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Epitaxial films of ferromagnetic CoFe2O4 (CFO) were grown by pulsed laser deposition on Si(001)

buffered with ultrathin yttria-stabilized zirconia (YSZ) layers in a single process. Reflection

high-energy electron diffraction was used to monitor in real time the crystallization of YSZ,

allowing the fabrication of epitaxial YSZ buffers with thickness of about 2 nm. CFO films, with

thicknesses in the 2–50 nm range were subsequently deposited. The magnetization of the CFO

films is close to the bulk value. The ultrathin CFO/YSZ heterostructures have very flat morphology

(0.1 nm roughness) and thin interfacial SiOx layer (about 2 nm thick) making them suitable for

integration in tunnel (e.g., spin injection) devices. VC 2011 American Institute of Physics.

[doi:10.1063/1.3651386]

Device downsizing has been the causing factor of the

continuous progress in microelectronics. But scaling is

approaching a limit, and further improvements will finally

require the integration of new materials.1 Oxides with re-

markable properties are good candidates. An example is the

replacement of SiOx by high-k oxides such as HfO2 in MOS-

FETs. Other complex oxides are also of high interest. How-

ever, in most of the targeted applications, they have to be

crystalline and oriented (i.e., epitaxial) on silicon platforms,

which is a challenging task regarding the dissimilarities

between oxides and silicon, both structurally and chemically.

Ferroelectric (FE) oxides are now starting to be used for FE

random access memories as potential alternatives to flash

memories.2 In contrast to FE oxides and despite the expected

bright future of spintronics in semiconductor technology,3–5

the use of ferromagnetic (FM) oxides in microelectronic

devices appears to be distant. This is probably due to the elu-

sive integration of epitaxial FM oxides with silicon. There-

fore, epitaxial growth on silicon wafers with controlled

characteristics and properties comparable to those of films

on oxide single-crystalline substrate is crucial in the develop-

ment of new functional oxide-based heterostructures. A

recent example is the successful preparation of the two-

dimensional electron gas at interfaces between LaAlO3 and

SrTiO3 (STO) on Si(001).6 In this case, the STO film is a

part of the functional heterostructure but can also act as a

buffer layer. The use of a buffer layer is a common requisite

for the integration of most of the complex oxides. STO can

be grown by molecular beam epitaxy on Si(001) using well-

established methods.7–10 However, to integrate complex

oxides with large lattice mismatch and/or chemical interac-

tion with STO, different buffers have to be considered. In

that case, yttria-stabilized zirconia (YSZ) is an

alternative.11–15 YSZ has been grown epitaxially on Si(001),

with crystallization after reduction of the native oxide.16,17

However, it had been found that in ultrathin YSZ films

islands are formed in the early growth stages, and although

coalescence and flattening were observed for thicker YSZ

films,16 the roughness at the initial stage is a severe limita-

tion that prevents the use of YSZ as a buffer for applications

requiring an ultrathin buffer.

We have grown ultrathin (2 nm thick) YSZ films on

Si(001) using reflection high-energy electron diffraction

(RHEED) to monitor in real time the onset of YSZ epitaxy.

Complementary to the RHEED characterization, ex-situ

atomic force microscopy (AFM) was used to demonstrate

that the ultrathin layers are extremely flat. We have inte-

grated CoFe2O4 (CFO) films with silicon, buffered with

ultrathin YSZ, proving its suitability as a buffer layer. CFO

and some other spinels such as NiFe2O4 are FM and also

electrical insulators at room temperature. Hence, they are

suitable materials for devices such as spin filters,18,19 and

could be combined with FE to form artificial multiferroic

systems.20,21 These spinels have been grown epitaxially on

Si(001), typically using CeO2/YSZ double buffer

layers.20,22,23 Here we report on the growth of CFO with a

single YSZ buffer, with a total thickness of the CFO/YSZ

heterostructures below 5 nm. The heterostructures are epitax-

ial, with very flat surface, sharp CFO/YSZ interface and thin

interfacial SiOx layer. The ultrathin YSZ buffers can also be

used to grow relatively thick FM CFO film (50 nm) with

magnetization close to it is bulk value and with high

coercivity.

CFO/YSZ heterostructures were prepared by pulsed

laser deposition in a single process on Si(001) substrates. A

KrF excimer laser (k¼ 248 nm) operating at 5 Hz was

focused sequentially on ceramic targets at a fluence of �1.2

J/cm2. The Si(001) substrates were used without removing

the native SiOx. A RHEED system working at 30 kV was

used to monitor in real time the crystallization of YSZ after

the SiOx reduction. Ultrathin YSZ buffers (�2 nm, after 100

laser pulses at �0.02 nm/pulse) were grown at 800 �C under

base pressure (�7� 10�7 mbar). Then, the substrate temper-

ature was decreased to 500 �C or 550 �C and CFO filmsa)Electronic mail: fsanchez@icmab.es.
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were grown with different number of laser pulses to control

the thickness (at �0.007 nm/pulse). Deposition started under

base pressure and �5� 10�4 mbar oxygen was introduced

after 40 laser pulses. After 90 additional laser pulses the

pressure was increased progressively until 0.1 mbar. The in

situ RHEED characterization of the epitaxial relationships

was complemented by x-ray diffraction (XRD). High resolu-

tion transmission electron microscopy (TEM) was conducted

in cross-section geometry. AFM was used to investigate the

surface morphology of the films. Magnetization loop was

measured at 10 K by superconducting quantum interference

device with magnetic field applied in the plane along

Si[110].

The RHEED pattern of the Si(001) substrate in Fig. 1(a)

was taken along the Si[100] direction at 800 �C. Bragg dif-

fraction spots and Kikuchi lines are clearly observed in spite

of the native SiOx. Absence of 2� 1 reconstruction in the pat-

tern along Si[110] (not shown here) confirmed the oxidation

of Si(001). The pattern changed with YSZ deposition and a

halo characteristic for an amorphous film was observed dur-

ing the first 50 laser pulses, corresponding to a nominal YSZ

thickness of �1 nm [Fig. 1(b)]. With further increase of the

thickness, diffraction spots become visible (see in Fig. 1(c)

the pattern acquired after 60 laser pulses). The intensity of

the Bragg spots increased with additional laser pulses defin-

ing the RHEED pattern characteristic of an epitaxial film (see

Fig. 1(d)). It is concluded that a minimum amount of Y and

Zr atoms has to be deposited on SiOx to reduce it and then to

form a crystalline YSZ epilayer on the bare Si(001) surface.16

The time dependence of the RHEED line profiles plotted in

Fig. 1(e) reflects these stages. Remarkably, the epilayer is flat

(signaled by the streaky pattern). This observation was

confirmed by AFM, revealing a low surface roughness of

0.1 nm (see Figs. 1(f) and 1(g)). Inhomogeneous YSZ

crystallization on Si(001) had been earlier reported.16 In

contrast, the homogeneous crystallization reported here

results in ultrathin YSZ films that are atomically flat and

epitaxial from thickness of about 1.5 nm as detected by in

situ RHEED.

CFO films were deposited on ultrathin YSZ buffer pre-

pared as described above. The deposition started (�40 laser

pulses, for �0.2 nm of CFO) in base pressure, and diffraction

rings start to appear in the RHEED pattern signaling a poly-

crystalline growth. Introduction of relatively low pressure of

oxygen (�5� 10�4 mbar) oxidized the deposited CFO and

enhanced the crystalline ordering. The diffraction patterns

after 50 [Fig. 2(a)] and 100 laser pulses [Fig. 2(b)] quickly

changed from rings to streaks that remain stable during the

rest of the deposition. The streaky pattern at the end of the

deposition [Fig. 2(c)] signals epitaxial growth and flat

surface. Ex-situ AFM (see a topographic image and the

FIG. 1. (Color online) (a)–(d) RHEED patterns taken along Si[100] (a) of

the Si(001) substrate and during deposition of YSZ, after (b) 50, (c) 60, and

(d) 100 laser pulses. The respective grazing angles were 1.6� in (a), (b), and

(c), and 0.9� in (d). (e) RHEED intensity profiles along the line in the

Si[010] direction marked in (a) plotted as a function of deposition time. The

grazing angle was 1.6�. Arrows in the bottom indicate the start of the deposi-

tion (0 laser pulses), 50 and 60 laser pulses, corresponding respectively to

the patterns shown in panels (b) and (c) 100 laser pulses (end of the deposi-

tion). (f) AFM topographic image of the YSZ buffer, with (g) the corre-

sponding height profile along the marked line in (f).

FIG. 2. (Color online) (a)–(c) RHEED patterns taken along Si[100] during

growth of CFO at 500 �C acquired at a grazing angle of 1.0� after deposition

of 50 (a) and 100 laser pulses (b). (c) Pattern taken at the end of the growth

(400 laser pulses) at a grazing angle of 1.6�. (d) Topographic AFM image of

the CFO film, with (e) the height profile along the marked line in (d). (f)

Cross-section TEM showing the ultrathin epitaxial heterostructure.
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corresponding height profile in Figs. 2(d) and 2(e), respec-

tively) confirms two-dimensional growth with very low

roughness (rms ¼ 0.1 nm). In Fig. 2(f) we show a cross-

section TEM image of the ultrathin heterostructure. The high

quality of the epitaxy of both CFO and YSZ layers (with re-

spective thicknesses of 2.9 and 1.9 nm) can be appreciated.

The narrow white band along the interface indicates the pres-

ence of an interfacial SiOx layer 2.4 nm thick. The SiOx layer

in single YSZ buffer on Si(001) was thinner than 0.8 nm (a

detailed microstructural study will be published elsewhere),

and therefore it is concluded that the interfacial layer became

slightly thicker during CFO growth due to oxygen diffusion

through the YSZ buffer.

The stability of the buffer and YSZ/Si interface is cru-

cial for applications requiring thicker functional layers. We

have grown CFO films, around 50 nm thick, on ultrathin

(�2 nm) YSZ buffers. The h-2h XRD scan around symmetri-

cal reflections only shows substrate and CFO(111) reflec-

tions [Fig. 3(a)]. The pole figure of Si(220) and CFO(400)

reflections are given in Fig. 3(b). The twelve CFO(400)

peaks, 30� apart in u, signal the presence of four (111)-

oriented crystal domains. Spinel (Ni,Zn)Fe2O4 films were

reported to form the same crystal variants on YSZ(001)

buffers,20 and the same kind of epitaxy was found for CFO

grown on double CeO2/YSZ(001) buffers.23 The cross-

section TEM image in Fig. 3(c) shows a SiOx interfacial

layer around 2.8 nm thick (the YSZ layer is not distinguish-

able in the low resolution image). The surface is flat, with

rms roughness of 0.3 nm [see Fig. 3(d)]. Finally, we present

in Fig. 3(e) the magnetic hysteresis loop of this sample. The

coercive field is �1.5 T, and the saturation magnetization

�350 emu/cm3, close to the bulk value. Remarkably, the

good magnetic properties and the surface flatness of CFO

films grown on ultrathin YSZ buffers are very similar to

those grown on thick buffer layers.23

In conclusion, flat and ultrathin YSZ epitaxial buffers

can be grown on oxidized Si(001) using real time RHEED to

monitor the onset of YSZ crystallization. This buffer permits

the integration of epitaxial ferromagnetic spinel films, with

thickness ranging from around 2 nm to tens of nm, present-

ing thin SiOx interfacial layer, very flat surface, and high

magnetization.
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FIG. 3. (Color online) (a)–(b) XRD measurements of thick CFO grown at

550 �C on YSZ/Si(001): h-2h scan (a) and pole figure of Si(220) and

CFO(400) (b). (c) Cross-section TEM and (d) topographic AFM images. (e)

Magnetization hysteresis loop measured at 10 K with the field applied in-

plane along the Si[110] direction.
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