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Abstract. The application of continuum constitutive laws in embedded strong discon-

tinuity analysis is examined. By adopting a regularised discontinuity (approximating the

unbounded strain field resulting from a displacement jump with a bounded function), the

strain field in a body is always bounded, hence continuum laws can be applied. However,

this must be done with some caution since the ‘fictitious’ strain state at the discontinu-

ity can lead to spurious behaviour that does not arise in the conventional application of

classical constitutive laws. Particularly addressed is stress locking as a function of the dis-

placement regularisation in some plasticity models. It is also shown that the regularisation

function can have a serious impact on convergence behaviour for some types of constitu-

tive models.
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1 Introduction

The inclusion of discontinuities into the classical continuum has attracted significant at-

tention recently as a means to overcome deficiencies of the classical continuum when

applied to softening solids, while still applying conventional continuum constitutive laws.

The mesh sensitivity of conventional continuum models for failure analysis is well recog-

nised. At the onset of strain softening, the classical rate-independent continuum equations

become ill-posed [1]. With mesh refinement, strains localise in collapsing bands, resulting

in the limiting case of failure with zero energy dissipation [2]. To remedy this, mesh reg-

ularisation techniques, often based on fracture energy, have been applied. However, these

techniques introduce physically meaningless measures of the spatial discretisation (some-

times known as the ‘crack bandwidth’) to the constitutive equations, rather addressing

the underlying deficiency in the continuum description.

Enhanced continuum (gradient and non-local) models have proved successful in over-

coming mesh dependency in softening materials [3–6]. The inclusion of a material internal

length scale to the continuum description means that localised bands do not collapse upon

mesh refinement. However, a common feature of enhanced continuum models is the need

for a very fine mesh in the failure zone (usually several elements across) in order to cap-

ture the high strain gradients. This requires prior knowledge of where localisation bands

will form for practical problems, limiting application in real-scale problems, especially in

three dimensions.

The embedment of discontinuities within finite elements offers a hybrid approach between

smeared continuum and discrete failure models. By inserting a discontinuity within an

element, a discrete type phenomena can be modelled in a continuum framework. Unlike

discrete approaches, the direction of the discontinuity is determined solely by the stress

or strain field, avoiding mesh alignment dependency and the need for special mesh re-

alignment techniques. Unlike smeared, classical continuum models, no mesh dependent

parameters are used in the constitutive relations in order to preserve the energy dissipation

characteristics of the material. In the case of models where extra shape functions are

added to model a discontinuity, the kinematic ability of elements to reproduce the real

deformation modes is superior to smeared approaches, avoiding some of the kinematic

difficulties and spurious behaviour associated with smeared crack models.

The application of continuum based laws for weak discontinuities (discontinuity in the

strain field) follows naturally from the bounded strain field. The introduction of a strong

discontinuity (discontinuity in the displacement field) immediately leads to an unbounded

strain field at the discontinuity, suggesting the need for a discrete (traction-displacement)

law. It has been shown however, by examining continuum models for softening materials

that continuum constitutive models are compatible with unbounded strains under certain

conditions [7, 8]. Here the practical implications and some difficulties of applying contin-

uum laws for discontinuity analysis are examined, along with some solutions. Attention is

focused on two different constitutive models for mode-I type failure; an isotropic damage

model and a multi-surface Rankine plasticity model. It is shown that issues arise specific
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to each model, often owing the strain (damage) and the stress (plasticity) driven nature

of each model.

2 Kinematics of the discontinuity

First consider a body crossed by a physical discontinuity (Figure 1). The displacement

field of a body containing a discontinuity can be decomposed into two parts; a contin-

uous (û(x, t)) and a discontinuous (HΓd
[u](x, t)) component. The jump in displacement

is provided via the Heaviside function (HΓd
), centred on the discontinuity, operating on

a continuous function [u](x, t). The magnitude of the displacement jump is given by the

magnitude of [u](x, t) at the discontinuity.

u(x, t) = û(x, t) + HΓd
[u](x, t) (1)

Γ
Γ

Ω+

Ω−
nd

d

Figure 1: Body containing a discontinuity

The corresponding strain field can then be found by calculating the gradient of (1).

ε(x, t) = ∇
sû + HΓd

(∇s[u]) + δΓd
([u] ⊗ nd) (2)

where nd is the normal to the discontinuity and δΓd
is the Dirac-delta distribution centred

on Γd.

Differentiation of the Heaviside function leads to the appearance of the unbounded Dirac-

delta distribution in the strain field expression. The strain field can be grouped into

bounded (regular) and unbounded parts [7, 8].

ε(x, t) = ε̄
︸︷︷︸

bounded

+ δΓd
([u] ⊗ nd)

︸ ︷︷ ︸

unbounded

(3)

3 Continuum constitutive laws

The application of continuum constitutive laws relies primarily on the physical justifica-

tion that unbounded strain fields are notionally possible and that unbounded stresses are

impossible. That is, irrespective of the strain field, the stress field is bounded at all times.

From a physical point, an unbounded strain field arises naturally in the case of a dis-

placement discontinuity. As a result of the natural stress boundedness requirement, the
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application of continuum constitutive laws is conditional upon the chosen constitutive law

exhibiting a softening branch. Any hardening behaviour at the discontinuity would lead

to an unbounded stress field.

The general formulation of isotropic, strain softening damage and plasticity models for

application in discontinuity analysis is shown here.

3.1 Plasticity

For plasticity models, it is simplest to begin from the inverse of the classical elasto-

plastic tangential stiffness matrix for isotropic hardening/softening associative plasticity

(hardening modulus (H) is not equal to zero)

ε̇ =

(

(De)−1 +
1

H
mmT

)

σ̇ (4)

with

m =
∂f

∂σ

(5)

where De is the elastic tangent matrix and f the yield function. The expression for

the strain field in (3) can be differentiated with respect to time, then substituted into

equation (4).

˙̄ε
︸︷︷︸

bounded

+ δΓd
nd[u̇]

︸ ︷︷ ︸

unbounded

= (D−1)T
σ̇

︸ ︷︷ ︸

bounded

+
1

H
mmT

σ̇
︸ ︷︷ ︸

bounded

(6)

For the equality in equation (6) to be true, the unbounded term in (6) containing the

Dirac-delta distribution must be cancelled by the hardening modulus. This can be done

simply by distinguishing between the hardening modulus (H) and the intrinsic hardening

modulus (H̄) [7, 8] and relating the two by

1

H
= δΓd

1

H̄
(7)

The intrinsic softening parameter can be found easily by integrating the one dimensional

stress-displacement relationship (shown for linear softening in Figure 2), giving

H̄ = −
f 2

t

2Gf

(8)

Note the similarity between equation (7) and the softening modulus used in smeared crack

bandwidth formulations, where the measure of element size has been replaced by the

inverse of the Dirac-delta distribution. Effectively, if the inverse of the softening modulus

has a distributed form of the Dirac-delta distribution, the stress field will always be

bounded (at least for the one-dimensional case shown in Figure 2).
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Figure 2: 1-D linear stress-displacement relationship

3.2 Continuum damage

Considering an elasticity based isotropic damage model where all damage is represented

by a single scalar variable (ω), the stresses at a point(σ) can be described in terms of the

damage parameter, the elastic tangent matrix and the strains at that point.

σ = (1 − ω)De
ε (9)

For the analysis of concrete, a principal strains based equivalent strain measure, proposed

by [9] is used for the internal history-dependent parameter (κ)

κ = max (κ0, ε̃) (10)

κ0 =
ft

E
(11)

ε̃ =

√
√
√
√

3∑

i=1

< εi >2 (12)

where εi are the principal strains and < · > is equal to (·) if εi > 0 and zero if εi ≤ 0.

For a linear softening law (Figure 3), the damage variable can be expressed in terms of

the internal variable as

ω(κ) =

{ (
1

1+H

) (
1 − κ0

κ

)
κ < − 1

H
κ0

1 κ ≥ − 1
H

κ0

(13)

where the softening parameter H = −κ0/κu.

It is convenient now to express the equivalent strain expression in (12) in terms of

stresses [7]. This can be done simply since the stresses and strains are related by the

isotropic elastic tangent matrix

ε̃ =

(
1

1 − ω

)

ε̃σ =
1

1 − ω

√
√
√
√

3∑

i=1

<
1

E
(σi − νσj − νσk) >2 (14)
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Figure 3: Linear softening diagram

where σi,j,k are the principle stresses. Substitution of equation (14) into the damage pa-

rameter expression (13) then yields

ω

1 − ω
=

1

H

(

1 −
κ0

κσ

)

(15)

where κσ = max (κ0, ε̃σ). Equation (9) can then be rearranged such that

(

1 −
ω

1 − ω

)

σ = De
ε (16)

Substituting the strain field from equation (3) into (16) leads to

σ
︸︷︷︸

bounded

+

(
ω

1 − ω

)

σ = De
ε̄

︸︷︷︸

bounded

+ δΓd
Dend[u]

︸ ︷︷ ︸

unbounded

(17)

which can be further rearranged collecting the terms relating to the continuous part of

the body on one side and the discontinuous part of the body on the other side.

σ − De
ε̄ = δΓd

Dend[u] −

(
ω

1 − ω

)

σ (18)

Since the LHS of equation (18) is bounded, the unbounded term on the RHS containing the

Dirac-delta distribution must be cancelled by the term containing the damage parameter.

Substituting the expression for the damage parameter in equation (15) into equation (18),

the strain field can be made bounded by giving the softening parameter the form [7]

1

H
= δΓd

1

H̄
(19)

where H̄ is the intrinsic softening parameter. For damage models, H̄ can be found by

integrating the energy dissipation rate for a 1-D softening bar.

Gf =

∫ κu

κ0

1

2
Eκ2∂ω

∂κ
dκ (20)
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For linear softening this gives an intrinsic softening parameter

H̄ = −
f 2

t

2GfE
(21)

Again, the softening parameter resembles the softening parameter for smeared type con-

tinuum models.

4 Effect of displacement jump regularisation

In the previous section it was shown that by specially constructing the softening pa-

rameter, continuum constitutive laws can be applied. Now, for numerical simulation,

Dirac-delta distribution and the resulting unbounded strains at the discontinuity must

be approximated. To do this, the Dirac-delta distribution is approximated by a function

that approaches the Dirac-delta distribution, thereby regularising the displacement jump

and bounding strains at all locations [7, 10].

δ ≈
1

k
(22)

The approximation of the Dirac-delta distribution (22) allows the numerical application

of continuum constitutive laws, where k can be considered as the width of an inner

softening band. From the form of the hardening modulus for plasticity (7) and damage

(19), constitutive laws formulated for fracture energy regularised smeared models can be

applied without modification, with the ‘crack bandwidth’ simply replaced by k. The strain

field in the softening band is given in terms of displacements at the discontinuity as

εd =
1

k
(nd[u]) (23)

The effect of the approximation across the discontinuity deserves some investigation. In

the following sections the effect of the displacement jump regularisation is investigated

for a Rankine plasticity model and the isotropic damage model, outlined in Section 3.2,

for mode-I type problems.

4.1 Stress locking

For modelling materials where mode-I type failure is dominate (such as concrete), Rankine

plasticity has been applied in smeared crack modelling [11, 12] and has been shown to

largely overcome the spurious stress locking inherent in fixed crack models [13]. The

multi-surface plasticity based model performs well in tension dominated problems where

the principle stress axes rotate since the yield surface is constructed in the principle stress

space, effectively allowing rotation of the yield surface in the global coordinate system.

Upon the introduction of a discontinuity, an element is immediately given some directional

bias which can result in stress locking. This effect was examined by [14] for a Rankine
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Figure 4: Shear panel and shear-displacement response for varying Gf

model, with attention focused on stress locking as a consequence of an element being

unable to kinematically produce the real deformations (kinematic stress locking). The

source of this problem and solution strategies are similar to those for smeared fixed crack

models [13].

The problem of kinematic stress locking in embedded models with fixed discontinuities

is not unique to models using continuum constitutive laws. However, the application of

a regularised discontinuity in combination with Rankine plasticity introduces a second

source of stress locking that is dependent on the regularisation function (22), arising from

the fictional nature of the strain field at the discontinuity (k-type stress locking). The

strain field at the discontinuity is proportional to the displacements at the discontinuity

(the objective measure of deformation) and inversely proportional to the width of the

discontinuity band k. So, as k decreases (approaching the Dirac-delta distribution), the

strains increase. This effect is then accounted for by the adjustment of the softening mod-

ulus. However, if the chosen constitutive law does not allow softening in all directions,

very small displacements at the discontinuity result in very large strains at the disconti-

nuity, leading to spurious stress development. This is in contradiction to the condition at

the beginning of Section 3 that the constitutive law must exhibit a softening branch.

For Rankine plasticity, the response of a square patch in pure shear is examined (Figure 4)

with the following material parameters: ft = 1.0 MPa, E = 10 × 103 MPa, ν = 0.2 and

linear softening. Since the Rankine yield surface is in the principle stress space, there is no

bound on the shear stresses that can develop. The shear stress–displacement response in

Figure 4 shows that no shear softening occurs, hence the shear stresses that can develop

are unbounded, with the response insensitive to the fracture energy parameter. In smeared

analysis of tension dominated problems, the shear strains are usually small, hence large

shear stresses do not develop and stress locking is significant.

As a result of the inability of the Rankine model to soften in shear, for decreasing k,

very small sliding motions at the discontinuity result in very large shear stresses (un-

like the isotropic damage model in Section 3.2 which does not exhibit the k-dependent

stress locking since the damage parameter operates on both the tensile stiffness and the

shear modulus, allowing softening in shear). In realistic type problems, the spurious shear
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σ
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Figure 5: Stress states in the discontinuity when fully softened

stresses that develop at the discontinuity can be of the same order of magnitude as the

inverse of k. This build up of very large spurious stresses can then lead to unpredictable

results and a loss of robustness. A simple Mohr circle in Figure 5 shows how the fictional

strain state at the discontinuity can lead to the development of both large shear and

compressive stresses in the fully softened state for tension problems.

It has been shown that for simple one dimensional bars, the load displacement response

is independent of the value of k, conditional of course on k being smaller than the ele-

ment [15]. The k-type stress locking arises only in more complex examples, raising the

question of why a small value for k is required. In order to use a large value of k (which

usually results in improved convergence behaviour), it is necessary to show that the result

is independent of the regularisation function (22). Without examining a particular prob-

lem for various values of k, it is not possible to test for the influence of the regularisation

and any spurious effects.

There are two possible solutions for k-type stress locking with a regularised discontinuity.

The first, an improved constitutive model that allows both separation and sliding type

deformations. The addition of a lower bound to the Rankine yield surfaces would limit

the shear stress that could develop, although since it is still formed in the principle stress

space does not directly address the mode-II deficiency. The second solution is to allow

extra kinematic enhancement by allowing multiple or rotating discontinuities.

Unlike for kinematic type stress locking, allowing multiple cracks is not a feasible solution

for k-type stress locking. With decreasing k and Rankine plasticity, severe stress locking

can occur with only very minor rotation of the principle axes. For a multiple crack model,

as k decreases the threshold angle for the introduction of new discontinuities to avoid

stress locking approaches zero. For this reason, allowing rotation of the discontinuity

is examined. To compare fixed and rotating discontinuities using Rankine plasticity, a

non-symmetric notched specimen, previously examined by [16], is analysed with varying

k (Figure 6). The material parameters adopted are: ft = 1.0 MPa, E = 10 × 103 MPa,

ν = 0.2 and Gf = 0.02 Nmm/mm2 (exponential softening). Figure 7a shows the increasing

stress locking effect with decreasing k for the fixed discontinuity model. By allowing

rotation of the discontinuity, in this case k-type stress locking is avoided. Figure 8 shows

that the discontinuity directions in most elements for the fixed and rotating models are

indistinguishable, but allowing rotation has a significant effect on the load-displacement

behaviour. Since the rotations of the discontinuity are so small, a multiple crack model
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could not alleviate the k-dependent stress locking.

It can be seen that allowing small rotations of the discontinuity alleviates a deficiency of

the Rankine plasticity model when coupled with a regularised discontinuity. However, it

is not a reasonable solution to kinematic type stress locking for the finite element model

used here (based on that of [7]) since large rotations of the discontinuity are necessary,

making the model unstable as the discontinuity passes from one side of an element node

to the other [15,17]. To fully alleviate stress locking when applying Rankine plasticity in

a rotating stress field, a combined multiple-rotating crack approach is required.

4.2 Tangent operator and stability

For plasticity, the classical elasto-plastic tangent operator can be obtained by inverting

equation (4) using the Sherman-Morrison formula.

σ̇ =

(

De
−

DemmTDe

H + mTDem

)

︸ ︷︷ ︸

Dep

ε̇ (24)

Notice that Dep does not contain any terms differentiated with respect to the strain field.

For efficient numerical calculations, a consistently linearised tangent operator must be

used in forming the element stiffness matrix. The tangent consistent with the backward

Euler integration scheme (for the Rankine model applied, see [12]) can be formed with only

the plastic multiplier (λ) dependent directly on the strain field. As a result, robustness

of the numerical scheme is not compromised at the introduction of a discontinuity with

decreasing k.

Similarly, a tangent relating stress rate and strain rate for the isotropic damage formu-

lation can also be derived. Differentiating equation (9) with respect to time, it can be

shown

σ̇ = De

(

(1 − ω)I−
∂ω

∂κ
ε

∂ε̃

∂ε

)

︸ ︷︷ ︸

Dc

ε̇ (25)

It is interesting now to examine the form of the tangent matrix in (25). Recalling the ap-

proximation of the Dirac-delta distribution, as k approaches zero, at the onset of inelastic

10 mm

10 mm

100 mm

50 mm u

Figure 6: Notched specimen and deformed mesh
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Figure 7: Sensitivity to k for fixed (a) and rotating (b) discontinuities
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Figure 8: Embedded cracks and shear stresses for fixed (a) and rotating (b) models for

k = 1.0 × 10−7

deformation, the damage parameter ω jumps from zero to a value approaching unity to

maintain a bounded stress field. As a result, the derivative of the damage parameter with

respect to the internal variable (∂ω/∂κ) starts from the ‘continuum’ value at the introduc-

tion of a discontinuity and after the first iteration then approaches zero. The consequence

is that with decreasing k, it becomes increasingly difficult to find a converged solution

at the end of the first time step after the introduction of a discontinuity. This can be

examined more closely by expanding the expression within the brackets for the consistent

tangent (plane stress case).

Dc = De













(1 − ω) 0 0

0 (1 − ω) 0

0 0 (1 − ω)






−

∂ω

∂κ







εx
∂ε̃
∂εx

εx
∂ε̃
∂εy

εx
∂ε̃

∂γxy

εy
∂ε̃
∂εx

εy
∂ε̃
∂εy

εy
∂ε̃

∂γxy

γxy
∂ε̃
∂εx

γxy
∂ε̃
∂εy

γxy
∂ε̃

∂γxy













(26)

For the simple case of a bar loaded in tension in the x-direction, the internal variable (κ)
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and the strain in the x-direction are equal and ∂ε̃/∂εx is equal to unity. Substituting the

expression for the damage variable (equation (13)) and its derivative with respect to the

internal variable, the (1,1) component of the expression inside the brackets of (26) can be

expressed in terms of the internal variable.

(1 − ω) −
∂ω

∂κ
κ = 1 −

1

1 + H
+

1

1 + H

(κ0

κ

)

−
1

1 + H

(κ0

κ2
κ
)

= 1 −
1

1 + H
(27)

Effectively, the sudden jump in ω is cancelled by the sudden jump in the derivative of

the ω with respect to the internal variable. For this simple case, the (1,1) component is

constant.

Next the (2,1) component is examined.

−
∂ω

∂κ
εy = −

1

1 + H

(κ0

κ2

)

εy (28)

Considering the discontinuous component of the strain field across the discontinuity,

(equation (23)), for this case of a bar loaded in the x-direction,

κ = εx =
1

k
[ux] + εregular

x (29)

it can been seen that the the (2,1) term is proportional to k2.

From equation (28), the ∂ω/∂κ term is not complemented by the damage parameter. At

the introduction of a discontinuity, [u] is zero, so ∂ω/∂κ is independent of k. At the next

iteration after the introduction of a discontinuity ([u] is non-zero), there is a jump in (28),

proportional to the square of k. As a result, at the first iteration after a discontinuity

is introduced, there is a sudden jump in the strain field resulting in a sudden jump in

components of the consistent tangent.

The sudden jump in strains and resulting jump in some components of the consistent

tangent has a detrimental effect on the convergence behaviour in the first increment

when a discontinuity is introduced, as k decreases. It can also lead to oscillations of the

Newton-Raphson scheme within the first increment when the discontinuity is introduced.

If a discontinuity is introduced to an element at the first iteration, then upon the second

iteration a redistribution of forces results in no inelastic deformation, the sudden changes

in the tangent matrix can result in oscillating convergence behaviour.

The result is that as k decreases, the step size of the Newton-Raphson scheme must

also decrease1 in order to capture intermediate values of ω between zero and very close

to unity (then also intermediate values of ∂ω/∂κ between the initial value and close to

zero are captured). It is possible to examine the effect of reducing k by analysing a unit

patch with a constant displacement increment and varying k. The patch of three-noded

1In some cases, decreasing step sizes leads to a deterioration of convergence behaviour. The application

of large increments can allow the numerical scheme to ‘step’ over the oscillations.
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Figure 9: Patch arrangement and load–displacement response

triangles shown in Figure 9 is analysed with the following parameters: ft = 1.0 MPa,

E = 100 MPa, ν = 0.1, Gf = 0.02 Nmm/mm2 (linear softening) and ∆u = 0.001. In

Figure 10 the damage parameter (ω) is plotted against the internal history variable (κ).

The circles in Figure 10 show the result at the end of each displacement increment. As k

becomes smaller, ω jumps from close to zero to very close to unity in one displacement

increment. As a result, as k becomes smaller, it is not possible to calculate a reasonable

derivative of ω with respect to κ without reducing the displacement increment to an

unacceptably small value.

The increasing numerical difficulty in calculating a consistent tangent at the introduction

of a discontinuity, as with the stress locking problem for the Rankine model, comes from

the fictitious nature of the strain field. As k becomes smaller, the strains at the time of

initiation of a discontinuity increase more rapidly, meaning that the consistent tangent

for the discontinuity also varies very rapidly. Imposition of traction continuity then means

that the very large strains are also complemented by a damage parameter that approaches

unity. This has an adverse effect on the convergence behaviour and stability of the model.

The construction of plasticity models in the stress space makes the robustness of such

models less sensitive to the regularised displacement jump.

5 Conclusions

The application of continuum constitutive laws in strong discontinuity analysis hinges on

the regularisation of the displacement jump, resulting in a bounded, although fictional,

strain field. From the fictional strain field, spurious behaviour can arise unique to dis-

continuity analysis. The Rankine plasticity example illustrates that a negative hardening

modulus does not guarantee satisfaction of the softening branch condition for all con-

stitutive laws. The strain driven nature and the isotropy of the damage model applied

here avoids the stress locking effects of the Rankine model, although the consequence

is a deterioration of numerical stability and robustness as the displacement regularisa-

tion approaches a true discontinuity. Again, this is a result of the strain field within the

discontinuity being a function of the regularisation function.
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Figure 10: ω versus κ for varying k and constant ∆u

By the nature of plasticity models, formulated in the stress space, they are prone to

spurious stress development as a result of the displacement regularisation, although the

stability of the numerical procedure is reasonably resilient to decreasing k. Conversely,

damage models formulated in the strain space generally avoid k-dependent stress locking

although stability can be compromised by decreasing k. For both plasticity and damage

based models, the coupled behaviour of the discontinuity and the constitutive law must be

examined for detrimental effects that do not arise in the classical continuum application

of the constitutive laws.
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Computer Modelling of Concrete Structures, 363–372, Swansea, (1994). Pineridge

Press.

[8] F. Armero and K. Garikipati. Recent Advances in the Analysis and Numerical Sim-

ulation of Strain Localization in Inelastic Solids. In: D. R. J. Owen, E. Oñate, and
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