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Summary

This thesis considers various aspects of general relativity in more than four spacetime

dimensions.

Firstly, I review the generalization to higher dimensions of the algebraic classifica-

tion of the Weyl tensor and the Newman-Penrose formalism. In four dimensions, these

techniques have proved useful for studying many aspects of general relativity, and it

is hoped that their higher dimensional generalizations will prove equally useful in the

future. Unfortunately, many calculations using the Newman-Penrose formalism can be

unnecessarily complicated. To address this, I describe new work introducing a higher-

dimensional generalization of the so-called Geroch-Held-Penrose formalism, which allows

for a partially covariant reformulation of general relativity. This approach provides great

simplifications for many calculations involving spacetimes which admit one or two pre-

ferred null directions.

The next chapter describes the proof of an important result regarding algebraic classi-

fication in higher dimensions. The classification is based upon the existence of a particu-

lar null direction that is aligned with the Weyl tensor of the geometry in some appropriate

sense. In four dimensions, it is known that a null vector field is such a multiple Weyl

aligned null direction (WAND) if and only if it is tangent to a shearfree null geodesic

congruence. This is not the case in higher dimensions. However, I have formulated

and proved a partial generalization of the result to arbitrary dimension, namely that a

spacetime admits a multiple WAND if and only if it admits a geodesic multiple WAND.

Moving onto more physical applications, I describe how the formalism that we have

developed can be applied to study certain aspects of the stability of extremal black holes

in arbitrary dimension.

The final chapter of the thesis has a rather different flavour. I give a detailed analysis

of the properties of a particular solution to the Einstein equations in five dimensions:

the Pomeransky-Sen’kov doubly spinning black ring. I study geodesic motion around

this black ring and demonstrate the separability of the Hamilton-Jacobi equation for

null, zero energy geodesics. I show that this unexpected separability can be understood

in terms of a symmetry described by a conformal Killing tensor on a four dimensional

spacetime obtained by a Kaluza-Klein reduction of the original black ring spacetime.
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Chapter 1

Introduction

In recent years, the study of general relativity in higher dimensions has attracted sig-

nificant interest in theoretical physics. As the field develops, it is useful to develop

mathematical tools to help answer a variety of physical questions. This will be the focus

of this thesis.

Before moving on to explain what these new approaches are, we begin with some

background as to why this study is worthwhile, by placing the study of higher dimensional

gravity in a little context.

1.1 Historical context

The last century of progress in understanding the fundamental laws of physics has been

based around developing our knowledge of the symmetries that these laws respect. Prior

to the twentieth century, the accepted laws were based on Galileo’s principle of relativity.

That is, they do not change over time, and are also invariant under translations and rigid

rotations of the three spatial directions.

However, in the early 20th century, Einstein [7] and others understood that this

Galilean symmetry was only an approximation to a larger symmetry group, the Lorentz

group, acting not on space and time separately, but on a four-dimensional spacetime.

Crucially, the Lorentz group encodes a notion of causality, and as a result this new

theory of special relativity predicts that no information is able to travel faster than the

speed of light 𝑐 ≈ 3 × 108𝑚𝑠−1. Galilean symmetry is recovered from special relativity

for speeds 𝑣 ≪ 𝑐, and hence gives a very good approximation for most everyday physics.

Unfortunately, Newton’s Law of Gravitation is inherently inconsistent with special

relativity, as when a massive body moves, information about the movement is instanta-

neously transferred across all of space via in the change in its gravitational field. This

violates causality.

1
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This observation motivated the development of general relativity (GR), first written

down in full by Einstein in 1916 [8]. It postulates that the presence of mass causes

spacetime to curve, according to a particular set of partial differential equations: the

Einstein equations

𝐺𝜇𝜈 =
8𝜋𝐺
𝑐4
𝑇𝜇𝜈 , (1.1)

where the Einstein tensor 𝐺𝜇𝜈 encodes some aspects of the curvature of spacetime, and

𝑇𝜇𝜈 encodes information about the matter content, with 𝐺 the Newtonian gravitational

constant. General relativity puts Lorentz symmetry on a different footing; it is now a

local symmetry valid over small distances, but broken by curvature on large scales.

This curvature describes the force of gravity, in the sense that test bodies falling freely

under gravity follow straight line paths (or geodesics) in this resulting curved manifold.

GR is a deterministic theory; given a consistent set of initial data on some ‘Cauchy

surface’, the spacetime is determined uniquely in the causal future of that surface [9].

General relativity has been extensively tested observationally, and to date has pro-

vided an extremely accurate description of a wide range of phenomena (see e.g. Will [10]

for an up to date review).

However, there is a serious problem. General relativity describes gravity, but the

other three fundamental forces (electromagnetism and the weak and strong nuclear

forces) are best described by a different theory: the standard model of particle physics.

This is a theory of a very different nature, in particular it is quantum mechanical.

It explains phenomena that occur on very small lengthscales, or at very high energies.

Quantum physics is inherently random, with physical observations determined by a prob-

ability distribution. The standard model belongs to a class of physical theories called

quantum field theories, which combine the ideas of quantum mechanics with special rel-

ativity. Predictions from the standard model have been extensively tested, for example

in particle accelerators, and give remarkably accurate results.

Despite this success, there is a serious problem; general relativity cannot be fitted

into this framework. In particular, if the matter on the right hand side of the Einstein

equations (1.1) is quantum mechanical, then it seems reasonable to believe that the

left hand side should also be quantized. However, quantizing general relativity gives a

quantum field theory that is non-renormalizable, that is it contains infinities that are in

some precise sense uncontrolled. Non-renormalizability is seen as a signal that a physical

theory is only valid up a particular energy scale, and there exists some new physics that

becomes relevant at higher energies.

The inconsistency between GR and particle physics usually doesn’t matter for compu-

tational purposes, since the standard model describes the interaction of particles at very
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small distances (typically subatomic scales), while the force of gravity is only significant

at relatively large distances (where quantum fluctuations are ‘averaged out’). However,

from a theoretical point of view it is deeply unsatisfactory that the basic physical forces

cannot yet be understood in terms of a self-consistent set of equations. Also, in certain

extreme environments, the effects of gravity and those of particle physics are simultane-

ously important. It is commonly thought that there is some ‘theory of everything’ that

includes both GR and the standard model as suitable low energy limits. The search for

such a theory of quantum gravity that unifies our understanding of all physical forces

has occupied theoretical physicists for many years.

Today, many physicists believe that string theory represents the best possibility for

doing this. Interest in string theory as a candidate theory of quantum gravity was really

sparked in 1984 by Green & Schwarz’s discovery [11] that a particular form of string

theory allowed for the cancellation of various anomalies. This theory both contained

general relativity (as a low energy limit), and appeared likely to be renormalizable. The

main oddity is that this anomaly cancellation occurs only in ten spacetime dimensions.

Hence, the study of general relativity in higher dimensions is an essential part of better

understanding string theory. Although there are many fundamental questions about the

basic nature of string theory that are not yet well understood, it certainly provides a

framework in which many difficult questions can be posed in a concrete way.

Even if one does not believe in string theory as a fundamental description of quantum

gravity, then studying higher-dimensional general relativity still has the potential to give

important new insights into four-dimensional physics. One particularly exciting aspect

of this is the gauge-gravity correspondence [12, 13, 14]. This conjectures that certain

‘strongly coupled’ four-dimensional gauge theories (with many similarities to those that

make up the standard model) are in some precise sense equivalent to theories of gravity

in five dimensions.

Although the basic principles behind gauge field theories are well understood, per-

forming accurate computations in the strongly coupled limit is very difficult, with lattice-

based computer simulations still lagging behind experiment in terms of precision. The

gauge-gravity correspondence seems to offer a new way to make progress in studying

properties of these gauge theories by doing much easier calculations in five-dimensional

general relativity. In this language, five-dimensional black hole spacetimes have par-

ticular significance, corresponding to states in the field theory at non-zero temperature

[15].

Higher-dimensional GR is also interesting from a purely mathematical point of view.

It is fascinating that many familiar results from four-dimensional general relativity turn

out to be very specific to four dimensions. For example, in more than four dimensions
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there is a far richer set of spacetimes containing black holes [16]. We will see many

further examples of how special four dimensions is later on in the thesis.

1.2 Review of general relativity

To fix notation and conventions, we first recall some basic concepts of general relativity

in 𝑑 dimensions. Spacetime is a differentiable manifold (ℳ, 𝑔), with local distances

measured by a line element

𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥
𝜇 ⊗ 𝑑𝑥𝜈 . (1.2)

Summation over indices 𝜇, 𝜈, . . . = 0, 1, . . . , 𝑑 − 1 is implied. The 1-forms 𝑑𝑥𝜇 provide

a local coordinate basis for the co-tangent space of ℳ. The metric 𝑔𝜇𝜈 has signature

(−+ ⋅ ⋅ ⋅+), and hence provides an indefinite norm on the tangent space 𝑇 (ℳ). We will

raise and lower indices with the metric and its inverse 𝑔𝜇𝜈 . Much of the thesis will work

with a null frame {𝑒𝑎}, which will carry indices 𝑎, 𝑏, . . . = 0, 1, 2 . . .. In this null frame,

indices 0, 1 refer to null directions, and indices 𝑖, 𝑗, . . . to spacelike ones.

Unless stated otherwise, we will use∇ to denote the Livi-Civita connection on (ℳ, 𝑔),

with the property that ∇𝑔 = 0. The commutator of ∇, acting on an arbitrary vector

field 𝑉 , defines the Riemann curvature tensor 𝑅𝜇𝜈𝜌𝜎 through

[∇𝜇,∇𝜈 ]𝑉𝜌 = 𝑅𝜇𝜈𝜌𝜎𝑉
𝜎. (1.3)

The Riemann tensor has 𝑑2(𝑑2 − 1)/12 independent components, and obeys the sym-

metries 𝑅𝜇𝜈𝜌𝜎 = 𝑅[𝜇𝜈][𝜌𝜎] = 𝑅𝜌𝜎𝜇𝜈 and 𝑅𝜇[𝜈𝜌𝜎] = 0, as well as the differential Bianchi

identity

∇[𝜇𝑅𝜈𝜌]𝜎𝜏 = 0. (1.4)

It is often useful to decompose the Riemann tensor into several parts. We write

𝑅𝜇𝜈𝜌𝜎 = 𝐶𝜇𝜈𝜌𝜎 +
2

𝑑− 2

(
𝑅𝜇[𝜌∣𝑔𝜈∣𝜎] −𝑅𝜈[𝜌∣𝑔𝜇∣𝜎]

)
+

2𝑅

(𝑑− 1)(𝑑− 2)
𝑔𝜇[𝜌∣𝑔𝜈∣𝜎] (1.5)

where the Ricci tensor and Ricci scalar are given by

𝑅𝜇𝜈 ≡ 𝑔𝜌𝜎𝑅𝜇𝜌𝜈𝜎 and 𝑅 ≡ 𝑔𝜇𝜈𝑅𝜇𝜈 , (1.6)

and the Weyl tensor 𝐶𝜇𝜈𝜌𝜎 is totally traceless.

In general relativity, the spacetime geometry is determined by the Einstein equations

𝑅𝜇𝜈 − 1

2
𝑅𝑔𝜇𝜈 = 8𝜋𝑇𝜇𝜈 (1.7)

where 𝑇𝜇𝜈 is the energy-momentum tensor, defined by the distribution of matter in the

spacetime. We choose natural units where the speed of light 𝑐 and the 𝑑-dimensional

gravitational constant 𝐺 are normalized to one.
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This thesis will focus on Einstein spacetimes, where the only matter allowed is a

cosmological constant Λ (possibly zero). The Einstein equation reduces to1

𝑅𝜇𝜈 = Λ𝑔𝜇𝜈 . (1.8)

The Weyl tensor encodes the information about curvature that is not directly de-

termined by (1.8), and will have particular significance in this work. One important

property of this tensor is that it is conformally invariant. A conformal transformation

maps a spacetime (ℳ, 𝑔), to a new spacetime (ℳ, 𝑔), where the new metric is given by

𝑔 = Ω2𝑔 for some smooth positive function Ω : ℳ → ℝ. If 𝐶 be the Weyl tensor for the

new spacetime, then the statement of conformal invariance is that 𝐶𝜇
𝜈𝜌𝜎 = 𝐶𝜇

𝜈𝜌𝜎 (see,

e.g. [17]).

1.3 Black holes in four dimensions

Black holes are commonly understood as large astrophysical objects from which nothing,

not even light, can escape. Their existence has been speculated about for many years.

In the eighteenth century, Michell [18] and Laplace [19, App. A] both calculated that,

given a mass 𝑀 localized inside a sphere of radius 𝑟0 = 2𝐺𝑀/𝑐2, the escape velocity of

a light ‘particle’ obeying Newton’s second law of motion would become infinitely large,

and hence light would not be able to escape from the body to infinity.

These ideas were not given serious consideration until the mid-twentieth century,

when it became apparent that these objects were a feature of general relativity, and the

term black hole was coined. There is now significant astrophysical evidence for their

existence, and it is strongly believed that there is a supermassive black hole four million

times bigger than our sun at the centre of our galaxy [20].

The first non-trivial exact solution to the Einstein field equations was constructed by

Schwarzchild in 1917 [21], described by a metric

𝑑𝑠2 = − (1− 𝑟0
𝑟

)
𝑑𝑡2 +

(
1− 𝑟0

𝑟

)−1
𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜙2). (1.9)

This metric was constructed to represent the gravitational field outside some spherically

symmetric massive body; and one can construct ‘interior’ solutions for matter models

that can be matched suitably smoothly onto the Schwarzchild solution at any surface of

constant 𝑟 > 𝑟0. A problem seems to occur if the radius of the body is less than 𝑟0, as

the metric becomes singular. However, it was later understood [22] that this apparent

1Note that there are (at least) two different conventions for the definition of the cosmological constant

in 𝑑 dimensions, and many references would replace Λ by 2Λ
𝑑−2 in (1.8). The two conventions are

equivalent in 𝑑 = 4 dimensions.
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singularity is merely an artifact of the coordinate system that we are using, and one can

define a new ‘advanced Eddington-Finkelstein’ coordinate 𝑣 = 𝑡+ 𝑟+ 𝑟0 log(𝑟− 𝑟0), with

respect to which the metric takes the form

𝑑𝑠2 = 2𝑑𝑣𝑑𝑟 − (1− 𝑟0
𝑟

)
𝑑𝑣2 + 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜙2). (1.10)

This is manifestly non-singular at 𝑟 = 𝑟0, and hence an observer freely falling from

infinity would not observe anything unusual as they pass this surface. However, once

inside this surface, they cannot escape back to asymptotic infinity. Hence, this metric

encapsulates the notion of a black hole, with an event horizon at 𝑟 = 𝑟0. Kruskal

[23] showed how one could introduce further coordinates that revealed the existence of

a second asymptotically flat region of this spacetime, causally disconnected from the

original spacetime.

There is a true singularity at 𝑟 = 0, where the curvature of spacetime (and hence

tidal gravitational forces) becomes arbitrarily large. The extreme region near to 𝑟 = 0,

where the effects of quantum gravity are thought to be highly significant, is hidden from

our view by the presence of the event horizon.

1.3.1 The Kerr metric

The existence of a vacuum solution to the Einstein equations that admits an event

horizon is not itself solid evidence for the likely existence of black holes. However, under

reasonable physical assumptions, it is known that a sufficiently massive star will, at the

end of its lifecycle, undergo complete gravitational collapse to form a singularity (see

e.g. [19] for a detailed discussion).

The end point of this collapse process is thought to be described by the Kerr so-

lution [24], which is an asymptotically flat, stationary solution to the vacuum Einstein

equations. The exterior region of this spacetime can be described by the metric:

𝑑𝑠2 = −𝑑𝑡2 + 2𝑀𝑟

Σ
(𝑑𝑡− 𝑎 sin2 𝜃𝑑𝜙)2 + (𝑟2 + 𝑎2) sin2 𝜃𝑑𝜙2 +

Σ

Δ
𝑑𝑟2 + Σ𝑑𝜃2 (1.11)

where

Σ = 𝑟2 + 𝑎2 cos2 𝜃 and Δ = 𝑟2 + 𝑎2 − 2𝑀𝑟. (1.12)

Continuous isometries of spacetimes are generated by Killing vector fields 𝐾, satisfying

ℒ𝑔𝐾 = 0. The Kerr metric admits two such vector fields, an asymptotically timelike

𝑘 ≡ ∂
∂𝑡

which generates time translations, and an asymptotically spacelike 𝜁 = ∂
∂𝜙

which

has closed orbits and generates rotations around the axis of symmetry, giving it an

isometry group of ℝ× 𝑈(1).

Many of the properties of the Kerr geometry generalize to higher dimensions in an

interesting way, so here we briefly discuss the key features.
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Ergoregion

For the static Schwarzchild spacetime, the asymptotically timelike Killing vector field 𝑘

is timelike everywhere outside the event horizon, and null on the horizon itself. However,

this is not the case for the rotating Kerr black holes, where 𝑘.𝑘 = 1 − 2𝑀𝑟
Σ

vanishes on

the ergosurface

𝑟 = 𝑟𝑒(𝜃) ≡𝑀 +
√
𝑀2 − 𝑎2 cos2 𝜃. (1.13)

The ergosurface lies outside the event horizon, touching it only at 𝜃 = 0, 𝜋, and the

region between these two surfaces is known as the ergoregion. Although 𝑘 is spacelike

in this region, the signature of the metric remains correct as there exists a vector field

𝜒 = 𝑘 + Ω𝐻𝜁 that remains timelike everywhere outside the horizon. The constant

Ω𝐻 , which has the interpretation of the angular velocity of the horizon, is fixed by the

requirement that 𝜒 is null on the horizon.

The physical interpretation of this is that a massive particle inside the ergoregion

cannot follow orbits of 𝑘, and therefore must co-rotate with the black hole, from the

point of view of an observer at infinity. We will see in Chapter 6 that rotating black

holes in higher dimensions also admit ergoregions, but that the properties of this region

can become more complicated. In particular, for black holes of non-spherical topology,

the ergoregion does not always have the same topology as the event horizon.

Algebraic type

Much of this thesis will be concerned with the algebraic classification of spacetimes. In

this language, the Kerr black hole spacetime is of Petrov Type D. This is a useful way

of understanding various properties of the spacetime. Chapter 2 will give a detailed

introduction to algebraic classification.

Hidden symmetry

Finding the geodesics of a 𝑑-dimensional geometry typically requires solving a set of 𝑑

coupled, second order ordinary differential equations, which can be most conveniently

derived as the Euler-Lagrange equations of the Lagrangian

𝐿 = 1
2
𝑔𝜇𝜈(𝑥)�̇�

𝜇�̇�𝜈 , (1.14)

where ˙ denotes differentiation with respect to some parameter along the geodesic. How-

ever, in the presence of symmetries, the problem considerably simplifies.

Let 𝑝𝜇 = ∂𝐿/∂�̇�𝜇 be the particle momentum conjugate to the particle velocity. Then,

for any Killing vector 𝐾, 𝑝.𝐾 is a conserved quantity along the geodesic, as is 𝜀 =

−𝑔𝜇𝜈𝑝𝜇𝑝𝜈 , which takes values +1 and 0 for timelike and null geodesics respectively.
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For the Kerr geometry, there are two independent Killing vector fields 𝑘 = ∂/∂𝑡

and 𝜁 = ∂/∂𝜙, leading to two conserved quantities 𝐸 = −𝑢.𝑘 and ℎ = 𝑢.𝑚 which we

interpret as the energy and angular momentum of the particle (per unit mass). This

gives us three constants of motion; but in order to render a system of four second-order

ODEs integrable we would expect to need four.

Remarkably, Carter [25] found a fourth constant of motion 𝒦, which is quadratic in

the particle momentum. This gives sufficient constants to render the geodesic motion

integrable. Later, Walker & Penrose [26] traced the existence of this additional constant

of motion to the existence of an additional symmetry, described by a rank-2 Killing

tensor, satisfying the generalized Killing equation

∇(𝜇𝐾𝜈𝜌) = 0, (1.15)

where the associated constant of motion is 𝒦 = 𝐾𝜇𝜈𝑝𝜇𝑝𝜈 .

In fact, it was later shown that the Killing tensor, as well as the Killing vectors 𝑘

and 𝜁, could be constructed from a more fundamental object, a Killing-Yano 2-form 𝑓𝜇𝜈 .

This is a totally antisymmetric tensor, satisfying the Killing-Yano equation

∇(𝜇𝑓𝜈)𝜌 = 0. (1.16)

Given any solution 𝑓 to equation (1.16), one can construct a solution 𝐾 to (1.15) via

𝐾𝜇𝜈 = 𝑓𝜇𝜌𝑓
𝜌
𝜈 (see, e.g. [27] and references therein). The Killing and Killing-Yano equa-

tions are not invariant under conformal transformations acting on the spacetime. How-

ever, one can define conformally invariant generalizations

∇(𝜇𝐾𝜈𝜌) = 𝜔(𝜇𝑔𝜈𝜌) and ∇(𝜇𝑓𝜈)𝜌 = 𝑔𝜇𝜈𝜉𝜌 − 𝜉(𝜇𝑔𝜈)𝜌 (1.17)

for 1-forms 𝜔𝜇 = 3
𝑑+2

𝑔𝜈𝜌∇(𝜇𝐾𝜈𝜌) and 𝜉𝜇 = 1
𝑑−1

∇𝜈𝑓𝜈𝜇. Solutions to these equations are

referred to as conformal Killing tensors and conformal Killing-Yano tensors respectively.

These concepts generalize to higher dimensions in a natural way, although they will

not play a central role in the work of this thesis. In Chapter 2 we will briefly review

how the existence of hidden symmetry is closely linked to the algebraic classification of

spacetimes, while in Chapter 6 we will show that black ring spacetimes admit a more

limited form of hidden symmetry.

Stability

The Kerr black hole is thought to be the stationary end state of the collapse of sufficiently

massive stars, under fairly generic conditions. However, this statement only has physical

meaning if the end state is stable against small perturbations. That is to say; suppose



1.4. BLACK HOLE UNIQUENESS THEOREMS 9

that one starts with (consistent) initial data on some Cauchy surface that is in some

appropriate sense close to Kerr initial data. Is the future development of this Cauchy

surface also close to Kerr? It is strongly believed that the answer to this question is yes.

Much of the evidence for this belief comes from studies of linearized perturbation

theory. In particular, it was shown by Whiting [28], making use of previous work by

Teukolsky and others [29, 30, 31, 32, 33], that there are no exponentially growing lin-

earized perturbation modes. This is interpreted as the absence of an instability. In

Chapter 4 we consider the extent to which is is possible to generalize these methods to

higher dimensions.

However, these linearized analyses do not provide a conclusive proof of the full, non-

linear, stability of the Kerr family and there are many ongoing attempts to complete

this. This field was re-invigorated by the proof, by Christodoulou & Klainerman [34],

of the non-linear stability of Minkowski space. Significant progress has been made in

various aspects of this problem in recent years, see e.g. [35, 36] for recent reviews.

Asymptotic flatness

For large 𝑟, the Kerr metric is approximately given by

𝑑𝑠2 ≈ −𝑑𝑡2 + 𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜙2), (1.18)

which is the metric on flat space written in spherical polar coordinates. This suggests that

the spacetime is asymptotically flat. However, this is a coordinate dependent statement;

ideally we would like a notion of asymptotic flatness that is manifestly independent of

our choice of coordinates.

The most commonly used definition uses conformal transformations. For Minkowski

space, one can perform such a transformation to obtain a compact space. For other

spacetimes, we say (roughly) that a spacetime is asymptotically flat if and only if there

exists a suitably regular conformal transformation 𝑔 7→ 𝑔 = Ω2𝑔 such that in some

neighbourhood of asymptotic infinity, the unphysical spacetime 𝑔 has the same structure

as compactified Minkowski space. This is indeed the case for the Kerr spacetime. Such

conformal compactifications can be used to define a coordinate 𝑟 which has many of the

properties of familiar radial coordinates; in particular that linearized perturbations fall

off as 1/𝑟 near null infinity.

1.4 Black hole uniqueness theorems

We now move on to talk about vacuum black holes in arbitrary spacetime dimension.

Some physical motivation for this will be given below, but we begin by asking, in a more
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general setting, why should we expect qualitatively new behaviour in higher dimensions?

In four dimensions, the possible black hole solutions to the vacuum Einstein equations

are very tightly constrained. As we shall see below, it has been established that the Kerr

family includes all asymptotically flat, analytic, stationary black hole metrics. Some

aspects of this result have been generalized to higher dimensions, but the results are

far less restrictive. This allows a much richer set of black hole spacetimes to exist in

dimensions greater than four.

What do we mean by asymptotic flatness in higher dimensions? There are difficulties

in applying the standard four-dimensional definition, for example because linearized

perturbations turn out to fall off as 1/𝑟(𝑑−2)/2 at null infinity in dimension 𝑑, and hence

in odd dimensions the half-integer powers cause problems with regularity [37]. However,

reasonable definitions of asymptotic flatness at null [37] and spatial [38] infinity have

been made. As in the Kerr case, when considering exact black hole solutions, one can

usually move to a coordinate system in which asymptotic flatness is manifest and hence

avoid detailed consideration of these issues.

In an asymptotically flat spacetime ℳ, a black hole region is defined as the subset

of ℳ lying outside of the causal past of future null infinity. This is a global property,

requiring knowledge of the entire spacetime including the future of any given Cauchy

surface. It is useful to have an alternative definition that is more local in time.

A result along these lines is given by the notion of an outermost trapped surface. A

trapped surface is a closed spacelike surface 𝒮 in a spacetime with non-positive expansion

(i.e. an area not increasing with time). In vacuum, asymptotically flat spacetimes, such

surfaces must always lie outside the causal past of future null infinity, i.e. a spacetime

admitting such surfaces must always contain a black hole [19, 17]. Furthermore, if one

considers takes the union of all trapped surfaces, then the boundary of this region is a

non-expanding null surface that can be identified with the event horizon of the black

hole. In the algebraic classification of spacetimes described in Chapter 2, we will see

that all black holes must be ‘algebraically special’ on the horizon for this reason.

Black holes, in the sense discussed in this thesis, are time-invariant objects. This

property is captured by the following definition:

Definition 1.1 An asymptotically flat spacetime is stationary if it admits a Killing

vector 𝑘 that is timelike near to asymptotic infinity. A stationary spacetime is static if

and only if 𝑘 is hypersurface orthogonal.

The fact that this requirement is only imposed near asymptotic infinity is important.

For example, the Kerr spacetime is stationary, but the generator of (asymptotic) time

translations 𝑘 = ∂/∂𝑡 is only timelike outside the ergosphere.
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In four dimensions, the topology of (time slices) of the event horizon is constrained

by the following:

Theorem 1.2 ([39, 40]) Let ℋ+ be the (future) event horizon of a stationary, four-

dimensional, vacuum black hole, and Σ be any Cauchy surface. Then ℋ+ ∩Σ is homeo-

morphic to 𝑆2.

This has been extended to higher dimensions by Galloway & Schoen [41], who show that

any black hole horizon (specifically, any marginally trapped outer horizon) is of positive

Yamabe type, that is it admits a metric of positive scalar curvature. In five dimensions,

it follows from this (and further work [42]) that the horizon topology must be either a

connected sum of 𝑆1 × 𝑆2 with some number of Lens spaces 𝐿(𝑝, 𝑞), or the quotient of

𝑆3 by some (possibly trivial) finite isometry group. We will see below that there exist

known examples of black hole spacetimes with horizon topologies 𝑆3 and 𝑆1 × 𝑆2.

In arbitrary dimension, it is also known that a stationary black hole spacetime must

be axisymmetric:

Theorem 1.3 ([43, 44]) Let (𝑀, 𝑔) be a stationary, analytic, asymptotically flat vac-

uum black hole spacetime with stationary Killing vector field 𝑘. Then either 𝑘 is tangent

to the null generators of the horizon (and the black hole is static), or there exists a second

Killing vector field 𝜁 with closed periodic orbits

Given such a vector field 𝜁, there exists some constant Ω𝐻 such that 𝑘+Ω𝐻𝜁 is tangent

to the null generators of the horizon. The assumption of analyticity is often seen as

undesirable in the context of this ‘rigidity theorem’, and more recent work [45, 46] has

made some progress in proving this result without needing this assumption.

However, although this axisymmetry result generalizes directly to arbitrary dimen-

sion, it is particularly useful in four dimensions, where a spacetime has only one (inde-

pendent) plane of rotation. In this case, stationary, axisymmetric, vacuum black hole

solutions with 𝑆2 horizons are members of the Schwarzchild or Kerr families, charac-

terised uniquely by their mass 𝑀 and angular momentum 𝐽 =𝑀𝑎 [47, 48] .2

This is no longer the case in higher dimensions, where the existence of the single 𝑈(1)

isometry guaranteed by Theorem 1.3 is far less restrictive.

1.5 Black holes in higher dimensions

Much of the interest in higher-dimensional general relativity has focused on black holes,

and in the rest of the introduction we review some of the known results. We will focus on
2These results require various further technical assumptions that have been gradually weakened by

various authors over time, see e.g. [49] for a review of this progress.
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black holes that are solutions to the vacuum Einstein equations, allowing for a possible

cosmological constant (see [16] for a detailed review).

One physical motivation for this comes from braneworld models; in which, heuris-

tically, our observed universe corresponds to a 4D brane in some bulk spacetime with

‘large’ extra dimensions, of size as large as a millimetre [50]. It has been argued that

in such a scenario, ‘small’ black holes could form. They could have energy scales as low

as a few 𝑇𝑒𝑉 , and would radiate this energy away very rapidly through Hawking radi-

ation [51]. Emparan et al. [52] suggest, somewhat speculatively, that this radiation will

propagate mainly in the brane directions, and hence could be experimentally observable

the Large Hadron Collider. Due to their small size, such black holes are thought to be

well-approximated by asymptotically flat black holes in higher dimensions.

Asymptotically anti-de-Sitter black holes, with a negative cosmological constant, are

perhaps of even greater interest, due to the gauge-gravity correspondence [12]. There is

a vast recent literature devoted to interpreting certain five-dimensional, asymptotically

anti-de-Sitter ‘bulk’ spacetimes in terms of states of four dimensional gauge theories

living on the (timelike) boundary of 𝐴𝑑𝑆5. When a black hole is present in the bulk, the

dual state in the field theory is at finite temperature (given by the Hawking temperature

of the black hole) [15]. ‘Phenomenological’ models of this type have led to new ways

of describing certain properties of the fluid dynamics of strongly coupled plasmas, for

example their viscosity to entropy ratio [53, 54, 55] (see e.g. [56, 57, 58] for recent

reviews). More recently, dual descriptions of four-dimensional superconductivity have

been constructed [59, 60].

There are also good reasons for wanting to study higher-dimensional black hole space-

times that are solutions to the Einstein equations for various matter models, in particular

those arising from supergravity theories believed to represent a low energy limit of string

theory. Many of the five-dimensional spacetimes used for gauge-gravity calculations are

somewhat ad-hoc; i.e. they are constructed because they result in interesting 4D physics,

rather than because they arise from some more fundamental theory in higher dimensions.

It will be interesting to see if similar clear interpretations can be given for 5D black hole

spacetimes arising from more ‘realistic’ matter models. However, such black holes will

generally be beyond the scope of this thesis.
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1.5.1 Schwarzschild-Tangherlini black holes

There are now many known, exact, black hole solutions to the higher-dimensional vacuum

Einstein equations. The first such solution was found by Tangherlini [61] in 1963. He

generalized the Schwarzchild solution (1.9) to arbitrary dimension 𝑑, finding that the

metric appears very similar to the 4-dimensional version:

𝑑𝑠2 = −
(
1− ( 𝑟0

𝑟

)𝑑−3
)
𝑑𝑡2 +

(
1− ( 𝑟0

𝑟

)𝑑−3
)−1

𝑑𝑟2 + 𝑟2𝑑Ω2
𝑑−2. (1.19)

Here 𝑑Ω2
𝑑−2 is the metric on a unit (𝑑− 2)-sphere, and 𝑟0 > 0 some arbitrary parameter

related to the mass of the spacetime.

Although this metric looks very similar in four and higher dimensions, there is a

significant physical difference between the two cases. In four dimensions, there exist

stable, bounded timelike geodesics, corresponding to orbits of massive bodies about the

black hole (or other central mass). However, for 𝑑 > 4, no such orbits exist [61].

1.5.2 Myers-Perry black holes

In a 𝑑 > 4 dimensional spacetime there are ⌊𝑑−1
2
⌋ independent planes of rotation. There-

fore, one might expect a higher-dimensional generalization of the Kerr black hole to be

specified by this number of independent angular momenta 𝐽𝑖. Such a direct generalisa-

tion was derived by Myers & Perry [62]. When only one angular momentum is turned

on, the solution can be written as

𝑑𝑠2 = −𝑑𝑡2 + 𝜇𝑟5−𝑑

Σ
(𝑑𝑡− 𝑎 sin2 𝜃𝑑𝜙)2 + (𝑟2 + 𝑎2) sin2 𝜃𝑑𝜙2

+ Σ

(
𝑑𝑟2

Δ
+ 𝑑𝜃2

)
+ 𝑟2 cos2 𝜃𝑑Ω2

(𝑑−4) (1.20)

where

Δ = 𝑟2 + 𝑎2 − 𝜇

𝑟𝑑−5
, and Σ = 𝑟2 + 𝑎2 cos2 𝜃. (1.21)

It has mass and angular momenta

𝑀 =
(𝑑− 2)Ω𝑑−2𝜇

16𝜋𝐺
, 𝐽1 =

2𝑀𝑎

𝑑− 2
, 𝐽𝑖 = 0 ∀𝑖 > 1 (1.22)

where Ω𝑑−2 is the surface area of a unit (𝑑 − 2)-sphere. Note that this reduces to the

Kerr metric when 𝑑 = 4.

There is always a coordinate singularity at 𝑟 = 𝑟+, defined by to be the largest value

of 𝑟 such that Δ(𝑟+) = 0. This corresponds to an event horizon. However, the equation

Δ(𝑟) = 0 has a different nature in different dimensions:
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∙ For 𝑑 = 4, this is a quadratic equation, with roots 𝑟± = 1
2
(𝜇 ±√𝜇2 − 4𝑎2). For

fixed mass, this places an upper limit on the value of 𝑎 that is allowed for a horizon

at 𝑟 = 𝑟+ to exist: we must have ∣𝑎∣ ≤ 𝜇/2. When this bound is saturated, there

is a regular extremal horizon 𝑟 = 𝑟+ = 𝑟−.

∙ For 𝑑 = 5, the roots are 𝑟± = ±√𝜇− 𝑎2, and again there is an upper bound on

𝑎. However, when the bound is saturated here the roots both lie at 𝑟 = 0, and

hence there is a naked singularity. Therefore, singly-spinning Myers-Perry black

holes have no extremal limit in five dimensions.

∙ For 𝑑 > 5, Δ(𝑟) = 0 has a real, positive root for any 𝑟 > 0 and hence the black

hole can have arbitrarily large angular momentum. A black hole with an angular

momentum per unit mass that is very large is known as an ‘ultra-spinning’ black

hole. Such black holes have ‘flat’ horizons, with a thickness far less than their

width. The presence of these two different lengthscales has a significant impact on

the physics of these black holes, as we shall see later when discussing stability.

When more than one angular momentum is turned on, the form of the solutions is

rather more complicated. For odd dimension 𝑑 = 2𝑁 + 3, they can be written as [16]

𝑑𝑠2 = −𝑑𝑡2+
𝑁∑
𝑖=1

(𝑟2+𝑎2𝑖 )(𝑑𝜇
2
𝑖 +𝜇

2
𝑖 𝑑𝜙

2
𝑖 )+

𝜇𝑟2

Π𝐹

(
𝑑𝑡−

𝑁∑
𝑖=1

𝑎𝑖𝜇
2
𝑖 𝑑𝜙𝑖

)2

+
Π𝐹

Π− 𝜇𝑟2
𝑑𝑟2 (1.23)

where 𝑖 = 1, . . . , 𝑁 labels the independent planes of rotation,

𝐹 (𝑟, 𝜇𝑖) = 1−
𝑁∑
𝑖=1

𝑎2𝑖𝜇
2
𝑖

𝑟2 + 𝑎2𝑖
, Π(𝑟) =

𝑁∏
𝑖=1

(𝑟2 + 𝑎2𝑖 ) (1.24)

and 𝜇𝑖 are directional cosines with
∑

𝑖 𝜇
2
𝑖 = 1. The constants 𝜇 and 𝑎𝑖 parametrize the

mass and angular momenta of the black hole respectively. An analogous expression can

be written down in even dimensions 𝑑 = 2𝑁 + 2, where the metric takes the form

𝑑𝑠2 = −𝑑𝑡2+𝑟2𝑑𝛼2+
𝑁∑
𝑖=1

(𝑟2+𝑎2)(𝑑𝜇2
𝑖 +𝜇

2
𝑖 𝑑𝜙

2
𝑖 )+

𝜇𝑟2

Π𝐹

(
𝑑𝑡−

𝑁∑
𝑖=1

𝑎𝑖𝜇
2
𝑖 𝑑𝜙𝑖

)2

+
Π𝐹

Π− 𝜇𝑟2
𝑑𝑟2

(1.25)

where now 𝛼2 +
∑

𝑖 𝜇
2
𝑖 = 1.

The spacetime admits (𝑁 + 1) commuting Killing vectors, ∂/∂𝑡 and ∂/∂𝜙𝑖, and

has a ℝ × 𝑈(1)𝑁 isometry group. These complicated forms of the metric mean that

extracting much information analytically can often be difficult. However, things are

perhaps nicer than might be expected. All black holes in the Myers-Perry family admit

a set of hidden symmetries analogous to those that exist for the Kerr spacetime in
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four dimensions [63]. To be precise, for any metric in this family, one can construct a

conformal Killing-Yano tensor, and this results in a sufficient number of these symmetries

to render geodesic motion completely integrable [64]. These hidden symmetries also exist

for the asymptotically (𝐴)𝑑𝑆 generalizations of the Myers-Perry metrics, constructed by

Refs. [65, 66, 67].

Cohomogeneity-1 Myers-Perry black holes

In odd dimensions, a particularly simple class of Myers-Perry metrics are given by setting

all of the parameters 𝑎𝑖, or equivalently the angular momenta 𝐽𝑖, to be equal. Here, the

𝑈(1)𝑁 rotational isometry group is enchanced to 𝑈(𝑁), and the metric depends non-

trivially on only one coordinate. We will discuss certain properties of this family in detail

in Chapter 5.

1.5.3 Black Rings

In five dimensions, there are regular, asymptotically flat, black hole solutions of the vac-

uum Einstein equations that are qualitatively different from the Myers-Perry family. This

was first demonstrated by Emparan & Reall’s discovery [68] of a five-dimensional family

of black ring solutions. These are (globally) asymptotically flat black hole solutions of

the vacuum Einstein equations, with an event horizon of spatial topology 𝑆1 × 𝑆2. This

singly-spinning black ring has only one non-zero angular momentum; it rotates about

the 𝑆1 direction but not about the 𝑆2.

Unlike topologically spherical black holes, the black ring family does not contain a

regular static limit, since there is some lower bound on the allowed angular momentum

about the 𝑆1 direction. This condition has a clear physical interpretation; the ring needs

enough centrifugal repulsion to balance out the tendency of the black ring to collapse

towards its centre. If this ‘balance condition’ is not satisfied then the spacetime contains

a conical singularity.

Assuming that this balance condition holds the solution has two free parameters, one

setting an overall lengthscale, and the other parametrizing the ‘fatness’ or ‘thinness’ of

the ring. The properties and structure of this spacetime are described in detail in the

review article [69], and will be discussed further in Chapter 6 of this thesis.

Do these new black holes violate uniqueness, in the sense of having the same angular

momentum and mass as Myers-Perry solutions? As there is a lower bound on the allowed

angular momentum per unit mass of a black ring, and an upper bound on that of the

black ring, it is not obvious whether or not this is the case. However, calculation shows
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that for a small range of angular momentum per unit mass 𝐽1/𝑀 , there are both Myers-

Perry and (two different) black ring solutions.

The Pomeransky-Sen’kov black ring [70] is a doubly-spinning generalization of the

black ring to include rotation around the 𝑆2 as well as around the 𝑆1. Unlike singly

spinning black rings, this two parameter family of black rings does admit an extremal

limit. It is described in detail in Chapter 6.

1.5.4 Further solutions

Another new feature of higher dimensional GR is the existence of a variety of asymp-

totically flat solutions to the vacuum Einstein equations with multiple black hole event

horizons. In five dimensions, these include black saturn [71] (an 𝑆3 black hole horizon in

the centre of an 𝑆1 × 𝑆2 black ring), the black bi-ring [72, 73] (an arrangement of con-

centric, singly spinning black rings rotating in the same plane) and bicycling black rings

[74] (two singly spinning black rings orthogonal to each other). In dimensions higher

than five, few solutions are known exactly, but it is generally believed that there exists

an even richer family of black hole solutions.

All of these solutions admit two commuting spacelike Killing vectors. In this case, it

can be shown (under certain technical assumptions) that the Einstein equations reduce

to an integrable system, for which solutions can be found using powerful constructive

techniques [75]. The resulting solutions are known as Weyl solutions; and all known

exact asymptotically flat, vacuum black hole solutions in five dimensions lie in this class

(though not all were originally constructed in this way).

The method works in arbitrary dimension, assuming the existence of 𝑑−3 commuting

angular Killing fields (i.e. ℝ×𝑈(1)𝑑−3 isometry). However, this number of Killing fields

is only consistent with asymptotic flatness in four or five dimensions. There is also no

apparent generalization to asymptotically 𝐴𝑑𝑆 solutions, since the equations that result

are not integrable for solutions with a cosmological constant. There seems to be no

reason to think that there should not be lots of new black holes in these cases; but at

present we are lacking a suitable solution generating technique.

Generally, it seems that finding higher-dimensional solutions that are asymptotically

anti-de Sitter is significantly harder than the asymptotically flat case. The generalization

of Myers-Perry black holes to include a cosmological constant is known in arbitrary

dimension [65, 66, 67], but attempts to construct an asymptotically 𝐴𝑑𝑆 black ring have

so far proved fruitless. Approximate results strongly suggest that such solutions exist for

all 𝑑 ≥ 5 (see, e.g. [76]). As for classification, a complete proof of black hole uniqueness

in four dimensions has so far proved elusive in the 𝐴𝑑𝑆 case, and very little is known in
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higher dimensions.

A potential application of the algebraic classification techniques that will be discussed

in Chapter 2 is to provide a new approach to discovering and classifying black hole

solutions, although it is unclear how likely this is to be successful. An advantage of these

methods though is that including a cosmological constant does not seem to introduce

additional difficulties.

1.6 Near-horizon geometries

The metrics describing higher-dimensional black holes are often very complicated. In the

case of extremal black holes, some useful information about solutions can be extracted

without analysis of the full solution. All such black holes admit a limiting near-horizon

geometry, which captures certain properties of the full spacetime. These geometries

were introduced in [77, 78] (certain isolated cases had previously been discussed in four

dimensions, e.g. [79]), and have since been used extensively to gain new insights into, for

example, the classification problem for higher-dimensional black holes [80, 81, 82].

The existence of these geometries is based around the following result:3

Theorem 1.4 ([83, 45, 44]) Let (ℳ, 𝑔) be a stationary spacetime in 𝑑 dimensions,

with a degenerate null Killing horizon. Then, in some neighbourhood of the horizon, one

can choose Gaussian null coordinates (𝑣, 𝑟, 𝑥𝐴) such that the metric takes the form

𝑑𝑠2 = −𝑟2𝐹 (𝑟, 𝑥)𝑑𝑣2 + 2𝑑𝑣𝑑𝑟 + 2𝑟ℎ𝐴(𝑟, 𝑥)𝑑𝑣𝑑𝑥
𝐴 + 𝛾𝐴𝐵(𝑟, 𝑥)𝑑𝑥

𝐴𝑑𝑥𝐵 (1.26)

where ∂/∂𝑣 is a null Killing vector, 𝑥𝐴 are coordinates on spatial slices of the horizon,

and the Killing field tangent to the horizon is ∂/∂𝑣. The null vector field 𝑛 = ∂/∂𝑟 is

tangent to a congruence of null geodesics transverse to the horizon, which is at 𝑟 = 0.

The functions 𝐹 , ℎ𝐴 and 𝛾𝐴𝐵 are smooth functions of 𝑟, with

𝐹 (𝑟, 𝑥) = 𝐹 (𝑥) +𝒪(𝑟), ℎ𝐴(𝑟, 𝑥) = ℎ𝐴(𝑥) +𝒪(𝑟), 𝛾𝐴𝐵(𝑟, 𝑥) = 𝛾𝐴𝐵(𝑥) +𝒪(𝑟)

(1.27)

Consider a rescaling of coordinates 𝑣 7→ 𝑣/𝜀 and 𝑟 7→ 𝜀𝑟. We can now take the limit

𝜀→ 0, to obtain the near-horizon geometry of the black hole [77], taking the form

𝑑𝑠2 = −𝑟2𝐹 (𝑥)𝑑𝑣2 + 2𝑑𝑣𝑑𝑟 + 2𝑟ℎ𝐴(𝑥)𝑑𝑣𝑑𝑥
𝐴 + 𝛾𝐴𝐵(𝑥)𝑑𝑥

𝐴𝑑𝑥𝐵 (1.28)

3The same result holds for non-degenerate horizons, with the first term in the metric replaced by

−𝑟𝐹 (𝑟, 𝑥)𝑑𝑣2.
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where 𝐹 (𝑥) ≡ 𝐹 (0, 𝑥) etc. This metric admits symmetries generated by the Killing

vectors 𝑘 = ∂/∂𝑣 and 𝑋 = 𝑢∂/∂𝑢 − 𝑣∂/∂𝑣, corresponding to translations (𝑣 7→ 𝑣 + 𝑐)

and rescalings (𝑣 7→ 𝑣/𝜀, 𝑟 7→ 𝜀𝑟) respectively.

The null vector field ℓ ≡ ∂/∂𝑟 is non-expanding, non-shearing and non-twisting

everywhere. This implies, by definition, that all near-horizon geometries are Kundt

spacetimes [84, 85, 86]. In Section 3.5.1 we will see that all vacuum Kundt spacetimes

are algebraically special.

In fact, the near-horizon (NH) geometries of all known extremal vacuum black hole

solutions have more symmetry than is manifest in the above metric, with the symmetry

generated by 𝑘 and 𝑋 enhanced to 𝑆𝑂(2, 1) [87, 88, 89, 80, 90]. It is possible to write

such NH geometries as a fibration over 𝐴𝑑𝑆2 of some (𝑑− 2)-dimensional real manifold

ℋ.

We can think of ℋ as a (spatial section of) the black hole event horizon, and its

metric must therefore be compatible with the horizon topology. Classification of near-

horizon geometries has proved significantly easier than classification of full black hole

solutions in higher dimensions. This allows restrictions to be placed on the existence of

certain families of black holes in higher dimensions (assuming that they contain a regular

extremal limit). For example, Kunduri & Lucietti [80] were able to construct the near-

horizon geometries of all extreme vacuum (with possible cosmological constant) black

holes in four and five dimensions, assuming a certain amount of rotational symmetry.

More recently, the near-horizon extremal Kerr (NHEK) geometry [87] has been given

a new interpretation. Guica et al. [91] studied quantum states in this geometry, and use

their results to propose that Kerr black holes are dual to a chiral conformal field theory in

two dimensions; which gives a new approach to understanding, for example, the entropy

and temperature of the black hole. While there are many aspects of this conjecture

that are not yet well understood, it certainly serves to emphasize that near-horizon

geometries can give insights into a variety of fundamental properties of black holes. In

fact, it has been proposed that similar results may hold for Kerr-AdS spacetimes in

higher dimensions [92].

In Chapter 5 we will seek to exploit NH geometries in a different way; as a way of

making predictions about the stability of higher dimensional black holes.
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1.7 Stability of black holes

As interest in higher-dimensional holes has developed, so has interest in their classical

stability. Most of the work so far relies heavily on numerics. In Chapters 4 and 5 we will

take a new approach, and see how much progress can be made analytically.

The standard approach to perturbation theory in GR (see e.g. [17]) begins by making

a linearized metric perturbation of the form

𝑔𝜇𝜈 7→ 𝑔𝜇𝜈 + ℎ𝜇𝜈 . (1.29)

Care is needed though, since many choices of ℎ𝜇𝜈 give a perturbed metric that is related

to 𝑔𝜇𝜈 by an infinitesimal general coordinate transformation. To eliminate some of this

gauge freedom, one can choose a traceless, transverse gauge, fixing ℎ 𝜇
𝜇 = 0 and ∇𝜇ℎ𝜇𝜈 =

0 (where indices are raised and lowered with 𝑔𝜇𝜈). Given this, the Einstein equations

(linearized in ℎ), reduce to

ΔLℎ𝜇𝜈 = 2Λℎ𝜇𝜈 (1.30)

where ΔL is the Lichnerowicz operator, defined in the case of Einstein spacetimes (1.8)

by

ΔLℎ𝜇𝜈 = −∇𝜌∇𝜌ℎ𝜇𝜈 − 2𝑅 𝜌 𝜎
𝜇 𝜈 ℎ𝜌𝜎 + 2Λℎ𝜇𝜈 . (1.31)

In this chapter, we are mainly interested in the classical stability of asymptotically

flat, and asymptotically 𝐴𝑑𝑆 black holes. However, it is useful to first recall an important

result of Gregory & Laflamme [93] regarding the stability of black strings and black

branes. They studied a 𝑑-dimensional spacetime constructed from adding 𝑛 = 𝑑−𝐷 flat

directions to a 𝐷-dimensional Schwarzchild black hole, with a metric of the form

𝑑𝑠2 = −𝑉 (𝑟)𝑑𝑡2 +
𝑑𝑟2

𝑉 (𝑟)
+ 𝑟2𝑑Ω2

𝐷−2 +
𝑛∑
𝑖=1

𝑑𝑧𝑖𝑑𝑧𝑖, 𝑉 (𝑟) = 1− (𝑟0/𝑟)
𝐷−3 (1.32)

Consider Fourier mode solutions ℎ𝜇𝜈 ∝ 𝑒Ω𝑇+𝑖𝑚𝑖𝑧𝑖 to (1.30) (in the case Λ = 0), subject to

boundary conditions imposing that modes are regular at the event horizon and outgoing

at null infinity. Any mode with Re(Ω) > 0 grows exponentially, and is interpreted as an

instability. Ref. [93] showed numerically that such unstable modes do exist for all such

black strings and black branes; corresponding to long wavelength perturbations along

the flat directions (i.e. those with small
∑
𝑚2
𝑖 ). This is interpreted as showing that black

strings and black branes are classically unstable. It was speculated that the endpoint

of this instability is a chain of localized black holes. This was investigated in recent

numerical work by Lehner & Pretorius [94]. They showed that the perturbed string

evolves first to a sequence of black holes connected by increasingly thin black string
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sections. However, the radius of the connecting strings becomes zero in finite asymptotic

time, exposing a naked singularity.

The link with asymptotically flat black holes is as follows. Recall from the introduc-

tion that, in six or more dimensions, singly-spinning Myers-Perry black holes can have

arbitrarily large angular momentum. Such ultra-spinning black holes have ‘pancake-like’

horizons, with two separate lengthscales corresponding to the thickness of the horizon,

and its width. Emparan & Myers [95] argue that, close to the axis of rotation, such

horizons are well approximated by black branes. Hence, they suffer from the Gregory-

Laflamme instability, and are unstable.

Shortly before this, it was established by Ishibashi & Kodama [96] that the higher-

dimensional Schwarzschild solution is stable against linearized gravitational perturba-

tions for all 𝑑 > 4. From this, it seems reasonable to conjecture that Myers-Perry black

holes will be stable provided they are sufficiently slowly rotating. If slowly rotating MP

black holes are stable, and rapidly rotating ones are unstable, then there must exist

some critical value of angular momentum where an instability appears. Can this value

be identified?

A conjecture regarding this can be made by studying the thermodynamics of black

hole horizons. It is known that the area of the black hole horizon(s) in any spacetime

is always non-decreasing [19]. This is reminiscent of the second law of thermodynamics,

and for this reason (and others), the entropy of a black hole horizon can be identified as

proportional to its area [97]. Hence, given two black hole solutions to the Einstein equa-

tions (possibly with multiple disconnected horizons), with the same asymptotic mass and

angular momenta, the solution with the highest entropy seems to be ‘thermodynamically

preferred’. Based on this, it seems reasonable to conjecture that when there exist two

black hole solutions with the same asymptotic mass and angular momenta, but different

entropy, that the solution with lower entropy is likely to be unstable. Arguments along

these lines have been used to make conjectures about the phase space of vacuum black

hole solutions in higher dimensions [98, 99], leading on to the recent development of the

so-called blackfold approach [100, 101].

The intuition about links between different kinds of instability was formalised by a

conjecture of Gubser & Mitra [102, 103], who suggest that a black brane with trans-

lational symmetry is classically unstable if and only if it is locally thermodynamically

unstable. This conjecture was proved for a particular class of black brane solutions by

Reall [104].

These ideas were linked to asymptotically flat black holes by Monteiro et al. [105, 106].

They demonstrate, for several examples of rotating black holes (including singly-spinning

black rings), that in the semi-classical approximation the gravitational partition function
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admits a negative mode precisely when they are locally thermodynamically unstable.

More precisely, for a family of black holes with entropy 𝑆, labelled by angular momenta

𝐽𝑖, one can define the (reduced) Hessian

𝐻𝑖𝑗 =

(
∂2𝑆

∂𝐽𝑖∂𝐽𝑗

)
𝑀

. (1.33)

In this paper, they consider a black hole to be locally thermodynamically unstable if 𝐻𝑖𝑗

is not negative definite. This negative mode appears for all black holes with angular

momentum parameter 𝑎 larger than some critical value 𝑎0. This critical value can be

used to give a precise definition of an ultra-spinning black hole; i.e. all MP black holes

with 𝑎 > 𝑎0 are ultraspinning.

This represents further evidence that locally thermodynamically unstable black holes

are classically unstable, but does not prove it. For a proof, one needs to exhibit an

explicit linearized instability of a black hole spacetime.

Dias et al. [107, 108] made progress towards this goal by studying the case of a

singly-spinning, asymptotically flat MP black hole in dimensions 𝑑 = 7, 8, 9. Rather

than working with the black hole spacetime directly, they construct a 𝑑+ 1 dimensional

black string by adding a single flat direction 𝑑𝑧, and consider the eigenvalue problem

ΔLℎ𝜇𝜈 = −𝑘2ℎ𝜇𝜈 , (1.34)

subject to particular boundary conditions, with a Fourier mode ansatz of the form ℎ𝜇𝜈 ∝
𝑒𝑖𝑘𝑧ℎ̃𝜇𝜈 . This is useful because there exist powerful numerical techniques allowing them

to find these eigenvalues 𝑘 with relative ease, for given mass and angular momentum

parameter 𝑎. Their approach is to start with a particular (small) value of 𝑎, and find

the corresponding eigenvalues 𝑘. They then increase 𝑎 until they find a critical value

where 𝑘 = 0. Such a mode is independent of the string direction 𝑧, and hence can

be interpreted as a stationary perturbation mode of the black hole spacetime. It was

argued that this corresponds to the threshold of instability, that is, black holes with

larger angular momentum are unstable.

This work motivated the construction of the first explicit example of a linearized

instability of an asymptotically flat black hole [109], for the cohomogeneity-1 MP black

hole. They demonstrated that, for sufficiently large angular momentum, there exist

certain gravitational perturbation modes that grow exponentially with time. The insta-

bilities found appear at a slightly larger value of angular momentum predicted by the

thermodynamic arguments discussed above.

Instabilities of singly-spinning MP black holes have also been found via nonlinear

numerical evolution of a perturbed black hole in five [110] and higher [111] dimensions.
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These instabilities are of a qualitatively different nature to those found in [109], appearing

at a lower value of angular momentum, and breaking more of the symmetry of the original

solution.

Despite this recent progress, performing an analysis of the linearized stability of

general Myers-Perry black holes seems to be extremely difficult. Though the principles

of doing this are well understood, doing it in practice is not easy. The equations of motion

involved in these perturbations are extremely complicated, which hinders attempts to

extract information from them analytically, whilst the large parameter space makes

numerical approaches time consuming. Things are even worse in the case of black rings

[68, 69, 70], for which there are physical arguments for various kinds of instabilities

[112, 113] but little in the way of concrete results.

1.8 New results of this thesis

In this thesis, we will discuss various new results related to some of the questions about

higher-dimensional general relativity raised above. In doing so, we will study powerful

mathematical results from four-dimensional general relativity, and investigate the extent

to which they can be generalized to higher dimensions.

In Chapter 2, we review the generalization to higher dimensions of the algebraic

classification of spacetimes. In four dimensions, these techniques have proved useful

for studying many aspects of general relativity, and we discuss the progress so far in

higher-dimensions. Part of the difficulty with making progress in higher dimensions is

that many calculations are extremely complicated. To ease this difficulty, we will discuss

a new approach, a generalization of the four-dimensional Geroch-Held-Penrose (GHP)

formalism [114], that simplifies matters in some cases.

The Goldberg-Sachs theorem [115] is a hugely important theorem in four-dimensional

GR. In Chapter 3 we formulate and prove a partial generalization of the result to arbi-

trary dimension, as well as discussing what a more complete generalization might look

like.

In Chapter 4, we move on to more physical applications. We describe how the

GHP formalism that we have developed can be applied to construct gauge invariant

variables describing perturbations of algebraically special spacetimes. This opens up a

new approach to studying the linearized stability of, for example, Myers-Perry black

holes in arbitrary dimension. In four dimensions, for the Kerr black hole, this approach

was exceptionally useful as these gauge invariant variables satisfy a decoupled equation.

Unfortunately, we discover that these gauge invariant variables do not obey a decoupled

equation of motion in higher dimensions.
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However, the analogous equation does decouple in the near-horizon geometry of any

extreme vacuum black hole, and in Chapter 5 we are able to use this equation to conjec-

ture information about instabilities of black holes in arbitrary dimension. In particular,

we show that the equations for linearized perturbations of the near-horizon geometry

can be reduced to the equation of motion for a charged, massive scalar field in 𝐴𝑑𝑆2.

A generalized Breitenlöhner-Freedman stability bound can be defined for such fields.

We conjecture that if there exist perturbation modes that violate this bound, then the

full black hole geometry will be unstable, provided that the unstable modes obey a

certain symmetry condition. Although this only allows us to study a limited class of

perturbations, it allows progress to be made without resorting to numerics, and offers

the possibility of making general statements about stability in arbitrary dimension. We

provide evidence for this conjecture by comparing our results with those obtained by

numerical work in a few particular cases, and find good agreement.

The final chapter of the thesis has a rather different flavour, studying properties

of a particular solution to the Einstein equations in five dimensions: the Pomeransky-

Sen’kov doubly spinning black ring [70]. We will see that the Hamilton-Jacobi equation

describing geodesic motion admits separable solutions in the case of null, zero energy

geodesics. Given the very complicated metric describing such black ring spacetimes,

this is something of a surprise. However, we are able to give some insight into this

separability by showing that the black ring admits a novel form of hidden symmetry.

While the full spacetime does not admit a conformal Killing tensor, one can make a

Kaluza-Klein dimensional reduction to obtain a four-dimensional spacetime that does

admit such a tensor.
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Chapter 2

Algebraic classification and null

frames

2.1 Introduction

When looking to find out more about gravity in higher dimensions, it is natural to try

to generalize mathematical methods that have proved powerful in four dimensions.

The algebraic classification of spacetimes, first considered by Petrov [116], is one

example of such a method. Such classification played a crucial role in understanding

various aspects of four-dimensional GR. For example, Kerr made use of it in order to

construct the metric describing a rotating black hole [24], while the asymptotic behaviour

of gravitational radiation can be conveniently understood in this language (see, e.g.

[117]).

The basic idea behind algebraic classification is to divide spacetimes into different

types, in order to prove general results about the properties of a precisely defined set

of spacetimes. The schemes discussed below only say useful things about a few partic-

ular spacetimes; the reason that they are useful is that these include various important

examples, such as the Kerr black hole and pp-waves.

There are at least four distinct approaches to defining such an algebraic classifica-

tion. Roughly speaking, the four approaches make use of null vectors, 2-spinors, scalar

invariants and bivectors. In four dimensions, perhaps surprisingly, all of these methods

can be used to give different descriptions of the same classification. In Section 2.2 we

will briefly review these various approaches.

For each technique, it is possible to define (at least one) generalization to higher

dimensions. However, the generalisations are typically not equivalent to each other, and

lead to distinct notions of an algebraically special spacetime. The focus of much of

25
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this thesis will be on a null vector based generalization of these classification schemes

to higher dimensions, defined in 2001 by Coley, Milson, Pravda & Pravdová (CMPP)

[118, 119]. This will be introduced in Section 2.3, after which we will briefly review

some other higher-dimensional classification schemes, including the spinorial de Smet

classification [120].

As we shall see below, algebraically special spacetimes are partly characterized by the

existence of preferred null directions. Therefore, it is useful to introduce computational

techniques built around one or two particular null directions. In four dimensions, the

Newman-Penrose (NP) [121] and Geroch-Held-Penrose (GHP) [114] formalisms are two

related examples of such techniques. Higher-dimensional versions of these approaches

will be discussed in detail in Sections 2.5 and 2.6. The higher-dimensional generalisation

of the NP formalism was developed by various authors (see e.g. [122, 123, 124]), while

myself, Pravda, Pravdová & Reall [4] constructed a higher-dimensional version of the

GHP formalism.

2.2 Algebraic classification in four dimensions

In the case of Einstein spacetimes, all information about the curvature of the spacetime

is contained within the Weyl tensor 𝐶𝜇𝜈𝜌𝜎, and the cosmological constant Λ. Therefore,

algebraic classification of curvature essentially reduces to algebraic classification of the

Weyl tensor.

Weyl classification was first considered by Petrov [116].1 In this section we review

these important results, describing various different approaches to obtaining them, and

discussing some applications.

Although one usually refers to algebraic classification of spacetimes, the classifica-

tion is entirely local, referring to the algebraic structure of the Weyl tensor at a point.

However, unless the point chosen is particularly special for some reason, the algebraic

type will usually be the same in any local neighbourhood. In fact, most spacetimes of

interest turn out to be analytic, and hence these local results can be extended globally

across the spacetime (see comments in Section 2.2.3).

2.2.1 2-spinors

One approach to algebraic classification uses a spinorial representation of the local

Lorentz group to construct a ‘Weyl polynomial,’ and then defines a classification ac-

1His work was subsequently rederived by various authors throughout the 1950s, see [27] for a summary

of relevant works.
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cording to how this polynomial factorizes.

To see this in more detail, first recall that 𝑆𝐿(2,ℂ) is isomorphic to a double cover

of the proper orthochronous Lorentz group 𝑆𝑂(1, 3)↑, and that this provides a repre-

sentation of the local Lorentz group acting on 2-spinors 𝜉𝐴. This map can be expressed

explicitly using the Pauli matrices 𝜎𝜇 as 𝑉 𝜇 ↔ 𝑉𝐴�̇� where

𝑉𝐴�̇� = 𝑖𝑉𝜇𝜎
𝜇

𝐴�̇�
, 𝑉 𝜇 = 𝑖

2
𝑉𝐴�̇��̄�

𝜇�̇�𝐴, (2.1)

for �̄� = (𝜎0,−𝜎𝑖) and

𝜎0 =

(
1 0

0 1

)
, 𝜎1 =

(
0 1

1 0

)
, 𝜎2 =

(
0 −𝑖
𝑖 0

)
, 𝜎3 =

(
1 0

0 −1

)
.

(2.2)

Our notation is similar to that of [117, 27], and we will use an equals sign = to denote

quantities that are equivalent under this map. In this way, we can define a spinorial

counterpart of the Weyl tensor

𝐶𝜇𝜈𝜌𝜎 = 𝐶𝐴�̇�𝐵�̇�𝐶�̇�𝐷�̇�. (2.3)

Furthermore, it can be shown that this can be expanded as (see, e.g. [117])

𝐶𝐴�̇�𝐵�̇�𝐶�̇�𝐷�̇� = Ψ𝐴𝐵𝐶𝐷𝜀�̇��̇�𝜀�̇��̇� +Ψ�̇��̇��̇��̇�𝜀𝐴𝐵𝜀𝐶𝐷 (2.4)

for some totally symmetric spinor Ψ𝐴𝐵𝐶𝐷, which we will refer to as the Weyl spinor,

where 𝜀𝐴𝐵 is the alternating symbol in two dimensions. Using this spinor, one can

construct the Weyl polynomial

𝐶(𝜉) = Ψ𝐴𝐵𝐶𝐷𝜉
𝐴𝜉𝐵𝜉𝐶𝜉𝐷 (2.5)

for arbitrary 2-spinors 𝜉 = (𝑥, 𝑦). This is a homogeneous polynomial in two variables

𝑥 and 𝑦, and hence it follows from the fundamental theorem of algebra that it has four

roots. Each root defines, up to normalisation, a 2-spinor, and hence there are four such

2-spinors that are somehow inherent to the geometry.

The Petrov classification is defined by considering the multiplicities of these roots,

as in Table 2.1. We say that a spacetime with all roots distinct is algebraically general

(Type I); if at least two of them coincide then a spacetime is algebraically special (Type

II, III, IV or D).

This description is specific to four dimensions, as spinorial structures are different in

different dimensions. This suggests that if a spinorial generalization to higher dimensions

is possible, then it is likely to be necessary to define this on a dimension by dimension

basis. If we want to be able to write down definitions that work in arbitrary dimension,

we can expect to have to use a different method.
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Petrov Type Multiplicity of roots

I (or G) (1,1,1,1)

II (2,1,1)

III (3,1)

IV (or N) (4)

D (or II𝑖𝑖) (2,2)

Table 2.1: The four dimensional Petrov classification expressed in terms of multiplicities

of roots of the Weyl polynomial.

2.2.2 Vector classification

A alternative approach is to work with null vectors. One motivation for this can be

seen from thinking further about the spinorial approach described above. Under the

correspondence (2.1), null vectors 𝑘 correspond to rank-1 matrices with zero determinant,

which can be expressed as (plus or minus) the outer product of a 2-spinor and its complex

conjugate, i.e. 𝑘𝜇 = ±𝜅𝐴�̄��̇�. This decomposition is unique up to the sign of 𝜅𝐴. Hence,

every root of the Weyl polynomial corresponds to a particular null direction in the

spacetime; we call this a principal null direction (PND).

By the results above, any spacetime admits exactly four PNDs. In this language, a

spacetime is algebraically special if and only if at least two of the PNDs coincide. How

can this definition be understood in vector language, i.e. without making reference to

spinors?

To do this, consider a (local) null basis {ℓ, 𝑛,𝑚, �̄�}, where ℓ, 𝑛 are real null vectors

and 𝑚 is a complex null vector, with ℓ.𝑛 = 1, 𝑚.�̄� = 1, and all other inner products

vanishing. The metric can be written as

𝑔𝜇𝜈 = 2ℓ(𝜇𝑛𝜈) + 2𝑚(𝜇�̄�𝜈). (2.6)

In this basis, one can decompose the Weyl tensor in terms of the complex scalars

Ψ0 ≡ 𝐶(ℓ,𝑚, ℓ,𝑚) Ψ4 ≡ 𝐶(𝑛, �̄�, 𝑛, �̄�)

Ψ1 ≡ 𝐶(ℓ, 𝑛, ℓ,𝑚) Ψ3 ≡ 𝐶(𝑛, ℓ, 𝑛, �̄�)

Ψ2 ≡ −𝐶(ℓ,𝑚, 𝑛, �̄�)

= 1
2
[𝐶(ℓ, 𝑛, ℓ, 𝑛)− 𝐶(ℓ, 𝑛,𝑚, �̄�)] . (2.7)

We say that ℓ is a PND if and only if Ψ0 = 0. This definition depends only on ℓ, and

is equivalent to the definition given above. The vector ℓ is a repeated PND if and only

if Ψ0 = Ψ1 = 0; and we say that a spacetime is algebraically special if and only if there



2.2. ALGEBRAIC CLASSIFICATION IN FOUR DIMENSIONS 29

exists a choice of ℓ such that this is the case. The complete Petrov classification can be

expressed in this form. To clarify that this classification depends only on ℓ, equivalent

conditions can be given for each type that make this dependence explicit. The complete

classification, given in both of these forms, is given by the statement that, for a particular

spacetime (that is not conformally flat), there exists a null vector field ℓ such that:

∙ Ψ0 = Ψ1 = Ψ2 = Ψ3 = Ψ4 = 0 ⇔ 𝐶𝜇𝜈𝜌𝜎 = 0 ⇔ Spacetime is Type O.

∙ Ψ0 = Ψ1 = Ψ2 = Ψ3 = 0 ⇔ ℓ𝜎𝐶𝜇𝜈𝜌𝜎 = 0 ⇔ Spacetime is Type N or O.

∙ Ψ0 = Ψ1 = Ψ2 = 0 ⇔ ℓ𝜌𝐶𝜇𝜈𝜌[𝜎ℓ𝜏 ] = 0 ⇔ Spacetime is Type III, N or O.

∙ Ψ0 = Ψ1 = 0 ⇔ ℓ𝜇ℓ𝜈𝐶𝜌𝜇𝜈[𝜎ℓ𝜏 ] = 0 ⇔ Spacetime is Type II, III, N or O.

∙ Ψ0 = 0 ⇔ ℓ𝜇ℓ𝜈ℓ[𝜌𝐶𝜎]𝜇𝜈[𝜏ℓ𝜃] = 0 ⇔ ℓ is a PND.

Similarly, 𝑛 is a PND iff Ψ4 = 0, and a repeated PND iff Ψ4 = Ψ3 = 0. Hence, a

Type D spacetime is characterized by the existence of a frame in which Ψ2 is the only

non-vanishing component of the Weyl tensor.

This null vector language will turn out to be the easiest to generalize to arbitrary

dimension, as we shall discuss in detail in Section 2.3.

2.2.3 Scalar Invariants

So far we have given two distinct methods for working out whether or not a spacetime is

algebraically special. However, both of these methods require several separate steps of

working, and the introduction of new structures (e.g. the Weyl polynomial and/or the

PNDs). From a computational point of view, it would be nice if there was a more direct

condition for checking whether a spacetime is algebraically special. Such a condition is

given by the complex scalar invariants

𝐼 ≡ 1

2
Ψ𝐴𝐵𝐶𝐷Ψ

𝐴𝐵𝐶𝐷, 𝐽 ≡ 1

6
Ψ 𝐶𝐷
𝐴𝐵 Ψ 𝐸𝐹

𝐶𝐷 Ψ 𝐴𝐵
𝐸𝐹 . (2.8)

A spacetime is algebraically special if and only if 𝐼3 = 27𝐽2 (see e.g. [27]). It is Type

III, N or O if and only if 𝐼 = 𝐽 = 0. It is possible to express this condition directly in

terms of the Weyl tensor, without reference to the Weyl spinor, although the expressions

involved are rather more complicated (see e.g. [125]).

The classification can be refined further to fully determine all Petrov types. Writing

𝐾𝐴𝐵𝐶𝐷𝐸𝐹 ≡ Ψ𝑃𝑄𝑅(𝐴Ψ
𝑃𝑄

𝐵𝐶 Ψ𝑅
𝐷𝐸𝐹 ), 𝐿𝐴𝐵𝐶𝐷 ≡ Ψ 𝐸𝐹

(𝐴𝐵 Ψ𝐶𝐷)𝐸𝐹 , (2.9)
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it can be shown (see e.g. [117]) that a non-conformally flat spacetime is Type D if and

only if

𝐾𝐴𝐵𝐶𝐷𝐸𝐹𝐾
𝐴𝐵𝐶𝐷𝐸𝐹 = 0 (2.10)

and Type N if and only if

𝐿𝐴𝐵𝐶𝐷𝐿
𝐴𝐵𝐶𝐷 = 0. (2.11)

Although computing these invariants explicitly for a given spacetime can be very messy,

it is a usually a tractable problem, at least with computer algebra. From a theoretical

point of view, this formulation is useful when dealing with analytic spacetimes. By

the definition of real analyticity, a scalar invariant that is vanishing in some region

must vanish everywhere in the spacetime. Hence, the results above imply that any four

dimensional analytic spacetime must have the same algebraic type everywhere (except

possibly on some set of zero measure).

Classification using scalar invariants has wider applications than merely giving a

different way of understanding the Petrov classification. Progress in recent years has

focused on the use of scalar invariants as providing a continuous characterisation of

spacetimes, as opposed to a discrete classification. An interesting recent result is the

following:

Theorem 2.1 (Coley et al. [126]) Consider a four-dimensional Lorentzian metric 𝑔.

Let

ℐ = {𝑅,𝑅𝜇𝜈𝑅
𝜇𝜈 , 𝐶𝜇𝜈𝜌𝜎𝐶

𝜇𝜈𝜌𝜎, 𝑅𝜇𝜈𝜌𝜎;𝜏𝑅
𝜇𝜈𝜌𝜎;𝜏 , . . .} (2.12)

be the set of all scalars constructable from contractions of the Riemann tensor and its

derivatives. Then the metric 𝑔 is either

(i) determined uniquely by ℐ or

(ii) a Kundt metric.

Recall that a Kundt spacetime [84] (see also [27, 86]) is one that admits a shearfree,

twistfree, non-expanding, null geodesic congruence ℓ.2 One important application of

this result is to the problem of distinguishing spacetimes. Clearly if two apparently

distinct metrics have differing sets of scalar invariants (e.g. an invariant that vanishes

identically in one metric but not in the other), then the two metrics must represent

genuinely distinct spacetimes. By this theorem we know that, given a particular pair

of spacetimes, it is always possible to show that they are distinct by computing a finite

number of elements of ℐ.
2In fact, many Kundt spacetimes are determined uniquely by their scalar invariants, and Ref. [126]

gives a precise description of the so-called ‘degenerate Kundt’ spacetimes that are not.
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2.2.4 Bivectors

Finally, the algebraic classification of the Weyl tensor can also be expressed in terms of

the following linear map C, acting on 2-forms (or bivectors) 𝑋 = 1
2
𝑋[𝜇𝜈]𝑑𝑥

𝜇 ∧ 𝑑𝑥𝜈 as

C : 𝑋𝜇𝜈 7→ 1
2
𝐶 𝜌𝜎
𝜇𝜈 𝑋𝜌𝜎. (2.13)

An algebraic classification can be constructed by considering the eigenvalue structure of

this map.

In four dimensions, one can define a duality map ∼ acting on bivectors as

𝑋𝜇𝜈 7→ �̃�𝜇𝜈 ≡ 1
2
𝜀 𝜌𝜎
𝜇𝜈 𝑋𝜌𝜎. (2.14)

Using this, following for example [27], we define a complex bivector 𝑋∗ = 𝑋 + 𝑖�̃�

which has the ‘self-duality’ property (𝑋∗)∼ = −𝑖𝑋∗. We can also construct a self-dual

complexified Weyl tensor

𝐶∗
𝜇𝜈𝜌𝜎 = 𝐶𝜇𝜈𝜌𝜎 +

𝑖

2
𝐶𝜇𝜈𝜏𝜃𝜀

𝜏𝜃
𝜌𝜎. (2.15)

The linear map defined by 𝐶∗ maps the space of self-dual bivectors 𝑋∗ to itself; and

it can be shown [27] that it contains the same information as the original map (2.13)

(the original map was an endomorphism of a 6-dimensional real vector space, we have

converted it into an endomorphism of a 3-dimensional complex vector space).

To make contact with the other forms of classification, we can take a basis{
2�̄� ∧ 𝑛, 2𝑚 ∧ 𝑙, 2(𝑙 ∧ 𝑛+𝑚 ∧ �̄�)

}
(2.16)

of the space of self-dual bivectors. With respect to this basis, the linear map defined by

𝐶∗ takes a matrix representation [27]

Q =

⎛⎜⎜⎝
Ψ2 − 1

2
(Ψ0 +Ψ4)

𝑖
2
(Ψ4 −Ψ0) Ψ1 −Ψ3

𝑖
2
(Ψ4 −Ψ0) Ψ2 +

1
2
(Ψ0 +Ψ4) 𝑖(Ψ1 +Ψ3)

Ψ1 −Ψ3 𝑖(Ψ1 +Ψ3) −Ψ2

⎞⎟⎟⎠. (2.17)

This is a tracefree, symmetric complex matrix, that encodes the 10 independent real

Weyl tensor components. The Petrov classification can then be expressed in terms of

this matrix as follows:

∙ A spacetime is Type O iff Q = 0.

∙ A spacetime is Type N iff Q2 = 0 (and it is not Type O).

∙ A spacetime is Type III iff Q3 = 0 (and it is not Type N).
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∙ A spacetime is Type II iff ∃𝜆 such that (Q + 1
2
𝜆1)2(Q − 𝜆1) = 0 (and it is not

Type III).

∙ A spacetime is Type D iff ∃𝜆 such that (Q+ 1
2
𝜆1)(Q−𝜆1) = 0 (and it is not Type

III).

This completes our review of four-dimensional approaches to algebraic classification, we

now move on to consider the generalization of these techniques to higher dimensions.

2.3 Algebraic classification in higher dimensions

In more than four dimensions, we will focus on a particular approach to algebraic classi-

fication, which is the natural generalization of the null vector based approach discussed

in Section 2.2.2.

Coley, Milson, Pravda & Pravdová (CMPP) [118, 119] defined such a classification in

arbitrary dimension 𝑑 ≥ 4. In this section we give a detailed account of this approach,

and define the notation that will be used in much of the rest of the thesis.

In a 𝑑-dimensional spacetime we introduce (locally) a frame

{ℓ ≡ 𝑒0 = 𝑒1, 𝑛 ≡ 𝑒1 = 𝑒0,𝑚𝑖 ≡ 𝑒𝑖 = 𝑒𝑖} (2.18)

for the tangent space 𝑇 (ℳ), where indices 𝑖, 𝑗, 𝑘, . . . run from 2 to 𝑑 − 1, ℓ and 𝑛 are

null vector fields and 𝑚𝑖 are spacelike vector fields. We will use 𝑎, 𝑏, . . . to denote 𝑑-

dimensional tangent space indices, taking values from 0 to 𝑑 − 1. We have 𝑒𝑎.𝑒𝑏 = 𝜂𝑎𝑏

where

𝜂 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0

1 0 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (2.19)

i.e. the only non-vanishing scalar products of basis vectors are ℓ.𝑛 = 1 = 𝜂01 and𝑚𝑖.𝑚𝑗 =

𝛿𝑖𝑗 = 𝜂𝑖𝑗. Although only two of the vectors are null, we will refer to such a basis as a

null frame. We will sometimes drop spatial indices 𝑖, 𝑗, . . . on quantities such as 𝑣𝑖, and

will use bold font v to indicate this. The Einstein summation convention is used except

where explicitly stated otherwise.

2.3.1 Changes of basis

Any tensor 𝑇 can be expanded with respect to this basis in the obvious way by defining

𝑇𝑎𝑏...𝑐 = 𝑇 (𝑒𝑎, 𝑒𝑏, . . . , 𝑒𝑐), (2.20)
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so, for example, (lowered) indices 0 correspond to contractions with ℓ. The objects

𝑇𝑎𝑏...𝑐 are spacetime scalars, but transform as tensor components under local Lorentz

transformations, corresponding to changes in the choice of basis vectors.3

Changes of basis are described by the action of the Lorentz group. We divide the

action of its proper orthochronous component up into the following:

Spins: Rotations of the spatial basis vectors 𝑚𝑖:

ℓ 7→ ℓ, 𝑛 7→ 𝑛, 𝑚𝑖 7→ 𝑋𝑖𝑗𝑚𝑗, (2.21)

where X : ℳ → 𝑆𝑂(𝑑− 2) is a (position dependent) orthogonal matrix.

Boosts: Rescalings of the null basis vectors that preserve the scalar product ℓ ⋅ 𝑛 = 1:

ℓ 7→ 𝜆ℓ, 𝑛 7→ 𝜆−1𝑛, 𝑚𝑖 7→ 𝑚𝑖, (2.22)

where 𝜆 is an arbitrary non-zero function ℳ → ℝ. We shall say that ℓ, 𝑛 and 𝑚𝑖

have boost weights +1, −1 and 0 respectively.

Null Rotations: Rotation of the rest of the basis about one of the null basis vectors.

A null rotation about 𝑛 takes the form

ℓ 7→ ℓ+ 𝑧𝑖𝑚𝑖 − 1

2
𝑧2𝑛, 𝑛 7→ 𝑛, 𝑚𝑖 7→ 𝑚𝑖 − 𝑧𝑖ℓ, (2.23)

where 𝑧2 ≡ 𝑧𝑖𝑧𝑖, 𝑧𝑖 some functions ℳ → ℝ𝑑−2. An analogous definition can be

made for null rotations about ℓ (see equation (2.53 later).

This allows us to make the following definition, first used in this context by CMPP [118]:

Definition 2.2 A component 𝑇𝑎1𝑎2...𝑎𝑚 of a tensor 𝑇𝜇𝜈...𝜌 has boost weight 𝑏 if it trans-

forms as

𝑇𝑎1𝑎2...𝑎𝑚 7→ 𝜆𝑏𝑇𝑎1𝑎2...𝑎𝑚 (2.24)

under boosts of the form (2.22).

In the following, we will classify components of tensors by their boost weight. Note that,

for tensors that do not depend on the null basis vectors themselves, the boost weight of

a component can be read off by subtracting the number of indices 1 from the number of

indices 0. So, for example, components 𝑅0𝑖 of the Ricci tensor have boost weight 𝑏 = +1,

whilst the components 𝑅011𝑖 of the Riemann tensor have boost weight 𝑏 = −1.

3This is if the tensor 𝑇𝜇𝜈...𝜌 is independent of the choice of null frame. The transformation of tensors

constructed from the frame vectors themselves is more complicated, as we shall discuss in Section 2.6.
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2.3.2 Boost weight decomposition of the Weyl Tensor

It is most useful to use this classification to make a boost weight decomposition of the

Weyl tensor.

In the four-dimensional classification, the complex scalars Ψ0, Ψ1, Ψ2, Ψ3, Ψ4 de-

fined in (2.7) have boost weights +2, +1, 0, −1, −2 respectively. Hence, the natural

generalization of each of these complex scalars seems to be the collection of components

of the Weyl tensor of each boost weight [118]. Due to the symmetries 𝐶𝑎𝑏𝑐𝑑 = 𝐶[𝑎𝑏][𝑐𝑑],

the possible boost weights are again 𝑏 = 2, 1, 0,−1,−2. We define our notation for this

decomposition in Table 2.2.4

𝑏 Compt. Notation Spin 𝑠 Identities Independent compts.

2 𝐶0𝑖0𝑗 Ω𝑖𝑗 2 Ω𝑖𝑗 = Ω𝑗𝑖, Ω𝑖𝑖 = 0 1
2
𝑑(𝑑− 3)

1 𝐶0𝑖𝑗𝑘 Ψ𝑖𝑗𝑘 3 Ψ𝑖𝑗𝑘 = −Ψ𝑖𝑘𝑗, Ψ[𝑖𝑗𝑘] = 0 1
3
(𝑑− 1)(𝑑− 2)(𝑑− 3)

𝐶010𝑖 Ψ𝑖 1 Ψ𝑖 = Ψ𝑘𝑖𝑘.

0 𝐶𝑖𝑗𝑘𝑙 Φ𝑖𝑗𝑘𝑙 4 Φ𝑖𝑗𝑘𝑙 = Φ[𝑖𝑗][𝑘𝑙] = Φ𝑘𝑙𝑖𝑗
1
12
(𝑑− 1)(𝑑− 2)2(𝑑− 3)

Φ𝑖[𝑗𝑘𝑙] = 0

𝐶0𝑖1𝑗 Φ𝑖𝑗 2 Φ(𝑖𝑗) ≡ ΦS
𝑖𝑗 = −1

2
Φ𝑖𝑘𝑗𝑘

𝐶01𝑖𝑗 2ΦA
𝑖𝑗 2 ΦA

𝑖𝑗 ≡ Φ[𝑖𝑗]
1
2
(𝑑− 2)(𝑑− 3)

𝐶0101 Φ 0 Φ = Φ𝑖𝑖

-1 𝐶1𝑖𝑗𝑘 Ψ′
𝑖𝑗𝑘 3 Ψ′

𝑖𝑗𝑘 = −Ψ′
𝑖𝑘𝑗, Ψ

′
[𝑖𝑗𝑘] = 0 1

3
(𝑑− 1)(𝑑− 2)(𝑑− 3)

𝐶101𝑖 Ψ′
𝑖 1 Ψ′

𝑖 = Ψ′
𝑘𝑖𝑘.

-2 𝐶1𝑖1𝑗 Ω′
𝑖𝑗 2 Ω′

𝑖𝑗 = Ω′
𝑗𝑖, Ω

′
𝑖𝑖 = 0 1

2
𝑑(𝑑− 3)

Table 2.2: Decomposition of the Weyl tensor by boost weight 𝑏 for a 𝑑 ≥ 4 dimensional

spacetime. The various identities given are consequences of the symmetries and tracelessness

of the Weyl tensor. The right hand column shows how many independent components there are

of each type, the sum of these numbers gives the total number of independent components of

the Weyl tensor for a 𝑑-dimensional manifold.

In 𝑑 = 4 dimensions, there are exactly two independent components of each boost

weight, for example Φ22 = Φ33 = −1
2
𝐶2323 and Φ23 = −Φ32 are the only independent

𝑏 = 0 components. This allows us to express the components in terms of the five

complex scalars Ψ𝐴. However, clearly there are too many components to do this in

higher dimensions (c.f. the last column of Table 2.2).

There is also an extra simplification in 𝑑 = 5 dimensions, where Φ𝑖𝑗𝑘𝑙 is uniquely

4Note that there are various different notational conventions in use in the literature, some which

differ from others by choices of sign, factors of two etc.
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fixed in terms of ΦS
𝑖𝑗 via

Φ𝑖𝑗𝑘𝑙
𝑑=5
= 2(𝛿𝑖𝑙Φ

S
𝑗𝑘 − 𝛿𝑖𝑘Φ

S
𝑗𝑙 − 𝛿𝑗𝑙Φ

S
𝑖𝑘 + 𝛿𝑗𝑘Φ

S
𝑖𝑙)− Φ(𝛿𝑖𝑙𝛿𝑗𝑘 − 𝛿𝑖𝑘𝛿𝑗𝑙). (2.25)

Note that it is possible to decompose the Weyl tensor further into objects that trans-

form irreducibly under 𝑆𝑂(𝑑− 2). For example, we could decompose Ψ𝑖𝑗𝑘, Φ𝑖𝑗𝑘𝑙 and Φ𝑆
𝑖𝑗

into traceless and pure trace parts. This may be useful in some contexts (see [127]), but

for the applications that will be discussed in this thesis it seems to make things more

complicated.

2.3.3 Weyl-aligned null directions

The higher-dimensional generalization of a principal null direction is given by:

Definition 2.3 ([118]) A null vector field ℓ is a Weyl-aligned null direction (WAND)

iff all boost weight +2 components of the Weyl tensor vanish everywhere in a frame

containing ℓ.

In 4 dimensions this definition is equivalent to the statement that ℓ is a PND. Equiva-

lently, ℓ is a WAND iff Ω = 0. This definition does not depend on the choice of 𝑛 and

𝑚𝑖, since Ω𝑖𝑗Ω𝑖𝑗 depends only on ℓ.

Recall that in four dimensions, all spacetimes with non-vanishing Weyl tensor admit

exactly four WANDs (possibly repeated). This is not the case in higher dimensions:

a spacetime may admit no WANDs, a finite number of WANDs, or infinitely many

WANDs. We will see examples of all of these types of behaviour below.

Following the same lines, we can define an algebraically special spacetime as follows:

Definition 2.4 ℓ is a multiple WAND iff all boost weight +2 and +1 components of the

Weyl tensor vanish everywhere.

In four dimensions this is equivalent to ℓ being a repeated PND.

Definition 2.5 A spacetime is algebraically special if it admits a multiple WAND.

Note that this notion of being algebraically special is far from the only sensible definition

that can be made in higher dimensions. In fact, most papers on the CMPP classification,

including the original papers [118, 119], define a spacetime to be algebraically special if

it admits a WAND (not necessarily multiple). However, the definition that we make here

seems to be more useful. It reduces to the standard definition of algebraically special

in 4D, whereas the original definition renders all 4D spacetimes algebraically special.

Furthermore, for 𝑑 > 4, there exist examples of analytic spacetimes that admit a WAND
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in some open region, but not in others (see, e.g. [128, 129]). More importantly for our

purposes, the new results that we derive in Chapters 3, 4 and 5 will apply to spacetimes

that are algebraically special in the sense of Definition 2.5.

To find the algebraic type of a spacetime, one looks first for a choice of (real) null

vector ℓ that eliminates as many as possible high boost weight Weyl components. Then

we can define:5

Definition 2.6 A spacetime is:

∙ Type O if its Weyl tensor vanishes everywhere, i.e. it is conformally flat.

∙ Type N if it is not type O and there exists a choice of ℓ for which all boost weight 2,

1, 0, -1 Weyl tensor components vanish everywhere (i.e. Ω = Ψ = Φ = Ψ′ = 0).

∙ Type III if it is not type O or N and there exists a choice of ℓ for which all boost

weight 2, 1, 0 Weyl tensor components vanish everywhere (i.e. Ω = Ψ = Φ = 0).

∙ Type II if it is algebraically special but not type O, N or III (i.e. Ω = Ψ = 0).

∙ Type I if it admits a WAND, but not a multiple WAND (i.e. Ω = 0).

∙ Type G if it does not admit a WAND.

This classification, which depends only on ℓ, is the primary classification of the spacetime.

In four dimensions, it is equivalent to the Petrov classification, with the exception of Type

G, which does not occur in 4D. For convenience, we will sometimes say that a null vector

field ℓ has the Type III property if all non-negative boost weight components vanish in a

frame containing ℓ (and similarly for Type N).

Having fixed ℓ, one can define a secondary classification [118] by choosing 𝑛 so that

as many low boost weight components as possible vanish. For us, the relevant part of

this is given by:

Definition 2.7 A spacetime is Type D if it admits two linearly independent multiple

WANDs.

Hence, in a Type D spacetime, one can work in a basis where both ℓ and 𝑛 are multiple

WANDS, and hence Ω = Ψ = Ψ′ = Ω′ = 0. Recall that the two null vectors are linearly

independent if and only if ℓ.𝑛 ∕= 0.

5We write bold font expressions such as Ψ = 0 or Φ = 0 to indicate that all Weyl components

represented by that letter vanish. So, Φ = 0 is the statement that all boost weight 0 components of the

Weyl tensor vanish in that basis.
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2.3.4 Determining the CMPP type

In practical terms, how does one determine the algebraic type of a given spacetime? One

approach to doing this is to start with a convenient choice of null basis {ℓ, 𝑛,𝑚𝑖}, and
first check whether either ℓ or 𝑛 satisfies the WAND condition.6 If not, then make a null

rotation of the form (2.23) to obtain a new basis {ℓ̂(z), 𝑛, �̂�𝑖(z)}, with

Ω̂𝑖𝑗(z) = Ω𝑖𝑗 − 2𝑧(𝑗Ψ𝑖) + 2𝑧𝑘Ψ(𝑖∣𝑘∣𝑗) + 2𝑍(𝑖∣𝑘Φ∣𝑗)𝑘 + 𝑧𝑖𝑧𝑗Φ + 4𝑧𝑘𝑧(𝑖Φ
A
𝑗)𝑘 + 𝑧𝑘𝑧𝑙Φ𝑘𝑖𝑙𝑗

+ 2𝑧(𝑖𝑍𝑗)𝑘Ψ
′
𝑘 + 2𝑧𝑙𝑍(𝑖∣𝑘Ψ′

𝑘𝑙∣𝑗) + 𝑍𝑖𝑘𝑍𝑗𝑙Ω
′
𝑘𝑙. (2.26)

where 𝑍𝑖𝑗 ≡ 𝑧𝑖𝑧𝑗 − 1
2
𝑧2𝛿𝑖𝑗. At each point in spacetime, the existence of a WAND is

therefore equivalent to the question of whether the (𝑑− 2) parameters 𝑧𝑖 can be chosen

to satisfy the 𝑑(𝑑− 3)/2 independent quartic equations Ω̂𝑖𝑗(z) = 0.

In 𝑑 = 4 dimensions, this means that we have two variables and two equations, and

hence it is plausible that solutions might always exist. This is indeed the case, since any

4D spacetime admits WANDs. However, for 𝑑 > 4, there are more equations than free

variables, and hence solutions cannot be expected in general.

For ℓ̂ to be a multiple WAND, the additional condition is that Ψ̂𝑖𝑗𝑘(z) = 0, where

Ψ̂𝑖𝑗𝑘(z) = Ψ𝑖𝑗𝑘+2𝑧[𝑘Φ𝑖∣𝑗]− 2𝑧𝑖Φ
A
𝑗𝑘+ 𝑧𝑙Φ𝑙𝑖𝑗𝑘+2𝑧𝑖𝑧[𝑘Ψ

′
𝑗]+2𝑧𝑙𝑧[𝑘Ψ

′
𝑗]𝑙𝑖+𝑍𝑖𝑙Ψ

′
𝑙𝑗𝑘− 2𝑍𝑖𝑙𝑧[𝑗Ω

′
𝑘]𝑙.

(2.27)

This corresponds to an additional 1
3
(𝑑 − 1)(𝑑 − 2)(𝑑 − 3) conditions to be satisfied.

In summary, the statement that a spacetime is algebraically special corresponds to the

statement that there exists a choice of z solving the set of polynomial equations Ω̂𝑖𝑗(z) =

0 = Ψ̂𝑖𝑗𝑘(z). Milson et al. [119] discuss how this existence problem can be expressed in the

language of alignment varieties, and hence can be approached using tools from algebraic

geometry. However, solving these equations, or proving that solutions do not exist, can

be difficult for complicated metrics.

Ref. [119] also gives an alternative condition for a null vector to be a WAND, proving

that, as in four dimensions:

Lemma 2.8 (Milson et al. [119]) A null vector field ℓ is a WAND if and only if

ℓ𝜇ℓ[𝜌𝐶𝜎]𝜇𝜈[𝜏ℓ𝜃]ℓ
𝜈 = 0. (2.28)

This has the advantage that it does not require the construction of a complete basis to

check whether ℓ is a WAND.

6For algebraically special spacetimes with a lot of symmetry it is often possible to guess correctly

which null directions correspond to WANDs.
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This result was later extended by Ortaggio [130], who gives a complete characteriza-

tion of the CMPP classification in terms of a generalization of the Bel-Debever criteria

(discussed at the end of Section 2.2.2) to higher dimensions, as follows:

Theorem 2.9 (Ortaggio [130]) For a 𝑑-dimensional spacetime with (local) null frame

{ℓ, 𝑛,𝑚𝑖}:

∙ Ω = Ψ = Φ = Ψ′ = 0 ⇔ 𝐶𝜇𝜈[𝜌𝜎ℓ𝜏 ] = 0.

∙ Ω = Ψ = Φ = 0 ⇔ ℓ[𝜇𝐶𝜈𝜌][𝜎𝜏ℓ𝜃] = 0 and 𝐶𝜇𝜈𝜌[𝜎ℓ𝜏 ]ℓ
𝜌 = 0.

∙ Ω = Ψ = 0 ⇔ ℓ is a multiple WAND ⇔ ℓ[𝜇𝐶𝜈]𝜌[𝜎𝜏ℓ𝜃]ℓ
𝜌 = 0.

These conditions are not identical to the standard ones used in four dimensions, which

turn out not to be sufficient to impose the condition that the spacetime is of a particular

algebraic type in higher dimensions.

2.3.5 Examples of algebraically special spacetimes

The algebraic classification of spacetimes is interesting because there are important ex-

amples of spacetimes that are algebraically special. They include the following:

∙ Schwarzchild-Tangherlini black holes [61] are Type D in all dimensions [118]. If we

write the exterior metric in the form (1.19), then the vectors dual to −𝑑𝑡± 𝑑𝑟/𝑉

are tangent to the multiple WANDs.

∙ Myers-Perry [62] and Kerr-(A)dS [65, 66, 67] black holes are Type D in all dimen-

sions (see below).

∙ Vacuum pp-waves (i.e. spacetimes admitting a covaraiantly constant null vector)

are Type N in all dimensions.[124]

∙ Black string/brane metrics obtained by adding one or more flat directions to one of

the black holes are Type D (this follows, for example, from the results for product

spacetimes given in [131]).

∙ Singly spinning black rings [68] are of primary Type II on the horizon, but are

not algebraically special in the exterior region (they are of primary Type I or G in

different parts of it [128]).

Why are spherical black holes of algebraic Type D? Some understanding of this can

be obtained from the following two results:
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Theorem 2.10 ([132]) Let 𝑔 be a Kerr-Schild metric, i.e. one that can be written in

the form

𝑔𝜇𝜈 = 𝜂𝜇𝜈 + 𝑘𝜇𝑘𝜈 (2.29)

for some conformally flat metric 𝜂𝜇𝜈 and null vector 𝑘𝜇. Then 𝑔 is algebraically special

with multiple WAND tangent to 𝑘.

It is well known that Myers-Perry and Kerr-(A)dS black holes can be written in Kerr-

Schild form (indeed, this is how they were originally constructed [62]), and hence they

are algebraically special. They have multiple WANDs that are expanding everywhere

outside the horizon. Furthermore:7

Theorem 2.11 ([131]) A stationary spacetime admitting an expanding multiple WAND

is Type D (or conformally flat).

Hence, such black holes are Type D outside the horizon, and hence also on the horizon

(by continuity).

In fact, it is reasonably straightforward to show that a spacetime is algebraically

special on any null Killing horizon, with a multiple WAND tangent to the null generators

of the horizon.8 However, it is well known that the null generators are non-expanding

on the horizon, and hence the conditions of Theorem 2.11 fail there. Hence, there is

no inherent reason that a black hole spacetime (e.g. the black ring) that is algebraically

special only on the horizon should be Type D there.

2.4 Aside: Alternative methods of classification

For comparison, we now briefly discuss some alternative methods of higher-dimensional

algebraic classification; namely bivector methods and the De Smet classification. Neither

of these have been as well-developed as the CMPP classification, and we will not make

further use of them in the remainder of this thesis.

The existence of multiple distinct methods of algebraic classification in higher di-

mensions is a disadvantage when it comes to proving general results about a particular

classification scheme. However, there are also advantages, as spacetimes that cannot be

usefully analysed using results from one classification might be accessible using another.

7The proof given for this result in Ref. [131] is essentially a ‘proof by example’. However, it seems

certain that, using for example the results of [44] on the existence of angular Killing vectors for stationary

spacetimes, that this could be made more rigorous.
8This can be done, for example, by explicit calculation in Gaussian null coordinates (1.26) in a

neighbourhood of the horizon.
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2.4.1 Bivector methods

Coley & Hervik [127] generalized the bivector classification to arbitrary dimension. The

bivector map C defined by equation (2.13) is valid in any dimension. However, note

that it is only in four dimensions that Hodge duality provides a map from bivectors to

bivectors, and hence the self-duality structure that we then imposed on bivectors cannot

be extended to higher dimensions.

Despite this, one can construct a natural bivector classification in arbitrary dimension

by classifying the eigenvalue structures (e.g. Segre types) of the operator C. In fact,

the authors of Ref. [127] chose to describe their classification in terms of the CMPP

classification for ease of comparison, and found that even in higher dimensions there are

still some links between the bivector and boost weight classifications. For example, it

can be shown that

Lemma 2.12 ([127]) A spacetime is of CMPP Type III, N or O if and only if the

bivector operator is nilpotent.

If a spacetime is CMPP Type II, then the bivector operator has at least 3 pairs of

matching eigenvalues.

Recent work [125] has given a concrete way of computing the eigenvector structure of the

bivector operator for a given spacetime, in terms of conditions on a particular series of

‘discriminants’, derived from scalar invariants of various curvature operators. However,

the potential applications of this approach have not yet been explored in great detail.

2.4.2 Spinorial methods

An entirely different approach to a higher-dimensional generalization of the Petrov clas-

sification was given by De Smet [120]. His work attempts to generalize the 4D spinorial

approach. However, there are no 2-component spinor representations of the Lorentz

group in 5D. For this reason, de Smet’s work uses a particular Dirac spinor representa-

tion of the 5D Clifford algebra. A clear exposition of this approach is given by Godazgar

[133], who also notes that an analogous approach to algebraic classification can be used in

four dimensions, but that it gives a different classification scheme to the others discussed

above.

Using such a representation Γ𝑎, a spinor conterpart of the Weyl tensor can be defined

as:

𝐶𝐴𝐵𝐶𝐷 = 𝐶𝑎𝑏𝑐𝑑Γ
𝑎𝑏
𝐴𝐵Γ

𝑐𝑑
𝐶𝐷 (2.30)

where Γ𝑎𝑏 = Γ[𝑎Γ𝑏]. The motivation behind the particular choice of representation is

that it renders 𝐶𝐴𝐵𝐶𝐷 totally symmetric. It is not possible to make such a choice in all
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spacetime dimensions.

The symmetry allows the construction of a Weyl polynomial

𝐶(𝜓) = 𝐶𝐴𝐵𝐶𝐷𝜓
𝐴𝜓𝐵𝜓𝐶𝜓𝐷 (2.31)

for 4-spinors 𝜓𝐴. They have four components, so this is a homogeneous quartic polyno-

mial in 4 variables, which is not guaranteed to factorise. If it does, then the spacetime

is algebraically special in the de Smet classification.

This notion of algebraically special is distinct from the notion of algebraically spe-

cial in the CMPP classification. For example, the product of any 4D Petrov Type III

spacetime with a flat direction is Type III in the CMPP classification, but algebraically

general in the de Smet sense [133].

The de Smet classification can be refined further, giving a list of possible algebraic

types according to the way in which the quartic polynomial factorises. We use notation

where a number represents the degree of a polynomial factor, and underlining a set of

factors indicates that they are repeats of each other. Naively, there are 12 allowed types:

4 (no factorisation, algebraically general), 22, 31, 211, 22, 1111, 211, 1111, 1111, 1111,

1111, 0 (where the last option corresponds to a conformally flat spacetime).

However, the complex spinor 𝐶𝐴𝐵𝐶𝐷 has 70 independent real components, while

the Weyl tensor only has 35 independent components in 5 dimensions. Godazgar [133]

shows how to impose the appropriate reality condition on 𝐶𝐴𝐵𝐶𝐷 to halve the number of

independent components. After the imposition of this condition, he shows that four of

the de Smet types cannot occur, reducing the allowed types to 4, 31, 22, 22, 211, 1111,

1111, 0.

Some examples of spacetimes that are algebraically special in this classification in-

clude:

∙ Schwarzchild-Tangherlini black holes [61] are Type 22. [134]

∙ Singly-spinning Myers-Perry black holes [62] are Type 22. [134]

∙ BMPV black holes [135] are Type 22. [136]

∙ Singly-spinning black rings [68] are Type 4 (algebraically general) [133].

2.4.3 Type D spacetimes and hidden symmetry

In four dimensions, there are strong links between Petrov Type D spacetimes, and the

hidden symmetry structures discussed in Section 1.3.1. It is known that:
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Theorem 2.13 ([26, 137, 27]) In four dimensions, every Petrov Type D vacuum so-

lution admits a conformal Killing tensor. All Petrov Type D vacuum solutions with the

exception of the generalized C-metric admit a rank-2 Killing tensor, and an associated

Killing-Yano 2-form.

Conversely,

Theorem 2.14 ([138, 139, 27]) A vacuum spacetime admitting a non-degenerate con-

formal Killing-Yano 2-form is Petrov Type D.

These results have been partially generalized to higher dimensions. It is known that:

Theorem 2.15 ([140]) A 𝑑-dimensional vacuum spacetime admitting a closed, non-

degenerate conformal Killing-Yano 2-form is Type D in the CMPP classification.

However, there is no converse result; it is not known whether all Type D vacuum solutions

admit a conformal Killing tensor. Attempting to prove this in the same way as the four-

dimensional result does not work, as it requires the use of the Goldberg-Sachs theorem

(which we will discuss in detail later).

Furthermore, in four dimensions all Type D solutions were constructed explicitly by

Kinnersley [141]. In higher dimensions, this has not been done, and it is far from clear

that finding all such solutions is likely to be possible. On this basis, it has been suggested

[142] that perhaps the natural generalization of the Type D class of metrics to higher

dimensions is actually those metrics satisfying the assumptions of Theorem 2.15. There

is some merit in this suggestion; Krtouš et al. [143] (generalizing work of Houri et al.

[144]) are able to explicitly construct all metrics satisfying these conditions. However,

we will see later in the thesis that the more general class of metrics that are algebraically

special in the CMPP classification also have useful general properties, which seems to

motivate this less restrictive definition.

2.5 The Newman-Penrose Formalism

So far everything that we have done in this chapter has been algebraic. We now look

to introduce some dynamics, and in particular to do this in a way that is particularly

convenient for algebraically special spacetimes. In four dimensions, such an approach

was developed by Newman & Penrose [121]. They developed a formalism for studying

general relativity that is well-adapted to spacetimes that admit one or more preferred

null directions; for example principal null directions.
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Working in a frame that includes this null vector often makes calculations simpler

than they would otherwise be. The dynamics comes from writing out the following in

the frame basis:

∙ the Bianchi identity (1.4),

∙ the Ricci identity (1.3) as applied to the basis vectors {ℓ, 𝑛,𝑚𝑖},

∙ the commutators of the frame basis derivatives

𝐷 ≡ ℓ.∇, Δ ≡ 𝑛.∇, 𝛿 ≡ 𝑚.∇. (2.32)

The second of these includes the information from the Einstein equations.

In four dimensions, the Newman-Penrose formalism can be expressed in terms of

either spinors or null vectors. Here, we discuss only the vector version, which has been

better studied to date in higher dimensions. This is part of the reason why the CMPP

classification scheme has so far proved more successful than the de Smet classification: it

has some dynamics to accompany it. However, Garćıa-Parrado Gómez-Lobo & Mart́ın-

Garćıa [145] have more recently considered spinor calculus in five dimensions in this

context, and it will be interesting to see if their work can generate any useful new results

in the future.

2.5.1 Results in four dimensions

Obviously the aim of the NP formalism is to provide a new approach to solving various

problems in general relativity. In four dimensions, this program proved hugely successful,

in part due to the following result:

Theorem 2.16 (Goldberg & Sachs [115]) A null vector field is a principal null di-

rection if and only if it is geodesic and shearfree.

This implies immediately that a spacetime is algebraically special if and only if it admits

a shearfree null geodesic congruence. Checking for the existence of such a congruence is,

in general, far easier than checking the repeated PND conditions explicitly, as the latter

requires computing the Weyl tensor.

Furthermore, it is an easy condition to include in a metric ansatz when searching for

new solutions. The classic example of this approach was the construction of the Kerr

metric [24], which was achieved by searching for axisymmetric, algebraically special

solutions of the vacuum Einstein equations. The Kerr solution is an example of a Type

D spacetime, and Kinnersley [141] was later able to use the NP formalism to find all

Type D vacuum metrics.
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The study of gravitational radiation far from an isolated source has been a historically

important problem, and one that is gaining increasing relevance today as gravitational

wave detectors such as LIGO search for experimental evidence for such radiation. The NP

formalism played an important role in early studies of such radiation. The classic result is

the peeling theorem (see, e.g. [117]). This states that in an asymptotically flat spacetime,

far from some isolated source, the Weyl tensor components can be expanded in terms of

some appropriate radial coordinate 𝑟 (defined in terms of a conformal compactification)

as

𝐶𝑎𝑏𝑐𝑑 ∼ 𝐶
(𝑁)
𝑎𝑏𝑐𝑑

𝑟
+
𝐶

(𝐼𝐼𝐼)
𝑎𝑏𝑐𝑑

𝑟2
+
𝐶

(𝐼𝐼)
𝑎𝑏𝑐𝑑

𝑟3
+
𝐶

(𝐼)
𝑎𝑏𝑐𝑑

𝑟4
+ . . . (2.33)

where 𝐶(𝐼𝐼) is a Weyl tensor of Type II etc. The components falling off as various powers

of 𝑟 can be given fairly general physical interpretations; e.g. the terms in 1/𝑟3 can be

thought of as corresponding to the gravitational field of a massive object, whereas the

terms in 1/𝑟 correspond to transverse gravitational radiation.

The NP formalism also has powerful applications to black hole perturbation theory,

as will be discussed in detail in Chapter 4.

2.5.2 Notation

The four-dimensional NP formalism describes the spin connection associated to the null

basis {ℓ, 𝑛,𝑚, �̄�} in terms of 12 complex functions 𝜅, 𝜌, 𝜎, 𝜏 , 𝜈, 𝜇, 𝜆, 𝜋, 𝜀, 𝛽, 𝛾, 𝛼.

There are more components in higher dimensions, so we will need some more general

notation; merely increasing the number of Greek letters is clearly not a sensible plan.

Here, we will only discuss the higher-dimensional version in detail, using the notation

defined by myself and collaborators in Ref. [4], based around that defined in previous

works (e.g. [122, 123, 131]).

We write the covariant derivatives of the basis vectors themselves as

𝐿𝜇𝜈 = ∇𝜈ℓ𝜇, 𝑁𝜇𝜈 = ∇𝜈𝑛𝜇,
𝑖

𝑀𝜇𝜈 = ∇𝜈𝑚𝑖𝜇, (2.34)

and then project into the null frame to obtain the scalars 𝐿𝑎𝑏, 𝑁𝑎𝑏,
𝑖

𝑀𝑎𝑏. From the

orthogonality properties of the basis vectors we have the identities

𝑁0𝑎 + 𝐿1𝑎 = 0,
𝑖

𝑀0𝑎 + 𝐿𝑖𝑎 = 0,
𝑖

𝑀1𝑎 +𝑁𝑖𝑎 = 0,
𝑖

𝑀 𝑗𝑎 +
𝑗

𝑀 𝑖𝑎 = 0, (2.35)

and

𝐿0𝑎 = 𝑁1𝑎 =
𝑖

𝑀 𝑖𝑎 = 0. (2.36)

The optics of ℓ are often particularly important. In this notation, ℓ is tangent to a null

geodesic congruence if and only if

𝜅𝑖 ≡ 𝐿𝑖0 = 0, (2.37)
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and if this is the case we say that ℓ is geodesic. The expansion, shear and twist of the

congruence are described by the trace 𝜌, tracefree symmetric part 𝝈 and antisymmetric

part 𝝎 respectively of the matrix 𝝆, with components

𝜌𝑖𝑗 ≡ 𝐿𝑖𝑗. (2.38)

For later convenience, we also define 𝜏𝑖 ≡ 𝐿𝑖1.

Finally, we decompose the covariant derivative operator itself in the null frame, writ-

ing

𝐷 ≡ ℓ.∇, Δ ≡ 𝑛.∇ and 𝛿𝑖 ≡ 𝑚𝑖.∇. (2.39)

This approach to the 𝑑 > 4 generalization of the 4D Newman-Penrose formalism was

developed in Refs. [122, 123, 146]. The 𝑑 > 4 analogues of the 4D NP equations are

presented in Ref. [123], the Bianchi identity is written out in Ref. [122] and commutators

of the above derivatives are given in Ref. [146]. These equations are not presented here

explicitly, as in Section 2.6 we will see that there is a more compact way of doing this.

In the non-vacuum case, it is also useful to decompose the Ricci tensor in the frame

basis. The approach to doing this is described in Appendix A. However, for most of this

thesis we will only consider spacetimes that are vacuum, with a possible cosmological

constant.

We have chosen much of the notation of this section to resemble as far as possible the

standard 4D NP notation, for example 𝜅𝑖 contains the same information as the complex

scalar 𝜅. However, it is not possible to do this fully. For example, 𝜌𝑖𝑗 is the 𝑑 > 4

analogue of the 𝑑 = 4 NP scalars 𝜌 and 𝜎, and we use 𝜌 without indices to denote the

trace of 𝜌𝑖𝑗, which differs from the 𝑑 = 4 usage.

2.5.3 Results in higher dimensions

Unfortunately, the NP formalism has not yet led to many important new results in higher

dimensions.

In terms of constructing new solutions, perhaps the best attempt was made by Go-

dazgar & Reall [129], who constructed all algebraically special spacetimes in arbitrary

dimension that are also axisymmetric, in the (relatively strong) sense of admitting an

𝑆𝑂(𝑑 − 2) isometry. In four dimensions, this class includes the C-metric describing a

pair of accelerating black holes. Unfortunately, Ref. [129] did not find such a metric for

𝑑 > 4, so if a higher-dimensional generalization exists it is not algebraically special.

Various papers [131, 132, 147] have studied the optical properties of multiple WANDs

for various classes of algebraically special spacetimes, partly motivated by attempting to
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find a higher-dimensional generalization of the Goldberg-Sachs theorem. We will discuss

this further in Chapter 3.

In the case of asymptotically flat spacetimes, possible higher-dimensional general-

izations of the peeling theorem are discussed in Refs. [148, 149]. Pravdova et al. [148]

derives the basic peeling properties of the Weyl tensor components in even-dimensional

spacetimes, for which a notion of asymptotic flatness at null infinity has been defined

by Hollands & Ishibashi [37]. However, Ortaggio et al. [149] later showed that such

spacetimes, admitting a geodesic multiple WAND with det(𝝆) ∕= 0, do not contain grav-

itational radiation. Hence, it seems that this formalism may not be a useful way of

studying this problem in higher dimensions.

So far, we have reviewed a variety of known results from the literature. We now move

on to discuss the first new results of this thesis.

2.6 The Geroch-Held-Penrose Formalism

Part of the difficulty of proving general results in the higher-dimensional NP formalism

is that the equations involved become rapidly very complicated. This is in part because

lots of redundant information is being carried around.

The motivation for the formalism was to study spacetimes with one or two pre-

ferred null directions, and hence we write out all information relevant to these directions

explicitly. However, in the NP formalism, information that depends on the spacelike

components of the spin connection (e.g.
𝑖

𝑀 𝑗𝑘) is also written out explicitly in all of the

equations. Typically, there is no preferred choice of these spatial directions, and it would

be useful to maintain covariance with respect to changes in them.

To do this, we will now construct an alternative formalism that gives a halfway house

between covariant calculations, and fully explicit frame basis techniques. Specifically, we

look to retain covariance with respect to boosts (2.22) and spins (2.21) of the null frame.

This was motivated by a similar approach taken by Geroch, Held & Penrose (GHP)

[114] in four dimensions, and hence we will refer to this as the higher-dimensional GHP

formalism.

In four dimensions, the GHP formalism allows for a greatly simplified proof of the

Goldberg-Sachs theorem (see, e.g. [150, 151]), and aspects of it were used in the deriva-

tion of various classic results, for example Hawking’s topology theorem [39]. In higher

dimensions, many existing results from the Newman-Penrose formalism can be derived

in a more straightforward manner using our new GHP formalism, for example Lemma

3.9 in the next section.

Most significantly, the higher-dimensional GHP formalism has allowed the discovery
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of new results. The best example of this, to be discussed in Chapter 4, is its role in

understanding the decoupling of linearized perturbations of algebraically special space-

times.

2.6.1 GHP scalars

The starting point of the GHP formalism is the following definition:

Definition 2.17 An object T is a GHP scalar of spin 𝑠 and boost weight 𝑏 if and only

if it transforms as

𝑇𝑖1...𝑖𝑠 7→ 𝑋𝑖1𝑗1 ...𝑋𝑖𝑠𝑗𝑠𝑇𝑗1...𝑗𝑠 (2.40)

under spins (2.21) (with X ∈ 𝑆𝑂(𝑑− 2)) and as

𝑇𝑖1...𝑖𝑠 7→ 𝜆𝑏𝑇𝑖1...𝑖𝑠 (2.41)

under boosts (2.22).

Note that the outer product of a GHP scalar of spin 𝑠1 and boost weight 𝑏1 with

another of spin 𝑠2 and boost weight 𝑏2 is a GHP scalar of spin 𝑠1 + 𝑠2 and boost weight

𝑏1 + 𝑏2. The sum of two GHP scalars is a GHP scalar only if 𝑠1 = 𝑠2 and 𝑏1 = 𝑏2, in

which case the result has spin 𝑠1 and boost weight 𝑏1.

Not all quantities that appear in the higher-dimensional NP formalism are GHP

scalars. In particular,

𝐿10 = −𝑁00, 𝐿11 = −𝑁01 and 𝐿1𝑖 = −𝑁0𝑖 (2.42)

do not transform covariantly under boosts, while

𝑖

𝑀 𝑗0,
𝑖

𝑀 𝑗1 and
𝑖

𝑀 𝑗𝑘 (2.43)

are not covariant under spins. However, the remaining quantities are GHP scalars, and

these quantities are listed in full in Table 2.3.

2.6.2 GHP derivatives

If T is a GHP scalar then, in general, 𝐷T, ΔT and 𝛿𝑖T are not. In 4D, GHP [114]

showed how one can combine this lack of covariance of the NP derivatives with the lack

of covariance of the NP scalars (2.42) and (2.43) to define new derivative operators that

are covariant. These are straightforward to generalize to higher dimensions as follows:9

9The characters ‘eth’ k and ‘thorn’ þ come from the Icelandic alphabet.
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Quantity Notation Boost weight 𝑏 Spin 𝑠 Interpretation

𝐿𝑖𝑗 𝜌𝑖𝑗 1 2 expansion, shear and twist of ℓ

𝐿𝑖𝑖 𝜌 = 𝜌𝑖𝑖 1 0 expansion of ℓ

𝐿𝑖0 𝜅𝑖 2 1 non-geodesity of ℓ

𝐿𝑖1 𝜏𝑖 0 1 transport of ℓ along 𝑛

𝑁𝑖𝑗 𝜌′𝑖𝑗 -1 2 expansion, shear and twist of 𝑛

𝑁𝑖𝑖 𝜌′ = 𝜌′𝑖𝑖 -1 0 expansion of 𝑛

𝑁𝑖1 𝜅′𝑖 -2 1 non-geodesity of 𝑛

𝑁𝑖0 𝜏 ′𝑖 0 1 transport of 𝑛 along 𝑙

Table 2.3: GHP scalars constructed from first derivatives of the null basis vectors.

Definition 2.18 The GHP derivative operators þ, þ′, k𝑖 act on a GHP scalar T of boost

weight 𝑏 and spin 𝑠 as

þ𝑇𝑖1𝑖2...𝑖𝑠 ≡ 𝐷𝑇𝑖1𝑖2...𝑖𝑠 − 𝑏𝐿10𝑇𝑖1𝑖2...𝑖𝑠 +
𝑠∑
𝑟=1

𝑘

𝑀 𝑖𝑟0𝑇𝑖1...𝑖𝑟−1𝑘𝑖𝑟+1...𝑖𝑠 , (2.44)

þ′𝑇𝑖1𝑖2...𝑖𝑠 ≡ Δ𝑇𝑖1𝑖2...𝑖𝑠 − 𝑏𝐿11𝑇𝑖1𝑖2...𝑖𝑠 +
𝑠∑
𝑟=1

𝑘

𝑀 𝑖𝑟1𝑇𝑖1...𝑖𝑟−1𝑘𝑖𝑟+1...𝑖𝑠 , (2.45)

k𝑗𝑇𝑖1𝑖2...𝑖𝑠 ≡ 𝛿𝑗𝑇𝑖1𝑖2...𝑖𝑠 − 𝑏𝐿1𝑗𝑇𝑖1𝑖2...𝑖𝑠 +
𝑠∑
𝑟=1

𝑘

𝑀 𝑖𝑟𝑗𝑇𝑖1...𝑖𝑟−1𝑘𝑖𝑟+1...𝑖𝑠 . (2.46)

So, for example:

þ𝜌𝑖𝑗 = 𝐷𝜌𝑖𝑗 − 𝐿10𝜌𝑖𝑗 +
𝑘

𝑀 𝑖0𝜌𝑘𝑗 +
𝑘

𝑀 𝑗0𝜌𝑖𝑘, (2.47)

k𝑖𝜏𝑗 = 𝛿𝑖𝜏𝑗 +
𝑘

𝑀 𝑗𝑖𝜏𝑘, (2.48)

þΩ′
𝑖𝑗 = 𝐷Ω′

𝑖𝑗 + 2𝐿10Ω
′
𝑖𝑗 + 2

𝑘

𝑀 (𝑖∣0Ω′
𝑘∣𝑗). (2.49)

These derivative operators have various useful properties, which are easy to verify by

explicit computation:

1. They are GHP covariant. That is, if T is a GHP scalar of boost weight 𝑏 and spin

𝑠, then þT, þ′T and kT are all GHP scalars, with boost weights (𝑏 + 1, 𝑏 − 1, 𝑏)

and spins (𝑠,𝑠,𝑠+ 1) respectively.

2. The Leibniz rule holds, that is

þ(𝑇𝑖1𝑖2...𝑖𝑠𝑈𝑗1𝑗2...𝑗𝑡) = (þ𝑇𝑖1𝑖2...𝑖𝑠)𝑈𝑗1𝑗2...𝑗𝑡 + 𝑇𝑖1𝑖2...𝑖𝑠(þ𝑈𝑗1𝑗2...𝑗𝑡)
for all GHP scalars T and U, and similarly with þ replaced by þ′ or k𝑘.
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3. They are metric for 𝛿𝑖𝑗, in the sense that þ𝛿𝑖𝑗 = þ′𝛿𝑖𝑗 = 0 and k𝑖𝛿𝑗𝑘 = 0.

2.6.3 Priming operation

Following GHP, we have used a prime ′ to distinguish between certain quantities in the

notation introduced above. This has significance: if we define

ℓ′ = 𝑛, 𝑛′ = ℓ, 𝑚𝑖
′ = 𝑚𝑖, (2.50)

then one can interpret the prime as an operator which interchanges ℓ and 𝑛. For example:

(𝜌𝑖𝑗)
′ = (𝑚𝑖

𝜇𝑚𝑗
𝜈∇𝜈ℓ𝜇)

′ = 𝑚𝑖
𝜇𝑚𝑗

𝜈∇𝜈𝑛𝜇 ≡ 𝜌′𝑖𝑗. (2.51)

If a scalar T has boost weight 𝑏 and spin 𝑠, then T′ has boost weight −𝑏 and spin 𝑠.

Clearly T′′ = T.

If ℓ and 𝑛 are treated symmetrically then use of the prime leads to a significant

reduction in the number of independent components e.g. of the Bianchi identity. Note

that this is no longer true if the symmetry between ℓ and 𝑛 is broken. For example,

in an algebraically special spacetime, one can choose ℓ to be a multiple WAND. This is

endowing ℓ with a property not enjoyed by 𝑛 and hence the priming symmetry is broken

and one must write out all of the equations explicitly. In a Type D spacetime, one can

choose both ℓ and 𝑛 to be multiple WANDs and the priming symmetry is unbroken.

Note that the action of ′ on the boost weight 0 components of the Weyl tensor contains

one subtlety:

Φ′
𝑖𝑗 = (𝐶0𝑖1𝑗)

′ = 𝐶1𝑖0𝑗 = Φ𝑗𝑖 = ΦS
𝑖𝑗 − ΦA

𝑖𝑗. (2.52)

The other boost weight zero Weyl components Φ𝑖𝑗𝑘𝑙 are invariant under the priming

operation, as are the boost weight zero Ricci tensor components.

In four dimensions, there are two other discrete symmetries of the system available;

complex conjugation and *-symmetry (see [114]). Neither of these extends to an arbitrary

number of dimensions in a natural way.

2.6.4 Null rotations

The boosts and spins together generate a ℝ×𝑆𝑂(𝑑− 2) subgroup of the Lorentz group,

under which GHP scalars transform covariantly. Recall that the full Lorentz group can

be recovered by including null rotations of one of the null basis vectors about the other.

Null rotations about 𝑛 take the form (2.23), while null rotations about ℓ takes the form

ℓ 7→ ℓ, 𝑛 7→ 𝑛+ 𝑧𝑖𝑚𝑖 − 1

2
𝑧2ℓ, 𝑚𝑖 7→ 𝑚𝑖 − 𝑧𝑖ℓ, (2.53)
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where 𝑧2 ≡ 𝑧𝑖𝑧𝑖. Now that we are working in the GHP formalism, we can note that the

rotation parameters 𝑧𝑖 form z a GHP scalar with boost weight 𝑏 = −1 and spin 𝑠 = 1

(or 𝑏 = 1, 𝑠 = 1 in the case of a null rotation (2.23) about 𝑛).

Although GHP scalars transform in a simple way under boosts and spins, they do not,

in general, transform simply under null rotations. Consider a null rotation about ℓ, of

the form (2.53). The effect on the various spin coefficients is as follows. For convenience,

we define a boost weight −2 GHP scalar 𝑍𝑖𝑗 = 𝑧𝑖𝑧𝑗 − 1
2
𝛿𝑖𝑗𝑧

2.10

The Weyl tensor transforms as:

Ω𝑖𝑗 7→ Ω𝑖𝑗, (2.54)

Ψ𝑖 7→ Ψ𝑖 + Ω𝑖𝑗𝑧𝑗, (2.55)

Ψ𝑖𝑗𝑘 7→ Ψ𝑖𝑗𝑘 + 2Ω𝑖[𝑗𝑧𝑘], (2.56)

Φ 7→ Φ + 2𝑧𝑖Ψ𝑖 + 𝑧𝑖Ω𝑖𝑗𝑧𝑗, (2.57)

Φ𝑖𝑗 7→ Φ𝑖𝑗 + 𝑧𝑗Ψ𝑖 + 𝑧𝑘Ψ𝑖𝑘𝑗 + 𝑍𝑗𝑘Ω𝑖𝑘, (2.58)

Φ𝑖𝑗𝑘𝑙 7→ Φ𝑖𝑗𝑘𝑙 − 2𝑧[𝑘Ψ𝑙]𝑖𝑗 − 2𝑧[𝑖Ψ𝑗]𝑘𝑙 − 2𝑧𝑗𝑧[𝑘Ω𝑙]𝑖 + 2𝑧𝑖𝑧[𝑘Ω𝑙]𝑗, (2.59)

Ψ′
𝑖 7→ Ψ′

𝑖 − 𝑧𝑖Φ + 3ΦA
𝑖𝑗𝑧𝑗 − ΦS

𝑖𝑗𝑧𝑗 − 2𝑍𝑖𝑗Ψ𝑗 − 𝑍𝑗𝑘Ψ𝑗𝑘𝑖 − 𝑧𝑗𝑍𝑖𝑘Ω𝑗𝑘, (2.60)

Ψ′
𝑖𝑗𝑘 7→ Ψ′

𝑖𝑗𝑘 + 2𝑧[𝑘Φ𝑗]𝑖 + 2𝑧𝑖Φ
A
𝑗𝑘 + 𝑧𝑙Φ𝑙𝑖𝑗𝑘 + 2𝑧𝑖𝑧[𝑘Ψ𝑗] + 2𝑧𝑙𝑧[𝑘Ψ𝑗]𝑙𝑖 + 𝑍𝑖𝑙Ψ𝑙𝑗𝑘

+2𝑍𝑖𝑙𝑧[𝑘Ω𝑗]𝑙, (2.61)

Ω′
𝑖𝑗 7→ Ω′

𝑖𝑗 − 2𝑧(𝑗Ψ
′
𝑖) + 2𝑧𝑘Ψ

′
(𝑖∣𝑘∣𝑗) + 2𝑍(𝑖∣𝑘Φ𝑘∣𝑗) + 𝑧𝑖𝑧𝑗Φ− 4𝑧𝑘𝑧(𝑖Φ

𝐴
𝑗)𝑘 + 𝑧𝑘𝑧𝑙Φ𝑘𝑖𝑙𝑗

+2𝑧(𝑖𝑍𝑗)𝑘Ψ𝑘 + 2𝑧𝑙𝑍(𝑖∣𝑘Ψ𝑘𝑙∣𝑗) + 𝑍𝑖𝑘𝑍𝑗𝑙Ω𝑘𝑙. (2.62)

and the spin coefficients transform as:

𝜅𝑖 7→ 𝜅𝑖, (2.63)

𝜏𝑖 7→ 𝜏𝑖 + 𝜌𝑖𝑗𝑧𝑗 − 1
2
𝑧2𝜅𝑖, (2.64)

𝜌𝑖𝑗 7→ 𝜌𝑖𝑗 − 𝜅𝑖𝑧𝑗, (2.65)

and

𝜅′𝑖 7→ 𝜅′𝑖 + 𝜌′𝑖𝑗𝑧𝑗 + 𝑍𝑖𝑗𝜏𝑗 − 1
2
𝑧2𝜏 ′𝑖 + 𝑍𝑖𝑗𝜌𝑗𝑘𝑧𝑘 − 1

2
𝑧2𝑍𝑖𝑗𝜅𝑗 + þ′𝑧𝑖 + 𝑧𝑗k𝑗𝑧𝑖

−1
2
𝑧2þ𝑧𝑖, (2.66)

𝜏 ′𝑖 7→ 𝜏 ′𝑖 + 𝑍𝑖𝑗𝜅𝑗 + þ𝑧𝑖, (2.67)

𝜌′𝑖𝑗 7→ 𝜌′𝑖𝑗 − 𝜏 ′𝑖𝑧𝑗 + 𝑍𝑖𝑘𝜌𝑘𝑗 − 𝑍𝑖𝑘𝜅𝑘𝑧𝑗 + k𝑗𝑧𝑖 − 𝑧𝑗þ𝑧𝑖, (2.68)

The analagous equations for null rotations about 𝑛 can be obtained by applying the

priming operator to all of the equations above.

10The NP versions of the following equations have appeared in various places previously. For example,

the spin coefficient rotations are described in [123], and the Weyl components in [127].
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2.6.5 Newman-Penrose equations for Einstein spacetimes

The curvature tensors can be related to the spin coefficients by evaluating the Ricci

identity (1.3) for the basis vectors 𝑉 = ℓ, 𝑛,𝑚𝑖. The corresponding equations are written

out in the higher-dimensional NP formalism in Ref. [123].

In the GHP approach, some of these equations (including all those with 𝑉 = 𝑚𝑖)

do not transform as scalars and can be neglected. In the case of an Einstein spacetime

(1.8), the equations that do transform as GHP scalars take the following form:

Boost weight +2

þ𝜌𝑖𝑗 − k𝑗𝜅𝑖 = −𝜌𝑖𝑘𝜌𝑘𝑗 − 𝜅𝑖𝜏
′
𝑗 − 𝜏𝑖𝜅𝑗 − Ω𝑖𝑗, (NP1)

Boost weight +1

þ𝜏𝑖 − þ′𝜅𝑖 = 𝜌𝑖𝑗(−𝜏𝑗 + 𝜏 ′𝑗)−Ψ𝑖, (NP2)

k[𝑗∣𝜌𝑖∣𝑘] = 𝜏𝑖𝜌[𝑗𝑘] + 𝜅𝑖𝜌
′
[𝑗𝑘] −

1

2
Ψ𝑖𝑗𝑘, (NP3)

Boost weight 0

þ′𝜌𝑖𝑗 − k𝑗𝜏𝑖 = −𝜏𝑖𝜏𝑗 − 𝜅𝑖𝜅
′
𝑗 − 𝜌𝑖𝑘𝜌

′
𝑘𝑗 − Φ𝑖𝑗 − Λ

𝑑− 1
𝛿𝑖𝑗, (NP4)

with another four equations obtained by taking the prime ′ of these four. This illustrates

the economy of the GHP formalism: not only are the above equations considerably

simpler than the corresponding NP equations of Ref. [123], but use of the priming op-

eration enables us to reduce the number of equations by half. We shall refer to the

above equations as ‘Newman-Penrose equations’; for 𝑑 = 4, other names in the litera-

ture include ‘Ricci equations’, ‘spin coefficient equations’ and ‘field equations’ (see, e.g.

[27, 117, 123, 151]).

Appendix A gives these equations in the more general case of a spacetime with

arbitrary matter. Conversely, Appendix B gives them in an important special case; when

the spacetime is an algebraically special Einstein spacetime, for which the symmetry

under the priming operation is broken if one chooses ℓ to be a multiple WAND. The

symmetry is recovered in the case of a Type D spacetime.

2.6.6 Bianchi equations

For an Einstein spacetime, 𝑅𝜇𝜈 = Λ𝑔𝜇𝜈 , so ∇𝜌𝑅𝜇𝜈 = 0 and hence the differential Bianchi

identity ∇[𝜏 ∣𝑅𝜇𝜈∣𝜌𝜎] = 0 implies that ∇[𝜏 ∣𝐶𝜇𝜈∣𝜌𝜎] = 0.

These equations become significantly more complicated in spacetimes with arbitrary

matter, the details of how to obtain them in the GHP formalism are given in Appendix
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A. The components of this equation are written out in full using the higher-dimensional

NP formalism (with different notation) in Ref. [122].

In GHP notation, the independent components are equivalent to the following equa-

tions:

Boost weight +2:

þΨ𝑖𝑗𝑘 − 2k[𝑗Ω𝑘]𝑖 = (2Φ𝑖[𝑗𝛿𝑘]𝑙 − 2𝛿𝑖𝑙Φ
A
𝑗𝑘 − Φ𝑖𝑙𝑗𝑘)𝜅𝑙

−2(Ψ[𝑗∣𝛿𝑖𝑙 +Ψ𝑖𝛿[𝑗∣𝑙 +Ψ𝑖[𝑗∣𝑙 +Ψ[𝑗∣𝑖𝑙)𝜌𝑙∣𝑘] + 2Ω𝑖[𝑗𝜏
′
𝑘], (B1)

Boost weight +1:

−þΦ𝑖𝑗 − k𝑗Ψ𝑖 + þ′Ω𝑖𝑗 = −(Ψ′
𝑗𝛿𝑖𝑘 −Ψ′

𝑗𝑖𝑘)𝜅𝑘 + (Φ𝑖𝑘 + 2ΦA
𝑖𝑘 + Φ𝛿𝑖𝑘)𝜌𝑘𝑗

+(Ψ𝑖𝑗𝑘 −Ψ𝑖𝛿𝑗𝑘)𝜏
′
𝑘 − 2(Ψ(𝑖𝛿𝑗)𝑘 +Ψ(𝑖𝑗)𝑘)𝜏𝑘 − Ω𝑖𝑘𝜌

′
𝑘𝑗, (B2)

−þΦ𝑖𝑗𝑘𝑙 + 2k[𝑘Ψ𝑙]𝑖𝑗 = −2Ψ′
[𝑖∣𝑘𝑙𝜅∣𝑗] − 2Ψ′

[𝑘∣𝑖𝑗𝜅∣𝑙]

+4ΦA
𝑖𝑗𝜌[𝑘𝑙] − 2Φ[𝑘∣𝑖𝜌𝑗∣𝑙] + 2Φ[𝑘∣𝑗𝜌𝑖∣𝑙] + 2Φ𝑖𝑗[𝑘∣𝑚𝜌𝑚∣𝑙]

−2Ψ[𝑖∣𝑘𝑙𝜏 ′∣𝑗] − 2Ψ[𝑘∣𝑖𝑗𝜏 ′∣𝑙] − 2Ω𝑖[𝑘∣𝜌′𝑗∣𝑙] + 2Ω𝑗[𝑘𝜌
′
𝑖∣𝑙], (B3)

−k[𝑗∣Ψ𝑖∣𝑘𝑙] = 2ΦA
[𝑗𝑘∣𝜌𝑖∣𝑙] − 2Φ𝑖[𝑗𝜌𝑘𝑙] + Φ𝑖𝑚[𝑗𝑘∣𝜌𝑚∣𝑙] − 2Ω𝑖[𝑗𝜌

′
𝑘𝑙], (B4)

Boost weight 0:

þ′Ψ𝑖𝑗𝑘 − 2k[𝑗∣Φ𝑖∣𝑘] = 2(Ψ′
[𝑗∣𝛿𝑖𝑙 −Ψ′

[𝑗∣𝑖𝑙)𝜌𝑙∣𝑘] + (2Φ𝑖[𝑗𝛿𝑘]𝑙 − 2𝛿𝑖𝑙Φ
A
𝑗𝑘 − Φ𝑖𝑙𝑗𝑘)𝜏𝑙

+2(Ψ𝑖𝛿[𝑗∣𝑙 −Ψ𝑖[𝑗∣𝑙)𝜌′𝑙∣𝑘] + 2Ω𝑖[𝑗𝜅
′
𝑘], (B5)

−2k[𝑖Φ
A
𝑗𝑘] = 2Ψ′

[𝑖𝜌𝑗𝑘] +Ψ′
𝑙[𝑖𝑗∣𝜌𝑙∣𝑘] − 2Ψ[𝑖𝜌

′
𝑗𝑘] −Ψ𝑙[𝑖𝑗∣𝜌′𝑙∣𝑘], (B6)

−k[𝑘∣Φ𝑖𝑗∣𝑙𝑚] = −Ψ′
𝑖[𝑘𝑙∣𝜌𝑗∣𝑚] +Ψ′

𝑗[𝑘𝑙∣𝜌𝑖∣𝑚] − 2Ψ′
[𝑘∣𝑖𝑗𝜌∣𝑙𝑚]

−Ψ𝑖[𝑘𝑙∣𝜌′𝑗∣𝑚] +Ψ𝑗[𝑘𝑙∣𝜌′𝑖∣𝑚] − 2Ψ[𝑘∣𝑖𝑗𝜌′∣𝑙𝑚]. (B7)

Another five equations are obtained by applying the prime operator to equations (B1)-

(B5) above. The above equations are significantly simpler than those of the NP formalism

[122]. Appendix B.2 gives these additional equations for the important special case of an

algebraically special Einstein spacetime (where symmetry under ′ is typically broken).

It is sometimes useful to consider the following boost weight +1 equation, constructed

from the symmetric part of (B2) and a contraction of (B3):

−k𝑗(Ψ𝑖𝛿𝑗𝑘 −Ψ𝑖𝑗𝑘) + 2þ′Ω𝑖𝑘 = −Ω𝑖𝑘𝜌
′ + 2Ω𝑖𝑗𝜌

′
[𝑘𝑗] − 4(Ψ(𝑖𝛿𝑘)𝑗 +Ψ(𝑖𝑘)𝑗)𝜏𝑗

+Φ𝑘𝑗𝜌𝑖𝑗 − Φ𝑗𝑘𝜌𝑖𝑗 + Φ𝑖𝑗𝜌𝑘𝑗 − Φ𝑗𝑖𝜌𝑗𝑘

+2Φ𝑖𝑗𝜌𝑗𝑘 − Φ𝑖𝑘𝜌+ Φ𝑖𝑗𝑘𝑙𝜌𝑗𝑙 + Φ𝜌𝑖𝑘. (B8)

In the case of an algebraically special spacetime, with ℓ a multiple WAND, this equation

is purely algebraic, see Refs. [2, 131] and also Chapter 4 for examples of its usefulness.
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2.6.7 Commutators of derivatives

In most respects, the GHP formalism leads to significantly simpler equations than the

NP formalism. One important exception to this statement concerns the commutators of

GHP derivatives, which are more complicated than the commutators of the NP derivative

operators 𝐷, Δ and 𝛿𝑖 (see Ref. [146] for these commutators). The GHP commutators

contain some information that (in the standard NP formalism) is contained within the

NP equations that do not transform as GHP scalars. These commutators depend on the

spin 𝑠 and boost weight 𝑏 of the GHP scalar 𝑇𝑖1...𝑖𝑠 that they act on. For an arbitrary

Einstein spacetime they read:

[þ,þ′]𝑇𝑖1...𝑖𝑠 =
[
(−𝜏𝑗 + 𝜏 ′𝑗)k𝑗 + 𝑏

(
−𝜏𝑗𝜏 ′𝑗 + 𝜅𝑗𝜅

′
𝑗 + Φ− 2Λ

𝑑− 1

)]
𝑇𝑖1...𝑖𝑠

+
𝑠∑
𝑟=1

(
𝜅𝑖𝑟𝜅

′
𝑗 − 𝜅′𝑖𝑟𝜅𝑗 + 𝜏 ′𝑖𝑟𝜏𝑗 − 𝜏𝑖𝑟𝜏

′
𝑗 + 2ΦA

𝑖𝑟𝑗

)
𝑇𝑖1...𝑗...𝑖𝑠 , (C1)

[þ, k𝑖]𝑇𝑘1...𝑘𝑠 =
[
− (𝜅𝑖þ′ + 𝜏 ′𝑖þ + 𝜌𝑗𝑖k𝑗) + 𝑏

(−𝜏 ′𝑗𝜌𝑗𝑖 + 𝜅𝑗𝜌
′
𝑗𝑖 +Ψ𝑖

) ]
𝑇𝑘1...𝑘𝑠

+
𝑠∑
𝑟=1

[
𝜅𝑘𝑟𝜌

′
𝑙𝑖 − 𝜌𝑘𝑟𝑖𝜏

′
𝑙 + 𝜏 ′𝑘𝑟𝜌𝑙𝑖 − 𝜌′𝑘𝑟𝑖𝜅𝑙 −Ψ𝑖𝑙𝑘𝑟

]
𝑇𝑘1...𝑙...𝑘𝑠 , (C2)

[k𝑖, k𝑗]𝑇𝑘1...𝑘𝑠 = (2𝜌[𝑖𝑗]þ′ + 2𝜌′[𝑖𝑗]þ + 2𝑏𝜌𝑙[𝑖∣𝜌′𝑙∣𝑗] + 2𝑏ΦA
𝑖𝑗

)
𝑇𝑘1...𝑘𝑠

+
𝑠∑
𝑟=1

[
2𝜌𝑘𝑟[𝑖∣𝜌

′
𝑙∣𝑗] + 2𝜌′𝑘𝑟[𝑖∣𝜌𝑙∣𝑗] + Φ𝑖𝑗𝑘𝑟𝑙 +

2Λ

𝑑− 1
𝛿[𝑖∣𝑘𝑟𝛿∣𝑗]𝑙

]
𝑇𝑘1...𝑙...𝑘𝑠 . (C3)

The 4th commutator [þ′, k𝑖] can be obtained easily by taking the prime of (C2). These

equations are given in the case of arbitrary matter in Appendix A.

Again, the equations simplify in the case of an algebraically special Einstein spacetime

(although at the cost of breaking the priming symmetry), see Appendix B.3 for more

details.

2.6.8 Further simplification of equations

In spacetimes of algebraic type II, III or N, there is a preferred choice for the vector ℓ

(tangent to the multiple WAND), but not for 𝑛. For practical calculations, it is often

useful to ask if we can make a particular choice of 𝑛 that simplifies the Bianchi and

Newman-Penrose equations. Here we prove the following result, which both gives a

convenient choice for doing this, and demonstrates the utility of our new notation.
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Lemma 2.19 Let ℓ be a geodesic multiple WAND in an algebraically special Einstein

spacetime, with the property that det𝝆 ∕= 0. Then the second null vector 𝑛 can be chosen

such that 𝝉 = 𝝉 ′ = 0.

In fact, in Chapter 3 we will prove that an algebraically special Einstein spacetime must

admit a geodesic multiple WAND, so the first condition of the Lemma is not restrictive.

This Lemma is a useful result for simplifying the GHP equations for some Type II

spacetimes. However, note that when the spacetime is Type D one cannot in general

align this choice of 𝑛 with the second multiple WAND.

Proof: Since ℓ is a geodesic multiple WAND we have

Ω = Ψ = 𝜿 = 0. (2.69)

Now, using (2.64,2.67), we see a null rotation about ℓ maps 𝝉 and 𝝉 ′ to

𝝉 = 𝝉 + 𝝆z and 𝝉 ′ = 𝝉 ′ + þz. (2.70)

When det𝝆 ∕= 0, we can set z = −𝝆−1𝝉 and hence fix 𝝉 = 0.

Applying þ to (2.70a) gives

þ𝝉 + (þ𝝆)z+ 𝝆þz = 0. (2.71)

Using the Newman-Penrose equations (NP1,NP2) to eliminate some of the derivatives,

and then equation (2.70a), this leads to

þz = −𝝉 ′ (2.72)

and therefore, by (2.70b) we have 𝝉 ′ = 0.

For spacetimes admitting a multiple WAND with det𝝆 ∕= 0 one can therefore, without

loss of generality, choose a gauge with

𝜿 = 𝝉 = 𝝉 ′ = 0 and Ω = 0 = Ψ. (2.73)

This leads to a considerable simplification of the Newman-Penrose and Bianchi equations.

□

2.7 Maxwell fields

Maxwell form fields appear in various higher-dimensional supergravity theories, typically

obtained from low energy limits of string theory. Here we use the GHP formalism to
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study the linear Maxwell equations for such fields. One motivation for this, discussed

further in Section 2.7.3, is the connection in 4D between algebraically special spacetimes,

and those admitting an algebraically special Maxwell field.

We shall study Maxwell test fields (i.e. neglecting gravitational backreaction) with

(𝑝 + 1)-form field strength (i.e. 𝑝-form potential) in arbitrary dimension 𝑑 ≥ 4, with

1 ≤ 𝑝 ≤ 𝑑−3. Note that the energy-momentum tensor is quadratic in the Maxwell field.

Hence, to linear order, we can continue to work with the Newman-Penrose, Bianchi

and commutator equations derived for Einstein spacetimes, without including the extra

matter terms included in Appendix A. For 𝑝 = 1, our work has some overlap with that

of Ortaggio [152].

2.7.1 GHP-Maxwell equations in higher-dimensions

In arbitary dimension 𝑑 ≥ 4, the source-free Maxwell equations for a (𝑝 + 1)-form field

strength 𝐹𝜈1...𝜈𝑝+1 (i.e. a 𝑝-form potential) read

∇𝜇𝐹𝜇𝜈1...𝜈𝑝 = 0 and ∇[𝜈1𝐹𝜈2...𝜈𝑝+2] = 0. (2.74)

We can convert these into GHP notation as follows. We define

𝜑𝑘1...𝑘𝑝 ≡ 𝐹0𝑘1...𝑘𝑝 , 𝑓𝑘1...𝑘𝑝−1 ≡ 𝐹01𝑘1...𝑘𝑝−1 ,

𝐹𝑘1...𝑘𝑝+1 ≡ 𝐹𝑘1...𝑘𝑝+1 , 𝜑′
𝑘1...𝑘𝑝

≡ 𝐹1𝑘1...𝑘𝑝 , (2.75)

so 𝜑𝑘1...𝑘𝑝 has 𝑏 = 1, 𝑓𝑘1...𝑘𝑝−1 and 𝐹𝑘1...𝑘𝑝+1 have 𝑏 = 0, and 𝜑′
𝑘1...𝑘𝑝

has 𝑏 = −1. Note that

𝑓 ′
𝑘1...𝑘𝑝−1

= −𝑓𝑘1...𝑘𝑝−1 . The Maxwell equations are equivalent to:

Boost weight +1

k𝑖𝜑𝑖𝑘1...𝑘𝑝−1 + þ𝑓𝑘1...𝑘𝑝−1 = 𝜏 ′𝑖𝜑𝑖𝑘1...𝑘𝑝−1 − 𝜌𝑓𝑘1...𝑘𝑝−1 + 𝜌[𝑖𝑗]𝐹𝑖𝑗𝑘1...𝑘𝑝−1

−𝜅𝑖𝜑′
𝑖𝑘1...𝑘𝑝−1

+ (𝑝− 1)𝜌[𝑘1∣𝑖𝑓𝑖∣𝑘2...𝑘𝑝−1], (2.76)

(𝑝+ 1)k[𝑘1𝜑𝑘2...𝑘𝑝+1] − þ𝐹𝑘1...𝑘𝑝+1 = (𝑝+ 1)
(
𝜏 ′[𝑘1𝜑𝑘2...𝑘𝑝+1] + 𝜌𝑖[𝑘1𝐹∣𝑖∣𝑘2...𝑘𝑝+1]

+𝑝𝜌[𝑘1𝑘2𝑓𝑘3...𝑘𝑝+1] + 𝜅[𝑘1𝜑
′
𝑘2...𝑘𝑝+1]

)
, (2.77)

Boost weight 0

2þ′𝜑𝑘1...𝑘𝑝 + k𝑗𝐹𝑗𝑘1...𝑘𝑝 − 𝑝k[𝑘1𝑓𝑘2...𝑘𝑝]
= (𝑝𝜌′[𝑘1∣𝑖 − 𝑝𝜌′𝑖[𝑘1∣ − 𝜌′𝛿[𝑘1∣𝑖)𝜑𝑖∣𝑘2...𝑘𝑝] + 2𝜏𝑖𝐹𝑖𝑘1...𝑘𝑝

− 2𝑝𝜏[𝑘1𝑓𝑘2...𝑘𝑝] + (𝑝𝜌[𝑘1∣𝑖 + 𝑝𝜌𝑖[𝑘1∣ − 𝜌𝛿[𝑘1∣𝑖)𝜑
′
𝑖∣𝑘2...𝑘𝑝], (2.78)

k[𝑘1𝐹𝑘2...𝑘𝑝+2] = (𝑝+ 1)
(
𝜑[𝑘1...𝑘𝑝𝜌

′
𝑘𝑝+1𝑘𝑝+2]

+ 𝜑′
[𝑘1...𝑘𝑝

𝜌𝑘𝑝+1𝑘𝑝+2]

)
, (2.79)

k𝑖𝑓𝑖𝑘1...𝑘𝑝−2 = −𝜌[𝑖𝑗]𝜑′
𝑖𝑗𝑘1...𝑘𝑝−2

+ 𝜌′[𝑖𝑗]𝜑𝑖𝑗𝑘1...𝑘𝑝−2 , [for 𝑝 > 1], (2.80)
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together with the primed equations: (2.76)′, (2.77)′ and (2.78)′.

Note that, in the case 𝑝 = 1, the quantity 𝑓 has no indices, and equation (2.80)

does not appear. Equation (2.79) vanishes identically when 𝑝 > 𝑑− 4, as is the case in

conventional 𝑑 = 4, 𝑝 = 1 electromagnetism.

A natural question that arises is whether, given an arbitrary solution of the Maxwell

equations, one can always find a vector field ℓ that is aligned with it, in the sense that

𝝋 = 0. For 𝑝 = 1, a partial answer to this question, in a slightly different context,

was given by Milson [153]. His results (Propositions 4.4 and 4.5) prove that in even

dimension it is always possible to make such a choice, but suggest that this is probably

not the case in odd dimension.

2.7.2 Hodge duality

It is well known that the source-free Maxwell equations are invariant under Hodge duality.

That is, if a (𝑝+ 1)-form 𝐹 satisfies the equations (2.74), then the (𝑑− 𝑝− 1)-form ★𝐹

is also a solution. How can this be seen in our new formalism?

To fix signs, we define the totally antisymmetric symbol 𝜀 with 𝜀012...𝑑−1 = +1. This

results in a volume form

𝜖 = 𝑒0 ∧ 𝑒1 ∧ 𝑒2 ∧ ⋅ ⋅ ⋅ ∧ 𝑒𝑑−1 = −ℓ ∧ 𝑛 ∧𝑚2 ∧ ⋅ ⋅ ⋅ ∧𝑚𝑑−1. (2.81)

Hodge duality maps the basis components of a 𝑝-form 𝐴 to ★𝐴 where

(★𝐴)𝑏1...𝑏𝑑−𝑝
≡ 1

𝑝!
𝜀

𝑎1...𝑎𝑝
𝑏1...𝑏𝑑−𝑝

𝐴𝑎1...𝑎𝑝 . (2.82)

It is useful to define a Euclidean signature, (𝑑− 2)-dimensional Hodge duality operator
𝐸★ by

(𝐸★𝑇 )𝑗1...𝑗𝑑−2−𝑟
≡ 1

𝑟!
𝜀𝑗1...𝑗𝑑−2−𝑟𝑖1...𝑖𝑟𝑇𝑖1...𝑖𝑟 (2.83)

mapping totally antisymmetric GHP scalars with 𝑟 spatial indices to totally antisym-

metric GHP scalars with 𝑑− 2− 𝑟 spatial indices.

Consider the action of Hodge duality on our Maxwell (𝑝 + 1)-form 𝐹 , setting 𝑞 =

𝑑− 2− 𝑝 for convenience, so that

(★𝐹 )𝑏1...𝑏𝑞+1 =
1

(𝑝+ 1)!
𝜀

𝑎1...𝑎𝑝+1

𝑏1...𝑏𝑞+1
𝐹𝑎1...𝑎𝑝+1 . (2.84)

Taking components, this implies that

(★𝜑)𝑘1...𝑘𝑞 ≡ (★𝐹 )0𝑘1...𝑘𝑞 = (−1)𝑑−𝑝
(
𝐸★𝜑
)
𝑘1...𝑘𝑞

, (2.85)

(★𝑓)𝑘1...𝑘𝑞−1 ≡ (★𝐹 )01𝑘1...𝑘𝑞−1 =
(
𝐸★𝐹

)
𝑘1...𝑘𝑞−1

, (2.86)

(★𝐹 )𝑘1...𝑘𝑞+1 ≡ (★𝐹 )𝑘1...𝑘𝑞+1 = − (𝐸★𝑓)
𝑘1...𝑘𝑞+1

, (2.87)

(★𝜑′)𝑘1...𝑘𝑞 ≡ (★𝐹 )1𝑘1...𝑘𝑞 = (−1)𝑑+1−𝑝 (𝐸★𝜑)
𝑘1...𝑘𝑞

. (2.88)
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Note that applying the Hodge star operation to a primed quantity always introduces an

extra minus sign, so it is useful to define (𝐸★)′ ≡ −(𝐸★) to account for this.

2.7.3 Algebraically Special Maxwell Fields

We now introduce the notion of an algebraically special Maxwell field:

Definition 2.20 A Maxwell (𝑝+1)-form field 𝐹 is algebraically special if there exists a

choice of ℓ such that all non-negative boost weight components of 𝐹 vanish everywhere.

A vector field ℓ with this property is multiply aligned with 𝐹 .

Note that, by equations (2.85-2.87), the property of being algebraically special is

preserved under Hodge duality, that is:

Lemma 2.21 A Maxwell (𝑝+1)-form field 𝐹 is algebraically special if, and only if, ★𝐹

is algebraically special.

In four dimensions, the Mariot-Robinson theorem (Theorem 7.4 of Ref. [27]) states

that a null vector field is multiply aligned with a (non-zero) algebraically special Maxwell

field if, and only if, is geodesic and shearfree. Therefore, by the Goldberg-Sachs theorem,

a vacuum spacetime admits such a Maxwell test field if, and only if, it is algebraically

special. It is natural to ask whether any part of this holds in higher dimensions. The

following result holds:

Lemma 2.22 Let ℓ be a null vector field in a 𝑑-dimensional spacetime, multiply aligned

with a non-zero Maxwell (𝑝+ 1)-form field 𝐹 , with 0 < 𝑝 < 𝑑− 2. Then

(i) ℓ is tangent to a null geodesic congruence.

(ii) 𝜌(𝑖𝑗) has 𝑝 eigenvalues whose sum is 𝜌/2 (hence the remaining 𝑑−2−𝑝 eigenvalues

must also sum to 𝜌/2).

Proof: (i) Choose a null frame in which ℓ is one of the basis vectors. Equations (2.76)

and (2.77) reduce to

𝜅𝑖𝜑
′
𝑖𝑘1...𝑘𝑝−2

= 0 = 𝜅[𝑘1𝜑
′
𝑘2...𝑘𝑝]

. (2.89)

If 𝜿 ∕= 0, then we can use spins to move to a frame where 𝜅𝑖 = 𝜅𝛿𝑖2 and immediately

show that this implies 𝜑′
𝑘1...𝑘𝑝

= 0, and hence the Maxwell field vanishes. Hence, if the

Maxwell field is non-vanishing, 𝜿 = 0 and ℓ is geodesic, which completes the proof of (i).

(ii) Let S denote the symmetric part of 𝝆. The Maxwell equation (2.78) reduces to

0 = (2𝑝𝑆[𝑘1∣𝑖 − 𝜌𝛿[𝑘1∣𝑖)𝜑
′
𝑖∣𝑘2...𝑘𝑝]. (2.90)
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Working in a basis where S is diagonal with eigenvalues 𝑠𝑖, this implies[
𝑝∑
𝑟=1

𝑠𝑘𝑟 −
𝜌

2

]
𝜑′
𝑘1...𝑘𝑝

= 0, (2.91)

where we drop the summation convention for the remainder of this proof. The Maxwell

field is non-vanishing, so we can shuffle indices to set 𝜑′
23...𝑝+1 ∕= 0; which implies that

𝑝+1∑
𝑖=2

𝑠𝑖 =
𝜌

2
, (2.92)

which gives the required result. □
Note that this result is consistent with Hodge duality. In four dimensions, it reduces

to the statement that a null vector field multiply aligned with a Maxwell field must be

geodesic and shearfree.

In the case 𝑝 = 1 one can prove a slightly stronger result:11

Lemma 2.23 Let ℓ be a null vector field in a 𝑑-dimensional spacetime, multiply aligned

with a Maxwell 2-form field. Then ℓ is geodesic, and the symmetric and anti-symmetric

parts of the optical matrix 𝝆 have the following properties:

1. 𝜌(𝑖𝑗) has an eigenvalue 𝜌/2, with corresponding eigenvector 𝜑′
𝑖 (the 𝑏 = −1 part of

the Maxwell field)

2. 𝜌[𝑖𝑗] = 𝜑′
[𝑖𝜔𝑗] for some 𝜔𝑖.

Proof: The geodesity property was proved in Lemma 2.22. Now the Maxwell equations

(2.78-2.80) reduce to:

0 = (𝜌(𝑘𝑖) − 1
2
𝜌𝛿𝑘𝑖)𝜑

′
𝑖, (2.93)

0 = 𝜌[𝑘1𝑘2𝜑
′
𝑘3]
. (2.94)

These are equivalent to statements 1 and 2 respectively. □
There is an important difference between 𝑑 = 4 and 𝑑 > 4 in the above results. As

mentioned above, for 𝑑 = 4, ℓ is multiply aligned with a Maxwell (test) field if, and

only if, it is multiply aligned with the Weyl tensor (in vacuum). The results above

demonstrate that this is not true for 𝑑 > 4.

For example, consider the Schwarzschild solution, for which the multiple WANDs are

geodesic and shearfree, i.e., choosing ℓ to be a multiple WAND, all eigenvalues of 𝜌(𝑖𝑗)

are equal to 𝜌/(𝑑 − 2). Then, for ℓ also to be multiply aligned with an algebraically

11Note that part of this result was first proved in [152].
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special Maxwell (𝑝 + 1)-form field we would need, from Lemma 2.22, 𝑝𝜌/(𝑑 − 2) = 𝜌/2

and hence 𝑑 = 2(𝑝 + 1). Therefore only in an even number 𝑑 = 2(𝑝 + 1) of dimensions

is it possible for a null vector field to be multiply aligned simultaneously with the Weyl

tensor and with a (𝑝+1)-form Maxwell field in the Schwarzschild spacetime. This shows

that, for a general higher-dimensional spacetime, we cannot expect any relation between

vectors multiply aligned with a (𝑝+ 1)-form Maxwell field and vectors multiply aligned

with the Weyl tensor, except possibly when 𝑑 = 2(𝑝+ 1).

2.8 Codimension-2 hypersurfaces

The GHP formalism is particularly useful for spacetimes admitting a preferred pair of

null directions. One example, discussed for 𝑑 = 4 by GHP [114] (see also [151]), is when

one is interested in a codimension-2 spacelike surface 𝒮. There is a unique (up to a

sign) choice of null directions that lie orthogonal to 𝒮. Choosing ℓ and 𝑛 to lie in those

directions implies that 𝒮 is spanned by the spacelike vectors 𝑚𝑖.

Projections onto the surface are given by

ℎ𝜇𝜈 =
𝑑−1∑
𝑖=2

𝑚𝑖
𝜇𝑚𝑖𝜈 , (2.95)

and ℎ𝜇𝜈 is the induced metric on 𝒮. Note that k𝑖, when acting on boost weight 0

quantities (which are those invariant under the rescaling of ℓ and 𝑛), is simply the

metric covariant derivative on 𝒮:

k𝑖ℎ𝑗𝑘 = 𝛿𝑖ℎ𝑗𝑘 +
𝑙

𝑀 𝑗𝑖ℎ𝑙𝑘 +
𝑙

𝑀𝑘𝑖ℎ𝑗𝑙 =
𝑘

𝑀 𝑗𝑖 +
𝑗

𝑀𝑘𝑖 = 0. (2.96)

Consider the commutator (C3m) (from Appendix A), acting on a boost weight zero

GHP scalar 𝑉𝑘. This takes the form

[k𝑖, k𝑗]𝑉𝑘 = [2𝜌𝑘[𝑖∣𝜌′𝑙∣𝑗] + 2𝜌′𝑘[𝑖∣𝜌𝑙∣𝑗] + Φ𝑖𝑗𝑘𝑙 +
2

𝑑− 2
(𝛿[𝑖∣𝑘𝜙∣𝑗]𝑙 − 𝛿[𝑖∣𝑙𝜙∣𝑗]𝑘)

− 2𝛿[𝑖∣𝑘𝛿∣𝑗]𝑙
2𝜙+ 𝜙𝑚𝑚

(𝑑− 1)(𝑑− 2)

]
𝑉𝑙. (2.97)

We have used 𝜌[𝑖𝑗] = 𝜌′[𝑖𝑗] = 0, which follows from Frobenius’ theorem.

The terms on the RHS give us the induced Riemann tensor on 𝒮, in terms of the null

vector fields that define the embedding of the surface, and the curvature of the spacetime

in which it is embedded. To see this, we can compare (2.97) with the (𝑑−2)-dimensional

Ricci identity

(∇𝑖∇𝑗 −∇𝑗∇𝑖)𝑉𝑘 =
(𝑑−2)𝑅𝑖𝑗𝑘𝑙𝑉𝑙 (2.98)
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to obtain

(𝑑−2)𝑅𝑖𝑗𝑘𝑙 = 2𝜌𝑘[𝑖∣𝜌′𝑙∣𝑗]+2𝜌′𝑘[𝑖∣𝜌𝑙∣𝑗]+Φ𝑖𝑗𝑘𝑙+
2

𝑑− 2
(𝛿[𝑖∣𝑘𝜙∣𝑗]𝑙−𝛿[𝑖∣𝑙𝜙∣𝑗]𝑘)−2𝛿[𝑖∣𝑘𝛿∣𝑗]𝑙

2𝜙+ 𝜙𝑚𝑚
(𝑑− 1)(𝑑− 2)

.

(2.99)

This approach to dealing with (𝑑− 2)-dimensional surfaces has an important advantage

over approaches that require a particular choice of basis on the surface in that it is

always guaranteed to be well defined across the whole surface [151]. For example, in

even dimensions, if 𝒮 has the topology 𝑆𝑑−2 then it is well known that there is no

continuous, globally valid choice of vector basis {𝑚𝑖} that can be made on 𝒮. The GHP

approach does not require the introduction of such an explicit basis, and therefore does

not suffer from this problem.

Further examples of the use of the higher-dimensional GHP formalism will be dis-

cussed in the rest of the thesis, in particular in Chapter 4.



Chapter 3

Geodesity of multiple WANDs

3.1 Introduction

Recall that, in four dimensions, a key result in the early development of the Newman-

Penrose formalism was the following (re-written here in the language used in higher-

dimensions):

Theorem 3.1 (Goldberg & Sachs [115]) In a four-dimensional Einstein spacetime,

a null vector field is a multiple WAND if and only if it is tangent to a shearfree null

geodesic congruence.

In this chapter we investigate the generalization of this result to higher dimensions. It

has been known for some time that the theorem does not generalize in an obvious way. A

geodesic multiple WAND need not be shear-free (this occurs for example in Myers-Perry

black holes [131, 154]), and a multiple WAND need not be geodesic [2, 129, 131]. The

simplest example of the latter behaviour is a product spacetime, for example 𝑑𝑆3 × 𝑆2,

where any null vector field tangent to 𝑑𝑆3 is a multiple WAND irrespective of whether

or not it is geodesic [129]. However, in this example there also exist geodesic multiple

WANDs. The main result of this chapter is a proof that this always happens, at least

for Einstein spacetimes:

Theorem 3.2 An Einstein spacetime admits a multiple WAND if, and only if, it admits

a geodesic multiple WAND.

The ‘if’ part of this theorem is trivial. To prove the ‘only if’ part, we shall assume that

the multiple WAND is non-geodesic and prove that there exists another multiple WAND

that is geodesic. As a first step, we will prove that

Lemma 3.3 An Einstein spacetime that admits a non-geodesic multiple WAND is Type

D (or conformally flat).

61
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We then go on to show that the properties of spacetimes admitting non-geodesic

multiple WANDs are further restricted, in particular that:

Theorem 3.4 An Einstein spacetime that admits a non-geodesic multiple WAND is

foliated by totally umbilic, constant curvature, Lorentzian, submanifolds of dimension

three or greater, and any null vector field tangent to the leaves of the foliation is a

multiple WAND.

A submanifold is ‘totally umbilic’ if and only if its extrinsic curvature is proportional to

its induced metric, i.e. 𝐾𝜇𝜈𝜌 = 𝜉𝜇ℎ𝜈𝜌, for some 𝜉𝜇 orthogonal to the submanifold, where

ℎ𝜇𝜈 is the projection onto the submanifold. This property is useful because:

Lemma 3.5 A Lorentzian submanifold is totally umbilic if, and only if, it is “totally

null geodesic”, i.e., any null geodesic of the submanifold is also a geodesic of the full

spacetime.

Hence any geodesic null vector field in the constant curvature submanifolds of Theorem

3.4 is a geodesic multiple WAND of the full spacetime, so Theorem 3.2 follows as a direct

corollary of these two results. Note that these results also imply immediately that in a

Type D spacetime, one can choose both of the multiple WANDs to be geodesic.

For the special case of five dimensions, as well as Theorems 3.2 and 3.4, we have the

stronger result:

Theorem 3.6 A five-dimensional Einstein spacetime admits a non-geodesic multiple

WAND if, and only if, it is locally isometric to one of the following:

1. Minkowski, de Sitter, or anti-de Sitter spacetime

2. A direct product 𝑑𝑆3 × 𝑆2 or 𝐴𝑑𝑆3 ×𝐻2

3. A spacetime with metric

𝑑𝑠2 = 𝑟2𝑑𝑠23 +
𝑑𝑟2

𝑈(𝑟)
+ 𝑈(𝑟)𝑑𝑧2, 𝑈(𝑟) = 𝑘 − 𝑚

𝑟2
− Λ

4
𝑟2,

where 𝑚 ∕= 0, 𝑘 ∈ {1, 0,−1}, 𝑑𝑠23 is the metric of a 3D Lorentzian space of constant

curvature (i.e. 3D Minkowski or (anti-)de Sitter) with Ricci scalar 6𝑘, and the

coordinate 𝑟 takes values such that 𝑈(𝑟) > 0.

Note that (ii) and (iii) are Type D. Both admit 3D Lorentzian submanifolds of constant

curvature, in agreement with Theorem 3.4. Solution (iii) is an analytically continued

version of the 5D Schwarzschild solution1 (generalized to allow for a cosmological constant

1It is a higher-dimensional generalization of the 4D B-metrics.
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and planar or hyperbolic symmetry). Special cases of (iii) are the Kaluza-Klein bubble

[155] and the anti-de Sitter soliton [156].

In more than five dimensions, there are many Einstein spacetimes that admit non-

geodesic multiple WANDs. A large class of examples can be obtained as follows. Consider

a 6D static axisymmetric solution (which need not admit a WAND)

𝑑𝑠2 = −𝐴(𝑟, 𝑧)2𝑑𝑡2 +𝐵(𝑟, 𝑧)2(𝑑𝑟2 + 𝑑𝑧2) + 𝐶(𝑟, 𝑧)2𝑑Ω2, (3.1)

where 𝑑Ω2 is the metric on a unit 𝑆3. There are many solutions of the Einstein equation

of this form, although the general solution is not known (except in the algebraically

special case [129]). Now set 𝑡 = 𝑖𝜏 and analytically continue 𝑑Ω2 to the metric on 3D

de Sitter space. This gives an Einstein metric for which any null vector field tangent to

the 𝑑𝑆3 is a multiple WAND. This shows that there exist many six-dimensional Einstein

spacetimes admitting non-geodesic multiple WANDs. Obviously similar constructions

work in higher dimensions too.

This chapter is organized as follows. In Section 3.2, we prove that an Einstein space-

time admitting a non-geodesic multiple WAND must be Type D (or conformally flat).

This is the starting point for the proof of Theorem 3.4 in Section 3.3, which also contains

the proof of Lemma 3.5. In Section 3.4, we restrict to five dimensions in order to prove

Theorem 3.6, and make some additional remarks about the six-dimensional case. Most

of our results are obtained from the Bianchi identity, whose components were written

out in Section 2.6.6. As many of our equations in this chapter will not be GHP invariant

(since the preferred submanifolds discussed in Theorem 3.4 break the GHP invariance),

we will rewrite some of these equations in Newman-Penrose notation as we go along.

Recall that the vector ℓ is non-geodesic if, and only if, 𝜿 ∕= 0. We shall work in an

open subset of spacetime in which 𝜿 ∕= 0. Most work on algebraically special solutions

assumes that spacetime is analytic, and in an analytic spacetime we expect that our

results can be extended from this open subset to the rest of the spacetime. In smooth

but non-analytic spacetimes, the algebraic type can differ in disjoint open subsets of

spacetime, even in 4D, and all of the results here should be understood as holding in

some open subset of the spacetime which is algebraically special.



64 CHAPTER 3. GEODESITY OF MULTIPLE WANDS

3.2 Non-geodesity implies Type D

Prior to the main work of this chapter, the following result was known:

Lemma 3.7 In an Einstein spacetime that is not conformally flat, a multiple WAND ℓ

is always geodesic if any of the following conditions on boost weight 0 components of the

Weyl tensor hold:

(i) ΦA
𝑖𝑗 is non-vanishing.

(ii) None of the eigenvalues of ΦS
𝑖𝑗 are −Φ.

(iii) Φ𝑖𝑗𝑘𝑙 vanishes identically.

This lemma combines two known results from the literature. CMPP [122] proved that all

multiple WANDs with the Type III or Type N property are geodesic, and then Pravda et

al. [131] derived the further restrictions described above in the Type II case (the lemma

was first published in this form in my paper [2]).

The authors of [131] interpreted this as a statement that, ‘generically’, a multiple

WAND in a vacuum spacetime is geodesic. The intention of our work here was to provide

a concrete statement of exactly when WANDs can be non-geodesic. For completeness,

we begin by reviewing the proof of this lemma:

Proof of Lemma 3.7 Suppose that the spacetime admits a non-geodesic multiple

WAND ℓ, i.e. 𝜿 ∕= 0. We aim to show that none of the conditions (i)-(iii) hold. The

Bianchi equation (B1) reduces to

0 = (2Φ𝑖[𝑗𝛿𝑘]𝑙 − 2𝛿𝑖𝑙Φ
A
𝑗𝑘 − Φ𝑖𝑙𝑗𝑘)𝜅𝑙. (3.2)

Contraction of (3.2) on 𝑖𝑘 gives

(ΦS
𝑖𝑗 + 3ΦA

𝑖𝑗)𝜅𝑗 = −Φ𝜅𝑖. (3.3)

and further contraction with 𝜅𝑖 implies

ΦS
𝑖𝑗𝜅𝑖𝜅𝑗 = −Φ𝜅𝑖𝜅𝑖. (3.4)

Contracting (3.2) with 𝜅𝑖𝜅𝑗, and using (3.4) gives

(ΦS
𝑖𝑗 − 3ΦA

𝑖𝑗)𝜅𝑗 = −Φ𝜅𝑖. (3.5)

Taking (3.3) + (3.5) implies that 𝜿 is an eigenvector of ΦS
𝑖𝑗 with eigenvalue −Φ, so (ii)

fails. Meanwhile (3.3) − (3.5) implies that ΦA
𝑖𝑗𝜅𝑗 = 0. Contracting (3.2) with 𝜅𝑖, and

using these last two results implies that 𝜅𝑖𝜅𝑖Φ
A
𝑗𝑘 = 0, and hence ΦA

𝑖𝑗 = 0 and (i) fails.
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So either (iii) fails (in which case we’re done), or Φ𝑖𝑗𝑘𝑙 = 0, and the spacetime is

either Type III or Type N.

In the Type III case, consider equation (B2), which reduces to

Ψ′
𝑗𝜅𝑖 = Ψ′

𝑗𝑖𝑘𝜅𝑘. (3.6)

Contracting with 𝜅𝑖 gives Ψ
′
𝑗𝜅𝑖𝜅𝑖 = 0, and hence Ψ′

𝑖 = 0. Inserting this back into (B2)

implies Ψ′
𝑖𝑗𝑘𝜅𝑘 = 0, and hence Ψ′

𝑖𝑗𝑘𝜅𝑖 = 0. Now consider (B3), which gives

0 = −2Ψ′
[𝑖∣𝑘𝑙𝜅∣𝑗] − 2Ψ′

[𝑘∣𝑖𝑗𝜅∣𝑙], (3.7)

and contracting with 𝜅𝑗 implies Ψ′
𝑖𝑘𝑙𝜅𝑗𝜅𝑗 = 0, and hence if 𝜅𝑖 ∕= 0 the spacetime is not

Type III.

It remains to consider the Type N case. Here, (B5) reads

2Ω′
𝑖[𝑗𝜅𝑘] = 0. (3.8)

Contracting this on 𝑖𝑘 implies that Ω′
𝑖𝑗𝜅𝑖 = 0, while contracting with 𝜅𝑘 gives Ω

′
𝑖𝑗𝜅𝑘𝜅𝑘 =

Ω′
𝑖𝑘𝜅𝑘𝜅𝑗. Combining these results implies Ω′

𝑖𝑗𝜅𝑘𝜅𝑘 = 0, and hence multiple WANDs in

Type N spacetimes must also be geodesic. This suffices to prove the result.□
Now we move on to prove Lemma 3.3, namely that all spacetimes admitting a non-

geodesic multiple WAND are either Type D or Type O.

Proof of Lemma 3.3 Assume we have an Einstein spacetime with a non-geodesic

multiple WAND ℓ. By Lemma 3.7, we know that Φ𝑖𝑗 is symmetric, and has an eigenvalue

−Φ with associated eigenvector 𝜅𝑖, that is

Φ𝑖𝑗𝜅𝑗 = −Φ𝜅𝑖. (3.9)

We know that 𝜿 ∕= 0. Since 𝜿 transforms as a vector under rotations of the spatial basis

vectors 𝑚𝑖, we can choose these basis vectors so that

𝜅2 ∕= 0, 𝜅�̂� = 0, (3.10)

where �̂�, 𝚥 etc take values 3, 4, . . . , (𝑑− 1).2 From equation (3.9), we have

Φ22 = −Φ, Φ2�̂� = 0. (3.11)

2This particular choice breaks GHP covariance, so we will now need to use explicit Newman-Penrose

forms of the Bianchi identities etc. One could simplify the calculation slightly by introducing GHP-like

derivative operators þ̂ etc that are only covariant under spins that preserve the 𝑚2 direction, but we

will see that the proof as it is will not be complicated enough to justify this additional machinery.
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Equation (3.2) implies that

Φ2�̂�2𝚥 = Φ�̂�𝚥 Φ2�̂�𝚥𝑘 = 0. (3.12)

The Bianchi equation (B4) reads

0 = −2Φ𝑖[𝑗𝜌𝑘𝑙] + Φ𝑖𝑚[𝑗𝑘∣𝜌𝑚∣𝑙] (3.13)

and setting 𝑖𝑗𝑘𝑙 = 22�̂�𝚥 gives

Φ𝜌[̂𝚤𝚥] − 𝜌𝑘[̂𝚤Φ𝚥]𝑘 = 0. (3.14)

Now consider (B2), which reads

𝐷Φ𝑖𝑗 = −(Φ𝑖𝑘 + Φ𝛿𝑖𝑘)𝜌𝑘𝑗 − 2Φ(𝑖∣𝑘
𝑘

𝑀 ∣𝑗)0 + (Ψ′
𝑗𝛿𝑖𝑘 −Ψ′

𝑗𝑖𝑘)𝜅𝑘. (3.15)

First look at the antisymmetric part. The 2�̂� component gives

(Ψ′
22�̂� −Ψ′

�̂�)𝜅2 = (Φ�̂�𝚥 + Φ𝛿�̂�𝚥) 𝜌𝚥2, (3.16)

and, using (3.14), the �̂�𝚥 component gives

Ψ′
2�̂�𝚥 = 0. (3.17)

Now look at the symmetric part of (3.15). Setting 𝑖 = 2, 𝑗 = �̂� gives

(Ψ′
22�̂� +Ψ′

�̂�)𝜅2 = (Φ�̂�𝚥 + Φ𝛿�̂�𝚥) 𝜌𝚥2 − 2Φ�̂�𝚥

2

𝑀 𝚥0 − 2Φ
2

𝑀 �̂�0. (3.18)

Subtracting this from (3.16) gives

−Ψ′
�̂�𝜅2 = Φ�̂�𝚥

2

𝑀 𝚥0 + Φ
2

𝑀 �̂�0. (3.19)

Now we shall show that the basis vectors 𝑛, 𝑚𝑖 can be chosen to make the negative

boost weight Weyl components vanish. Consider moving to a new basis {ℓ̄, �̄�, �̄�𝑖} by

performing a null rotation about ℓ:

ℓ̄ = ℓ, �̄� = 𝑛− 𝑧𝑖𝑚𝑖 − 1

2
𝑧2ℓ, �̄�𝑖 = 𝑚𝑖 + 𝑧𝑖ℓ, (3.20)

where 𝑧𝑖 are some smooth functions, and 𝑧2 ≡ 𝑧𝑖𝑧𝑖. In the new basis we have

2̄

𝑀 �̂�0 =
2

𝑀 �̂�0 − 𝑧�̂�𝜅2. (3.21)

We can always choose 𝑧�̂� so that the RHS vanishes. Hence we can always choose our

basis so that (this equation is trivial for 𝑖 = 2)

2

𝑀 𝑖0 = 0. (3.22)
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We shall assume this henceforth, and drop the bars. We now have, from (3.19), that

Ψ′
�̂� = 0. Now, the �̂�𝚥 component of the symmetric part of (3.15) gives

𝐷Φ�̂�𝚥 = −Φ𝜌(�̂�𝚥) − 𝜌𝑘(�̂�Φ𝚥)𝑘 −Ψ′
(�̂�𝚥)2𝜅2 +

�̂�

𝑀𝑘0Φ𝑘𝚥 +
𝚥

𝑀𝑘0Φ𝑘�̂�. (3.23)

Also, (B3) reduces to

−𝐷Φ𝑖𝑗𝑘𝑙 = −2Φ𝑖[𝑘∣𝜌𝑗∣𝑙] + 2Φ𝑗[𝑘∣𝜌𝑖∣𝑙] + 2Φ𝑖𝑗[𝑘∣𝑚𝜌𝑚∣𝑙] + 2Φ[𝑖∣𝑚𝑘𝑙
𝑚

𝑀 ∣𝑗]0 + 2Φ𝑖𝑗[𝑘∣𝑚
𝑚

𝑀 ∣𝑙]0

−2Ψ′
[𝑖∣𝑘𝑙𝜅∣𝑗] − 2Ψ′

[𝑘∣𝑖𝑗𝜅∣𝑙], (3.24)

and taking the 2�̂�2𝚥 component gives

𝐷Φ�̂�𝚥 = −Φ𝜌(�̂�𝚥) − 𝜌𝑘(�̂�Φ𝚥)𝑘 + 2Ψ(�̂�𝚥)2𝜅2 +
�̂�

𝑀𝑘0Φ𝑘𝚥 +
𝚥

𝑀𝑘0Φ𝑘�̂�. (3.25)

Comparing (3.23) and (3.25) reveals that Ψ′
(�̂�𝚥)2 = 0. However, we also have that Ψ′

2�̂�𝚥 = 0,

so the identity Ψ′
[𝑖𝑗𝑘] = 0 implies that Ψ′

[̂𝚤𝚥]2 = 0. Combining these results, we learn that

Ψ′
�̂�𝚥2 = 0. (3.26)

Using (3.22), the 2�̂�𝚥𝑘 component of (3.24) reduces to 𝜅2Ψ
′
�̂�𝚥𝑘

= 0, and hence

Ψ′
�̂�𝚥𝑘

= 0. (3.27)

Now we have 0 = Ψ′
�̂� = Ψ′

2�̂�2 + Ψ′
𝚥𝚤𝚥 = Ψ′

2�̂�2. Hence all components of Ψ′
𝑖𝑗𝑘 vanish, and

therefore so must Ψ′
𝑖:

Ψ′
𝑖𝑗𝑘 = Ψ′

𝑖 = 0. (3.28)

Next, consider the following equation, constructed from (B5) and its primed version:

−𝐷Ψ′
𝑖𝑗𝑘 = (2Φ𝑖[𝑗𝛿𝑘]𝑙 − Φ𝑖𝑙𝑗𝑘)(𝜏𝑙 − 𝜏 ′𝑙 ) + 2Ψ′

[𝑗𝜌𝑘]𝑖 +Ψ′
𝑖𝑗𝑘𝐿10 +Ψ′

𝑠𝑗𝑘𝜌𝑠𝑖

+2Ψ′
𝑖[𝑗∣𝑙

𝑙

𝑀 ∣𝑘]0 +Ψ′
𝑙𝑗𝑘

𝑙

𝑀 𝑖0 − 2Ω′
𝑖[𝑗𝜅𝑘] (3.29)

Setting 𝑖 = 𝑗 = 2 and 𝑘 = �̂� gives

Ω′
2�̂�𝜅2 = (Φ�̂�𝚥 + Φ𝛿�̂�𝚥)

(
𝜏𝚥 − 𝜏 ′𝚥

)
. (3.30)

and setting 𝑖𝑗𝑘 = �̂�𝚥2 gives Ω′
�̂�𝚥 = 0.

The �̂�𝚥𝑘 component gives

0 =
(
2Φ�̂�[𝚥𝛿𝑘]�̂� − Φ�̂��̂�𝚥𝑘

) (
𝜏�̂� − 𝜏 ′

�̂�

)
. (3.31)

Contracting on �̂� and 𝚥, using

Φ�̂��̂̂�𝚤𝑘 = Φ𝑖�̂�𝑖𝑘 − Φ2�̂�2𝑘 = −3Φ�̂�𝑘 and Φ�̂̂�𝚤 = Φ𝑖𝑖 − Φ22 = 2Φ (3.32)
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gives

0 = (Φ𝑘�̂� + Φ𝛿𝑘�̂�)
(
𝜏�̂� − 𝜏 ′

�̂�

)
. (3.33)

Substituting this into (3.30) gives Ω′
2�̂� = 0, and hence it only remains to show that

Ω′
22 = 0. From the Bianchi equations (B5) and (B5)′ we obtain an equation

𝐷Ψ′
𝑖 − 𝛿𝑖Φ = −(Φ𝑖𝑗 + Φ𝛿𝑖𝑗)(𝜏𝑗 + 𝜏 ′𝑗)−Ψ′

𝑗(𝛿𝑗𝑖𝐿10 + 2𝜌𝑗𝑖 +
𝑗

𝑀 𝑖0) + Ω′
𝑖𝑗𝜅𝑗 (3.34)

Setting 𝑖 = 2 gives

𝛿2Φ = −Ω′
22𝜅2. (3.35)

Now consider (B5), which reduces to

−2𝛿[𝑗Φ𝑘]𝑖 = (2Φ𝑖[𝑗𝛿𝑘]𝑙 − Φ𝑖𝑙𝑗𝑘)𝜏𝑙 − 2Φ𝑖𝑙

𝑙

𝑀 [𝑗𝑘] − 2Φ𝑙[𝑗∣
𝑙

𝑀 𝑖∣𝑘]

+(2Ψ′
[𝑗∣𝛿𝑖𝑙 − 2Ψ′

[𝑗∣𝑖𝑙)𝜌𝑙∣𝑘] (3.36)

Setting 𝑖𝑗𝑘 = �̂�2𝑘, and tracing on �̂� and 𝑘 gives

𝛿2Φ = −1

2

(
Φ

2

𝑀 �̂̂�𝚤 + Φ�̂�𝚥

2

𝑀 �̂�𝚥

)
. (3.37)

However, we can compare this to a different result obtained from equation (B7), which

reads

−𝛿[𝑘∣Φ𝑖𝑗∣𝑙𝑚] = −Ψ′
𝑖[𝑘𝑙∣𝜌𝑗∣𝑚] +Ψ′

𝑗[𝑘𝑙∣𝜌𝑖∣𝑚] − 2Ψ′
[𝑘∣𝑖𝑗𝜌∣𝑙𝑚]

+2Φ𝑖𝑗[𝑘∣𝑛
𝑛

𝑀 ∣𝑙𝑚] + Φ𝑖𝑛[𝑘𝑙∣
𝑛

𝑀 𝑗∣𝑚] − Φ𝑗𝑛[𝑘𝑙∣
𝑛

𝑀 𝑖∣𝑚] (3.38)

Setting 𝑚 = 2 and 𝑖𝑗𝑘𝑙 = �̂�𝚥𝑘�̂�, tracing on �̂� and 𝑘 and then tracing on 𝚥 and �̂� gives

𝛿2Φ = −2

3

(
Φ

2

𝑀 �̂̂�𝚤 + Φ�̂�𝚥

2

𝑀 �̂�𝚥

)
. (3.39)

Hence we can conclude that 𝛿2Φ = 0, and hence, by (3.35), Ω′
22 = 0. Therefore

Ω′
𝑖𝑗 = 0. (3.40)

Therefore, all of the components of the Weyl tensor of non-zero boost weight vanish.

It remains to exclude the possibility that the spacetime is Type III or Type N. To

see that this cannot occur, suppose that there exists a different null vector ℓ̄ along which

the Weyl tensor has negative boost order (that is all Weyl components of non-negative

boost weight vanish). There are two possibilities; either ℓ̄.𝑛 = 0 or ℓ̄.𝑛 ∕= 0. In the

former case, this implies that ℓ̄ ∥ 𝑛, and hence the boost weight zero components of the

Weyl tensor must have vanished in our original frame, implying that the Weyl tensor

of the spacetime vanishes identically. Alternatively, if ℓ̄.𝑛 ∕= 0 then we can rescale such

that ℓ̄.𝑛 = 1 and hence work in a null frame containing both ℓ̄ and 𝑛 in which the Weyl

tensor again vanishes identically. This implies that the spacetime must be either Type

D or Type O, as required.□
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3.3 Foliation by submanifolds

Having established that the spacetime in question is Type D, we now go on to show that

it is foliated by a particular family of submanifolds:

Proof of Theorem 3.4 Assume that we have an Einstein spacetime admitting a non-

geodesic multiple WAND ℓ. From Lemma 3.3, we can use a basis in which the Type D

condition is satisfied. Consider a new basis defined by a null rotation about 𝑛:

ℓ̂ = ℓ− 𝑧𝑖𝑚𝑖 − 1

2
𝑧2𝑛, �̂� = 𝑛, �̂�𝑖 = 𝑚𝑖 + 𝑧𝑖ℓ, (3.41)

where 𝑧𝑖 are arbitrary smooth functions and 𝑧2 ≡ 𝑧𝑖𝑧𝑖. Using the Type D property, in

the new basis we have

Ψ̂𝑖𝑗𝑘 = Φ𝑖𝑙𝑗𝑘𝑧𝑙 − 2Φ𝑖[𝑗𝑧𝑘], (3.42)

Ω̂𝑖𝑗 = Ψ̂𝑖𝑗𝑘𝑧𝑘 + 𝑧𝑖 (Φ𝑗𝑘𝑧𝑘 + Φ𝑧𝑗) . (3.43)

Now choose the functions 𝑧𝑖 so that Ψ̂𝑖𝑗𝑘 = 0, i.e.,

Φ𝑖𝑙𝑗𝑘𝑧𝑙 − 2Φ𝑖[𝑗𝑧𝑘] = 0. (3.44)

This equation certainly admits non-vanishing solutions 𝑧𝑖 because equation (3.2) shows

that 𝑧𝑖 = 𝜅𝑖 is a solution and, by our assumption that ℓ is non-geodesic, this solution is

non-vanishing. Tracing on 𝑖 and 𝑘 reveals that 𝑧𝑖 is an eigenvector of Φ𝑖𝑗 with eigenvalue

−Φ:

Φ𝑖𝑗𝑧𝑗 = −Φ𝑧𝑖. (3.45)

The previous two equations imply that Ω̂𝑖𝑗 = 0. Hence for any change of basis defined by

𝑧𝑖 satisfying (3.44), all positive boost weight Weyl components vanish in the new basis

(3.41), and hence ℓ̂ is a multiple WAND. Since �̂� = 𝑛 is also a multiple WAND, the

negative boost weight Weyl components still vanish, and hence the Type D condition is

still satisfied in the new basis. Note that, when working in a fixed basis that satisfies

the Type D condition, the priming symmetry discussed in Section 2.6.3 holds.

The LHS of (3.44) defines a linear map on 𝑧𝑖 at any point in spacetime. We know

that the kernel 𝐾 of this map is non-empty. Let 𝑛 be the dimension of 𝐾 at some point

𝑝 in the spacetime. By smoothness there must be a neighbourhood of 𝑝 in which the

dimension also equals 𝑛, and assuming analyticity, we can extend this to all points in the

spacetime, except possibly some set of zero measure where the dimension of 𝐾 differs.

In this neighbourhood, there exist 𝑛 linearly independent solutions 𝑧𝑖 of (3.44), and

hence a 𝑛-parameter family of multiple WANDs at any point. This family obviously

contains ℓ.
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The 𝑛 solutions 𝑧𝑖 define a 𝑛-dimensional distribution spanned by vector fields of the

form 𝑧𝑖𝑚𝑖. By rotating the spatial basis, we can divide it into a set {𝑚𝐼} that spans this

distribution and a set {𝑚𝛼} that is orthogonal to it. Here, indices 𝐼, 𝐽, . . . take values

2, 3, . . . , (𝑛+1) and indices 𝛼, 𝛽, . . . take values (𝑛+2), (𝑛+3), . . . , (𝑑−1). By definition,

the general solution of equation (3.44) is

𝑧𝛼 = 0, (3.46)

with 𝑧𝐼 arbitrary functions. From equation (3.45), it follows that

Φ𝐼𝐽 = −Φ𝛿𝐼𝐽 , Φ𝐼𝛼 = 0. (3.47)

The vectors 𝑚𝛼 can be chosen to diagonalize Φ𝛼𝛽. Note that we do not know that all

eigenvalues of Φ𝛼𝛽 differ from −Φ.

In this basis, equation (3.44) reduces to

Φ𝐼𝐽𝐾𝐿 = −2Φ𝛿𝐼[𝐾𝛿𝐿]𝐽 , Φ𝐼𝛼𝐽𝛽 = 𝛿𝐼𝐽Φ𝛼𝛽, Φ𝐼𝐽𝐾𝛼 = Φ𝐼𝐽𝛼𝛽 = Φ𝐼𝛼𝛽𝛾 = 0. (3.48)

We shall now use the Bianchi identities to deduce constraints on the form of 𝐿𝑎𝑏, 𝑁𝑎𝑏

and
𝛼

𝑀 𝐼𝑎. The following will be useful:

Lemma 3.8 If 𝑋𝛼 obeys Φ𝛼𝛽𝛾𝛿𝑋𝛿 − 2Φ𝛾[𝛼𝑋𝛽] = 0 everywhere then 𝑋𝛼 = 0 everywhere.

Proof. Extend 𝑋𝛼 to 𝑋𝑖 by defining 𝑋𝐼 = 0. Tracing on 𝛼 and 𝛾 gives Φ𝛽𝛿𝑋𝛿 = −Φ𝑋𝛿.

One can now check that all components of Φ𝑖𝑗𝑘𝑙𝑋𝑙 − 2Φ𝑘[𝑖𝑋𝑗] vanish everywhere, and

therefore 𝑋𝑖 lies in the kernel 𝐾 described above. But the directions 𝑚𝛼 were defined

to be those orthogonal to the kernel, and hence it follows that 𝑋𝛼 = 0. □
Using this Lemma, we now note that Equations (B1), and (B1)′ imply that

𝜅𝛼 = 𝜅′𝛼 = 0. (3.49)

Similarly, equation (3.29) says that (𝜏𝑖 − 𝜏 ′𝑖) obeys (3.44) everywhere and hence

𝜏𝛼 = 𝜏 ′𝛼. (3.50)

Setting 𝑖𝑗𝑘𝑙 = 𝛾𝛼𝛽𝐼 in (B4) gives

Φ𝛼𝛽𝛾𝛿𝜌𝛿𝐼 − 2Φ𝛾[𝛼𝜌𝛽]𝐼 = 0 (3.51)

so from Lemma 3.8 (treating 𝐼 as fixed) we obtain

𝜌𝛼𝐼 = 0. (3.52)

Similarly, from (B4)′ we obtain

𝜌′𝛼𝐼 = 0. (3.53)
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Setting 𝑖𝑗𝑘𝑙 = 𝛼𝛽𝛾𝐼 in (3.24) (which was obtained from (B3)), and using (3.52) gives

Φ𝛼𝛽𝛾𝛿

𝐼

𝑀 𝛿0 −2Φ𝛾[𝛼

𝐼

𝑀𝛽]0= 0, (3.54)

so Lemma 3.8 gives
𝐼

𝑀𝛼0= 0. (3.55)

Similarly, working from (B3)′ we obtain

𝐼

𝑀𝛼1= 0. (3.56)

Next, setting 𝑖𝑗𝑘𝑙𝑚 = 𝐼𝛽𝛿𝐽𝛾 in (3.38) we obtain

2𝛿[𝛾Φ𝛿]𝛽𝛿𝐼𝐽 = −2Φ𝛽[𝛾

𝐼

𝑀 𝛿]𝐽 − Φ𝛽𝛼𝛾𝛿

𝛼

𝑀 𝐼𝐽 + 2𝛿𝐼𝐽

(
Φ𝛼𝛽

𝛼

𝑀 [𝛾𝛿] + Φ𝛼[𝛾∣
𝛼

𝑀𝛽∣𝛿]
)
. (3.57)

However, setting 𝑖𝑗𝑘 = 𝛽𝛾𝛿 in (3.36) gives

−2𝛿[𝛾Φ𝛿]𝛽 = 2Φ𝛽[𝛾𝜏𝛿] − Φ𝛽𝛼𝛾𝛿𝜏𝛼 − 2
(
Φ𝛼𝛽

𝛼

𝑀 [𝛾𝛿] + Φ𝛼[𝛾∣
𝛼

𝑀𝛽∣𝛿]
)
. (3.58)

Combining these two equations gives

Φ𝛽𝛼𝛾𝛿𝑋𝛼𝐼𝐽 − 2Φ𝛽[𝛾𝑋𝛿]𝐼𝐽 = 0, (3.59)

where 𝑋𝛼𝐼𝐽 = 𝜏𝛼𝛿𝐼𝐽 +
𝛼

𝑀 𝐼𝐽 . Hence, using Lemma 3.8, and (3.50), we have

𝛼

𝑀 𝐼𝐽= −𝜏𝛼𝛿𝐼𝐽 = −𝜏 ′𝛼𝛿𝐼𝐽 . (3.60)

A convenient way of summarizing the above results is to define indices 𝐴,𝐵, . . . to take

values 0, 1, 2, . . . (𝑛+ 1). Using equations (3.48) and the definition of Φ𝑖𝑗, we find that

Φ𝐴𝐵𝐶𝐷 = −2Φ𝜂𝐴[𝐶𝜂𝐷]𝐵, (3.61)

where 𝜂𝐴𝐵 is the Minkowski metric (𝜂01 = 𝜂10 = 1, 𝜂𝐼𝐽 = 𝛿𝐼𝐽). We also have (using the

Type D condition and equations (3.48))

Φ𝐴𝐵𝐶𝛼 = Φ𝐴𝐵𝛼𝛽 = Φ𝐴𝛼𝛽𝛾 = 0, Φ𝐴𝛼𝐵𝛽 = 𝜂𝐴𝐵Φ𝛼𝛽. (3.62)

Equations (3.49, 3.50, 3.52, 3.53, 3.55, 3.56, 3.60) are equivalent to

𝛼

𝑀𝐴𝐵 = −𝜏𝛼𝜂𝐴𝐵. (3.63)

Using this, we have

[𝑒𝐴, 𝑒𝐵]𝛼 ≡ 2
𝛼

𝑀 [𝐴𝐵] = 0. (3.64)

Hence the distribution spanned by {𝑒𝐴} = {ℓ, 𝑛,𝑚𝐼} is integrable, in the sense of Frobe-

nius’ Theorem, and hence it is tangent to (𝑛+2)-dimensional submanifolds of spacetime.
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From equations (3.61) and (3.62), it follows that any null vector tangent to these sub-

manifolds is a multiple WAND.

Now the extrinsic curvature tensor of one of the submanifolds is defined by

𝐾(𝑋, 𝑌 ) = (∇𝑋𝑌 )⊥, (3.65)

where 𝑋 and 𝑌 are vector fields tangent to the submanifold, and ⊥ is the projection

perpendicular to the submanifold. The non-vanishing components are

𝐾𝛼𝐴𝐵 = − 𝛼

𝑀𝐴𝐵 = 𝜏𝛼𝜂𝐴𝐵, (3.66)

where we used (3.63). Hence the submanifolds are totally umbilic.

Let 𝒮 be one of the submanifolds. Calculating the Riemann tensor �̃�𝑎𝑏𝑐𝑑 of 𝒮 gives

�̃�𝑎𝑏𝑐𝑑 = ℎ 𝑎′
𝑎 ℎ 𝑏′

𝑏 ℎ
𝑐′
𝑐 ℎ

𝑑′
𝑑

[
𝑅𝑎′𝑏′𝑐′𝑑′ + 2

𝛼

𝑀 𝑐′[𝑎′∣
𝛼

𝑀𝑑′∣𝑏′]
]
, (3.67)

where

ℎ𝑎𝑏 = 𝜂𝐴𝐵𝑒
𝐴
𝑎 𝑒

𝐵
𝑏 = 𝜂𝑎𝑏 − 𝛿𝛼𝑎𝛿𝛼𝑏 (3.68)

is the projection operator onto 𝒮. Using 𝑒𝐴 as a basis on 𝒮, we have (using the relation

between the Riemann and Weyl tensors in 𝑑 dimensions, as well as the Einstein equation)

�̃�𝐴𝐵𝐶𝐷 = Φ𝐴𝐵𝐶𝐷 +
2Λ

𝑑− 1
𝜂𝐴[𝐶𝜂𝐷]𝐵 + 2

𝛼

𝑀 [𝐶∣𝐴
𝛼

𝑀 ∣𝐷]𝐵 (3.69)

Using equations (3.61) and (3.63) now gives

�̃�𝐴𝐵𝐶𝐷 = 2ℛ𝜂𝐴[𝐶𝜂𝐷]𝐵, (3.70)

where

ℛ =
Λ

𝑑− 1
− Φ + 𝜏𝛼𝜏𝛼. (3.71)

Furthermore, equation (3.70) is the statement that 𝒮 has constant curvature, since the

(𝑛 + 2)-dimensional Bianchi identity implies that ℛ is constant on 𝒮. This completes

the proof of Theorem 3.4. □
Note that from the 𝐼𝐽 components of equations (3.15), its primed version, and the

𝐼𝐽𝐾 components of (3.36) we also have

𝐷Φ = ΔΦ = 𝛿𝐼Φ = 0, (3.72)

so Φ is constant on any of the constant curvature submanifolds.

One further comment is useful here. Ref. [131] gives an example of a class of 7-

dimensional spacetimes that admit non-geodesic WANDs. For this example, it can be
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shown that the foliation is by 3-dimensional Lorentzian submanifolds of constant curva-

ture, and that the arbitrary function appearing in this solution can be eliminated by a

change of coordinates.

Recall that the reason we are interested in the totally umbilic condition (3.66) was

that a submanifold with this condition is totally null geodesic. For completeness, we now

give a proof of the lemma that establishes this:

Proof of lemma 3.5 Let 𝒮 be a Lorentzian submanifold of spacetime. Consider an

affinely parametrized null geodesic of 𝒮 with tangent vector 𝑈 , i.e., we have 𝑈 ⋅ ∇̂𝑈 = 0,

where ∇̂ is the Levi-Civita connection in 𝒮. This is equivalent to (𝑈 ⋅ ∇𝑈)∥ = 0, where

∥ denotes the projection tangential to 𝒮. Now, from the definition of the extrinsic

curvature 𝐾, we have

(𝑈 ⋅ ∇𝑈)⊥ = 𝐾(𝑈,𝑈). (3.73)

If 𝒮 is totally umbilic then the RHS vanishes because 𝑈 is null. Therefore all components

of 𝑈 ⋅ ∇𝑈 vanish so 𝒮 is totally null geodesic.

Conversely, if the manifold is totally null geodesic then pick a point 𝑝 on 𝒮, let 𝑈
be an arbitrary null vector tangent to 𝒮 at 𝑝, and consider the geodesic in 𝒮 that has

tangent vector 𝑈 at 𝑝. By assumption, this is a geodesic of the full spacetime, so the

RHS of the above equation must vanish. But 𝑝 and 𝑈 are arbitrary, so 𝐾(𝑈,𝑈) must

vanish for any null 𝑈 tangent to 𝒮, which implies that 𝒮 is totally umbilic.□

3.4 Results in five dimensions

In five dimensions, Theorem 3.6 gives an explicit list of spacetimes that can admit non-

geodesic multiple WANDs. Here we prove this theorem.

Proof of Theorem 3.6 In a 5-dimensional spacetime, the boost weight zero compo-

nents of the Weyl tensor are all determined by Φ𝑖𝑗, via equation (2.25). Assume that we

have a non-geodesic multiple WAND ℓ. From Lemma 3.3, we know that we can choose

a basis {ℓ, 𝑛,𝑚𝑖} so that the Type D condition is satisfied. Following Ref. [131], we

can substitute equation (2.25) into (3.2), to learn that the eigenvalues of Φ𝑖𝑗 must be

−Φ,Φ,Φ. Therefore we can choose the spatial basis vectors 𝑚𝑖 so that

Φ𝑖𝑗 = diag(−Φ,Φ,Φ). (3.74)

and

𝜅2 ∕= 0, 𝜅3 = 𝜅4 = 0. (3.75)
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The Weyl tensor is fully determined by the single scalar Φ. If Φ = 0 then the Weyl tensor

vanishes, in which case the spacetime is Minkowski or (anti-) de Sitter, i.e., case (i) of

the theorem. Henceforth we assume Φ ∕= 0. Since there is only one eigenvalue −Φ, we

know immediately (from (3.47)) that the constant curvature submanifolds of Theorem

3.4 must be 3-dimensional.

The Weyl tensor is sufficiently constrained that we can now solve completely the full

set of Bianchi equations. The results of Section 3.3 still apply here, and we will make

use of them below. Indices 𝛼, 𝛽 take values 3, 4, consistent with previous sections.

Firstly, the 𝛼 component of (3.34), combined with (3.50,3.60), gives

𝜏𝛼 = 𝜏 ′𝛼 =
2

𝑀𝛼2 =
1

4Φ
𝛿𝛼Φ. (3.76)

Also, the 𝛼𝛽 components of (B2) and its primed version, along with the 𝛼𝛽2 component

of (3.36) give, after using (3.72), that

𝜌𝛼𝛽 = 0, 𝜌′𝛼𝛽 = 0 and
2

𝑀𝛼𝛽 = 0 (3.77)

respectively.

This now leaves us with the following results, for some unknown 𝜌2𝑖, 𝜌
′
2𝑖, 𝜅2, 𝜅

′
2, 𝜏2,

𝜏 ′2, Φ:

𝐷Φ = 0, ΔΦ = 0, 𝛿2Φ = 0, (3.78)

𝜌𝑖𝑗 =

⎛⎜⎜⎝
𝜌22 𝜌23 𝜌24

0 0 0

0 0 0

⎞⎟⎟⎠ , 𝜅𝑖 =

⎛⎜⎜⎝
𝜅2

0

0

⎞⎟⎟⎠ , 𝜏𝑖 =

⎛⎜⎜⎝
𝜏2

𝛿3Φ/(4Φ)

𝛿4Φ/(4Φ)

⎞⎟⎟⎠ , (3.79)

𝜌′𝑖𝑗 =

⎛⎜⎜⎝
𝜌′22 𝜌′23 𝜌′24
0 0 0

0 0 0

⎞⎟⎟⎠ , 𝜅′𝑖 =

⎛⎜⎜⎝
𝜅′2
0

0

⎞⎟⎟⎠ , 𝜏 ′𝑖 =

⎛⎜⎜⎝
𝜏 ′2

𝛿3Φ/(4Φ)

𝛿4Φ/(4Φ)

⎞⎟⎟⎠ , (3.80)

2

𝑀 𝑖𝑗 =

⎛⎜⎜⎝
0 0 0

𝛿3Φ/(4Φ) 0 0

𝛿4Φ/(4Φ) 0 0

⎞⎟⎟⎠ ,
2

𝑀 𝑖1 =

⎛⎜⎜⎝
0

0

0

⎞⎟⎟⎠ ,
2

𝑀 𝑖0 =

⎛⎜⎜⎝
0

0

0

⎞⎟⎟⎠ . (3.81)

Furthermore, inserting (3.78-3.81) into the full set of Bianchi equations ((B1-B7), along

with their primed versions), we find that this is sufficient to satisfy all of them, with

no further restrictions. This is to be expected, as we have given all information that is

invariant under both boosts, and the subgroup of spins that preserve the 𝑚2 direction.

Next we shall show that the 5D spacetime must be a warped product. We shall do

this by showing that it is conformal to a product spacetime. To this end, let ℎ𝜇𝜈 denote

the tensor that projects onto the 3D submanifolds, i.e.,

ℎ𝜇𝜈 = ℓ𝜇𝑛𝜈 + 𝑛𝜇ℓ𝜈 +𝑚𝜇
2𝑚2 𝜈 . (3.82)
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Now define

𝐻𝜇𝜈𝜌 ≡ ∇𝜌ℎ𝜇𝜈 . (3.83)

Using the above results, the only non-vanishing null frame components of this are

𝐻301 = 𝐻310 = 𝐻322 =
𝛿3Φ

4Φ
and 𝐻401 = 𝐻410 = 𝐻422 =

𝛿4Φ

4Φ
(3.84)

as well as those related to these components by the symmetry in the first two indices.

Now consider a conformally related spacetime, with metric

𝑔 = ∣Φ∣1/2𝑔. (3.85)

Let ∇̃ denote the Levi-Civita connection in the new spacetime. Using the relation

between ∇̃ and ∇, and the above results for 𝐻, we find that

∇̃𝜌ℎ
𝜇
𝜈 = 0. (3.86)

However, this is the necessary and sufficient condition for the new spacetime to be

decomposable [27]. That is, there exist coordinates (𝑥𝐴, 𝑦𝛼) so that the metric takes the

form

𝑑𝑠2 = 𝑔𝐴𝐵(𝑥) 𝑑𝑥
𝐴𝑑𝑥𝐵 + 𝑔𝛼𝛽(𝑦) 𝑑𝑦

𝛼𝑑𝑦𝛽, (3.87)

where 𝐴,𝐵 = 0, 1, 2 and 𝛼, 𝛽 = 3, 4 are coordinate indices only for this equation, and

the remainder of this section. The 3D submanifolds are surfaces of constant 𝑦𝛼. These

are orthogonal to 2D submanifolds of constant 𝑥𝐴. In this coordinate chart, equations

(3.78) reduce to Φ = Φ(𝑦). We now see that the physical metric is a warped product:

𝑑𝑠2 = ∣Φ(𝑦)∣−1/2𝑔𝐴𝐵(𝑥)𝑑𝑥
𝐴𝑑𝑥𝐵 + 𝑔𝛼𝛽(𝑦)𝑑𝑦

𝛼𝑑𝑦𝛽, (3.88)

where 𝑔𝛼𝛽(𝑦) = ∣Φ(𝑦)∣−1/2𝑔𝛼𝛽(𝑦). The surfaces of constant 𝑦
𝛼 are constant curvature, so

𝑔𝐴𝐵(𝑥) is the metric of 3D Minkowski or (anti-)de Sitter spacetime. We now see that

the symmetries of the constant curvature submanifolds extend to symmetries of the full

spacetime. Hence we can apply Birkhoff’s theorem to deduce that the 5D spacetime

must be isometric to either (ii) (if Φ is constant) or (iii) in the statement of the theorem.

□

3.4.1 Comments on the six-dimensional case

Consider now a 6D Einstein spacetime admitting a non-geodesic multiple WAND. Let us

use the same notation as we did in the proof of Proposition 3.3. We already know some

of the components of Φ𝑖𝑗𝑘𝑙 from equation (3.12). The remaining components Φ�̂�𝚥𝑘�̂� have
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the symmetries of the Riemann tensor in 3D, hence they are completely determined by

their trace Φ�̂�𝚥𝑘𝚥 = −3Φ�̂�𝑘 (see (3.32)). This gives

Φ�̂�𝚥𝑘�̂� = −6(𝛿�̂�[𝑘Φ�̂�]𝚥 − 𝛿𝚥[𝑘Φ�̂�]̂𝚤) + 6Φ𝛿�̂�[𝑘𝛿�̂�]𝚥. (3.89)

Together with Proposition 3.3, this implies that the Weyl tensor is fully determined by

Φ𝑖𝑗. We can substitute this into equation (3.2) to learn that the constant curvature

submanifolds of Theorem 3.4 have dimension three unless (i) the eigenvalues of Φ𝑖𝑗 are

−Φ,−Φ, 3Φ/2, 3Φ/2 with Φ ∕= 0, in which case they have dimension four; or (ii) Φ𝑖𝑗 = 0,

in which case the spacetime is type O (i.e. Minkowski or (anti-)de Sitter spacetime).

The case of the foliation by four-dimensional submanifolds can be analyzed using a

similar method to the proof of Theorem 3.6. The result is that the spacetime must be

either a direct product 𝑑𝑆4 × 𝑆2 or 𝐴𝑑𝑆4 ×𝐻2, or a spacetime with metric

𝑑𝑠2 = 𝑟2𝑑𝑠24 +
𝑑𝑟2

𝑈(𝑟)
+ 𝑈(𝑟)𝑑𝑧2, 𝑈(𝑟) = 𝑘 − 𝑚

𝑟3
− Λ

5
𝑟2, (3.90)

where 𝑚 ∕= 0, 𝑘 ∈ {1, 0,−1}, 𝑑𝑠24 is the metric of a 4D Lorentzian space of constant cur-

vature (i.e. 4D Minkowski or (anti-)de Sitter) with Ricci scalar 12𝑘, and the coordinate

𝑟 takes values such that 𝑈(𝑟) > 0. These solutions are the 6D analogues of cases (ii)

and (iii) of Theorem 3.6.

Now consider the case in which the constant curvature submanifolds are three dimen-

sional. In this case, we might hope to prove that the distribution orthogonal to these

submanifolds is integrable. Here, coordinates could be introduced so that the metric

takes the form

𝑑𝑠2 = 𝐹 (𝑥, 𝑦)2𝑔𝐴𝐵(𝑥)𝑑𝑥
𝐴𝑑𝑥𝐵 + 𝑔𝛼𝛽(𝑥, 𝑦)𝑑𝑦

𝛼𝑑𝑦𝛽, (3.91)

where 𝐴,𝐵 range from 0 to 2 and 𝛼, 𝛽 range from 3 to 5 and the surfaces of constant 𝑦𝛼

are the constant curvature submanifolds. The constant curvature condition implies that

the coordinates 𝑥𝐴 can be chosen so that

𝐹 (𝑥, 𝑦)2𝑔𝐴𝐵(𝑥) =
𝜂𝐴𝐵(

𝑎(𝑦)𝜂𝐶𝐷𝑥𝐶𝑥𝐷 + 𝑏𝐶(𝑦)𝑥𝐶 + 𝑐(𝑦)
)2 , (3.92)

for some 𝑎(𝑦), 𝑏𝐶(𝑦) and 𝑐(𝑦), where 𝜂𝐴𝐵 is the 3d Minkowski metric. Note that it

is not obvious that the symmetries of the constant curvature submanifolds extend to

symmetries of the spacetime.

Using the Bianchi identity, we are able to prove that the distribution orthogonal to

the constant curvature submanifolds is indeed integrable except when Φ𝑖𝑗 has eigenvalues

0, 0, 𝜙,−𝜙 for some scalar 𝜙 ∕= 0 (this implies Φ = 0). We have not made any progress

in analyzing this exceptional case so we shall not give further details here. In more than

six dimensions, it seems likely that the distribution orthogonal to the submanifolds of

constant curvature will be non-integrable except in special cases.
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3.5 Discussion

Theorem 3.2 is a useful result when attempting to prove general results about alge-

braically special spacetimes, as one can work with a geodesic multiple WAND without

loss of generality.

However, much of the power of the four-dimensional Goldberg-Sachs theorem is that

it allows one to check whether a null vector field is tangent to a repeated principal null

direction without explicitly calculating the Weyl tensor. From a computational point of

view, this is a huge advantage. Is there a full generalisation of such a result to higher

dimensions? Given our results on geodesity, it seems that an analogous result in higher

dimensions would have to apply only to geodesic multiple WANDs.

To be specific, to be a true generalization of the original Goldberg-Sachs theorem, a

result would need to take the form: A null vector field ℓ is a geodesic multiple WAND if

and only if it is tangent to a null geodesic congruence with particular optical properties.

3.5.1 Progress towards a full theorem

It seems fair to say that, to date, progress on this issue has been rather limited. There

are a series of partial results, mainly attempting to derive restrictions on the optics of

null vector fields, with the assumption that they are tangent to multiple WANDs.

One example of such a partial result is the following:

Lemma 3.9 Let ℓ be a multiple WAND of Type N alignment in an Einstein spacetime.

Then the optical matrix 𝝆 takes the form

𝝆 =
1

2

⎛⎜⎜⎝
𝜌 𝑎

−𝑎 𝜌
0

0 0

⎞⎟⎟⎠ (3.93)

(in a frame where its symmetric part is diagonalized), for some 𝜌, 𝑎. If 𝜌 = 0 then 𝑎 = 0

and the spacetime is Kundt (i.e. 𝝆 = 0).

This result was previously obtained in [122], but the proof given here is significantly

simpler; this also provides a nice example of the utility of the GHP formalism.

Proof of Lemma 3.9: By Lemma 3.7, all multiple WANDs in Type N spacetimes are

geodesic. Hence ℓ is geodesic (𝜿 = 0). For Type N spacetimes, by definition, the only
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non-vanishing Weyl components are Ω′. The Bianchi equations imply that

þΩ′
𝑖𝑗 = −Ω′

𝑖𝑘𝜌𝑘𝑗, (3.94)

Ω′
𝑖[𝑗𝜌𝑘𝑙] = 0, (3.95)

Ω′
𝑖[𝑘∣𝜌𝑗∣𝑙] = Ω′

𝑗[𝑘∣𝜌𝑖∣𝑙]. (3.96)

Let S and 𝝎 denote the symmetric and antisymmetric parts of 𝝆 respectively. Tracing

(3.95) on 𝑖 and 𝑘 gives

Ω′𝝎 + 𝝎Ω′ = 0. (3.97)

Similarly, tracing (3.96) on 𝑖 and 𝑘 gives

Ω′𝝆+ 𝝆Ω′ = (tr𝝆)Ω′ (3.98)

and, using (3.97), this gives

Ω′S+ SΩ′ = (trS)Ω′. (3.99)

Now we take the antisymmetric part of (3.94) to obtain

0 = −[Ω′,S]− (Ω′𝝎 + 𝝎Ω′), (3.100)

and after applying (3.97) this tells us that [Ω′,S] = 0, and hence Ω′ and S are simul-

taneously diagonalizable, via rotations of the 𝑚𝑖. Work in a basis where Ω′ and S are

diagonal. Let 𝑁 be the number of eigenvalues of Ω′ that do not vanish everywhere in

the spacetime, then we can shuffle the 𝑚𝑖 so that

Ω′ = diag(Ω′
(2), ...,Ω

′
(𝑁+1), 0, ..., 0) and S = diag(𝑠(2), ..., 𝑠(𝑑−1)), (3.101)

with all the Ω′
(𝛼) non-zero (where from now on in this section, indices 𝛼, 𝛽, ... range over

2, ..., 𝑁 +1 and 𝐼, 𝐽, ... range over 𝑁 +2, ..., 𝑑−1). As the spacetime is Type N not Type

O, we must have 𝑁 ≥ 1. Putting this into (3.99) gives (with no summation),

Ω′
(𝑖)𝑠(𝑖) =

1

2
Ω′

(𝑖)(trS) (3.102)

for all 𝑖 and hence

𝑠(𝛼) =
trS

2
for 𝛼 = 2, ..., 𝑁 + 1. (3.103)

Also, the 𝛼𝐼 component of (3.97) implies that 𝜔𝐼𝛼 = 0 = 𝜔𝛼𝐼 , so 𝝆 is block diagonal

with blocks of size 𝑁 and 𝑑− 2−𝑁 . Finally, taking the 𝑖𝑗𝑘𝑙 = 𝐼𝛼𝐽𝛽 component of the

Bianchi equation (3.96) gives Ω′
𝛼𝛽𝜌𝐼𝐽 = 0 and hence 𝜌𝐼𝐽 = 0.

In summary, we have shown so far that (recall trS = 𝜌)

𝝆 =

(
𝜌
2
1𝑁 + 𝝎𝑁 0

0 0

)
(3.104)
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where 1𝑁 is the 𝑁 ×𝑁 identity matrix, and 𝝎𝑁 is antisymmetric. Taking the trace tells

us that 𝜌 = 𝑁𝜌/2 hence either (i) 𝑁 = 2 or (ii) 𝜌 = 0.

In case (i), we have proved that 𝝆 must take the form (3.93) for some 𝑎.

In case (ii), S = 0. The trace of equation (B.2) gives þ(trS) = −tr(S2)− tr(𝝎2) and

hence we see that tr(𝝎2) = −𝜔𝑖𝑗𝜔𝑖𝑗 = 0, so 𝝎 = 0 and the spacetime is Kundt. (In fact

S = 0 implies 𝝎 = 0 for all Einstein spacetimes [123].) □
Type N is the simplest of the algebraic types to analyse in this way, and obtaining

similar results for Type II or Type III spacetimes is more difficult. Various partial results

exist, see e.g. [122, 131, 2]; and it seems that a natural decomposition into 2× 2 blocks

often occurs. This perhaps gives a hint about why four dimensions is so special in this

context; this is the dimension where there is always exactly one of these 2× 2 blocks.

To try and build more intuition, it is interesting to consider other special cases. For

example, the following result gives a clear example of a decomposition into multiple 2×2

blocks:

Lemma 3.10 (Ortaggio et al. [157]) Let 𝑔 be an Einstein metric of the Kerr-Schild

form

𝑔𝜇𝜈 = 𝜂𝜇𝜈 +𝐻ℓ𝜇ℓ𝜈 (3.105)

where the function 𝐻 is chosen such that ℓ is tangent to affinely parametrized null

geodesics, and hence we can choose coordinates such that ℓ = ∂/∂𝑟. Then, for some

non-negative integers 𝑝,𝑞 with 𝑝+ 𝑞 ≤ 𝑑− 2, one can choose a real spatial basis 𝑚𝑖 such

that the optical matrix of ℓ takes the block diagonal form

𝝆 = blockdiag
(
R(1),R(2), . . . ,R(𝑝)︸ ︷︷ ︸

2𝑝

, 1
𝑟
, . . . , 1

𝑟︸ ︷︷ ︸
𝑞

, 0, . . . , 0︸ ︷︷ ︸
𝑑−2−𝑞−2𝑝

)
(3.106)

where the R(𝛼) are shearfree 2× 2 blocks of the form

R(𝛼) =
1

𝑟2 + 𝑐2(𝛼)

(
𝑟 𝑐(𝛼)

−𝑐(𝛼) 𝑟

)
(3.107)

for some 𝑐(𝛼) (not dependent on 𝑟). Furthermore,
𝑖

𝑀 𝑗0 = 0 and hence this block diagonal

form is parallelly propagated along ℓ.

Kundt spacetimes

Going the other way, i.e. proving that a null vector field is a multiple WAND given certain

optical properties, seems to be more difficult. One example of where this can be done is

for Kundt spacetimes. These are spacetimes admitting a null geodesic congruence with

vanishing expansion, rotation and shear. This important class of exact solutions to the
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Einstein equations in four dimensions was first discussed by Kundt [84], typically this null

vector can be thought of as the direction of propagation of a plane fronted gravitational

wave. The definition extends naturally to higher dimensions. In our notation, this means

that a spacetime is Kundt if and only if there exists a choice of ℓ such that 𝝆 = 0 = 𝜿.

It is known [123] that any Kundt spacetime, with matter such that it admits a choice

of basis for which 𝑅00 = 𝑅0𝑖 = 0, is algebraically special in the sense of Definition 2.5.

Using the GHP formalism we can both prove this in a more convenient manner, and in

fact generalize the result slightly:

Theorem 3.11 Let ℓ be a non-expanding, non-twisting, non-shearing null geodesic con-

gruence in a Kundt spacetime (ℳ, 𝑔). Then ℓ is a WAND.

If (ℳ, 𝑔) has matter such that the vector field 𝑅(ℓ) ≡ 𝑅𝜇
𝜈ℓ
𝜈 is null then it is alge-

braically special with multiple WAND ℓ.

The conditions of this theorem include Einstein spacetimes, as well as any matter for

which ℓ is an eigenvector of the Ricci tensor (e.g. aligned null radiation).

Proof: In GHP notation, the Kundt property is equivalent to the statement that 𝜿 = 0

and 𝝆 = 0. Consider the Newman-Penrose equations (for spacetimes with arbitrary

matter) given in Appendix A. Equation (NP1m) reads

0 = −Ω𝑖𝑗 − 1
𝑑−2

𝜔𝛿𝑖𝑗, (3.108)

and taking the trace and tracefree parts of this implies that 𝜔 ≡ 𝑅00 = 0 and Ω𝑖𝑗 = 0.

Hence ℓ is a WAND.

Now, the NP equation (NP3m) implies that

Ψ𝑖𝑗𝑘 =
2
𝑑−2

𝛿𝑖[𝑗𝜓𝑘] (3.109)

where 𝜓𝑘 ≡ 𝑅0𝑘. We now need to use the assumption on the matter content of the

spacetime. Note that

𝜓𝑖𝜓𝑖 = ℓ𝜇ℓ𝜌𝑚𝜈
𝑖𝑚

𝜎
𝑖 𝑅𝜇𝜈𝑅𝜌𝜎 = 𝑅(ℓ)𝜇𝑅(ℓ)

𝜇 − 2𝜔𝜙 (3.110)

where 𝜙 ≡ 𝑅01. But we have already shown that 𝜔 = 0, and hence the assumption

𝑅(ℓ).𝑅(ℓ) = 0 is sufficient to give 𝜓𝑖 = 0 and hence Ψ𝑖𝑗𝑘 = 0. Hence, ℓ is a multiple

WAND.□
In fact, it is also known that all Einstein spacetimes admitting a shearfree null

geodesic congruence are algebraically special. The spacetimes in this class that are

not Kundt are known as Robinson-Trautman spacetimes, and are characterized by an

optical matrix with 𝜌(𝑖𝑗) =
𝜌
𝑑−2

𝛿𝑖𝑗 with non-zero expansion 𝜌. Ref. [158] constructed a

canonical form for all such metrics, and showed that they are algebraically special.

In the shearing case, progress has proved significantly more difficult.
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3.5.2 Non-existence of a full theorem?

Perhaps the difficulty in proving a more complete version of such a theorem is that no

such theorem exists? One way of gaining intuition for whether two sets of conditions are

likely to be equivalent is to count components.

A null vector field is a multiple WAND if and only if Ω = Ψ = 0. Naively, it appears

that this is a condition on [Ω] + [Ψ] independent real components, where

[Ω] = 1
2
𝑑(𝑑− 3), [Ψ] = 1

3
(𝑑− 1)(𝑑− 2)(𝑑− 3) (3.111)

are the number of boost weight +2 and +1 components of the Weyl tensor in 𝑑 dimen-

sions.

Algebraic conditions on the optics of ℓ are given by the optical matrix 𝝆, which can

be split into conditions on its expansion 𝜌, shear 𝝈 and twist 𝝎. They have the following

number of independent components:

[𝜌] = 1, [𝝈] = 1
2
𝑑(𝑑− 3), [𝝎] = 1

2
(𝑑− 2)(𝑑− 3), [𝜿] = 𝑑− 2. (3.112)

In four dimensions, [Ω] = [Ψ] = 2, and [𝜿] = [𝝈] = 2 (and hence each of these objects

can be encoded in terms of a single complex scalar). Naively, the fact that there are four

independent components on ‘each side’ of the Goldberg-Sachs theorem makes it plausible

that an equivalence between the two sets of conditions is potentially possible.

What happens if we try to perform a similar counting argument in higher dimensions?

We know that it will not be sufficient to only specify information about the shear, as

multiple WANDs are sometimes, but not always, shearing in higher dimensions. If we

allow ourselves to specify information about all parts of 𝝆, then the ‘optical side’ of the

Goldberg-Sachs theorem involves [𝜿] + [𝜌] + [𝝈] + [𝝎] components. A brief calculation

shows that (
[Ω] + [Ψ]

)− ([𝜿] + [𝜌] + [𝝈] + [𝝎]
) ≥ 1 ∀𝑑 ≥ 5. (3.113)

Given this, is it tempting to speculate that the multiple WAND condition is more re-

strictive than any possible condition on the optics of a null direction, and hence that a

two-way Goldberg-Sachs theorem probably doesn’t exist in higher dimensions.

However, we have missed some important constraints; namely how the canonical

form of the optical matrix 𝝆 varies under parallel transport along ℓ. In, for example,

the Kerr-Schild case discussed above it is crucial that the canonical form of the matrix

is preserved under parallel propagation along ℓ. If 𝑚𝑖 and 𝑚𝑗 are vectors spanning the

2× 2 block R(𝛼) in Lemma 3.10, then this requires þ𝑚𝑖, þ𝑚𝑗 ∈ span{𝑚𝑖,𝑚𝑗}. However,
this can only introduce 𝒪(𝑑2) further conditions, while Ψ = 0 gives 𝒪(𝑑3) conditions,



82 CHAPTER 3. GEODESITY OF MULTIPLE WANDS

so for sufficiently large dimension 𝑑 there will still be more conditions on one side of the

possible equivalence than the other.

Note that in the case of Kundt or Robinson-Trautman spacetimes, where it can

be deduced from optical properties that a vacuum spacetime is algebraically special

[123, 158], this issue of parallel propagation does not occur, as there are not multiple

distinct blocks. Of course these classes include all algebraically special vacuum metrics

with a twistfree repeated PND in four dimensions.

If such a theorem does not exist in higher dimensions, how could this be demonstrated

conclusively? A clear counterexample would take the form of two null vector fields

(probably in two distinct vacuum spacetimes), with optical properties that appear to

be identical (i.e. two optical matrices of the same canonical form, preserved properly

under parallel transport), only one of which is a multiple WAND. Further investigation

is needed to clear this issue up; it is not clear whether or not the problem is tractable in

the immediate future.

3.5.3 Other approaches

Perhaps the difficulty with making further progress on a Goldberg-Sachs theorem in

higher dimensions is that we are using the ‘wrong’ definition of algebraically special.

Recent work [142, 159] proposes an alternative generalization of the notion of a Type

II spacetime in higher dimensions. Their definition is more restrictive than that of the

CMPP classification; in CMPP language it corresponds to the vanishing of all positive

boost weight components, as well as particular boost weight 0 and -1 components. In five

dimensions, Taghavi-Chabert [159] was able to use this definition to prove that a par-

ticular optical structure (associated to the algebraically special property) is integrable.

However, it is also demonstrated that the direct converse to this result does not hold,

with the black ring admitting an appropriate integrable optical structure but not being

algebraically special.

Separately, other recent work [127, 160] suggests ways of refining the CMPP classifi-

cation, using the decomposition of components of different boost weights into irreducible

components under the action of spins X ∈ 𝑆𝑂(𝑑− 2). It is possible that more progress

could be made towards a Goldberg-Sachs theorem by using this refinement to make a

more (or less) restrictive definition of algebraically special. This idea has not yet been

investigated in detail.



Chapter 4

Decoupling perturbations of

algebraically special spacetimes

4.1 Introduction

The previous two chapters have focused on developing the theory behind the higher-

dimensional GHP formalism. Here, we move on to study an application. We look to

develop a new approach to analysing the stability of higher-dimensional black holes,

motivated by successful approaches in four dimensions. In particular, we will consider

linearized scalar field, electromagnetic and gravitational perturbations of algebraically

special spacetimes, and define a new set of gauge invariant variables which can be used

to describe the perturbations.

Furthermore, we attempt to find a decoupled equation describing these perturba-

tions. This is not fully successful; in higher dimensions we will only be able to achieve

decoupling for Kundt spacetimes. The usefulness of this will be discussed in Chapter

5. Despite the failure of decoupling for black hole spacetimes in higher dimensions, the

new gauge invariant quantities may provide a useful new approach to studying linearized

perturbations numerically.

In Section 1.7 we reviewed some existing results for analysing the linearized stability

of black holes in higher dimensions. The existing methods have two particular difficulties.

Firstly, they require the numerical solution of highly complicated, coupled differential

equations. Furthermore, after solving these equations, it must be checked that the

solutions found do not correspond to ‘pure gauge’ modes that do not represent physical

perturbations of the spacetime.

The cases where a stability analysis has proved tractable concern black holes with a

large isometry group, occurring for example in the Schwarzschild solution, or particularly

83
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symmetric examples of Myers-Perry black holes with many of the angular momenta

coinciding.

However, in four dimensions, there is an alternative approach to studying black hole

stability, due to Teukolsky [30, 161]. This exploits the algebraically special nature of

black hole solutions. It is this approach, using the 4D Newman-Penrose formalism,

which originally rendered tractable the study of perturbations of the Kerr solution, and

hence it is natural to ask whether this method can be applied in higher dimensions.

Consider a 4D spacetime with null tetrad (ℓ, 𝑛,𝑚, �̄�). Recall that the Weyl tensor

is encoded in the Newman-Penrose scalars Ψ0, . . . ,Ψ4. Now, consider a linearized per-

turbation of such a spacetime. Let Ψ
(0)
𝐴 denote the unperturbed value of Ψ𝐴, and let

Ψ
(1)
𝐴 denote the perturbation. In general, there is gauge freedom in this perturbation,

corresponding to the possibility of infinitesimal coordinate transformations and infinites-

imal changes of tetrad. However, it can be shown [31] that Ψ
(1)
0 is gauge invariant if and

only if ℓ is a repeated principal null direction of the background spacetime. Therefore,

for perturbations of algebraically special spacetimes, there exists a local, gauge-invariant

quantity, linear in the metric perturbation.

This gauge-invariant quantity seems likely to be useful when studying perturbations.

However, something much more surprising happens. In a general spacetime, the lin-

earized equations of motion will lead to coupled equations for the quantities Ψ
(1)
𝐴 . Re-

markably, in an algebraically special spacetime, Teukolsky [30] showed that one can

decouple these equations to obtain a single, second order, wave equation for Ψ
(1)
0 . In

fact, this Teukolsky equation can be generalized to describe perturbations of other kinds;

for example electromagnetic test fields in the background of an algebraically special

spacetime.

If the background is Type D, then we can choose both ℓ and 𝑛 to be repeated principal

null directions, and both Ψ
(1)
0 and Ψ

(1)
4 are gauge invariant and both satisfy decoupled

equations of motion.

Stewart & Walker [31] used the GHP formalism to gain a fuller understanding of

why Teukolsky’s approach is successful, as well as giving a far simpler derivation of

the Teukolsky equation. It is their approach that we will follow when looking for the

higher-dimensional generalization.

In Chapter 2 we described the development of a higher-dimensional generalization

of the GHP formalism; based around a particular choice of two null vectors ℓ and 𝑛.

Recall that the appropriate generalization of Ψ0 is a (𝑑−2)× (𝑑−2) traceless symmetric

matrix Ω𝑖𝑗 ≡ 𝐶0𝑖0𝑗, while the analogue of Ψ4 is another such matrix, Ω′
𝑖𝑗 ≡ 𝐶1𝑖1𝑗. These

quantities transform as scalars under general coordinate transformations. Note that the

number of independent components of Ω (or Ω′) is the same as the number of physical
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degrees of freedom of the gravitational field.

Just as for 𝑑 = 4, we find that Ω(1) is invariant under infinitesimal coordinate trans-

formations and infinitesimal changes of basis if (and only if) ℓ is a multiple WAND. If the

background is is Type D (or O), we can choose both ℓ and 𝑛 to be multiple WANDs, and

find that both Ω(1) and Ω′(1) are gauge invariant. This gauge invariance implies that,

irrespective of decoupling, these quantities are natural objects to consider when studying

gravitational perturbations of higher-dimensional algebraically special solutions.

We will study linearized gravitational perturbations of algebraically special space-

times satisfying the vacuum Einstein equation (allowing for a cosmological constant).

We find that Ω(1) satisfies a decoupled equation in an algebraically special vacuum

spacetime with 𝑑 > 4 if, and only if, ℓ is geodesic and free of expansion, rotation and

shear. We also analyze the simpler case of a Maxwell field and find that exactly the

same condition is required for decoupling in this case.

Recall that a spacetime admitting a null geodesic congruence with vanishing expan-

sion, rotation and shear is known as a Kundt spacetime. In Theorem 3.11 we used

the GHP formalism to show that any such spacetime is algebraically special (in vac-

uum). Hence our result is that electromagnetic and gravitational perturbations can be

decoupled in this way if, and only if, the spacetime is Kundt.

In four dimensions, decoupling requires only that ℓ be geodesic and shearfree. By

the Goldberg-Sachs theorem, we know that such an ℓ can be found in any algebraically

special spacetime; so this is not a restrictive condition. By contrast, the condition that

we have found in higher dimensions is far more restrictive.

Sometimes both Ω(1) and Ω′(1) satisfy decoupled equations; this occurs if ℓ and 𝑛

are both geodesic with vanishing expansion, rotation and shear. We will refer to such a

spacetime as doubly Kundt ; and note that a doubly Kundt spacetime must be Type D

(or O).

Unfortunately, black hole spacetimes are not Kundt and therefore decoupling does

not occur in higher-dimensional black hole spacetimes.1 Obviously is it disappointing

that decoupling does not occur for the Myers-Perry solution.2 However, as we noted

in Section 5.2.1, the near-horizon geometries of extreme vacuum black holes are Kundt

spacetimes. Therefore our decoupled equation is ideal for studying perturbations of

1There is no contradiction with the results of Ishibashi & Kodama [96], since that reference studies

perturbations by exploiting the spherical symmetry of the Schwarzschild solution rather than its Type

D property, i.e., Ω(1) is not used to describe the perturbation. The quantities that satisfy decoupled

equations are non-local in the metric perturbation.
2Nevertheless, we emphasize that the quantities Ω(1), Ω

′(1) should be useful in studies of Myers-Perry

perturbations because of their locality and gauge invariance.
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near-horizon geometries. In Chapter 5 we will apply our techniques to this problem, and

discuss what information this can give us about the stability of higher-dimensional black

holes.

The current chapter is organized as follows. In Section 4.2 we investigate the existence

of gauge invariant quantities, and show that Ω(1) is gauge invariant if and only if the

background spacetime is algebraically special. We then move on to consider decoupling

of perturbations. As a warm-up exercise, in Section 4.3 we consider the decoupling of

Maxwell perturbations, as this simpler example illustrates the approach that we use

in the gravitational case in Section 4.4. Finally, in Section 4.5 we discuss the possible

applications of our results, leading into Chapter 5 where we will use our results to study

perturbations of near-horizon geometries.

4.2 Gauge-invariant variables

We are interested in linearized perturbations of spacetimes. For a quantity X, we shall

write X = X(0) +X(1) where X(0) is the value in the background spacetime and X(1) is

the perturbation. Following Ref. [31], we look to find variables that are gauge invariant

under both infinitesimal coordinate transformations and infinitesimal changes of basis.

Let X be a spacetime scalar. Then, under an infinitesimal coordinate transformation

with parameters 𝜉𝜇, we have X(1) → X(1) + 𝜉. ∂X(0). Hence X(1) is invariant under

infinitesimal coordinate transformations if, and only if, X(0) is constant.

In four dimensions, as discussed above, Ψ
(1)
0 is a gauge invariant quantity describing

gravitational perturbations in four-dimensional algebraically special spacetimes. Hence,

we are motivated to consider X = Ω. Is this gauge invariant? It turns out that the

result is the same as the four-dimensional one:

Lemma 4.1 Ω(1) is a gauge invariant quantity if and only if ℓ is a multiple WAND of

the background spacetime (or equivalently, if and only if Ψ(0) = 0 = Ω(0)).

Proof: First we consider infinitesimal basis transformations. Consider an infinitesimal

spin of the form (2.21). If Ω(0) is non-vanishing then this will induce a change in Ω(1).

Hence we must have Ω(0) = 0 for Ω(1) to be gauge invariant.

Next consider an infinitesimal null rotation (2.23) about 𝑛. From equation (2.23),

the change in Ω(1) is, to linear order in the infinitesimal parameters 𝑧𝑖,

Ω
(1)
𝑖𝑗 7→ Ω

(1)
𝑖𝑗 − 2𝑧𝑘(Ψ

(0)
(𝑖 𝛿𝑗)𝑘 +Ψ

(0)
(𝑖𝑗)𝑘). (4.1)

For invariance, we need

Ψ
(0)
(𝑖 𝛿𝑗)𝑘 +Ψ

(0)
(𝑖𝑗)𝑘 = 0. (4.2)
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Taking the trace on 𝑗 and 𝑘 gives Ψ
(0)
𝑖 = 0. We then use the relation Ψ𝑖𝑗𝑘 =

2
3
(Ψ(𝑖𝑗)𝑘 −

Ψ(𝑖𝑘)𝑗) to deduce that Ψ
(0)
𝑖𝑗𝑘 = 0. So we conclude that invariance ofΩ(1) under infinitesimal

basis transformations implies that

Ω(0) = 0 = Ψ(0). (4.3)

It is easy to see that these conditions are both necessary and sufficient for Ω(1) to be

invariant under infinitesimal basis transformations. These conditions are equivalent to

the statement that ℓ is a multiple WAND of the background geometry.

Finally, since Ω(0) = 0, it follows that Ω(1) is invariant under infinitesimal coordinate

transformations. □
Similarly, Ω′(1) is gauge invariant if, and only if, 𝑛 is a multiple WAND. Hence both

quantities are gauge invariant if, and only if, the spacetime is Type D.3

Now consider a Maxwell field. We shall consider only a test field, i.e. we neglect

gravitational backreaction and treat the Maxwell field as an infinitesimal quantity that

vanishes in the background. It follows that all components are invariant to first order

under infinitesimal coordinate transformations and infinitesimal basis transformations.

Note that, since we are treating the Maxwell field as infinitesimal, and working to first

order, there is no distinction between Maxwell theory and Maxwell theory with a Chern-

Simons term.

So far we have discussed only infinitesimal basis transformations. However, some-

times one might want to consider finite transformations. For example, consider a Type D

spacetime. Then ℓ and 𝑛 are fixed (up to scaling) in the background by the requirement

of being multiple WANDs. But there is no preferred way of choosing the spatial basis

vector 𝑚𝑖. Different choices are related by finite spins. Ω(1) and Ω′(1) are not invariant

under finite spins. Exactly the same issue arises in 4D, where Ψ
(1)
0 and Ψ

(1)
4 pick up

complex phases under finite spins.

Physical quantities should not care about the choice of spatial basis vectors so such

quantities must be related to GHP scalars with zero spin. For example, in an asymp-

totically flat 4D spacetime, the energy flux in ingoing and outgoing gravitational waves

is related to the spin-0 GHP scalars ∣Ψ(1)
0 ∣2 and ∣Ψ(1)

4 ∣2, respectively (for appropriate

choices of ℓ and 𝑛, see [30]). For 𝑑 > 4, the analogous quantities are Ω
(1)
𝑖𝑗 Ω

(1)
𝑖𝑗 and

Ω
′(1)
𝑖𝑗 Ω

′(1)
𝑖𝑗 , although as discussed in Section 2.5, they probably do not carry the same

physical interpretation in higher dimensions.

We can also define additional invariant quantities such as Φ
(0)
𝑖𝑗 Ω

(1)
𝑖𝑗 (which vanishes

identically in 4D because ΦS
𝑖𝑗 =

1
2
Φ𝛿𝑖𝑗 for all spacetimes).

3Note that further gauge invariant quantities exist for higher dimensional spacetimes satisfying ad-

ditional restrictions, see Lemma 4.3 later.
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4.3 Decoupling of electromagnetic perturbations

The highest boost weight components of the Maxwell (𝑝 + 1)−form field strength are

denoted by a GHP scalar 𝝋 of boost weight 1 and spin 𝑝. In 4D (where 𝑝 = 1) the

quantity analogous to 𝝋 satisfies a decoupled equation of motion in an algebraically spe-

cial background. We shall investigate the conditions under which 𝝋 satisfies a decoupled

equation of motion in 𝑑 > 4 dimensions. The motivation for doing this is mainly that

the Maxwell field illustrates the arguments that we shall also employ in the gravitational

case, but the equations are considerably simpler. For this reason, we restrict to the

simplest case 𝑝 = 1.

In this section, we show how, in a particular class of background Einstein spacetimes,

we can construct decoupled 2nd order differential equations for a Maxwell test field. We

show that this decoupling is possible if and only if the background spacetime is Kundt,

that is it admits a geodesic null vector field that is not shearing, twisting or expanding.

In particular, we will show that the dynamics of a Maxwell test field on the back-

ground of a Kundt spacetime can be described by the following equation:(
2þ′þ + k𝑗k𝑗 + 𝜌′þ − 4𝜏𝑗k𝑗 + Φ− 2𝑑−3

𝑑−1
Λ
)
𝜑𝑖+(−2𝜏𝑖k𝑗+2𝜏𝑗k𝑖+2ΦS

𝑖𝑗+4ΦA
𝑖𝑗)𝜑𝑗 = 0. (4.4)

We also show that analogous decoupled equations cannot be constructed for spacetimes

that are not Kundt, and discuss briefly whether any alternative progress can be made.

It is interesting to compare this to the equation of motion for a massive scalar field

Ψ:

(∇𝜇∇𝜇 − 𝜇2)Ψ = 0. (4.5)

When written out in GHP form in a general background, this equation is

(2þ′þ + k𝑖k𝑖 + 𝜌′þ − 2𝜏𝑖k𝑖 + 𝜌þ′ − 𝜇2)Ψ = 0. (4.6)

To compare this with the decoupled Maxwell equation, one must specialize to a Kundt

spacetime, for which 𝜌 = 0. Note that 𝜏 ′𝑖 does not appear in either equation.

4.3.1 Derivation of results

In the case of a 2-form field strength 𝐹𝜇𝜈 , the GHP Maxwell equations (2.76-2.79) reduce

to:

k𝑖𝜑𝑖 + þ𝑓 = 𝜏 ′𝑖𝜑𝑖 + 𝜌𝑖𝑗𝐹𝑖𝑗 − 𝜌𝑓 − 𝜅𝑖𝜑
′
𝑖 (4.7)

2k[𝑖𝜑𝑗] − þ𝐹𝑖𝑗 = 2𝜏 ′[𝑖𝜑𝑗] + 2𝑓𝜌[𝑖𝑗] + 2𝐹[𝑖∣𝑘𝜌𝑘∣𝑗] + 2𝜅[𝑖𝜑
′
𝑗] (4.8)

2þ′𝜑𝑖 + k𝑗𝐹𝑗𝑖 − k𝑖𝑓 = (2𝜌′[𝑖𝑗] − 𝜌′𝛿𝑖𝑗)𝜑𝑗 − 2𝐹𝑖𝑗𝜏𝑗 − 2𝑓𝜏𝑖 + (2𝜌(𝑖𝑗) − 𝜌𝛿𝑖𝑗)𝜑
′
𝑗 (4.9)

k[𝑖𝐹𝑗𝑘] = 𝜑[𝑖𝜌
′
𝑗𝑘] + 𝜑′

[𝑖𝜌𝑗𝑘] (4.10)
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A further three equations can be obtained by priming equations (4.7),(4.8) and (4.9).

We will often make use of the combination 𝛿𝑖𝑗(4.7)− (4.8):

þ(𝐹𝑖𝑗 + 𝛿𝑖𝑗𝑓) = 2k[𝑖𝜑𝑗] − 𝛿𝑖𝑗k𝑘𝜑𝑘 − 2𝜏 ′[𝑖𝜑𝑗] − 2𝑓𝜌[𝑖𝑗] − 2𝐹[𝑖∣𝑘𝜌𝑘∣𝑗] − 2𝜅[𝑖𝜑
′
𝑗]

+ 𝛿𝑖𝑗(𝜏
′
𝑘𝜑𝑘 + 𝜌𝑘𝑙𝐹𝑘𝑙 − 𝜌𝑓 − 𝜅𝑘𝜑

′
𝑘) (4.11)

Now consider the combination þ(4.9) + k𝑗(4.11). This gives
0 = (2þ′þ + k𝑗k𝑗)𝜑𝑖 + 2[þ, þ′]𝜑𝑖 − [þ, k𝑗](𝐹𝑖𝑗 + 𝑓𝛿𝑖𝑗) + [k𝑖, k𝑗]𝜑𝑗

+þ(− (2𝜌′[𝑖𝑗] − 𝜌′𝛿𝑖𝑗)𝜑𝑗 + 2(𝐹𝑖𝑗 + 𝑓𝛿𝑖𝑗)𝜏𝑗 − (2𝜌(𝑖𝑗) − 𝜌𝛿𝑖𝑗)𝜑
′
𝑗

)
(4.12)

+k𝑖(− 𝜌𝑗𝑘𝐹𝑗𝑘 + 𝜌𝑓 − 𝜏 ′𝑗𝜑𝑗 + 𝜅𝑗𝜑
′
𝑗

)
+ k𝑗(2𝜏 ′[𝑖𝜑𝑗] + 2𝑓𝜌[𝑖𝑗] + 2𝐹[𝑖∣𝑘𝜌𝑘∣𝑗] + 2𝜅[𝑖𝜑

′
𝑗]

)
.

This involves second derivatives of 𝝋, as well as of the boost weight 0 quantities 𝐹𝑖𝑗

and 𝑓 . However, the latter occur in the form of a commutator [þ, k𝑗](𝐹𝑖𝑗 + 𝑓𝛿𝑖𝑗) and

can therefore be eliminated using (C2). Now we consider first derivatives of Maxwell

components other than 𝝋. We need to eliminate these from the equation if it is to

decouple.

First consider terms involving þ:
∙ þ acts on 𝑓 and 𝐹𝑖𝑗 through the combination þ(𝐹𝑖𝑗 + 𝑓𝛿𝑖𝑗), which we eliminate

using equation (4.11).

∙ Terms involving þ𝜑′
𝑖 are eliminated using equation (4.9)′.

∙ Terms in which þ acts on 𝝆, 𝝉 and 𝝆′ are eliminated using the Newman-Penrose

equations (NP1), (NP2) and (NP4)′ respectively.

The resulting equation is very long:[
(2þþ′ + k𝑗k𝑗 + 𝜌′þ + 𝜌þ′ − 2𝜏 ′𝑗k𝑗 − 2𝜏𝑗k𝑗)𝜑𝑖

+ (−𝜌′𝑖𝑗þ − 2𝜏𝑖k𝑗 + 𝜌′𝑗𝑖þ − 𝜌𝑖𝑗þ′ + [k𝑖, k𝑗] + 2𝜏𝑗k𝑖 − 𝜌𝑗𝑖þ′)𝜑𝑗

− 𝜅𝑖𝜅
′
𝑗𝜑𝑗 − 2𝜑𝑗𝜌𝑘𝑖𝜌

′
𝑗𝑘 + 𝜑𝑗𝜌𝑘𝑗𝜌

′
𝑖𝑘 − 2𝜑𝑗𝜏𝑗𝜏

′
𝑖 + 2𝜑𝑖𝜏𝑗𝜏

′
𝑗 − 𝜑𝑗𝜌𝑖𝑘𝜌

′
𝑗𝑘 + 𝜑𝑗𝜌𝜌

′
𝑗𝑖

+ 2𝜑𝑗𝜏𝑖𝜏
′
𝑗 + 𝜅𝑗𝜅

′
𝑖𝜑𝑗 − 𝜅𝑗𝜅

′
𝑗𝜑𝑖 − 𝜑𝑖𝜌𝑘𝑗𝜌

′
𝑗𝑘 − 2ΦA

𝑖𝑗𝜑𝑗 − Φ𝜑𝑖 − 𝑑−2
𝑑−1

Λ𝜑𝑖

]
+
[
𝜅𝑗þ′(𝐹𝑖𝑗 + 𝑓𝛿𝑖𝑗) + 𝜌𝑗𝑖k𝑗𝑓 − 𝜌𝑘𝑖k𝑗𝐹𝑗𝑘 + 2𝜌𝑖𝑗k𝑗𝑓 + 𝜌𝑘𝑗k𝑗𝐹𝑖𝑘 − 𝜌𝑗𝑘k𝑖𝐹𝑗𝑘 + 𝜌𝑗𝑘k𝑗𝐹𝑖𝑘

− 𝑓k𝑗𝜌𝑗𝑖 − 𝐹𝑗𝑘k𝑗𝜌𝑘𝑖 + 𝑓k𝑗𝜌𝑖𝑗 + 𝐹𝑖𝑗k𝑘𝜌𝑗𝑘 + 𝑓k𝑖𝜌− 𝐹𝑗𝑘k𝑖𝜌𝑗𝑘 + 2𝑓þ′𝜅𝑖 + 2𝐹𝑖𝑗þ′𝜅𝑗

− 5𝑓𝜌𝑖𝑗𝜏𝑗 − 2𝑓Ψ𝑖 − 4𝐹𝑖𝑗𝜌𝑗𝑘𝜏𝑘 − 𝐹𝑖𝑗Ψ𝑗 − 𝐹𝑗𝑘𝜅𝑖𝜌
′
𝑗𝑘 + 𝐹𝑗𝑘𝜅𝑗𝜌

′
𝑖𝑘 − 𝐹𝑗𝑘Ψ𝑗𝑘𝑖 − 𝐹𝑖𝑗𝜅𝑘𝜌

′
𝑗𝑘

+ 𝐹𝑖𝑗𝜅𝑗𝜌
′ + 𝑓𝜌𝑗𝑖𝜏𝑗 − 3𝐹𝑗𝑘𝜌𝑗𝑖𝜏𝑘 − 𝑓𝜌𝜏𝑖 + 2𝐹𝑗𝑘𝜌𝑗𝑘𝜏𝑖 − 𝐹𝑗𝑘𝜌𝑖𝑗𝜏𝑘 + 𝐹𝑖𝑗𝜌𝜏𝑗

]
+
[
𝜅𝑗k𝑖𝜑′

𝑗 + 𝜅𝑖k𝑗𝜑′
𝑗 − 𝜅𝑗k𝑗𝜑′

𝑖 + 2𝜌𝑘𝑖𝜌𝑗𝑘𝜑
′
𝑗 + 𝜅𝑗𝜏𝑗𝜑

′
𝑖 + 𝜌𝑖𝑘𝜌𝑘𝑗𝜑

′
𝑗

+ 𝜑′
𝑗𝜌𝑖𝑘𝜌𝑗𝑘 − 𝜅𝑗𝜏𝑖𝜑

′
𝑗 − 𝜅𝑖𝜏𝑗𝜑

′
𝑗 − 𝜌𝑗𝑖𝜌𝜑

′
𝑗 − 𝜌𝑗𝑘𝜌𝑘𝑗𝜑

′
𝑖 + 2Ω𝑖𝑗𝜑

′
𝑗

]
= 0 (4.13)
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The only terms above involving derivatives of Maxwell components other than 𝝋 are of

the (schematic) form 𝜿þ′F, 𝜿þ′𝑓 𝜿k𝝋′, 𝝆kF and 𝝆k𝑓 . We need to eliminate all of these

from our equations if we are to obtain a decoupled equation for 𝝋. Consider the first

three, which are

𝜅𝑗þ′ (𝐹𝑖𝑗 + 𝑓𝛿𝑖𝑗) + 2𝜅𝑗k[𝑖𝜑
′
𝑗] + 𝜅𝑖k𝑗𝜑′

𝑗 = 2𝜅𝑗þ′ (𝐹𝑖𝑗 + 𝑓𝛿𝑖𝑗) + . . . (4.14)

where we have used (4.11)′ to eliminate the 𝜿k𝝋′ terms in favour of 𝜿þ′F, 𝜿þ′𝑓 and

some other terms not involving derivatives.

Now, the Maxwell equations cannot be used to eliminate the terms of the form

𝜿þ′(F+ 𝑓) without re-introducing 1-derivative terms of the form 𝜿k𝝋′. Hence the only

way in which the 𝜿þ′(F+𝑓) terms can be eliminated is if 𝜿 = 0, and therefore the vector

field ℓ must be geodesic for decoupling to be possible. We assume henceforth that this

is the case.

Now examine the 𝝆kF and 𝝆k𝑓 terms above. These are:

𝜌𝑗𝑖k𝑗𝑓 − 𝜌𝑘𝑖k𝑗𝐹𝑗𝑘 + 2𝜌𝑖𝑗k𝑗𝑓 + 𝜌𝑘𝑗k𝑗𝐹𝑖𝑘 − 𝜌𝑗𝑘k𝑖𝐹𝑗𝑘 + 𝜌𝑗𝑘k𝑗𝐹𝑖𝑘 (4.15)

To achieve decoupling, we need to eliminate these terms from the equation without

introducing any 1-derivative terms (unless the derivative acts on 𝝋). It is convenient to

decompose k𝑖𝐹𝑗𝑘 into parts that transform irreducibly under 𝑆𝑂(𝑑− 2):

k𝑖𝐹𝑗𝑘 = ℱ𝑖𝑗𝑘 +
2

𝑑− 3
𝛿𝑖[𝑗k∣𝑙𝐹𝑙∣𝑘], (4.16)

where ℱ𝑖𝑗𝑘 is traceless and can be decomposed further into objects transforming irre-

ducibly according to the Young tableaux and . The quantity k𝑖𝑓 transforms in the

same way as k𝑗𝐹𝑗𝑖, i.e. as a vector ( ) under 𝑆𝑂(𝑑− 2). The latter can be eliminated in

favour of the former using equation (4.9), which gives k𝑗𝐹𝑗𝑖 = k𝑖𝑓+ . . ., where the ellipsis
denotes terms in which derivatives act only on 𝝋. The contribution of the ‘vector’ terms

to (4.15) is then
2

𝑑− 3
(𝜌𝑗𝑖 + (𝑑− 3)𝜌𝑖𝑗 − 𝜌𝛿𝑖𝑗) k𝑗𝑓 (4.17)

We can substitute our decomposition of k𝐹 into the Maxwell equations. There are

no Maxwell equations that can be used to eliminate k𝑖𝑓 without reintroducing new

derivative terms of the form 𝝆þ𝝋′. Hence the only way in which the Maxwell equation

will decouple is if the expression in brackets in (4.17) vanishes. The symmetric and

antisymmetric parts of the resulting equation give

𝜎𝑖𝑗 = 0 = (𝑑− 4)𝜔𝑖𝑗, (4.18)

where 𝝈 and 𝝎 are the shear and rotation of ℓ respectively. Hence a necessary condition

for decoupling is that ℓ be shearfree and, for 𝑑 > 4, rotation free (and hence hypersurface
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orthogonal since ℓ is geodesic). We now assume 𝑑 > 4, so we set 𝝈 = 𝝎 = 0 henceforth,

and therefore have

𝜌𝑖𝑗 =
𝜌

𝑑− 2
𝛿𝑖𝑗. (4.19)

A spacetime admitting a null geodesic congruence with vanishing rotation and shear is

called a Robinson-Trautman spacetime if 𝜌 ∕= 0 and a Kundt spacetime if 𝜌 = 0. We saw

in Chapter 3that an Einstein spacetime of either of these types is algebraically special,

with the vector field ℓ aligned with the congruence being a multiple WAND. Therefore

we can take Ω = 0 = Ψ. Note that (NP3) now implies k𝑖𝜌 = 0.

It is now guaranteed that we can use equation (4.9) to eliminate ‘vector’ terms of

the form k𝑗𝐹𝑖𝑗 or k𝑖𝑓 from (4.13). Upon doing so, we find that the terms involving ℱ𝑖𝑗𝑘

all drop out. The commutators [þ,þ′] and [k𝑖, k𝑗] can be used to tidy up the equation,

giving

0 =
[
2þ′þ + k𝑗k𝑗 + 𝜌′þ + 𝑑+2

𝑑−2
𝜌þ′ − 4𝜏𝑗k𝑗]𝜑𝑖 + 2(𝜏𝑗k𝑖 − 𝜏𝑖k𝑗)𝜑𝑗

+

[
3Φ𝑖𝑗 − Φ𝑗𝑖 − 2𝜌

𝑑− 2
𝜌′[𝑖𝑗] +

(
Φ +

𝜌𝜌′

𝑑− 2
− 2𝑑− 3

𝑑− 1
Λ

)
𝛿𝑖𝑗

]
𝜑𝑗

+
𝑑− 4

𝑑− 2
𝜌

[
𝜏𝑗 (𝐹𝑖𝑗 − 𝐹𝛿𝑖𝑗) +

𝜌

𝑑− 2
𝜑′
𝑖

]
. (4.20)

The only term involving 𝝋′ is the final one, so for 𝝋′ to decouple we need (𝑑− 4)𝜌 = 0.

This also ensures that the terms involving 𝐹𝑖𝑗 and 𝑓 drop out of the equation. Hence

decoupling requires 𝜌 = 0 (since 𝑑 > 4), which implies 𝜌𝑖𝑗 = 0, so ℓ must be free of

expansion as well as shear and rotation. That is, the spacetime must be Kundt. The

equation reduces to

[
2þ′þ + k𝑗k𝑗 + 𝜌′þ − 4𝜏𝑗k𝑗 + Φ− 2𝑑−3

𝑑−1
Λ
]
𝜑𝑖 + (2𝜏𝑗k𝑖 − 2𝜏𝑖k𝑗 + 3Φ𝑖𝑗 − Φ𝑗𝑖)𝜑𝑗 = 0.

(4.21)

which is equivalent to (4.4).

To summarize, for 𝑑 > 4, 𝝋 satisfies a second-order decoupled equation if, and only

if, ℓ is geodesic with vanishing expansion, rotation and shear. The existence of such a

choice of ℓ implies, by definition, that the spacetime is Kundt.

Note the presence of factors of (𝑑 − 4) in several of our equations above. When

𝑑 = 4, it is not necessary for the rotation 𝝎 of ℓ to vanish in equation (4.18), or for the

expansion 𝜌 to vanish in equation (4.20). Indeed, in 4D, all that is required is that ℓ

be geodesic and shearfree, which is equivalent (by the Goldberg-Sachs theorem) to the

spacetime being algebraically special.

It is clear that 𝝋′ will satisfy a second-order decoupled equation (the prime of the

above equation) if, and only if, 𝑛 is geodesic with vanishing expansion, rotation and
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shear. Hence 𝝋 and 𝝋′ will both satisfy second order decoupled equations if, and only

if, 𝜿 = 𝜿′ = 𝝆 = 𝝆′ = 0. A natural name for a spacetime admitting such null vector

fields seems to be:

Definition 4.2 A spacetime is doubly Kundt if and only if it admits a pair of non-

expanding, non-shearing, non-twisting geodesic null vector fields ℓ and 𝑛 with ℓ.𝑛 ∕= 0.

4.3.2 The Schwarzchild Solution

Consider the special case of the higher-dimensional Schwarzschild solution, which is not

Kundt. This solution has 𝝆 = 𝜌
𝑑−2

1 and 𝝉 = 0 (a consequence of spherical symmetry).

The latter implies that the terms in F and 𝑓 drop out of equation (4.20), leaving us with

an equation of the form

(□𝜑)𝑖 +
(𝑑− 4)

(𝑑− 2)2
𝜌2𝜑′

𝑖 = 0, (4.22)

where □ is a second order differential operator. The second term remains an obstruction

to decoupling. For the Schwarzschild solution, the two multiple WANDs have identical

properties so we can take the prime of the equation to obtain

(□′𝜑′)𝑖 +
(𝑑− 4)

(𝑑− 2)2
𝜌′2𝜑𝑖 = 0, (4.23)

and hence [
□′
(

1

𝜌2
□𝜑
)]

𝑖

− (𝑑− 4)2

(𝑑− 2)4
𝜌′2𝜑𝑖 = 0. (4.24)

So in fact 𝝋 does satisfy a decoupled equation but it is fourth order in derivatives. Note

that we had to make use of several special properties of the Schwarzschild solution to

obtain this result. It would be interesting to investigate more generally the circumstances

under which one can obtain a decoupled equation of higher order for 𝝋.

4.4 Decoupling of gravitational perturbations

4.4.1 Introduction and main result

We now move on to gravitational perturbations. In Lemma 4.1 we found a set of gauge

invariant quantities Ω(1) under the assumption that ℓ was a multiple WAND of the

background spacetime. Hence, we shall consider gravitational perturbations of an alge-

braically special Einstein spacetime, for which we can take ℓ to be a multiple WAND.

Hence Ω and Ψ vanish in the background, so we can treat them as first order quantities:

Ω = Ω(1), Ψ = Ψ(1). Therefore we shall not bother including a superscript (1) on Ω or

Ψ below.
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The final result will be similar to that of the electromagnetic perturbations; we will

find that we can only achieve decoupling when the spacetime is Kundt. We will show

that gravitational perturbations of such a Kundt spacetime are described by

(
2þ′þ + k𝑘k𝑘 + 𝜌′þ − 6𝜏𝑘k𝑘 + 4Φ− 2𝑑

𝑑−1
Λ
)
Ω𝑖𝑗

+ 4
(
𝜏𝑘k(𝑖∣ − 𝜏(𝑖∣k𝑘 + ΦS

(𝑖∣𝑘 + 4ΦA
(𝑖∣𝑘
)
Ω𝑘∣𝑗) + 2Φ𝑖𝑘𝑗𝑙Ω𝑘𝑙 = 0, (4.25)

where all quantities except Ω are evaluated in the background geometry (e.g. Φ denotes

Φ(0) etc.).

In a doubly Kundt spacetime, Ω′ also will satisfy a decoupled equation, which is

given by taking the prime of the above equation.

4.4.2 Derivation of main result

We follow as closely as possible the 4D approach of Stewart & Walker [31]. Many of

the equations in this section were checked using the computer algebra package Cadabra

[162, 163]. We start by obtaining an equation in which second derivatives act only on

Ω𝑖𝑗. Consider the equations

0 = −k𝑘Ω𝑖𝑗 − 𝛿𝑗𝑘k𝑙Ω𝑖𝑙 + k𝑗Ω𝑖𝑘 − þ(Ψ𝑖𝛿𝑗𝑘 +Ψ𝑖𝑗𝑘) + 𝛿𝑗𝑘(Φ𝑙𝑖 − 2Φ𝑖𝑙 − Φ𝛿𝑖𝑙)𝜅𝑙

+ (−2Φ𝑖[𝑘∣𝛿𝑗]𝑙 + 2𝛿𝑖𝑙Φ
A
𝑘𝑗 + Φ𝑖𝑙𝑘𝑗)𝜅𝑙 + 𝛿𝑗𝑘 [−Ψ𝑖𝜌− 𝜌𝑖𝑙Ψ𝑙 − (Ψ𝑚𝑖𝑙 +Ψ𝑖𝑚𝑙)𝜌𝑙𝑚]

+ 2(Ψ[𝑘∣𝛿𝑖𝑙 +Ψ𝑖𝛿[𝑘∣𝑙 +Ψ𝑖[𝑘∣𝑙 +Ψ[𝑘∣𝑖𝑙)𝜌𝑙∣𝑗] + (Ω𝑖𝑙𝜏
′
𝑙 𝛿𝑗𝑘 − Ω𝑖𝑘𝜏

′
𝑗 + Ω𝑖𝑗𝜏

′
𝑘) (4.26)

and

0 = −2þ′Ω𝑖𝑗 + k𝑘(Ψ𝑖𝛿𝑗𝑘 +Ψ𝑖𝑗𝑘) +
(−Ω𝑖𝑗𝜌

′ + 2Ω𝑖𝑘𝜌
′
[𝑗𝑘]

)− 4(Ψ(𝑖𝛿𝑗)𝑘 +Ψ(𝑖𝑗)𝑘)𝜏𝑘

+ Φ𝑗𝑘𝜌𝑖𝑘 − Φ𝑘𝑗𝜌𝑖𝑘 + Φ𝑖𝑘𝜌𝑗𝑘 − Φ𝑘𝑖𝜌𝑘𝑗 + 2Φ𝑖𝑘𝜌𝑘𝑗 − Φ𝑖𝑗𝜌+ Φ𝑖𝑘𝑗𝑙𝜌𝑘𝑙 + Φ𝜌𝑖𝑗. (4.27)

Equation (4.26) is obtained by taking various linear combinations and contractions of

the Bianchi equations (B1), while equation (4.27) is constructed from the symmetric

part of (B2) and a contraction of (B3). These equations are exact: no decomposition

into background and perturbation has been performed at this stage.

Now we consider the linear combination k𝑘(4.26) + þ(4.27). This contains second

derivatives acting on Ω and on Ψ. However, the point of taking this particular combina-

tion is that the second derivatives of Ψ occur in the combination −[þ, k𝑘](Ψ𝑖𝑗𝑘 +Ψ𝑖𝛿𝑗𝑘)

and therefore can be eliminated in favour of terms involving one or zero derivatives of

Ψ using the formula (C2) for the commutator [þ, k𝑘].
We can also symmetrize the entire equation on 𝑖𝑗 without losing any useful infor-

mation, as the antisymmetric terms do not contain any second derivatives of Ω. This
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reduces the equation to

0 = −(2þ′þ + k𝑘k𝑘)Ω𝑖𝑗 − 2[þ, þ′]Ω𝑖𝑗 − [k(𝑖∣, k𝑘]Ω𝑘∣𝑗) + þ(𝑇Ω
𝑖𝑗𝑘𝑙𝜌

′
𝑘𝑙)− k𝑙(𝑇Ω

𝑖𝑗𝑘𝑙𝜏
′
𝑘)

+[þ, k𝑘]𝑇Ψ
𝑖𝑗𝑘 − 4þ(𝑇Ψ

𝑖𝑗𝑙𝜏𝑙)− 2k(𝑖∣(𝑇Ψ
∣𝑗)𝑙𝑘𝜌𝑘𝑙) + 2k𝑙(𝑇Ψ

(𝑗∣𝑙𝑘𝜌𝑘∣𝑖))− 2k𝑙(𝑇Ψ
𝑖𝑗𝑘𝜌𝑘𝑙)

+þ(𝑇Φ
𝑖𝑘𝑗𝑙𝜌𝑘𝑙)− k𝑙(𝑇Φ

𝑖𝑘𝑗𝑙𝜅𝑘) (4.28)

where

𝑇Φ
𝑖𝑘𝑗𝑙 ≡ Φ(𝑖∣𝑘∣𝑗)𝑙 + Φ𝛿(𝑖∣𝑘𝛿∣𝑗)𝑙 − ΦS

𝑖𝑗𝛿𝑘𝑙 + (2Φ(𝑖∣𝑙 − Φ𝑙(𝑖∣)𝛿𝑘∣𝑗) + (2Φ(𝑖∣𝑘 − Φ𝑘(𝑖∣)𝛿𝑙∣𝑗),

𝑇Ψ
𝑖𝑗𝑘 ≡ Ψ(𝑖𝑗)𝑘 +Ψ(𝑖𝛿𝑗)𝑘,

𝑇Ω
𝑖𝑗𝑘𝑙 ≡ −Ω𝑖𝑗𝛿𝑘𝑙 + Ω(𝑖∣𝑙𝛿𝑘∣𝑗) − Ω(𝑖∣𝑘𝛿𝑙∣𝑗). (4.29)

Note that these quantities satisfy the following relations:

𝑇Φ
𝑖𝑗𝑘𝑙 = 𝑇Φ

(𝑖∣𝑗∣𝑘)𝑙 = 𝑇Φ
𝑖(𝑗∣𝑘∣𝑙), 𝑇Φ

𝑖𝑗𝑖𝑙 = 0 and 𝑇Φ
𝑖𝑗𝑘𝑗 = −(𝑑− 2)ΦS

𝑖𝑘 + Φ𝛿𝑖𝑘, (4.30)

𝑇Ψ
𝑖𝑗𝑘 = 𝑇Ψ

(𝑖𝑗)𝑘, 𝑇Ψ
𝑖𝑖𝑘 = 0 and 𝑇Ψ

𝑖𝑗𝑖 =
1
2
𝑑Ψ𝑗 (4.31)

𝑇Ω
𝑖𝑗𝑘𝑙 = 𝑇Ω

(𝑖𝑗)𝑘𝑙, 𝑇Ω
𝑖𝑗(𝑘𝑙) = −Ω𝑖𝑗𝛿𝑘𝑙 𝑇Ω

𝑖𝑖𝑘𝑙 = 0 and 𝑇Ω
𝑖𝑗𝑘𝑘 = −(𝑑− 2)Ω𝑖𝑗. (4.32)

In this notation, the parts of (4.26) and (4.27) symmetric on 𝑖𝑗 become

þ𝑇Ψ
𝑖𝑗𝑘 − k𝑙𝑇Ω

𝑖𝑗𝑙𝑘 = −𝑇Ω
𝑖𝑗𝑙𝑘𝜏

′
𝑙 + 2𝑇Ψ

(𝑖∣𝑘𝑙𝜌𝑙∣𝑗) − 2𝑇Ψ
𝑖𝑗𝑙𝜌𝑙𝑘 − 2𝑇Ψ

𝑙(𝑖∣𝑚𝜌𝑚𝑙𝛿𝑘∣𝑗) − 𝑇Φ
𝑖𝑘𝑗𝑙𝜅𝑙 (4.33)

and

−k𝑘𝑇Ψ
𝑖𝑗𝑘 + 2þ′Ω𝑖𝑘 = 𝑇Φ

𝑖𝑘𝑗𝑙𝜌𝑗𝑙 − 4𝑇Ψ
𝑖𝑗𝑘𝜏𝑘 + 𝑇Ω

𝑖𝑗𝑘𝑙𝜌
′
𝑘𝑙. (4.34)

Next we perform the following steps:

1. Use the commutator (C2) to eliminate the terms [þ, k𝑘]𝑇Ψ
𝑖𝑗𝑘 from (4.28) (note that

this introduces a new kind of term, of the schematic form 𝜿þ′Ψ).

2. Expand out the brackets using the Leibniz rule for GHP derivatives.

3. Eliminate the term þ𝑇Ψ
𝑖𝑗𝑘 using equation (4.33).

4. Use the NP equations (NP1), (NP2) and (NP4)′ to eliminate terms in which þ acts

on 𝝆, 𝝉 and 𝝆′ respectively.

5. Take a linear combination of the Bianchi equations (B2,B3,B4) to get an equation

þ𝑇Φ
𝑖𝑘𝑗𝑙 = þ′𝑇Ω

𝑖𝑗𝑘𝑙 + k(𝑖∣Ψ𝑙∣𝑗)𝑘 − k𝑙Ψ(𝑖𝑗)𝑘 − 𝛿(𝑖∣𝑘𝛿∣𝑗)𝑙k𝑚Ψ𝑚 + 𝛿𝑘𝑙k(𝑖Ψ𝑗)

+(−2k𝑙Ψ(𝑖∣ + k(𝑖∣Ψ𝑙)𝛿𝑘∣𝑗) + (−2k𝑘Ψ(𝑖∣ + k(𝑖∣Ψ𝑘)𝛿𝑙∣𝑗) + . . . , (4.35)

where the ellipsis indicates terms that involve no derivatives. Use this to eliminate

þ𝑇Φ
𝑖𝑘𝑗𝑙 from (4.28).
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6. Use a combination of (B5) and (B7) to show that

k𝑙𝑇Φ
𝑖𝑗𝑘𝑙 = 3þ′𝑇Ψ

𝑖𝑗𝑘 + 3𝑇Φ
𝑖𝑘𝑗𝑙𝜏𝑙 + . . . (4.36)

where the ellipsis denotes first order terms not involving any derivatives. Use this

to eliminate k𝑙𝑇Φ
𝑖𝑗𝑘𝑙 from (4.28).

The resulting equation is very long so we shall not write it out in full. It has the schematic

form(þ′þ + k.k + [þ,þ′] + [k, k] + 𝝆′þ + 𝝆þ′ + 𝝉k + 𝝉 ′k + 𝝉𝝉 ′ + 𝝆𝝆′ +Φ
)
Ω

+ 𝜿þ′Ψ+ 𝝆kΨ+ (𝝉𝝆+ 𝝉 ′𝜌+ 𝜿𝜌′ + þ′𝜿+ k𝝆)Ψ
+ (𝝉𝜿+ 𝝉 ′𝜿+ 𝝆2)Φ+ (𝜿𝝆)Ψ′ = 0 (4.37)

Here, we neglect terms that are of quadratic order or higher when we decompose quan-

tities into a background piece and a perturbation. Recall that Ω and Ψ are first order

quantities. Note that the only terms containing derivatives of Weyl components other

than Ω are of the schematic form 𝜿þ′Ψ and 𝝆kΨ. For decoupling to occur, these must

vanish for any possible perturbation. We shall now examine the circumstances under

which we can eliminate these terms.

The detailed form of the 𝜿þ′Ψ terms is

4𝜅𝑘þ′(Ψ(𝑖𝑗)𝑘 +Ψ(𝑖𝛿𝑗)𝑘) (4.38)

If 𝜿(0) ∕= 0 then there is nothing we can do to eliminate these terms. The only Bianchi

equation containing þ′Ψ is (B5), and using this again would reintroduce the 1-derivative

terms that we have eliminated above. Hence the only way for these terms to drop out is

for 𝜿 to vanish in the background. Hence 𝜿(0) = 0 is a necessary condition for decoupling.

Henceforth we assume 𝜿 is a first-order quantity, in which case the above terms become

second order terms and can be neglected.

Recall that 𝜿(0) = 0 is equivalent to the statement that ℓ is geodesic in the back-

ground. By Theorem 3.2, this places no further restrictions on the spacetimes that can

be analysed.

Having set 𝜿(0) = 0, the only remaining terms involving derivatives of Weyl compo-

nents other than Ω are of the form 𝝆kΨ. The detailed form of these terms is:

4𝜌(𝑖∣𝑘k𝑘Ψ∣𝑗) + 𝜌𝑘𝑙
[
2k𝑙Ψ(𝑖𝑗)𝑘 + k(𝑖∣Ψ𝑙∣𝑗)𝑘 − k(𝑖Ψ𝑗)𝑘𝑙 + 2k𝑘Ψ(𝑖𝑗)𝑙 − k(𝑖∣Ψ𝑘∣𝑗)𝑙

]
+ 𝜌𝑘(𝑖∣

[−k𝑙Ψ∣𝑗)𝑙𝑘 − k𝑙Ψ𝑙∣𝑗)𝑘 − k∣𝑗)Ψ𝑘 + 2k𝑘Ψ∣𝑗)
]

(4.39)

For decoupling we need to eliminate these terms in favour of terms in which derivatives

act only on Ω.
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Certain combinations of terms of the form kΨ can be eliminated using Bianchi equa-

tions. In order to understand precisely what kinds of terms can be so eliminated, we

can decompose k𝑖Ψ𝑗𝑘𝑙 into parts that transform irreducibly under 𝑆𝑂(𝑑 − 2). If we do

the same for the Bianchi equations at our disposal (or combinations of them such as

(4.27)) then we will see which irreducible parts of kΨ can be eliminated from the above

equation.

Decomposing into tracefree and trace parts gives, for 𝑑 > 4:

k𝑖Ψ𝑗𝑘𝑙 = 𝑉𝑖𝑗𝑘𝑙 + 2𝛿𝑖[𝑘∣𝑊𝑗∣𝑙] + 𝛿𝑖𝑗𝑋𝑘𝑙 + 2𝛿𝑗[𝑘∣𝑌𝑖∣𝑙] + 2𝛿𝑖[𝑘∣𝛿𝑗∣𝑙]𝑍, (4.40)

where 𝑉𝑖𝑗𝑘𝑙 is traceless and satisfies 𝑉𝑖[𝑗𝑘𝑙] = 𝑉𝑖𝑗(𝑘𝑙) = 0. The other terms are given by

𝑊[𝑖𝑗] =
1

2
𝑋𝑖𝑗 =

1

𝑑(𝑑− 4)

(−(𝑑− 3)k𝑘Ψ[𝑖𝑗]𝑘 + k[𝑖Ψ𝑗]

)
, (4.41)

𝑌[𝑖𝑗] =
1

𝑑(𝑑− 4)

(
3k𝑘Ψ[𝑖𝑗]𝑘 − (𝑑− 1)k[𝑖Ψ𝑗]

)
, (4.42)

𝑊(𝑖𝑗) =
1

(𝑑− 2)(𝑑− 4)

(−(𝑑− 3)k𝑘Ψ(𝑖𝑗)𝑘 + k(𝑖Ψ𝑗) − k𝑘Ψ𝑘𝛿𝑖𝑗
)
, (4.43)

𝑌(𝑖𝑗) =
1

(𝑑− 2)(𝑑− 4)

(k𝑘Ψ(𝑖𝑗)𝑘 − (𝑑− 3)k(𝑖Ψ𝑗) + k𝑘Ψ𝑘𝛿𝑖𝑗
)
, (4.44)

𝑍 =
1

(𝑑− 2)(𝑑− 3)
k𝑘Ψ𝑘. (4.45)

Note that 𝑊(𝑖𝑗) and 𝑌(𝑖𝑗) are traceless and 𝑋(𝑖𝑗) = 0.

The traceless part 𝑉𝑖𝑗𝑘𝑙 can be decomposed further into parts that transform irre-

ducibly under 𝑆𝑂(𝑑− 2). The relevant irreducible representations correspond to Young

tableaux with 4 boxes. However, it turns out that we will not need to discuss these. As

well as these quantities, we have two independent quantities transforming as , namely

𝑊[𝑖𝑗] and 𝑌[𝑖𝑗], two quantities transforming as , namely 𝑊(𝑖𝑗) and 𝑌(𝑖𝑗), and a singlet

𝑍.

Consider first the singlet 𝑍. The contribution of this to equation (4.39) is

4(𝑑− 3)𝜎𝑖𝑗𝑍 =
4

𝑑− 2
𝜎𝑖𝑗k𝑘Ψ𝑘, (4.46)

where the shear 𝝈 is the traceless symmetric part of 𝝆. In order to achieve decoupling,

we would need to add to (4.39) a combination of Bianchi components containing a singlet

term that cancelled this, and did not introduce any 1-derivative terms (e.g. þΦ terms)

that we have already eliminated. However, there is no such combination. For example,

the singlet drops out of equation (4.27). Therefore, the only way to eliminate the singlet

term from our equation, as required for decoupling, is to set 𝝈(0) = 0. This is the
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condition that, in the background geometry, the shear of the multiple WAND ℓ must

vanish. Henceforth we assume that this is the case.

Next consider the traceless symmetric tensors 𝑊(𝑖𝑗) and 𝑌(𝑖𝑗) that arise in the above

decomposition of k𝑖Ψ𝑗𝑘𝑙. The contribution of these to (4.39) is:

−5𝜌(𝑊(𝑖𝑗)+𝑌(𝑖𝑗))+
1
2
(𝑑−10)

(
𝑊(𝑖𝑘)𝜔𝑗𝑘 +𝑊(𝑗𝑘)𝜔𝑖𝑘

)− 3
2
(𝑑−2)

(
𝑌(𝑖𝑘)𝜔𝑗𝑘 + 𝑌(𝑗𝑘)𝜔𝑖𝑘

)
, (4.47)

where 𝜔𝑖𝑗 ≡ 𝜌[𝑖𝑗].

Now consider again the Bianchi equations. The only combination of equations involv-

ing 𝑊(𝑖𝑗) and 𝑌(𝑖𝑗) that does not introduce any 1-derivative terms that we have already

eliminated is (4.34), which gives an expression for

k𝑘𝑇Ψ
𝑖𝑗𝑘 ≡ −(𝑑− 2)

(
𝑊(𝑖𝑗) + 𝑌(𝑖𝑗)

)
. (4.48)

We can use this to eliminate, say, 𝑌(𝑖𝑗) from (4.47), via the expression 𝑌(𝑖𝑗) = −𝑊(𝑖𝑗)+. . .,

where the ellipsis denotes terms in which derivatives act only on Ω. Equation (4.47) then

reduces to

2(𝑑− 4)
(
𝑊(𝑖𝑘)𝜔𝑗𝑘 +𝑊(𝑗𝑘)𝜔𝑖𝑘

)
+ . . . . (4.49)

Since we have no independent equation that will allow us to eliminate𝑊(𝑖𝑗), we conclude

that in order for the kΨ terms to decouple we must have 𝝎 = 0 in the background, i.e.,

the multiple WAND ℓ must be shearfree and rotation free. Note the factor of 𝑑− 4: for

𝑑 = 4, vanishing rotation is not necessary for decoupling.4

Having set 𝝈(0) = 𝝎(0) = 0, we find that that the 1-derivative terms (4.39) reduce to

5𝜌

𝑑− 2

(k𝑘Ψ(𝑖𝑗)𝑘 + k(𝑖Ψ𝑗)

)
=

5𝜌

𝑑− 2
k𝑘𝑇Ψ

𝑖𝑗𝑘, (4.50)

where 𝜌 ≡ 𝜌𝑖𝑖. These terms can be eliminated from (4.37) with equation (4.34).

In the resulting equation, we now use (NP3) to argue that k𝑖𝜌 is a first order quantity.
It appears only when multiplied byΨ, so such terms are second order and can be dropped.

The only Weyl components that are now acted on by derivatives are Ω, and the equation

has been reduced to the schematic form

(þ′þ+k.k+[þ, þ′]+[k, k]+𝜌′þ+𝜌þ′+𝝉k+𝝉 ′k+𝜌𝜌′+𝝉𝝉 ′+Φ)Ω+𝜌2Φ+𝝉𝜌Ψ = 0 (4.51)

At this point, we can also simplify the form of the terms involving Ω, by using the

commutators (C1,C3) to eliminate the terms of the form [þ, þ′]Ω and [k, k]Ω respectively,

in favour of terms that involve at most first derivatives of Ω.

4For 𝑑 = 4, Ψ𝑖𝑗𝑘 = −2𝛿𝑖[𝑗Ψ𝑘], so the irreducible parts of k𝑖Ψ𝑗𝑘𝑙 are just the trace, tracefree symmetric

and antisymmetric parts of k𝑖Ψ𝑗 . Considering the trace gives 𝝈 = 0 as for 𝑑 > 4. The tracefree

symmetric part can be eliminated with (4.27). The antisymmetric part simply drops out of (4.39),

using the fact that all 2× 2 antisymmetric matrices commute.
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The terms of the form Φ𝜌 are simplified by noting that equation (4.27), evaluated in

the background geometry implies that

𝜌(0)Φ
(0)
𝑖𝑗 =

1

𝑑− 2
𝜌(0)Φ(0)𝛿𝑖𝑗. (4.52)

Equation (4.51) now reduces to something sufficiently simple to write out explicitly:

(
2þ′þ + k𝑘k𝑘 + 𝜌′þ + 𝑑+6

𝑑−2
𝜌þ′ + 2

𝑑−2
𝜌𝜌′ − 6𝜏𝑘k𝑘 + 4Φ− 2𝑑

𝑑−1
Λ
)
Ω𝑖𝑗

+
(
4𝜏𝑘k(𝑖∣ − 4𝜏(𝑖∣k𝑘 + 2

𝑑−2
𝜌(𝜌′𝑘(𝑖∣ − 𝜌′(𝑖∣𝑘) + 4ΦS

(𝑖∣𝑘 + 16ΦA
(𝑖∣𝑘
)
Ω𝑘∣𝑗) + 2Φ𝑖𝑘𝑗𝑙Ω𝑘𝑙

+
2𝜌2

𝑑− 2

(
ΦS
𝑖𝑗 − 1

𝑑−2
Φ𝛿𝑖𝑗

)
+ 2𝜌𝜏𝑘

(
Ψ(𝑖𝑗)𝑘 −Ψ(𝑖𝛿𝑗)𝑘 +

2
𝑑−2

𝛿𝑖𝑗Ψ𝑘

)
= 0. (4.53)

This equation is the analogue of equation (4.20) for the Maxwell field. Note that (4.52)

implies that 𝜌(ΦS
𝑖𝑗 − 1

𝑑−2
Φ𝛿𝑖𝑗) is a first order quantity.

To achieve decoupling we have to eliminate the terms not involving Ω𝑖𝑗, i.e., those

on the final line of this equation. For 𝑑 = 4, this is automatic since the particular

combination of Φ terms appearing in this equation vanishes identically (i.e. ΦS
𝑖𝑗 =

1
2
Φ𝛿𝑖𝑗

if 𝑑 = 4), as does the particular combination of Ψ terms. For 𝑑 > 4, the only way of

eliminating the Φ terms above is to set 𝜌(0) = 0, i.e., take 𝜌 to be first order. All terms

on the final line above are then of higher order and can be neglected.

Hence we see that, for 𝑑 > 4, decoupling requires that

𝜿(0) = 0 = 𝝆(0), (4.54)

that is the multiple WAND must be geodesic and free of expansion, rotation and shear.

The existence of such a vector field implies, by definition, that the spacetime is Kundt.

This is a necessary condition for decoupling; it is also sufficient since we now have an

equation in which the only perturbed Weyl components that appear are Ω.

The resulting decoupled equation is:

(
2þ′þ + k𝑘k𝑘 + 𝜌′þ − 6𝜏𝑘k𝑘 + 4Φ− 2𝑑

𝑑−1
Λ
)
Ω𝑖𝑗

+ 4
(
𝜏𝑘k(𝑖∣ − 𝜏(𝑖∣k𝑘 + ΦS

(𝑖∣𝑘 + 4ΦA
(𝑖∣𝑘
)
Ω𝑘∣𝑗) + 2Φ𝑖𝑘𝑗𝑙Ω𝑘𝑙 = 0. (4.55)

We remind the reader that Ω is a first order quantity, so quantities multiplying Ω (e.g.

Φ, 𝝉 ) must be evaluated in the background geometry.

4.4.3 Comment on the expanding case

Just as we did for Maxwell perturbations, it is interesting to consider what happens if

ℓ is geodesic with vanishing rotation and shear, but non-vanishing expansion (i.e. the

spacetime is Robinson-Trautman). Under these circumstances, we have equation (4.53),
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a perturbation equation for a gauge invariant quantity Ω. However, it contains two

terms that obstruct the decoupling of the equation. It is interesting to ask how these

terms are consistent with gauge invariance. The answer is supplied by:

Lemma 4.3 Let ℓ be an expanding, non-twisting, non-shearing geodesic multiple WAND

for an Einstein spacetime of dimension 𝑑 > 4. Then(
ΦS
𝑖𝑗 − 1

𝑑−2
Φ𝛿𝑖𝑗

)(1)
(4.56)

is a gauge invariant quantity. If 𝝉 (0) ∕= 0, then

Ψ
(1)
𝑖 and 𝜏

(0)
𝑘 Ψ

(1)
𝑖𝑗𝑘 (4.57)

also are gauge invariant quantities.

The Schwarzschild black hole in arbitrary dimension is an example of a spacetime ad-

mitting such a multiple WAND (although in this case, 𝝉 (0) = 0). In four dimensions,

(4.56) vanishes identically in all spacetimes, while the quantities (4.57) are not gauge

invariant.

Proof: From equation (4.52) we have

Φ
(0)
𝑖𝑗 = 1

𝑑−2
Φ(0)𝛿𝑖𝑗 (4.58)

in any such spacetime. Hence we see immediately that (4.56) is invariant under infinites-

imal coordinate transformations, and also under infinitesimal spins. Furthermore, Ref.

[158] showed that all such spacetimes are of algebraic Type D so we can choose our

basis so that all Weyl tensor components with non-zero boost weight vanish. Under an

infinitesimal null rotation about ℓ, equation (2.58) implies that, to first order in 𝑧𝑖,

ΦS
𝑖𝑗 7→ ΦS

𝑖𝑗 + 𝑧(𝑖Ψ𝑗) − 𝑧𝑘Ψ(𝑖𝑗)𝑘, (4.59)

but Ψ is a first order quantity and hence Φ
S(1)
𝑖𝑗 and Φ(1) are both invariant in a Type D

background. An identical argument applies to null rotations about 𝑛, and hence (4.56)

is a gauge invariant quantity.

For an algebraically special spacetime, Ψ𝑖𝑗𝑘 and Ψ𝑖 both vanish in the background,

and so, to first order, they are invariant under infinitesimal spins and infinitesimal coor-

dinate transformations. They are also invariant under infinitesimal null rotations about

ℓ, as these can only introduce terms involving Ω𝑖𝑗 which also vanishes in the background.

We now consider the effect of an infinitesimal null rotation about 𝑛. Taking the prime

of (2.61) implies that, to linear order,

Ψ𝑖𝑗𝑘 7→ Ψ𝑖𝑗𝑘 +
2
𝑑−2

Φ(0)𝛿𝑖[𝑗𝑧𝑘] + 𝑧𝑙Φ
(0)
𝑙𝑖𝑗𝑘 (4.60)
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and

Ψ𝑗 7→ Ψ𝑗 − 𝑑−1
𝑑−2

Φ(0)𝑧𝑗, (4.61)

where we have used (4.58). We will show that the quantities (4.57) are invariant under

this transformation if 𝜏
(0)
𝑖 ∕= 0.

Take a double trace of the Bianchi equation (B7) for the background spacetimes.

This implies that (𝑑− 4)k𝑘Φ(0) = 0, and hence, for 𝑑 > 4, k𝑘Φ(0) = 0. The trace of (B5)

gives

k𝑗Φ(0) = 𝑑−1
𝑑−3

𝜏
(0)
𝑗 Φ(0), (4.62)

and hence Φ(0) = 0 if 𝜏
(0)
𝑖 ∕= 0. From (4.58) we then have Φ

(0)
𝑖𝑗 = 0. Putting these results

back into (B5) implies that Φ
(0)
𝑖𝑗𝑘𝑙𝜏

(0)
𝑙 = 0. Inserting these results into (4.60,4.61) implies

that, although Ψ𝑖𝑗𝑘 is not invariant under infinitesimal null rotations about 𝑛, both

𝜏𝑘Ψ𝑖𝑗𝑘 and Ψ𝑖 are invariant, and hence both of these are new gauge invariant quantities,

provided that 𝑑 > 4 and 𝜏
(0)
𝑖 ∕= 0. □

4.5 Discussion

To summarize, we have shown that, for linearized gravitational perturbations of an

algebraically special spacetime, there exist local quantities Ω(1), linear in the perturba-

tion, that are invariant under infinitesimal coordinate transformations and infinitesimal

changes of basis. For perturbations of a Type D background, e.g. a Myers-Perry black

hole, both Ω(1) and Ω′(1) are gauge invariant. Irrespective of decoupling, the locality and

gauge invariance of these quantities should make them useful in studies of gravitational

perturbations.

Furthermore, Ω(1) satisfies a decoupled equation of motion in 𝑑 > 4 dimensions if, and

only if, the background is Kundt. Therefore the decoupling property which is satisfied

in the Kerr spacetime does not extend to the Myers-Perry spacetimes in an obvious way.

When decoupling does occur, an important question is whether a solution of the

decoupled equation uniquely characterizes the gravitational perturbation. If one has two

solutions with the same Ω(1) then do they describe the same metric perturbation? This

is equivalent to the question of whether there exist non-trivial linearized gravitational

perturbations with Ω(1) = 0.

In four dimensions, for perturbations of a Kerr black hole, this problem was addressed

by Wald [164]. He showed that a well-behaved solution with Ψ
(1)
0 = 0 must also have

Ψ
(1)
4 = 0. A null rotation about 𝑛 can then be used to set Ψ

(1)
1 = 0 and a null rotation

about ℓ can be used to set Ψ
(1)
3 = 0. It follows that the perturbation must preserve the

Type D condition to linear order. Since Type D solutions are specified by just a few
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constants [141], it is natural to expect that there will be only a finite number of solutions

satisfying these conditions. Wald showed that the only well-behaved solutions correspond

simply to perturbations in the mass or angular momentum of the Kerr solution; i.e. the

end-point of such perturbations is another member of the Kerr family.

For 𝑑 > 4, even if one can show that Ω(1) = 0 implies that Ω′(1) = 0 then it is no

longer true that one can use null rotations to set Ψ(1) = Ψ′(1) = 0. This is because a null

rotation about 𝑛 contains fewer parameters than the number of independent components

of Ψ(1) (whereas for 𝑑 = 4 both have two degrees of freedom). So for 𝑑 > 4 it seems

likely that the perturbations overlooked by our decoupled equation are more general than

perturbations preserving the Type D condition. Nevertheless, since Ω(1) has the same

number of degrees of freedom as the gravitational field, it seems reasonable to expect

that our decoupled equation of motion captures ‘nearly all’ of the information about

linearized metric perturbations.

Sometimes it might not be enough to know the solution for Ω(1), one might need

to know the metric perturbation explicitly. Wald [165] gives a systematic procedure

for constructing solutions of the linearized Einstein equation (in a certain gauge), given

the existence of a decoupled equation of motion for a quantity linear in the metric

perturbation. It seems likely that this procedure can be applied in the present case to

generate solutions of the higher-dimensional linearized Einstein equation whenever Ω(1)

satisfies a decoupled equation.

However, this will not be necessary in the next chapter, where we will move on to

discuss an application of our decoupled equation. Recall from Section 1.6 that all extreme

vacuum black hole solutions have near-horizon geometries, and that these near horizon

geometries are Kundt spacetimes. Hence, we can apply our formalism to study their

perturbations, and will discuss in detail how to do this for a large class of spacetimes

(including the near-horizon geometries of all known extreme vacuum black holes).
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Chapter 5

Perturbations of near-horizon

geometries and instabilities of

Myers-Perry black holes

5.1 Introduction

In Chapter 4, we developed a new approach to studying perturbations of Kundt space-

times, and observed that this could be applied to study perturbations of the near-horizon

geometries of extreme vacuum black holes. The purpose of this chapter is twofold.

Firstly, we study in detail perturbations of vacuum near-horizon geometries, using the

decoupled equations (4.4,4.25) for electromagnetic and gravitational perturbations.

Secondly, we ask whether one can learn anything about stability of an extreme black

hole solution from a study of perturbations of its near-horizon geometry? Clearly, we will

not be able to deduce that the full black hole is stable just by looking at its near-horizon

geometry. So, a more precise question is: if the near-horizon geometry is unstable then

does this imply that the full black hole is also unstable?

If true, this would give a fairly simple way of predicting instabilities of extreme

black holes because perturbations of a near-horizon geometry can be studied using the

decoupled equations of Chapter 4. Furthermore, if an extreme black hole is unstable

then it seems likely that near-extreme elements of the same family of black holes will

also be unstable.

We should clarify what we mean by an instability of a near-horizon geometry. As we

observed in the introduction, the near horizon geometries of all known extreme vacuum

black holes take the form of a compact space ℋ fibred over 𝐴𝑑𝑆2. We will show that

the decoupled equations describing scalar field, electromagnetic and gravitational per-

103
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turbations can be separated, and hence reduced to a an equation for a massive, charged,

scalar field in 𝐴𝑑𝑆2 with a homogeneous electric field, and a mass determined by the

eigenvalues of a self-adjoint operator on ℋ. We argue that one can define an ‘effective

Breitenlöhner-Freedman bound’ [166]. We shall say that the near-horizon geometry is

unstable if there is some mode that violates this BF bound. This reduction can be

regarded as a Kaluza-Klein compactification with internal space ℋ; it is non-trivial be-

cause the ‘KK gauge fields’ arising from rotation of the BH are non-vanishing in the

background spacetime.

Some motivation for believing that an instability of a near-horizon geometry implies

an instability of the full black hole comes from studies of charged scalar fields in the

background of an extreme Reissner-Nordström-AdS black hole. Numerical results [167]

suggest that the scalar field becomes unstable in the black hole geometry when the near-

horizon 𝐴𝑑𝑆2 BF bound is violated. In fact instability can occur even for an uncharged

scalar field. In this case, we shall present a proof (in Section 5.4) that instability of the

near-horizon geometry does imply instability of the full black hole.

Returning to gravitational perturbations, are any useful results known already? Con-

sider the four-dimensional near-horizon extreme Kerr (NHEK) geometry [87]. It has

ℋ = 𝑆2 (with an inhomogeneous ‘squashed’ metric). Linearized gravitational pertur-

bations of NHEK were studied in Refs. [168, 169]. After KK reduction to 𝐴𝑑𝑆2, they

found that certain non-axisymmetric modes violate the effective BF bound. In this sense,

the NHEK geometry is unstable against linearized gravitational perturbations. But, as

discussed in the introduction, the full Kerr solution is believed to be stable to such

perturbations.

Naively, this seems to suggest that perhaps instability of the near-horizon geometry

does not imply instability of the full black hole. However, we believe that there is a

connection. We shall argue that instability of the near-horizon geometry does imply

instability of the full black hole, but only if the unstable mode respects certain symme-

tries. In the Kerr example, the symmetry in question is axisymmetry. Axisymmetric

perturbations of NHEK do respect the BF bound [169], and hence the stability of such

modes is consistent with the stability of the full black hole.

Before attempting to understand why an instability of the near-horizon geometry

implies an instability of the full black hole when certain symmetries are respected, we

will start by gathering some more data. We will consider the most symmetric rotating

black hole solutions: Myers-Perry (MP) black holes [62] in an odd number of dimensions,

with equal angular momenta. Recall that such black holes are cohomogeneity-1, i.e. they

depend non-trivially on only a single coordinate. The Killing field tangent to the horizon

generators has the form 𝑘+Ω𝐻𝜁 where 𝑘 is the generator of asymptotic time translations,
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𝜁 is an angular Killing field with closed orbits, and Ω𝐻 is the angular velocity of the black

hole.

In the extremal limit, such a black hole has a near-horizon geometry for which ℋ =

𝑆𝑑−2 (with a homogeneous metric). After KK reduction to 𝐴𝑑𝑆2, we find that there

exist modes that violate the effective BF bound, but most of these violate the symmetry

generated by 𝜁. These are the analogue of the non-axisymmetric modes in NHEK. What

about modes that preserve the symmetry generated by 𝜁? For 𝑑 = 5, we find that such

modes always respect the BF bound, just as for NHEK. However, for 𝑑 ≥ 7, we find that

some of these modes violate the BF bound.

How does this compare with the stability properties of the full extreme black hole

solution? The only known results are for gravitational perturbations of non-extreme

cohomogeneity-1 MP solutions [170, 171, 109]. However, it is natural to expect that a

reliable guide to the stability of an extreme black hole should be the stability of black

holes that are very close to extremality. For modes that are invariant under the symmetry

generated by 𝜁, it turns out that, in the cases for which data exists, for any mode that is

unstable in the near-horizon geometry, there is a corresponding unstable mode of the full

black hole solution close to extremality. This leads us to predict that all cohomogeneity-1

MP black holes with 𝑑 ≥ 7 are unstable sufficiently close to extremality.

Are these isolated examples of a more general result? If so, under what circumstances

does an instability of the near-horizon geometry imply an instability of the full black hole?

In the cases discussed above, the relevant instabilities of the near-horizon geometries are

those preserving particular rotational symmetries. To investigate this in more generality,

consider a stationary black hole with 𝑛 commuting angular Killing fields ∂/∂𝜙𝐼 and a

metric of the form

𝑑𝑠2 = −𝑁(𝑥)2𝑑𝑡2 + 𝑔𝐼𝐽(𝑥)
(
𝑑𝜙𝐼 +𝑁 𝐼(𝑥)𝑑𝑡

) (
𝑑𝜙𝐽 +𝑁𝐽(𝑥)𝑑𝑡

)
+ 𝑔𝐴𝐵(𝑥)𝑑𝑥

𝐴𝑑𝑥𝐵 (5.1)

where 1 ≤ 𝐼, 𝐽 ≤ 𝑛, 𝜙𝐼 ∼ 𝜙𝐼 + 2𝜋, and the metric depends only on the coordinates

𝑥𝐴. In any number of dimensions, Theorem 1.3 guarantees the existence of at least one

rotational Killing vector for any stationary black hole solution, so we know that 𝑛 ≥ 1.

All known exact black hole solutions in 𝑑 > 4 dimensions (e.g. Myers-Perry black holes,

black rings) have more symmetry than this; they have multiple rotational symmetries.

Our conjecture for the circumstances under which a near-horizon geometry instability

implies an instability of the full black hole is the following:

Conjecture 5.1 Consider linearized gravitational perturbations of the near-horizon ge-

ometry of an extreme vacuum black hole with metric (5.1). These can be Fourier de-

composed into modes with 𝜙𝐼 dependence 𝑒𝑖𝑚𝐼𝜙
𝐼
. A sufficient condition for instability of
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the full black hole geometry is that the near-horizon geometry is unstable against some

perturbation mode satisfying

𝑚𝐼𝑁
𝐼(𝑥) = 0 (5.2)

For most MP black holes, or doubly-spinning black rings, the functions 𝑁 𝐼(𝑥) are lin-

early independent, and hence this condition implies 𝑚𝐼 = 0 for all 𝐼. However, for

MP solutions with enhanced symmetry this condition is less restrictive, e.g. in the

cohomogeneity-1 case it implies only that Σ𝐼𝑚𝐼 = 0, which is equivalent to the per-

turbation being invariant under the symmetry generated by 𝜁.

The purpose of this chapter is to build evidence in favour of this conjecture. In the

first part of the chapter we shall proceed phenomenologically. In Section 5.2, we will show

how to use the formalism developed in Chapter 4 to study scalar field, electromagnetic

and gravitational perturbations of the near-horizon geometry of an extreme black hole.

We then apply Conjecture 5.1 to the case of cohomogeneity-1 Myers-Perry-AdS black

holes, i.e. odd dimensional Myers-Perry black hole solutions with all angular momenta

equal. If we find an instability satisfying (5.2) then we shall predict an instability of

the full extreme black hole solution. If the extreme black hole is unstable then it seems

natural to expect that near-extremal black holes will also be unstable. Hence, in some

cases, this prediction can be tested by comparing to the results of Dias et al. [109], where

it was found that certain cohomogeneity-1 Myers-Perry solutions become unstable near

extremality, with the instability respecting (5.2). We will find that our predictions are

in good agreement with the results of [109], which gives us confidence to make further

predictions concerning the stability of extreme cohomogeneity-1 Myers-Perry black holes

[62], including asymptotically AdS solutions [65, 67].

Finally, in Section 5.3.6, we discuss briefly whether our results have any relevance to

the conjectured Kerr-CFT correspondence [91]. It has been suggested that this extends

to extreme Myers-Perry black holes [92]. Consider the asymptotic behaviour of pertur-

bations in 𝑑 = 5 (where we do not predict an instability). Following standard AdS/CFT

rules we can determine operator dimensions in the dual CFT using our results for grav-

itational perturbations of the near-horizon geometry. We find that all operators dual

to perturbations respecting (5.2) have integer conformal dimensions. This seems some-

what surprising, and perhaps hints at the existence of some symmetry protecting these

operator dimensions.

In Section 5.4 we return to more general questions, and explain how the precise form

of the conjecture was arrived at. Further motivation will come from considering the

toy model of a scalar field. We argue that an instability of the scalar field in the near-

horizon geometry implies an instability in the full black hole spacetime if the condition
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(5.2) holds. For gravitational perturbations, we do not have a complete argument but

the results discussed above, and further evidence that we shall discuss, suggests that an

argument similar to the scalar field case should also apply.

5.2 Decoupling and near-horizon geometries

5.2.1 Near-horizon geometries

Recall from Chapter 4 that decoupling of 𝝋 and Ω occurs only for Kundt spacetimes.

Although such spacetimes do not describe black holes, some Kundt spacetimes are closely

related to black holes, since any extremal black hole admits a near-horizon geometry and

any near-horizon geometry is a Kundt spacetime.

Consider an extreme black hole, i.e. one with a degenerate Killing horizon. In the

introduction, we noted that the near horizon geometries of all known extreme vacuum

black holes take the form of a fibration of some manifold ℋ over 𝐴𝑑𝑆2. More explicitly,

they an be written as [87, 88, 89, 80, 90]

𝑑𝑠2 = 𝐿(𝑦)2
(
−𝑅2𝑑𝑇 2 +

𝑑𝑅2

𝑅2

)
+𝑔𝐼𝐽(𝑦)

(
𝑑𝜙𝐼 − 𝑘𝐼𝑅𝑑𝑇

) (
𝑑𝜙𝐽 − 𝑘𝐽𝑅𝑑𝑇

)
+𝑔𝐴𝐵(𝑦)𝑑𝑦

𝐴𝑑𝑦𝐵.

(5.3)

where ∂/∂𝜙𝐼 , 𝐼 = 1, . . . , 𝑛 are the rotational Killing vector fields of the black hole and

𝑘𝐼 are constants. The metric in the first set of round brackets is the metric of 𝐴𝑑𝑆2

(in Poincaré coordinates). The coordinates 𝜙𝐼 have period 2𝜋. The metric depends

non-trivially only on the 𝑑− 𝑛− 2 coordinates 𝑦𝐴.

A calculation (see Appendix C) reveals that the vector fields ℓ and 𝑛 dual to −𝑑𝑇 ±
𝑑𝑅/𝑅2 are tangent to affinely parametrized null geodesics with vanishing expansion,

rotation and shear, and hence these spacetimes are doubly Kundt spacetimes, in the sense

of Definition 4.2. Such a spacetime is of algebraic Type D. If we consider perturbing such

a spacetime then the perturbations in both Ω and Ω′ are gauge invariant and satisfy the

decoupled equation (4.25).

5.2.2 Decomposition of perturbations

The metric (5.3) takes a Kaluza-Klein form. There is an ‘internal’ compact space ℋ,

parametrized by (𝜙𝐼 , 𝑦𝐴), corresponding to a spatial cross-section of the black hole hori-

zon. More precisely, ℋ denotes a surface of constant 𝑇 and 𝑅 in (5.3), with geometry

𝑑𝑠2 = 𝑔𝐼𝐽(𝑦)𝑑𝜙
𝐼𝑑𝜙𝐽 + 𝑔𝐴𝐵(𝑦)𝑑𝑦

𝐴𝑑𝑦𝐵. (5.4)
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Additionally, there is a non-compact 𝐴𝑑𝑆2 space parametrized by the Poincaré type co-

ordinates 𝑇 and 𝑅. Mixing between these two spaces is described by the terms −𝑘𝐼𝑅𝑑𝑇 ,
which can be thought of as ‘Kaluza-Klein gauge fields’ associated to a 𝑈(1)𝑛 gauge group.

These preserve the symmetries of 𝐴𝑑𝑆2 because the associated field strengths 𝑘𝐼𝑑𝑇 ∧𝑑𝑅
are proportional to the volume form of 𝐴𝑑𝑆2 (they describe homogeneous electric fields).

Our strategy will be to decompose perturbations as scalar fields in 𝐴𝑑𝑆2, with the

effective mass of these scalar fields given by eigenvalues of some operator on ℋ. This is

more complicated than a standard (linearized) Kaluza-Klein reduction because the ‘KK

gauge fields’ are non-vanishing in the background geometry. Fields with non-vanishing

𝜙𝐼 dependence will be charged with respect to the 𝐴𝑑𝑆2 gauge fields. We give more

details of this decomposition below.

Scalar fields

It is instructive to consider first the example of a complex scalar field Ψ(𝑇,𝑅, 𝜙𝐼 , 𝑦𝐴)

satisfying the Klein-Gordon equation1

(∇2 −𝑀2
)
Ψ = 0. (5.5)

We start with a separable ansatz

Ψ(𝑇,𝑅, 𝜙, 𝑦) = 𝜒0(𝑇,𝑅)𝑌 (𝜙, 𝑦) (5.6)

and Fourier decompose 𝑌 along the periodic directions 𝜙𝐼 :

𝑌 (𝜙, 𝑦) = 𝑒𝑖𝑚𝐼𝜙
𝐼𝕐(𝑦) (5.7)

The Klein-Gordon equation (5.5) separates, and we see that the function 𝜒0(𝑇,𝑅) satis-

fies the equation of a massive charged scalar field in 𝐴𝑑𝑆2 with a homogeneous electric

field. More precisely, we write the 𝐴𝑑𝑆2 metric and gauge field 𝐴2 as

𝑑𝑠2 = −𝑅2𝑑𝑇 2 +
𝑑𝑅2

𝑅2
, 𝐴2 = −𝑅𝑑𝑇, (5.8)

and introduce a gauge-covariant derivative for a scalar with charge 𝑞:

𝐷 ≡ ∇2 − 𝑖𝑞𝐴2, (5.9)

where ∇2 is the Levi-Civita associated to the 𝐴𝑑𝑆2 metric. The scalar 𝜒0 satisfies the

equation of an 𝐴𝑑𝑆2 scalar with charge 𝑞 and squared mass 𝜇2 = 𝜆+ 𝑞2:(
𝐷2 − 𝜆− 𝑞2

)
𝜒0(𝑇,𝑅) = 0 (5.10)

1Alternatively, we could have started with the GHP version (4.6) of this equation, but in this case it

does not make things any simpler.
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where the charge 𝑞 is given by2

𝑞 = 𝑚𝐼𝑘
𝐼 . (5.11)

The separation constant 𝜆 is given by the eigenvalue equation

𝒪(0)𝑌 ≡ −∇̂𝜇

(
𝐿(𝑦)2∇̂𝜇𝑌

)
+ 𝐿(𝑦)2(𝑀2 − 𝑞2)𝑌 = 𝜆𝑌, (5.12)

where ∇̂ is the Levi-Civita connection on ℋ and 𝜇, 𝜈 denote indices on ℋ, raised and

lowered with the metric on ℋ.

The operator 𝒪(0) is self-adjoint with respect to the inner product

(𝑌1, 𝑌2) =

∫
ℋ
𝑌1𝑌2 d(vol) (5.13)

defined on the compact manifold ℋ. This self-adjointness guarantees that 𝜆 is real, and

furthermore that the harmonics 𝑌 form a complete set and hence any solution Ψ can

be expanded as a sum of separable solutions of the above form. Note also that 𝒪(0)

commutes with the Lie derivative with respect to ∂/∂𝜙𝐼 and hence eigenfunctions of

𝒪(0) may be assumed to have the 𝜙𝐼 dependence assumed above.

Gravitational perturbations

The same procedure works for the linearized gravitational field. As things are more

complicated here, we give the full details in Appendix C and merely summarize the

argument here. We are looking to separate the decoupled equation (4.25), and start

with a separable ansatz

Ω𝑖𝑗 = Re [𝜒2(𝑇,𝑅)𝑌𝑖𝑗(𝜙, 𝑦)] . (5.14)

Since we are choosing our null basis vectors ℓ and 𝑛 to be tangent to the null geodesic

congruences with vanishing expansion, rotation and shear, i.e., to −𝑅𝑑𝑇 ± 𝑑𝑅/𝑅, it

follows that the spatial basis vectors 𝑚𝑖 span ℋ. Therefore, we can regard 𝑌𝑖𝑗 as the

components of a symmetric traceless tensor 𝑌𝜇𝜈 on ℋ. For the remainder of this chapter

𝜇, 𝜈, . . . will represent indices on ℋ, with indices raised and lowered with 𝑔. We take a

Fourier decomposition of this tensor as above, that is we assume that

ℒ𝐼𝑌𝜇𝜈 = 𝑖𝑚𝐼𝑌𝜇𝜈 , (5.15)

2We are considering 𝐴𝑑𝑆2 with a single gauge field 𝐴 = −𝑅𝑑𝑇 . We could consider 𝐴𝑑𝑆2 with

multiple gauge fields, as is natural from the KK perspective, 𝐴𝐼 = −𝑘𝐼𝑅𝑑𝑇 . We would then obtain an

𝐴𝑑𝑆2 scalar with charge 𝑚𝐼 with respect to 𝐴𝐼 . However, for fields of higher spin, it turns out to be

more useful to consider a single gauge field. The motivation for taking the separation constant to be

𝜆 = 𝜇2 − 𝑞2 rather than 𝜇2 itself will also become apparent when we consider higher spin fields.
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where ℒ𝐼 is the Lie derivative with respect to ∂/∂𝜙𝐼 . We can again perform a separation

of the perturbation equation for Ω, and show that it reduces to the equation of a massive

charged scalar in 𝐴𝑑𝑆2, satisfying(
𝐷2 − 𝑞2 − 𝜆

)
𝜒2 = 0. (5.16)

Here the charge is given by

𝑞 = 𝑚𝐼𝑘
𝐼 + 2𝑖 (5.17)

and the separation constant 𝜆 by the eigenvalue equation

(𝒪(2)𝑌 )𝜇𝜈 = 𝜆𝑌𝜇𝜈 (5.18)

for an operator

(𝒪(2)𝑌 )𝜇𝜈 = − 1

𝐿4
∇̂𝜌
(
𝐿6∇̂𝜌𝑌𝜇𝜈

)
+
(
6− (𝑘𝐼𝑚𝐼)

2 − 4
𝐿2𝑘𝜇𝑘

𝜇 − 2(𝑑− 4)Λ𝐿2
)
𝑌𝜇𝜈

+ 2𝐿2
(
�̂�(𝜇∣𝜌 + �̂�𝑔(𝜇∣𝜌

)
𝑌 𝜌

∣𝜈) − 2𝐿2�̂� 𝜌 𝜎
𝜇 𝜈 𝑌𝜌𝜎

+
[
− (𝑑𝑘)(𝜇∣𝜌 − 2

𝐿2

(
𝑑(𝐿2) ∧ 𝑘)

(𝜇∣𝜌

+ 2
(
𝑘 − 𝑑(𝐿2)

)
(𝜇∣ ∇̂𝜌 − 2

(
𝑘 − 𝑑(𝐿2)

)
𝜌
∇̂(𝜇∣

]
𝑌 𝜌

∣𝜈). (5.19)

In this expression, �̂�𝜇𝜈𝜌𝜎 is the Riemann tensor on ℋ (with �̂�𝜇𝜈 and �̂� the Ricci tensor

and Ricci scalar), indices are raised and lowered with the metric on ℋ, 𝑘 is the Killing

vector field on ℋ defined by

𝑘 = 𝑘𝐼
∂

∂𝜙𝐼
(5.20)

and (𝑑𝑘)𝜇𝜈 = 2∇̂[𝜇𝑘𝜈]. We have written 𝒪(2) in a covariant way, so that it can be

evaluated using any basis on ℋ, not limited to the particular one that we used above.

The explicit 𝑚𝐼 dependence enters only via 𝑘𝐼𝑚𝐼 , which can be determined from

ℒ𝑘𝑌𝜇𝜈 = 𝑖𝑘𝐼𝑚𝐼𝑌𝜇𝜈 (5.21)

As in the scalar case, we can show that the separation constant 𝜆 is real by showing

that 𝒪(2) is self-adjoint. To do this, we define an inner product between traceless,

symmetric, square integrable 2-tensors on ℋ by

(𝑌1, 𝑌2) ≡
∫
ℋ
𝐿4𝑌 𝜇𝜈

1 𝑌2𝜇𝜈 d(vol), (5.22)

and find that it can be shown, by integrating by parts, that 𝒪(2) is self-adjoint with

respect to this, which implies that its eigenvalues 𝜆 are real.

The function 𝜒2(𝑇,𝑅) satisfies the equation of a charged scalar in 𝐴𝑑𝑆2 where the

mass 𝜇 is given by

𝜇2 = 𝑞2 + 𝜆 (5.23)
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Note that 𝑞 is complex. This has been observed previously for gravitational perturbations

of the NHEK geometry [168, 169]. Self-adjointness implies that 𝜆 is real and hence 𝜇2

also is complex but the combination 𝜇2 − 𝑞2 is always real.

Note that the use of the gauge-invariant quantity Ω to describe metric perturbations

implies that we will not be able to study certain non-generic perturbations that preserve

the algebraically special property of the background geometry and hence have Ω. In par-

ticular, perturbations that deform the near-horizon geometry into another near-horizon

geometry will be missed.

Electromagnetic Perturbations

Finally, we can also analyse the behaviour of Maxwell fields in a similar manner. In

a Kundt background, these satisfy a decoupled equation in terms of 𝝋. Similarly to

previous cases, we write

𝜑𝑖(𝑇,𝑅, 𝜙
𝐼 , 𝑦𝐴) = Re

[
𝜒1(𝑇,𝑅)𝑌𝑖(𝜙

𝐼 , 𝑦𝐴)
]

(5.24)

The decoupled equation for 𝜑𝑖 can be separated to give the equation of a charged scalar

in 𝐴𝑑𝑆2:

(𝐷2 − 𝜆− 𝑞2)𝜒1 = 0 (5.25)

where the charge is

𝑞 = 𝑘𝐼𝑚𝐼 + 𝑖, (5.26)

the mass 𝜇 is given by 𝜇2 = 𝑞2 + 𝜆, and 𝜆 is given by

(𝒪(1)𝑌 )𝜇 = 𝜆𝑌𝜇 (5.27)

where

(𝒪(1)𝑌 )𝜇 = − 1

𝐿2
∇̂𝜌
(
𝐿4∇̂𝜌𝑌𝜇

)
+
(
2− (𝑘𝐼𝑚𝐼)

2 − 5
4𝐿2𝑘𝜇𝑘

𝜇 − 𝑑−6
2
Λ𝐿2

)
𝑌𝜇

+ 𝐿2(�̂�𝜇𝜈 +
1
2
�̂�𝑔𝜇𝜈)𝑌

𝜈 +
(
−1

2
(𝑑𝑘)𝜇𝜈 + 2

(
𝑘 − 𝑑(𝐿2)

)
[𝜇
∇̂𝜈] − 1

𝐿2 (𝑑𝐿
2)[𝜇𝑘𝜈]

)
𝑌 𝜈 . (5.28)

This is again self-adjoint, this time with respect to the inner product

(𝑌1, 𝑌2) ≡
∫
ℋ
𝐿2𝑌 𝜇

1 𝑌2𝜇 d(vol), (5.29)

and hence the eigenvalues 𝜆 are real.
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5.2.3 Behaviour of solutions

We’ve seen that for a scalar field, linearized gravitational field, or Maxwell field, we can

reduce the equation of motion to that of a massive, charged, scalar field 𝜒𝑏(𝑇,𝑅) in

𝐴𝑑𝑆2 with a homogeneous electric field (5.8). Solutions of this equation of motion were

considered in Refs. [172, 168, 169]. At large 𝑅, they behave as 𝜒𝑏 ∼ 𝑅−Δ± where

Δ± =
1

2
±
√
𝜇2 − 𝑞2 +

1

4
(5.30)

Therefore solutions grow or decay as real powers of 𝑅 if the ‘effective BF bound’ is

respected:

𝜇2 − 𝑞2 ≥ −1

4
. (5.31)

If this bound is violated then solutions oscillate at infinity.

In the uncharged case (𝑞 = 0), it is known that boundary conditions can be imposed

that lead to stable, causal, dynamics when the bound is respected [166, 173]. If the bound

is violated then no choice of boundary conditions leads to stable, causal, dynamics [173].

Motivated by this, we make the following definition for the remainder of the paper:

Definition 5.2 A near-horizon geometry is unstable against linearized gravitational (or

scalar field or Maxwell) perturbations if expanding in harmonics on ℋ gives a massive,

charged, scalar field in 𝐴𝑑𝑆2 that violates the bound (5.31).

This is just introducing some terminology, we are not claiming anything about the

dynamics of a scalar field in 𝐴𝑑𝑆2 when (5.31) is violated. Of course, it would be interest-

ing to see if the arguments of Ishibashi & Wald [173] could be extended to the charged

case to show that violation of (5.31) implies that there exists no choice of boundary

conditions for which the scalar field has stable dynamics. However, such considerations

are not actually relevant to this paper, as we are interested in the question of whether

violation of (5.31) implies instability of the full black hole geometry rather than just its

near-horizon geometry.

In fact, the results of Refs. [168, 169] show that it probably doesn’t make sense to

consider perturbations of the near-horizon geometry as a spacetime in its own right since

there will be a large backreaction when one goes beyond linearized theory.

We showed above that 𝜇2 − 𝑞2 = 𝜆, the eigenvalue of a self-adjoint operator 𝒪(𝑏).

Hence, our condition for instability of the near-horizon geometry is the existence of an

eigenvalue 𝜆 < −1/4. This means that the question of stability has been reduced to

studying the spectrum of these operators on ℋ. In the next section we shall study the

spectrum of these operators for the case of extreme cohomogeneity-1 MP black holes.
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5.3 Cohomogeneity-1 extreme MP black holes

5.3.1 Metric and near-horizon limit

We shall now illustrate the methods described above with an example. Consider a

Myers-Perry-(AdS) black hole [62, 65, 67] in odd dimension 𝑑 = 2𝑁 + 3, with all an-

gular momentum parameters set to be equal, 𝑎𝑖 = 𝑎. Such a black hole has enhanced

rotational symmetry; the 𝑈(1)𝑁+1 is enlarged to 𝑈(𝑁 + 1), i.e. the symmetry is that

of a homogeneously squashed 𝑆𝑑−2 = 𝑆2𝑁+1. The metric is cohomogeneity-1, that is

it depends non-trivially on a single coordinate. This makes the study of gravitational

perturbations of this class of black holes more tractable than the general case, and cer-

tain types of perturbation of the full black hole geometry have been studied previously

[170, 171, 109].

The metric for the full black hole solution can be written in the form [170]

𝑑𝑠2 = − 𝑉 (𝑟)

ℎ(𝑟)2
𝑑𝑣2 +

2𝑑𝑟𝑑𝑣

ℎ(𝑟)
+ 𝑟2ℎ(𝑟)2(𝑑𝜓 +𝒜− Ω(𝑟)𝑑𝑣)2 + 𝑟2𝑔𝛼𝛽𝑑𝑥

𝛼𝑑𝑥𝛽 (5.32)

where (𝑣, 𝑟, 𝜓, 𝑥𝛼) are ingoing Eddington-Finkelstein type coordinates, 𝜓 has period 2𝜋,

𝑉 (𝑟) = 1 +
𝑟2

𝑙2
+
(𝑟0
𝑟

)2𝑁 (
−1 +

𝑎2

𝑙2
+
𝑎2

𝑟2

)
, (5.33)

ℎ(𝑟) =

√
1 +

𝑎2

𝑟2

(𝑟0
𝑟

)2𝑁
and Ω(𝑟) =

𝑎

𝑟2ℎ(𝑟)2

(𝑟0
𝑟

)2𝑁
. (5.34)

The solution is parameterized by three quantities with the dimensions of length: 𝑟0, 𝑎

(which determines the ratio of angular momentum to mass), and 𝑙 (the AdS radius). We

are writing the 𝑆2𝑁+1 as a 𝑈(1) fibration over ℂℙ𝑁 , with 𝑔𝛼𝛽 the Fubini-Study metric on

ℂℙ𝑁 (normalized to have Ricci tensor 2(𝑁+1)𝑔𝛼𝛽) and 𝒜 = 𝒜𝛼𝑑𝑥
𝛼 satisfying 𝑑𝒜 = 2𝒥 ,

where 𝒥 is the Kähler form on ℂℙ𝑁 . The metric satisfies the vacuum Einstein equation

𝑅𝑎𝑏 = −𝑑− 1

𝑙2
𝑔𝑎𝑏 ≡ Λ𝑔𝑎𝑏, (5.35)

and is asymptotically 𝐴𝑑𝑆𝑑 with radius 𝑙. The limit 𝑙 → ∞ gives the asymptotically flat

MP solution.

The event horizon lies at 𝑟 = 𝑟+, with 𝑉 (𝑟+) = 0. This family of black holes admits

an extremal limit, i.e. there exists a value of 𝑎 for which 𝑉 ′(𝑟+) = 0. In this case, the

solution is uniquely labelled by 𝑙 and 𝑟+, with

𝑟𝑁0 = 𝑟𝑁+2
+

√
𝑁 + 1

(
1

𝑟2+
+

1

𝑙2

)
, 𝑎2 =

𝑟2+𝑙
2

𝑁 + 1

(
(𝑁 + 1)𝑟2+ +𝑁𝑙2

(𝑟2+ + 𝑙2)2

)
. (5.36)

To obtain the near-horizon limit, we define new coordinates 𝑟, 𝑣, 𝜓 by

𝑟 = 𝑟+ + 𝜀𝑟, 𝑣 =
𝑣

𝜀
and 𝜓 = 𝜓 + Ω(𝑟+)𝑣, (5.37)
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and then take the limit 𝜀→ 0, to obtain a metric

𝑑𝑠2 = −𝑉
′′(𝑟+)𝑟2

2ℎ(𝑟+)2
𝑑𝑣2+

2𝑑𝑟𝑑𝑣

ℎ(𝑟+)
+𝑟2+ℎ(𝑟+)

2
(
𝑑𝜓 +𝒜− Ω′(𝑟+)𝑟𝑑𝑣

)2
+𝑟2+𝑔𝛼𝛽𝑑𝑥

𝛼𝑑𝑥𝛽. (5.38)

Finally, to simplify this, and recover a form of the metric more similar to that used in

the discussion above, we define new coordinates (𝑇,𝑅, 𝜓, 𝑥𝛼) by

𝑇 =
𝑉 ′′(𝑟+)
2ℎ(𝑟+)

𝑣 +
1

𝑟
, 𝑅 = 𝑟, 𝜓 = 𝜓 − 2ℎ(𝑟+)Ω

′(𝑟+)
𝑉 ′′(𝑟+)

log(𝑟) (5.39)

and define constants

1

𝐿2
=

𝑉 ′′(𝑟+)
2

= 2(𝑁 + 1)

(
𝑁

𝑟2+
+
𝑁 + 2

𝑙2

)
(5.40)

𝐵2 = 𝑟2+ℎ(𝑟+)
2 = (𝑁 + 1)𝑟2+

(
1 +

𝑟2+
𝑙2

)
, (5.41)

Ω =
2ℎ(𝑟+)Ω

′(𝑟+)
𝑉 ′′(𝑟+)

=
−1

(𝑁 + 1)
(
1 + (𝑁 + 2)(𝑟+/𝑙)2

)√𝑁𝑙2 + (𝑁 + 1)𝑟2+
𝑙2 + 𝑟2+

, (5.42)

1

𝐸
=

𝐵Ω

2𝐿2
= −

(
1 +

𝑟2+
𝑙2

)√
(𝑁 + 1)

(
𝑁+1
𝑙2

+ 𝑁
𝑟2+

)
. (5.43)

This gives a simple form for the near-horizon metric:

𝑑𝑠2 = 𝐿2(−𝑅2𝑑𝑇 2 +
𝑑𝑅2

𝑅2
) +𝐵2 (𝑑𝜓 +𝒜− Ω𝑅𝑑𝑇 )2 + 𝑟2+𝑔𝛼𝛽𝑑𝑥

𝛼𝑑𝑥𝛽. (5.44)

As expected, this metric takes the form of a (𝑑− 2)-dimensional manifold ℋ fibred over

𝐴𝑑𝑆2. Here, ℋ is a homogeneously squashed (𝑑− 2)-sphere, with metric

𝑑𝑠2𝑑−2 = 𝐵2 (𝑑𝜓 +𝒜)2 + 𝑟2+𝑔𝛼𝛽𝑑𝑥
𝛼𝑑𝑥𝛽, (5.45)

where 𝑔 is the metric on ℂℙ𝑁 as above and 𝜓 has period 2𝜋.

We are writing the metric in a form that makes manifest its enhanced symmetry,

rather than in the form (5.3) (which makes manifest only the Killing directions ∂/∂𝜙𝐼).

Since we know that the near-horizon geometry of a general extreme MP solution can be

written in the form (5.3) [89] it follows that there must be a coordinate transformation

that would allow us to bring our metric to this form. However, it is not necessary to

perform such a transformation since the operators 𝒪(𝑏) on ℋ are defined in a covariant

way. We can read off the vector 𝑘 by looking at the cross-terms proportional to ∂/∂𝑇

in the inverse metric:

1

2𝐿2

(
−2Ω

∂

∂𝜓

∂

∂𝑇

)
=

1

2𝐿2

(
−2𝑘𝐼

∂

∂𝜙𝐼
∂

∂𝑇

)
(5.46)

and hence

𝑘 ≡ 𝑘𝐼
∂

∂𝜙𝐼
= Ω

(
∂

∂𝜓

)
. (5.47)
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We can Fourier decompose our perturbation in the 𝜓 direction, i.e. assume dependence

𝑒𝑖𝑚𝜓 so that eigenfunctions 𝑌 on ℋ obey ℒ𝑘𝑌 = 𝑖Ω𝑚𝑌 . Equation (5.21) now enables

us to read off

𝑘𝐼𝑚𝐼 = Ω𝑚 (5.48)

For these black holes, the condition (5.2) reduces to 𝑚 = 0. However, we will obtain

results for general𝑚. We will determine the spectrum of our operators 𝒪(𝑏) by expanding

them in harmonics on ℂℙ𝑁 , with metric 𝑔𝛼𝛽 (where 𝛼, 𝛽, . . . are indices on ℂℙ𝑁 , raised
and lowered with 𝑔). From the ℂℙ𝑁 perspective, 𝑚 acts like a charge which couples

to the ‘gauge field’ 𝒜 (see [170]). We therefore define a charged covariant derivative on

ℂℙ𝑁

�̂�𝛼 = �̂�𝛼 − 𝑖𝑚𝒜𝛼 (5.49)

where �̂� is the Levi-Civita connection on ℂℙ𝑁 .

5.3.2 Scalar field perturbations

As a simple first example, we show how to deal with massive scalar field perturbations.

The operator 𝒪(0) defined by (5.12) reduces to

𝒪(0)𝑌 = −2𝑁𝑚2𝐿4

𝑟4+
𝑌 − 𝐿2

𝑟2+
�̂�2𝑌 + 𝐿2𝑀2𝑌, (5.50)

acting on functions 𝑌 (𝜓, 𝑥) = 𝑒𝑖𝑚𝜓𝕐(𝑥). We shall assume that the 𝐴𝑑𝑆𝑑 BF bound is

respected, i.e. that

𝑀2 ≥ −(𝑑− 1)2

4𝑙2
= −(𝑁 + 1)2

𝑙2
. (5.51)

Scalar eigenfunctions of the charged covariant Laplacian �̂�2 on ℂℙ𝑁 were studied in

[174]. For each integer 𝑚, there exist ℂℙ𝑁 scalars 𝕐(𝑥) satisfying

(�̂�2 + 𝜆S𝜅,𝑚)𝕐 = 0, (5.52)

for eigenvalues

𝜆S𝜅,𝑚 = 4𝜅(𝜅+𝑁) + 2∣𝑚∣(2𝜅+𝑁) 𝜅 = 0, 1, 2, . . . . (5.53)

Hence, the eigenvalues of 𝒪(0) are

𝜆 =
(4𝜅(𝜅+𝑁) + 2∣𝑚∣(2𝜅+𝑁))𝐿2

𝑟2+
− 2𝑁𝑚2𝐿4

𝑟4+
+𝑀2𝐿2. (5.54)

Therefore, for large ∣𝑚∣, 𝜆 becomes arbitrarily negative and the BF bound (5.31) is

always violated. However, for the axisymmetric modes 𝑚 = 0 that are relevant for our

conjecture, the eigenvalues are given by

𝜆

𝐿2
=

4𝜅(𝜅+𝑁)

𝑟2+
+𝑀2 (5.55)
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for non-negative integers 𝜅 (recall that 𝐿 is defined by (5.40)).

Consider first asymptotically flat black holes 𝑙 → ∞ and𝑀2 ≥ 0. Here, we manifestly

have 𝜆 ≥ 0, and hence the 𝐴𝑑𝑆2 BF bound is not violated.

This is not always the case for asymptotically 𝐴𝑑𝑆 black holes. Clearly there is no

problem if 𝑀2 ≥ 0. However, if 𝑀2 < 0 then it is possible for the 𝐴𝑑𝑆2 BF bound to be

violated even if the 𝐴𝑑𝑆𝑑 BF bound is respected [175]. Consider for example the case in

which the 𝐴𝑑𝑆𝑑 bound is saturated. Then a mode labelled by 𝜅 violates the 𝐴𝑑𝑆2 BF

bound if
𝑟2+
𝑙2
>

4𝜅(𝜅+𝑁) +𝑁(𝑁 + 1)

4𝑁(𝑁 + 1)
, (5.56)

that is, for sufficiently large black holes. In this case, our conjecture predicts that the

scalar field should be unstable in the full black hole geometry. This issue was investigated

numerically in Ref. [175]. It was found that the full black hole is indeed unstable, and

there exists a new nonlinear family of ‘hairy’ rotating black holes. In Section 5.4 we shall

prove analytically that the full black hole solution must be unstable.

5.3.3 Gravitational perturbations of asymptotically flat BHs

We now consider the more complicated case of gravitational perturbations. The calcula-

tions here are significantly more involved. In this section we will merely give the results

for different classes of perturbation mode, reserving the details of the calculations for

Appendix D.

Our approach to determining the eigenvectors 𝑌𝜇𝜈 of 𝒪(2) is to decompose 𝑌𝜇𝜈 into

parts parallel and perpendicular to ℂℙ𝑁 and then expand each part in terms of harmon-

ics on ℂℙ𝑁 , assuming dependence 𝑒𝑖𝑚𝜓 along the 𝑆1 fibre. By ‘harmonics’, we mean

eigenfunctions of the charged ℂℙ𝑁 Laplacian �̂�2. They can be divided into scalar, vec-

tor, and (traceless) tensor types [170, 176, 109] where vector and tensor harmonics are

transverse with respect to the derivatives �̂�𝛼 and 𝒥𝛼𝛽�̂�𝛽. See Ref. [176] for detailed

discussion of this decomposition. The orthogonality properties of these different types

of harmonic implies that eigenfunctions of 𝒪(2) must each be built from ℂℙ𝑁 harmonics

of a particular type (scalar, vector or tensor) and with the same eigenvalue of �̂�2.

The modes that are relevant to our conjecture are those that are 𝜓 independent,

i.e. those with 𝑚 = 0. Therefore, we only list our results in this case, although in

Appendix D we derive all of these results for general 𝑚. It turns out that, as in the

scalar field case, the coefficient of 𝑚2 in these eigenvalues is always negative, and hence

for sufficiently large ∣𝑚∣ there are instabilities in every sector of perturbations of the

near-horizon geometry.

We begin with the asymptotically flat case, corresponding to 𝑙 → ∞.
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Tensor modes

These eigenfunctions 𝑌𝜇𝜈 have components only in the direction of ℂℙ𝑁 , and are propor-

tional to a transverse, traceless, tensor harmonic on ℂℙ𝑁 . Such harmonics exist only for

𝑁 > 1 (𝑑 > 5). Tensor perturbations of the full black hole geometry were considered in

Ref. [170]. In the asymptotically flat case, no evidence of any instability was found near

extremality. Hence, if our conjecture holds, we would not expect to find any unstable

modes satisfying (5.2) (i.e. 𝑚 = 0) in this sector.

We find that the eigenvalues 𝜆 of 𝒪(2) are given by

𝜆 =
2𝜅(𝜅+𝑁) + 2𝑁(1− 𝜎)

𝑁(𝑁 + 1)
, (5.57)

where 𝜅 = 0, 1, 2, . . ., and the parameter 𝜎 = ∓1 separates two different classes of tensor

harmonic which are respectively Hermitian, or anti-Hermitian, on ℂℙ𝑁 (more details are

given in Appendix D.2).

The eigenvalues 𝜆 are manifestly non-negative. Hence the effective BF bound 𝜆 ≥
−1/4 is respected and there is no instability of the near-horizon geometry in this sector.

Hence our conjecture is consistent with the results of Ref. [170].

Vector modes

Next, we move on to study vector-type perturbation modes. Again, these exist only for

𝑁 > 1 (𝑑 > 5). These have not been previously studied in the literature, so we have no

numerical results for the full black hole geometry to compare our results to.

For vector-type perturbations 𝑌𝜇𝜈 is written as a linear combination of three different

types of term built from a ℂℙ𝑁 vector harmonic and its derivatives, so it is determined

by the three coefficients in this expansion. Acting with 𝒪(2) has the same effect as acting

with a certain 3 × 3 matrix on these coefficients. Hence finding the eigenvalues of 𝒪(2)

for vector type perturbations reduces to finding the eigenvalues of a 3× 3 matrix. The

elements of this matrix involve the eigenvalue of the vector harmonic on ℂℙ𝑁 , which
is labelled by a non-negative integer 𝜅 (and the integer 𝑚). Perhaps surprisingly, the

eigenvalues of 𝒪(2) turn out to be rational (given here for 𝑚 = 0):

𝜆 =
2(𝑁 + (𝜅+ 1)2)

𝑁(𝑁 + 1)
,

2(𝜅+ 2)(𝜅+𝑁 + 1)

𝑁(𝑁 + 1)
,

2 (𝑁2 + (𝜅+ 2)2 +𝑁(2𝜅+ 5))

𝑁(𝑁 + 1)
. (5.58)

These are all manifestly positive, so there is no violation of the generalized 𝐴𝑑𝑆2 BF

bound in this sector.
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Scalar modes

The most complicated sector is that of scalar type gravitational perturbations. In this

case, 𝑌𝜇𝜈 is written as a linear combination of six terms, each of which is constructed

from ℂℙ𝑁 scalar harmonics and their derivatives.

Harmonics are again labelled by an integer 𝜅 ≥ 0, as well as 𝑚. Acting with 𝒪(2)

has the effect of acting with a 6×6 matrix. Hence determining the eigenvalues of 𝒪(2) is

equivalent to determining the eigenvalues of a 6×6 matrix. For the special cases 𝜅 = 0, 1

some combinations of derivatives of the ℂℙ𝑁 harmonics vanish, which a corresponding

reduction in the size of the matrix. There is also a reduction in size for the special case

of 𝑁 = 1 (i.e. 𝑑 = 5) for which the matrix is generically 5× 5. In all cases, we again find

that the eigenvalues of 𝒪(2) are rational.

For 𝜅 = 0, there is just one eigenvalue

𝜆 =
2(2𝑁 + 1)

𝑁
(5.59)

which is manifestly positive, and hence there is no instability here.

For 𝜅 = 1, the eigenvalues 𝜆 correspond to the eigenvalues of a 4 × 4 matrix (3 × 3

for 𝑁 = 1). They are

𝜆 =
2

𝑁
,

2(𝑁 + 1)

𝑁
,

2(𝑁 + 2)

𝑁
,

4(𝑁 + 2)

𝑁
, (5.60)

which are again all positive. The second eigenvalue does not appear for 𝑁 = 1.

Things get more interesting for 𝜅 ≥ 2, where we have a 6×6 matrix (5×5 for 𝑁 = 1).

The eigenvalues are given by

𝜆 =
2(𝜅− 1)(𝜅−𝑁 − 1)

𝑁(𝑁 + 1)
,

2𝜅(𝜅− 1)

𝑁(𝑁 + 1)
,

2𝜅(𝜅+𝑁)

𝑁(𝑁 + 1)
,

2 +
2𝜅(𝜅+𝑁)

𝑁(𝑁 + 1)
,

2(𝜅+𝑁)(𝜅+𝑁 + 1)

𝑁(𝑁 + 1)
,

2(𝜅+ 1 +𝑁)(𝜅+ 2𝑁 + 1)

𝑁(𝑁 + 1)
, (5.61)

with the fourth of these absent for 𝑁 = 1.

Five of these eigenvalues are manifestly non-negative, so in order to check for an

instability of the near-horizon geometry, we need only to analyse whether there exist 𝜅,

𝑁 such that
2(𝜅− 1)(𝜅−𝑁 − 1)

𝑁(𝑁 + 1)
< −1

4
. (5.62)

We list the values of the left hand side explicitly in Table 5.1 for all 𝜅 = 2, . . . 10, in

dimensions 𝑑 = 5, 7, . . . , 23.

In dimension 𝑑 = 5 there are no modes that violate the effective BF bound, and

we conclude that there are no unstable scalar modes of the near horizon geometry that
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𝜅

𝑑 𝑁 2 3 4 5 6 7 8 9 10

5 1 0.00 2.00 6.00 12.00 20.00 30.00 42.00 56.00 72.00

7 2 -0.33 0.00 1.00 2.67 5.00 8.00 11.70 16.00 21.00

9 3 -0.33 -0.33 0.00 0.67 1.67 3.00 4.67 6.67 9.00

11 4 -0.30 -0.40 -0.30 0.00 0.50 1.20 2.10 3.20 4.50

13 5 -0.27 -0.40 -0.40 -0.27 0.00 0.40 0.93 1.60 2.40

15 6 -0.24 -0.38 -0.43 -0.38 -0.24 0.00 0.33 0.76 1.29

17 7 -0.21 -0.36 -0.43 -0.43 -0.36 -0.21 0.00 0.29 0.64

19 8 -0.19 -0.33 -0.42 -0.44 -0.42 -0.33 -0.19 0.00 0.25

21 9 -0.18 -0.31 -0.40 -0.44 -0.44 -0.40 -0.31 -0.18 0.00

23 10 -0.16 -0.29 -0.38 -0.44 -0.46 -0.44 -0.38 -0.29 -0.16

Table 5.1: Smallest eigenvalue of 𝒪(2) for 𝑚 = 0, in the case of asymptotically flat extremal

cohomogeneity-1 Myers-Perry black holes in dimensions 𝑑 = 5, 7, . . . 23, for modes 𝜅 = 2, . . . 10.

The BF bound is −1/4, eigenvalues violating this bound, and indicating an instability of the near

horizon geometry, are shown in bold (NB: all of these values are rational numbers determined

by (5.61), we give decimal approximations here for readability purposes.)

satisfy the condition (5.2). Therefore we do not predict any instability of the full black

hole in this case. This is consistent with a study of linearized perturbations of the full

black hole [171], which did not find any evidence of instability near extremality.

Our main result in this section is that for 𝑑 ≥ 7 there is always at least one mode

that violates the effective BF bound and hence the near-horizon geometry is unstable.

Since this mode respects (5.2), our conjecture predicts that the full black hole solutions

should be unstable. Perturbations of the full non-extreme black hole were studied in

Ref. [109]. For 𝑑 = 9 it was found that 𝜅 = 2 scalar perturbations are unstable near

extremality, in agreement with our conjecture. However no instability was found for the

cases 𝑑 = 7, 𝜅 = 2 or 𝑑 = 9, 𝜅 = 3 for which we predict that one should be present.

The reason for this discrepancy is that the results of Ref. [109] do not get close enough

to extremality to see the instability that we predict. J. E. Santos has kindly repeated

the numerical analysis of Ref. [109] for black holes that are very close to extremality.

He finds instabilities that were missed in the analysis of Ref. [109]. Let 𝑎ext denotes the

value of 𝑎 at which the black hole becomes extreme. Table 5.2 gives the critical value of

1 − 𝑎/𝑎ext below which the black hole is unstable.3 There is indeed an instability very

3There is no instability of the black hole for 𝜅 = 1 but Ref. [109] showed that there is an instability

of the corresponding black string close to extremality. For completeness, we give Santos’ results for the
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𝑑 𝜅 = 2 𝜅 = 3 𝜅 = 4 𝜅 = 5 𝜅 = 6 𝜅 = 7

7 2.34× 10−5 2.51× 10−7

9 2.12× 10−3 2.94× 10−7 8.02× 10−9

13 1.50× 10−2 1.36× 10−3 2.11× 10−5 1.056× 10−6 7.35× 10−8

15 2.23× 10−2 3.46× 10−3 2.87× 10−4 5.05× 10−6 7.57× 10−7 6.10× 10−8

Table 5.2: Critical values 1 − 𝑎/𝑎ext below which an asymptotically flat, cohomogeneity-1,

Myers-Perry black hole becomes unstable against scalar-type gravitational perturbations with

the given 𝜅. These numerical results were obtained by J. E. Santos using the methods described

in [109].

near extremality for 𝑑 = 7, 𝜅 = 2 and 𝑑 = 9, 𝜅 = 3, for 𝑑 = 13 with 𝜅 = 2, 3, 4, 5 and

for 𝑑 = 15 with 𝜅 = 3, 4, 5, all in perfect agreement with our conjecture. He also finds

that there are cases for which we do not predict an instability but nevertheless one exists

(e.g. 𝑑 = 7, 𝜅 = 3), which emphasizes that our conjecture supplies a sufficient, but not

necessary, condition for instability.

In general dimension 𝑑 = 2𝑁 + 3, straightforward algebra shows that a violation of

the effective BF bound occurs if

1 + 𝑁
2
− 1

2

√
𝑁(𝑁−1)

2
< 𝜅 < 1 + 𝑁

2
+ 1

2

√
𝑁(𝑁−1)

2
. (5.63)

This proves that for any 𝑁 ≥ 2, there is at least one integer value of 𝜅 for which the

effective BF bound is violated.

5.3.4 Gravitational perturbations of asymptotically 𝐴𝑑𝑆 BHs

We now move on to consider gravitational perturbations of cohomogeneity-1 Myers-

Perry-AdS black holes. Ref. [170] demonstrated that such black holes suffer a ‘super-

radiant’ instability near extremality. This instability corresponds to perturbations with

𝑚 ∕= 0, which are excluded from the scope of our conjecture. We shall consider eigenfunc-

tions of 𝒪(2) with 𝑚 = 0 to see if any new instability appears. Once again, we consider

separately eigenfunctions of 𝒪(2) constructed from tensor, vector and scalar harmonics

on ℂℙ𝑁 .

critical values of 1− 𝑎/𝑎ext for this instability: 4.116× 10−2, 8.347× 10−2, 1.351× 10−1, 1.517× 10−1

for 𝑑 = 7, 9, 13, 15 respectively.
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Tensor modes

The eigenvalues 𝜆 of 𝒪(2) are given by

𝜆

𝐿2
= 4(1− 𝜎)

(
𝑁

𝑟2+
+
𝑁 + 1

𝑙2

)
+

4𝜅(𝜅+𝑁)

𝑟2+
, (5.64)

where again 𝜎 = ±1. This is manifestly non-negative. Hence the BF bound is respected

so we do not predict any instability. This is in agreement with Ref. [170], which proved

that 𝑚 = 0 tensor perturbations are stable in the full black hole geometry.

Vector modes

In contrast with the asymptotically flat case, we are unable to give a simple explicit

form for the eigenvalues of 𝒪(2) corresponding to vector modes. However, we can still

prove that for all 𝑁 , for any value of the dimensionless ratio 𝑟+/𝑙, the eigenvalues are

all non-negative, and hence the effective 𝐴𝑑𝑆2 BF bound is respected. Hence, we do not

predict any instability in this sector. The proof is given in Appendix D.2.

Scalar modes

The analysis proceeds in the same way as in the asymptotically flat case.

For 𝜅 = 0, there is a single eigenvalue

𝜆 = 𝐿2

(
4

𝐸2
+ 4(𝑁 + 1)

𝐵2

𝑟4+

)
(5.65)

which is manifestly positive, and hence there is no instability.

For 𝜅 = 1, the eigenvalues 𝜆 correspond to the eigenvalues of a 4 × 4 matrix, and

these cannot be found explicitly in a convenient way. However, plotting these eigenvalues

against the dimensionless parameter 𝑟+/𝑙 shows immediately that all these eigenvalues

lie above the BF bound, and hence there is no instability in this sector.

For 𝜅 = 2, 3, 4, . . ., the problem reduces to finding eigenvalues of a 6 × 6 matrix

parametrized by 𝑟+/𝑙. For each 𝜅 = 2, 3, 4, . . ., there are six real eigenvalues of 𝒪(2).

Our results are easiest to understand for 𝑑 ≥ 7 (𝑁 ≥ 2). Consider first the case

𝑁 = 2. The lowest eigenvalue for each value of 𝜅 is plotted in Figure 5.1. We find that

there is a violation of the effective BF bound by the lowest 𝜅 = 2 eigenvalue for sufficiently

small 𝑟+/𝑙. This makes sense: the eigenvalues here are continuously connected to the

eigenvalues in the asymptotically flat case as 𝑟+/𝑙 → 0, and we saw that there is an

instability with 𝜅 = 2 in the asymptotically flat case. Modes with higher 𝜅 are unstable

for ranges of 𝑟+/𝑙 corresponding to larger black holes. The ranges for successive values

of 𝜅 overlap, and in fact for any 𝑟+/𝑙, there exists some 𝜅 corresponding to an unstable

mode. For 𝑁 = 3 (𝑑 = 9) the results are similar and are also shown in Figure 5.1.
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Figure 5.1: Lowest eigenvalues of 𝒪(2) plotted against the size of the 𝐴𝑑𝑆 black hole (𝑟2+/𝑙
2),

in dimensions 𝑑 = 7 (left) and 𝑑 = 9 (right). The shaded region corresponds to violation of the

effective BF bound. The separate curves shown correspond to 𝜅 = 2, 3, 4, 5, 6, moving from left

to right as 𝜅 is increased (the curves that are negative for 𝑟+/𝑙 → 0 are 𝜅 = 2 on the left and

𝜅 = 2, 3 on the right). In both cases, there is some mode that violates the BF bound for any

black hole size.

We can perform similar studies for higher dimensions 𝑑 = 11, 13, . . ., and find results

that are qualitatively similar to those for 𝑑 = 7, 9 (although note that modes with small

𝜅 become stable for small 𝐴𝑑𝑆 black holes in larger dimensions, however instabilities

for higher 𝜅 ensure that such black holes remain unstable). Therefore our conjecture

predicts that all extreme, cohomogeneity-1 MP-AdS black holes with 𝑑 ≥ 7 should be

unstable against scalar-type gravitational perturbations with 𝑚 = 0. We emphasize that

this is distinct from the previously discovered superradiant instability.

For 𝑑 = 5 (𝑁 = 1), we plot the lowest eigenvalue of 𝒪(2) with given 𝜅 in Figure 5.2.

For 𝜅 = 2, there is a violation of the effective BF bound for 0.43 < 𝑟2+/𝑙
2 < 0.56. The

violation is small: by less than 1%. Modes with higher 𝜅 are also unstable in particular

small ranges of the black hole size, but for increasingly large black holes as 𝜅 increases.

We do not have a good explanation for why these unstable modes are found only in

these small ranges. The fact that the bound is violated only by a small amount may

imply that the instability appears much closer to extremality than anything in Table

5.2 so confirming our conjecture in this case may require a numerical study of the full,

extremal black hole solution. As we can only give a sufficient condition for instability,

not a necessary one, it might be the case that the full extremal black hole solution is

unstable against 𝑚 = 0 perturbations for any 𝑟+/𝑙 above a certain lower bound (we

know that an instability is not present for the asymptotically flat case 𝑟+/𝑙 → 0).
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Figure 5.2: Eigenvalues of 𝒪(2) plotted against the size of the 𝐴𝑑𝑆 black hole (𝑟2+/𝑙
2), in

dimension 𝑑 = 5 (the right hand graph is a zoomed version of the left hand one). The separate

curves shown correspond to 𝜅 = 2, 3, 4, 5, 6, moving from left to right as 𝜅 is increased. We find

that the generalized BF bound 𝜆 ≥ −1/4, shown by the horizontal line, is violated by a small

amount in various small ranges of black hole size. As 𝜅 is increased, the violation of the BF

bound occurs for increasingly large black holes.

5.3.5 Electromagnetic Perturbations

Recall that an instability of the near-horizon geometry under electromagnetic perturba-

tions corresponds to an eigenvalue of 𝒪(1) being less than −1/4, and the eigenvectors

of 𝒪(1) are vectors 𝑌𝜇 on 𝑆2𝑁+1. Just as in the gravitational case, we can decompose

these into parts parallel and perpendicular to ℂℙ𝑁 and then decompose these parts into

scalar and vector harmonics on ℂℙ𝑁 . As things are simpler here, we can consider both

asymptotically flat and asymptotically 𝐴𝑑𝑆 black holes together. We find no evidence of

any instability in either of these cases. Once again, we restrict attention to modes with

𝑚 = 0 since these are the ones relevant to our conjecture.

Vector modes

For eigenvectors 𝑌𝜇 built from vector harmonics on ℂℙ𝑁 , we find eigenvalues

𝜆 = 4
(
𝜅2 + (𝑁 + 3)𝜅+ 2(𝑁 + 1)

)𝐿2

𝑟2+
, (5.66)

where 𝜅 is a non-negative integer. These are all positive so there is no instability.

Scalar modes

For 𝑌𝜇 built from scalar harmonics on ℂℙ𝑁 (labelled by a non-negative integer 𝜅), there

are two cases to consider separately. For 𝜅 = 0, there is a positive single eigenvalue:

𝜆 = 4𝑁(𝑁 + 1)𝐿2

(
1

𝑙2
+

1

𝑟2+

)
(5.67)
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For 𝜅 ≥ 1, there are three eigenvalues for each 𝜅, given by

𝜆 =
2𝜅(𝜅+𝑁)

(𝑁 + 1)
(
𝑁 + (𝑁 + 2)

𝑟2+
𝑙2

) , (5.68)

and

𝜆 =

2𝜅(𝜅+𝑁)
𝑁+1

+𝑁 + (𝑁 + 1)
𝑟2+
𝑙2

±
√
4𝜅(𝜅+𝑁)

(
1 +

(
𝑁+2
𝑁+1

) 𝑟2+
𝑙2

)
+
(
𝑁 + (𝑁 + 1)

𝑟2+
𝑙2

)2
𝑁 + (𝑁 + 2)

𝑟2+
𝑙2

.

(5.69)

Two of these are positive, but the third can sometimes be negative. In order to check

whether the effective 𝐴𝑑𝑆2 BF bound 𝜆 ≥ −1/4 is violated, we plotted this eigenvalue

against the 𝐴𝑑𝑆𝑑 black hole size 𝑟+/𝑙, finding that there is no violation of the effective

BF bound for any 𝑁 or 𝜅.

In the asymptotically flat case, these eigenvalues are again very simple, reducing to

2𝜅(𝜅+𝑁)

𝑁(𝑁 + 1)
,

2(𝜅+𝑁)(𝜅+𝑁 + 1)

𝑁(𝑁 + 1)
,

2𝜅(𝜅− 1)

𝑁(𝑁 + 1)
. (5.70)

5.3.6 Dual operators and conformal dimensions

It has been conjectured that there exists a CFT dual to the NHEK geometry [91].

Assuming that CFT operator dimensions are related to the decay rate of fields in 𝐴𝑑𝑆2

in the usual way, then equation (5.30) gives the operator dimensions. In general, these

turn out to be complex, which may be a problem for the Kerr-CFT conjecture. However,

the results of Refs. [168, 169] show that operators dual to axisymmetric gravitational

perturbations are particularly simple, with integer dimensions Δ+ = 𝑙 + 1 where 𝑙 =

2, 3, . . . labels the harmonic on ℋ = 𝑆2.

It has been suggested that the Kerr-CFT conjecture can be extended to the Myers-

Perry black holes [92] so it is interesting to use our results to compute operator dimen-

sions for this case too. Consider a cohomogeneity-1 extreme Myers-Perry black hole.

The operator 𝒪(2) governing gravitational perturbations of the near-horizon geometry

appears very complicated. It is striking that its eigenvalues are all rational numbers (for

asymptotically flat black holes4).

For 𝑑 > 5 we have seen that our conjecture predicts an instability so presumably a

CFT dual does not exist (or is also unstable). So consider the case 𝑑 = 5 (𝑁 = 1). In

this case, only scalar-type gravitational perturbations exist. Again, if 𝑚 ∕= 0 then there

are complex operator dimensions but for the modes with 𝑚 = 0 that are relevant to our

4In the asymptotically AdS case, the eigenvalues generically are all irrational but this case seems less

interesting for the present discussion since there always is a superradiant instability [170].
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conjecture the operator dimensions are real and particularly simple. For 𝜅 = 0 we have

Δ+ = 3. The 𝜅 = 1 harmonics give

Δ+ = 2, 3, 4. (5.71)

For 𝜅 = 2, 3, 4, . . ., we find

Δ+ = 𝜅− 1, 𝜅, 𝜅+ 1, 𝜅+ 2, 𝜅+ 3. (5.72)

Hence if there is a CFT description that obeys the usual AdS/CFT rules then the 𝑚 = 0

gravitational perturbations give rise to five infinite families of operators with integer

dimensions, just as for NHEK.5 This result hints that some symmetry is protecting

the dimensions of operators dual to 𝑚 = 0 gravitational perturbations. Note that the

operator of lowest dimension is marginal (in 1D): Δ+ = 1.

5.4 Instabilities from near-horizon geometries

Does an instability of the near-horizon geometry imply the existence of an instability

of the full spacetime? We conjectured in the introduction that this was the case for

a particular class of perturbation modes and explained how extreme Kerr is consistent

with the conjecture. In Section 5.3 we have shown that our conjecture predicts an

instability for certain Myers-Perry black holes, and this prediction is confirmed by studies

of perturbations of the full black hole geometry.

In this section, we will present some ideas that explain why our conjecture appears

to work. In the case of a scalar field, we shall sketch a proof of the conjecture. We shall

present some evidence suggesting that the method of proof in the scalar field case might

also generalize to gravitational perturbations.6

5.4.1 Scalar field instabilities

Consider an uncharged, scalar field Ψ of mass 𝑀 in the extreme planar Reissner-

Nordström-AdS black hole background in arbitrary dimension 𝑑 ≥ 4. This has a near-

horizon geometry of the form 𝐴𝑑𝑆2×ℝ𝑑−2. So, in the language described above, we have

ℋ = ℝ𝑑−2 here.

5A massless scalar field would give operators with Δ+ = 𝜅 + 1 for 𝜅 = 0, 1, 2 . . .. For 𝑁 > 1, if we

ignore the instability and calculate Δ+ formally for gravitational perturbations (for stable modes) then

the results are generically irrational.
6The material in this section provides motivation for much of the rest of work already described in

this chapter. However, the results of this section were largely derived by my supervisor Harvey Reall,

and appear in our paper [6].
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As before, we can Fourier analyze on ℝ𝑑−2 to reduce the scalar field equation of

motion to that of a massive scalar in 𝐴𝑑𝑆2. The BF bound (5.31) associated to the 𝐴𝑑𝑆2

is more restrictive than that associated to the asymptotic 𝐴𝑑𝑆𝑑 geometry. Numerical

work [167, 177] suggests that if the scalar field violates the 𝐴𝑑𝑆2 BF bound then the

scalar field is unstable in the full black hole geometry (even when the 𝐴𝑑𝑆𝑑 BF bound

is respected). Moreover, it has been proved [175] that if the 𝐴𝑑𝑆2 BF bound is satisfied

then the scalar field is stable in full black hole geometry, i.e., stability of the near-horizon

geometry implies stability of the full black hole. Here we will prove that instability of

the near-horizon geometry implies instability of the full black hole, in agreement with

our conjecture.

Consider an extreme static black hole with geometry

𝑑𝑠2 = −𝑓(𝑟)𝑑𝑡2 + 𝑓(𝑟)−1𝑑𝑟2 + 𝑟2𝑑Σ2
𝑘. (5.73)

where 𝑑Σ2
𝑘 is the metric on a unit sphere if 𝑘 = 1, a unit hyperboloid if 𝑘 = −1 and flat

if 𝑘 = 0. This metric encompasses the Schwarzschild(-AdS) and Reissner-Nordström(-

AdS) black holes with various horizon topologies.

As the black hole is extreme, we can assume that it has a degenerate horizon at

𝑟 = 𝑟+, and hence that

𝑓(𝑟) =
(𝑟 − 𝑟+)

2

𝐿2
+𝒪(𝑟 − 𝑟+)

3. (5.74)

The near horizon geometry is then 𝐴𝑑𝑆2 × Σ𝑘 where the 𝐴𝑑𝑆2 has radius 𝐿.

In the full spacetime, the equation of motion of a scalar field Ψ of mass 𝑀 can be

written

−∂
2Ψ

∂𝑡2
= ℬΨ, (5.75)

where

ℬΦ ≡ 𝑓

[
− 1

𝑟𝑑−2
∂𝑟
(
𝑟𝑑−2𝑓∂𝑟Ψ

)
+

1

𝑟2
∇̂2Ψ+𝑀2Ψ

]
, (5.76)

with ∇̂ the connection on Σ𝑘. Now define the following inner product between functions

defined on a surface of constant 𝑡 outside the horizon:

(Ψ1,Ψ2) =

∫ ∞

𝑟+

𝑑𝑟 𝑑Σ𝑘 𝑟
𝑑−2𝑓−1Ψ1Ψ2. (5.77)

We impose boundary conditions that the functions of interest must decay sufficiently

fast for this integral to converge at 𝑟 = ∞, and they must vanish at least as fast as

(𝑟− 𝑟+) as 𝑟 → 𝑟+ in order that the integral converges at 𝑟 = 𝑟+. Now, if our functions

decay fast enough at infinity, then ℬ is self-adjoint with respect to this inner product.7

7Note that this is different to the self-adjointness of operators discussed in Section 5.2.2; we are

integrating over the exterior region of the full spacetime, not just over the manifold ℋ.
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We can estimate the lowest eigenvalue 𝜆0 of ℬ using the Rayleigh-Ritz method, noting

that

𝜆0 ≤ (Ψ,ℬΨ)

(Ψ,Ψ)
, (5.78)

for any function Ψ satisfying the boundary conditions.

Suppose that 𝜆0 is negative, with Ψ0 the associated eigenfunction. Then (5.75) has

solutions

Ψ(𝑡, 𝑟, 𝑥) = 𝑒±
√−𝜆0𝑡Ψ0. (5.79)

From the form of ℬ, it is easy to show that near 𝑟 = 𝑟+, the eigenfunction behaves as

Ψ0 ∼ exp

(
−
√−𝜆0𝐿2

𝑟 − 𝑟+

)
. (5.80)

Transforming to ingoing Eddington-Finkelstein coordinates (𝑑𝑣 = 𝑑𝑡 + 𝑑𝑟/𝑓 so 𝑡 ∼
𝑣+𝐿2/(𝑟− 𝑟+) near 𝑟 = 𝑟+) reveals that the solution 𝑒

+
√−𝜆0𝑡Ψ0 is regular at the future

horizon. This grows exponentially with time, and hence represents an instability of the

scalar field in the black hole background.

The idea now is to show that violation of the 𝐴𝑑𝑆2 BF bound (5.31) implies the

existence of a trial function Ψ with (Ψ,ℬΨ) < 0. This implies that 𝜆0 must be negative,

hence the scalar field is unstable and the conjecture is proved.

To see how this works, consider the case of a 4D extreme Reissner-Nordström-AdS

black hole, for which

𝑓(𝑟) =
(
1− 𝑟+

𝑟

)2(
𝑘 +

3𝑟2+ + 2𝑟𝑟+ + 𝑟2

ℓ2

)
, (5.81)

where ℓ is the 𝐴𝑑𝑆4 radius. This has a near-horizon geometry with

1

𝐿2
=

6

ℓ2
+

𝑘

𝑟2+
. (5.82)

Consider the following trial function (motivated by a similar example in Ref. [175])

Ψ(𝑟) =
(𝑟 − 𝑟+)ℓ

9/2

𝑟4(𝑟 − 𝑟+ + 𝜖ℓ)3/2
, (5.83)

with 𝜖 > 0. This satisfies the boundary conditions required for self-adjointness of ℬ. As
𝜖→ 0, this gives

(Ψ,ℬΨ) ≡
∫ ∞

𝑟+

𝑑𝑟 𝑑Σ𝑘 𝑟
2
(
𝑓(∂𝑟Ψ)2 + 𝜇2Ψ2

)
= 𝑉𝑘

(
𝑀2 +

1

4𝐿2

)
ℓ9

𝑟6+
log
(
𝜖−1
)
+. . . (5.84)

where the ellipsis denotes terms subleading in 𝜖, and 𝑉𝑘 is the volume of Σ𝑘. The 𝐴𝑑𝑆2

BF bound states that the quantity in brackets on the RHS should be non-negative.8

8More precisely: this is the BF bound for modes which are homogeneous on Σ𝑘.
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From the above expression we see that ℬ admits a negative eigenvalue if this bound is

violated. Hence there is an instability of the scalar field when the 𝐴𝑑𝑆2 BF bound is

violated. The argument generalizes easily to 𝑑 > 4.9

A similar example is the cohomogeneity-1 Myers-Perry-AdS black hole discussed in

Section 5.3. For large black holes, the 𝐴𝑑𝑆2 BF bound is more restrictive than that of

𝐴𝑑𝑆𝑑. Hence a scalar field can violate the 𝐴𝑑𝑆2 BF bound but respect the 𝐴𝑑𝑆𝑑 BF

bound. Ref. [175] studied the case of a scalar field invariant under ∂/∂𝜓 (i.e. those modes

corresponding to 𝑚 = 0 in Section 5.3.2) and presented numerical evidence that such a

scalar field is indeed unstable if its mass lies between the two BF bounds. Furthermore,

it was proved that the scalar field (with 𝑚 = 0) is stable if it respects both bounds.

This example also can be understood using the argument above. Even though the

black hole is rotating, the fact that the scalar field is invariant under ∂/∂𝜓 implies that

its equation of motion takes the form (5.75). The only difference is the form of ℬ:

ℬΨ =
𝑉 (𝑟)

ℎ(𝑟)2

[
− 1

𝑟𝑑−2

∂

∂𝑟

(
𝑟𝑑−2𝑉 (𝑟)

∂Ψ

∂𝑟

)
− 1

𝑟2
∇̂2Ψ+ 𝜇2Ψ

]
, (5.85)

where ∇̂ is the connection of the metric on ℂℙ𝑁 . ℬ is self-adjoint with respect to the

scalar product

(Ψ1,Ψ2) = 2𝜋

∫ ∞

𝑟+

𝑑𝑟 𝑑Σ̂𝑁 𝑟
𝑑−2ℎ(𝑟)

2

𝑉 (𝑟)
Ψ1Ψ2, (5.86)

where 𝑑Σ̂𝑁 is the volume element on ℂℙ𝑁 . Consider, for simplicity, the five-dimensional

case (where 𝑁 = 1). We can use the trial function (5.83) with the modification 𝑟4 7→ 𝑟5

(to improve the convergence at 𝑟 = ∞). The result is the same: (Ψ,ℬΨ) is proportional

to log(𝜖−1) with a coefficient of proportionality that is negative if, and only if, the 𝐴𝑑𝑆2

BF bound is violated. Hence we have proved that the scalar field is unstable in the

extreme black hole geometry if it violates the 𝐴𝑑𝑆2 BF bound, in agreement with our

conjecture.

Now recall from the introduction to this chapter that for the extreme Kerr black hole,

we know that instability of the near-horizon geometry does not always imply instability

of the full black hole. Even for a scalar field, there exist modes that violate the effective

BF bound in the near-horizon geometry [87]. So how does the above argument fail for

Kerr? The key step above was to impose a symmetry condition on the scalar field that

makes its equation of motion take the form (5.75), in which first time derivatives are

9Ref. [175] proved that stability of the near-horizon geometry implies stability of the full black hole

for 𝑘 = −1, 0. Combining this with our result, we learn that, for these cases, the full black hole is stable

if, and only if, its near-horizon geometry is stable. For 𝑘 = 1, stability of the near-horizon geometry

is not sufficient to guarantee stability of the full black hole because the 𝐴𝑑𝑆2 BF bound can be less

restrictive than the 𝐴𝑑𝑆𝑑 bound.
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absent. For Kerr, eliminating first time derivatives implies that the scalar field must be

axisymmetric, and axisymmetric modes do respect our conjecture.

More generally, if we consider an extreme black hole with metric (5.1) then the

necessary and sufficient condition for the equation of motion of a massive scalar field to

reduce to (5.75) is

𝑁 𝐼(𝑥)
∂

∂𝜙𝐼
Ψ = 0. (5.87)

if we Fourier analyze Ψ ∝ 𝑒𝑖𝑚𝐼𝜙
𝐼
for integers 𝑚𝐼 then this equation reduces the ax-

isymmetry condition (5.2) in the conjecture that we made in the introduction. If this

condition is satisfied then the argument we have sketched above should apply. This

explains why our conjecture should work for scalar fields.

5.4.2 Gravitational perturbations

We have sketched an argument that explains why a scalar field instability in the near-

horizon geometry of an extreme black hole implies an instability of the full black hole,

provided the scalar field satisfies the symmetry condition (5.2). We are really interested

in linearized gravitational perturbations. If we attempt to repeat the same argument, we

would need to convert the equations governing gravitational perturbations to something

of the form

−∂
2Ψ𝛼

∂𝑡2
= 𝒜𝛼

𝛽Ψ𝛽 (5.88)

with Ψ𝛼 a vector encoding the perturbation, and 𝒜𝛼
𝛽 a matrix operator self-adjoint

with respect to a suitable inner product. Can this be done? For axisymmetric (i.e.

𝑚 = 0) metric perturbations of the Kerr black hole, in a certain gauge, it can indeed:

a variational formula analogous to (5.78) is given in Chandrasekhar [178, §114]. Hence

the extreme Kerr black hole should obey our conjecture and, as we discussed in the

introduction, it does.

What about higher dimensions? Can we bring the equations governing gravitational

perturbations of, for example, a Myers-Perry black hole to the form (5.88), provided

the perturbation satisfies the symmetry condition (5.2)? Evidence that this is indeed

possible comes from recent work [109] on instabilities of cohomogeneity-1 MP black holes.

This work considered metric perturbations satisfying (5.2). In the cases for which an

instability was found, the time dependence was 𝑒−𝑖𝜔𝑡 where 𝜔 has positive imaginary

part. In general, one would expect 𝜔 to be complex but it turned out that unstable

modes had purely imaginary 𝜔. This would be explained if perturbations were governed

by an equation of the form (5.88) (with 𝒜𝛼
𝛽 self-adjoint), which predicts that 𝜔2 should

be real.
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Perturbations of Myers-Perry black holes with a single non-vanishing angular mo-

mentum have also been considered [107]. Again, perturbations satisfying (5.2) were

considered ((5.2) reduces to 𝑚1 = 0 in this case). The critical mode associated to the

onset of instability was identified. This mode has zero frequency, which suggests that

unstable modes should have purely imaginary frequency (if unstable modes had 𝜔 with

a non-zero real part then there is no reason why the mode at the threshold of instability

should have 𝜔 = 0 rather than 𝜔 some non-zero real number). Again, this suggests that

a formula of the form (5.88) exists for this situation.

In these two examples, it appears that the condition (5.2) is indeed sufficient to

obtain an equation of the form (5.88) governing gravitational perturbations (in a certain

gauge). This is encouraging evidence that it will indeed be possible to demonstrate that

an instability of the near-horizon geometry of an extreme black hole will imply instability

of the full black hole provided this symmetry condition is respected.



Chapter 6

Hidden symmetries of black rings

6.1 Introduction

The final chapter of this thesis starts out along a slightly different track. Rather than

deriving general results about Einstein spacetimes in higher dimensions as we have done

in the previous chapters, we will discuss the properties of a particular spacetime in five

dimensions, namely the doubly-spinning black ring.

This doubly-spinning black ring is an asymptotically flat solution to the vacuum

field equations, discovered by Pomeransky and Sen’kov [70] using solution generating

techniques for higher-dimensional Weyl solutions [75]. It is a generalisation of the original

Emparan-Reall black ring [68] with rotation around the 𝑆2 as well as the 𝑆1. The solution

is rather more complicated than [68], but reduces to the balanced version of that solution

in a particular limit.

Various authors have studied properties of this solution in the past. Kunduri et al.

[88] studied the extremal limit and associated near-horizon geometry, while Elvang &

Rodriguez [74] studied its phase structure, asymptotics and horizon. There is a more

general version of the solution, corresponding to an ‘unbalanced’ ring with conical sin-

gularities, which is explicitly presented in [179]. Much of the current literature on this

spacetime is reviewed in [16], we give some brief details of its properties in Section 6.2.

More recently, and after the work of this chapter was complete, Chrusciel et al. [180]

produced an extensive rigorous study of various properties; and in particular constructed

an analytic extension of the spacetime through its event horizon, as well as explicitly

exhibiting the regularity of the metric on both the ergosurface and the axes of rotation.

In later work, Chrusciel & Szybka [181] proved stable causality of the domain of outer

communications.

As the black ring is rotating, there is an ergosurface. The topology of this ergosurface

changes as the black ring parameters vary. For a ring with sufficiently small rotation

131
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about the 𝑆2, the topology is 𝑆1 ×𝑆2, as in the singly spinning case. However, for more

rapid 𝑆2 rotation the ergosurface has topology 𝑆3∪𝑆3, consisting of a small sphere around

the centre of the ring, and a large sphere enclosing the entire ring. There is a critical

case, where a topology change occurs: the surface ‘pinches’ on an 𝑆1 (see Section 6.2.6).

After the work of this section was mostly complete, a similar analysis [182] appeared,

as part of a paper discussing the properties of ergoregions in various higher-dimensional

solutions.

At face value, the doubly-spinning black ring metric seems to be extremely com-

plicated. However, we will see that it admits some expected symmetry that makes it

possible to study certain properties analytically. Consider the Hamilton-Jacobi (HJ)

equation, describing geodesic motion in the spacetime. We will see in Section 6.3 that,

for both the singly-spinning and doubly-spinning rings, this equation admits separable

solutions in the case of null, zero energy geodesics. These null, zero energy geodesics can

only exist inside the ergoregion, and correspond to massless particles coming out of the

white hole horizon in the past, and falling into the black hole horizon in finite parame-

ter time in the future. On the other hand, the Klein-Gordon equation is not separable

in ring-like coordinates, even if we restrict to looking for massless, time-independent

solutions. We will briefly discuss the reasons for this in Section 6.5.4.

In Section 6.4, we will see that the existence of these geodesics allows us to construct

new coordinate systems for the black ring that are valid across the event horizon. In

the singly spinning case, it is possible to construct a new set of coordinates (𝑣, 𝑥, 𝑦, 𝜙, 𝜓)

such that 𝑣, 𝜙, 𝜓 are constant along one of these geodesics. These coordinate systems are

regular at the future black hole horizon, and a particular subset of them cover the entire

horizon. The coordinate change given in [69] is included in this family of coordinate

systems, and hence this allows us to understand its geometric significance.

In the doubly-spinning case, the best approach is to use coordinates (𝑣, 𝑥, 𝑦, 𝜙, 𝜓)

where only 𝜙 and 𝜓 are constant along the geodesics, and a change of coordinate 𝑣 is

made that simply makes the metric regular at the horizon (rather than demanding that

it is constant along the geodesics). Using this approach, we are able to present explicitly

a form for the doubly-spinning metric that is valid across the horizon.

We then see in Section 6.5 that the null, zero energy separability of the Hamilton-

Jacobi equation is related to the existence of a conformal Killing tensor in a 4-dimensional

spacetime obtained by a spacelike Kaluza-Klein reduction of the black ring spacetime in

the ergoregion, reducing along the asymptotically timelike Killing vector field. Further-

more, a pair of conformal Killing-Yano tensors exist for the 4-dimensional spacetime if,

and only if, the associated ring is singly-spinning.
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6.2 The Doubly-Spinning Black Ring Spacetime

Here, we briefly describe some properties of the doubly-spinning black ring spacetime,

in order to set up notation, and gather together some results that will be useful in what

follows. We also explore some interesting properties of the ergoregion, which will be

relevant later when we move on to consider geodesics.

6.2.1 Form of the metric

The doubly rotating ring solution can be written in the form

𝑑𝑠2 = −𝐻(𝑦, 𝑥)

𝐻(𝑥, 𝑦)
(𝑑𝑡+ Ω)2

+
𝑅2𝐻(𝑥, 𝑦)

(𝑥− 𝑦)2(1− 𝜈)2

[
𝑑𝑥2

𝐺(𝑥)
− 𝑑𝑦2

𝐺(𝑦)
+
𝐴(𝑦, 𝑥)𝑑𝜙2 − 2𝐿(𝑥, 𝑦)𝑑𝜙𝑑𝜓 − 𝐴(𝑥, 𝑦)𝑑𝜓2

𝐻(𝑥, 𝑦)𝐻(𝑦, 𝑥)

]
. (6.1)

The coordinates lie in ranges −∞ < 𝑦 ≤ −1, −1 ≤ 𝑥 ≤ 1 and −∞ < 𝑡 < ∞, with

𝜓 and 𝜙 2𝜋-periodic. Varying the parameters 𝜆 and 𝜈 changes the shape, mass and

angular momentum of the ring. They are required to lie in the ranges 0 ≤ 𝜈 < 1 and

2
√
𝜈 ≤ 𝜆 < 1 + 𝜈.

The functions 𝐺, 𝐻, 𝐴 and 𝐿 are moderately complicated polynomials, and are given

by

𝐺(𝑥) = (1− 𝑥2)(1 + 𝜆𝑥+ 𝜈𝑥2),

𝐻(𝑥, 𝑦) = 1 + 𝜆2 − 𝜈2 + 2𝜆𝜈(1− 𝑥2)𝑦 + 2𝑥𝜆(1− 𝑦2𝜈2) + 𝑥2𝑦2𝜈(1− 𝜆2 − 𝜈2),

𝐿(𝑥, 𝑦) = 𝜆
√
𝜈(𝑥− 𝑦)(1− 𝑥2)(1− 𝑦2)

[
1 + 𝜆2 − 𝜈2 + 2(𝑥+ 𝑦)𝜆𝜈

−𝑥𝑦𝜈(1− 𝜆2 − 𝜈2)
]
,

𝐴(𝑥, 𝑦) = 𝐺(𝑥)(1− 𝑦2)
[
((1− 𝜈)2 − 𝜆2)(1 + 𝜈) + 𝑦𝜆(1− 𝜆2 + 2𝜈 − 3𝜈2)

]
+𝐺(𝑦)

[
2𝜆2 + 𝑥𝜆((1− 𝜈)2 + 𝜆2) + 𝑥2((1− 𝜈)2 − 𝜆2)(1 + 𝜈)

+𝑥3𝜆(1− 𝜆2 − 3𝜈2 + 2𝜈3) + 𝑥4𝜈(1− 𝜈)(1− 𝜆2 − 𝜈2)
]

The rotation is described by the 1-form Ω = Ω𝜓(𝑥, 𝑦)𝑑𝜓 + Ω𝜙(𝑥, 𝑦)𝑑𝜙, where

Ω𝜓 = −𝑅𝜆
√

2((1 + 𝜈)2 − 𝜆2)

𝐻(𝑦, 𝑥)

1 + 𝑦

1− 𝜆+ 𝜈

(
1 + 𝜆− 𝜈 + 𝑥2𝑦𝜈(1− 𝜆− 𝜈) + 2𝜈𝑥(1− 𝑦)

)
(6.2)

and

Ω𝜙 = −𝑅𝜆
√

2((1 + 𝜈)2 − 𝜆2)

𝐻(𝑦, 𝑥)
(1− 𝑥2)𝑦

√
𝜈. (6.3)

The form of the metric we use here is slightly different, although entirely equivalent,

to that presented elsewhere in the literature. Relative to [70], the 𝜙 and 𝜓 coordinates
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have been exchanged, to be consistent with the singly spinning solution as presented in

the review [69], and the functions 𝐹 (𝑥, 𝑦) and 𝐽(𝑥, 𝑦) have been replaced with 𝐴(𝑥, 𝑦)

and 𝐿(𝑥, 𝑦) defined such that

𝐹 (𝑥, 𝑦) =
𝑅2𝐴(𝑥, 𝑦)

(1− 𝜈)2(𝑥− 𝑦)2
and 𝐽(𝑥, 𝑦) =

𝑅2𝐿(𝑥, 𝑦)

(1− 𝜈)2(𝑥− 𝑦)2
. (6.4)

The length-scale parameter 𝑅 is related to their 𝑘 by 𝑅2 = 2𝑘2.

It is useful at this stage to think a little bit more carefully about the properties of

the metric functions 𝐴(𝑥, 𝑦) and 𝐿(𝑥, 𝑦). Is it immediately apparent from the definition

of 𝐴(𝑥, 𝑦) that we can write it in the form

𝐴(𝑥, 𝑦) = 𝐺(𝑥)𝛼(𝑦) +𝐺(𝑦)𝛽(𝑥) (6.5)

for some 𝛼(𝜉) and 𝛽(𝜉). Note that there is a freedom in our choice of these functions;

we can add an arbitrary multiple of 𝐺(𝜉) to one and subtract it from the other without

affecting 𝐴(𝑥, 𝑦) itself. It turns out that the most convenient way of doing this is to pick

𝛼(𝜉) = 𝜈(1− 𝜉2)
[−(1 + 𝜆2)− 𝜈(1− 𝜈) + 𝜆𝜉(2− 3𝜈)− (1− 𝜆2)𝜉2

]
(6.6)

and

𝛽(𝜉) = (1+𝜆2)+𝜆𝜉(1+(1−𝜈)2)−𝜈𝜉2(2𝜆2+𝜈(1−𝜈))−𝜆𝜈2𝜉3(3−2𝜈)−𝜈2𝜉4(1−𝜆2+𝜈(1−𝜈)).
(6.7)

We can also do a similar thing for 𝐿(𝑥, 𝑦). If we set

𝛾(𝜉) = 𝜆
√
𝜈(1− 𝜉2)(𝜆− (1− 𝜈2)𝜉 − 𝜆𝜈𝜉2) (6.8)

then we find that

𝐿(𝑥, 𝑦) = 𝐺(𝑥)𝛾(𝑦)−𝐺(𝑦)𝛾(𝑥). (6.9)

The ring-like coordinates can be related to two pairs of polar coordinates

(𝑡, 𝑟1, 𝜙, 𝑟2, 𝜓) via

𝑟1 = 𝑅

√
1− 𝑥2

𝑥− 𝑦
and 𝑟2 = 𝑅

√
𝑦2 − 1

𝑥− 𝑦
, . (6.10)

Note that, in these coordinates, the flat space limit takes the standard form

𝑑𝑠2 = −𝑑𝑡2 + 𝑑𝑟21 + 𝑟21𝑑𝜙
2 + 𝑑𝑟22 + 𝑟22𝑑𝜓

2. (6.11)

The black ring has a ring-like curvature singularity at 𝑦 → −∞, which is the ring

(𝑟1, 𝑟2) = (0, 𝑅) in the polar coordinates (6.10).
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6.2.2 Inverse Metric

The inverse metric will be useful later, so we give it here for convenience, it reads(
∂

∂𝑠

)2

= −𝐻(𝑥, 𝑦)

𝐻(𝑦, 𝑥)

(
∂

∂𝑡

)2

+
(𝑥− 𝑦)2

𝑅2𝐻(𝑥, 𝑦)

[
(1− 𝜈)2

(
𝐺(𝑥)

(
∂

∂𝑥

)2

−𝐺(𝑦)

(
∂

∂𝑦

)2
)

+
𝐴(𝑥, 𝑦)

𝐺(𝑥)𝐺(𝑦)

(
∂

∂𝜙
− Ω𝜙

∂

∂𝑡

)2

− 2𝐿(𝑥, 𝑦)

𝐺(𝑥)𝐺(𝑦)

(
∂

∂𝜙
− Ω𝜙

∂

∂𝑡

)(
∂

∂𝜓
− Ω𝜓

∂

∂𝑡

)
− 𝐴(𝑦, 𝑥)

𝐺(𝑥)𝐺(𝑦)

(
∂

∂𝜓
− Ω𝜓

∂

∂𝑡

)2
]
. (6.12)

Note that
𝐴(𝑥, 𝑦)

𝐺(𝑥)𝐺(𝑦)
=
𝛼(𝑦)

𝐺(𝑦)
+
𝛽(𝑥)

𝐺(𝑥)
(6.13)

separates into 𝑥 and 𝑦 components, as do the analagous expressions for 𝐴(𝑦, 𝑥) and

𝐿(𝑥, 𝑦).

6.2.3 Horizon

The metric is singular when the function 𝐺(𝑦) vanishes. The root at

𝑦 = 𝑦ℎ ≡ −𝜆+
√
𝜆2 − 4𝜈

2𝜈
(6.14)

is a coordinate singularity corresponding to an event horizon. Elvang & Rodriguez [74]

give a prescription for changing to new coordinates that are valid across the horizon,

although it is very complicated to write the transformed metric down explicitly. In

Section 6.4, we will construct an alternative set of coordinates that are valid as we cross

the horizon, by looking for coordinates adapted to a particular class of null geodesics.

When 𝜆 = 2
√
𝜈, 𝐺(𝑦) has a double root at 𝑦 = 𝑦ℎ and the black ring is extremal. In

this case, Ref. [88] derived the near-horizon geometry, and found that it is the same as

that of a boosted extremal Kerr black string. This allows one to search for instabilities

of this spacetime using the methods derived in Chapter 4.

6.2.4 Asymptotic Flatness

This spacetime is (globally) asymptotically flat, but this is not manifest in the ring-like

coordinates, where asymptotic infinity corresponds to the point (𝑥, 𝑦) = (−1,−1). To

see the asymptotics explicitly, we can make a change of variables (𝑥, 𝑦) 7→ (𝜌, 𝜃) by

setting

𝑥 = −1 +
2𝑅2

𝜌2
1 + 𝜈 − 𝜆

1− 𝜈
cos2 𝜃 and 𝑦 = −1− 2𝑅2

𝜌2
1 + 𝜈 − 𝜆

1− 𝜈
sin2 𝜃, (6.15)
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with 𝑅
√
(1 + 𝜈 − 𝜆)/(1− 𝜈) ≤ 𝜌 < ∞ and 0 ≤ 𝜃 ≤ 𝜋. Therefore, for large values of 𝜌,

the metric reduces to

𝑑𝑠2 ≈ −𝑑𝑡2 + 𝑑𝜌2 + 𝜌2(𝑑𝜃2 + cos2 𝜃𝑑𝜙2 + sin2 𝜃𝑑𝜓2), (6.16)

which is 5-dimensional Minkowski space expressed in polar coordinates, with the angular

variables having the correct periodicities. This transformation was motivated by that

given in [74] (although the formula given in that paper is incorrect).

6.2.5 Singly Spinning Limit

Since the coordinates used here vary slightly from those used in most papers on singly

spinning rings, e.g. [16, 68, 69, 183], it is worth showing explicitly how this reduces to

the original Emparan-Reall solution.

The singly spinning limit corresponds to setting 𝜈 = 0. This reduces the metric

functions to the following:

𝐺(𝑥) = (1− 𝑥2)(1 + 𝜆𝑥), 𝐻(𝑥, 𝑦) = 1 + 2𝑥𝜆+ 𝜆2 ≡ 𝐻(𝑥), (6.17)

𝛼(𝑥) = 𝛾(𝑥) = 𝐿(𝑥, 𝑦) = 0, 𝛽(𝑥) = 𝐻(𝑥), 𝐴(𝑥, 𝑦) = 𝐻(𝑥)𝐺(𝑦) (6.18)

and

Ω = Ω𝜓(𝑦)𝑑𝜓 = −𝐶𝑅1 + 𝑦

𝐻(𝑦)
𝑑𝜓, where 𝐶 ≡

√
2𝜆2

(1 + 𝜆)3

1− 𝜆
. (6.19)

The convenience of the limits here is our main motivation for working with the particular

choices of 𝛼 and 𝛽 that we made above.

The metric reduces to

𝑑𝑠2 = −𝐻(𝑦)

𝐻(𝑥)

(
𝑑𝑡+ Ω𝜓(𝑦)𝑑𝜓

)2
+
𝑅2𝐻(𝑥)

(𝑥− 𝑦)2

[
𝐺(𝑥)

𝐻(𝑥)
𝑑𝜙2 +

𝑑𝑥2

𝐺(𝑥)
− 𝐺(𝑦)

𝐻(𝑦)
𝑑𝜓2 − 𝑑𝑦2

𝐺(𝑦)

]
.

(6.20)

6.2.6 Ergoregion

For the singly-spinning black ring, the ergoregion was first described in [68]. It is straight-

forward to see that, in our notation, the ergosurface is where𝐻(𝑦) vanishes, which occurs

at

𝑦 = 𝑦𝑒 ≡ −1 + 𝜆2

2𝜆
. (6.21)

Furthermore, we have that 𝑦ℎ < 𝑦𝑒 < −1, for all 𝜆, so the ergoregion does indeed exist,

and, like the horizon, has topology 𝑆1 × 𝑆2 (like all surfaces 𝑦 = const for 𝑦 ∕= −1).
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Things become significantly more complicated in the doubly spinning case. The

ergosurface is defined by the vanishing of 𝐻(𝑦, 𝑥), so can described (locally) as a surface

𝑦 = 𝑦𝑒(𝑥).

Note that 𝐻(−1,−1) = (1− 𝜈)(1 + 𝜈 − 𝜆)2 > 0, and therefore 𝐻(𝑦, 𝑥) > 0 in some

neighbourhood of asymptotic infinity. Hence, far from the ring, ∂/∂𝑡 is indeed timelike as

expected. It can also be shown that, for all 𝑥 ∈ [−1, 1], 𝑦𝑒(𝑥) > 𝑦ℎ, and hence the horizon

is always surrounded by an ergoregion, with no intersection between the ergosurface and

the horizon. This is in contrast to the Kerr case, where they touch at the poles. There

is a clear reason for this; in Kerr the poles are the points on the horizon that are left

invariant under rotations generated by the angular Killing vector, but in the black ring

there are no points on the horizon left invariant under ∂/∂𝜓.

For the singly-spinning ring, 𝐻(−1) > 0, and hence the axis 𝑦 = −1 lies outside the

ergoregion, which must therefore have ringlike topology. However, in the doubly-spinning

case, for sufficiently large 𝜈, there are some values of 𝑥 for which𝐻(−1, 𝑥) < 0, and hence

the ergosurface intersects the axis and can therefore no longer have the ring-like topology

𝑆1 × 𝑆2.

What is the new topology? Note that

𝐻(−1, 𝑥) = 𝐻(−1,−𝑥) = (1− 𝜆)2 − 𝜈2 + 𝜈𝑥2
(
1− 𝜆2 − 𝜈2 + 2𝜆𝜈

)
(6.22)

is even as a function of 𝑥, and that therefore

𝐻(−1, 1) = 𝐻(−1,−1) = (1− 𝜈)(1 + 𝜈 − 𝜆)2 > 0. (6.23)

Thus, for all allowed values of 𝜆 and 𝜈 we have that the point at the centre of the ring

lies outside of the ergoregion. As 𝜈 → 1 (and hence 𝜆 → 2), the size of the ergoregion

becomes larger and larger, but there is always a region near to the centre of the ring that

remains outside it. Thus, the ergosurface topology is that of two disconnected 3-spheres,

𝑆3 ∪ 𝑆3.

Note that 𝐻(−1, 𝑥) is minimum at 𝑥 = 0, so to determine where in the black ring

family the change of topology occurs we need to look at the case where

𝐻(−1, 0) = 1 + 𝜆2 − 𝜈2 − 2𝜆 = 0. (6.24)

This occurs when 𝜆 = 1 − 𝜈. Note that we must have 𝜈 ≤ 3 − 2
√
2 ≃ 0.17 for it to be

possible to have this condition satisfied. For this metric, we have that

𝐻(−1, 𝑥) = 4𝜈2𝑥2(1− 𝜈), (6.25)

so the ergosurface touches the 𝑦 = −1 axis on the circle 𝑥 = 0, 𝑦 = −1. In the plane

polar type coordinates (6.10), the locus of points where the ergosurface pinches is at
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Figure 6.1: Two-dimensional projection of the shape of the ergoregion in the case

𝜈 = 1/9, for 𝜆 = 7/9 (𝑆1 × 𝑆2 ergosurface), 𝜆 = 8/9 (critical case) and 𝜆 = 1

(𝑆3 ∪ 𝑆3 ergosurface). The inner circles are the edge of the horizon, the outer lines

the ergosurface and the central line the axis 𝑦 = −1. (Plotted in 𝑟1, 𝑟2 coordinates.)

𝑟1 = 𝑅, 𝑟2 = 0, which makes clear that this is indeed a circle. We will see later (§6.3.4)
that there exist stable ‘trapped’ null geodesics orbiting around this circle. Figure 6.1

shows a 2D projection of the shape of the ergoregion in this case.

Finally, there is a nice intuitive way to think about why the ergoregion takes this

form. We can think, rather loosely, of the black ring as a Kerr black hole at each

point around the 𝑆1. When the Kerr black hole is rotating rapidly (corresponding to

rapid 𝑆2 rotation of the black ring), its ergoregion becomes increasingly elliptical, so

that eventually an observer near the centre of the ring feels frame dragging from the 𝑆2

rotations on opposite sides of him simultaneously. The effects cancel near the centre of

the ring, leaving a region which does not lie in the ergoregion. To summarise, Figure 6.2

shows the parameter space for all allowed doubly-spinning black rings.

Recently, Cortier [184] has provided a rigorous analysis of the ergosurface for this

spacetime, confirming the results of this section.

6.3 Geodesic Structure

Hoskisson [183] has studied in detail certain classes of geodesics for the singly spinning

black ring. In particular, he studies analytically families of geodesics restricted to the

axes 𝑦 = −1 and 𝑥 = ±1, as well as performing numerical investigations into some more

general possibilities. Here, we concentrate on a different class of geodesics, which we

can also find explicitly. We show that, in the full doubly spinning case, the Hamilton-

Jacobi equation is separable for null, zero energy geodesics. Having demonstrated the
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2

10.50

𝜆

Ergosurface has 𝑆3 topology.

limit.

𝑆3 and 𝑆1 × 𝑆2 occurs.
Critical case, where a phase change between topologies

𝜈

The limit 𝜆 = 1 + 𝜈 does not in general give a well defined
black ring, though with care it corresponds to the Myers-Perry

0.17

1

Singly spinning limit 𝜈 = 0.

𝑆1 × 𝑆2 topology.
Ergosurface has

Extremal black rings with 𝜆 = 2
√

𝜈

Figure 6.2: The allowed parameter space for doubly spinning black rings.

separability of the HJ equation, we will then go on to analyse the behaviour of the

geodesics that result from this.

6.3.1 Conjugate momenta

We look for geodesics by noting that they are extremal curves of the Lagrangian

ℒ =
1

2
𝑔𝜇𝜈 �̇�

𝜇�̇�𝜈 , (6.26)

where a dot denotes differentiation with respect to an affine parameter 𝜏 . The conjugate

momenta for this Lagrangian are

𝐸 ≡ −𝑝𝑡 =
𝐻(𝑦, 𝑥)

𝐻(𝑥, 𝑦)
(𝑡+ Ω̇) (6.27)

Φ ≡ 𝑝𝜙 = −Ω𝜙𝐸 − 𝑅2
(− 𝐴(𝑦, 𝑥)�̇�+ 𝐿(𝑥, 𝑦)�̇�

)
𝐻(𝑦, 𝑥)(𝑥− 𝑦)2(1− 𝜈)2

Ψ ≡ 𝑝𝜓 = −Ω𝜓𝐸 − 𝑅2
(
𝐿(𝑥, 𝑦)�̇�+ 𝐴(𝑥, 𝑦)�̇�

)
𝐻(𝑦, 𝑥)(𝑥− 𝑦)2(1− 𝜈)2

𝑝𝑥 =
𝑅2𝐻(𝑥, 𝑦)�̇�

(𝑥− 𝑦)2(1− 𝜈)2𝐺(𝑥)

𝑝𝑦 =
−𝑅2𝐻(𝑥, 𝑦)�̇�

(𝑥− 𝑦)2(1− 𝜈)2𝐺(𝑦)

where Ω̇ ≡ Ω𝜓�̇� + Ω𝜙�̇�. The vector fields ∂/∂𝑡, ∂/∂𝜙 and ∂/∂𝜓 are Killing, so the con-

jugate momenta −𝐸, Φ and Ψ associated with them are conserved along any geodesics.
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6.3.2 The Hamilton-Jacobi Equation

Let ℋ(𝑥𝜇, 𝑝𝜈) be the Hamiltonian for particle motion in this background, derived from

the Lagrangian ℒ(𝑥𝜇, �̇�𝜈) in the usual way through a Legendre transformation

ℋ(𝑥𝜇, 𝑝𝜈) ≡ 𝑝𝜇�̇�
𝜇 − ℒ(𝑥𝜇, �̇�𝜈) = 1

2
𝑔𝜇𝜈𝑝𝜇𝑝𝜈 . (6.28)

Now, consider the Hamilton-Jacobi equation

∂𝑆

∂𝜏
+ℋ

(
𝑥𝜇,

∂𝑆

∂𝑥𝜈

)
= 0. (6.29)

This equation gives a useful way of encoding the geodesic structure of a system; the

function 𝑆 contains information about all of the conjugate momenta 𝑝𝜇 = ∂𝑆/∂𝑥𝜇. The

aim of this approach is to give us an additional constant of motion. The system is 5-

dimensional, so we need 5 constants of motion in order to be able to completely integrate

it. Applying Noether’s theorem to the Killing vectors ∂/∂𝑡, ∂/∂𝜓 and ∂/∂𝜙 has already

given 3 of them, and we also impose the mass shell condition 𝑔𝜇𝜈𝑝𝜇𝑝𝜈 = −𝜇2 which gives

a fourth. Therefore, one more is required.

We look for additively separable solutions of the HJ equation (6.29). Given our prior

knowledge of 4 constants of motion, we make an ansatz

𝑆(𝜏, 𝑡, 𝑥, 𝑦, 𝜓, 𝜙) =
1

2
𝜇2𝜏 − 𝐸𝑡+ Φ𝜙+Ψ𝜓 + 𝑆𝑥(𝑥) + 𝑆𝑦(𝑦), (6.30)

where 𝜏 is an affine parameter along a geodesic, and 𝑆𝑥, 𝑆𝑦 are arbitrary functions of

𝑥 and 𝑦 respectively. We hope that this ansatz will leave the HJ equation (6.29) in a

separable form.

Inserting this ansatz into (6.29) gives, after some rearrangement,

𝐺(𝑥)

(
𝑑𝑆𝑥
𝑑𝑥

)2

−𝐺(𝑦)

(
𝑑𝑆𝑦
𝑑𝑦

)2

=
𝑅2𝐻(𝑥, 𝑦)

(1− 𝜈)2(𝑥− 𝑦)2

(
−𝜇2 +

𝐻(𝑥, 𝑦)

𝐻(𝑦, 𝑥)
𝐸2

)
− 𝐻(𝑥, 𝑦)𝐻(𝑦, 𝑥)

𝐴(𝑥, 𝑦)𝐴(𝑦, 𝑥) + 𝐿(𝑥, 𝑦)2

[
𝐴(𝑥, 𝑦)(Φ + Ω𝜙𝐸)

2 − 𝐴(𝑦, 𝑥)(Ψ + Ω𝜓𝐸)
2

− 2𝐿(𝑥, 𝑦)(Φ + Ω𝜙𝐸)(Ψ + Ω𝜓𝐸)
]
. (6.31)

At first glance, it appears that there is little hope of separating this. However, it is

possible to make some progress, using relations between the metric functions that are

not immediately apparent from the solution as presented in [70]:

∙ Firstly, note the identity

𝐴(𝑥, 𝑦)𝐴(𝑦, 𝑥) + 𝐿(𝑥, 𝑦)2 ≡ 𝐺(𝑥)𝐺(𝑦)𝐻(𝑥, 𝑦)𝐻(𝑦, 𝑥)(1− 𝜈)2. (6.32)
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This simplifies (6.31) to

𝐺(𝑥)

(
𝑑𝑆𝑥
𝑑𝑥

)2

−𝐺(𝑦)

(
𝑑𝑆𝑦
𝑑𝑦

)2

=
𝑅2𝐻(𝑥, 𝑦)

(1− 𝜈)2(𝑥− 𝑦)2

(
−𝜇2 +

𝐻(𝑥, 𝑦)

𝐻(𝑦, 𝑥)
𝐸2

)
− [𝐴(𝑥, 𝑦)(Φ + Ω𝜙𝐸)

2 − 2𝐿(𝑥, 𝑦)(Φ + Ω𝜙𝐸)(Ψ + Ω𝜓𝐸)− 𝐴(𝑦, 𝑥)(Ψ + Ω𝜓𝐸)
2]

𝐺(𝑥)𝐺(𝑦)(1− 𝜈)2
.

(6.33)

∙ Writing

𝐴(𝑥, 𝑦) = 𝐺(𝑥)𝛼(𝑦) +𝐺(𝑦)𝛽(𝑥) (6.34)

allows us to separate the Φ2 and Ψ2 terms of (6.33).

∙ It is also possible to separate the ΦΨ term using the relation

𝐿(𝑥, 𝑦) = 𝐺(𝑥)𝛾(𝑦)−𝐺(𝑥)𝛾(𝑥). (6.35)

∙ It is not possible, in general, to separate the terms containing 𝜇2, 𝐸2, 𝐸Φ or 𝐸Ψ.

Therefore, the only separable solutions in these coordinates correspond to null (𝜇 =

0), zero energy (𝐸 = 0) geodesics, with 𝑆𝑥 and 𝑆𝑦 satisfying

𝐺(𝑥)

(
𝑑𝑆𝑥
𝑑𝑥

)2

− −𝛽(𝑥)Φ2 − 2𝛾(𝑥)ΦΨ + 𝛼(𝑥)Ψ2

(1− 𝜈)2𝐺(𝑥)

= 𝐺(𝑦)

(
𝑑𝑆𝑦
𝑑𝑦

)2

− 𝛼(𝑦)Φ2 − 2𝛾(𝑦)ΦΨ− 𝛽(𝑦)Ψ2

(1− 𝜈)2𝐺(𝑦)
. (6.36)

Given this separation of variables, we can then immediately write

LHS = RHS =
𝑐

(1− 𝜈)2
(6.37)

for some constant 𝑐. This describes all possible null, zero energy geodesics. 𝑐 is the

extra constant required to allow the geodesic equations to be completely integrated in

this case. Unlike the Noether constants associated with Killing vectors it is quadratic in

the momenta (see Section 6.5). Are these geodesics physically realisable? The answer is

yes, but only in the ergoregion, where ∂/∂𝑡 is spacelike: Note that:

Lemma 6.1 A null, zero energy geodesic in a black hole spacetime must be contained

within the ergoregion.
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Proof: Let 𝑉 be tangent to the geodesic, and 𝑘 be the (asymptotically timelike) gen-

erator of time translations. Then, the null, zero energy condition is equivalent to saying

that 𝑉.𝑉 = 0 and 𝑘.𝑉 = 0. Given a null 𝑉 , we can (locally) pick a basis for the tangent

space of the form {𝑉, 𝑛,𝑚𝑖} where 𝑉.𝑛 = 1, 𝑚𝑖.𝑚𝑗 = 𝛿𝑖𝑗, other dot products vanishing

(c.f. Chapter 2).

Thus, 𝑘.𝑉 = 0 iff 𝑘 ∈ span(𝑉,𝑚𝑖) (a vector subspace of the tangent space). Thus we

can expand 𝑘 = 𝑘0𝑉 + 𝑘𝑖𝑚𝑖 and see that 𝑘.𝑘 = 𝑘𝑖𝑘𝑗𝛿𝑖𝑗 ≥ 0, which is the definition of

the ergoregion.□
It is worth emphasizing at this point that the separability of the HJ equation is a

coordinate dependent phenomenon. This is clearly illustrated by the fact that the HJ

equation describing flat space geodesics is not separable in ring-like coordinates. In fact,

the general solution for flat space geodesics can be written in ring-like coordinates as

𝑆(𝑡, 𝑥, 𝑦, 𝜙, 𝜓; 𝜏) = 𝐾 +
1

2
𝜇2𝜏 − 𝐸𝑡

+
𝑅

𝑥− 𝑦

[
𝑅1

√
1− 𝑥2 cos(𝜙− 𝜙0) +𝑅2

√
𝑦2 − 1 cos(𝜓 − 𝜓0)

]
(6.38)

with 𝜙0, 𝜓0, 𝑅1, 𝑅2, 𝜇
2, 𝐸 and 𝐾 arbitrary constants. This illustrates clearly that the

failure of the Hamilton-Jacobi equation to separate for other classes of geodesics does not

imply that it is impossible to find a new coordinate system in which separation occurs.

6.3.3 Analysis of Paths of Ergoregion Geodesics

Given the results of Section 6.3.2, we can study the paths of zero energy, null geodesics

explicitly. Since the zero energy, null condition is only realisable in the ergoregion, an

observer moving along such a geodesic cannot pass through the ergosurface (though can

fall through the horizon).

The separated Hamilton-Jacobi equation gives us that

𝑅4𝐻(𝑥, 𝑦)2

(𝑥− 𝑦)4(1− 𝜈)2
�̇�2 + 𝑈(𝑥) = 0 (6.39)

and
𝑅4𝐻(𝑥, 𝑦)2

(𝑥− 𝑦)4(1− 𝜈)2
�̇�2 + 𝑉 (𝑦) = 0 (6.40)

where

𝑈(𝑥) = 𝛽(𝑥)Φ2 + 2𝛾(𝑥)ΦΨ− 𝛼(𝑥)Ψ2 − 𝑐𝐺(𝑥) (6.41)

𝑉 (𝑦) = −𝛼(𝑦)Φ2 + 2𝛾(𝑦)ΦΨ + 𝛽(𝑦)Ψ2 − 𝑐𝐺(𝑦). (6.42)

These equations give coupled effective potential formulations for the motion, and we can

use them to deduce the behaviour of this class of geodesics. When dealing with effective
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potentials, it it usually useful to rearrange the equation such that one of the Noether

constants (usually the energy) sits alone on the RHS, making it easy to understand how

things change as that parameter varies. Unfortunately, this is not possible in all cases

here.

Note that, at least implicitly, we can use these equations to find 𝑥 as a function of 𝑦.

Dividing through, and noting that the prefactors with mixed 𝑥 and 𝑦 dependence cancel,

we have that (
𝑑𝑥

𝑑𝑦

)2

=
𝑈(𝑥)

𝑉 (𝑦)
⇒

∫ 𝑥 𝑑𝑥√−𝑈(𝑥) =

∫ 𝑦 𝑑𝑦√−𝑉 (𝑦)
, (6.43)

which gives us what we need.

Although these two effective potential equations are coupled to each other, the cou-

pling arises only through the strictly positive pre-factor of the kinetic term. Thus, the

coupling has no effect on whether the potential is attractive or repulsive, or on its turning

points. Therefore, we can effectively treat the two parts independently when studying

the qualitative behaviour of geodesics.

Singly spinning case

To begin with, it is easier to study these ergoregion geodesics in the singly spinning case

𝜈 = 0. Here, the equations (6.39) and (6.40) reduce to

�̇�2 +
(𝑥− 𝑦)4

𝑅4𝐻(𝑥)2
[
Φ2𝐻(𝑥)− 𝑐𝐺(𝑥)

]
= 0 (6.44)

and

�̇�2 +
(𝑥− 𝑦)4

𝑅4𝐻(𝑥)2
[
Ψ2𝐻(𝑦)− 𝑐𝐺(𝑦)

]
= 0. (6.45)

Note that the ergoregion is given by − 1
𝜆
< 𝑦 < −1+𝜆2

2𝜆
here, with topology 𝑆1 × 𝑆2. The

𝑦 motion is of the most immediate interest, since that governs how close to the horizon

the path lies.

Care is needed when we get near to the axes 𝑦 = −1 or 𝑥 = ±1, since the angular

coordinates 𝜓 or 𝜙 respectively become singular there. However, this is a coordinate

singularity, originating from the singularity at the origin in the plane polar coordinates

(6.10), and hence we expect that taking limits like 𝑦 → −1 should be valid. This can

be confirmed in a straightforward (though messy) manner using the transformations to

cartesian coordinates described in [69].

There are several cases to consider:
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Case 𝑐 = 0: Recall that 𝑐 is the separation constant from the Hamilton-Jacobi equa-

tion, so it parametrises a set of geodesic curves. Now, we must have 𝑐 ≥ 0 to have an

effective potential for 𝑥 that is non-positive somewhere, and hence some allowed solu-

tions, so it is natural to begin with the bounding case 𝑐 = 0. Note that 𝐻(𝑥) > 0 for all

𝑥 ∈ [−1, 1], so in this case we also require Φ = 0 for any solution. We must then have

Ψ ∕= 0 (else �̇� = 0), and thus are left with the effective potential formulation

�̇�2 = 0 and �̇�2 +
(𝑥− 𝑦)4Ψ2𝐻(𝑦)

𝑅4𝐻(𝑥)2
= 0. (6.46)

We have 𝐻(𝑦) < 0 everywhere inside the ergoregion, and 𝐻(𝑦) = 0 on the ergosurface,

so the only turning point �̇� = 0 of the geodesic lies on the ergosurface. The other

coordinate 𝑥 is constant along these geodesics, so acts as an arbitrary constant rather

than a dynamical variable in the 𝑦 equation, and in fact has no qualitative effects on the

paths. These solutions must correspond to geodesics that have come out of the white

hole horizon in the past, move outwards away from the black ring until they just touch

the ergosurface and then turn round and fall back into the black hole horizon in finite

parameter time in the future.

Case 𝑐 > 0 and Φ = 0: Here it is less easy to be explicit, but we can deduce the

behaviour of these geodesics by relating them to the 𝑐 = 0 case. The relevant equations

are

𝑅4𝐻(𝑥)2

(𝑥− 𝑦)4
�̇�2 − 𝑐𝐺(𝑥) = 0 and

𝑅4𝐻(𝑥)2

(𝑥− 𝑦)4Ψ2
�̇�2 + [𝐻(𝑦)− 𝑐𝐺(𝑦)] = 0, (6.47)

where 𝑐 ≡ 𝑐/Ψ2. Since 𝐺(𝑦) < 0 outside the horizon, the effective potential for 𝑦-

motion in the 𝑐 > 0 case is bounded below by that in the 𝑐 = 0 case, with equality

only at 𝑦 = −1 and 𝑦 = − 1
𝜆
, that is at the horizon. Thus, the geodesics in this case

have the same qualitative behaviour, but stop short of the ergosurface before falling

inwards again. Figure 6.3(a) shows how the turning point of the geodesic (occurring

where 𝐻(𝑦)− 𝑐𝐺(𝑦) = 0) moves inwards as 𝑐 is increased.

Note that in this case, 𝑥 also varies, which makes integrating the motion explicitly

far more difficult, though it has no real effect on the qualitative form of the motion in

𝑦. Since 𝑐𝐺(𝑥) ≥ 0 everywhere, 𝑥 can take any value in [−1, 1]. This corresponds to the

particle continually rotating around the 𝑆2 part of the horizon as it moves in 𝑦.

Case 𝑐 > 0 and Φ > 0: In the singly spinning case, Φ does not enter into the effec-

tive potential for 𝑦, and therefore does not change the turning points in the 𝑦 motion.

However, the 𝑥 dynamics are now more interesting. We can write the effective potential
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equation for 𝑥 as

𝑅4𝐻(𝑥)

𝑐(𝑥− 𝑦)4
�̇�2 − 𝐺(𝑥)

𝐻(𝑥)
= −Φ2/𝑐, (6.48)

and hence see that there is a restriction on the values of 𝑥 that are possible. For Φ2/𝑐 = 0,

any values of 𝑥 are allowed, but as Φ2/𝑐 is increased, 𝑥 is restricted to an increasingly

narrow range of values, corresponding to a centrifugal repulsion keeping the particle

away from the axis 𝑥 = ±1. Rather than continuously rotating around the 𝑆2, the

particle follows a more complicated path, bouncing back and forth between two different

extremal values of 𝑥. This also gives us an upper bound on the values of Φ2/𝑐 that are

allowed, as shown by Figure 6.3(b). There is a non-trivial fixed point in the 𝑥 potential
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Figure 6.3: (a) 𝐻(𝑦)− 𝑐𝐺(𝑦) plotted against 𝑦 in the ergoregion (−2 ≤ 𝑦 ≤ −5
4) for

𝜆 = 1
2 , 𝜈 = 0, for 𝑐 = 0, 1, 2, 3, 4, 5. The potential in each case is bounded below by the

𝑐 = 0 potential (the bottom line). (b) The 𝑥-motion effective potential −𝐺(𝑥)/𝐻(𝑥)

plotted against 𝑥. This potential determines the allowed values of the constant −Φ2/𝑐,

an example path is plotted. (Figure has 𝜆 = 1
2 , 𝜈 = 0.)

(marked 𝑃 in Figure 6.3(b)), corresponding to an orbit at fixed 𝑥 when Φ2/𝑐 takes its

maximum allowed value. It is messy to solve the cubic required to compute the exact

location of the fixed point, and the corresponding maximum value of Φ2/𝑐, and we do

not do it here.

Doubly spinning

This concludes the possibilities for the singly spinning ring, and describes all of the

possibilities for the behaviour of zero energy, null geodesics lying inside the ergosurface.

We now move on to the doubly spinning case. Unfortunately, it is less easy to be explicit

here, so we will limit ourselves to showing the existence of the geodesics, and discussing

their properties in a couple of special cases. The relevant effective potential equations

are (6.39) and (6.40).
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In the previous section, we showed explicitly that the geodesics turned around before

reaching the ergosurface (or in the limiting case, on the surface itself). However, it is

not strictly necessary to do this, since it can be deduced from well-known properties

of geodesics. Having found a section of a null, zero energy geodesic, we know that we

can extend the geodesic indefinitely both forwards and backwards in time in a unique

way, unless it hits a singularity (indeed, this is how one usually defines a singularity in a

spacetime). Furthermore, the geodesic extension of this curve must remain a null, zero

energy geodesic. Since the zero energy, null condition cannot be satisfied outside of the

ergoregion, a particle travelling along such a geodesic cannot possibly pass through the

ergosurface, and can only leave the ergoregion by passing through a horizon.

Now let’s move on to consider some particular cases:

Case Φ = 0 The full equations simplify significantly if we set one of the angular

momenta to zero, specifically Φ (recall from the singly spinning case that there were

no allowed zero-energy paths with Ψ = 0; it is straightforward to show that the same

applies here). This leaves us with

𝑈(𝑥) = −𝛼(𝑥)Ψ2 − 𝑐𝐺(𝑥) and 𝑉 (𝑦) = 𝛽(𝑦)Ψ2 − 𝑐𝐺(𝑦), (6.49)

essentially leaving us with one tunable parameter 𝑐 ≡ 𝑐/Ψ2.

Firstly, let us consider the motion in 𝑥. Qualitatively there are 3 different possibilities

for the potential 𝑈(𝑥) in this case, as shown in Figure 6.4(a). Setting

𝑐± =
𝜈

1∓ 𝜆+ 𝜈
[2(1± 𝜆) + 𝜈(1− 𝜈)∓ 3𝜆𝜈] , (6.50)

the cases are:

∙ Case 𝑐 < 𝑐−: Here, 𝑈(𝑥) > 0 for all 𝑥, i.e. there are no allowed values of 𝑥 and

hence there can be no geodesics. This occurs iff 𝑈 ′(1) < 0, or equivalently 𝑐 < 𝑐−,

and hence fixes a lower bound for 𝑐.

∙ Case 𝑐− < 𝑐 < 𝑐+: If 𝑈 ′(1) > 0, but also 𝑈 ′(−1) > 0, then there are allowed

geodesics, but they are restricted to a certain range in 𝑥, with the very ‘outside’

of the ring excluded.

∙ Case 𝑐 ≥ 𝑐+: The 𝑥-range of the geodesics is entirely unrestricted, and they are

free to loop all of the way around the 𝑆2 of the ring.

Note that the middle case does not occur for the singly spinning ring (where 𝑐+ = 𝑐−),

and the analysis above reduces to noting the geodesics exist only for 𝑐 ≥ 0. For the 𝑦-
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Figure 6.4: (a) Possible behaviours of the effective potential 𝑈(𝑥) for the doubly spinning

ring in the case Φ = 0, for 3 different values of 𝑐 = 0, 1
10 ,

276
243 . The top curve gives no

allowed geodesics, the bottom one allows all values of 𝑥. (b) The effective potential 𝑉eff(𝑦) =

−𝛽(𝑦)/𝐺(𝑦) for 𝑦-motion. The horizon is located at the vertical axis on the left. Both parts

of this figure are plotted for 𝜆 = 1
9 , 𝜈 = 7

9 , but the shape of the potentials is insensitive to

changes in 𝜆, 𝜈.

motion, it turns out that the qualitative form of the motion is exactly the same as in

the singly-spinning case. Note that

𝑉 (𝑦ℎ) = 𝛽(𝑥)Ψ2 < 0, (6.51)

so the potential is negative in some neighbourhood of the origin, and there is nothing

(locally) to block a geodesic from crossing it. Given this, the easiest way to study the

behaviour away from the horizon is to express the potential equation as

𝑅4𝐻(𝑥, 𝑦)2Ψ2

(𝑥− 𝑦)4(1− 𝜈)2(−𝐺(𝑦)) �̇�
2 + 𝑉eff(𝑦) = −𝑐 (6.52)

where 𝑉eff(𝑦) = −𝛽(𝑦)/𝐺(𝑦).
To analyse the system, we need to study 𝑉eff(𝑦) in the ergoregion. Finding roots

explicitly is hard, since it requires finding roots of a complicated quartic equation, but

it can be shown (by differentiating and using the bounds on allowed values of 𝜆, 𝜈 in

various ways) that outside the horizon, for all values of 𝜆 and 𝜈, 𝑉eff
′(𝑦) > 0 and hence

there are no fixed points of the potential. Therefore there can be no closed orbits. As

described above, we know from general principles of geodesics that all of these geodesics

must turn around before getting outside of the ergoregion, so we know that 𝑉eff(𝑦) must

vanish for some 𝑦 < 𝑦𝑒(𝑥). However, this is only true for for a certain subset of 𝑥 values,

and thus, there is a restriction on the allowed 𝑥 values near to the turning point of the

geodesic. We know that this must be consistent with the restrictions on 𝑥 obtained from

analysing the 𝑥-potential.
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General Φ Note that 𝑈(±1) = (1 − 𝜈)2(1 + 𝜈 ± 𝜆)2Φ2, which is strictly positive for

∣Φ∣ > 0. Therefore, the 𝑥 potential can no longer be categorised by finding derivatives at

either end of the allowed range of 𝑥 values. Instead, it is necessary to find turning points

of the quartic 𝑈(𝑥) explicitly in order to find the range of 𝑥 values where 𝑈(𝑥) ≤ 0.

This is extremely messy, so we will not do it here. However, there is a clear qualitative

difference here; as soon as ∣Φ∣ > 0 there is a centrifugal barrier preventing these geodesics

from touching the plane 𝑥 = ±1. Otherwise, the basic qualitative result is the same as

in the singly spinning case; there is an upper bound on the allowed value of Φ2/𝑐 in order

to get allowed orbits of any kind.

The 𝑦 motion here is more complicated still, however numerical investigations suggest

that, in general, no new behaviour occurs; that is all geodesics come out of the white

hole and fall back into the black hole in finite proper time.

An exception to this occurs in the critical case 𝜆 = 1 − 𝜈, where the ergoregion

‘pinches’. Here, the motion in the case 𝜇 = 𝐸 = Ψ = 0 is given by 1
2
�̇�2 + 𝑉eff(𝑥) = 0

where

𝑉eff(𝑥) =
𝑥2(1 + 𝑥)4(1− 𝜈)2Φ2

4𝑅4𝐻(𝑥,−1)
, (6.53)

which means that there is a minimum at 𝑥 = 0, and hence a stable particle orbit there

(see Figure 6.5). Thus, in this very special case, a lightlike particle can follow a trapped

circular orbit at (𝑟1, 𝑟2) = (0, 𝑅), on the edge of the ergoregion.
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Figure 6.5: The effective potential 𝑉eff(𝑥) for zero energy, null geodesics

along the axis in the critical case, where 𝜆 = 1 − 𝜈. We see that the only

possible orbit is a stable circular one at 𝑥 = 0. (Plot has 𝜈 = 1/9, 𝜆 = 8/9,

Φ = 1)
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6.3.4 Other analytically tractable geodesics

While it is extremely unlikely to be possible to study all geodesics of this metric analyt-

ically, some progress can be made with finding geodesics that have particular symmetry.

In particular, it is possible to find geodesics lying entirely within surfaces that are fixed-

point sets of the axial Killing vectors ∂/∂𝜙 and ∂/∂𝜓. These surfaces are totally geodesic

submanifolds, in that any geodesic that lies tangent to the submanifold at some point

must lie entirely within the submanifold. Typically, this introduces an extra constraint

on the equations of motion, and reduces the problem to solving an ODE, the qualitative

behaviour of which can be analysed via effective potential techniques.

In my paper [1], I derive the appropriate effective potential equations for these classes

of geodesics, as well as commenting on some interesting generalities and special cases.

A full classification of all possibilities would be extremely complicated, since there is a

large parameter space (any of 𝐸,𝜆,𝜈,𝜇 and one of Φ and Ψ can vary), and the complexity

of the potentials means that numerical graph plotting is the only reasonable approach

to finding the shape of potentials in most cases. We will not discuss any further details

here.

6.4 New Coordinate Systems

In order to fully understand a black hole spacetime it is necessary to construct a set of

coordinates that cover the future black hole horizon. This has been done for the singly

spinning ring by Emparan & Reall [68, 69], and for the doubly spinning ring by Elvang

& Rodriguez [74]. The coordinates (𝑡, 𝑥, 𝜙, 𝑦, 𝜓) of [74] are defined by setting

𝑑𝜙 = 𝑑𝜙− 𝐴

𝑦 − 𝑦ℎ
𝑑𝑦, 𝑑𝜓 = 𝑑𝜓 − 𝐵

𝑦 − 𝑦ℎ
𝑑𝑦 and 𝑑𝑡 = 𝑑𝑡− 𝐶

𝑦 − 𝑦ℎ
𝑑𝑦., (6.54)

and attempting to find real constants 𝐴, 𝐵, 𝐶 such that divergences at the horizon in

metric components cancel. This works (with an additional quadratic term needed in the

extremal case 𝜆 = 2
√
𝜈), and therefore proves that the horizon is regular. However, it

makes it hard to write down the transformed metric in a form that is manifestly regular

at the horizon, to the extent that this has not been done in the literature.

In Section 6.3.3, we found some null geodesics that cross the horizon. Here, we con-

struct a set of coordinates based around these geodesics, and find that these coordinates

are valid across the horizon. This provides some geometrical insight into why the choice

of coordinates across the singly-spinning horizon in [69] works, and also gives a more

convenient set of coordinates for the doubly-spinning case than those of [74].

For convenience, we define functions 𝜁(𝑦) and 𝜉(𝑥), related to the potentials of Section
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6.3.3 by

𝜉(𝑥) ≡ (1− 𝜈)2(−𝛽(𝑥)Φ2 − 2𝛾(𝑥)ΦΨ + 𝛼(𝑥)Ψ2 + 𝑐𝐺(𝑥)) = −(1− 𝜈)2𝑈(𝑥),

𝜁(𝑦) ≡ (1− 𝜈)2(𝛼(𝑦)Φ2 − 2𝛾(𝑦)ΦΨ− 𝛽(𝑦)Ψ2 + 𝑐𝐺(𝑦)) = −(1− 𝜈)2𝑉 (𝑦). (6.55)

Given this, the zero energy, null ergoregion geodesics of Section 6.3 are described in our

original set of coordinates by

�̇� = ±(𝑥− 𝑦)2(1− 𝜈)

𝑅2𝐻(𝑥, 𝑦)

√
𝜉(𝑥),

�̇� = −(𝑥− 𝑦)2(1− 𝜈)

𝑅2𝐻(𝑥, 𝑦)

√
𝜁(𝑦),

�̇� =
(𝑥− 𝑦)2

𝑅2𝐻(𝑥, 𝑦)𝐺(𝑥)𝐺(𝑦)
[𝐴(𝑥, 𝑦)Φ− 𝐿(𝑥, 𝑦)Ψ] ,

�̇� =
(𝑥− 𝑦)2

𝑅2𝐻(𝑥, 𝑦)𝐺(𝑥)𝐺(𝑦)
[−𝐿(𝑥, 𝑦)Φ− 𝐴(𝑦, 𝑥)Ψ] ,

𝑡 = −Ω𝜓�̇� − Ω𝜙�̇�

=
(𝑥− 𝑦)2𝜆

√
2(1 + 𝜈 − 𝜆)(1 + 𝜈 + 𝜆)

𝑅𝐻(𝑥, 𝑦)𝐻(𝑦, 𝑥)𝐺(𝑥)𝐺(𝑦)

{
1 + 𝑦

1− 𝜆+ 𝜈
(1 + 𝜆− 𝜈 + 𝑥2𝑦𝜈(1− 𝜆− 𝜈)

+2𝜈𝑥(1− 𝑦))[−𝐿(𝑥, 𝑦)Φ− 𝐴(𝑦, 𝑥)Ψ] + (1− 𝑥2)𝑦
√
𝜈[𝐴(𝑥, 𝑦)Φ− 𝐿(𝑥, 𝑦)Ψ]

}
,

where we have chosen signs such that 𝑦 is decreasing with 𝜏 ; that is we consider the part

of a geodesic infalling across the horizon.1

Given a geodesic in this class, we might look to find a set of coordinates (𝜏, �̃�𝑖) such

that the geodesic is the line 𝑑
𝑑𝜏
(�̃�𝑖) = 0, where 𝜏 is an affine parameter along the geodesic

(and 𝑖 = 1, 2, 3, 4). However, a nice feature of the original metric is the symmetry that

exists between 𝑥 and 𝑦, so attempting to preserve this by transforming only three of the

coordinates might well be desirable. Our revised target will therefore be to find functions

𝜂𝑖(𝑥, 𝑦) such that

𝑡− ∂𝜂𝑡

∂𝑥
�̇�− ∂𝜂𝑡

∂𝑦
�̇� = �̇�− ∂𝜂𝜙

∂𝑥
�̇�− ∂𝜂𝜙

∂𝑦
�̇� = �̇� − ∂𝜂𝜓

∂𝑥
�̇�− ∂𝜂𝜓

∂𝑦
�̇� = 0. (6.56)

Given this, we can construct the new coordinates 𝑣 = 𝑡−𝜂𝑡, 𝜙 = 𝜙−𝜂𝜙 and 𝜓 = 𝜓−𝜂𝜓.
These three new coordinates will be constant along the geodesics, and therefore we can

expect the new coordinate system to be regular at the future horizon. This is the most

general form of coordinate change for these three coordinates that preserves the Killing

vectors, that is with

∂

∂𝑣
=

∂

∂𝑡
,

∂

∂𝜙
=

∂

∂𝜙
and

∂

∂𝜓
=

∂

∂𝜓
. (6.57)

1We could of course look at the outgoing sections of geodesics by simply changing the sign of the

timelike coordinate, which we would expect to produce coordinates suitable for the white hole horizon

rather than the black hole.
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6.4.1 Singly-spinning case

To see how this works, we will first apply it to the singly spinning case 𝜈 = 0. Here, we

have

𝜁(𝑦) = 𝑐𝐺(𝑦)−Ψ2𝐻(𝑦) and 𝜉(𝑥) = 𝑐𝐺(𝑥)− Φ2𝐻(𝑥), (6.58)

with equations of motion

�̇� = ±(𝑥− 𝑦)2

𝑅2𝐻(𝑥)

√
𝜉(𝑥), �̇� =

(𝑥− 𝑦)2

𝑅2𝐻(𝑥)

[
𝐻(𝑥)Φ

𝐺(𝑥)

]
, (6.59)

�̇� = −(𝑥− 𝑦)2

𝑅2𝐻(𝑥)

√
𝜁(𝑦), �̇� =

(𝑥− 𝑦)2

𝑅2𝐻(𝑥)

[
−𝐻(𝑦)Ψ

𝐺(𝑦)

]
, (6.60)

𝑡 = −Ω𝜓�̇� =
(𝑥− 𝑦)2

𝑅2𝐻(𝑥)

[
−𝐶𝑅(1 + 𝑦)Ψ

𝐺(𝑦)

]
, (6.61)

where the constant 𝐶 is defined by (6.19).

Then,

�̇� − ∂𝜂𝜓

∂𝑥
�̇�− ∂𝜂𝜓

∂𝑦
�̇� =

(𝑥− 𝑦)2

𝑅2𝐻(𝑥)

[
−𝐻(𝑦)

𝐺(𝑦)
∓
√
𝜉(𝑥)

∂𝜂𝜓

∂𝑥
+
√
𝜁(𝑦)

∂𝜂𝜓

∂𝑦

]
. (6.62)

If we pick

𝜂𝜓 = Ψ

∫ 𝑦

𝑦0

𝐻(𝑦′)𝑑𝑦′

𝐺(𝑦′)
√
𝜁(𝑦′)

(6.63)

then this vanishes as required. Similarly, picking

𝜂𝜙 = ±Φ

∫ 𝑥

𝑥0

𝐻(𝑥′)𝑑𝑥′

𝐺(𝑥′)
√
𝜉(𝑥′)

and 𝜂 ≡ 𝜂𝑡 = Ψ

∫ 𝑦

𝑦0

𝑅𝐶(1 + 𝑦′)𝑑𝑦′

𝐺(𝑦′)
√
𝜁(𝑦′)

(6.64)

solves the analogous equations for 𝜙 and 𝑡. Note that the lower (constant) bounds 𝑦0

and 𝑥0 on the integrals above are essentially arbitrary, though care must be taken to

make sure that they leave well defined integrals. A sensible choice, that is guaranteed to

be well defined, is to pick 𝑥0 = 0, and 𝑦0 to be the turning point in the 𝑦 motion of the

geodesic, that is 𝜁(𝑦0) = 0. Note that ∂𝜂/∂𝑦 and ∂𝜂𝜓/∂𝑦 diverge at the horizon. This is

necessary in order to cancel the divergence at the horizon in the original coordinates, and

analogous to what happens for coordinate changes across the horizon in more familiar

cases.

The resulting change in the basis of 1-forms is

𝑑𝑣 = 𝑑𝑡− 𝐶𝑅(1 + 𝑦)Ψ

𝐺(𝑦)
√
𝜁(𝑦)

𝑑𝑦, 𝑑𝜓 = 𝑑𝜓− Ψ𝐻(𝑦)

𝐺(𝑦)
√
𝜁(𝑦)

𝑑𝑦, 𝑑𝜙 = 𝑑𝜙∓ Φ𝐻(𝑥)

𝐺(𝑥)
√
𝜉(𝑥)

𝑑𝑥,

(6.65)



152 CHAPTER 6. HIDDEN SYMMETRIES OF BLACK RINGS

and this puts the metric (6.20) into the form

𝑑𝑠2 = −𝐻(𝑦)

𝐻(𝑥)
(𝑑𝑣 + Ω𝜓𝑑𝜓)

2 +
𝑅2𝐻(𝑥)

(𝑥− 𝑦)2

[
𝑐𝑑𝑥2

𝑐𝐺(𝑥)− Φ2𝐻(𝑥)
− 𝑐𝑑𝑦2

𝑐𝐺(𝑦)−Ψ2𝐻(𝑦)

± 2Φ𝑑𝜙𝑑𝑥√
𝑐𝐺(𝑥)− Φ2𝐻(𝑥)

− 2Ψ𝑑𝜓𝑑𝑦√
𝑐𝐺(𝑦)−Ψ2𝐻(𝑦)

+
𝐺(𝑥)

𝐻(𝑥)
𝑑𝜙2 − 𝐺(𝑦)

𝐻(𝑦)
𝑑𝜓2

]
. (6.66)

This nicely preserves the 𝑥 ↔ 𝑦, 𝜙 ↔ 𝜓 symmetry of the original metric. The inverse

metric is given by

𝑔𝜇𝜈
∂

∂𝑥𝜇
∂

∂𝑥𝜈
= −𝐻(𝑥)

𝐻(𝑦)

(
∂

∂𝑣

)2

+
(𝑥− 𝑦)2

𝑅2𝐻(𝑥)

[
𝐺(𝑥)

(
∂

∂𝑥

)2

−𝐺(𝑦)

(
∂

∂𝑦

)2

∓ 2Φ𝐻(𝑥)√
𝜉(𝑥)

∂

∂𝜙

∂

∂𝑥
+

2Ψ𝐻(𝑦)√
𝜁(𝑦)

(
∂

∂𝜓
− Ω𝜓

∂

∂𝑣

)
∂

∂𝑦

+ 𝑐
𝐻(𝑥)

𝜉(𝑥)

(
∂

∂𝜙

)2

− 𝑐
𝐻(𝑦)

𝜁(𝑦)

(
∂

∂𝜓
− Ω𝜓

∂

∂𝑣

)2
]
. (6.67)

Since the components of both the metric, and its inverse are regular at 𝑦 = 𝑦ℎ, it is

now a well defined coordinate system across the horizon 𝐺(𝑦) = 0. Note that, like in

the original form of the metric, there is a coordinate singularity as we approach 𝑥 = ±1,

which has no physical significance, and is analogous to the singularity at the origin of

plane polar coordinates. There is a further subtlety here though, since we saw in §6.3.3
that for ∣Φ∣ > 0 the allowed range of 𝑥 along the geodesic is limited (since 𝜉(𝑥) < 0 for

some 𝑥 ∈ [−1, 1]). Thus, these coordinates can only cover the entire horizon when we

set Φ = 0.

The simplest geodesics discussed in §6.3.3 were those with 𝑐 = 0 = Φ2, and Ψ2 > 0.

This leaves us with the transformation

𝑑𝑣 = 𝑑𝑡− 𝐶𝑅(1 + 𝑦)

𝐺(𝑦)
√−𝐻(𝑦)

𝑑𝑦, 𝑑𝜓 = 𝑑𝜓 +

√−𝐻(𝑦)

𝐺(𝑦)
𝑑𝑦 and 𝑑𝜙 = 𝑑𝜙 (6.68)

which is precisely the coordinate change given in [69], leaving the metric in the form

𝑑𝑠2 = −𝐻(𝑦)

𝐻(𝑥)
(𝑑𝑣 + Ω𝜓𝑑𝜓)

2 +
𝑅2𝐻(𝑥)

(𝑥− 𝑦)2

[
𝑑𝑥2

𝐺(𝑥)
+
𝐺(𝑥)

𝐻(𝑥)
𝑑𝜙2 − 2𝑑𝜓𝑑𝑦√−𝐻(𝑦)

− 𝐺(𝑦)

𝐻(𝑦)
𝑑𝜓2

]
.

(6.69)

Thus, this technique has generated a family of possible coordinate transformations, in-

cluding those that are already known, and attached a geometric significance to them.

Note that the coordinates are only valid out as far as the turning point 𝑦 = 𝑦0 of the

geodesic in question, that is for the region −∞ < 𝑦 < 𝑦0 where 𝜁(𝑦0) = 0. There is still

a coordinate singularity at 𝑥 = ±1, as in the original set of coordinates.

Note that, if we wished, it would be possible to make a further change of coordinates

𝑥 7→ �̃� such that ˙̃𝑥 = 0 along the geodesics. However, the range of the new coordinate
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�̃�(𝑥, 𝑦) is messy (and 𝑦 dependent). Having done this, 𝑦 is the only coordinate varying

along the geodesics, and it does so monotonically if we only consider the ingoing part of

the geodesic (as we have been doing). Thus, we can write 𝑥 = 𝑥(𝑦) along the geodesic,

and hence use the affine parameter 𝜏 rather than 𝑦 as the remaining coordinate, leaving

us with the type of coordinate system originally suggested above. We do not present

any of this explicitly here, since the resulting form of the metric is extremely messy, and

not obviously of any practical use.

6.4.2 Doubly-spinning case

Now we move on to the doubly spinning case. Here, the form of the geodesic equations

is more complicated, so we expect the coordinate change associated with it to be more

complicated as a result. We need to solve the PDEs

�̇�− ∂𝜂𝜙

∂𝑥
�̇�− ∂𝜂𝜙

∂𝑦
�̇� = 0 and �̇� − ∂𝜂𝜓

∂𝑥
�̇�− ∂𝜂𝜓

∂𝑦
�̇� = 0 (6.70)

which can be written as

(𝑥− 𝑦)2

𝑅2𝐻(𝑥, 𝑦)

[(
𝛽(𝑥)Φ + 𝛾(𝑥)Ψ

𝐺(𝑥)
∓
√
𝜉(𝑥)

∂𝜂𝜙

∂𝑥

)
+

(
𝛼(𝑦)Φ− 𝛾(𝑦)Ψ

𝐺(𝑦)
+
√
𝜁(𝑦)

∂𝜂𝜙

∂𝑦

)]
= 0

(6.71)

and

(𝑥− 𝑦)2

𝑅2𝐻(𝑥, 𝑦)

[(
𝛾(𝑥)Φ− 𝛼(𝑥)Ψ

𝐺(𝑥)
∓
√
𝜉(𝑥)

∂𝜂𝜓

∂𝑥

)
+

(−𝛾(𝑦)Φ− 𝛽(𝑦)Ψ

𝐺(𝑦)
+
√
𝜁(𝑦)

∂𝜂𝜓

∂𝑦

)]
= 0. (6.72)

They have the obvious separable solutions

𝜂𝜙 = ±
∫ 𝑥

𝑥0

𝛽(𝑥′)Φ + 𝛾(𝑥′)Ψ

𝐺(𝑥′)
√
𝜉(𝑥′)

𝑑𝑥′ +
∫ 𝑦

𝑦0

−𝛼(𝑦′)Φ + 𝛾(𝑦′)Ψ

𝐺(𝑦′)
√
𝜁(𝑦′)

𝑑𝑦′ (6.73)

and

𝜂𝜓 = ±
∫ 𝑥

𝑥0

𝛾(𝑥′)Φ− 𝛼(𝑥′)Ψ

𝐺(𝑥′)
√
𝜉(𝑥′)

𝑑𝑥′ +
∫ 𝑦

𝑦0

𝛾(𝑦′)Φ + 𝛽(𝑦′)Ψ

𝐺(𝑦′)
√
𝜁(𝑦′)

𝑑𝑦′ (6.74)

However, it is less easy to solve the PDE

𝑡− ∂𝜂

∂𝑥
�̇�− ∂𝜂

∂𝑦
�̇� = 0, (6.75)

since the dependence of Ω𝜙 and Ω𝜓 on both 𝑥 and 𝑦 means that the equation does not

separate. In order to get a new set of coordinates that is analogous to that of the singly

spinning case, we might hope to be able to set 𝑣 = 𝑡− 𝜂𝑡 where

𝑑𝜂𝑡 = −Ω𝜓(𝑥, 𝑦)𝑑𝜂
𝜓 − Ω𝜙(𝑥, 𝑦)𝑑𝜂

𝜙, (6.76)
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which would give us the convenient result 𝑑𝑡 + Ω𝜙𝑑𝜙 + Ω𝜓𝑑𝜓 = 𝑑𝑣 + Ω𝜙𝑑𝜙 + Ω𝜓𝑑𝜓.

Unfortunately, the right hand side of (6.76) is not a total derivative for 𝜈 > 0, so this is

impossible.

Instead, we might take either of two different approaches:

∙ Look for an exact solution of (6.75), even if it cannot be written in a convenient

separable form like (6.73), (6.74).

∙ Give up on completely solving (6.75), and instead just look for an 𝜂 such that

𝑣 = 𝑡− 𝜂 has

�̇� = 𝑡− ∂𝜂

∂𝑥
�̇�− ∂𝜂

∂𝑦
�̇� <∞ (6.77)

at the horizon 𝑦 = 𝑦ℎ, as we move along one of the geodesics.

We have investigated both of these possibilities. In Appendix E, we see that it possible

to construct an exact solution to (6.75), but that it contains functions that can only be

written down implicitly in terms of the inverse of certain functions defined by integrals.

This is clearly not desirable when trying to write down a metric of practical use for

calculations, and hence we resort to looking for a new time coordinate 𝑣 that is merely

finite at the horizon, rather than constant everywhere along the geodesic.

As described above, Elvang & Rodriguez [74] showed how to construct coordinates

(6.54) that are valid across the horizon. It is useful to pause for a moment to understand

how their change of coordinates works, since it will be useful in constructing a suitable

𝑣 here.

In order for the coordinate system across the horizon to be well-defined, we require

that the divergence in 𝑔𝑦𝑦 has been removed by this coordinate change, and that no

new divergences are introduced in any of 𝑔𝑡𝑦, 𝑔𝜙𝑦 or 𝑔𝜓𝑦. A straightforward computation

shows that these conditions are equivalent to requiring that 𝐴,𝐵,𝐶 can be chosen such

that, for all 𝑥,

𝐶 + Ω𝜙(𝑥, 𝑦ℎ)𝐴+ Ω𝜓(𝑥, 𝑦ℎ)𝐵 = 0 (6.78)

𝐴(𝑦ℎ, 𝑥)𝐴− 𝐿(𝑥, 𝑦ℎ)𝐵 = 0 (6.79)

−𝐿(𝑥, 𝑦ℎ)𝐴− 𝐴(𝑥, 𝑦ℎ)𝐵 = 0 (6.80)

lim
𝑦→𝑦ℎ

[
− 𝐻(𝑥, 𝑦)

𝐺(𝑦)
+

𝐴

𝑦 − 𝑦ℎ

(
𝐴(𝑦, 𝑥)𝐴− 𝐿(𝑥, 𝑦)𝐵

𝐻(𝑦, 𝑥)(𝑦 − 𝑦ℎ)

)
+

𝐵

𝑦 − 𝑦ℎ

(−𝐿(𝑥, 𝑦)𝐴− 𝐴(𝑥, 𝑦)𝐵

𝐻(𝑦, 𝑥)(𝑦 − 𝑦ℎ)

)]
< ∞. (6.81)

It is not immediately obvious that it is possible to satisfy these conditions simulta-

neously, though of course it must be if the doubly-spinning black ring is a well defined
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black hole spacetime. Expanding in 𝑥 shows that (6.78),(6.79),(6.80) have a 1-parameter

family of solutions given by

𝐶

𝐵
= 𝑅

√
2

(
1 + 𝜈 + 𝜆

1 + 𝜈 − 𝜆

)
(6.82)

and
𝐴

𝐵
= −

√
𝜈(1 + 𝑦2ℎ)

𝜆𝑦ℎ
=

√
𝜈

𝜆
[𝜆− 𝑦ℎ(1− 𝜈)] =

𝛾(𝑦ℎ)

𝛽(𝑦ℎ)
= −𝛼(𝑦ℎ)

𝛾(𝑦ℎ)
. (6.83)

Putting this into (6.81) fixes 𝐵, and hence 𝐴 and 𝐶. Note that carrying out this last

step explicitly is very fiddly, and its validity relies on the non-trivial fact that

𝐻(𝑥, 𝑦ℎ)𝐻(𝑦ℎ, 𝑥)

(𝐴/𝐵)2𝛼(𝑥) + 2(𝐴/𝐵)𝛾(𝑥)− 𝛽(𝑥)
= constant, (6.84)

where 𝐴/𝐵 is given by (6.83).

How does this link in to our solutions above? We will see below that our change in

coordinates makes the metric finite at the horizon, and hence it can only differ from the

coordinate change of [74] by a finite amount, that is as 𝑦 → 𝑦ℎ,

(𝑦 − 𝑦ℎ)
∂𝜂𝜙

∂𝑦
→ 𝐴 and (𝑦 − 𝑦ℎ)

∂𝜂𝜓

∂𝑦
→ 𝐵. (6.85)

Explicit computation confirms that this is the case. Furthermore, we will see below that

our change of coordinates (𝜙, 𝜓) → (𝜙, 𝜓) renders the 𝑅2/(𝑥−𝑦)2 part of the line element

finite for any choice of 𝑣, and hence we do not need to do the fiddly computation to work

the value of 𝐵 using (6.81), but can merely read it off from (6.85), that is

𝐵 = lim
𝑦→𝑦ℎ

[
(𝑦 − 𝑦ℎ)

∂𝜂𝜓

∂𝑦

]
=

𝛾(𝑦ℎ)Φ + 𝛽(𝑦ℎ)Ψ

(1− 𝑦2ℎ)
√
(𝜆2 − 4𝜈)𝜁(𝑦ℎ)

. (6.86)

This is a significantly easier approach for getting this result.

Given this, we can immediately see that a valid change of time coordinate, to render

the metric finite in the non-extremal case, is to set

𝑑𝑣 = 𝑑𝑡− 𝐶

𝑦 − 𝑦ℎ
𝑑𝑦, where 𝐶 = 𝑅

√
2

(
1 + 𝜈 + 𝜆

1 + 𝜈 − 𝜆

)
𝛾(𝑦ℎ)Φ + 𝛽(𝑦ℎ)Ψ

(1− 𝑦2ℎ)
√
(𝜆2 − 4𝜈)𝜁(𝑦ℎ)

.

(6.87)

This can be made slightly neater if we write

𝑑𝑣 = 𝑑𝑡− 𝐷(𝛾(𝑦)Φ + 𝛽(𝑦)Ψ)

𝐺(𝑦)
√
𝜁(𝑦)

𝑑𝑦 where 𝐷 = 𝑅

√
2

(
1 + 𝜈 + 𝜆

1 + 𝜈 − 𝜆

)
, (6.88)

which has the correct limit at the horizon, and will allow the new metric to be written

more conveniently.
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This transforms the first part of the metric via

𝑑𝑡+ Ω𝜙𝑑𝜙+ Ω𝜓𝑑𝜓 = 𝑑𝑣 + Ω𝜙𝑑𝜙+ Ω𝜓𝑑𝜓 + Ω̃𝑥𝑑𝑥+ Ω̃𝑦𝑑𝑦 ≡ 𝑑𝑣 + Ω̃ (6.89)

where

Ω̃𝑥 = ±Φ(Ω𝜙𝛽(𝑥) + Ω𝜓𝛾(𝑥)) + Ψ(Ω𝜙𝛾(𝑥)− Ω𝜓𝛼(𝑥))

𝐺(𝑥)
√
𝜉(𝑥)

(6.90)

and

Ω̃𝑦 =
Φ(𝐷𝛾(𝑦)− Ω𝜙𝛼(𝑦)− Ω𝜓𝛾(𝑦)) + Ψ(𝐷𝛽(𝑦) + Ω𝜙𝛾(𝑦) + Ω𝜓𝛽(𝑦))

𝐺(𝑦)
√
𝜁(𝑦)

. (6.91)

These are fairly complicated, but are suitably regular as we approach the horizon (though

this regularity is not immediately manifest from looking at (6.91)). Furthermore, they

remain valid in the extremal limit, while the original approach of [74] needs additional

corrections in this case.

Transformed metric

Given the above form for Ω̃, we find that the metric can be written in the new coordinates

as

𝑑𝑠2 = −𝐻(𝑦, 𝑥)

𝐻(𝑥, 𝑦)
(𝑑𝑣 + Ω̃)2+

𝑅2𝐻(𝑥, 𝑦)

(𝑥− 𝑦)2(1− 𝜈)2

[(
𝜉(𝑥)

𝐺(𝑥)
+
𝐴(𝑦, 𝑥)𝜃(𝑥)2 − 2𝐿(𝑥, 𝑦)𝜃(𝑥)𝜒(𝑥)−𝐴(𝑥, 𝑦)𝜒(𝑥)2

𝐺(𝑥)2𝐻(𝑥, 𝑦)𝐻(𝑦, 𝑥)

)
𝑑(𝑥, 𝑦)2

+ 2

(
− 𝑐(1− 𝜈)2√

𝜁(𝑦)
𝑑𝑦 +

𝐴(𝑦, 𝑥)𝜃(𝑥)− 𝐿(𝑥, 𝑦)𝜒(𝑥)

𝐺(𝑥)𝐻(𝑥, 𝑦)𝐻(𝑦, 𝑥)
𝑑𝜙

− 𝐿(𝑥, 𝑦)𝜃(𝑥) +𝐴(𝑥, 𝑦)𝜒(𝑥)

𝐺(𝑥)𝐻(𝑥, 𝑦)𝐻(𝑦, 𝑥)
𝑑𝜓

)
𝑑(𝑥, 𝑦)

− 2(1− 𝜈)2(Φ𝑑𝜙+Ψ𝑑𝜓)
𝑑𝑦√
𝜁(𝑦)

+
𝐴(𝑦, 𝑥)𝑑𝜙2 − 2𝐿(𝑥, 𝑦)𝑑𝜙𝑑𝜓 −𝐴(𝑥, 𝑦)𝑑𝜓2

𝐻(𝑥, 𝑦)𝐻(𝑦, 𝑥)

]
, (6.92)

where

𝑑(𝑥, 𝑦) ≡
(
± 𝑑𝑥√

𝜉(𝑥)
+

𝑑𝑦√
𝜁(𝑦)

)
, (6.93)

𝜃(𝑥) ≡ 𝛽(𝑥)Φ + 𝛾(𝑥)Ψ and 𝜒(𝑥) ≡ 𝛾(𝑥)Φ− 𝛼(𝑥)Ψ. (6.94)

In the singly spinning case we were able to maintain the 𝑥 ↔ 𝑦 symmetry after the

change of coordinates, but this turns out to not be possible here if we want to write

the metric in a manner that is manifestly well defined as we cross the horizon. As a

result, this form of the metric is somewhat unpleasant. Note that it has the following

properties:



6.4. NEW COORDINATE SYSTEMS 157

∙ The metric (and also its inverse) are regular at the horizon 𝑦 = 𝑦ℎ.

∙ There is still a coordinate singularity at 𝑥 = ±1.

∙ It depends on three arbitrary parameters 𝑐, Φ and Ψ, any two of which are inde-

pendent.

As in the singly spinning case, we have found a family of geodesics with two free

parameters (any two of 𝑐, Ψ, Φ), so we are free to pick their values so as to simplify the

metric in order to find something that might be more useful for practical applications.

As in the singly spinning case, Φ = 0 is a natural, legitimate choice, but unfortunately

we can no longer set 𝑐 = 0 (see Section 6.3.3). Also, as in the singly spinning case, the

coordinates have a restricted 𝑥 range for Φ ∕= 0.

The line element in the Φ = 0 case can be written in the form

𝑑𝑠2 = −𝐻(𝑦, 𝑥)

𝐻(𝑥, 𝑦)
(𝑑𝑣 + Ω̃)2

+
𝑅2𝐻(𝑥, 𝑦)

(𝑥− 𝑦)2(1− 𝜈)2

[
𝑐

(
𝑑𝑥2

𝑐𝐺(𝑥) + 𝛼(𝑥)
− 𝑑𝑦2

𝑐𝐺(𝑦)− 𝛽(𝑦)

)

+

(
𝛼(𝑥)

𝐺(𝑥)
+
𝐴(𝑦, 𝑥)𝛾(𝑥)2 + 2𝐿(𝑥, 𝑦)𝛾(𝑥)𝛼(𝑥)−𝐴(𝑥, 𝑦)𝛼(𝑥)2

𝐺(𝑥)2𝐻(𝑥, 𝑦)𝐻(𝑦, 𝑥)(1− 𝜈)2

)
𝑑(𝑥, 𝑦)2

+ 2

(
𝐴(𝑦, 𝑥)𝜃(𝑥)− 𝐿(𝑥, 𝑦)𝜒(𝑥)

𝐺(𝑥)𝐻(𝑥, 𝑦)𝐻(𝑦, 𝑥)
𝑑𝜙− 𝐿(𝑥, 𝑦)𝜃(𝑥) +𝐴(𝑥, 𝑦)𝜒(𝑥)

𝐺(𝑥)𝐻(𝑥, 𝑦)𝐻(𝑦, 𝑥)
𝑑𝜓

)
𝑑(𝑥, 𝑦)

− 2(1− 𝜈)𝑑𝜓𝑑𝑦√
𝑐𝐺(𝑦)− 𝛽(𝑦)

+
𝐴(𝑦, 𝑥)𝑑𝜙2 − 2𝐿(𝑥, 𝑦)𝑑𝜙𝑑𝜓 −𝐴(𝑥, 𝑦)𝑑𝜓2

𝐻(𝑥, 𝑦)𝐻(𝑦, 𝑥)

]
, (6.95)

where now

𝑑(𝑥, 𝑦) ≡
(
± 𝑑𝑥√

𝑐𝐺(𝑥) + 𝛼(𝑥)
+

𝑑𝑦√
𝑐𝐺(𝑦)− 𝛽(𝑦)

)
. (6.96)

This now contains only the one arbitrary constant 𝑐 ≡ 𝑐/Ψ2. At first glance this looks

equally complicated, but the only polynomial functions that appear in this expression

are now those that appear in the original metric itself, and are far simpler, so progress

has been made.

From Section 6.3.3 we have the condition that

𝑐 ≥ 𝜈

1 + 𝜈 − 𝜆
[2(1 + 𝜆)− 3𝜆𝜈 + 𝜈(1− 𝜈)] (6.97)

for these coordinates to be valid for all 𝑥 (with the exception of the coordinate singularity

on the axis 𝑥 = ±1. We might hope that by saturating this bound we could obtain a

simpler form for the metric (as occurs in the 𝑐 = 0 case for the singly spinning ring), but

it is far from clear that this is the case. Of course doing so does remove the last arbitrary

constant from the metric and thus fix it entirely, as well as providing what seems like
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the natural doubly spinning generalisation of the singly spinning result of [69]. It would

be interesting to see if a value of 𝑐 could be chosen that really simplified things further

here, but we have been unable to do this successfully.

It seems that no further progress can be made in our study of coordinate systems, so

finally we move on to discuss whether the separability of part of the HJ equation that we

have discovered can be used to say anything about hidden symmetries of the spacetime.

6.5 Hidden Symmetries

If a 𝑑-dimensional metric has at least 𝑑− 1 commuting Killing vectors, corresponding to

𝑑 − 1 Noether symmetries, then its associated Hamilton-Jacobi equation has separable

solutions. On the other hand, if it has fewer Killing vectors, but its HJ equation is

still separable, then it is expected that this separability can be linked to a hidden phase

space symmetry, related to the existence of a higher-rank Killing tensor 𝐾 satisfying the

generalised Killing equation

∇(𝜇𝐾𝜈1𝜈2...𝜈𝑝) = 0. (6.98)

In most known cases, this tensor is rank-2, as in the case of the Kerr black hole discussed

in Section 1.3.1.

Separability of the HJ equation for null geodesics is a conformally invariant property

of the geometry, and hence this is described by the conformally invariant generalization

of the Killing equation, which in the rank-2 case reads

∇(𝜇𝐾𝜈𝜌) = 𝜔(𝜇𝑔𝜈𝜌) (6.99)

for some 1-form 𝜔, given in dimension 𝑑 by

𝜔𝜇 =
2

𝑑+ 2

[
∇𝜈𝐾𝜇𝜈 +

1

2
∇𝜇(tr𝐾)

]
. (6.100)

If 𝐾𝜇𝜈 solves this for a spacetime (ℳ, 𝑔), then Λ4𝐾𝜇𝜈 solves it for the conformally related

spacetime (ℳ,Λ2𝑔) for any suitably regular function Λ2. Solutions of this equation are

referred to as conformal Killing (CK) tensors, and they have the property that 𝐾𝜇𝜈𝑝𝜇𝑝𝜈

is conserved along any null geodesic with momentum 𝑝𝜇.

Note that the metric is itself a Killing tensor, with associated conserved quantity 𝜇2,

the mass of a particle following a geodesic. Furthermore, the symmetrized outer product

of any Killing vectors is also a CK tensor; if we are to use CK tensors to generate

genuinely new conserved quantities we need a concept of independence:
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Definition 6.2 A rank-2 CK tensor is irreducible (or non-trivial) if it cannot be ex-

pressed in terms of the metric 𝑔 and Killing vectors {𝑘(𝑖)} in the form

𝐾𝜇𝜈 = 𝑎(𝑥𝜌)𝑔𝜇𝜈 +
∑
𝑖,𝑗

𝑏𝑖𝑗𝑘
(𝑖)
(𝜇 𝑘

(𝑗)
𝜈) , (6.101)

for some scalar function 𝑎(𝑥𝜌) and constants 𝑏𝑖𝑗. Two CK tensors are independent if

their difference is irreducible.

A metric with 𝑑 − 2 mutually commuting Killing vectors can be written in a form

where its components depend on only two coordinates, 𝑥 and 𝑦 say. Then, if the HJ

equation is separable for null geodesics, it can be written in the form

𝐾𝜇𝜈
(1)(𝑥)𝑝𝜇𝑝𝜈 = 𝐾𝜇𝜈

(2)(𝑦)𝑝𝜇𝑝𝜈 = 𝒦 (6.102)

for some constant 𝒦. Both 𝐾(1) and 𝐾(2) must be CK tensors for the geometry, and they

satisfy the relation

𝐾𝜇𝜈
(1)(𝑥)−𝐾𝜇𝜈

(2)(𝑦) = 𝑓(𝑥, 𝑦)𝑔𝜇𝜈 (6.103)

for some function 𝑓(𝑥, 𝑦). Therefore, they are not independent.

Does anything similar apply for the black ring metric? We have a separable form

(6.36) for the HJ equation, but only in the null, zero energy case. We can read off tensors

𝐾(1) and 𝐾(2) from this, but do not expect them to be conformal Killing tensors, due

to the 𝐸 = 0 condition. Note that the components 𝐾𝑡𝑡 and 𝐾𝑡𝑖 of these tensors appear

somewhat arbitrary, since they do not have any effect on the value of

𝑐

(1− 𝜈)2
= 𝐾𝜇𝜈𝑝𝜇𝑝𝜈 = 𝐾𝑡𝑡𝐸2 − 2𝐾𝑡𝑖𝐸𝑝𝑖 +𝐾𝑖𝑗𝑝𝑖𝑝𝑗 = 𝐾𝑖𝑗𝑝𝑖𝑝𝑗 (6.104)

along one of the separable geodesics. This hints at a way of understanding the symmetry

that allows for this separation; dimensional reduction to remove the 𝐾𝑡𝜇 components.

This turns out to be a neat way of dealing with the zero-energy condition on these

geodesics.

6.5.1 Kaluza-Klein Reduction

We perform a dimensional reduction to project out the ∂/∂𝑡 direction, via the standard

Kaluza-Klein procedure. We take an ansatz

𝑑𝑠2 = 𝑒𝜑/
√
3ℎ𝑖𝑗𝑑𝑥

𝑖𝑑𝑥𝑗 + 𝑒−2𝜑/
√
3(𝑑𝑡+𝒜𝑖𝑑𝑥

𝑖) (6.105)

where 𝑖, 𝑗, ... range over 𝑥, 𝜙, 𝑦, 𝜓 and ℎ𝑖𝑗 is the metric on the 4-dimensional space.

Note that ∂/∂𝑡 is spacelike in the ergoregion (to which our known geodesics are

restricted), so the reduced metric has signature (+,+,+,−), and we must restrict the
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ranges of our coordinates in the reduced metric so that they only correspond to this

region (otherwise we would be performing a timelike reduction, which would require a

slightly different analysis). It is well known that the resulting 4-dimensional geometry

solves the Einstein-Maxwell-Dilaton equations.

Comparison to the line element (6.1) gives

𝑒−2𝜑/
√
3 = −𝐻(𝑦, 𝑥)

𝐻(𝑥, 𝑦)
and 𝒜𝑖𝑑𝑥

𝑖 = Ω = Ω𝜙𝑑𝜙+ Ω𝜓𝑑𝜓. (6.106)

Given this, it is straightforward to show that the dimensionally reduced metric is given

by

𝑑𝑠24 ≡ ℎ𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗 (6.107)

= Λ2(𝑥, 𝑦)

[
𝑑𝑥2

𝐺(𝑥)
− 𝑑𝑦2

𝐺(𝑦)
+
𝐴(𝑦, 𝑥)𝑑𝜙2 − 2𝐿(𝑥, 𝑦)𝑑𝜙𝑑𝜓 − 𝐴(𝑥, 𝑦)𝑑𝜓2

𝐻(𝑥, 𝑦)𝐻(𝑦, 𝑥)

]
where

Λ2(𝑥, 𝑦) ≡ 𝑅2
√−𝐻(𝑥, 𝑦)𝐻(𝑦, 𝑥)

(𝑥− 𝑦)2(1− 𝜈)2
. (6.108)

Note that the singly-spinning black ring was originally constructed in [68] by analytic

continuation of an oxidised Kaluza-Klein C-metric [185]. Here, we have found a Kaluza-

Klein metric of a similar form to the C-metric that is linked more directly to the black

ring; that is to say no analytic continuation is required. Furthermore, this reduction is

equally valid in the doubly-spinning case, for which a C-metric associated with the ring

does not exist in the literature.

6.5.2 Conformal Killing Tensors

Note that the zero-energy geodesics in the 5-dimensional metric correspond precisely

to the geodesics of the 4-dimensional metric (while those which are not zero-energy

are related to charged particle orbits). In the 5 dimensional case we know all of the

zero energy, null geodesics, so this translates to knowing all of the null geodesics in

the 4 dimensional metric. Therefore, as described above, we should expect that the

dimensionally reduced metric has a CK tensor, and now proceed to show that this is

indeed the case.

In order to see the conformal invariance explicitly, it is nice to do the calculation with

a general conformal factor Λ2 = Λ2(𝑥, 𝑦) in the metric (6.107), where of course equation

(6.108) gives the choice of Λ2 that actually results from the Kaluza-Klein reduction of

the black ring.
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We read off the forms of 𝐾𝑖𝑗
(1) and 𝐾

𝑖𝑗
(2) from (6.36), which gives non-vanishing com-

ponents

𝐾𝑥𝑥
(1) = 𝐺(𝑥), 𝐾𝑦𝑦

(2) = 𝐺(𝑦),

𝐾𝜙𝜙
(1) =

𝛽(𝑥)

(1− 𝜈)2𝐺(𝑥)
, 𝐾𝜙𝜙

(2) =
−𝛼(𝑦)

(1− 𝜈)2𝐺(𝑦)

𝐾𝜙𝜓
(1) =

𝛾(𝑥)

(1− 𝜈)2𝐺(𝑥)
, 𝐾𝜙𝜓

(2) =
𝛾(𝑦)

(1− 𝜈)2𝐺(𝑦)
,

𝐾𝜓𝜓
(1) =

−𝛼(𝑥)
(1− 𝜈)2𝐺(𝑥)

, 𝐾𝜓𝜓
(2) =

𝛽(𝑦)

(1− 𝜈)2𝐺(𝑦)
. (6.109)

Now

𝐾𝑖𝑗
(1) −𝐾𝑖𝑗

(2) = Λ2ℎ𝑖𝑗, (6.110)

so if one of these tensors is a conformal Killing tensor, so is the other, and they are

not independent. Given this, perhaps the natural choice of CK tensor to work with is

𝐾 ≡ 𝐾(1) +𝐾(2).

Differentiating, we see that 𝐾 satisfies the conformal Killing equation

∇(𝑖𝐾𝑗𝑘) = 𝜔(𝑖ℎ𝑗𝑘) where 𝜔 = 2Λ

[
∂Λ

∂𝑥
𝑑𝑥− ∂Λ

∂𝑦
𝑑𝑦

]
, (6.111)

and is therefore a CK tensor. Note that 𝐾 is actually a Killing tensor of the geometry

that has constant conformal factor Λ2.

With indices raised, 𝐾𝑖𝑗 is not dependent on the conformal factor, and with coordi-

nates (𝑥, 𝜙, 𝑦, 𝜓), it can be written in matrix form as

K =

⎛⎜⎜⎜⎜⎜⎝
𝐺(𝑥) 0 0 0

0 1
(1−𝜈)2

(
𝛽(𝑥)
𝐺(𝑥)

− 𝛼(𝑦)
𝐺(𝑦)

)
0 1

(1−𝜈)2
(
𝛾(𝑥)
𝐺(𝑥)

+ 𝛾(𝑦)
𝐺(𝑦)

)
0 0 𝐺(𝑦) 0

0 1
(1−𝜈)2

(
𝛾(𝑥)
𝐺(𝑥)

+ 𝛾(𝑦)
𝐺(𝑦)

)
0 1

(1−𝜈)2
(
𝛽(𝑦)
𝐺(𝑦)

− 𝛼(𝑥)
𝐺(𝑥)

)

⎞⎟⎟⎟⎟⎟⎠ . (6.112)

There is an alternative way of seeing the existence of this conformal Killing tensor.

Benenti & Francaviglia [186] give a canonical form for the metric of an 𝑛-dimensional

spacetime admitting (𝑛−2) Killing vectors, and a non-trivial rank-2 Killing tensor. The

inverse metric takes the form

𝑔−1 =
1

𝜑1(𝑥1) + 𝜑2(𝑥2)

[
𝜓1(𝑥

1)

(
∂

∂𝑥1

)2

+ 𝜓2(𝑥
2)

(
∂

∂𝑥2

)2

+
(
𝜓1(𝑥

1)𝜁𝛼𝛽1 (𝑥1) + 𝜓2(𝑥
2)𝜁𝛼𝛽2 (𝑥2)

)( ∂

∂𝜙𝛼

)(
∂

∂𝜙𝛽

)]
(6.113)
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for some functions 𝜓𝑎(𝑥
𝑎), 𝜑𝑎(𝑥

𝑎), 𝜁𝛼𝛽𝑎 (𝑥𝑎) depending on a single coordinate only, with

𝜑1𝜓
2
1 + 𝜑2𝜓

2
2 ∕= 0 everywhere. The indices 𝛼, 𝛽 = 3, ..., 𝑛 label the Killing directions

∂/∂𝜙𝛼. The rank-2 Killing tensor is given by

𝐾𝛼𝛽 =
1

𝜑1 + 𝜑2

(
𝜁𝛼𝛽1 𝜓1𝜑2 − 𝜁𝛼𝛽2 𝜓2𝜑1

)
, 𝐾11 =

𝜑2𝜓1

𝜑1 + 𝜑2

and 𝐾22 =
−𝜑1𝜓2

𝜑1 + 𝜑2

.

(6.114)

The inverse metric for the dimensionally reduced black ring is conformally related

to a metric of this form, with 𝜑𝑎 ≡ 1 and we must therefore have a rank-2 conformal

Killing tensor. The form for this given corresponds precisely to our tensor 𝐾𝑖𝑗, up to an

arbitrary constant factor.

6.5.3 Conformal Killing-Yano Tensors

Often, a conformal Killing (CK) tensor can be constructed from a more fundamental ob-

ject, a conformal Killing-Yano (CKY) tensor, that is a 2-form 𝑘 satisfying the conformal

Killing-Yano equation

∇(𝜇𝑘𝜈)𝜌 = 𝑔𝜇𝜈𝜉𝜌 − 𝜉(𝜇𝑔𝜈)𝜌 where 𝜉𝜈 =
1

𝑑− 1
∇𝜇𝑘𝜇𝜈 . (6.115)

Note that if 𝑘𝜇𝜈 solves it for spacetime (𝑀, 𝑔), then Λ3𝑘𝜇𝜈 solves it for (𝑀,Λ2𝑔). Given

a CKY tensor 𝑘, 𝐾𝜇𝜈 = 𝑘𝜇𝜌𝑘
𝜌
𝜈 is a CK tensor. In this case, it turns out that a CKY

tensor exists if and only if the ring is singly spinning.

Singly Spinning Case

In the singly spinning case, it is straightforward to directly construct an antisymmetric

tensor that squares to the Killing tensor 𝐾𝑖𝑗, that is a 𝑘𝑖𝑗 such that 𝐾𝑖𝑗 = 𝑘𝑖𝑘𝑘𝑗𝑙ℎ𝑘𝑙. The

tensor

𝑘𝑥𝜙 =

√
𝐻(𝑥)

Λ(𝑥, 𝑦)
= −𝑘𝜙𝑥 and 𝑘𝑦𝜓 =

√−𝐻(𝑦)

Λ(𝑥, 𝑦)
= −𝑘𝜓𝑦, (6.116)

with all other components vanishing, satisfies this. Lowering indices, this gives us a

2-form

𝑘 = Λ3

[
1√
𝐻(𝑥)

𝑑𝑥 ∧ 𝑑𝜙− 1√−𝐻(𝑦)
𝑑𝑦 ∧ 𝑑𝜓

]
. (6.117)

Note that there is a second tensor with the same property, which can be obtained by

taking the Hodge dual of 𝑘, resulting in

★𝑘 = Λ3

[
1√
𝐻(𝑥)

𝑑𝑥 ∧ 𝑑𝜙+
1√−𝐻(𝑦)

𝑑𝑦 ∧ 𝑑𝜓
]
. (6.118)
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By explicit calculation, it can be shown that

∇𝑖𝑘𝑗𝑘 = ∇[𝑖𝑘𝑗𝑘] + 2ℎ𝑖[𝑗𝜉𝑘] where 𝜉 =
𝐺(𝑥)√
𝐻(𝑥)

∂Λ

∂𝑥
𝑑𝜙+

𝐺(𝑦)√−𝐻(𝑦)

∂Λ

∂𝑦
𝑑𝜓 (6.119)

and therefore 𝑘 satisfies the conformal Killing-Yano equation (as does ★𝑘).

It is interesting to briefly consider the case of constant Λ2, although this does not

correspond to the actual dimensional reduction of the black ring. Here, 𝑘 is a Killing-

Yano tensor, and its square is a Killing tensor. In fact something stronger can be said.

It is known [143, 144] that any 𝑑-dimensional spacetime manifold with a globally defined

closed CKY tensor 𝑘 (known as a principal CKY tensor) can be written in a particular

canonical form.

Here, taking an exterior derivative gives that

𝑑𝑘 = −3Λ2𝑑𝑥 ∧ 𝑑𝑦 ∧
[
∂Λ

∂𝑦

𝑑𝜙√
𝐻(𝑥)

+
∂Λ

∂𝑥

𝑑𝜓√−𝐻(𝑦)

]
(6.120)

and hence we see that 𝑘 is closed for the 4-geometry with constant Λ2 (as is ★𝑘). Thus

we have a principal CKY tensor here. The existence of this tensor implies that the

metric can be written in the known canonical form, separability of the HJ equation for

all geodesics (rather than just null ones), as well as that this 4-metric is of algebraic

Type D. Since the algebraic type of a metric is a conformally invariant property, the 4-

dimensional geometry must be Type D for all choices of conformal factor, and therefore

the geometry that results directly from the KK reduction of the singly-spinning ring is

also Type D.

Doubly Spinning Case

In the doubly spinning case, it turns out that the conformal Killing tensor 𝐾𝑖𝑗 is not

derivable from a conformal Killing-Yano tensor. Furthermore, this result is independent

of our particular choice of CK tensor, and therefore proves that no CKY tensor can exist

for the doubly-spinning (𝜈 > 0) metric. That is:

Lemma 6.3 Define a symmetric rank-(2,0) tensor 𝐾 ′ by

𝐾 ′ = 𝐾 + 𝐶(𝑥𝑘)ℎ−1 + 𝑝

(
∂

∂𝜙

)2

+ 2𝑞

(
∂

∂𝜙

)(
∂

∂𝜓

)
+ 𝑟

(
∂

∂𝜓

)2

. (6.121)

Then 𝐾 ′ has the following properties:

1. It is a conformal Killing tensor for all differentiable functions 𝐶(𝑥𝑘), and constants

𝑝, 𝑞, 𝑟.
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2. Up to arbitrary constant rescalings of 𝐾, it is the most general irreducible CK

tensor.

3. For 𝜈 > 0, and for any 𝐶(𝑥𝑎), 𝑝, 𝑞, 𝑟, there does not exist an antisymmetric tensor

𝑘 such that

𝐾 ′𝑖𝑗 = 𝑘𝑖𝑘𝑘𝑗𝑙ℎ𝑘𝑙. (6.122)

Note that if 𝑘 is a CKY tensor, then a 𝐾 ′ defined by (6.122) must be a CK tensor, and

therefore the non-existence of a square-root for the most general non-trivial CK tensor

proves the non-existence of a CKY tensor. Thus, as a direct corollary of Lemma 6.3, we

see that the dimensional reduction of the black ring spacetime possesses a CKY tensor

if and only if the ring is singly-spinning. When one CKY tensor exists, a second can

be constructed by taking the Hodge dual, as described above. The Lemma is proved in

Appendix E.

6.5.4 Klein-Gordon Equation

Often, when a spacetime possesses a Killing tensor, it is possible to find multiplicatively

separable solutions of the Klein-Gordon (KG) equation. Here, we have additive separa-

bility for geodesic motion in the null, zero energy case, so we might hope that this would

translate into being able to find time-independent separable solutions to the massless

KG equation for the 5-dimensional black ring. However, the results linking the existence

of a Killing tensor with the separability of the KG equation apply only in Einstein-

Maxwell spaces, which our reduced 4-dimensional spacetime is not. As a result of this,

we don’t expect separability of the KG equation to be possible for the black ring. A

straightforward calculation shows that this is indeed the case. That is, taking an ansatz

𝜑(𝑡, 𝑥, 𝜙, 𝑦, 𝜓) = 𝑒−𝑖Φ𝜙𝑒−𝑖Ψ𝜓𝑋(𝑥)𝑌 (𝑦) (6.123)

does not render the massless 5-dimensional KG equation □𝜑 = 0 into a separable form.

6.6 Discussion and Outlook

In this chapter we have studied several aspects of the doubly-spinning black ring and

noted that, although the metric is at first glance very complicated, it is possible to make

progress in studying its properties analytically. We have seen that in some senses the

doubly-spinning system is more complicated, and richer, than the singly-spinning one,

while other properties remain largely similar.
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Some interesting questions remain. We have not analysed in detail the paths of

the axis geodesics in this chapter, since doing so is very complicated, but it might be

interesting to do this and see if any new behaviour occurs that does not appear in the

singly spinning case. These results could perhaps be useful in calculations of scattering

cross sections; Gooding and Frolov studied this problem in the Myers-Perry case [187].

We have also investigated possible links between our results, and the class of metrics

described by [143, 144]. We have found that the 4-dimensional spacetime obtained by

dimensional reduction along ∂/∂𝑡 in the ergoregion is conformal to a metric falling into

this class, if, and only if, the black ring is singly spinning. This provides a qualitative,

algebraic difference between the singly spinning and doubly spinning cases.

An obvious question is to ask whether the more general, unbalanced, black ring

solution [179] has similar properties. Studying the most general form of the unbalanced

metric would be difficult, as it is extremely complicated, but some progress on this

question can be made by looking at the limit where the black ring has rotation only

in the 𝑆2 direction, as derived by Figueras [188]. It turns out that here, no separation

of the HJ equation is possible in ring-like coordinates; so this separability, and possibly

the conformal Killing tensor structure associated with it, may rely in some way on the

balancing condition being satisfied. However, in the unbalanced, singly-spinning case

[69], separation is possible, so the exact nature of this relationship is unclear.
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Appendix A

GHP formalism for spacetimes with

arbitrary matter

In this thesis, we have focussed almost entirely on Einstein spacetimes. However, the def-

initions of the GHP formalism can be conveniently extended to spacetimes with arbitrary

matter.

The first step in doing this it to expand the Ricci tensor 𝑅𝜇𝜈 in the null frame

(and hence the energy-momentum tensor 𝑇𝜇𝜈). Table A.1 describes our notation for its

components 𝑅𝑎𝑏:

Compt. Notation Boost weight 𝑏 Spin 𝑠 Comment

𝑅00 𝜔 2 0

𝑅0𝑖 𝜓𝑖 1 1

𝑅𝑖𝑗 𝜙𝑖𝑗 0 2 𝜙𝑖𝑗 = 𝜙𝑗𝑖

𝑅01 𝜙 0 0 𝜙 ∕= 𝜙𝑖𝑖

𝑅1𝑖 𝜓′
𝑖 -1 1

𝑅11 𝜔′ -2 0

Table A.1: Decomposition of the Ricci tensor in the frame basis. We use the convention

that Ricci components use the lower case version of the Greek letter representing the Weyl

components of the same boost weight.

In four dimensions, the NP and GHP formalisms have found applications to space-

times with various kinds of matter; but typically only where the matter is in some sense

aligned with a null vector field. Various examples, including ‘aligned null radiation’ are

discussed in [27].
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A.1 Newman-Penrose equations

Given this notation, the NP equations (see Section 2.6.5) read:

Boost weight +2

þ𝜌𝑖𝑗 − k𝑗𝜅𝑖 = −𝜌𝑖𝑘𝜌𝑘𝑗 − 𝜅𝑖𝜏
′
𝑗 − 𝜏𝑖𝜅𝑗 − Ω𝑖𝑗 − 1

𝑑− 2
𝜔𝛿𝑖𝑗, (NP1m)

Boost weight +1

þ𝜏𝑖 − þ′𝜅𝑖 = 𝜌𝑖𝑗(−𝜏𝑗 + 𝜏 ′𝑗)−Ψ𝑖 +
1

𝑑− 2
𝜓𝑖, (NP2m)

k[𝑗∣𝜌𝑖∣𝑘] = 𝜏𝑖𝜌[𝑗𝑘] + 𝜅𝑖𝜌
′
[𝑗𝑘] −

1

2
Ψ𝑖𝑗𝑘 − 1

𝑑− 2
𝜓[𝑗𝛿𝑘]𝑖, (NP3m)

Boost weight 0

þ′𝜌𝑖𝑗 − k𝑗𝜏𝑖 = −𝜏𝑖𝜏𝑗 − 𝜅𝑖𝜅
′
𝑗 − 𝜌𝑖𝑘𝜌

′
𝑘𝑗 − Φ𝑖𝑗

− 1

𝑑− 2
(𝜙𝑖𝑗 + 𝜙𝛿𝑖𝑗) +

𝜙𝑘𝑘 + 2𝜙

(𝑑− 1)(𝑑− 2)
𝛿𝑖𝑗, (NP4m)

with another four equations obtained by taking the prime ′ of these four.

A.2 Commutators

In the case of arbitrary matter, the commutators (see Section 2.6.7) read:

[þ, þ′]𝑇𝑖1...𝑖𝑠 =
[
(−𝜏𝑗 + 𝜏 ′𝑗)k𝑗
+𝑏

(
−𝜏𝑗𝜏 ′𝑗 + 𝜅𝑗𝜅

′
𝑗 + Φ− 2𝜙

𝑑− 1
+

𝜙𝑗𝑗
(𝑑− 1)(𝑑− 2)

)]
𝑇𝑖1...𝑖𝑠

+
𝑠∑
𝑟=1

(
𝜅𝑖𝑟𝜅

′
𝑗 − 𝜅′𝑖𝑟𝜅𝑗 + 𝜏 ′𝑖𝑟𝜏𝑗 − 𝜏𝑖𝑟𝜏

′
𝑗 + 2ΦA

𝑖𝑟𝑗

)
𝑇𝑖1...𝑗...𝑖𝑠 , (C1m)

[þ, k𝑖]𝑇𝑘1...𝑘𝑠 =

[
− (𝜅𝑖þ′ + 𝜏 ′𝑖þ + 𝜌𝑗𝑖k𝑗) + 𝑏

(
−𝜏 ′𝑗𝜌𝑗𝑖 + 𝜅𝑗𝜌

′
𝑗𝑖 +Ψ𝑖 − 1

𝑑− 2
𝜓𝑖

)]
𝑇𝑘1...𝑘𝑠

+
𝑠∑
𝑟=1

[
𝜅𝑘𝑟𝜌

′
𝑙𝑖 − 𝜌𝑘𝑟𝑖𝜏

′
𝑙 + 𝜏 ′𝑘𝑟𝜌𝑙𝑖 − 𝜌′𝑘𝑟𝑖𝜅𝑙 −Ψ𝑖𝑙𝑘𝑟

− 2

𝑑− 2
𝜓[𝑙𝛿𝑘𝑟]𝑖

]
𝑇𝑘1...𝑙...𝑘𝑠 , (C2m)

[k𝑖, k𝑗]𝑇𝑘1...𝑘𝑠 =
(
2𝜌[𝑖𝑗]þ′ + 2𝜌′[𝑖𝑗]þ + 2𝑏𝜌𝑙[𝑖∣𝜌′𝑙∣𝑗] + 2𝑏ΦA

𝑖𝑗

)
𝑇𝑘1...𝑘𝑠

+
𝑠∑
𝑟=1

[
2𝜌𝑘𝑟[𝑖∣𝜌

′
𝑙∣𝑗] + 2𝜌′𝑘𝑟[𝑖∣𝜌𝑙∣𝑗] + Φ𝑖𝑗𝑘𝑟𝑙 (C3m)

+
2

𝑑− 2
(𝛿[𝑖∣𝑘𝑟𝜙∣𝑗]𝑙 − 𝛿[𝑖∣𝑙𝜙∣𝑗]𝑘𝑟)−

2(2𝜙+ 𝜙𝑚𝑚)𝛿[𝑖∣𝑘𝑟𝛿∣𝑗]𝑙
(𝑑− 1)(𝑑− 2)

]
𝑇𝑘1...𝑙...𝑘𝑠 .
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A.3 Bianchi equations

Including matter in the Bianchi equations is rather more complicated. Noting that

𝑅𝑎𝑏𝑐𝑑 = 𝐶𝑎𝑏𝑐𝑑 +
2

𝑑− 2
(𝜂𝑎[𝑐𝑅𝑑]𝑏 − 𝜂𝑏[𝑐𝑅𝑑]𝑎)− 2𝑅

(𝑑− 1)(𝑑− 2)
𝜂𝑎[𝑐𝜂𝑑]𝑏, (A.1)

the appropriate equations can then be obtained from (B1-B7) by making the following

replacements:

Ω𝑖𝑗 → Ω𝑖𝑗 +
𝜔

𝑑− 2
𝛿𝑖𝑗, (A.2)

Ψ𝑖 → Ψ𝑖 − 𝜓𝑖
𝑑− 2

, (A.3)

Ψ𝑖𝑗𝑘 → Ψ𝑖𝑗𝑘 +
2

𝑑− 2
𝜓[𝑗𝛿𝑘]𝑖, (A.4)

Φ𝑖𝑗 → Φ𝑖𝑗 +
𝜙𝑖𝑗
𝑑− 2

+
(𝑑− 3)𝜙− 𝜙𝑘𝑘
(𝑑− 1)(𝑑− 2)

𝛿𝑖𝑗, (A.5)

Φ𝑖𝑗𝑘𝑙 → Φ𝑖𝑗𝑘𝑙 +
2

𝑑− 2

(
𝛿𝑖[𝑘𝜙𝑙]𝑗 − 𝛿𝑗[𝑘𝜙𝑙]𝑖

)− 2𝛿𝑖[𝑘𝛿𝑙]𝑗
2𝜙+ 𝜙𝑚𝑚

(𝑑− 1)(𝑑− 2)
, (A.6)

Φ → Φ− 2𝜙

𝑑− 1
+

𝜙𝑖𝑖
(𝑑− 1)(𝑑− 2)

, (A.7)

together with the primed versions of the first three of these equations. Note that before

these replacements are made, we’re interpreting these objects as Riemann, not Weyl,

tensor components, so the various trace identities discussed in Table 2.2 no longer hold.

Hence the above replacements are valid only when made directly in equations (B1)-(B7),

not in contractions of these equations. When making these replacements, one can exclude

any cosmological constant terms from the Ricci tensor, since these must all cancel out

in the Bianchi equations.

The above equations must be supplemented by additional equations that are trivial

in the case of an Einstein spacetime, but not when matter is present. These equations

are equivalent to the contracted Bianchi identity

∇𝜇𝑅𝜇𝜈 =
1
2
∇𝜈𝑅. (A.8)

In the null basis, this equation reduces to

þ′𝜔 + k𝑖𝜓𝑖 − 1
2
þ𝜙𝑖𝑖 = −𝜌′𝜔 + (2𝜏𝑖 + 𝜏 ′𝑖)𝜓𝑖 + 𝜌𝑖𝑗(𝜙𝑖𝑗 − 𝜙𝛿𝑖𝑗)

+𝜅𝑖𝜓
′
𝑖, (A.9)

þ′𝜓𝑖 + k𝑗𝜙𝑖𝑗 − k𝑖(𝜙+ 1
2
𝜙𝑗𝑗) + þ𝜓′

𝑖 = −𝜅′𝑖𝜔 − (𝜌′𝑖𝑗 + 𝜌′𝛿𝑖𝑗)𝜓𝑗 + (𝜏𝑗 + 𝜏 ′𝑗)(𝜙𝑗𝑖 − 𝜙𝛿𝑗𝑖)

−(𝜌𝑖𝑗 + 𝜌𝛿𝑖𝑗)𝜓
′
𝑗 − 𝜅𝑖𝜔

′, (A.10)

with a third equation following from (A.9)′.



170 APPENDIX A. GHP FORMALISM WITH MATTER



Appendix B

GHP equations for algebraically

special Einstein spacetimes

In an algebraically special Einstein spacetime, it is shown in Chapter 3 that there always

exists a geodesic multiple WAND. If we choose ℓ to be this multiple WAND then we have

Ω𝑖𝑗 = Ψ𝑖𝑗𝑘 = Ψ𝑖 = 𝜅𝑖 = 0. (B.1)

This simplifies considerably many of the GHP equations. However, since we have now

endowed ℓ with a property that is not enjoyed by 𝑛, we have broken the symmetry under

the priming operation and therefore must write out all of the equations explicitly.

In a Type D Einstein spacetime, we can choose both ℓ and 𝑛 to be geodesic multiple

WANDs (see the discussion below Theorem 3.4). In this case, the priming symmetry

is recovered again, and many of the equations below become unnecessary (and some of

those that remain are simplified further).

B.1 Newman-Penrose equations

Boost weight +2

þ𝜌𝑖𝑗 = −𝜌𝑖𝑘𝜌𝑘𝑗, (B.2)

Boost weight +1

þ𝜏𝑖 = 𝜌𝑖𝑗(−𝜏𝑗 + 𝜏 ′𝑗), (B.3)

k[𝑗∣𝜌𝑖∣𝑘] = 𝜏𝑖𝜌[𝑗𝑘], (B.4)
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Boost weight 0

þ′𝜌𝑖𝑗 − k𝑗𝜏𝑖 = −𝜏𝑖𝜏𝑗 − 𝜌𝑖𝑘𝜌
′
𝑘𝑗 − Φ𝑖𝑗 − Λ

𝑑− 1
𝛿𝑖𝑗, (B.5)

þ𝜌′𝑖𝑗 − k𝑗𝜏 ′𝑖 = −𝜏 ′𝑖𝜏 ′𝑗 − 𝜌′𝑖𝑘𝜌𝑘𝑗 − Φ𝑗𝑖 − Λ

𝑑− 1
𝛿𝑖𝑗, (B.6)

Boost weight -1

þ′𝜏 ′𝑖 − þ𝜅′𝑖 = 𝜌′𝑖𝑗(−𝜏 ′𝑗 + 𝜏𝑗)−Ψ′
𝑖, (B.7)

k[𝑗∣𝜌′𝑖∣𝑘] = 𝜏 ′𝑖𝜌
′
[𝑗𝑘] + 𝜅′𝑖𝜌[𝑗𝑘] −

1

2
Ψ′
𝑖𝑗𝑘, (B.8)

Boost weight -2

þ′𝜌′𝑖𝑗 − k𝑗𝜅′𝑖 = −𝜌′𝑖𝑘𝜌′𝑘𝑗 − 𝜅′𝑖𝜏𝑗 − 𝜏 ′𝑖𝜅
′
𝑗 − Ω′

𝑖𝑗. (B.9)

B.2 Bianchi equations

Boost weight +1:

þΦ𝑖𝑗 = −(Φ𝑖𝑘 + 2ΦA
𝑖𝑘 + Φ𝛿𝑖𝑘)𝜌𝑘𝑗, (B.10)

−þΦ𝑖𝑗𝑘𝑙 = 4ΦA
𝑖𝑗𝜌[𝑘𝑙] − 2Φ[𝑘∣𝑖𝜌𝑗∣𝑙] + 2Φ[𝑘∣𝑗𝜌𝑖∣𝑙] + 2Φ𝑖𝑗[𝑘∣𝑚𝜌𝑚∣𝑙], (B.11)

0 = 2ΦA
[𝑗𝑘∣𝜌𝑖∣𝑙] − 2Φ𝑖[𝑗𝜌𝑘𝑙] + Φ𝑖𝑚[𝑗𝑘∣𝜌𝑚∣𝑙], (B.12)

Boost weight 0:

−2k[𝑗∣Φ𝑖∣𝑘] = (2Φ𝑖[𝑗𝛿𝑘]𝑙 − 2𝛿𝑖𝑙Φ
A
𝑗𝑘 − Φ𝑖𝑙𝑗𝑘)𝜏𝑙 + 2(Ψ′

[𝑗∣𝛿𝑖𝑙 −Ψ′
[𝑗∣𝑖𝑙)𝜌𝑙∣𝑘], (B.13)

−2k[𝑖Φ
A
𝑗𝑘] = 2Ψ′

[𝑖𝜌𝑗𝑘] +Ψ′
𝑙[𝑖𝑗∣𝜌𝑙∣𝑘], (B.14)

−k[𝑘∣Φ𝑖𝑗∣𝑙𝑚] = −Ψ′
𝑖[𝑘𝑙∣𝜌𝑗∣𝑚] +Ψ′

𝑗[𝑘𝑙∣𝜌𝑖∣𝑚] − 2Ψ′
[𝑘∣𝑖𝑗𝜌∣𝑙𝑚], (B.15)

−2k[𝑗Φ𝑘]𝑖 + þΨ′
𝑖𝑗𝑘 = (2Φ[𝑗∣𝑖𝛿𝑘]𝑙 + 2𝛿𝑖𝑙Φ

A
𝑗𝑘 − Φ𝑖𝑙𝑗𝑘)𝜏

′
𝑙 + 2(Ψ′

𝑖𝛿[𝑗∣𝑙 −Ψ′
𝑖[𝑗∣𝑙)𝜌𝑙∣𝑘],(B.16)

Boost weight -1:

−þ′Φ𝑗𝑖 − k𝑗Ψ′
𝑖 + þΩ′

𝑖𝑗 = (ΦS
𝑖𝑘 − 3ΦA

𝑖𝑘 + Φ𝛿𝑖𝑘)𝜌
′
𝑘𝑗 + (Ψ′

𝑖𝑗𝑘 −Ψ′
𝑖𝛿𝑗𝑘)𝜏𝑘

−2(Ψ′
(𝑖𝛿𝑗)𝑘 +Ψ′

(𝑖𝑗)𝑘)𝜏
′
𝑘 − Ω′

𝑖𝑘𝜌𝑘𝑗, (B.17)

−þ′Φ𝑖𝑗𝑘𝑙 + 2k[𝑘Ψ
′
𝑙]𝑖𝑗 = −4ΦA

𝑖𝑗𝜌
′
[𝑘𝑙] − 2Φ𝑖[𝑘∣𝜌′𝑗∣𝑙] + 2Φ𝑗[𝑘∣𝜌′𝑖∣𝑙] + 2Φ𝑖𝑗[𝑘∣𝑚𝜌′𝑚∣𝑙]

−2Ψ′
[𝑖∣𝑘𝑙𝜏∣𝑗] − 2Ψ′

[𝑘∣𝑖𝑗𝜏∣𝑙] − 2Ω′
𝑖[𝑘∣𝜌𝑗∣𝑙] + 2Ω′

𝑗[𝑘𝜌𝑖∣𝑙], (B.18)

−k[𝑗∣Ψ′
𝑖∣𝑘𝑙] = −2ΦA

[𝑗𝑘∣𝜌
′
𝑖∣𝑙] − 2Φ[𝑗∣𝑖𝜌′∣𝑘𝑙] + Φ𝑖𝑚[𝑗𝑘∣𝜌′𝑚∣𝑙] − 2Ω′

𝑖[𝑗∣𝜌∣𝑘𝑙],(B.19)
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Boost weight -2:

þ′Ψ′
𝑖𝑗𝑘 − 2k[𝑗Ω

′
𝑘]𝑖 = (2Φ[𝑗∣𝑖𝛿𝑘]𝑙 + 2𝛿𝑖𝑙Φ

A
𝑗𝑘 − Φ𝑖𝑙𝑗𝑘)𝜅

′
𝑙

−2(Ψ′
[𝑗∣𝛿𝑖𝑙 +Ψ′

𝑖𝛿[𝑗∣𝑙 +Ψ′
𝑖[𝑗∣𝑙 +Ψ′

[𝑗∣𝑖𝑙)𝜌
′
𝑙∣𝑘] + 2Ω′

𝑖[𝑗𝜏𝑘]. (B.20)

B.3 Commutators

[þ, þ′]𝑇𝑖1...𝑖𝑠 =

[
(−𝜏𝑗 + 𝜏 ′𝑗)k𝑗 + 𝑏

(
−𝜏𝑗𝜏 ′𝑗 + Φ− 2Λ

𝑑− 1

)]
𝑇𝑖1...𝑖𝑠

+
𝑠∑
𝑟=1

(
𝜏 ′𝑖𝑟𝜏𝑗 − 𝜏𝑖𝑟𝜏

′
𝑗 + 2ΦA

𝑖𝑟𝑗

)
𝑇𝑖1...𝑗...𝑖𝑠 , (B.21)

[þ, k𝑖]𝑇𝑘1...𝑘𝑠 =
(
− (𝜏 ′𝑖þ + 𝜌𝑗𝑖k𝑗)− 𝑏𝜏 ′𝑗𝜌𝑗𝑖

)
𝑇𝑘1...𝑘𝑠

+
𝑠∑
𝑟=1

(−𝜌𝑘𝑟𝑖𝜏 ′𝑙 + 𝜏 ′𝑘𝑟𝜌𝑙𝑖)𝑇𝑘1...𝑙...𝑘𝑠 , (B.22)

[þ′, k𝑖]𝑇𝑘1...𝑘𝑠 =
[
− (𝜏𝑖þ′ + 𝜌′𝑗𝑖k𝑗)− 𝑏𝜏𝑗𝜌

′
𝑗𝑖

]
𝑇𝑘1...𝑘𝑠

+
𝑠∑
𝑟=1

[
𝜅′𝑘𝑟𝜌𝑙𝑖 − 𝜌′𝑘𝑟𝑖𝜏𝑙 + 𝜏𝑘𝑟𝜌

′
𝑙𝑖 − 𝜌′𝑘𝑟𝑖𝜅

′
𝑙 −Ψ′

𝑖𝑙𝑘𝑟

]
𝑇𝑘1...𝑙...𝑘𝑠 , (B.23)

[k𝑖, k𝑗]𝑇𝑘1...𝑘𝑠 =
(
2𝜌[𝑖𝑗]þ′ + 2𝜌′[𝑖𝑗]þ + 2𝑏𝜌𝑙[𝑖∣𝜌′𝑙∣𝑗] + 2𝑏ΦA

𝑖𝑗

)
𝑇𝑘1...𝑘𝑠 (B.24)

+
𝑠∑
𝑟=1

[
2𝜌𝑘𝑟[𝑖∣𝜌

′
𝑙∣𝑗] + 2𝜌′𝑘𝑟[𝑖∣𝜌𝑙∣𝑗] + Φ𝑖𝑗𝑘𝑟𝑙 +

2Λ

𝑑− 1
𝛿[𝑖∣𝑘𝑟𝛿∣𝑗]𝑙

]
𝑇𝑘1...𝑙...𝑘𝑠 .
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Appendix C

Perturbation equations for

near-horizon geometries

In this appendix, we explain the calculations required to obtain the results presented in

Section 5.2 for a general metric ansatz (5.3) including all known near-horizon geometries.

Consider a near horizon geometry of the form (5.3), with 𝑛 rotational Killing vectors

∂/∂𝜙𝐼 , and indices 𝐼, 𝐽, . . . = 2, . . . 𝑛 + 1 and 𝐴,𝐵, . . . = 𝑛 + 2, . . . 𝑑 − 1. We think of

this as a fibration over 𝐴𝑑𝑆2 of some manifold ℋ with metric

𝑑𝑠2 = 𝑔𝐼𝐽(𝑦)𝑑𝜙
𝐼𝑑𝜙𝐽 + 𝑔𝐴𝐵(𝑦)𝑑𝑦

𝐴𝑑𝑦𝐵 = 𝑔𝜇𝜈𝑑�̂�
𝜇𝑑�̂�𝜈 . (C.1)

The rotation of the black hole is described by the constants 𝑘𝐼 . It is useful to define a

(Killing) vector field 𝑘 = 𝑘𝐼 ∂
∂𝜙𝐼

.

In Chapter 4 we derived decoupled equations for gravitational perturbations and test

Maxwell fields in the background of Kundt spacetimes, using the higher-dimensional

GHP formalism of Chapter 2. In this section, we show that all metrics of the form (5.3)

are (doubly) Kundt spacetimes, and compute the relevant equations in these particular

cases. The results obtained will be expressed in notation independent of this formalism.

We work in a null frame

ℓ = 𝑒0 = 𝑒1 = 1√
2
𝐿(𝑦)

(−𝑅𝑑𝑇 + 𝑑𝑅
𝑅

)
,

𝑛 = 𝑒1 = 𝑒0 = 1√
2
𝐿(𝑦)

(
𝑅𝑑𝑇 + 𝑑𝑅

𝑅

)
,

𝑚𝐼 = 𝑒𝐼 = 𝑒𝐼 = 𝑒𝐼𝐼
(
𝑑𝜙𝐼 − 𝑘𝐼𝑅𝑑𝑇

)
,

𝑚𝐴 = 𝑒𝐴 = 𝑒𝐴 = 𝑒𝐴, (C.2)

where 𝑒 are vielbeins for ℋ. Indices 𝐼, 𝐽, ⋅ ⋅ ⋅ = 2, . . . 𝑛+1 are frame indices in the Killing

directions, while 𝐴, �̂�, ⋅ ⋅ ⋅ = 𝑛+2, . . . 𝑑−1 are frame indices in the non-Killing directions.
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With indices raised this gives

𝑒0 =
1

𝐿
√
2

(
1

𝑅

∂

∂𝑇
+ 𝑘𝐼

∂

∂𝜙𝐼
+𝑅

∂

∂𝑅

)
,

𝑒1 =
1

𝐿
√
2

(
− 1

𝑅

∂

∂𝑇
− 𝑘𝐼

∂

∂𝜙𝐼
+𝑅

∂

∂𝑅

)
,

𝑒𝐼 = 𝑒𝐼
𝐼

∂

∂𝜙𝐼
,

𝑒𝐴 = 𝑒𝐴. (C.3)

Using the Cartan equations 𝑑𝑒𝑎 + 𝜔𝑎𝑏 ∧ 𝑒𝑏 = 0 we find that the spin connection is

given by

𝜔01 =
1

𝐿
√
2
(𝑒0 − 𝑒1)− 1

2𝐿2 (𝑘.𝑒𝐼)𝑒𝐼 , 𝜔0𝐼 = − 1
2𝐿2 (𝑘.𝑒𝐼)𝑒0,

𝜔0𝐴 = 1
𝐿
(𝑑𝐿)𝐴 𝑒0, 𝜔1𝐼 = + 1

2𝐿2 (𝑘.𝑒𝐼)𝑒1,

𝜔1𝐴 = 1
𝐿
(𝑑𝐿)𝐴 𝑒1, 𝜔𝐼𝐽 = −𝑒𝐽 . [(𝑒𝐴.∇)𝑒𝐼 ] 𝑒𝐴,

𝜔𝐴�̂� = �̂�𝐴�̂�, 𝜔𝐴𝐼 = 0. (C.4)

This is sufficient to give us the GHP optical scalars for the spacetime, which read

𝜅𝑖 = 𝜅′𝑖 = 0, 𝜌𝑖𝑗 = 𝜌′𝑖𝑗 = 0, 𝜏𝑖 =
𝑘𝑖 − 𝑑(𝐿2)𝑖

2𝐿2
(C.5)

where 𝑖, 𝑗 ⋅ ⋅ ⋅ = 2, . . . , 𝑑 − 1 are frame indices on the 𝑑 − 2 spacelike dimensions (or

equivalently on ℋ). This implies that both ℓ and 𝑛 define geodesic, non-expanding,

non-shearing, non-twisting null congruences, and hence that this is a (doubly) Kundt

spacetime. By a simple extension of Theorem 3.11, it is easy to see that all doubly

Kundt Einstein spacetimes are Type D.

For this metric, the GHP derivative operators, acting on a GHP scalar 𝑇𝑖1...𝑖𝑠 of boost

weight 𝑏 and spin 𝑠, are

þ𝑇𝑖1...𝑖𝑠 = 1

𝐿
√
2

(
1

𝑅

∂

∂𝑇
+ 𝑘.

∂

∂𝜙
+𝑅

∂

∂𝑅
− 𝑏

)
𝑇𝑖1...𝑖𝑠 , (C.6)

þ′𝑇𝑖1...𝑖𝑠 =
1

𝐿
√
2

(
− 1

𝑅

∂

∂𝑇
− 𝑘.

∂

∂𝜙
+𝑅

∂

∂𝑅
+ 𝑏

)
𝑇𝑖1...𝑖𝑠 , (C.7)

k𝑗𝑇𝑖1...𝑖𝑠 =
(
∇̂𝑗 − 𝑏

2𝐿2
𝑘𝑗

)
𝑇𝑖1...𝑖𝑠 (C.8)

where ∇̂ is the covariant derivative on ℋ.

Now consider a GHP covariant field 𝑇𝑖1...𝑖𝑠 of boost weight 𝑏 and spin 𝑠. We are

interested in the cases where 𝑇 is one of 𝜙, 𝜑𝑖, Ω𝑖𝑗, which have (𝑏, 𝑠) = (0, 0), (1, 1), (2, 2)

respectively.
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Consider a separable ansatz

𝑇𝑖1...𝑖𝑠(𝑇,𝑅, 𝜙
𝐼 , 𝑦𝐴) = 𝜒𝑏(𝑇,𝑅)𝑌𝑖1...𝑖𝑠(𝜙

𝐼 , 𝑦𝐴), (C.9)

where 𝜒𝑏 has boost weight 𝑏, and 𝑌 has boost weight 0. We think of 𝜒𝑏 as a field on

𝐴𝑑𝑆2, and 𝑌 as a tensor on ℋ. Eventually it will be useful to move away from the null

frame, so let 𝜇, 𝜈, . . . be coordinate indices on ℋ.

Note that the GHP derivative k𝑖 reduces to the standard covariant derivative on ℋ
when acting on boost weight zero fields such as 𝑌 . Hence, given a decomposition of the

form (C.9), we see that equation (C.8) reduces to

k𝑗𝑇𝑖1...𝑖𝑠 = 𝜒𝑏∇̂𝑗𝑌𝑖1...𝑖𝑠 − 𝑌𝑖1...𝑖𝑠
𝑏

2𝐿2
𝑘𝑗𝜒𝑏. (C.10)

We can take Fourier expansions of the dependence of 𝑌 on the coordinates 𝜙𝐼 , of the

form 𝑌 ∼ 𝑒𝑖𝑚𝐼𝜙
𝐼
, which is equivalent to the statement that the Lie derivative of 𝑌 with

respect to ∂/∂𝜙𝐼 is given by

(ℒ𝐼𝑌 )𝜇1...𝜇𝑠 = 𝑖𝑚𝐼𝑌𝜇1...𝜇𝑠 , (C.11)

and hence

(ℒ𝑘𝑌 )𝜇1...𝜇𝑠 = 𝑖𝑘.𝑚𝑌𝜇1...𝜇𝑠 , (C.12)

where 𝑘.𝑚 ≡ 𝑘𝐼𝑚𝐼 . For the three different kinds of field, this implies that

𝑘.∇̂𝑌 = 𝑖𝑘.𝑚𝑌, (C.13)

𝑘.∇̂𝑌𝜇 = 𝑖𝑘.𝑚𝑌𝜇 − (∇̂𝜇𝑘
𝜈)𝑌𝜈 (C.14)

𝑘.∇̂𝑌𝜇𝜈 = 𝑖𝑘.𝑚𝑌𝜇𝜈 − 2(∇̂(𝜇∣𝑘𝜌)𝑌𝜌∣𝜈). (C.15)

Recall now the equation of motion (𝐷2 − 𝜇2)𝜒𝑏 = 0 for a charged massive scalar

field 𝜒 on a unit radius 𝐴𝑑𝑆2 space, described by the metric (5.8), where the charged

covariant derivative 𝐷 was defined by (5.9). Explicitly, this equation of motion reads

− 1

𝑅2

∂2𝜒

∂𝑇 2
− 2𝑖𝑞

𝑅

∂𝜒

∂𝑇
+

∂

∂𝑅

(
𝑅2 ∂𝜒

∂𝑅

)
+ (𝑞2 − 𝜇2)𝜒 = 0. (C.16)

Using the equations (C.6,C.7), it can then be shown that

2þ′þ𝑇𝑖1...𝑖𝑠 = 1

𝐿2

[
𝐷2𝜒𝑏 + 𝑖𝑞𝜒𝑏

]
𝑌𝑖1...𝑖𝑠 (C.17)

where 𝐷2 is the square of the 𝐴𝑑𝑆2 operator (5.9) and 𝑞 = 𝑖𝑏+ 𝑘.𝑚. Also, we have

k𝑗k𝑗𝑇𝑖1...𝑖𝑠 = 𝜒𝑏
𝐿2

[
𝑏2

4𝐿2
𝑘.𝑘 − 𝑏𝑘.∇̂+ 𝐿2∇̂2

]
𝑌𝑖1...𝑖𝑠 (C.18)
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and

−2(𝑏+ 1)𝜏𝑗k𝑗𝑇𝑖1...𝑖𝑠 = 𝜒𝑏
𝐿2

[
𝑏(𝑏+ 1)

2𝐿2
(𝑘.𝑘)− (𝑏+ 1)𝑘.∇̂+ (𝑏+ 1)𝑑(𝐿2).∇̂

]
𝑌𝑖1...𝑖𝑠 . (C.19)

Now consider the boost weight zero Weyl tensor components Φ, Φ𝑆
𝑖𝑗, Φ

𝐴
𝑖𝑗, Φ𝑖𝑗𝑘𝑙 that

appear in equations (4.4), (4.6) and (4.25). Recall that the NH geometry is an Einstein

spacetime with Ricci tensor 𝑅𝑎𝑏 = Λ𝑔𝑎𝑏. Given this, we can use equation (2.99) to write

Φ𝑖𝑗𝑘𝑙 = �̂�𝑖𝑗𝑘𝑙 − 2Λ
𝑑−1

𝛿[𝑖∣𝑘𝛿∣𝑗]𝑙 (C.20)

where �̂�𝑖𝑗𝑘𝑙 is the Riemann tensor of ℋ. Taking traces of this with the metric on ℋ
implies that

2ΦS
𝑖𝑗 = −�̂�𝑖𝑗 +

𝑑−3
𝑑−1

Λ𝛿𝑖𝑗, 2Φ = −�̂� + (𝑑−2)(𝑑−3)
𝑑−1

Λ. (C.21)

The remaining components ΦA
𝑖𝑗 are not related to the curvature of ℋ, but instead can

be computed using equation (NP4), giving

2ΦA
𝑖𝑗 = −2k[𝑖𝜏𝑗] = −(𝑑𝜏)𝑖𝑗 = −

(
𝑑𝑘

2𝐿2
− (𝑑𝐿2) ∧ 𝑘

2𝐿4

)
𝑖𝑗

. (C.22)

In the case of a scalar field, 𝑏 = 𝑠 = 0, and this is enough to allow us to immediately

write out equation (4.6) as

𝑌
[
(𝐷2 − 𝑞2)𝜒0

]
= 𝜒0

[
−∇̂𝜇(𝐿2∇̂𝜇𝑌 )− (𝑘.𝑚)2𝑌 +𝑀2𝐿2𝑌

]
(C.23)

and hence we can separate variables to obtain

(𝐷2 − 𝑞2 − 𝜆)𝜒0(𝑇,𝑅) = 0 (C.24)

and [
−∇̂𝜇(𝐿(𝑦)2∇̂𝜇)− (𝑘.𝑚)2 +𝑀2𝐿(𝑦)2

]
𝑌 (𝜙𝐼 , 𝑥𝐴) = 𝜆𝑌 (𝜙𝐼 , 𝑥𝐴) (C.25)

for some separation constant 𝜆. We can use the left hand side to define an operator 𝒪(0)

acting on scalar fields on ℋ, whose properties are discussed in Section 5.2.2.

In the gravitational case 𝑏 = 𝑠 = 2, and inserting the terms given above into (4.25)

allows us to define an operator 𝒪(2) by

𝑌𝜇𝜈
[
(𝐷2 − 𝑞2)𝜒2

]
= 𝜒2(𝒪(2)𝑌 )𝜇𝜈 (C.26)

The operator 𝒪(2) obtained in this way is given explicitly by (5.19). Proving that this

operator is self-adjoint with respect to the inner product (5.22) given is a now a case of

integrating by parts.

Similarly, for electromagnetic perturbations, 𝑏 = 𝑠 = 1, and inserting the terms given

into (4.4) give us the operator (5.28).



Appendix D

Myers-Perry black holes with equal

angular momenta

Here, we explain in detail how to obtain the results described in Section 5.3.

D.1 Computing perturbation operators

Structure of the near-horizon geometry

Consider the near-horizon geometry of an extremal Myers-Perry black hole, described

by the metric (5.44). Given the results of Section 5.2, it suffices to study the (𝑑 − 2)-

dimensional space ℋ. We work in a frame

𝑒2 = 𝐵(𝑑𝜓 +𝒜), 𝑒�̂� = 𝑟+𝑒�̂�, (D.1)

where 𝑒�̂� are a real, orthonormal frame for ℂℙ𝑁 , and 𝒜 = 𝒜�̂�𝑒�̂�. With indices raised

this gives

𝑒2 =
1

𝐵

∂

∂𝜓
, 𝑒�̂� =

1

𝑟+

(
𝑒�̂� −𝒜�̂�

∂

∂𝜓

)
, (D.2)

Note that these vectors satisfy 𝑒𝑖.𝑒𝑗 = 𝛿𝑖𝑗, where 𝑖, 𝑗, . . . are frame basis indices on ℋ.

The spin connection 1-forms 𝜔𝑖𝑗 associated with this basis are

𝜔2�̂� =
𝐵

𝑟2+
𝒥�̂�𝛽𝑒𝛽, 𝜔�̂�𝛽 = −𝐵

𝑟2+
𝒥�̂�𝛽𝑒2 +

1

𝑟+
�̂��̂�𝛽. (D.3)

where �̂� is the spin connection for ℂℙ𝑁 , and 𝒥 = 1
2
𝒥�̂�𝛽𝑒�̂�∧𝑒𝛽 are the components of the

complex structure for ℂℙ𝑁 (recall also that 𝐸 = 2𝐿2/(𝐵Ω)). The resulting curvature

2-forms are

ℛ2�̂� =
𝐵2

𝑟4+
𝛿�̂�𝛽𝑒2 ∧ 𝑒𝛽 and ℛ�̂�𝛽 =

1

𝑟2+
ℛ̂�̂�𝛽 −

𝐵2

𝑟4+
(𝒥�̂�𝛽𝒥𝛾𝛿 +𝒥�̂�[𝛾∣𝒥𝛽∣𝛿])𝑒𝛾 ∧ 𝑒𝛿 (D.4)
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where ℛ̂�̂�𝛽 are the curvature 2-forms on ℂℙ𝑁 .
This results in a Riemann tensor with non-vanishing components

𝑅2�̂�2𝛽 =
𝐵2

𝑟4+
𝛿�̂�𝛽, 𝑅�̂�𝛽𝛾𝛿 =

1

𝑟2+
�̂��̂�𝛽𝛾𝛿 −

2𝐵2

𝑟4+
(𝒥�̂�𝛽𝒥𝛾𝛿 + 𝒥�̂�[𝛾∣𝒥𝛽∣𝛿]). (D.5)

where

�̂�𝛼𝛽𝛾𝛿 = 𝑔𝛼𝛾𝑔𝛽𝛿 − 𝑔𝛼𝛿𝑔𝛽𝛾 + 𝒥𝛼𝛾𝒥𝛽𝛿 − 𝒥𝛼𝛿𝒥𝛽𝛾 + 2𝒥𝛼𝛽𝒥𝛾𝛿 (D.6)

is the Riemann tensor of ℂℙ𝑁 . The non-vanishing Ricci tensor components and Ricci

scalar are

𝑅22 =
2𝑁𝐵2

𝑟4+
, 𝑅�̂�𝛽 =

(
2(𝑁 + 1)

𝑟2+
− 2𝐵2

𝑟4+

)
𝛿�̂�𝛽, 𝑅 =

4𝑁(𝑁 + 1)

𝑟2+
− 2𝑁𝐵2

𝑟4+
(D.7)

Note that the Einstein equations for the metric (5.44) are equivalent to the following

algebraic relations:

Λ =
2

𝐸2
− 1

𝐿2
= − 2

𝐸2
+

2𝑁𝐵2

𝑟4+
=

2(𝑁 + 1)

𝑟2+
− 2𝐵2

𝑟4+
(D.8)

These are solved automatically by equations (5.40-5.43), but these relations are often

useful for simplifying calculations.

When Λ = 0 (or equivalently 𝑙 → ∞), the full spacetime is asymptotically flat, and

the identities (D.8) simplify to

𝐸2 = 2𝐿2 =
𝐵2

𝑁(𝑁 + 1)2
=

𝑟2+
𝑁(𝑁 + 1)

. (D.9)

Computation of operators

In Section 5.2, and the associated Appendix C, we derived equations that are covariant

on ℋ, with indices 𝜇, 𝜈, . . . . This is convenient, in that it now allows us to evaluate these

equations without using the particular basis choice that we used to derive them.

Here, ℋ can be written as a fibration over ℂℙ𝑁 . It will be convenient in this section

to write equations in a way that is covariant over ℂℙ𝑁 ; since this will then allow us

to divide components up into scalar, vector and tensor parts, depending on how they

transform as fields on ℂℙ𝑁 . We define indices 𝛼, 𝛽, . . . that are covariant on ℂℙ𝑁 , raised
and lowered with the Fubini-Study metric 𝑔𝛼𝛽 on ℂℙ𝑁 .

For quantities transforming as vectors on ℂℙ𝑁 , it is often useful to project into the

∓𝑖 eigenspaces of 𝒥 using the operator

𝒫±
𝛼𝛽 =

1

2
(𝑔𝛼𝛽 ± 𝑖𝒥𝛼𝛽) . (D.10)
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We now look to evaluate the perturbation operators 𝒪(𝑏) in the case of this metric,

using equations (5.12,5.19,5.28). Here, 𝐿 is constant, so 𝑑(𝐿2) = 0 and various terms

vanish. Furthermore, (5.47) implies that the vector field 𝑘 satisfies

𝑘 = Ω𝐵𝑒2, 𝑘.𝑚 = Ω𝑚, 𝑘.𝑘 = 𝐵2Ω2, 𝑑𝑘 = Ω𝐵 𝑑𝑒2 = 2Ω𝐵2𝒥 . (D.11)

Finally, we need to expand the covariant derivative on ℋ in terms of derivatives on ℂℙ𝑁 .
It is convenient to define the following charged covariant derivative on ℂℙ𝑁 :

�̂�𝛼 = �̂�𝛼 − 𝑖𝑚𝒜𝛼, (D.12)

where 𝒥 = 1
2
𝑑𝒜 is the Kähler form on ℂℙ𝑁 , and �̂�𝛼 is the Levi-Civita connection. Note

that �̂� satisfies

[�̂�𝛼, �̂�𝛽] = −2𝑖𝑚𝒥𝛼𝛽 and �̂�±.�̂�∓ = 1
2
�̂�2 ∓ 2𝑚𝑁, (D.13)

where �̂�±
𝛼 ≡ 𝒫±𝛽

𝛼 �̂�𝛽.

Given this, we can expand terms of the form ∇2𝑌 and ∇𝑌 in terms of this derivative,

some examples of components in the gravitational case include

(∇̂2𝑌 )22 =

(
1

𝑟2+
�̂�2 − 𝑚2

𝐵2
− 2(2𝑁 + 1)𝐵2

𝑟4+

)
𝑌22 − 4𝐵

𝑟3+
𝒥 𝛼𝛽�̂�𝛼𝑌2𝛽 (D.14)

and

∇̂𝛼𝑌2𝛼 =
1

𝑟+
�̂�𝛼𝑌2𝛼. (D.15)

Putting these expressions, together with equations (D.5,D.7,D.11) into the general

equations (5.12,5.28,5.19) gives us explicit expressions for the operators 𝒪(0), 𝒪(1) and

𝒪(2) in the case of this metric. The explicit expressions for these operators can then be

simplified to those given in (D.16-D.17) for 𝒪(1) and (D.20-D.22) for 𝒪(2).

Mode decomposition of operators

We now move on to consider the more complicated case of electromagnetic and gravita-

tional perturbations. Firstly, it is useful decompose the action of the operators 𝒪(1) and

𝒪(2) on an arbitrary eigenvector 𝑌 into components tangent, and normal to, ℂℙ𝑁 .
The operator 𝒪(1) describing Maxwell perturbation modes (defined in (5.28)) reduces

to

(𝒪(1)𝑌 )2 =

(
−2𝑁𝑚2𝐿4

𝑟4+
− 𝐿2

𝑟2+
�̂�2 + 2 + 4Λ𝐿2

)
𝑌2 + 2𝜉𝛼𝛽�̂�𝛽𝑌𝛼 (D.16)

and

(𝒪(1)𝑌 )𝛼 =

(
−2𝑁𝑚2𝐿4

𝑟4+
− 𝐿2

𝑟2+
�̂�2 +

2𝐵2𝐿2

𝑟4+
+ Λ𝐿2

)
𝑌𝛼 +

2𝑖𝑚𝐿2

𝑟2+
𝒥 𝛽
𝛼 𝑌𝛽 − 𝜉 𝛽

𝛼 �̂�𝛽𝑌2.

(D.17)
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where

𝜉𝛼𝛽 ≡ 𝐿2

𝑟+

(
1

𝐸
𝑔𝛼𝛽 − 𝐵

𝑟2+
𝒥𝛼𝛽

)
. (D.18)

Indices in these equations are raised and lowered with the metric 𝑔𝛼𝛽 on ℂℙ𝑁 .
It is also useful to define Δ𝒜

L ; a charged Lichnerowicz operator acting on rank-2

symmetric tensors on ℂℙ𝑁 :

Δ𝒜
L𝕐𝛼𝛽 = −�̂�2Ω𝛼𝛽 − 2�̂�𝛼𝛾𝛽𝛿𝕐𝛾𝛿 + 4(𝑁 + 1)𝕐𝛼𝛽. (D.19)

This is the obvious generalization of the standard Lichnerowicz operator on ℂℙ𝑁 , with
the Laplacian ∇̂2 replaced by our charged Laplacian �̂�2 (following [170]).

Given this definition, the action of the operator 𝒪(2) for gravitational perturbations

(5.19) on an arbitrary 2-tensor with Fourier dependence 𝑒𝑖𝑚𝜓 is given by:

(𝒪(2)𝑌 )22 =

(
−2𝑁𝑚2𝐿4

𝑟4+
+ 2− 𝐿2

𝑟2+
�̂�2 + 4(𝑁 + 1)

𝐿2𝐵2

𝑟4+
− 4(𝑁 + 1)𝐿2

𝑙2

)
𝑌22

+ 4𝜉𝛼𝛽𝒟𝛽𝑌2𝛼, (D.20)

(𝒪(2)𝑌 )2𝛼 =

(
−2𝑁𝑚2𝐿4

𝑟4+
+ 2− 𝐿2

𝑟2+
�̂�2 − 2𝐿2

𝐸2
+ (2𝑁 + 6)

𝐵2𝐿2

𝑟4+
− 4(𝑁 + 1)𝐿2

𝑙2

)
𝑌2𝛼

+
2𝑖𝑚𝐿2

𝑟2+
𝒥 𝛽
𝛼 𝑌2𝛽 − 2𝜉𝛽𝛼�̂�𝛽𝑌22 + 2𝜉𝛽𝛾�̂�𝛾𝑌𝛼𝛽, (D.21)

(𝒪(2)𝑌 )𝛼𝛽 =

(
−2𝑁𝑚2𝐿4

𝑟4+
− 4(𝑁 + 1)𝐿2

𝑟2+
+

4𝐵2𝐿2

𝑟4+

)
𝑌𝛼𝛽+

𝐿2

𝑟2+
Δ𝒜

L𝑌𝛼𝛽+
2𝑖𝑚𝐿2

𝑟2+
[𝒥 , 𝑌 ]𝛼𝛽

− 4𝐵2𝐿2

𝑟4+
((𝒥 𝑌 𝒥 )𝛼𝛽 + 𝛿𝛼𝛽𝑌22)− 4𝜉 𝛾

(𝛼∣ 𝒟𝛾𝑌2∣𝛽), (D.22)

Note that (D.20) is equivalent to the trace of (D.22), given that 𝑌22 = −𝑌 𝛼
𝛼 .

Recall that in Chapter 4, we found decoupled equations for the quantities 𝜑𝑖 and Ω𝑖𝑗,

and then in Section 5.2.2 we separated each equation into an 𝐴𝑑𝑆2 part and a part on

ℋ ∼ 𝑆2𝑁+1. In this example, we now see that there is further coupling that we want to

get rid of, between equations on the different parts of ℋ, namely the directions normal

and tangent to ℂℙ𝑁 .
We now look to complete the decoupling by taking a scalar-vector-tensor decomposi-

tion with respect to ℂℙ𝑁 . Our decomposition is equivalent to that used in the numerical

studies of perturbations of the full spacetime [170, 171, 109]. The result of this is that

we can expand general perturbations in terms of scalar, vector and tensor harmonics on

ℂℙ𝑁 , and the relevant eigenvalues of the Laplacian �̂�2 are known (see [176] for further

details). We describe this in detail below.

Note that, for 𝑁 = 1, there are no vector or tensor modes. That is, imposing either

the conditions (D.23) or the conditions (D.32) implies that 𝑌𝜇𝜈 = 0.
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D.2 Gravitational perturbations

D.2.1 Tensor modes

Gravitational tensor modes are those that only have transverse, traceless parts of Ω𝛼𝛽

turned on, i.e. perturbations of the form

𝑌22 = 0 = 𝑌2𝛼, 𝑔𝛼𝛽𝑌𝛼𝛽 = 0, �̂�±𝛼𝑌𝛼𝛽 = 0. (D.23)

The components of the equations (D.20,D.21) vanish for tensor type perturbations, and

(D.22) reduces to

(𝒪(2)𝑌 )𝛼𝛽 =

(
−2𝑁𝑚2𝐿4

𝑟4+
− 4(𝑁 + 1)𝐿2

𝑟2+
+

4𝐵2𝐿2

𝑟4+

)
𝑌𝛼𝛽+

𝐿2

𝑟2+
Δ𝒜

L𝑌𝛼𝛽+
2𝑖𝑚𝐿2

𝑟2+
[𝒥 , 𝑌 ]𝛼𝛽

− 4𝐵2𝐿2

𝑟4+
(𝒥 𝑌 𝒥 )𝛼𝛽, (D.24)

We expand 𝑌𝛼𝛽 in terms of separable Fourier modes

𝑌𝛼𝛽 = 𝑒𝑖𝑚𝜓𝕐𝛼𝛽 (D.25)

where 𝕐𝛼𝛽(𝑥) a tensor harmonic on ℂℙ𝑁 ,with �̂�𝛼±𝕐𝛼𝛽 = 0.

As ℂℙ𝑁 is a complex manifold, we can split both 𝕐 and equation (D.24) into hermi-

tian and anti-hermitian parts, which are eigenvectors of the linear map

𝕐𝛼𝛽 7→ 𝒥 𝛾
𝛼 𝒥 𝛿

𝛽 𝕐𝛾𝛿 (D.26)

with eigenvalues +1 and −1 respectively. In other words, we write 𝕐𝛼𝛽 = 𝕐+
𝛼𝛽 + 𝕐−

𝛼𝛽

where (𝒥𝕐±𝒥 )𝛼𝛽 = ∓𝕐±
𝛼𝛽, with the upper signs corresponding to hermitian modes.

In the anti-Hermitian case, the modes can be divided further into the ∓𝑖 eigenspaces
of 𝒥 , with 𝒥𝛼𝛽𝕐±

𝛽 = ∓𝑖𝕐±
𝛽 . Following [170], we summarize this by setting 𝜎 = ∓1 (−

for Hermitian, + for anti-Hermitian), and 𝜀 = ±1 for the two cases of anti-Hermitian

modes, and then see that

(𝒥𝕐𝒥 )𝛼𝛽 = 𝜎𝕐𝛼𝛽 and [𝒥 ,𝕐]𝛼𝛽 = 𝑖𝜀(1 + 𝜎)𝕐𝛼𝛽. (D.27)

We can take 𝕐 to be an eigenstate of the generalized Lichnerowicz operator on ℂℙ𝑁

(as such eigenstates form a complete set), i.e. we assume that

(Δ𝒜
L𝕐)𝛼𝛽 = 𝜆T𝜅,𝑚𝕐𝛼𝛽. (D.28)

This eigenvalue equation has known solutions, discussed in [170]. For 𝑁 = 1, there

are no tensor harmonics on ℂℙ1 = 𝑆2. For 𝑁 ≥ 2, the 𝑚 = 0 eigenvalues are given by

𝜆T𝜅 = 4𝜅(𝜅+𝑁) + 4(𝑁 + 𝜎), (D.29)
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for non-negative integers 𝜅.1

Inserting all this into (D.24) implies that

(𝒪(2)𝑌 )𝛼𝛽 = 𝜆𝑌𝛼𝛽 (D.30)

where

𝜆 = −2𝑁𝑚2𝐿4

𝑟4+
+

4𝐵2𝐿2

𝑟4+
(1− 𝜎) + (𝜆T𝜅,𝑚 − 4(𝑁 + 1)− 2𝑚(1 + 𝜎))

𝐿2

𝑟2+
, (D.31)

In Section 5.3 we gave this eigenvalue explicity in the asymptotically flat case (5.57) and

the asymptotically 𝐴𝑑𝑆 case (5.64).

D.2.2 Vector Modes

There have currently been no studies in the literature of the stability of this black hole

to vector type gravitational perturbations, which exist in dimensions 𝑑 ≥ 7.

Vector modes consist of divergence free vectors 𝑌2𝛼, along with the traceless, but not

transverse, contributions to 𝑌𝛼𝛽 that can be constructed from them by differentiation,

that is

𝑌22 = 0, �̂�±𝛼𝑌2𝛼 = 0, 𝑌 𝛼
𝛼 = 0. (D.32)

We expand these perturbations as

𝑌2𝛼 = 𝑔𝑒𝑖𝑚𝜓𝕐𝛼, 𝑌𝛼𝛽 = 𝑒𝑖𝑚𝜓
(
ℎ+𝕐+

𝛼𝛽 + ℎ−𝕐−
𝛼𝛽

) ≡ 𝑌 +
𝛼𝛽 + 𝑌 −

𝛼𝛽 (D.33)

where 𝕐𝛼 is a divergence-free vector harmonic with

�̂�2𝕐𝛼 = −𝜆V𝜅,𝑚𝕐𝛼, �̂�±𝛼𝕐𝛼 = 0, and 𝕐±
𝛼𝛽 ≡ −1√

𝜆V𝜅,𝑚

�̂�±
(𝛼𝕐𝛽). (D.34)

There are several different separable modes that couple to each other in this sector of

perturbations. Therefore, in order to find the relevant eigenvalues we need to consider

all such modes together. In particular, the eigenvalues of 𝒪(2) will be the eigenvalues of

the matrix that describes the coupling between the different components of 𝑌𝑖𝑗.

We can take 𝕐𝛼 to be an eigenvector of the complex structure 𝒥 , with eigenvalue

𝑖𝜀 = ∓𝑖, that is: 𝒥 𝛽
𝛼 𝕐𝛽 = −𝑖𝜀𝕐𝛼.

Note that 𝕐𝛼𝛽 = 0 is traceless,

�̂�2𝑌𝛼𝛽 = − [𝜆V𝜅,𝑚 − 2(𝑁 + 1)− 4𝑚− 2(1 + 3𝜀)
]
𝑌 +
𝛼𝛽

− [𝜆V𝜅,𝑚 − 2(𝑁 + 1) + 4𝑚− 2(1− 3𝜀)
]
𝑌 −
𝛼𝛽 (D.35)

1Note that the allowed range of values for 𝜅 is unknown in general, e.g. there may be a positive lower

bound on the allowed values of 𝜅 in some dimensions, but this will not turn out to be relevant here.
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and

�̂�±𝛽𝑌𝛼𝛽 =
𝑒𝑖𝑚𝜓

2
√
𝜆V𝜅,𝑚

[
𝜆V𝜅,𝑚
2

±𝑚(𝑁 + 1∓ 𝜀)− (1∓ 2𝜀)(𝑁 + 1)

]
ℎ∓𝕐𝛼. (D.36)

The action of 𝒪(2) on 𝑌 now reduces to three equations:

(𝒪(2)𝑌 )2𝛼 =

[
𝐿2

(
−2𝑁𝑚2𝐿2

𝑟4+
+

2𝑚𝜀

𝑟2+
+
𝜆V𝜅,𝑚
𝑟2+

+
2

𝐸2
+ (2𝑁 + 6)

𝐵2

𝑟4+

)
𝑔

+
𝜉+√
𝜆V𝜅,𝑚

(
1
2
𝜆V𝜅,𝑚 +𝑚(𝑁 + 1− 𝜀)− (1− 2𝜀)(𝑁 + 1)

)
ℎ− (D.37)

+
𝜉−√
𝜆V𝜅,𝑚

(
1
2
𝜆V𝜅,𝑚 −𝑚(𝑁 + 1 + 𝜀)− (1 + 2𝜀)(𝑁 + 1)

)
ℎ+

]
𝑒𝑖𝑚𝜓𝕐𝛼

and

(𝒪(2)𝑌 )±𝛼𝛽 =

[
𝐿2

(
− 2𝑁𝑚2𝐿2

𝑟4+
∓ 2𝑚

𝑟2+
+

2𝑚𝜀

𝑟2+
+

4𝐵2

𝑟4+
(1∓ 𝜀)− 2(𝑁 + 1)

𝑟2+
+

𝜆

𝑟2+

)
ℎ±

+ 4
√
𝜆V𝜅,𝑚𝜉

±𝑔

]
𝑒𝑖𝑚𝜓𝕐±

𝛼𝛽, (D.38)

where

𝜉± ≡ 𝐿2

𝑟+

(
1

𝐸
± 𝑖𝐵

𝑟2+

)
, 𝜉 ≡ 𝜉+. (D.39)

To obtain the latter equation, we have separated out the components proportional to 𝕐±

by noting that they are both eigenfunctions of the map (D.26) with differing eigenvalues

±𝜀.
Hence we have obtained a matrix formulation of the operator 𝒪(2) in this case, acting

on [𝑔, ℎ+, ℎ−]T. We can think of this as describing the mixing between the sectors 𝑌𝛼,

𝑌 +
𝛼𝛽, 𝑌

−
𝛼𝛽:

𝒪(2) = 𝐿2
(
𝜆V𝜅,𝑚+2𝑚𝜀

𝑟2+
− 2𝑁𝑚2𝐿2

𝑟4+

)
1+⎛⎜⎜⎜⎜⎝

2𝐿2

𝐸2 + (2𝑁+6)𝐿2𝐵2

𝑟4+

( 1
2
𝜆V𝜅,𝑚−𝑚(𝑁+1+𝜀)−(1+2𝜀)(𝑁+1))𝜉∗√

𝜆V𝜅,𝑚

( 1
2
𝜆V𝜅,𝑚+𝑚(𝑁+1−𝜀)−(1−2𝜀)(𝑁+1))𝜉√

𝜆V𝜅,𝑚

4𝜉
√
𝜆V𝜅,𝑚

4𝐵2𝐿2

𝑟4+
(1− 𝜀)− 2(𝑁+1+𝑚)𝐿2

𝑟2+
0

4𝜉∗
√
𝜆V𝜅,𝑚 0 4𝐵2𝐿2

𝑟4+
(1 + 𝜀)− 2(𝑁+1−𝑚)𝐿2

𝑟2+

⎞⎟⎟⎟⎟⎠
(D.40)

We now restrict to the case 𝑚 = 0 that is relevant to our conjecture, and find that
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here the matrix now reduces to⎛⎜⎜⎜⎝
𝜆V𝜅𝐿

2

𝑟2+
+ 2

𝐸2 +
(2𝑁+6)𝐵2

𝑟4+

(
1
2
𝜆V𝜅−(1+2𝜀)(𝑁+1)

) 𝜉∗√
𝜆V𝜅

(
1
2
𝜆V𝜅−(1−2𝜀)(𝑁+1)

) 𝜉√
𝜆V𝜅

4𝜉
√
𝜆V𝜅

𝐿2(𝜆V𝜅−2(𝑁+1))

𝑟2+
+ 4𝐵2𝐿2

𝑟4+
(1− 𝜀) 0

4𝜉∗
√
𝜆V𝜅 0 𝐿2(𝜆V𝜅−2(𝑁+1))

𝑟2+
+ 4𝐵2𝐿2

𝑟4+
(1 + 𝜀)

⎞⎟⎟⎟⎠
(D.41)

We can find all eigenvalues of 𝒪(2) by finding the eigenvalues of this matrix. However,

to do this explicitly we need to determine the allowed eigenvalues 𝜆V𝜅 of −�̂�2 = −∇̂2.

Note that the eigenvalues 𝜆𝐻 of the Hodge-de Rham Laplacian

Δ𝐻 = −(★𝑑 ★ 𝑑+ 𝑑 ★ 𝑑★) (D.42)

on ℂℙ3 were given in Ref. [176, Table 2] (determined from [189]). These can be gener-

alized to ℂℙ𝑁 to give

𝜆𝐻 = 4(𝜅+ 2)(𝜅+𝑁 + 1) where 𝜅 = 0, 1, 2, . . . . (D.43)

The eigenvalues of the standard Laplacian are related to this by the Bochner-Weitzenböck

identity on ℂℙ𝑁 , which implies that

Δ𝐻𝕐𝛼 = −∇̂2𝕐𝛼 + 2(𝑁 + 1)𝕐𝛼 (D.44)

where we have made use of the Ricci tensor

�̂�𝛼𝛽 = 2(𝑁 + 1)𝑔𝛼𝛽 (D.45)

of ℂℙ𝑁 . Hence the eigenvalues of −∇̂2are actually

𝜆V𝜅 = 4(𝜅+ 2)(𝜅+𝑁 + 1)− 2(𝑁 + 1) = 4𝜅(𝜅+ 2) + 2(𝑁 + 1)(2𝜅+ 3) (D.46)

where 𝜅 = 0, 1, 2, . . . . This gives us enough information to evaluate the eigenvalues of

𝒪(2).

In the asymptotically flat case the matrix representation of 𝒪(2) reduces, using the

identities (D.9), to

𝜆V𝜅 − 2(𝑁 + 1)

𝑟2+
1

+

⎛⎜⎜⎝
2

𝑁𝐿2 (𝑁 + 2)
(
1
2
𝜆V𝜅 − (1 + 2𝜀)(𝑁 + 1)

)
𝜉∗√
𝜆V𝜅

(
1
2
𝜆V𝜅 − (1− 2𝜀)(𝑁 + 1)

)
𝜉√
𝜆V𝜅

4𝜉
√
𝜆V𝜅

2
𝑁𝐿2 (1− 𝜀) 0

4𝜉∗
√
𝜆V𝜅 0 2

𝑁𝐿2 (1 + 𝜀)

⎞⎟⎟⎠ .

(D.47)
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The characteristic equation is then independent of 𝜀. Inserting the allowed values (D.46)

into this, we find that the eigenvalues of 𝒪(2) are simple rational numbers, given by

equation (5.58).

In the asymptotically 𝐴𝑑𝑆 case, it is not possible to find the eigenvalues explicitly

(at least in a simple form). However, it is reasonably straightforward to prove that all

eigenvalues are positive for all 𝑁 and 𝜅, and hence there is no instability in this sector.

The proof of this is as follows.

Proof: Consider first the modes with 𝜅 = 0. Writing 𝑧 ≡ Λ𝐿2 for convenience, the

characteristic equation of the matrix (D.47) takes the form(
𝑡− 2

𝑁

(
1 + (𝑁 + 2)𝑧

))
𝑄(𝑡) = 0 (D.48)

where the quadratic 𝑄(𝑡) is given by

𝑄(𝑡) =
(
𝑡2 − [6(1 + 2𝑧) +𝑁(1 + 4𝑧)]

2𝑡

𝑁

+
8

𝑁2

[
𝑁2𝑧2 +𝑁(1 + 2𝑧) + 5𝑁𝑧(1 + 2𝑧) + 4(1 + 2𝑧)2

] )
. (D.49)

Clearly there is an eigenvalue 2
𝑁

(
1+ (𝑁 +2)𝑧

)
, which is positive, as 𝑧 is restricted to lie

in the range

− 1

𝑁 + 2
< 𝑧 ≤ 0. (D.50)

(this is since 1 + (𝑁 + 2)𝑧 = 2𝑁(𝑁 + 1)𝐿2/𝑟2+).

To see that the other eigenvalues are also positive, note that

𝑄(0) =
8(𝑁2𝑧2 + 4(1 + 2𝑧)2 +𝑁(1 + 7𝑧 + 10𝑧2)

𝑁2
(D.51)

is increasing with 𝑧 in the range (D.50), while

𝑄′(0) = −2(6 +𝑁 + 12𝑧 + 4𝑁𝑧)

𝑁
(D.52)

is decreasing over the same range. When 𝑧 = −1/(𝑁 + 2),

𝑄(0) =
8

𝑁 + 2
> 0 and 𝑄′(0) = −2(𝑁 + 4)

𝑁 + 2
< 0 (D.53)

and hence 𝑄(0) > 0 and 𝑄′(0) < 0 for all allowed 𝑧 = Λ𝐿2 and 𝑁 . As 𝑄(𝑡) is a quadratic,

this is sufficient to prove that its roots are positive, and hence all eigenvalues of 𝒪(2) are

positive when 𝜅 = 0.

Now look to generalize this to all 𝜅, and set

𝑃 (𝑡) ≡ det(𝑡1−𝒪(2)), (D.54)
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where 𝒪(2) is the matrix representation of 𝒪(2) given by equation (D.41). Consider the

quantities 𝑃 (0) and 𝑃 ′(0). When 𝜅 = 0, all roots of the quadratic 𝑃 (𝑡) are positive, so

we must have 𝑃 (0) < 0 and 𝑃 ′(0) > 0.

For general 𝜅 ≥ 0, 𝑃 (0) and 𝑃 ′(0) are respectively 6th and 5th order polynomials in

𝜅, with coefficients depending on 𝑁 and 𝑧. If we temporarily allow 𝜅 to vary smoothly in

the range [0,∞), the roots of 𝑃 (𝑡) must vary continuously with 𝜅. Hence, if we find that

the conditions 𝑃 (0) < 0 and 𝑃 ′(0) > 0 always remain true, then we can conclude that all

roots of 𝑃 (𝑡) are positive for all allowed 𝜅. It can be shown by explicit computation that

all coefficients of 𝜅 in 𝑃 (0) are negative and all coefficients of 𝜅 in 𝑃 ′(0) are positive,

and hence 𝑃 (0) is decreasing with 𝜅 and 𝑃 ′(0) is increasing, for all 𝑧 and 𝑁 . Therefore

𝑃 (0) < 0 and 𝑃 ′(0) > 0 for all (fixed) 𝜅, 𝑧, 𝑁 , and this is sufficient to prove the result.□

D.2.3 Scalar Modes

Next, we consider the sector of gravitational scalar-type perturbations. For the (non-

extremal) full black hole solution, such perturbations have been previously studied by

Murata & Soda [171] (for 𝑑 = 5) and Dias et al. [109] (for 𝑑 = 5, 7, 9).

Scalar modes are the most complicated, with all possible parts of the perturbations

turned on. Starting with 𝑌22, contributions to 𝑌2𝛼 and 𝑌𝛼𝛽 are constructed by taking

derivatives. Recall that the scalar eigenfunctions (5.52) of the charged covariant Lapla-

cian �̂�2 on ℂℙ𝑁 have eigenvalues given in (5.53). We can describe the full set of scalar

perturbations as

𝑌22 = 𝑒𝑖𝑚𝜓𝑓𝕐,

𝑌2𝛼 = 𝑒𝑖𝑚𝜓
[
𝑔+𝕐+

𝛼 + 𝑔−𝕐−
𝛼

]
,

𝑌𝛼𝛽 = 𝑒𝑖𝑚𝜓
[
− 1√

𝜆S𝜅,𝑚

(
ℎ++𝕐++

𝛼𝛽 + ℎ−−𝕐−−
𝛼𝛽 + ℎ+−𝕐+−

𝛼𝛽

)
− 1

2𝑁
𝑓𝛿𝛼𝛽𝕐

]
, (D.55)

where 𝕐 is the scalar eigenfunction defined in (5.52) and 𝕐±
𝛼 , 𝕐±±

𝛼𝛽 , 𝕐
+−
𝛼𝛽 are scalar-derived

vector/tensor eigenfunctions, defined by

𝕐±
𝛼 ≡ − �̂�±

𝛼𝕐√
𝜆S𝜅,𝑚

, 𝕐±±
𝛼𝛽 ≡ �̂�±

(𝛼𝕐
±
𝛽) (D.56)

and

𝕐+−
𝛼𝛽 = �̂�+

(𝛼𝕐
−
𝛽) + �̂�−

(𝛼𝕐
+
𝛽) −

√
𝜆S𝜅,𝑚
2𝑁

𝛿𝛼𝛽𝕐. (D.57)

These have the following properties:

𝒥 𝛽
𝛼 𝕐±

𝛽 = ∓𝑖𝕐±
𝛼 , �̂�2𝕐±

𝛼 = − [𝜆S𝜅,𝑚 − 2(𝑁 + 1)∓ 4𝑚
]
𝕐±
𝛼

𝑔𝛼𝛽�̂�𝛼𝕐±
𝛽 =

𝜆S𝜅,𝑚∓2𝑚𝑁

2
√
𝜆S𝜅,𝑚

𝕐, �̂�2𝕐±±
𝛼𝛽 = − [𝜆S𝜅,𝑚 − 4(𝑁 + 3)∓ 8𝑚

]
𝕐±
𝛼𝛽,
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𝒥 𝛼𝛽�̂�𝛼𝕐±
𝛽 = ∓𝑖

2
√
𝜆S𝜅,𝑚

(
𝜆S𝜅,𝑚 ∓ 2𝑚𝑁

)
𝕐, �̂�2𝕐+−

𝛼𝛽 = − (𝜆S𝜅,𝑚 − 4𝑁
)
𝕐+−
𝛼𝛽 ,

(𝒥𝕐±±𝒥 )𝛼𝛽 = +𝕐𝛼𝛽, (𝒥𝕐+−𝒥 )𝛼𝛽 = −𝕐𝛼𝛽, (𝒥𝕐±±)𝛼𝛽 = ∓𝑖𝕐𝛼𝛽

�̂�𝛽𝕐±±
𝛼𝛽 = −1

2

(
𝜆S𝜅,𝑚 − 4(𝑁 + 1)∓ 2𝑚(𝑁 + 2)

)
𝕐±
𝛼 ,

�̂�𝛽𝕐+−
𝛼𝛽 = −𝑁−1

2𝑁

[
(𝜆S𝜅,𝑚 + 2𝑚𝑁)𝕐+

𝛼 + (𝜆S𝜅,𝑚 − 2𝑚𝑁)𝕐−
𝛼

]
,

𝒥 𝛽𝛾�̂�𝛾𝕐±±
𝛼𝛽 = ∓ 𝑖

2

[
𝜆S𝜅,𝑚 − 4(𝑁 + 1)∓ 2𝑚(𝑁 + 2)

]
𝕐±
𝛼 ,

𝒥 𝛽𝛾�̂�𝛾𝕐+−
𝛼𝛽 = 𝑖(𝑁−1)

2𝑁

[
(𝜆S𝜅,𝑚 + 2𝑚𝑁)𝕐+

𝛼 − (𝜆S𝜅,𝑚 − 2𝑚𝑁)𝕐−
𝛼

]
. (D.58)

Note that there are three exceptions to this description:

∙ For 𝜅 = 𝑚 = 0, 𝕐 is constant, and there are no scalar-derived vectors or tensors.

Here the system is described by just one equation.

∙ For 𝜅 = 1,𝑚 = 0, the functions 𝕐±± vanish, and there are only four relevant types

of component.

∙ For 𝑁 = 1 (i.e. in five dimensions), the function 𝕐± vanishes identically (as there

are no traceless, symmetric type (1,1) tensors on ℂℙ1).

Inserting the ansatz (D.55) into equations (D.20-D.22), we obtain the following. From

(D.20) we get

(𝒪(2)𝑌 )22 =

[(
−2𝑁𝑚2𝐿4

𝑟4+
+

4𝐿2

𝐸2
+
𝜆S𝜅,𝑚𝐿

2

𝑟2+
+ 4(𝑁 + 1)

𝐵2𝐿2

𝑟4+

)
𝑓

+
2𝜉−(𝜆S𝜅,𝑚 − 2𝑚𝑁)𝑔+√

𝜆S𝜅,𝑚

+
2𝜉+(𝜆S𝜅,𝑚 + 2𝑚𝑁)𝑔−√

𝜆S𝜅,𝑚

]
𝑒𝑖𝑚𝜓𝕐. (D.59)

Splitting (D.21) into ∓𝑖 eigenspaces of 𝒥 gives two equations

(𝒪(2)𝑌 )±2𝛼 =

[
2
√
𝜆S𝜅,𝑚𝜉

±
(
1 +

1

2𝑁

)
𝑓 +

𝜉±√
𝜆S𝜅,𝑚

(
𝑁 − 1

𝑁

)
(𝜆S𝜅,𝑚 ± 2𝑚𝑁)ℎ+−

+

(
−2𝑁𝑚2𝐿4

𝑟4+
+

(
𝜆S𝜅,𝑚 − 2(𝑁 + 1)∓ 2𝑚

)
𝐿2

𝑟2+
+

2𝐿2

𝐸2
+

(2𝑁 + 6)𝐵2𝐿2

𝑟4+

)
𝑔±

+
𝜉±√
𝜆S𝜅,𝑚

(
𝜆S𝜅,𝑚 − 4(𝑁 + 1)∓ 2𝑚(𝑁 + 2)

)
ℎ±±

]
𝑒𝑖𝑚𝜓𝕐±

𝛼 (D.60)

and from (D.22) we obtain three equations

(𝒪(2)𝑌 )±±
𝛼𝛽 =

[(
−2𝑁𝑚2𝐿4

𝑟4+
+

(
𝜆S𝜅,𝑚 − 4(𝑁 + 1)∓ 4𝑚

)
𝐿2

𝑟2+

)
ℎ±±

+ 4
√
𝜆S𝜅,𝑚𝜉

±𝑔±
]
𝑒𝑖𝑚𝜓𝕐±±

𝛼𝛽 (D.61)
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and

(𝒪(2)𝑌 )+−
𝛼𝛽 =

[(
−2𝑁𝑚2𝐿4

𝑟4+
+

(
𝜆S𝜅,𝑚 − 4(𝑁 + 1)

)
𝐿2

𝑟2+
+

8𝐵2𝐿2

𝑟4+

)
ℎ+−

+ 2
√
𝜆S𝜅,𝑚(𝜉

−𝑔+ + 𝜉+𝑔−)

]
𝑒𝑖𝑚𝜓𝕐+−

𝛼𝛽 , (D.62)

as well as again obtaining (D.59) from the trace terms.

In a similar way to the vector case, we now get a matrix representation of 𝒪(2), acting

on [𝑓, 𝑔+, 𝑔−, ℎ++, ℎ−−, ℎ+−]T. For simplicity, we display it explicitly here only in the

case 𝑚 = 0:

1
𝐿2𝒪(2) = 𝜆S𝜅−4(𝑁+1)

𝑟2+
1+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2Λ +
4(𝑁+2)𝐵2

𝑟4
+

+ 4
𝐸2

2𝜉∗
√

𝜆S
𝜅

𝐿2

2𝜉
√

𝜆S
𝜅

𝐿2 0 0 0

2𝜉

𝐿2

√
𝜆S
𝜅

(
1 + 1

2𝑁

)
Λ + 2

𝐸2 +
2(𝑁+4)𝐵2

𝑟4
+

0
(𝜆S

𝜅−4(𝑁+1))𝜉∗

𝐿2
√

𝜆S
𝜅

0
(𝑁−1)𝜉

√
𝜆S
𝜅

𝑁𝐿2

2𝜉∗
𝐿2

√
𝜆S
𝜅

(
1 + 1

2𝑁

)
0 Λ + 2

𝐸2 +
2(𝑁+4)𝐵2

𝑟4
+

0
(𝜆S

𝜅−4(𝑁+1))𝜉

𝐿2
√

𝜆S
𝜅

(𝑁−1)𝜉∗
√

𝜆S
𝜅

𝑁𝐿2

0 4𝜉

𝐿2

√
𝜆S
𝜅 0 0 0 0

0 0 4𝜉∗
𝐿2

√
𝜆S
𝜅 0 0 0

0 2𝜉∗
𝐿2

√
𝜆S
𝜅

2𝜉

𝐿2

√
𝜆S
𝜅 0 0 8𝐵2

𝑟4
+

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(D.63)

Again, although this matrix is complex, its eigenvalues are all real, and we now look to

compute these explicitly, using the list of scalar eigenvalues 𝜆S𝜅,𝑚 of �̂�2 given by (5.53).

Recall from above the there are three special cases that need to be dealt with sepa-

rately.

Firstly, the case 𝜅 = 𝑚 = 0 = 𝜆S0,0 is degenerate, in the sense that 𝑌2𝛼 and 𝑌𝛼𝛽 vanish.

Hence this matrix reduces to a 1× 1 matrix,

(𝒪(2)𝑌 )22 = 𝐿2

(
4

𝐸2
+ 4(𝑁 + 1)

𝐵2

𝑟4+

)
𝑌22 (D.64)

which has a trivially positive eigenvalue.

When 𝑚 = 0, 𝜅 = 1, 𝜆S1,0 = 4(𝑁 + 1) and the eigenfunctions 𝕐±± vanish, which

means that equations (D.61) have vanishing RHS, and hence the mass matrix is actually

a 4× 4 matrix, with

𝒪(2) =

𝐿2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4(𝑁+2)𝐵2

𝑟4+
+ 2Λ + 4

𝐸2
4𝜉∗

√
𝑁+1

𝐿2
4𝜉

√
𝑁+1
𝐿2 0

4𝜉
√
𝑁+1
𝐿2

(
1 + 1

2𝑁

)
Λ + 2

𝐸2 + 2(𝑁+4)𝐵2

𝑟4+
0 2(𝑁−1)𝜉

√
𝑁+1

𝑁𝐿2

4𝜉∗
√
𝑁+1

𝐿2

(
1 + 1

2𝑁

)
0 Λ + 2

𝐸2 + 2(𝑁+4)𝐵2

𝑟4+

2(𝑁−1)𝜉∗
√
𝑁+1

𝑁𝐿2

0 4𝜉∗
√
𝑁+1

𝐿2
4𝜉

√
𝑁+1
𝐿2

8𝐵2

𝑟4+

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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The eigenvalues of this matrix were analysed in Sections 5.3.3 and 5.3.4 in the asymp-

totically flat and asymptotically 𝐴𝑑𝑆 cases respectively, along with the eigenvalues of

the 6× 6 matrix (D.63) for the case 𝜅 ≥ 2.

Finally, consider the case 𝑁 = 1, for which 𝕐+− vanishes. This has the effect of

eliminating the final row and column from the above matrices, and hence reduces the

number of eigenvalues from six to five.

D.3 Electromagnetic fields

Following a similar approach to that of the gravitational case, we can obtain results for

electromagnetic perturbations.

Note that we do not necessarily see all possible Maxwell perturbations with this

approach, as perturbations that change 𝐹𝑖𝑗 or 𝐹 , but not 𝜑 or 𝜑′, cannot be analysed.

It is not clear whether there exist non-trivial perturbations with this property.2

The Maxwell perturbation modes can be divided into two categories which we will

refer to as ‘vectors’ and ‘scalars’, according to their transformation properties on ℂℙ𝑁 .
Vector modes are those that only have a divergence-free ℂℙ𝑁 part of 𝑌 turned on, that

is

𝑌2 = 0 and �̂�±𝛼𝑌𝛼 = 0. (D.65)

D.3.1 Vector modes

The simplest class of electromagnetic perturbations are the vector modes, which we can

parametrize as

𝑌2 = 0, 𝑌𝛼 = 𝑒𝑖𝑚𝜓𝕐𝛼, (D.66)

where 𝕐𝛼 are the divergence-free vector eigenfunctions of �̂�2 defined by (D.34) above.

The component (𝒪(1)𝑌 )2 vanishes, and (D.17) reduces to

(𝒪(1)𝑌 )𝛼 =

[
−2𝑁𝑚2𝐿4

𝑟4+
+

(𝜆+ 2(𝑁 + 1) + 2𝑚𝜀)𝐿2

𝑟2+

]
𝑌𝛼. (D.67)

This gives the eigenvalues described in Section 5.3.5.

2One can of course consider perturbations of 𝜑′
𝑖 rather than 𝜑 by taking the prime of all equations

above. This has the effect of mapping 𝑞 7→ 𝑞∗, 𝜒 7→ 𝜒∗, 𝜀 7→ −𝜀 and 𝑚 7→ −𝑚, but leaves all results

unchanged.
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D.3.2 Scalar modes

The ℂℙ𝑁 scalar modes are more complicated, as for vector and scalar eigenvalues in the

gravitational case. We can expand the perturbations as

𝑌2 = 𝑒𝑖𝑚𝜓𝑓𝕐, 𝑌𝛼 = 𝑒𝑖𝑚𝜓
(
𝑔+𝕐+

𝛼 + 𝑔−𝕐−
𝛼

)
(D.68)

where 𝕐 are the scalar eigenfunctions defined in (5.52), and 𝕐±
𝛼 the scalar-derived vectors

defined in (D.56).

Note that for 𝜅 = 𝑚 = 0, when 𝜆S𝜅,𝑚 = 0, the associated eigenfunction 𝕐(𝑥) is

constant, and hence 𝑌𝛼 = 0. In this case, the operator 𝒪(2) has simple eigenvalues, given

by equation (5.67).

For 𝜆S𝜅,𝑚 > 0, we follow an analagous separation procedure to that of the gravitational

case, and find that the effective 𝐴𝑑𝑆2 masses of various modes are given by eigenvalues

of the matrix

𝒪(1) =

⎛⎜⎜⎜⎝
𝜆S𝜅,𝑚𝐿

2

𝑟2+
+ 2 + 4Λ𝐿2 (𝜆S𝜅,𝑚−2𝑚𝑁)𝜉∗√

𝜆S𝜅,𝑚

(𝜆S𝜅,𝑚+2𝑚𝑁)𝜉√
𝜆S𝜅,𝑚

2
√
𝜆S𝜅,𝑚𝜉

𝐿2(𝜆S𝜅,𝑚−2𝑚)

𝑟2+
0

2
√
𝜆S𝜅,𝑚𝜉

∗ 0
𝐿2(𝜆S𝜅,𝑚+2𝑚)

𝑟2+

⎞⎟⎟⎟⎠ . (D.69)

In the case 𝑚 = 0, the characteristic equation reduces to

(
𝐿2

𝑟2+
𝜆S𝜅 − 𝑡

)[
𝑡2 − 2

(
𝐿2

𝑟2+
𝜆S𝜅 + 1 + 2Λ𝐿2

)
𝑡+ 𝜆S𝜅

(
𝐿4

𝑟4+
𝜆S𝜅 +

2𝐿2(1+2Λ𝐿2)
𝑟2+

− 4∣𝜉∣2
)]

= 0,

(D.70)

with allowed values of 𝜆S𝜅 given by 𝜆S𝜅 = 4𝜅(𝜅 + 𝑁) for 𝜅 = 0, 1, . . .. This leads to the

eigenvalues listed in Section 5.3.5.



Appendix E

Details of black ring calculations

In this Appendix, we give further details of a couple of results from Chapter 6.

E.1 Construction of an exact solution to (6.75)

It is possible to solve equation (6.75) exactly, using the method of characteristics. How-

ever, this solution turns out to be fairly complicated, and as such is not particularly

useful for constructing a new set of coordinates. The construction of this solution is de-

scribed below. The end result is that we get functions in the new metric that, though well

defined, can only be written down implicitly in terms of inverse functions, which would

make the resulting metric highly inconvenient to work with. Furthermore, regularity at

the horizon is not manifest, which is the main motivation for doing this.

Note that, assuming that our separable solutions for 𝜂𝜙 and 𝜂𝜓 are the correct ones

we can rewrite (6.75) as

𝑓(𝑥)
∂𝜂

∂𝑥
+ 𝑔(𝑦)

∂𝜂

∂𝑦
= ℎ(𝑥, 𝑦) (E.1)

where

𝑓(𝑥) = ±
√
𝜉(𝑥)

𝑔(𝑦) = −
√
𝜁(𝑦)

ℎ(𝑥, 𝑦) =
Ω𝜙(−𝐴(𝑥, 𝑦)Φ + 𝐿(𝑥, 𝑦)Ψ) + Ω𝜓(𝐿(𝑥, 𝑦)Φ + 𝐴(𝑦, 𝑥)Ψ)

𝐺(𝑥)𝐺(𝑦)
.

To find a solution to this, we apply the method of characteristics. Note that the

characteristic curves follow the same paths in the 𝑥𝑦 plane as the geodesics, with the

parameter 𝑠 a non-affine parameter along them. We pick an arbitrary initial surface 𝑦 =

𝑏, and pick our initial data to be 𝜂(𝑥, 𝑏) = 0. The non-characteristic condition for surfaces

of constant 𝑦 is that 𝑔(𝑦) ∕= 0. This fails at 𝑦 = 𝑦0, so we must pick 𝑏 < 𝑦0, and clearly

the initial surface should also lie outside the horizon. Thus, we are free to choose any

193
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arbitrary 𝑏 with 𝑦ℎ < 𝑏 < 𝑦0. The initial surface can be parametrised as {(𝑎, 𝑏)}𝑎∈[−1,1],

and given this the characteristic curves (𝑥(𝑠; 𝑎), 𝑦(𝑠; 𝑎)) obey the equations

𝑑𝑥

𝑑𝑠
(𝑠; 𝑎) = 𝑓(𝑥(𝑠; 𝑎)) and

𝑑𝑥

𝑑𝑠
(𝑠; 𝑎) = 𝑔(𝑦(𝑠; 𝑎)), (E.2)

with solutions given implicitly by∫ 𝑥(𝑠;𝑎)

𝑎

𝑑𝑥′

𝑓(𝑥′)
= 𝑠 and

∫ 𝑦(𝑠;𝑎)

𝑏

𝑑𝑦′

𝑔(𝑦′)
= 𝑠. (E.3)

Now define1

𝐹 : [−1, 1] →
[
0,

∫ 1

−1

𝑑𝑥′

𝑓(𝑥′)

]
and Γ : [𝑦ℎ, 𝑏] →

[
0,

∫ 𝑏

𝑦ℎ

𝑑𝑦′√
𝜁(𝑦′)

]
(E.4)

by

𝐹 (𝑥) ≡
∫ 𝑥

−1

𝑑𝑥′

𝑓(𝑥′)
= ±

∫ 𝑥

−1

𝑑𝑥′√
𝜉(𝑥)

and Γ(𝑦) ≡
∫ 𝑦

𝑏

𝑑𝑦′

𝑔(𝑦′)
=

∫ 𝑏

𝑦

𝑑𝑦′√
𝜁(𝑦′)

. (E.5)

Note that both 𝐹 and Γ are bijective, and hence have well defined inverses. Therefore,

we can write

𝑥(𝑠; 𝑎) = 𝐹−1(𝑠+ 𝐹 (𝑎)) and 𝑦(𝑠; 𝑎) = Γ−1(𝑠). (E.6)

Now, by (E.1),
𝑑

𝑑𝑠
𝜂(𝑥(𝑠; 𝑎), 𝑦(𝑠; 𝑎)) = ℎ(𝑥(𝑠; 𝑎), 𝑦(𝑠; 𝑎)) (E.7)

and integrating this gives

𝜂(𝑥(𝑠), 𝑦(𝑠)) = 𝜂(𝑎, 𝑏) +

∫ 𝑠

0

ℎ
[
𝐹−1(𝑠′ + 𝐹 (𝑎)),Γ−1(𝑠′)

]
𝑑𝑠′. (E.8)

Finally, we invert (E.6), change variables 𝑑𝑠′ = 𝑑(Γ(𝑦′)) in the integral and insert our

initial data 𝜂(𝑎, 𝑏) = 0 to give

𝜂(𝑥, 𝑦) =

∫ 𝑦

𝑏

ℎ [𝐹−1 (Γ(𝑦′)− Γ(𝑦) + 𝐹 (𝑥)) , 𝑦′]
𝑔(𝑦′)

𝑑𝑦′. (E.9)

This is a well defined solution to the system, which reduces to the known solution for

the singly spinning case if we set 𝜈 = 0 (which means ℎ(𝑥, 𝑦) is a function of 𝑦 only).

Unfortunately, it is not of a form where it is particularly convenient for use in a coordinate

system.

1This definition implicitly assumes the 𝑥 motion to be in the positive direction, the argument runs

through in basically the same way with the opposite choice of sign.
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It appears in the transformed metric via

𝑑𝑡+ Ω𝜙𝑑𝜙+ Ω𝜓𝑑𝜓 = 𝑑𝑣 + Ω𝜙𝑑𝜙+ Ω𝜓𝑑𝜓 +

(
∂𝜂

𝑑𝑥
+ Ω𝜙

∂𝜂𝜙

𝑑𝑥
+ Ω𝜓

∂𝜂𝜓

𝑑𝑥

)
𝑑𝑥

+

(
∂𝜂

𝑑𝑦
+ Ω𝜙

∂𝜂𝜙

𝑑𝑦
+ Ω𝜓

∂𝜂𝜓

𝑑𝑦

)
𝑑𝑦 ≡ 𝑑𝑣 + Ω̃, (E.10)

where this final equality defines

Ω̃ = Ω𝜙𝑑𝜙+ Ω𝜓𝑑𝜓 + Ω̃𝑥𝑑𝑥+ Ω̃𝑦𝑑𝑦. (E.11)

Given our solution (E.9), we can write

∂𝜂

∂𝑥
=

1

𝑓(𝑥)

∫ 𝑦

𝑏

(∂1ℎ)(𝑥
′, 𝑦′)𝑓(𝑥′)
𝑔(𝑦′)

𝑑𝑦′ and (E.12)

∂𝜂

∂𝑦
=

ℎ(𝑥, 𝑦)

𝑔(𝑦)
− 1

𝑔(𝑦)

∫ 𝑦

𝑏

(∂1ℎ)(𝑥
′, 𝑦′)𝑓(𝑥′)
𝑔(𝑦′)

𝑑𝑦′, (E.13)

where

𝑥′(𝑦′;𝑥, 𝑦) ≡ 𝐹−1 (Γ(𝑦′)− Γ(𝑦) + 𝐹 (𝑥)) . (E.14)

Thus,

Ω̃𝑥 =
∂𝜂

∂𝑥
+ Ω𝜙

∂𝜂𝜙

∂𝑥
+ Ω𝜓

∂𝜂𝜓

∂𝑥

= ± 1√
𝜉(𝑥)

[
Ω𝜙𝜃(𝑥) + Ω𝜓𝜒(𝑥)

𝐺(𝑥)
+

∫ 𝑦

𝑏

(∂1ℎ)(𝑥
′, 𝑦′)𝑓(𝑥′)
𝑔(𝑦′)

𝑑𝑦′
]

(E.15)

Ω̃𝑦 =
∂𝜂

∂𝑦
+ Ω𝜙

∂𝜂𝜙

∂𝑦
+ Ω𝜓

∂𝜂𝜓

∂𝑦

=
1√
𝜁(𝑦)

[
Ω𝜙𝜃(𝑥) + Ω𝜓𝜒(𝑥)

𝐺(𝑥)
−
∫ 𝑦

𝑏

(∂1ℎ)(𝑥
′, 𝑦′)𝑓(𝑥′)
𝑔(𝑦′)

𝑑𝑦′
]

(E.16)

(E.17)

where

𝜃(𝑥) ≡ 𝛽(𝑥)Φ + 𝛾(𝑥)Ψ and 𝜒(𝑥) ≡ 𝛾(𝑥)Φ− 𝛼(𝑥)Ψ. (E.18)

This form can then be inserted into the new metric (6.92). Note that we have not

proved that this exact solution renders the metric regular at the horizon, and in fact it

is not clear that it has this property. The complicated form of the metric that we end up

with here motivates us to look instead to merely solve the finiteness condition described

above for the change of coordinates.

E.2 Proof of Lemma 6.3

There are three parts to this lemma, the first two of which are essentially trivial. Property

1 follows directly from the conformal Killing equation for 𝐾 ′, and it is easy to verify that
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𝐾, and by extension 𝐾 ′ cannot be constructed from the metric and Killing vectors and

is therefore independent of the metric. Each independent CK tensor defines a conserved

quantity 𝐾𝜇1...𝜇𝑝𝑝𝜇1 ...𝑝𝜇𝑝 , along a geodesic with null momentum 𝑝𝜇. We already have 3

of these conserved quantities from ∂/∂𝜙, ∂/∂𝜓, and the metric itself. In a 4-dimensional

geometry, finding the geodesics reduces to solving 4 coupled first order ODEs, so there

are only 4 independent conserved quantities. If there was another tensor that we could

add to𝐾 to give a more general conformal Killing tensor, then this would itself give a new

independent CK tensor, and hence a new conserved quantity, which is a contradiction.

It remains, therefore, to establish the non-trivial third property; the non-existence of a

‘square-root’ of 𝐾 ′.

The equations for the components 𝐾 ′𝑥𝑥, 𝐾 ′𝑦𝑦, 𝐾 ′𝑥𝜙, 𝐾 ′𝑥𝜓, 𝐾 ′𝑦𝜙, 𝐾 ′𝑦𝜓 respectively of

(6.122) can be written in the form

𝐺(𝑥)(1 + 𝐶)

Λ2
=

(
𝑓𝑥𝜙 𝑓𝑥𝜓

)
M

(
𝑓𝑥𝜙

𝑓𝑥𝜓

)
− (𝑓𝑥𝑦)2

𝐺(𝑦)
(E.19)

𝐺(𝑦)(1− 𝐶)

Λ2
=

(
𝑓 𝑦𝜙 𝑓 𝑦𝜓

)
M

(
𝑓 𝑦𝜙

𝑓 𝑦𝜓

)
+

(𝑓𝑥𝑦)2

𝐺(𝑥)
(E.20)

𝑓𝜙𝜓M

(
𝑓𝑥𝜙

𝑓𝑥𝜓

)
=

𝑓𝑥𝑦

𝐺(𝑦)

(
𝑓 𝑦𝜓

−𝑓 𝑦𝜙

)
(E.21)

𝑓𝜙𝜓M

(
𝑓 𝑦𝜙

𝑓 𝑦𝜓

)
=

𝑓𝑥𝑦

𝐺(𝑥)

(
𝑓𝑥𝜓

−𝑓𝑥𝜙

)
(E.22)

where

M ≡ 1

Λ2

(
ℎ𝜙𝜙 ℎ𝜙𝜓

ℎ𝜙𝜓 ℎ𝜓𝜓

)
=

1

𝐻(𝑥, 𝑦)𝐻(𝑦, 𝑥)

(
𝐴(𝑦, 𝑥) −𝐿(𝑥, 𝑦)
−𝐿(𝑥, 𝑦) −𝐴(𝑥, 𝑦)

)
. (E.23)

Contracting (E.21) with 𝐺(𝑦)
(
𝑓𝑥𝜙 𝑓𝑥𝜓

)
and (E.21) with 𝐺(𝑥)

(
𝑓 𝑦𝜙 𝑓 𝑦𝜓

)
gives us two

new expressions for the LHS of equations (E.19), (E.20). Substituting these in, and

taking the difference of the resulting equations leaves us with

2𝑓𝜙𝜓𝐺(𝑥)𝐺(𝑦)

Λ2
= 0 ⇒ 𝑓𝜙𝜓 = 0. (E.24)

Inserting this back into (E.21), (E.22) gives

𝑓𝑥𝑦

(
𝑓 𝑦𝜓

−𝑓 𝑦𝜙

)
= 0 = 𝑓𝑥𝑦

(
𝑓𝑥𝜓

−𝑓𝑥𝜙

)
, (E.25)

and hence we must have 𝑓𝑥𝑦 = 0 (since otherwise we would have all other components

vanishing, which leads us into an immediate contradiction).
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Given these results, we then consider the components 𝐾 ′𝜙𝜙, 𝐾 ′𝜓𝜓 and 𝐾 ′𝜙𝜓:

1

(1− 𝜈)2

(
𝛽(𝑥)

𝐺(𝑥)
− 𝛼(𝑦)

𝐺(𝑦)
+ 𝑝

)
= Λ2

(
(𝑓𝑥𝜙)2

𝐺(𝑥)
− (𝑓 𝑦𝜙)2

𝐺(𝑦)

)
, (E.26)

1

(1− 𝜈)2

(
𝛽(𝑦)

𝐺(𝑦)
− 𝛼(𝑥)

𝐺(𝑥)
+ 𝑟

)
= Λ2

(
(𝑓𝑥𝜓)2

𝐺(𝑥)
− (𝑓 𝑦𝜓)2

𝐺(𝑦)

)
, (E.27)

1

(1− 𝜈)2

(
𝛾(𝑥)

𝐺(𝑥)
+
𝛾(𝑦)

𝐺(𝑦)
+ 𝑞

)
= Λ2

(
𝑓𝑥𝜙𝑓𝑥𝜓

𝐺(𝑥)
− 𝑓 𝑦𝜙𝑓 𝑦𝜓

𝐺(𝑦)

)
. (E.28)

We can use these three equations to express (𝑓 𝑦𝜙)2, (𝑓 𝑦𝜓)2 and 𝑓 𝑦𝜙𝑓 𝑦𝜓 in terms of (𝑓𝑥𝜙)2,

(𝑓𝑥𝜓)2 and 𝑓𝑥𝜙𝑓𝑥𝜓, and then put this into (E.20). Comparing this to (E.19) leads to a

consistency condition

𝛼(𝑦)𝛽(𝑦) + 𝛾(𝑦)2 + (−𝑝𝛽(𝑦) + 2𝑞𝛾(𝑦) + 𝑟𝛼(𝑦))𝐺(𝑦)

𝐺(𝑦)2

=
𝛼(𝑥)𝛽(𝑥) + 𝛾(𝑥)2 + (𝑝𝛼(𝑥) + 2𝑞𝛾(𝑥)− 𝑟𝛽(𝑥))𝐺(𝑥)

𝐺(𝑥)2
(E.29)

that is independent of 𝐶. This separates 𝑥 and 𝑦, and hence can only be satisfied if both

sides are constant for some choice of constants 𝑝,𝑞,𝑟. In the singly spinning case this

holds since 𝛼(𝜉) = 0 = 𝛾(𝜉) for all 𝜉 ∈ (−∞, 1], and we can then choose 𝑝 = 𝑟 = 0 to

make both sides vanish. In the doubly spinning case, however, we are required to set

𝑟 = lim
𝑥→±1

𝛼(𝑥)

𝐺(𝑥)
(E.30)

to avoid a pole in the RHS at 𝑥 = ±1. But these two limits are not the same for 𝜈 > 0,

so we have a contradiction, which completes the proof of the Lemma.□
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