F j such that dim Fi ∩ F j = d).

We require two additional notions: the oriented hyperplane through d points (rep-

resented by a normal vector n to the hyperplane pointing away from the origin and an

offset x), and the signed distance to a hyperplane from a point v given by nT (v − x).

We say a point is above a hyperplane if its signed distance to the hyperplane is positive.

Otherwise, we say the point is below the hyperplane.

Let H be a convex hull and let v be a point in Rd\H. Then F is a facet of conv(v∪H)

if and only if
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A.2 Computational geometry

1 F is a facet of H and p is below F , or

2 F is not a facet of H, and its vertices are v and the vertices of Fi ∩ F j , where Fi and

F j are neighbouring facets of H, with v above Fi and below F j .

This leads to the following pseudocode for computing the convex hull, taken from

Barber et al. (1996).

Require: X , a set of points in Rd

Set H = conv
�

{x1, . . . , xd+1}
�

Set U = {xd+2, . . . , xn}
Set F to be the set of faces of H
for each facet F ∈ F do

Set NF to be the set of neighbours of F
Set outF = ;
for Each point u ∈ U do

if u is above F then
set outF = outF ∪ {u}
set U = U\{u}

for each facet F do
if outF 6= ; then

set p to be point in outF furthest from F
Set visible set V = F
for N ∈ NG for faces G of V do

if p is above N then
set V = V ∪ {N}

Set H = boundary of V
for each ridge R in H do

create a new facet from R∪ p and add to H
create links between this facet and its neighbours

for each new facet F ′ do
for each unassigned point q in an outside set of a facet in V do

if q is above F ′ then
add q to F ′’s outside set

delete the facets in V

Algorithm A.1: Quickhull algorithm (Barber et al., 1996).
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B Example Code

Here we give R code for the examples in Section 3.8.

> require("LogConcDEAD")

> require("logcondens")

> require("mvtnorm")

> n <- 200

> x <- sort(rgamma(n, shape = 2))

> out1 <- activeSetLogCon(x)

> out2 <- mlelcd(x)

> ylim <- c(0, 0.4)

> plot(out2, ylim = ylim, lty = 1)

> lines(x, exp(out1$phi), lty = 2)

> lines(x, x * exp(-x), col = "red")

> ylim <- c(-4, -1)

> plot(out2, uselog = TRUE, lty = 1)

> lines(x, out1$phi, lty = 2)

> lines(x, log(x) - x, col = "red")

> n <- 500

> d <- 2

> x <- matrix(rnorm(n * d), ncol = d)

> out <- mlelcd(x)

> g <- interplcd(out, gridlen = 200)

> gnorm <- g

> for (i in 1:200) {

+ for (j in 1:200) {

+ gnorm$z[i, j] <- dmvnorm(c(gnorm$x[i], gnorm$y[j]), log = TRUE)

+ }

+ }

> plot(out, g = g, addp = FALSE, asp = 1, main = "")

> plot(out, g = g, uselog = TRUE, addp = FALSE, asp = 1, main = "")
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B Example code

> plot(out, g = g, type = "r")

> plot(out, g = gnorm, type = "r", addp = FALSE)

> plot(out, g = g, type = "r", uselog = TRUE)

> plot(out, g = gnorm, type = "r", uselog = TRUE, addp = FALSE)

> sigma <- matrix(c(1, 0.2, 0.2, 1), nrow = 2)

> y <- rmvnorm(n, sigma = sigma)

> xall <- 0.5 * round(2 * y)

> tmpw <- getweights(xall)

> outw <- mlelcd(tmpw$x, w = tmpw$w)

> gw <- interplcd(outw, gridlen = 200)

> par(mfrow = c(1, 2), pty = "s", cex = 0.7)

> plot(outw, g = gw, asp = 1, drawlabels = FALSE, pch = 4, main = "")

> plot(outw, g = gw, uselog = TRUE, asp = 1, drawlabels = FALSE,

+ pch = 4, main = "")

> d <- 3

> n <- 500

> x <- matrix(rgamma(n * d, shape = 2), ncol = d)

> out3 <- mlelcd(x)

> par(mfrow = c(2, 2), cex = 0.8)

> plot(out3, marg = 1, main = "", xlab = "")

> plot(out3, marg = 2, main = "", xlab = "")

> plot(out3, marg = 3, main = "", xlab = "")

> tmp <- seq(min(out3$x), max(out3$x), len = 100)

> plot(tmp, dgamma(tmp, shape = 2), type = "l", main = "", xlab = "",

+ ylab = "true marginal density")
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Notation

Where the domain of integration is not specified, it may be assumed to be all of R or Rd

as appropriate. We will write

∫

g dF for

∫

g(x) dF(x)

and
∫

g for

∫

g(x) d x .

List of symbols

‖·‖p Lp norm

A j , a j Matrix and vector giving transformation of variables (3.8)

∇∇T f Hessian matrix of function f

b j , βn Vector and scalar defining log-concave maximum likelihood estimator (3.9)

Cn Convex hull of observed data

δ Stopping criterion (relative change in parameter)

δ(·) Dirac δ function

δCn
(·) δCn

(x) =







0 if x ∈ Cn

−∞ if x /∈ Cn

∂i ith partial derivative

ε Stopping criterion (relative change in objective function)

η Stopping criterion (integral)

ei ith unit vector

F Class of log-concave densities (unless otherwise specified)
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Notation

bfn Log-concave maximum likelihood estimator (unless otherwise specified)

bfn(·, H) Kernel density estimate with bandwidth H

bfn(·, h) Kernel density estimate with bandwidth h

fα Cutoff point for highest density region

Fn Empirical distribution function

Gd A special function used to evaluate σ,

∫

Td

exp(y0(1−
d
∑

k=1

wk) +
d
∑

k=1

ykwk) dw

h̄y(x) inf
�

h(x): h concave and h(X i)≥ yi for i = 1, . . . , n
	

H
¦

h̄y : y ∈ Rn
©

H1

¦

H : H = h2 I for some h> 0
©

H2
�

H : H diagonal and H ∈H3
	

H3 {H : |H|> 0}

H Bandwidth matrix

h Scalar bandwidth

H(ε,Y , d) ε-entropy of Y , with respect to distance d

HB(ε,Y , d) ε-bracketing entropy of Y , with respect to distance d

hy,T , hy,S Function obtained by interpolating over triangulation T or subdivision S

1A(·) Indicator function of a set A

J Collection of indices defining a subdivision or triangulation

Ji { j ∈ J : jl = i for some l}

K Kernel

KH KH(x) =
1

|H|1/2
K(H−1/2 x)

Kh Kh(x) =
1

h
K
� x

h

�

`n Log-likelihood function

Ln Likelihood function
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Notation

µd Lebesgue measure on Rd

m2( f ) Second moment of density f

N(ε,Y , d) ε-covering number of Y , with respect to distance d

NB(ε,Y , d) ε-bracketing number of Y , with respect to distance d

Nd(µ,Σ) d-dimensional normal distribution with mean vector µ and covariance matrix

Σ

φ Standard normal density function

φΣ Multivariate normal density function with mean 0 and covariance matrix Σ

φσ Univariate normal density function with mean 0 and variance σ2

Pn Empirical measure

ψn Objective function for log-concave maximum likelihood (2.4)

ψr ψr( f ) =

∫

f (r)(x) f (x) d x

ρα Measure of discrepancy between function spaces

R( f )
∫

f 2

R( f , y) Region in which density f exceeds y ∈ [0,∞)

S A subdivision (Definition A.19)

σ Function to be minimized to compute bfn

σw Function to be minimized to compute weighted maximum likelihood estimator

S Sample covariance matrix

Sn Shattering number

τ Objective function for maximum likelihood estimation (3.2)

T A triangulation (Definition A.20)

Td d-dimensional unit simplex {x ∈ [0,∞)d :
d
∑

i=1

x i ≤ 1}

X(i) ith order statistic
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Notation

Binary relations

� an � bn means that an and bn are of the same order, that is, an = O(bn) and

bn = O(an).

f ? g Convolution product: f ? g(y) =
∫

f (x)g(y − x) d x

Acronyms and abbreviations

Abr Abramson estimator

aff Affine hull

AMISE Asymptotic Mean Integrated Squared Error

a.s.→ Converges almost surely

cl Closure of a convex function

conv Convex hull

dom Effective domain of a function

epi Epigraph of a convex or concave functiong

iid Independent and identically distributed

LSCV Least-Squares Cross-Validation

MISE Mean Integrated Squared Error

MSE Mean Squared Error

p
→ Converges in probability

PI Plug-In

Sain Sain estimator

SAMSE Sum of Asymptotic Mean Squared Error

SCV Smoothed Cross-Validation

vech Vector half operator
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