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Abstract

THE last advances in wireless communications and electronics have motivated the
appearance of Wireless Sensor Networks. These networks are formed by a new

kind of low-power and low-cost sensors able to operate across short ranges. Their
simplicity and autonomy have motivated the development of many nal applications
in a large variety of elds. Nevertheless, sensor nodes are equipped with limited data
processing and communication capabilities. Hence, several design challenges appear
when an application has to be developed. These restrictions justify the design of highly
distributed and energy-efcient applications.

Localization and tracking algorithms are one of those emerging applications that
have become an interesting eld to the researchers. The information routing is of-
ten supported by their localization. Besides, the location knowledge gives to the data
sensed a geographic sense. Instead of using the existing global localization methods,
such as GPS, that are more complex and costly, recent advances have demonstrated the
viability of local methods.

In this PhD dissertation, we have focused our study of the localization and tracking
algorithms for WSN on the RSS-based distributed approaches. One of the major issues
is to obtain the simplest possible method, and RSS range measurements have become
the simplest existing measurements. Besides, we have also presented methods that are
able to optimize the trade-of between accuracy versus energy-efciency.

First, RSS-based cooperative localization algorithms in static indoor networks are
considered. The use of RSS measurements requires the knowledge of a propagation
model in order to obtain inter-node distance estimates. We introduce an on-line path
loss estimation method that obtains the model by means of RSS measurements. Hence,
we avoid the need of an a priori estimation of the propagation model. Moreover, the
cooperative approaches used increase the number of nodes that cooperate with a non-
located node in the location estimation procedure. Two major issues have to be taken
into account when a large number of nodes are used. On the one hand, the larger
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the number of cooperating nodes, the larger the number of messages exchanged, and,
hence, the higher the energy consumption. On the other hand, the probability of using
further nodes is increased, hence, the higher the distance, the higher the error distance
estimates, when RSS measurements are used. These features have motivated us to pro-
pose three different node selection criteria in order to reduce the energy consumption
maintaining the accuracy.

Finally, we have considered the mobility of the non-located nodes inside a xed
network. The interest is to locate and track a node moving across a WSN. We have
considered two different scenarios: an outdoor one, in which the velocity is medium-
high, and, an indoor one, where the velocity is lower. In both cases, we have still
used an RSS-based cooperative algorithm. Besides, we introduce the Kalman Filter
and its derivatives, because, they have become a common approach used for tracking
purposes. In both scenarios, the mobility of the node causes a high variability of the
RSS measurements. These errors reduce the accuracy. In that sense, we propose a
window-based RSS correction method in order to counteract these negative effects.



Resum

ELS últims avenços en comunicacions sense ls i electrònica ha motivat l�’aparició
de les xarxes de sensors sense ls. Aquestes xarxes estan formades per un nou

tipus de sensors de baixa potència i de baix cost que són capaços d�’operar en rangs
propers. La seva senzillesa i autonomia ha motivat el desenvolupament de moltes
aplicacions en una gran varietat de camps. No obstant això, els nodes estan equipats
amb uns recursos de processament de dades i capacitats de comunicació limitats. Per
tant, el desenvolupament de qualsevol aplicació planteja diversos problemes de disseny.
Aquestes restriccions imposen un disseny d�’aplicacions amb un caràcter distribüt i e-
nergèticament ecients.

Els algoritmes de localització i seguiment són una d�’aquestes aplicacions emer-
gents que s�’ha convertit en un camp d�’interès per als investigadors. La informació
d�’enrutament de les xarxes de sensors està sovint suportada en la localització dels
nodes. A més, el coneixement de la posició permet donar, a les dades detectades, un
sentit geogràc. En lloc d�’utilitzar els mètodes existents de localització globals, com
el GPS, que són més complexos i costosos, els recents avenços demostren la viabilitat
de mètodes locals.

En aquesta tesi, hem centrat el nostre estudi dels algoritmes de localització i segui-
ment, en xarxes de sensors sense ls, en solucions distribüdes basades en mesures de
potència. Una de la qüestions més importants és l�’obtenció d�’un mètode el més senzill
possible, i les mesures de potència s�’han convertit en les més simples. A més, també
volem obtenir el millor comproḿs entre obtenir la major abilitat de l�’algorisme i
maximitzar l�’eciència energètica.

En primer lloc, hem considerat el desenvolupament d�’algoritmes de localització
cooperatius basats en mesures de potència rebuda en xarxes interiors estàtiques. Les
mesures de potència imposen el coneixement d�’un model de propagació per tal d�’obtenir
una estimació de la distància entre nodes. Nosaltres proposem la introducció d�’un
mètode que estima l�’exponent de pèrdua de potència per propagació mitjançant les
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mesures de potència fetes, en comparació a les normalment utilitzades campanyes de
mesures fetes a priori. A més a més, els mètodes cooperatius en els quals basem la
nostra proposta augmenten el nombre de nodes que cooperen durant el procediment
d�’estimació de la posició d�’un node no localitzat . Dos són els problemes principals que
no s�’han de menystenir quan s�’utilitza un major nombre de nodes. D�’una banda, a ma-
jor nombre de nodes cooperants, major intercanvi de missatges, i, per tant, major con-
sum d�’energia. D�’altra banda, la probabilitat d�’utilitzar nodes llunyans s�’incrementa, i,
com més gran sigui la distància entre nodes, l�’error de la distància estimada serà major,
puix que utilitzem mesures de potència. Aquesta caracteŕstica ens ha motivat a pro-
posar tres criteris de selecció de nodes diferents per tal de reduir el nombre de nodes
cooperants i aix́ reduir el consum d�’energia sempre intentant mantenir l�’exactitud.

Finalment, hem considerat la mobilitat dels nodes dins d�’una xarxa xa. L�’interès
és localitzar i seguir un node mòbil en una xarxa de sensor sense ls. En aquesta
ocasió hem considerat dos escenaris diferents: una a l�’aire lliure, on la velocitat és
mitjana-alta, i un interior, on la velocitat és menor. En ambdós casos, també utilitzem
un algorisme cooperatiu basat en mesures de potència. A més, el ltre de Kalman i
els seus derivats s�’introdueixen a la solució proposada, ja que s�’han convertit en un
solució d�’ús comú als algoritmes de seguiment. En ambdós casos, la mobilitat del
node produeix una alta variabilitat de les mesures de potència. Aquests errors poden
causar una precisió inferior. En aquest sentit, es proposa un mètode de correcció de les
potències rebudes basat en un ennestrat, per tal de disminuir aquests efectes negatius.



Resumen

LOS últimos avances en comunicaciones inalámbricas y electrónica ha motivado la
aparición de las redes de sensores inalámbricos. Estas redes están formadas por

un nuevo tipo de sensores de baja potencia y de bajo coste que son capaces de operar
en rangos cercanos. Su sencillez y autonoḿa ha motivado el desarrollo de muchas
aplicaciones en una gran variedad de campos. Sin embargo, los nodos están equipados
con unos recursos limitados de procesamiento de datos y capacidades de comunicación.
Por lo tanto, el desarrollo de cualquier aplicación plantea distintos problemas de dise�˜no.
Estas restricciones impone un dise�˜no de aplicaciones que sean de carácter distribuidas
y energéticamente ecientes.

Los algoritmos de localización y seguimiento son una de esas aplicaciones emer-
gentes que se han convertido en un campo de interés para los investigadores. La in-
formación de enrutado de las redes de sensores a menudo se apoya en la localización
de los nodos. Además, el conocimiento de la posición da lugar a que los datos de-
tectados tengan un sentido geográco. En lugar de utilizar los métodos existentes de
loca-lización globales, como el GPS, que son más complejos y costosos, los recientes
avances demuestran la viabilidad de los métodos locales.

En esta tesis doctoral, hemos centrado nuestro estudio de los algoritmos de loca-
lización y seguimiento, en redes de sensores inalámbricos, en soluciones distribuidas
basadas en medidas de potencia recibida. Una de la cuestiones más importantes es
la obtención de métodos lo más sencillos posible, y las medidas de potencia se han
convertido, hoy en d́a, en las medidas más simples. Además, también queremos lograr
métodos capaces de optimizar el compromiso entre la exactitud de los resultados y la
eciencia energética.

En primer lugar, hemos considerado el desarrollo de un algoritmo de localización
cooperativo basado en medidas de potencia en redes interiores estáticas. Las medi-
das de potencia imponen el conocimiento de un modelo de propagación con el n
de obtener una estimación de la distancia entre nodos. Nosotros proponemos la in-
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troducción de un método que estima el exponente de pérdida de potencia por propa-
gación mediante las medidas de potencia hechas, en comparación a las, normalmente
utilizadas, campanyas de medidas hechas a priori. Además, los métodos cooperativos
aumentan el número de nodos que coopera con un nodo no localizado en el momento
de estimar la posición. Dos problemas principales tienen que ser tenidos en cuenta
cuando se utiliza un mayor número de nodos. Por un lado, a mayor número de nodos
cooperantes, mayor es el intercambio de los mensajes, y, por lo tanto, mayor será el
consumo de enerǵa. Por otro lado, la probabilidad de utilizar más nodos lejanos se
incrementa, por lo tanto, cuanto mayor sea la distancia entre nodos, el error de esti-
mación de distancia será mayor debido a la utilización de medidas de potencia. Estos
problemas nos ha motivado a proponer tres criterios de selección de nodos distintos
con el n de reducir el consumo de enerǵa, tratando de mantener en todo momento la
exactitud en las posiciones estimadas.

Por último, hemos considerado la movilidad de los nodos dentro de una red ja.
El interés es localizar y seguir un nodo móvil en una red de sensores inalámbricos. En
esta ocasión hemos considerado dos escenarios diferentes: uno al aire libre, en el que la
velocidad que se supone es media-alta, y uno interior, donde la velocidad que se supone
es menor. En ambos casos, utilizamos, también, un algoritmo de cooperación basado
en medidas de potencia. Además, los ltros de Kalman y sus derivados se introducen
en la solución propuesta, ya que se han convertido en una solución de uso común
en los algoritmos de seguimiento. En ambos casos, la movilidad del nodo produce
una alta variabilidad en las medidas de potencia. Estos errores causan una precisión
inferior. En ese sentido, se propone un método de corrección de potencias basado en
un enventanado, con el n de disminuir estos efectos negativos.
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Notation

Boldface upper-case letters denote matrices, boldface lower-case letters denote column
vectors, upper-case italics denote sets, and lower-case italics denote scalars.

loga(·) Base-a logarithm.
log(·) Natural logarithm.
‖x‖ Euclidean norm of the vector x.
E[·] Mathematical expectation.
f(x|y) Joint probability density function.
p(x|z) Posterior density of random variable x conditioned to z.
! Dened by.
arg Argument.
max, min Maximum and minimum.
∇ Gradient operator.
≈ Approximate as.
N(m,c) Real Gaussian vector distribution with meanm and covariance matrixC.
x̄ Mean value of x.
exp(·) Exponencial.
I(·) Indicator function.
x̄ Mean Value of vector x.
x̂ Estimate value of x.
U(a, b) Uniform distribution with upper and lower values b and a, respectively.
x− A priori state estimate of x.
XT Transpose of the matrix X.
X−1 Inverse of the matrix X.
I Identity matrix.
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Chapter 1

Introduction

1.1 Motivation

DISTRIBUTED sensor networks have been a recurrent eld of study for more than
30 years, but the recent advances in wireless communications and electronics

have allowed to bring into reality wireless sensor networks [Mao09]. These advances
have enabled the development of low-cost, low-power and multi-functional sensors that
are small in size and can communicate over short distances. The increasing interest to
deploy these sensor networks has motivated the appearance of many applications for
monitoring and controlling different environments.

Location estimation in wireless sensor networks has become an important eld
of interest from researchers [Bac05, Bou07, Mao09]. This is due to the demand of
the knowledge of the node position by the majority of applications. In environmental
monitoring, such as re or agriculture control, a basic premise to give sense to all
the data measured is to know their location, otherwise data could be considered as
meaningless information. The obtention of node positions gives the opportunity of
increasing the number of possible applications.

The main purpose of a localization or a tracking algorithm is to estimate the po-
sition of those non-located nodes with the following information: a priori knowledge
of some nodes positions and inter-sensor measurements, such as time difference of
arrival, angle of arrival or connectivity. Hence, the majority of existing localization
methods applied in WSN tries to achieve the best accuracy considering the restrictions
that this kind of networks imposes. Although nowadays there are many methods of
localization in wireless networks, such as GPS or radar-based geolocation techniques,
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2 Chapter 1. Introduction

there exist many challenges that limit their usage. Wireless sensor nodes have normally
low-cost hardware with a limited computational capability. Hence, the localization al-
gorithms have to take into account them in order to achieve the best trade-off between
cost, size, energy consumption and accuracy. For that reason, localization has become
a challenging eld.

Moreover, it is possible that the nodes have mobility. Besides the inherent problems
due to the nature of the nodes, the mobility causes a major uncertainty to the measure-
ments done by nodes. For that reason, to give solution to the location of mobile nodes
the, so called, tracking algorithms have appeared.

Within this framework, this PhD dissertation provides a contribution to the study
of pragmatic approaches devoted to localize and track wireless sensor nodes. More
concretely, based on Received Signal Strength (RSS) range measurements, we are able
to obtain accurate solutions. Moreover, node selection mechanisms are proposed in
order to achieve a better energy efcient algorithm. Besides, control mechanism are
introduced in the tracking algorithm in order to overcome the challenges introduced by
the mobility.

1.2 Outline

The objective of this dissertation is the study of pragmatic approaches of localization
and tracking algorithms for Wireless Sensor networks (WSN). Compared to existing
methods in the literature, we try to reduce the complexity of the solution in order to
achieve easy-to-implement solutions. More concretely, the solutions adopted are fea-
sible solutions based on the Received Signal Strength range measurements that have
been validated in a real network. Next, we describe, in more detail, the organization of
the text.

Chapter 2 presents an overview of the localization and tracking algorithms. Fur-
thermore, a special attention in the RSS-based algorithms for location and tracking has
been given.

Chapter 3 is devoted to the localization algorithms of multiple static nodes in an
indoor WSN. More concretely, an RSS-based distributed cooperative solution is pre-
sented. Our basic purpose is to develop a pragmatic algorithm that achieves the best
possible trade-off in terms of accuracy versus energy consumption. In that sense, we
present three different node selection criteria in order to reduce the energy consump-
tion and increase the reliability of the information that cooperating nodes give to the
non-located node. Besides, an on-line path loss estimation mechanism is introduced in
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order to obtain the radio propagation model needed when RSS range measurements are
adopted. Different scenarios are assumed in the simulations and experimental results
carried out.

Chapter 4 is focused on the localization and tracking of mobile nodes in WSN.
In this chapter two different environments are considered, outdoor and indoor, and,
hence, two different solutions are presented. Again, RSS-based tracking algorithms are
adopted. The purpose of the chapter is minimizing the bad effects that the movement
causes at the RSS measurements. To do so, window-based RSS Correction mechanism
is proposed. The main purpose is to achieve a pragmatic approach that does not in-
crease the complexity and the cost of the network. The outdoor solution proposed is
devoted to locate medium-high velocity mobile nodes. In the indoor case, low veloc-
ity mobile nodes are assumed. Simulation and experimental results are presented and
discussed for both environments.

Chapter 5 concludes this PhD dissertation with a summary and a discussion of the
obtained simulation and experimental results. Some suggestions for future work are
also presented.

1.3 Contributions

The main contribution of this thesis is the study of pragmatic approach of localization
and tracking wireless sensor nodes based on RSS-measurements. Next, the details of
research contributions in each chapter are presented.

Chapter 3

The main results of this chapter that addresses the on-line path loss and node selection
localization algorithm of static sensor nodes have been published in one book chapter,
one journal paper, two conference papers and two COST Action meetings:

• A. Bel, J. L. Vicario, G. Seco-Granados, �”A Pragmatic Approach to Cooperative
Positioning in Wireless Sensor Networks�”, chapter in Microwave and Milimeter
Wave Circuits and Systems. Emerging Design, Technologies and Applications,
ed. A. Georgiadis, H. Rogier, L. Roselli and P. Arcioni, John Willey & Sons, pp.
135-172, Sept. 2012.

• A. Bel, J. L. Vicario, G. Seco-Granados, �”Localization Algorithm with On-line
Path Loss Estimation and Node Selection�”, in Sensors, Volume 11, Number 7,
pp. 6905-6925, Jul 01 2011.
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• A. Bel, J. L. Vicario and G. Seco-Granados, �”Node selection for Cooperative
Localization: Efcient Energy vs. Accuracy Trade-off�”, in IEEE International
Symposium on Wireless Pervasive Computing (ISWPC), May 05 2010.

• A. Bel, J. L. Vicario and G. Seco-Granados, �”Real-Time Path Loss And Node
Selection For Cooperative Localization In Wireless Sensor Networks�”, in Proc.
IEEE InternationalWorkshop on Advances in Positioning and Location-Enabled
Communications APLEC (in conjunction with PIMRC’10), Sep 26 2010.

• A. Bel, J. L. Vicario, G. Seco-Granados, �”RSSI-based Cooperative Localization
with Energy-efcient Node Selection for Wireless Sensor Networks �”, COST
ic0803 RFCSET, Oct 07 2009.

• A. Bel, J. L. Vicario, G. Seco-Granados, �”Cooperative Localization in WSN
based on Real-Time Pathloss Model and Node Selection�”, COST ic0803 RFC-
SET, Feb 24 2010.

Chapter 4

The results within the chapter have been published in a patent and a journal paper is in
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Chapter 2

An Overview of Cooperative
Positioning and Tracking
Algorithms

NOWADAYS, the great interest in localization of nodes on a WSN has motivated the
development of a large number of algorithms. The different existing approaches

try to overcome the different restrictions that a WSN inherently has, such as, limited
hardware, energy or computational capabilities. The scenario where the algorithm has
to work imposes some requirements that guide us in the decision of choosing between
the different existing algorithms. In order to decide which is the suitable algorithm,
they are grouped in different classications depending on their characteristics. In the
following subsections, a brief presentation of these classications is made.

2.1 Introduction

A rst classication divides existing methods in two main categories: range-based and
range-free approaches. These approaches differ in the way of obtaining inter-node
information. On the one hand, range-based approaches estimate inter-node distance or
angle through ranging measurements. On the other hand, range-free approaches are
based on the connectivity between adjacent nodes. Range-free methods present less
accuracy than range-based methods,but they are a simple and cost-effective approach.

A second classication is cooperative versus non-cooperative algorithms. This sec-
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ond classication differentiates between those algorithms that allow the exchange of
measurements between all nodes inside the network (cooperative) and those algorithms
that only allow, the non-located nodes to exchange of messages with the nodes that
know their position, a.k.a anchor nodes (non-cooperative).

The last classication refers to centralized versus distributed algorithms. Local-
ization algorithms could be executed in a central node which becomes responsible for
collecting all the network information and estimating the nodes�’ positions. On the other
hand, in distributed algorithms each node is responsible for the estimation of its own
position. Hence, the necessary calculations are distributed along the network.

Furthermore, in the last section a brief review of target tracking techniques applied
in wireless sensor networks is presented. Tracking moving objects has also waken up
the interest of researchers. The basic idea idea is to detect moving objects inside a
network and reproduce the path of their movements. Tracking through WSNs can have
several advantages [Vee07]. On the other hand, the highly restrictive constraints of
WSNs introduces new challenges in wide eld of tracking moving objects, in this case
mobile sensor nodes.

2.2 Measurement Characterization

The measurement characterization divides the existing localization algorithms in two
main categories: range-based and range-free methods. The measurement character-
ization provides a classication based on how the algorithms obtain the inter-node
information.

In the following subsections the main differences between both methods are pre-
sented as well as their pros and cons. At the end, a brief summary of both techniques
is presented.

2.2.1 Range-free

Range-free methods are based on connectivity information. Connectivity measure-
ments allow each node to determine how many nodes are inside its radio range. But,
as it will be seen it is also possible to obtain an estimation of the inter-node distances.

These methods are presented as the simplest measurements that a localization algo-
rithm can use, because the basic idea is to decide if a node is connected with an adjacent
node or not. Hence, the complexity introduced by ranging methods is avoided.

The connectivity information is usually obtained from RSS measurements. Con-
sidering perfect circle radio coverage, any node that receives an RSS above a threshold
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is supposed to be connected to the receiving node. Also a node can be considered in-
side the coverage range of another node by measuring the number of received packets.
The commonest algorithms based on connectivity measurements are: centroid [Bul00],
DV-HOP [He03], APIT [Nic03] or SeRLoc [Laz04].

Centroid

One of the simplest method existing in the literature is the Centroid algorithm [Bul00].
The nodes estimate their position through the information transmitted by anchor nodes
(nodes with known location) present in the network.

The algorithm is quite simple. Non-located nodes detect how many anchors are
inside their radio range coverage. The anchors broadcasts a message with their lo-
cation coordinates. Hence, non-located nodes have the coordinates (x aj , yaj) from
the anchors inside their radio range. With this information, non-located node position
(xi, yi) is obtained as:

(xi, yi) =

(∑n
j=1 xaj

n
,

∑n
j=1 yaj

n

)
. (2.1)

The centroid method is based on the assumption of having different overlapping
regions of coverage (see Figure 2.1). If a node detects more anchors it will have a more
accurate position estimate. With a lower number of overlapping regions, the algorithm
reduces the number of possible locations that a non-located node could take and the
estimates are less accurate.

In order to improve the accuracy of the centroid algorithm many works introduce
weights (e.g. [Blu07]) in to the algorithm, and the new formula is:

(xi, yi) =

(∑n
j=1 wijxaj∑n

j=1 wij
,

∑n
j=1 wijyaj∑n

j=1 wij

)
, (2.2)

being each weight wij equal to:

wij =
1

(dij)
g , (2.3)

where dij is the estimated distance between node i and anchor j and g the degree. This
degree allows us to control the impact of remote anchor or the estimates.

The authors in [Bul00] present some results of the centroid algorithm. The au-
thors considered an ideal outdoor environment and a network formed by four anchor
nodes with ideal spherical transmission range (see Figure 2.1). In that case an average
localization error of 1.83 m is obtained, being the scenario a 10 m x 10 m area.
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The difference in terms of accuracy of a weighted centroid compared to a plain
centroid algorithm is shown in [Blu07]. The results show that the introduction of a
weight improves the accuracy. Moreover, the higher the degree, the more stable the
error with long range transmissions. In other words, a high degree gives to the further
anchors the opportunity of giving a more reliable information to the non-located node.
Nevertheless, when the degree g becomes higher the position moves towards the closest
anchor and, hence, the positioning error increases.

Both proposed schemes could be easily deployed in a large scale network. The
major problem of these methods when applied to a WSN is that the accuracy is directly
related with the number of anchor nodes. The accuracy could be increased if the num-
ber of overlapped reference nodes is increased. Nevertheless, the inclusion of more
anchor nodes increases the cost of the network, as anchor nodes have to know their
own location.

Figure 2.1: Centroid method with the different possibilities of positioning

DV-HOP

The Distance Vector-HOP algorithm [Nic03] is another method that is based on con-
nectivity measurements. Although DV-HOP is more complex than the centroid, more
accurate estimations are achieved.

The algorithm works as follows (see Figure 2.2). First, a broadcast message is
sent by all the nodes. The message contains the information about which are their
neighbour nodes (anchors or non-located). With this information each non-located
node can construct a table with the different possible paths, in terms of number of hops,
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in order to reach every possible anchor. Then, they have to choose the shortest possible
path. Once having these hop-distances, anchors broadcasts the average distance per hop
to neighbours (achieved when a message from an anchor is received by another anchor).
Finally, an average distance between a non-located node and all anchors reached are
obtained. Then, the algorithm converts the shortest number of hops path to meters with
the average hop distance value. Finally, a trilateration or multilateration method is used
to estimate the non-located node position.

The DV-HOP algorithm is characterized by the simplicity of the procedure, as it
does not require extra hardware. Moreover, the location estimation is distributed along
the network. On the contrary, the great amount of transmissions necessary to construct
all the possible paths causes an increase in the energy consumption.

Compared to the previous algorithm, the accuracy does not only depend on the
connectivity with the anchors. Now the accuracy depends on the connectivity with any
node (anchor or not anchor). Hence, similar accuracy values could be achieved with a
reduction of the anchors density, e.g. the cost of the network could be reduced. At the
end of the subsection a comparison between the rst three range-free algorithms will
be done.

Broadcast 
Message

Hop 
distances

2 hops
2 hops

2 hops
1 hop

Lowest 
distance-hop 

1 hop

Figure 2.2: DV-HOP procedure.

APIT

The Approximate Point In Triangle Test (APIT) [He03] is included in a different cat-
egory to range-free methods. APIT is classied as an area-based approach. The algo-
rithm is basically divided in 4 steps: each node receives the location of many anchors
as possible; given all possible combinations of three different anchors, each node has
to form triangles with them; then, each non-located node has to determine whether it
is or not within each triangle; and nally the position is obtained by calculating the
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gravity center of the intersection of all triangles selected (see Figure 2.3).
As the previous approaches, APIT algorithm is capable of providing global coor-

dinates (thanks to the use of anchor nodes) and none extra hardware is required (no
increase in node cost). But, in comparison with the DV-Hop, APIT algorithm depends
only on communications with anchor nodes. APIT and centroid algorithm are consid-
ered non-cooperative methods, because they do not take advantage of communication
between non-located nodes. Hence, the accuracy of the solution will depend, in part,
on the density of anchor nodes or on having long-range transmission anchors, able to
be sensed at long distances.

Figure 2.3: APIT estimation

A comparison of these methods is presented in [He03]. Authors analyse the depen-
dence of the accuracy of these three methods or different parameters such as anchor
density, radio range ratio or non-located nodes density. The results reect that no single
algorithm can be used in all scenarios. The centroid algorithm has the largest localiza-
tion error (mean error achieved is 1.25 times the radio range R in meters), but it is not
dependent on features such as node density. Furthermore, this is the algorithm with less
exchange of information and more simple to implement. DV-HOP algorithm requires
more exchange of messages through the network and a greater density of nodes (non-
located and anchors) is necessary in order to obtain good accuracy. DV-HOP achieves
a mean error equal to the radio range R. The APIT algorithm obtains similar results
in terms of accuracy but non-located nodes have to have more anchors nodes inside
their radio range. The parameter that negatively affects all the algorithms is the anchor
node range. The work study the effect of reducing the anchor node density by means
of increasing the anchor node range. But, as the transmission range of the anchors in-
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creases, the error also increases (worse results are achieved by the centroid algorithm).
There exists a trade-off between the anchor density and the anchor node transmission
range. APIT algorithm achieves a mean error 0.75 times the radio range R.

Although the three algorithms are compared in terms of accuracy, this is not the
only gure of merit to be considered. Better results in a localization algorithm mean,
normally, a reduction of the accuracy error. However,accuracy can also be improved
by increasing the cost of the network, i.e. increasing the number of anchor nodes,
the calculus complexity, or the nodes hardware requirements. When a localization
algorithm is designed, the accuracy should not be the only gure of merit. Cost of the
nodes or energy consumption have to be taken also into account.

SeRLoc

The Secure-Range Independent Localization (SeRLoc) algorithm is also considered
an area-based approach [Laz04]. Following the idea of APIT, this localization method
also obtains the node�’s position by means of calculating the center of gravity of an over-
lapping region. In this case the localization algorithm assumes a network with anchor
nodes equipped with directional sectored antennas and non-located nodes equipped
with omnidirectional antennas.

The algorithm has four steps. First, anchors transmit directional beacons within
a sector. Non-located nodes collect this information and they determine the search
area or sector in which they believe to be located. Then, the overlapping sector region
is computed. Finally, the position is obtained by means of calculating the center of
gravity of the overlapping section obtained at the previous step. Figure 2.4 illustrates
the procedure.

Figure 2.4: SeRLoc estimation
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A comparison in terms of location accuracy versus the mean number of anchors
heard is presented in [Laz04]. The best result is obtained with a SeRLoc algorithm in
comparison with other methods such as APIT, Centroid o DV-HOP. More concretely
the error is equal to 0.5 times the radio range R. On the other hand, the SeRLoc algo-
rithm also achieves good results in terms of number of transmissions needed. In this
occasion the centroid algorithm obtains the best results. However, SeRLoc achieves
the best trade-off in terms of accuracy versus transmissions needed. The major draw-
back of SeRLoc algorithm is the necessity of having anchors equipped with directional
sectored antennas.

2.2.2 Range-based

The range-based classication groups all the methods that estimate the inter-node dis-
tances or angles with the use of range information. The use of range information in
order to extract distance estimates gives to the algorithm a better accuracy because the
inter-node information obtained is more accurate than those obtained with range-free
approaches. As commented previously, usually a gain in accuracy means an increase of
the cost or the complexity. The use of range-based approach is more recommendable
when the accuracy is the major purpose.

In this subsection the different signal metrics used to obtain distances estimates are
presented. These distances are then used to determine the nodes positions.

Time of Arrival (TOA)

Time of arrival (TOA) measurement reects the time at which any kind of signal arrives
at a receiver [Li10]. More specically, TOA is equal to the transmission time plus the
propagation delay between a transmitter and a receiver, which reects the inter-node
distance between them. Hence, assuming a constant propagation velocity, it is easy to
obtain an estimated distance. This velocity depends on the type of signal, e.g. 1 ms
becomes to 0.3 m for an acoustic propagation and 1 ns becomes 0.3 m for an RF signal.

The major sources of error that affect time of arrival measurements are noise and
multipath signals. Moreover, another limitation that imposes TOA measures is the
synchronization between nodes. Maintaining the same reference clock among all the
network is a must because if nodes do not have it, the estimated propagation time at the
receiver will have an inherent error.

Errors about 2% are achieved over a communication range of 3-6 m [Yu09]. More-
over, the nodes clocks resolution should be of the order of nanoseconds. TDOA is a
range measure usually used in wireless or satellite networks [Guv09] (in which base
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stations and mobile nodes are synchronized), but a recent trend uses time measure-
ments approaches with Ultra Wide Band signals [Mao07, Shi03, Gez05]. The UWB
signal achieves a high accuracy because the transmitted pulses have a wide bandwidth,
hence a very short pulse waveform. With the recovery of this transmitted pulse it is
possible to estimate the distance between receiver and transmitter. Moreover, UWB
signals achieve very high temporal resolutions.

Time Difference of Arrival (TDOA)

The synchronization requirement of the TOA measurements could be an important dis-
advantage that limits their use in WSN. Although time measurements are also affected
by noise and multipath the obtained accuracy is high. For this reason another time
measurement approach is presented. This new approach avoids the necessity of having
an entire network synchronized. This method is known as time difference of arrival
(TDOA). TDOA is based on two different ideas [Bou07].

• The rst TDOA method [Mao07] is based on the measurement of the difference
between the arrival times of a signal sent by a transmitter at two receivers. This
method assumes that the receiver locations are known and that the two receivers
are perfectly synchronized (it could also be two synchronized transmitters and
one receiver). It is not necessary to synchronize the entire network, only the
receivers. For that reason, it is mostly used in the uplink cellular networks where
the complexity of base stations is considerably relaxed.

• TDOA can also be understood as the difference of the arrival times of two differ-
ent signals sent by a unique sender to a unique receiver (see [Pri00, Sal04]). With
this idea is avoided the necessity of synchronizing any node inside the network,
neither senders neither transmitters. This TDOA method is based on sending two
different kind of signals with different propagation velocities. This is necessary
in order to achieve this time difference at the arrival time. Hence, it is possible
to measure the one-way propagation time. It can be done if nodes include extra
hardware in order to transmit different signals.

As already said, the rst case is more appropriate in cellular networks due to the
necessity of having the receiving terminals synchronized. In this kind of networks,
base stations have less stringent requirements in terms of complexity or cost. Hence,
it is possible to synchronize them having a priori knowledge of their position; being
them able to act as the receivers for estimating the TDOA.
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On the other hand, the second TDOA approach could be more suitable in a WSN.
The major disadvantage is the necessity of including extra hardware in the entire net-
work, thus, increasing the cost of the terminal. Moreover, WSN nodes are usually
battery-powered terminals. The requirement of sending two signals will increase the
energy consumption.

Both approaches obtain good accuracy. In [Sal04] the results show an average er-
ror of the distance estimates between 29 cm and 8 cm. However, both methods neither
increase the complexity of the network (rst TDOA method requires synchronized ref-
erence nodes) or the cost of nodes (second TDOA method requires more integrated
hardware in order to transmit to different signals).

Round-trip Time of Arrival (RTOA)

As previously discussed, WSN nodes are simple low-power devices. For that reason,
any algorithm that has to be applied to these devices is highly restricted. Both time
measurement techniques presented, although they could be used in WSN, increases
the cost and the complexity of the nodes. The previous time measurement techniques
achieve good distance estimates but impose a higher cost and complexity to the net-
work. In order to take advantage of the good accuracy achieved by time measurements
but trying to minimize these high requirements, a two-way time measurement tech-
nique is presented.

The Round-Trip Time method [Maz11] avoids the synchronization constraint that
TOA or rst TDOA methods impose, and also the hardware requirements of the second
TDOA method. The measurement starts when a node A sends a packet to a node B.
When the node B receives the packet, it retransmits it to the node A. At the end, node A
receives the packet; hence, it can calculate the propagation time because the difference
between the sending time and the receiving time at node A is twice the propagation
time plus the processing time at node B (obtained from specications or estimated at
calibration time).

The major advantage of RTT method is the avoidance of the clock synchronization
requirement or the inclusion of extra hardware. Nevertheless, a double transmission is
necessary in order to obtain a time measurement. Furthermore, the time delay between
the reception and the retransmission is not perfectly known, hence range measurements
will have an inherent error. Numerical results based on different experimental setups
are presented in [Maz11]. The results show that RTT measurements lead to an RMS
error between a minimum of 75 cm and a maximum of 2.51 m. The difference in
accuracy compared to that achieved by TOA or TDOA measurement is remarkable.
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Furthermore, although the hardware and synchronization requirements are eliminated
this technique needs the exchange of more packets in order to estimate the internode
distance.

Received Signal Strength (RSS)

Received Signal Strength (RSS) is the power measured by a receiver [Yan09]. This
measure is obtained from RF, acoustic or other kind of signals. Thus, these measure-
ments can be done during normal transmission without increasing the requirements in
terms of bandwidth or energy consumption. For this reason, they become one of the
simple and inexpensive ranging methods, compared to AOA or TOA-based approach.

However, distance estimates obtained through RSS measurements suffer from many
errors. The majority of these errors are induced by shadowing and multi-path effects.
These effects are present in real channels and they depend on the environment. These
two effects make the RSS measurements very difcult to model.

Usually, RSS-based distance estimations are based on the well-known radio prop-
agation path loss model. This model assumes that the power decays proportionally to
the distance, that is accordingly to 1

dα , where α is the path loss exponent. In order to
include the shadowing effects the received power is modelled as a log-normal variable
(Gaussian if it is expressed in dBs), resulting in:

PRx(dBm) = P0(dBm) − 10α log10(d) − vi, (2.4)

where P0 is the power received at a reference distance (usually 1 meter) and v i repre-
sents the shadowing effects modelled as a Gaussian with zero mean and variance σ 2

dB

expressed in dBs.
The adoption of a log-normal model is motivated by experimental results such as

those provided by [Pat01, Has93] and the analytical study by [Cou98]. Some results in
terms of accuracy are presented in [Kum09]. The authors carried out a measurement
campaign using TelosB motes. The average error achieved in the measured distances is
2.25 m, for distance between 1 and 8 meters. The RSS-based estimates achieve worse
accuracy compared to that achieved with time measurements. However, the major
advantage is that RSS provides a lower complex solution. Moreover, the accuracy of
the distances estimates can be improved if a more accurate propagation model is used.

Angle of Arrival (AOA)

Compared to time or RSS measurements, AOA techniques do not estimate distances.
AOA measurements estimate the direction of arrival of the signal transmitted by neigh-
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bour nodes [Pat05].

In [Pat05] two different ways of estimating angles are presented. First method,
which is the most common, estimates the angle of arrival by means of using a sensor
array; hence array signal processing is employed. Each sensor requires two or more
sensors placed at a known location. These sensors could be microphones, if acoustic
signals are sensed, or it could be antennas, if RF signals are used. The angle is esti-
mated following the same approach as in time-delay estimation. On the other hand,
in [Kul10] an AOA algorithm based on antenna arrays is presented. The measurement
consists of two phases. At rst phase, anchors transmit their location and a short omni-
directional pulse. Then, they transmit a beacon with a rotating radiation pattern. Taking
the advantage of beamforming techniques, the anchors are able to transmit directional
pulses every T seconds and changing the direction of the signal by a constant angular
step $β. Sensors have to register the arrival time between the rst omnidirectional
signal and the time of arrival of the pulse with maximal beacon power. This difference
in time ($t) allows the sensor to estimate the angle of arrival as:

β = $β
$t

T
(2.5)

The accuracy achieved in [Kul10] is an average error of 2 m in a scenario with 6 anchors
and 100 non-located nodes uniformly distributed in a 50 m x 50 m area. Increasing the
anchors one can achieve root mean square errors (RMSE) in the localization below the
1.5 m.

In [Ash04, Bac05], RSS measurements from directional antenna arrays on each
node were also used to estimate arrival angles. Through the ratio RSS between these
two antennas differently oriented it is possible to extract the angle of arrival of the
signal. Accuracy errors below 1 meter are achieved compared to that achieved with
distance-based algorithms.

However, the necessity of a higher number of antennas in the nodes makes these
measurements not easy to implement. The increase of cost and size of the nodes makes
the AOA a more complex solution although achieves good results in terms of localiza-
tion accuracy.

The AOA measurements are used with the triangulation localization algorithm. The
triangulation estimates the node position by means of angles between xed node and
reference nodes. Later, a similar method (lateration), but based on distances instead of
angles, is presented.
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Radio Interferometry

This technique [Mar05] is based on exploiting interfering radio waves. Although it
is also based in RSS measurements, the procedure of extracting the distance is more
complex. The basis of radio interferometry is to utilise two transmitters (two reference
nodes with known location) to create an interference signal and compare the phase
offset at two receivers. This phase offset can be measured using the RSS. By measuring
this relative phase offset at different carrier frequencies, it is possible to obtain a linear
combination of the distances between both transmitters and receivers and nally their
relative position.

The accuracy that this method could achieve is considerably high. Results achieved
in [Mar05] show that more than 50% of the range measurements achieve accuracy
lower than a quarter of the wavelength. In [Fox03] a tracking algorithm based on radio
interferometry measurements is presented. The mean absolute error achieved with
the mobile experiment is between 0.94 meters and 1.96 meters. The error achieved
with a stationary experiment is between 0.54 meters and 0.83 meters. The distance
estimates by means of RSS measurements achieved are more accurate than simply
using a propagation model. Nevertheless, the method presents some requirements,
such as, synchronization of some nodes and signal processing units able to estimate the
carrier offset.

2.3 Algorithms Classifications

The previous classication of the localization algorithms was referred to the internode
distance or angle estimates. Once these distances are computed next step is to estimate
node locations inside the network. This second phase, usually called location-update
phase, could be classied in two main categories: cooperative versus non-cooperative
methods and distributed versus centralized methods. These two classications will be
discussed in the following subsections.

2.3.1 Cooperative versus Non-cooperative

As previously discussed, if the localization algorithm wants to provide absolute loca-
tions, some nodes of the network have to know their position (through GPS measure-
ments or having a priori knowledge of their coordinates). Those nodes are known as
anchor nodes.

Non-cooperative approaches refer to those algorithms that allows a non-located
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node to establish communication only with anchor nodes. In other words, a non-located
node position is only obtained using only the information transmitted by the anchors.
Hence, the accuracy of those approaches are high-dependent on, on the one hand, the
density of anchors inside the network or, on the other hand, on having the presence of
long-range transmission anchor nodes.

This restrictive imposition limits the use of these techniques in large-scale net-
works. However, in small-scale networks, where nodes have a high probability of
having a direct communication with a high density of anchor nodes, the use of a non-
cooperative technique could become a great option.

Non-cooperative approaches are communication-restricted algorithms. On the other
hand, cooperative algorithms have not restrictions in the communication between any
nodes inside the network. Nodes are able to obtain information from all nodes inside
the network. All nodes (being anchor or not) inside the radio range can cooperate with
non-located nodes at the time of estimating their position. With this characteristic the
accuracy is not only dependent on the density of anchor nodes, hence they can offer
increased accuracy and coverage and be more suitable in a large-scale network, i.e. in
networks with a high number of networks and considered very complex to manage.

It is shown in Figure 2.5 an example of both strategies.

Figure 2.5: Cooperative and non-cooperative approaches

2.3.2 Centralized versus non-centralized

As previously commented, location-update phase has a second classication: central-
ized versus distributed. Centralized approaches are those algorithms in which one node
becomes a central unit. This central unit is the one that has to collect all data and it is
the only one that computes all the position estimates. On the other hand, in a distributed
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algorithm each node is responsible of estimating its own position.
In the following subsection different alternatives of both approaches are presented

discussing their strong points and when the conditions when they are not appropiate.

Centralized Algorithms

In some applications it is appropriate to implement a centralized WSN due to the nature
of the application, e.g. environmental monitoring, where the information should be
controlled by a central point. In this situation, the use of centralized algorithms in
order to locate the nodes inside the network is useful.

On the one hand, centralized algorithms provide good accuracy because the central
node has information of the entire network. Moreover, these nodes are less restricted in
terms of complexity. Hence, a more complex algorithm could be implemented. On the
other hand, all the information collected at the network must be transmitted to the cen-
tral node , and hence the trafc is increased. Furthermore, the centralization of all the
information reduces the scalability of the algorithm. Finally, the higher computational
capacity of the central node, the higher the cost of the central node.

MultiDimensional Scaling Multidimensional Scaling (MDS) [Bac05] was originally
developed for use in mathematical psychology and has many variations.

The most usual approach is the MDS-MAP [Sha03], which is a direct application of
the simplest kind of multidimensional scaling: the classic metric MDS. The basic idea
is to arrange objects in a space of a certain number of dimensions trying to reproduce
the dissimilarities observed in the objects.

Adapting to a localization algorithm, the objects are the nodes and the dissimilari-
ties are the distance estimates. By means of using the law of cosines and linear algebra
the MDS could reconstruct the relative positions of the points based on the internode
distances. The last step of an MDS algorithm is transforming the relative map obtained
to an absolute map based on the knowledge of the absolute position of some anchors.

MDS has become a potential solution in localization algorithms. These algorithms
introduce the opportunity of constructing a relative map without knowing any absolute
position. In [Sha03], authors present some accuracy results of the MDS methods. They
show that the accuracy of the MDS-MAP is highly dependent on the connectivity with
other nodes. In order to reduce the error, the algorithm needs a high density of neigh-
bour nodes (a minimum number of 12 cooperating nodes). Another important point is
the high accuracy achieved when range information is used instead of using connectiv-
ity information (range-free approach). In conclusion, it is possible to achieve an error
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of less than half the radio range of the nodes with a number of 12 cooperating nodes
and 4 anchors.

A major drawback when the network becomes so large is the necessity of having
all the information in a central node. The transmission and also the size of the matrix
that has to be processed could limit the applicability of this method in large-scale net-
works.In order to avoid this problem can be reduced by means of using map-stitching
techniques [Kwo08].

Although, MDS is originally developed as a centralized algorithm, distributed so-
lutions have also appeared [Cos06].

SemiDefinite Programming The SemiDenite Programming (SDP) is a subeld of
convex optimization. SDP basically consists in minimizing a linear function subject to
the constraint that an afne combination of symmetric matrices is positive semidenite.
Such a constraint is non-linear and non-smooth, but convex, so semidenite programs
are convex optimization problems.

The major problem of applying these techniques is that the localization problem
is a non-convex problem. Hence, the basic idea of an SDP algorithm is to convert
the non-convex quadratic distance constraints into linear constraints by introducing a
relaxation to remove the quadratic term in the formulation.

Three different approaches applying SDP algorithms are presented in [Bis06]. The
best result achieved is an error of the 5% of the radio range. This accuracy is highly
affected by the noise factor.

Moreover, when the size of the network increases the solution of a large SDP be-
comes more complex. This problem can be solved by means of dividing the network
into several clusters, reducing the complexity of the entire network [Bis06] and achiev-
ing a reduction in terms of computation time.

Maximum-Likelihood Estimation The MLE is a centralized localization algorithm
[Pat01]. As it occurs with MDS it can be solved in a distributed fashion. MLE is
a popular statistical method used for tting a statistical model to data, and providing
estimates for the model�’s parameters. One of its advantages is its asymptotic efciency.
In [Pat01], simulations carried out in a scenario with 40 non-located nodes achieve a
root mean square of 2.1 m.

Although it is possible to achieve a good accuracy two major problems appear when
this method is used. ML estimation is very sensitive to model perturbations, i.e. if data
measurements deviates from the statistical model assumed, the results obtained could
not be optimal. Moreover, ML is a biased estimator [Rah08]. For that reason authors in
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[Rah06] present an Optimisation to Maximum Likelihood algorithm in order to reduce
the bias introduced by the sum-of-squares.

Distributed Algorithms

In a distributed algorithm each node processes all the data that it collects from the net-
work. They themselves are responsible of estimating their own coordinates. This is
possible because the nodes share their position information. A distributed algorithm
is usually considered more efcient, in terms of computational cost, and scalable (an
important characteristic for large scale networks). On the other hand, distributed al-
gorithms have lower accuracy compared to that achieved with a centralized algorithm
due to the fact that the calculus is done at the nodes which have less computational
capacities.

Three distributed methods are presented: lateration, Bayesian and non-Bayesian
algorithms. Bayesian approaches consider nodes coordinates (x) as a realization of a
random variable, while non-Bayesian and lateration approaches consider x as a deter-
ministic parameter.

Lateration This rst method is based on the triangulation concept. In this case, the
lateration methods use the distances to some reference nodes instead of using angles.
This method is known as trilateration if three nodes are used or multilateration when
more than three nodes are used.

Taking advantage of the estimated distances obtained from neighbour nodes, non-
located nodes obtains their location by means of calculating the intersection point of the
circles centred at reference node positions with radius equal to the estimated distances
(see Figure 2.6). Hence, this technique is signicantly affected by the errors on the
distance measurement (ranging).

Once a non-located node estimates its position, it could become a new reference
node that could help the rest of the nodes, giving to non-located nodes the possibility
of exchanging information with other non-located nodes. Hence, a lateration method
can be considered a cooperative localization algorithm.

Non-bayesian Estimators The non-bayesian estimators [Wym09] are one of the cat-
egories inside the distributed algorithms. The basic idea is the minimization of a cost
function, such as LS or ML ((2.6)and (2.9) respectively), in a distributed way.

Each node estimates its own position following a three-step algorithm. The pro-
cedure starts with the distribution of their coordinates to their neighbours. Then each
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Figure 2.6: Lateration example.

node estimates the internode distances, using range metrics, to those nodes from which
the node has received their coordinates. Finally, the nodes recalculate their position
estimates by means of using both data. These steps are repeated until a convergence.

The problem that presents these methods is the possibility of not converging to a
global minimum. This fact is related with the use of a good starting point. Hence,
the selection of this initial point has to be taken into account when the algorithm is
designed. If an initial point near to the nal solution is not used, the algorithm could
not converge to a global solution, affecting the global accuracy of the algorithm.

The cost function of a LS method minimizes the error between both distances is:

CLS(x) =
N2∑

i=1

∑

jεSi

||zj→i − f(xi − xj)||2, (2.6)

where zj→i is the distance estimate between node i and node j, and f(x i − xj) is a
function that provides distance between node i and j using the coordinates of them.

On the other hand, ML position estimation depends on a statistical information of
the RSS. Having a vector pi that contains all the received RSS measurements made
by non-located node i and assuming that the communication channels are independent,
the likelihood function L is the probability, assuming that the position estimates are
correct (x), of the power that we would received and it is dened as:

L =
N2∏

i=1

∏

j∈Si

exp

(
−1

2

(
pij − RSSij

σdB

)2
)

, (2.7)

where pij is the power that we expect to receive given the position estimates.
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The maximum likelihood method the position estimates are obtained as the values
that maximizes the likelihood function, or, the values that minimizes the negative log-
likelihood function that is dened as:

f(p|x) = − log(L) =
N2∑

i=1

∑

j∈Si

1
2

(
pij − RSSij

σdB

)2

. (2.8)

Assuming the pathloss and shadowing model of the RSS of eq. (2.4), the ML position
is obtained by:

x ! argmin
x
f(p|x) = arg min

x

N2∑

i=1

∑

jεSi

(
10α

4σdB log 10

)2(
log
(

zj→i

f(xi − xj)

))2

.

(2.9)
Hence, the ML cost function is given by:

CML(x) = b2
N2∑

i=1

∑

jεSi

(
log
(

zj→i

f(xi − xj)

))2

, (2.10)

where b = 10α
4σdB log 10 . The major difference between both methods is that ML ap-

proach takes advantage of the statistics of noise sources and LS approach does not. A
comparison between both methods is shown in [Den06], where more concretely the LS
approach is a weighted one. All results presented show that the ML approach achieves
better accuracy in terms of positioning errors. The mean error values obtained with the
ML algorithm are between 1.2 and 1.5 meters in comparison to that obtained with a
WLS algorithm (values between 1.4 m and 1.75 m).

Bayesian Estimators Other methods used in the localization algorithms are those
based on the Bayesian estimators. First approaches of these methods were basically
developed for the localization of robots [Thr00]. Nowadays, many works have been
developed for sensor localization and tracking algorithms.

The basic idea is: given sensors measurements z, what is the probability of being at
position x (p(x|z)). This posterior density over the random variables x conditioned to
all received measurements z is usually called belief [Fox03]. By means of computing
the belief, it is possible to obtain the position estimate.

These methods are mostly divided in two different approaches [Dhi10]: Kalman
Filter (and their derivatives) and Sequential Monte Carlo lters (a.k.a particle lters).
The difference of both methods is that Kalman lters assume a Gaussian probabilistic
distribution of the system. The results in [Dhi10] present different algorithms that ob-
tain the position estimates using a Bayesian approach such as Kalman lter or particle
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lter. Results in [Fox03] show that both methods achieve a good accuracy but, in terms
of adaptability to the environment, the particle lter implementation is the best option.

In [Wym09], the authors present a distributed approach called factor graphs (FG)
that is a successive renement method used to estimate the probability density of sensor
network parameters. These methods are particularly promising for sensor localization.
Their procedure is done in three steps. First, each sensor initializes their belief. Then,
all nodes broadcast their beliefs to neighbours. Finally, each node updates their be-
lief with their own belief and the information extracted from the neighbour beliefs, i.e.
nodes iteratively rene their position. Results obtained in [Wym09] show that the dis-
tributed approach achieves similar results to those obtained with a centralized approach.
Results show that the 90% of the nodes achieve an error below 1 meter. Compared to
the results achieved by non-bayesian LS algorithm in which only the 40% achieves
error values below 1 meter.

2.3.3 Summary

The rst classication presented was between range-free and range-based methods. Al-
though both methods are suitable to be used in a localization algorithm for WSN, the
choice between one or another is based on the requirements of the nal application. On
the one hand, range-free methods provide less accuracy but the complexity of the mea-
surements is lower. On the other hand range-based methods present a higher accuracy
but the obtention of the range measurements is more complex. Time-based measure-
ments present high accuracy in terms of range error, but all the approaches presented
have high complexity that makes them not be the most suitable solution for WSN. The
same problem appears with the AOA method. Angle measurements require extra hard-
ware that increases the cost of the nodes and also the size. At last, in order to achieve
a good trade-off between accuracy and cost one of the most appropriate options is the
RSS-based range measurements. RSS-based methods present worse measurement re-
sults in terms of accuracy but they are the simplest range-based methods that could be
applied in a WSN.

A brief comparison between cooperative and non-cooperative algorithms has also
been presented. Cooperative algorithms have become an accurate approach for local-
ization algorithms in sensor networks. By allowing the cooperation with the entire
network, and not only with the anchor nodes, can increase the accuracy of the nal
position estimate. An important objective is to achieve a good trade-off in terms of
accuracy versus network complexity and cost, and the cooperative approaches are the
kind of algorithms that could achieve that. Furthermore, in a cooperative approach,
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where the cooperation between all nodes from the network is allowed, the number of
anchor nodes inside the network or the necessity of having long-range transmission
anchors could be reduced without affecting the localization accuracy. Also, a coopera-
tive algorithm is a scalable solution because it does not only depend on the number of
anchors nodes.

The last classication presented compares the centralized versus the distributed
algorithms. As discussed before, centralized approaches give a higher accuracy due to
the possibility of developing a more complex algorithm. Distributed approaches have
to be computed in each node so they have to be as simple as possible. On the other
hand, a centralized approach needs a higher trafc exchange, because all data has to be
sent to the central node and limits the capability of scaling the network.

2.4 RSS-based Cooperative Positioning

As previously commented, nding a method suitable to be used in all scenarios is prac-
tically impossible. In the previous section, the principal pros and cons of the different
methods have been presented.

In this section, the discussion is focused on a cooperative approach based on RSS
measurements. The main restrictions that a WSN inherently imposes have to be taken
into account in order to achieve the best possible algorithm. The economic and com-
putational costs and the complexity of the algorithm should be as lower as possible,
maintaining a certain position accuracy. Although RSS-based methods provide a lim-
ited distance estimate accuracy, it is the simplest possible approach. Furthermore, co-
operative approaches leads to the algorithm the possibility of increasing the robustness
and the scalability.

Let us consider a wireless sensor network with N nodes. There are N1 nodes,
whose exact locations are known (anchor nodes). The rest of the nodes N 2 = N − N1

do not know their position (non-located nodes). Those algorithms are normally divided
in two steps. The rst one is the measurement phase in which the algorithm uses
some range measurement in order to obtain distance estimates. The second one is the
location-update phase, in which by means of using the estimates obtained at the rst
phase and the nodes state information, the algorithm computes the position estimates.

2.4.1 Measurement Phase

As commented above, this section focuses on RSS-based cooperative approach. In
this kind of algorithms the rst phase of the algorithm consists in obtaining internode
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distances, in this case, by means of RSS measurements.
The simplicity of RSS-based measurements arises from the fact that they are ex-

tracted from normal transmission. Hence, they do not require extra hardware to be
measured. Although they are more unpredictable measurements, they become a very
attractive ranging method for practical implementation.

The most common sources of error that affect RSS-based distance estimations
are shadowing and multipath signals, which complicate the modelling of the channel
that nodes need to know a priori. Usually, RSS measurements are modelled through
the well-known radio-propagation path loss and shadowing model [Pat01]. Received
power is modelled as a log-normal distributed random variable with a distance depen-
dant mean. Hence, power received in node j from a signal transmitted by node i, P ij ,
is expressed as:

RSSij = Pij = P0 − 10αij log10 dij − vij (2.11)

where P0 is the power received in dBm at 1 m distance, dij is the distance between
nodes i and j in meters, parameter αij is the path loss exponent, i.e. the rate at
which the power decreases with distance, and vij ≈ N (0,σ2

dB) represents log-normal
shadow-fading effects, where the value of the standard deviation σ dB depends on
the characteristics of the environment. The small-scale fading effects are diminished
[Pat01] by time averaging; hence they do not affect the distribution of v ij . Since, static
scenarios are considered the major sources of error are shadowing and path loss.

In [Has93], the authors discuss that the lognormal distribution is often used to ex-
plain the large scale variations of the signal amplitudes in multipath fading environ-
ments. References inside [Has93] present the validity of this model for modelling an
indoor radio channel. Some results show that lognormal ts better than the Rayleigh
model. Furthermore, large scale variations of data collected at 900 MHz, 1800 MHz
and 2.3 GHz for transmission into and within buildings were found to be lognormal.

Given the received power RSSij in Equation (2.11), the density of P ij is [Pat03]:

fP |γ(Pij |γ) =
10

log 10√
2πσ2

dB

1
Pij

exp



−1
8

(
10α

σdB log 10

)2



log




d2

ij

d0

(
P0
Pij

) 2
α









2

 .

(2.12)
It is worth noting that P0 and Pij are not expressed in dBm, they are expressed in lineal.
Having the equation in (2.12), an ML estimate of the distance d ij could be derived as
[Pat03]:

δij = 10
P0−RSSij

10αij (2.13)
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An important result of the log-normal model is that RSS-based distance estimates have
variance proportional to their actual range [Pat05]. The standard deviation in decibels
is considered constant with range. This consideration implies that the multiplicative
factors are constant with range; hence, this explains the multiplicative error present in
the RSS-based distance estimates.

Accuracy Results

In order to check the accuracy of the distance estimates obtained through RSS mea-
surements different experimental values are shown below. The experimental values are
extracted in different scenarios and for different motes. In Figure 2.7 a comparison
between mica2 and iris motes from Crossbow [Xbo] is shown. Mica2 motes transmit
at 900 MHz while Iris motes transmit at 2.4 GHz. Results demonstrate that the higher
distance between nodes the higher the error of the distance estimate. The presence of
a multiplicative error presented in [Pat05] is observed in the obtained results. Also one
can observe that RF transmissions at 900 MHz are less affected by the shadowing and
multipath effects. Hence the accuracy of the distance estimates are better than those
obtained at 2.4 GHz.
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Figure 2.7: Accuracy of distance estimates in an indoor scenario (Comparison between
two different motes)

In Figure 2.8(b) both results are based on mica2 measurements. The density of
nodes is increased by means of increasing the number of anchor nodes (N 1). The re-
sulting effect is a reduction of the distance estimates�’ error. The improvement obtained
oscillates between 0.1 and 0.2 cm. The difference between having a high density of
nodes, hence a high number of closer nodes, is minimally shown in these results be-
cause node density has only varied from 0.25 nodes/m 2 to 0.27 nodes/m2.
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(b) Mean error on distance estimates (δij ) vs. real distance between
nodes

Figure 2.8: Accuracy of distance estimates in an indoor scenario (Comparison between
different number of anchors (N1))

Finally in Figure 2.9(b) a comparison between TOA and RSS-based distance esti-
mation accuracy is shown. The time and power measurements are obtained from [Pat].
The results show that the best accuracy, as expected, is obtained with time measure-
ments. The difference between both methods is, approximately, 75 cm. The accuracies
of both measurements are only comparable when the real distance between nodes are
below 3 meters.
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Figure 2.9: Accuracy of distance estimates in an indoor scenario (Measurements ex-
tracted from [Pat])
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2.4.2 Location Update Phase

Once the relative distances between nodes are obtained, the main goal is to estimate the
location of the non-located nodes with the help of anchor nodes and the rest of nodes
in the network.

As previously commented, in a distributed cooperative algorithm each node esti-
mates its own position by means of using information of all its neighbours. These
kind of methods could increase the accuracy and the scalability. From the previous
distributed approaches presented, this chapter will be focus in a non-bayesian Least
Square approach, which is a method that achieves a good accuracy with a reduced
complexity. The proposed methods that will be presented in the following chapter are
based on this method due to its simplicity. Moreover, the distributed LS method has
become an easy-deployable method able to be used in WSN, as it will be seen later.

The position estimates for each non-located node are obtained by means of the least
squares (LS) criterion. The localization algorithm has to obtain the set of non-located
node positions that minimize the difference between estimated distances at the rst
phase (δ) and the distances computed using such position estimates (d). In particular,
the problem consists in minimizing the following cost function:

CLS(x) =
N2∑

i=1

∑

jεSi

(δij − dij (xi − xj))
2 . (2.14)

where dij(xi − xj) = ‖xi − xj‖ is the distance between nodes i and j, calculated with
the estimated position (or real coordinates if node j is an anchor) of nodes i and j, S i is
the group of nodes (anchor and non-located) that cooperates in the position estimation
of non-located node i, and x are the coordinates of nodes.

The cost function is minimized by means of optimizing the non-located nodes co-
ordinates. The minimization will be obtained by means of calculating the derivative of
(2.14) with respect to x i:

∂CLS

∂xi
=
∑

j∈Si

(δij − dij)
2

∂xi
+
∑

k∈Si

(δki − dki)
2

∂xi
. (2.15)

Measurements of the second summation are not available in node i [Wym09], i.e.
the RSSki is the measurement of the power received at the node k from node i. If we
want to include these measurements, each node k should retransmit this value to the
node i. The number of message is increased. As a result, the cost function adopted by
each node can be rewritten as:

CDLS(xi) =
∑

j∈Si

(δij − d(xi − xj))
2 . (2.16)



32 Chapter 2. An Overview of Cooperative Positioning and Tracking Algorithms

A distributed cost function results, so each node is responsible of obtaining the mini-
mization of this cost function. Many methods could be applied in order to solve this
minimization. A gradient descent is one of the simplest approaches. Hence, the dis-
tributed cost function in (2.16) is iteratively minimized. These algorithms may not
reach a global minimum when a good starting point is not used. Nevertheless, it is a
simple method with a low computational complexity.

The gradient of the cost function is:

∇xiCDLS(xi) = ∇xi




∑

jεSi

(δij − ||xi − xj ||)2


 =
∑

jεSi

(δij − dij (xi − xj)) eij,

(2.17)
where eij = xi−xi

||xi−xj|| is the unit vector that takes the orientation between the node i
and node j. So, the estimate of xi, can be iteratively computed by using the gradient
descent algorithm as follows:

x̂i(t + 1) = x̂i(t) + γ
∑

jεSi

(δij − dij)eij, (2.18)

where γ is the step length factor.
This algorithm becomes a simple, low computational approach that obtains position

estimates in a cooperative and distributed way by means of RSS measurements.

Accuracy Results
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Figure 2.10: Accuracy of the location update phase (Distributed LS algorithm).

In Figure 2.10, a WSN scenario of 50 m x 50 m with 24 anchor nodes and 30 non-
located nodes normally distributed is considered. One can observe in Figure 2.10(a)
that the anchors are distributed following the optimal position presented in [Ash08].
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The mean absolute error obtained in the position estimates as a function of the number
of cooperating nodes is presented in Figure 2.10(b). As commented previously, the
higher the number of cooperating nodes, the lower the error obtained. However, it is
remarkable that the error is not monotonically decreasing and the error is saturated
for high values of cooperating nodes. This is basically due to the effect commented
previously: having a node further away produces a higher error in the distance estimate.
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Figure 2.11: Comparison of position estimates obtain with TOA-based vs. RSS-based

Taking the measurements of [Pat] the results show the difference, in terms of ac-
curacy, between TOA-based or RSS-based measurements. As it is shown previously
in Figure 2.9(b), the accuracy of the internode distance estimates is higher when TOA-
based is used. This fact is reect in the mean absolute error obtained with both cases.
The location coordinates obtained with TOA-based have, in mean, a mean error 0.5 m
lower than the results of RSS-based algorithm. As previously commented, if the ac-
curacy is the major requirement of the algorithm, TOA-based approaches are the most
suitable solutions. On the contrary, if the algorithm considers that the simplicity is
more important that the accuracy, RSS-based solutions will be more suitable.

2.5 Tracking Algorithms in Wireless Sensor Networks

The actual increase trend of implanting wireless sensor networks has helped the ap-
pearance of many different applications. One of them is the target tracking. The nal
purpose of this application is to determine the presence of an object inside the network
and to estimate the path that this object follows. The introduction of these techniques
could be applied to many nal applications.

Moreover, wireless sensor networks have some limitations that have to be taken
into account at the time of designing a tracking algorithm. Limitations in energy, the
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processing capacity of nodes, a reduced bandwidth of transmissions or the looses of
communication in large networks are the main drawbacks that a wireless sensor net-
work suffers. Trying to obtain algorithms that avoid these obstacles has become of
interest, in recent years, for researchers.

In [Li10, Bha09], both works present a classication of the different existing meth-
ods. A very useful classication is the one based on the network architecture. The au-
thors in [Li10] propose two different kind of networks: hierarchical and peer-to-peer.
Tracking algorithms are divided in two main categories depending on the structure of
the network in which the algorithm will be used. In Figure 2.12, a network-based
classication tree is presented.

Naïve activation based

Tree-based tracking

Cluster-based tracking

Hybrid method

Embedded lter 
based consensus

Alterning-direction
based consensus

Hierarchical 
network

Peer-to-peer 
network

Target 
Tracking 
in WSNs

Dynamic Clustering

Space-time clustering

Static Clustering

Figure 2.12: Classication of tracking algorithms in WSNs Classication extracted from
[Li10]

In the following subsections the different tracking methods, organized using the
classication in Figure 2.12, will be presented.

2.5.1 Tracking Methods for Hierarchical Networks

Hierarchical networks are those networks in which nodes are able to monitor and report
the information to a sink or central node in a multihop-based communication. It is pos-
sible to differentiate between normal nodes and sink nodes. First ones are those nodes
that report the information collected to the sink nodes; and sink nodes are those that
receives all information and transmit they to an outdoor network. Hence, the network
force a hierarchy between normal nodes and sinks.
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Naı̈ve-based Activation Tracking

The näve-based tracking algorithms [Guo03] are those methods in which all nodes are
active during all time. Nodes recollect measurements and they send them to a base
station, which is the responsible of estimating the position and predicting the track of
the target. These methods are similar to the centralized approaches presented in section
2.3.2. On the one hand, they offer a good accuracy. On the other hand, they are the
worst algorithms in terms of energy efciency.

Tree-based Tracking

In order to improve the efciency of the previous algorithms, tree-based tracking is
proposed. One can nd in the literature different methods such as: STUN [Kun03],
DCTC [Zha04], DAT [Lin06] and DOT [Tsa07].

• Scalable Tracking Using Networked sensors (STUN)

In this tree-based algorithm nodes that are the responsible to track the target are
the normal nodes. Although they do not estimate the target path. The information
collected by these normal nodes is sent to the sink nodes using intermediating
nodes.

In order to avoid sending correlated information, these intermediating nodes do
not act only as repeating nodes. When they receive information they compare
with the information sent at a previous time. If the information is similar to the
previous one, the intermediating node discard this new packet received.

Moreover, STUN algorithms are also characterized by the assignation of a cost
value to every link. These cost is related with the Euclidean distance between
nodes. Hence, the algorithm give a higher weight to closer nodes in order to
achieve a higher tracking accuracy.

• Dynamic Convoy Tree-Based Collaboration (DCTC)

The DCTC is an algorithm that relies on a tree structure that is dynamically
changed. The algorithm has the possibility of including or extracting nodes from
the tree as the target moves. Once the target enters in a detection region, the
nodes that detect the target collaborate between them to form a tree and select
a root. This root collects all the information and tries to rene the information
collected by the nodes. The root is the responsible for estimating the future path
of the target and, hence, activate or deactivate the necessary nodes.
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• Deviation Avoidance Tree (DAT)

The DAT algorithm propose a new tree structure for the tracking algorithm. The
algorithm has to different stages: rstly the approach tries to reduce the update
cost, while the second part tries to reduce the query cost. The rst stage tries
to reduce the communication cost of location update through two different solu-
tions: the deviation-avoidance tree and the zone-based deviation-avoidance tree.
A query cost reduction algorithm is developed for the second stage, that adjusts
the tracking tree formed at the previous stage in order to minimize the cost.

Results in [Lin06] show that Z-DAT and DAT offers similar results and outper-
forms the results obtained with a Näve algorithm. In both features analysed,
query cost and update cost, the two developed approaches obtain better results.

• Dynamic Object Tracking (DOT)

The DOT is developed in order to obtain an accurate and energy efcient tracking
algorithm. The algorithm achieves an energy consumption reduction through
the activation of only the necessary nodes. The nodes collect the neighbour
information through a hello message. Thanks to this information, the nodes
create links with their neighbour nodes, forming the Gabriel graph. Then the
source that wants to track the target sends a request to the nodes of the network.
Nodes that sense the target judges whether they are near-node or not. If this node
considers that is a near-node, it replies with a message to the source. Then the
near-nodes awake the neighbouring nodes that will help to track the path of the
mobile node.

Cluster-based Tracking

The main purpose of the appearance of these methods is to facilitate the collaborative
data processing in centralized networks. The major cons is the lower grade of scala-
bility of these kind of networks. These algorithms divides the network into clusters.
These clusters are formed by a cluster head and several slave nodes. The different
clustering methods are presented in the following paragraphs.

• Static Clustering

Static clustering has become the simplest strategy. The different clusters are
decided at the beginning and they are xed. Although it is a simple method,
this method has many drawbacks. The algorithm is not adaptable to dynamic
scenarios. The rst distribution decided a priori could not be the optimal one in
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order to accurately track the target. Also, the possibility of sharing information
between slave nodes of different clusters is prohibited. Hence, the cooperation
between is really limited. Moreover, when the network distribution is xed,
the failure of a cluster head node could cause a failure of the entire algorithm;
because, cluster head are the only nodes that could communicate with another
clusters through the other cluster heads.

• Dynamic Clustering

Compared to the previous scheme, dynamic algorithms form the cluster depend-
ing on different events. The normal procedure is the following. When a node
senses a signal of interest with a high signal-to-noise ratio (SNR), it offers itself
to act as a cluster head. If more than one node is offered, a decentralized proce-
dure is applied in order to decide the best node. The rest of volunteer nodes are
invited to become members of the cluster. In these algorithms, only one cluster
is active, hence, the redundancy of information sensed by more than one anchor
would be reduced. Moreover, a node could dynamically belong to as many clus-
ter as necessary. Hence, at each time the dynamic clustering is using the best
possible nodes. Although these algorithms reduce the energy consumption and
take advantage of the most suitable nodes, the complexity is increased, compared
to the static clustering.

An example of a dynamic clustering algorithm is presented in [Olu07]. The
algorithm works as following: when a node detects a target, it takes some mea-
surements and gives them a weight through the Reduced Area REporting-Area
(RARE-Area) algorithm. If this weight is above a threshold, node sends a bea-
con and waits until it receives two beacons from two different nodes. With the
beacon information received the node is able to estimate the position through a
trilateration method and to send the position estimate to the sink node.

Moreover, authors also propose to use a Reduction of Active node REdundancy-
Node (RARE-Node) algorithm. The main difference between using or not the
RARE-Node algorithm as a complement of the RARE-Area algorithm is the
following: if the RARE-area algorithm is only applied, the node that has a detec-
tion above a threshold and receives information from two different nodes sends
the position estimate to the sink; if a RARE-Node algorithm is also applied,
the nodes has to verify if there is any other node sending a broadcast message.
Hence, the algorithm tries to minimize the redundancy of information sent to the
sink.
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• Space-time Clustering

The authors in [Pho03] present an algorithm with a high accuracy. As the pre-
vious approaches, the DSTC dynamically organises the cluster in order to better
sense the target. The DSTC Localization algorithm [Fri03] is based upon the
Closest Point of Approach (CPA) of a target to the nodes in the sensor network.
CPA works as follow: sensor nodes receive a local maximum of an acoustic sig-
nal in time. Then, this sensor broadcasts the receiving time and the intensity
value that it has sensed. After a set time, if a node has received at least 4 other
CPAs, and is the receiver of the highest intensity CPA in its local area, then it
declares itself to be a local cluster head, and estimates the source location as a
weighted mean of CPA positions, with the square root of the CPA intensity as
the weight. Only one source is the responsible of estimating the location per
local spatial intensity maximum. The error obtained [Pho03] is approximately 4
meters when the number of nodes inside the cluster is higher than 20.

Hybrid Methods

The hybrid methods are those methods that accomplish different requirements of dif-
ferent methods. The following approaches form part of this category: Distributed Pre-
dictive Tracking (DPT) [Yan03], Dynamic Clustering for Acoustic Tracking (DCAT)
[Che04] and Hierarchical Prediction Strategy (HPS) [Wan08].

The main purpose of the DPT is to obtain a distributed and energy efcient tracking
algorithm through a clustering algorithm. Once the clusters are formed, the border
nodes of the clusters are always awake in order to sense if a node enter or leave the
cluster. On the other hand, the other nodes only are able to sense if the cluster head
allows them. The results show that the algorithm is robust in front of a possible node
or estimation failure and it is capable to have a quick recovery to these failures.

The DCAT is a decentralized dynamic clustering based single target tracking algo-
rithm. The algorithm forms the cluster through the Voronoi diagrams. Only one node,
which receives an acoustic signal above a threshold, becomes an active cluster head.
Then, it is the responsible of asking to the other nodes if they want to join the cluster.
Hence, this new cluster is the responsible of estimating the target position. Once the
position is estimated the cluster head retransmits the position to the network sink. The
results [Che04] show an average error of 4.35 meters. Moreover, the lower value of
messages transmitted compared to other approaches makes this algorithm be energy
efcient.

The HPS algorithm forms the cluster through the Voronoi division and the target
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is positioned through a Least Square Method. The network is formed by two different
nodes: normal nodes (NN) and cluster heads (CH). A hierarchy is assumed in the
network in which NNs are only able to communicate with their CH, and CHs are able to
communicate with other CHs and the NNs inside their cluster. The accuracy obtained
is analysed depending on different features, such as the active radius, the number of
clusters, etc. The accuracy achieved oscillates between 0.5 meters and 0.2 meters.

2.5.2 Tracking Methods for Peer-to-Peer Networks

In all the previous cluster or tree methods, many nodes are active to sense and all the
information sensed by this nodes has to be processed at a central or cluster node. Hence,
the central node has to be able to process a great amount of information. Furthermore,
if a central node fails, the network could also fail.

Another kind of network structure is also deployed. The peer-to-peer networks
offers the possibility of limiting the number of active nodes, as nodes only rely on one
hop communication with their neighbours. Hence, many of the limitations that previous
schemes have are not present in peer-to-peer networks. In the following sections the
usual strategies are presented.

Embedded Filter Based Consensus

In peer-to-peer WSN is common to use distributed estimation algorithms that basically
are based on successive renements of the information collected by all nodes. As it
is commented previously, these distributed strategies are formed by two stages. But
the distributed strategies presented in section 2.3.2 are focused on a static environment.
Hence, the dynamic case is still not contemplated.

The most common algorithms that takes into account the mobility of the nodes are
the well-known Kalman Filter and their variants (Distributed Kalman Filter (DKF), Un-
scented Kalman Filter (UKF) or Extended Kalman Filter (EKF)). The role of consensus
lters is to estimate global information but with the use only of neighbour information.
In [OS07], the authors present three different DKF approaches. The rst one is a mod-
ication of the work present in [OS05]. This method is a continuous-time DKF. The
two following approaches, inspired in this rst algorithm, are discrete-time Kalman-
Consensus ltering. The followed objective of these two approaches is to reduce the
disagreement of the estimates between nodes. In order to achieve this purpose, in the
second approach is added an ad hoc consensus step, and a consensus term is added in
the third approach. The best results are achieved with the third algorithm although the
second DKF algorithm has a similar performance.
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Another method inside this category are the Particle Filters (PF) [Aru02, Ahm10].
The PF is a suboptimal nonlinear lter that performs estimation using sequential Monte
Carlo methods to represent the probability density function of the target state. Com-
pared to the KF approaches, PF does not assume that the system and the measurement
processes are linear. The major advantages between PF-based algorithms in front of
nonlinear lter approaches, such as EKF, are: the presence or absence of the target is
modelled by the probability function; the algorithm is able to track random movements
of a target; the non-Gaussian noise in sensor readings could be incorporated in the
lter; and, the detection of targets could be done at different levels.

The work presented in [Ahm10] divides the PF algorithm operation in three parts.
First, the target model is presented. It is based in a binary Markov process that models
the detection or not the target. Then the sensor model is presented. In this work, acous-
tic measurements are done. The nodes is made by calculating the variance of 1000
acoustic samples, that are model approximately as a Gaussian distributed measure-
ment. Finally, the estimation algorithm is developed. The basic function of a particle
lter is to approximate the posterior density of the target state, given all measurements,
by a set of P points, called particles, and corresponding weights.

Alternating-direction Based Consensus

The appearance of the alternating-direction based consensus algorithms has been mo-
tivated by the continuously changing environment in which tracking algorithms are
applied. All the approaches presented are based on the alternating-direction method
of multipliers developed in [Ber97]. This numerical method has been proved to be
efcient in solving the distributed estimation in [Sch08b, Sch08a].

This algorithms are considered adaptive algorithms based on in-network process-
ing of distributed observations and they are useful for tracking signals in peer-to-peer
networks. In [Sch09] a fully distributed distributed least mean squares (D-LMS) is de-
veloped. It offers a simple and exible algorithm that minimizes the squared error cost.
The algorithm is also robust in front of node failures that could affect the accuracy of
the algorithm.

The authors in [For08] have also developed a distributed algorithm based on the
expectation-maximization (EM) concept, more concretely a Consensus-based distributed
expectation-maximization (CB-DEM) is presented. The EM algorithms are based on
two steps. The E-steps rely on local information. The novelty of this algorithm is
the reformulation of the M-step. In this step, the data collected is maximized. The
presented algorithm divides the maximization into local subproblems that nodes has
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to solve iteratively by only communicating with their single-hop nodes, until a global
consensus is reached. The simulations carried out demonstrate that the centralized and
the distributed approaches presented reaches the same consensus, hence the distributed
approach is a valid solution to be used.

2.6 RSS-based Tracking Algorithms

As it has been discussed previously in Section 2.2.2, the RSS measurements have be-
come the simplest range measurements usable in wireless sensor networks. Our interest
is focused on this kind of measurements due to their simplicity. Although the previous
works can be used with any range measurement, a brief revision of the state-of-the-art
of the RSS-based tracking algorithms is presented. In order to classify the methods, the
algorithms will be divided depending on the model of the RSS measurements. Three
different classications will be used: connectivity-based, RSS radio map-based, and
pathloss and shadowing-based algorithms.

2.6.1 Connectivity-based Algorithms

The tracking algorithm presented in [Cab07] is based on a dynamic weighted multidi-
mensional scaling algorithm. The internode information is obtained through connec-
tivity information. The authors use these range-free approaches instead of estimating
distances using range measurements. This decision is made due to the poor accuracy
that RSS-based distance estimates could offer. In this case RSS measurements are used
to determine whether if nodes are connected or not.

Different results of the reconstruction error are presented. The values show that the
higher value of the coverage radius, the higher the reconstruction error. Also the error
is higher when the root mean square error (RMS) of the anchor positions is increased.

2.6.2 RSS Radio Map-based Algorithms

A work based on radio map is the one presented in [Zho06]. The Wireless Indoor
Tracking System (WITS) needs a previous measurement campaign of the RSS. Dif-
ferent footprints at various known locations are collected at the nal scenario. These
measurements are stored and they are able to be used by the xed network. When the
mobile node receives a signal from a xed access point, it obtains the RSS from the
measurement and it retransmits the measurement to the access point. The access point
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converts the RSS measured by the mobile node into a position through the RSS radio
map constructed a priori.

The authors in [Mor06] present a tracking system based on a priori map of RSS
measurements. More concretely, the RSS received y l at the mobile node position xt is
based on a log-normal stochastic model as:

yl (xt) = ȳl (xt) + vl,t (dBm), (2.19)

where ȳl (xt) is the effects of the static obstacles and attenuation propagation, a deter-
ministic value obtained with a previous measurement campaign, and the random effects
of people or small objects moving are represented as v l,t ∼ N

(
0,σ2

l (xt)
)
. Both vari-

ables, ȳl (xt) and vl,t, are deterministic and obtained through a previous measurement
campaign. The same model is used in [Ber08].

2.6.3 Pathloss & Shadowing Model-based Algorithms

The work in [Guv03] obtains distance estimates through the RSS measurements. The
authors has made an experimental study of the indoor attenuation. The attenuation
between two nodes separated a distance d, known as Path Loss (PL) is given by:

PL = FSPLREF + 10n log10(d), (2.20)

where n is the attenuation factor or path loss exponent and the FSPL REF is the path
loss calculated at the far-eld of the antenna. The authors has carried out different
experimental measurements and they present different polynomial function that ts the
signal strength data for different oors. Also they present a table with the attenuation
that presents different materials. Finally, they present a comparison between different
bayesian tracking models. The best result is obtained with a Kalman smoother (it
obtains a 2.48 m of mean error).

In [Ber08], authors have also presented another tracking system modelling the RSS
measurements with the pathloss and shadowing model (see (2.4)). The mobile node
sends a broadcast message to the network. The anchors store those messages that have
an RSS higher than a RSS threshold. Then anchors estimate the distance thanks to the
ML estimator of (2.13). They send these distance estimates and their IDs to the mobile
node. Then, mobile node estimates its position by means of three different estimators:
Maximum Likelihood, Least Squares and Maximum Ratio Combining. The results
obtained show that ML obtains the best results. Errors oscillate between 0.2 m and 1.2
m. MRC obtains the worst errors. They oscillate between 0.25 m and 4.5 m.



Chapter 3

On-line Path Loss Estimation &
Node Selection Localization
Algorithm

WHEN a positioning algorithm is presented and compared with similar approaches
the rst gure of merit that developers remark is the accuracy that the algo-

rithm offers. As previously commented, accuracy is not the unique purpose that a
localization algorithm has to pursue and at some occasions, it could be less important
than other gures of merit, such as energy consumption, scalability, complexity, etc.

In this chapter, we propose the introduction of two proposals: a node selection
and an on-line path loss estimation mechanism. With both of them we try to full
the requirements imposed by the WSN characteristics by means of obtaining good
accuracy results.

3.1 Introduction

One of the important characteristics of the WSN is that their components should be
as energy efcient as possible. The nodes that conform a WSN are normally battery
powered elements. An important purpose is to achieve a long-life network, hence it
is necessary to save energy limiting the transmissions and developing energy-efcient
algorithms.

In order to reduce the energy consumption, our proposal is to reduce the message
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exchange. Basically, our proposal reduces the energy consumption by means of intro-
ducing a node selection mechanism that will limit the number of nodes cooperating.
With this mechanism, we try to achieve a good trade-off between accuracy versus en-
ergy consumption.

Furthermore, the simplest the method, the lowest the energy consumed. RSS mea-
surements are the simplest way to obtain inter-node distances, hence a good option to
be energy-efcient. As previously explained, these are the range-based measurements
that offer less accuracy. This is highly related with the model used to obtain the distance
estimates. Hence, the better the model, the more accurate estimates. For that reason,
our proposal is to introduce an on-line path loss estimation. With this estimation, we
to provide a better model that is able to adapt to every environment.

Moreover, the algorithm need not only be able to adapt to the environment, it also
should be able to adapt to the size of the network. Scalability is another important
design feature that has to be taken into account. Distributed approaches allow more
scalability to the localization algorithm giving the opportunity to implement it in a
small-scale or in a large-scale network. As previously commented, a distributed coop-
erative LS is the selected algorithm that will be modied by our proposals.

In this work, we focus on a cooperative distributed localization method based on
RSS measurements. The choice of a distributed strategy is motivated by the desire
to reduce the necessity of transmitting all the network information to a central node.
With this adoption each node modies, in the second phase, its own state through those
estimated metrics and the nodes state information. We also adopt a cooperative tech-
nique. Although cooperative techniques could increase localization accuracy, cooper-
ation with distant nodes could introduce a higher degradation in the estimate if RSS
measurements are used. This is because the error introduced in the measurements can
be multiplicative to the distance when RSS measurements are considered. In addition,
allowing the cooperation with more nodes increase the consumption of energy. The
introduction of node selection strategies allow to the localization algorithms to mini-
mize the energy consumption and the cooperation with further nodes while maintaining
location accuracy.

3.2 Scenario Description

Let us consider a wireless sensor network with N nodes. There are N1 nodes, whose
exact locations are known (anchor nodes). The rest of the nodes N 2 = N − N1 do
not know their position (non-located nodes). The main goal is to estimate the location
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of the non-located nodes with the help of anchor nodes and the rest of nodes in the
network by means of a cooperative strategy. We consider an RSS-based distributed
cooperative algorithm for location estimation. In the following table 3.1 are dened
the basic parameters used in this chapter.

Table 3.1: Scenario Parameters.

Parameter Description
N2 Number of Non-Located Nodes
N1 Number of Anchors
Si Vector of cooperating nodes
NSi Number of elements of cooperating group
δij Distance estimate through RSS measurements
dij Distance estimate through node coordinates
RSS0 Received signal strength at a reference distance
αij Path Loss exponent

3.2.1 First Phase - Measurement Phase

The rst phase of a range based localization algorithm consists in obtaining intern-
ode distances through, in our case, RSS measurements. As previously commented,
RSS-based distance estimates are obtained by means of modelling the power received
with a radio propagation model. The most usual model used is the well known radio-
propagation path loss and shadowing model. A more detailed explanation is presented
in subsection 3.5.2.

3.2.2 Second Phase - Location-Update Phase

Once the relative distances between nodes are obtained, the position estimates for each
non-located node are estimated by means of the least squares criterion. Position esti-
mates are calculated by obtaining the set of non-located node positions and path loss
exponents that minimize the difference between estimated distances at the rst phase
and the distances computed using such position estimates. In particular, the problem
consists in minimizing the following cost function:

CLS(x,ααα) =
N2∑

i=1

∑

jεSi

(δij(αij) − dij(xi, xj))2, (3.1)

where dij(xi, xj) = ||xixj || is the distance between nodes i and j, calculated with the
estimated position (or real coordinates if node j is an anchor) of nodes i and j, S i is the
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group of nodes (anchor and non-located) that cooperates in the position estimation of
non-located nodei, x are the coordinates of nodes, and α the set of all path loss expo-
nents of all links. The minimization of the cost function is carried out in a distributed
fashion by means of using a gradient descent approach. We adopt a distributed strat-
egy due to its scalability and robustness. A more in-depth explanation is carried out in
subsection 3.5.4.

3.3 Energy Consumption

Wireless sensor networks nodes rely on low data rates, very long battery life (several
months or even years) and very low computational complexity associated with the pro-
cessing and communication of the collected information across the WSN. In order to
maintain the battery life, the reduction of the energy consumption is an important point
in WSN. In that sense, many works present different approaches to model the energy
consumed by a WSN [Zou03, San09, Wan06, Mal07, Hei02].

The majority of these works presents a model that depends on the energy trans-
mission per bit, hence, per message. The models presented in [Zou03, San09] model
the energy consumption as the sum of the energy cost of transmission and the energy
cost of reception. Hence, as the number of nodes that receive or transmit increases, the
energy consumed by a node is higher.

In [Mal07], the authors present the transmission and the reception costs, using the
CC2420 specications. The transmission cost is composed by the sum of two terms:
the transmission startup cost PT0, and the cost of the power amplier to transmit the
packet PTA. More concretely, the total energy consumed per transmission is:

PT = PT0 + PTA = V PROON Tstartup + Cplevel (L/Trate), (3.2)

where V is the voltage determined by the current battery voltage; P ROON is the current
usage of the state Radio On Oscillator On; Tstartup is the time needed to start the node;
Cplevel the current necessary to transmit at a certain power level; L is the packet length
in bits; and, Trate is the necessary transmission rate in bits. On the other hand, the
reception cost is modelled as:

PR = V CRx (L/Trate), (3.3)

where CRx is the necessary current to receive a message. This model depends on the
length in bits of the messages received or transmitted by the nodes.
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The authors in [Hei02] introduces also a distance dependency on the power con-
sumed at the transmission time. The model presented is:

ET (d) =





ETelec + εfs d2 d < d0

ETelec + εmp d4 d ≥ d0

(3.4)

where ET is the energy consumed; ETelec are energy consumption per bit not distance-
dependant; εfs and εmp are energy consumption for both models, the free-space (fs)
and the multipath (mp); d the distance between nodes; and d 0 a distance threshold.
Another distance-dependent energy consumption model is presented in [Wan06]. In
this occasion the model is dened by:

PT (d) = PT0 +
ε dα

η
, (3.5)

where ε is a constant that depends on the power transmitted and the characteristics of
the receiving and transmitting antennas; d is the distance; α is the pathloss exponent;
and η is the ratio between of RF output power to DC input power and is called the drain
efciency. Both methods includes the necessity of knowing the distance between both
nodes in order to estimate the power consumption necessary to reach a node located at
a distance d.

Having in mind the different methods present in the literature, we notice that the
energy consumption is basically dependant on the number of transmissions that are
done by the nodes. Nodes only interact with their group of cooperating nodes. The
reduction of cooperating obtained with our proposed node selection mechanism should
imply an important reduction of the energy consumption. Now we present our energy
consumption model in order to reect the effects produced in the network.

Broadcast 
Message

Nodes 
responses

Creation 
of group

Figure 3.1: Creation of group Si

Each node i has to create its own group of cooperating nodes S i (see Figure 3.1).
At the beginning, each node i sends a broadcast message with its coordinates. Only
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those nodes that receive this message answer with their node id and their location co-
ordinates. With the received messages, each non-located node can create its own S i

group. Once these groups are created, the exchange of messages is only done between
cooperating nodes.

Having the total number of cooperating nodes, we assume that the total amount of
energy consumed by the network follows the model:

ε = (µRx + µTx)

(
N2∑

i=1

NSi − N2

)
κ, (3.6)

where κ is the number of iterations of the algorithm, NSi the number of nodes inside
Si, and µRx and µTx (e.g. a value equal to 400 nJ/sec is used in [Zou03]) are the energy
consumption dedicated for peer to peer transmission and reception procedures, respec-
tively. It is noticeable, that this model presents some differences compared with the
model presented in [Zou03]. It is supposed that the energy per transmission is always
the same instead of having an energy consumption depending on time. The purpose
behind a node selection mechanism is the reduction of the trafc. Hence, the energy
consumption model presented only reects the impact that selection mechanisms could
produce. Furthermore, it is only taken care of the energy consumption at the transmis-
sion and reception time.

The energy consumption is an increasing function on the number of cooperating
nodes (NSi). The introduction of a node selection mechanism reduces the number of
cooperating nodes; hence the energy consumption decreases.

Our energy consumption model reects only the consumption in terms of messages
transmitted. The node selection mechanism proposed is devoted to reduce the cooper-
ation with more nodes; hence, less messages exchanged. For that reason, we only take
into account the number of messages transmitted by a node inside a network, hence,
we assumed a more general method that could be rened, if it takes into account issues
such as, cost per bit or the cost of the power amplier.

3.4 Node Selection Mechanisms

In this chapter, we focus on a cooperative distributed localization method based on RSS
measurements. A cooperative approach allows the algorithm achieve better accuracy
results. Nevertheless, the computational cost is increased because nodes receive more
information from more cooperating nodes. Furthermore, a higher packet exchange in
the network will be necessary; hence, it exists a higher probability of loosing packets
due to a collision. Besides, cooperation with distant nodes could introduce a higher
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degradation in the estimate due to RSS measurements are considered. This is because
the error introduced in the measurements are multiplicative to the distance.

The introduction of node selection strategies allow to the localization algorithms to
minimize the energy consumption and the cooperation with further nodes while main-
taining location accuracy.

More concretely, the benets of a node selection mechanism are:

• Reducing the number of cooperating nodes; hence, following the previous energy
consumption model, a reduction of the energy consumption.

• Reducing the number of packet exchanges inside the network; hence, the proba-
bility of packet collisions is reduced.

• Decreasing the probability of working with further nodes; hence, the multiplica-
tive errors of the RSS-based distance estimates achieved are lower.

The results of Figure 2.10 of the previous chapter show that a reduction of the
number of cooperating nodes does not seriously affect the accuracy of the localization
algorithm. The mean absolute error versus the mean number of cooperating nodes
(N̄Si) is not a monotonically decreasing function. A local minimum, that has a similar
value to the global minimum, is achieved with a lower number of cooperating nodes.

3.4.1 Related Work

In order to avoid the use of a large number of cooperating nodes, i.e. having a lower
number of nodes inside each group S i, different node selection mechanisms are pro-
posed. The major purpose behind the node selection is to reduce the packet exchange
inside the network, thus the reduction of computational effort done by each node and
the energy consumed by them. Some works have presented different approaches in
order to select those nodes that will cooperate with each non-located node.

In [Tam06], authors present a non-cooperative micro-genetic algorithm (MGA) in
order to select nodes and improve the localization in WSN. The adaptation of the MGA
presented is based on 3 steps: a rst construction of a small population of chromo-
somes based on the best-values of position estimation; secondly, a genetic operator
called descend-based mutation is applied; and nally a second genetic operator called
crossover operator is used. The basic idea is to rst select best nodes (done at the rst
step) and then applying both genetic operators to the chromosomes (a.k.a. nodes) in
order to converge to a nal solution. The results obtained are, in mean, 0.2 times the
node range R.
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In [Lie08] the authors propose to select nodes by means of the Crámer-Rao Bound
(CRB), instead of using the closest nodes. The algorithm calculates the CRB of all
the reference nodes that a node receives and selects those nodes with a lower CRB.
Results obtained show that with a number of 8 reference nodes the location error is,
approximately, 7 meters if RSS-based distance measurements are used. On the other
hand, 0.8 meters of error is achieved if TOA-based distance estimates are used.

In [Das11], the authors present a censoring method based also on the CRB. The
algorithm censors those nodes with unreliable estimation. Based on the CRB calcula-
tion, the authors propose a criterion that will reect the quality of the information that a
node transmits as well as the geometry of the positions of the anchors and non-located
nodes. Three methods of censoring are presented in the work: the rst one is the one
in which nodes can censor itself, i.e. each node can decide not to broadcast its own
information; the second one, blocks the reception of information from the neighbours
considered not reliable; and nally, the last one is created to avoid an unnecessary
transmission when a node is censored by all their neighbours, i.e. a node receive the
order of not transmitting because all their neighbours have censored it. All these cen-
soring methods are executed through the calculation of the CRB and its comparison
with a threshold imposed by the algorithm. With the inclusion of all these censoring
methods, the authors obtain a reduction in complexity and in network trafc, while the
position accuracy is maintained.

All methods achieve in their results a high reduction of messages exchanged. A
comparison between distance-based and CRB-based selection is done in [Lie08]. On
the one hand, better results are achieved when the CRB is used to select cooperating
nodes, e.g. differences between 2.5 meters with 3 cooperating nodes and 0.3 meters
with 10 cooperating are presented in the location error. On the other hand, the distance-
based selection does not require any extra calculation at the time of deciding which
nodes are the best to cooperate.

In the works developed in [Kap06a, Kap06b], the author present two different node
selection mechanisms: a global node selection (GNS) and a local node selection (LNS)
mechanism. GNS and LNS are mainly based on obtaining an active set of nodes N a

that minimizes the mean square position error. The difference between the GNS and
LNS is the possible candidates to be part of the active set. In the GNS there is no
restriction. All the nodes could take part in the localization algorithm. On the other
hand, in the LNS the possible candidates are only those nodes that have been active at
the previous snapshot. The algorithm also introduces a second stage, called discovering
stage, that allows to inactive nodes the possibility of joining the active set.

Finally, in [Zog10] the authors present a comparison between two different se-
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lection algorithms: the GNS presented in [Kap06a] and a modication of the closest
approach called Spatial Split (SS). Based on the GDOP concept the SS algorithm cre-
ates a number of partitions of the radio region, selects the closest nodes and calculates
a cost function. Then, it changes the starting point for partitioning and begins another
time the previous steps. The active set Na will be these set with the lowest value of
the cost function. The authors also present an Adaptive Sensor Selection (ASS) algo-
rithm that adapts the number of active nodes depending on an innovating vector. The
error achieved by the SS and the GNS, when a number of 6 active nodes is used, is
approximately 5 meters. If those algorithms uses the ASS the RMS position error that
the tracking algorithm achieves is approximately 1 meter (when 6 nodes are active).

All the methods presented, although they obtained good accuracy results, are com-
plex. The major premise that we follow is to achieve an algorithm as simple as possible.
For that reason, our proposals want to reduce the complexity of calculation of the works
presented. More concretely, we want to achieve a node selection mechanism easy to
implement but without loosing accuracy.

Which is the best criterion in order to select the nodes that will cooperate in the
location-update phase? With this question in mind, and taking a look in existing meth-
ods presented at the beginning of the section, three node selection criteria are proposed
and studied.

The purpose that the node selection approach has to maintain is not to increase
the complexity of the localization algorithm. All the node selection mechanisms are
related with the measurements that a node can do without any extra requirement.

In order to take the advantage of the RSS measurements, the node selection mech-
anisms presented will depend on them. Hence node selection criteria does not impose
any extra measurement. With those selection mechanisms a reduction of the number
of nodes that cooperates in the location algorithm and also of the energy consumption
of the network is achieved.

3.4.2 RSS-based Criterion

The basic idea of an RSS-based criterion is to select only those nodes that have an RSS
above a threshold. In other words, considering a cooperative scenario, one node is only
allowed to cooperate with those nodes having an RSS higher than a specic threshold
RSS th (i.e., node j cooperates with node i if RSS ij ≥ RSS th).

In Figure 3.2 it is shown that lower errors can be obtained with a lower threshold,
i.e. by allowing the cooperation with a higher number of nodes. However, it is re-
markable that the error is not monotonically decreasing and the error is saturated for
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Figure 3.2: Mean absolute error versus RSSth for different number of anchor nodes

low thresholds values. This is basically due to the effects commented previously that
having a further node becomes in a higher error in distance estimate.

Furthermore, the error obtains the global minimum when the RSS th is decreased.
This effect is due to the existence of more anchor nodes inside the cooperating group
S i. Those nodes provide a more reliable information to the non-located node. Hence,
more accurate results should be obtained.

As the difference between the global and the local minimum, in terms of accuracy,
is not remarkable (a difference of few cm is obtained), a node selection criterion is
proposed to be used. We propose to limit the number of cooperating nodes by selecting
a threshold value that provides an appropriate error value in terms of position accu-
racy. The use of a selection threshold is aligned with the WSN philosophy in terms of
reduced complexity, size and cost of the terminals. By doing so, the number of cooper-
ating nodes, those within group S i, is reduced and energy efciency can be improved.
For example, the difference in terms of error is minimal with a threshold of -88 dBm
or -95 dBm but the number of cooperating nodes can be further reduced with the rst
option, i.e. thus reducing energy consumption.

In order to select an appropriate RSS threshold, the use of an exhaustive search
based on computer simulations is mandatory, due to the complexity involved in the
problem at hand. The procedure is even more complex when the large variety of pos-
sible scenarios is taken into consideration. In order to avoid that, a simpler method is
proposed.

Basically, the idea is to select the highest RSS threshold that assures that a mini-
mum number of anchor nodes are cooperating with the considered non-located node.
Clearly, this criterion also implies that a set of non-located nodes will be also present
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in the region of interest for cooperation purposes. In particular, the mean number of
anchors is rstly xed and, using this number, the RSS threshold is obtained. This
methodology provides a closed-form expression to obtain the required threshold for
each possible scenario. In the following lines, it is presented how such closed-form
expressions could be obtained.

The number of anchor nodes inside the range of node i is (see Figure 3.3):

N (xi,yi)
anchor =

N1∑

j=1

I(||(xi, yi) − (xa
j , ya

j )|| < rth) (3.7)

where I() is the indicator function (i.e. I(a)=1 if a is true) and (x i, yi) and (xa
j , ya

j )
are the coordinates of the non-located node i and anchor node j, respectively.

x (m)

y 
(m

)

    anchor nodes
    non-located nodes

Figure 3.3: Number of anchor nodes inside the radio range of a node

Then, the mean number of anchor nodes inside the range of node i is:

Nmi =
∫

x

∫

y
N (xi,yi)

anchorf(xi, yi)dxidyi (3.8)

where f(x, y) is the p.d.f of the nodes position distribution along the area. Without
loss of generality, a uniform distribution of the non-located nodes in the network is
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considered (for a given time realization). Introducing (3.7) in (3.8) we obtain:

Nm =
∫

x

∫

y

N1∑

j=1

I(||(xi, yi) − (xa
j , ya

j )|| < rth)
1
A

dxidyi (3.9)

where A is the total area of the considered scenario. Since the nodes are uniformly
distributed the mean number of anchor nodes inside a radius r th becomes:

Nm ≈
N1∑

j=1

πr2
th

1
A

=
N1πr2

th

A
(3.10)

Once the closed-form expression in (3.10) is obtained, the dependency of the cov-
erage range radius with the RSS threshold has to be established. Two different approx-
imations based on different propagation models will be considered.

Pathloss model

In this case, the pathloss model dependency is only considered. In other words, the
received power is modelled as a function inversely proportional to the distance elevated
to the pathloss exponent.

RSSPL =
P0

rα
(3.11)

If the expression of rth obtained from (3.10) is introduced in (3.11), the RSS thresh-
old becomes:

RSSPL
th =

(
N1πP 2/α

0

NmA

)α/2

(3.12)

Pathloss & shadowing model

In this case, the effects of path loss and shadowing that appear in (2.11) are both con-
sidered. The relation between radio range radius and received power is expressed as
follows:

RSSPL&S =
P0

rα
z (3.13)

being z a log-normal variable, z = 10v/10 ∼ logN (0,σ2
v). Therefore, the mean num-

ber of anchor nodes is, in this case, a random variable nm. Taking this into account,
the mean value of nm has to be search. Using the value of the rth in (3.10) and being
E[z] = eµv+ 1

2σ
2
v the mean of a lognormal variable, it can be written:

Nm = E[nm] =
πN1

A

(
P0

RSSPL&S
th

)2/α

E[z2/α]

=
πN1

A

P 2/α
0(

RSSPL&S
th

)2/α
e

1
2

4σ2
v(log 10)2

α2100 (3.14)
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As in the previous case, this dependency is combined with (3.10) and the result is
the following RSS threshold:

RSSPL&S
th =



N1πP 2/α
0 e

σ2
v2(log 10)2

100α2

NmA




α/2

(3.15)

As observed, (3.12) and (3.15) allow the computation of the required threshold in
terms of the desired mean number of anchor nodes (N m).

In order to show the validity of the obtained expressions, in Figure 3.4 such ap-
proximations are compared with the real dependency of N m with the RSS threshold
obtained by means of computer simulations. The three different thresholds shown are:
RSS sim

th , which is the RSS threshold obtained with simulations that assures a num-
ber Nm of anchor nodes; RSSPL

th , which is the RSS threshold obtained with (3.12)
(pathloss model); and RSS PL&S

th , which is the RSS threshold obtained with (3.15)
(pathloss & shadowing model).

As observed in Figure 3.4, both equations achieve a good approximation when high
values of RSS threshold are considered. For low values of RSS threshold the behaviour
of both approximations becomes worse. This is because the Nm value of the (3.8) is
obtained by disregarding the edges of the area (see Figure 3.5). Therefore, as the RSS
threshold is reduced, the coverage radius increases and an extra area outside the edges
is considered. As observed in the following, this effect has not a big impact on the
presented design as it is focused on selecting only the closest nodes. Besides, Figure 3.4

Figure 3.4: RSS threshold versus mean number of anchor nodes ((solid line RSS sim
th ,

dashed line RSSPL
th , dashed-dotted line RSSPL&S

th ))
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shows that the best approximation is obtained with the pathloss model ((3.10)) and for
that reason we focus on this scheme in the sequel. The problem with the approximation
given by (3.15) is that the shadowing effects over-estimate the RSS when the power is
expressed in lineal (as adopted in (3.15)).

x (m)

y 
(m

)

Figure 3.5: Effect of increasing the RSS threshold

3.4.3 Distance-based Criterion

The second selection criterion proposal selects those nodes with lower values of dis-
tance estimates, i.e. those nodes closer to the non-located nodes. RSS-based distance
estimates have an error multiplicative to the distance; hence the selection of closer
nodes will choose those nodes with a lower distance estimate. The higher the distance,
the higher the error of the distance estimates. This multiplicative error is due to the
log-normal model used have a variance proportional to their actual range. The model
assumed is distributed as:

f(RSSij |xi) = N ( ¯RSSij ,σ
2
dB), (3.16)
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where the mean value of the RSSij is equal to ¯RSSij = RSS0 − 10αij log10(dij).
The standard deviation in decibels is considered constant with range. This consider-
ation explains the assumed multiplicative error to the distance. For that reason the
mechanism tries to reduce this effect selecting the closest nodes to the non-located
node i.

Given now all the distance estimates of the nodes inside the coverage of node i:

δi1 " δi2 " ... " δin 1, ..., n ∈ Si, (3.17)

where in this case δi1 and δin are the lowest and highest distance estimate, respectively.
The new group of cooperating nodes becomes:

SNS
i = {i1, i2, ..., inδ}, (3.18)

with nδ standing for the number of selected nodes.
When distance estimates are obtain through RSS measurements, the distance-based

selection criterion prioritizes the use of those nodes that has a lowest error in those
estimates. Hence the algorithm are taking the advantage of those nodes with high
reliability.

Moreover, the complexity of the criterion is low. By including this censoring
method, the calculation complexity of the algorithm is not increased. This is a ma-
jor objective that is important to take into account due to the nature of the wireless
sensor networks and their devices.

3.4.4 GDOP-based Criterion

The major disadvantage of the previous method is taht the geometry of the selected
cooperating nodes is not contemplated by the criterion. As the authors in [Das11]
mentioned, the geometry of the conguration also affects the positioning performance.
For that reason, we proposed a node selection criterion based on the GDOp concept.

The Geometric Dilution of Position (GDOP) is a navigation term used in geometric
engineering to describe the geometric strength of the reference node conguration on
the accuracy of the estimated location [Zha09]. Mostly used in satellite networks,
the GDOP gives a measure of the effect of the geometry of the reference nodes used
to estimate the location. More concretely, GDOP is dened as the ratio between the
computed coordinate error and the measurement error [Pri05]. In order to obtain a
better position estimation, the GDOP value should be as small as possible. Hence,
when a node receives signal from many nodes, it should nd the best combination of
nodes that obtains the lowest GDOP value.
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In [BD10], the authors show the dependency of the error to the geometry between,
in this case, the satellites and the receiver (see Figure 3.6). Furthermore, they em-
phasize that minimizing the GDOP value would not guarantee the best positioning
accuracy, as many other issues has to be optimized, such as received signal power and
ionosphere/troposphere effects. The authors propose a method of satellite connection
using convex geometry. Being the convex hull of a nite set of points S the smallest
convex set that contains the points of S, it provides the set of points that provides the
largest polytope. The authors said that the set of satellite positions dening the largest
polytope are those that yield approximately the smallest GDOP. Hence, the nodes that
conforms the convex hull of S i will provide the best geometry in order to obtain the
best position accuracy.

(a) Good geometry (b) Bad Geometry

Figure 3.6: Effect of different geometries between two references and a receiver

If one observes Figure 3.7 extracted from [BD10], the points that conforms the
convex hull are those nodes that are in the border of the cooperating nodes. These
method really simplies the search of the best cooperating nodes, because it is not
necessary to calculate the GDOP for all possible combinations of N Si nodes. On
the contrary, selecting those border nodes would not be the best option when RSS
measurements are used. As commented before, the further the distance the higher
the error of distance estimate. For that reason a simplied Spatial Split (SS) [Zog10]
method is presented.

The basic idea of the GDOP-based node selection criterion is to divide, assuming a
circular radio range of coverage, the radio range in N sectors and selecting the closest
node. The basic difference with the work presented in [Zog10] is that our criterion does
not iterate among all the possible N selected nodes. The selection method (see Figure
3.8) procedure is as follows. Firstly, the angle between node i and each node j of the
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Figure 3.7: Point set and its convex hull

cooperating group are estimated:

βij = arctan
yi − yj

xi − xj
∀j ∈ Si. (3.19)

With this angle estimates we group all the nodes belonging to sector m i dened as:

mi =
[

2π
m − 1

,
2π
m

)
∀m = 1, 2, · · · , M. (3.20)

The subgroups obtained become:

Smi = {abc · · · f} j = a, ..., f∀βij ∈ mi. (3.21)

Then, the distance estimates of each subgroup Smi are sort as:

δmi1 < δmi2 < · · · < δmin 1, ..., n ∈ Smi , (3.22)

where δmi1 and δmin are the lower and the higher, respectively, distance estimates of
the cooperating sector group Smi . The nal new cooperating group are composed for
all the nodes that has the lower distance estimate from each sector m i = 1, ..., M :

SNS
i = 11, 21, ..., M1 (3.23)

The major drawbacks that will affect the accuracy of the node selection criterion are
mainly two: the distribution among the different sections is done with an initial position
estimation done at the rst iteration; and the selection of the closest nodes of each sector
depends on the accuracy of the model used (also estimated by the algorithm). These
effects will be studied in the simulations and experimental results presented in Sections
3.6 and 3.7.
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Figure 3.8: GDOP-based selection criterion

3.5 Joint Node Selection and Path Loss Estimation

RSS-based distance estimations depends on the knowledge the propagation model.
This model is usually obtained with a previous measurement campaign. But the idea of
repeating a measurement campaign in every possible scenario in which the algorithm
has to work is not a good decision. For that reason, an on-line path loss estimation is
introduced in order to dynamically estimate the transmission model and allowing to the
algorithm to estimate the model that best ts to the current scenario.

In this section, all the steps that the localization has to do in order to obtain position
estimates is presented . In Figure 3.9, the different stages of the node localization
algorithm with on-line path loss estimation are presented. A more in-depth explanation
of the different blocks is presented in the following subsections. All the procedure are
summarized at the end of the section in Algorithm 1.

3.5.1 Discovering Cooperating Group Si

The rst necessary step is to discover which nodes are inside the radio range of each
non-located node i. In order to do that, each non-located node, broadcasts a message
with their node id. Nodes that are able to receive this message, i.e. are inside the node
i radio range, send an answer to the non-located sender, with their node id an their
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Figure 3.9: On-Line Path Loss and Node Selection LS Algorithm Procedure

position. Thanks to that, each node can form its own group and can know the number
of anchor and non-located nodes that are inside its radio range.

The number of cooperating nodes NSi depends on the radio characteristics of the
RF transmitter. Depending on the sensitivity of the radio chip and the transmission
power of the nodes, each node could have a very variable number of nodes inside
its group S i. Hence, in a low density scenario, if a node wants a high number of
cooperating nodes, it is necessary long-range capabilities of radio transceivers.

3.5.2 Initial Distance Estimates and Anchor Nodes Placement

As previously commented, we consider an RSS-based distributed cooperative algo-
rithm for location estimation. The rst phase of the algorithm consists in obtaining
inter-node distances through RSS measurements. Power received is modelled through
the well known radio-propagation path loss and shadowing model. The RSS can be
expressed as the power received in node j from a signal transmitted by node i, P ij , as:

RSSij = Pij = P0 − 10αij log10 dij − vij (dBm), (3.24)

Given the power received RSSij in (4.10), an ML estimate of the actual distance can
be derived as:

δij = 10
P0−RSSij

10αij (3.25)

The algorithm initially estimates these distances using assuming an equal value of the
path loss exponent. Then, the estimates will be updated, once the algorithm obtains the
rst path loss exponents estimates.
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3.5.3 Initial Position Estimation and Anchor Nodes Placement

The next step is giving an initial value to the position estimates of the non-located
nodes. As discussed before, a gradient descent approach could not converge to the
global solution if a biased initial value is used. Hence, it is important to give a good
starting point in order to converge to a global solution. In that sense many works
present different options [Sat08, Eng07, Li07]. All the works propose to combine two
different approaches. The rst one in order to obtain an initial estimation that is rened
by another kind of algorithm

In [Eng07], authors make a comparison between four initial algorithms that then
are rened by two different approaches. They propose to use as an intial estimation
the following algorithms: DV-HOP, DV-Distance, N-HOP and TERRAIN. The two
renement algorithms are the Minimum Mean Square Error and the Mass-Spring Opti-
mization. Results oscillates between 2.5 m and 5 m, when MMSE is used, and between
0.7 m and 4 m when and MSO is used. The authors in [Li07] obtain a previous estimate
by means of using an MDS algorithm and then implement a renement algorithm, such
as ML non-bayesian approach. On the one hand, this solution obtains good results in
terms of accuracy. On the other hand, this method is more complex compared to previ-
ous solutions. Moreover, it is possible to give a random initialization to all non-located
nodes. It is a low complex but inaccurately method. Following with the general pur-
poses presented previously, the starting point procedure has to achieve a good trade-off
between accuracy and complexity.

A simple method to initialize each node is the use of a centroid method. Once each
node forms its own cooperating group S i, all the non-located nodes are able to compute
its initial position with a weighted centroid algorithm based on the use of anchors inside
their group S i. The computation becomes:

x̂i(t = 0) =
nanch∑

a=1

xawa, (3.26)

where xa are the coordinates of the anchor a ∈ S i and wa is the weight assigned.
In order to give an in-depth study of this initialization method, some simulation are
presented in the sequel.

With the weighted centroid we could achieve a closer initial point; hence we could
obtain a better performance of the gradient descent approach. Although, the centroid
algorithm presents a low accuracy it is a simple method and it is only used to obtain
the initial coordinates that we later rene with a non-bayesian LS method.

Besides, an important point of decision when a WSN has to be designed is the
number and location of the anchor nodes. The presence of these nodes inuences the
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global performance of the localization algorithm. Hence, it is important to study how
their position affects the position accuracy.

Concerning the anchor nodes placement, the approach presented in [Ash08] is ini-
tially adopted, where the authors present that the best anchor placement is a centred
circumference with radius equal to the root-mean-square (RMS) of the non-located
nodes distances to the centre (see Figure 3.10(a)). In order to obtain these distances a
uniform distribution of the nodes is assumed.

The RMS of the distance to the centre (RMSdc) of N nodes uniformly distributed
in a squared area of dsq x dsq m2 is:

RMSdc =

√∑N
i d2

i

N
=

√√√√
∑N

i

(
xi − dsq

2

)2

N
+

∑N
i

(
yi − dsq

2

)2

N
= (3.27)

=

√(
RMS2

x − 2dsqx̄+
dsq

2

)
+
(

RMS2
y − 2dsq ȳ+

dsq

2

)
.

The mean value of a uniform distribution with limits a and b is dened as:

x̄ =
b + a

2
, (3.28)

and the RMS of a variable x is dened as:

RMSx =
√
x̄+ σ2

x , (3.29)

being x̄ and σ2
x the mean and the variance, respectively, of the uniform variable x.

Hence, the RMS of the distance could be dened as:

RMSdc =
√

2σ2
x , (3.30)

being σ2
x = (b − a)2/12 the variance of the coordinate x (is the same as y) uniformly

distributed.
Although this distribution of the anchors in a centred circumference was demon-

strated to be the best one in [Ash08], it could be not the most optimal when a centroid
algorithm is used as initial position estimate. For that reason, a grid-based positioning
(see Figure 3.10(b)), a common anchor distribution in many works, is also proposed as
an alternative.

In the simulation and experimental results both approaches are used in order to
achieve a better comparison between them.
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Figure 3.10: Two different anchor distribution

3.5.4 On-line Path Loss Estimation and Node Selection Least Squares
Algorithm (OLPL-NS-LS)

The use of RSS measurements has the need of a good propagation model. Otherwise,
less accurate distance and position estimates are obtained.

Usually, this model is based on experimental values obtained in a previous mea-
surement campaign. Hence, with a more complete measurement campaign, the model
reects better the scenario behaviour. Moreover, these high accuracy is reected in
the localization algorithm performance. The main issues that has to be solved is the
scenario dependency of this measurement campaign and the previous work that is nec-
essary to be carried out.

With the introduction of on-line path loss estimation, the localization algorithm is
the responsible of obtaining the node coordinates and the path loss estimation; hence
the necessity of a previous modelling is avoided.

Following the procedure of Figure 3.9, next step presented is the minimization of
the LS cost function:

CDLS(xi,αi1,αi2, ...,αin) =
∑

j∈Si

(δij(αij) − dij(xi − xj))
2 . (3.31)

The objective is to minimize the difference between both distances, optimizing
the node coordinates and also the set of path loss exponents. The node coordinates
(x i) and the set of path loss exponents (αij ∀ j ε Si) affect the computation of both
distances, dij and δij , respectively. In order to solve the cost function of (3.10), a
Gauss-Seidel algorithm is adopted in [Ber97]. This non-linear algorithm is based on
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a circular iterative optimization with respect to one set of variables while maintaining
the rest of the variables xed. Hence, the minimizations are carried out successively
for each component. Considering a generic cost function F that depends on a set of
variables β, the desired minimization of F is formally dened as [Ber97]:

β(t + 1) = arg min
βi

F (β1(t + 1), ...,βi−1(t + 1),βi,βi+1(t), ...,βm(t)) . (3.32)

At time instant t + 1, the F function is minimized by means of optimizing β i com-
ponent. Components between β1 and βi−1 have been already optimized while com-
ponents from βi+1 to βm (being m the total number of components) have not been
yet optimized. These last components must remain constant while the other compo-
nents are being optimized. By using the Gauss-Seidel approach, it is possible to divide
the optimization in two steps: rstly a minimization of the cost function by means
of optimizing the node coordinates (xing the path loss exponents) could be carried
out; secondly, another minimization is done by means of the optimization of the path
loss exponents (xing the nodes coordinates). As the convergence of the non-linear
Gauss-Seidel algorithm can be achieved using a descent approach (see [Pat05]), both
minimizations could be carried out through a gradient descent mechanism. The basic
idea is summarized in the following Figure 3.11.

Coordinates 
estimation
(  fixed)

Path loss 
estimation 
(x fixed)

x

Gauss-Siedel

Figure 3.11: Optimization of the nodes coordinates and path loss exponents using a
Gauss-Siedel algorithm

Coordinates Estimation

The estimation is done following the algorithm described in the previous section. The
algorithm minimizes, by means of a least squares criterion, the difference between the
estimated distance and the distance calculated with node coordinates. With the use of
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a gradient descent approach the algorithm is able to converge to a minimum of the cost
function presented before.

We initially obtain a minimization of the cost function by optimizing the nodes
coordinates. We rst maintain all the αij xed ∀ j ε Si. As dij(xi,xj) = f(xi,xj) =
||xi − xj|| depends on the coordinates xi the gradient of the cost function is:

∇xiCDLS(xi,αααSi) = ∇xi




∑

jεSi

(δij(αij) − ||xi − xj ||)2




=
∑

jεSi

(δij(αij) − dij(xi,xj))eij (3.33)

where eij = xi−xj

||xi−xj || is the unit vector that takes the orientation between the node i

and node j. So, the estimate of xi, can be iteratively computed by using the gradient
descent algorithm as follows:

x̂i(t + 1) = x̂i(t) + γ
∑

jεSi

(δ(αij) − d(xi,xj))eij (3.34)

As previously commented, the main drawback of a gradient descent algorithm is
that the result highly depends on the initial estimation used. For that reason, a deep
study of the inuence of the initial estimation different approximations are done in the
simulation section.

Path Loss Estimation

This step is necessarily done after a previous position estimate. The algorithm has
obtained the previous coordinates by means of using an arbitrary and equal value of
the path loss exponent. At the second step, each non-located node estimates a path loss
exponent for each link. Following the Gauss-Seidel approach, it is now minimized the
cost function of (3.10) by means of optimizing the path loss exponents. Following the
same methodology applied in Subsection 6.2.2 it is necessary to calculate the gradient

of the cost function. The estimated distance δ ij = f(αij) = 10
P0−RSSij

10αij depends on the
path loss exponent αij ; hence, the cost function is minimized by means of calculating
the derivate with respect to the path loss exponent of each individual link. In that case,
the xed variables are the coordinate estimates and the rest of the path loss exponents
(αik∀k *= j). The gradient of cost function is:
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∇αij CDLS (xi,αSi) = ∇αij

((
10

P0−RSSij
10αij − dij (xi, xj)

))2

=

= − log(10)
P0 − RSSij

5
1
α̂2

ij

δij (δij − dij) . (3.35)

Each node estimates their own path loss exponents for all the links in an iteratively
fashion as:

α̂ij(t + 1) = α̂ij(t) − γα log(10)
P0 − RSSij

5
1
α̂2

ij

δij (δij − dij) . (3.36)

It is a distributed method that minimizes the cost function through an iterative gradient
descent strategy. The algorithm is able to estimate the path loss exponents by means of
using RSS measurements. The presented algorithm maintains the philosophy of having
a low complex and low cost localization algorithm.

Node Selection Mechanism

Finally the node selection mechanism is applied. With this node selection the local-
ization algorithm modies the cooperating group formed at the beginning of the algo-
rithm. Hence, the algorithm reduces the trafc exchange among the network, allowing
the network to decrease the total amount of energy consumed. The algorithm selects n

number of nodes based on the different criteria presented in the previous section 3.4.
With this selection mechanism each cooperating group S i is reduced following the:
RSS-based, distance-based or GDOP-based selection criterion.

3.6 Simulation Results

This section presents the performance of the proposed location algorithm with on-
line path loss estimation and node selection. In order to evaluate the accuracy of the
algorithm different simulation results are presented. The simulated scenario and the
assumed simulation parameters are presented in Table 3.2.

Path loss exponents take values between a maximum value of 5 and a minimum
value of 2 (the uniform distribution of the path loss exponents between 2 and 5 are
based on experimental results obtained in [Maz09]). Hence, path loss values are simu-
lated with a uniform distribution (α ε U(2, 5)). An initial value of the path loss equal
to 3.5, which is the middle value of the random values used in the uniform distribution,
is assumed.
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Algorithm 1 LS Localization Algorithm with On-Line Path Loss Estimation
Discovering Cooperating Group Si:
node i transmit a broadcast message
nodes able to receive answers with their id and their coordinates
RSS-based distance estimates δ:
for i = 1 to N2 do
for i = 1 to NSi do

δij = 10
P0−Pij
10αij

end for
end for
Previous Coordinate Estimation:
for i = 1 to N2 do

x̂i(t = 0) =
Pnanch

a=1 xawa

end for
On-Line Path Loss-Node Selection-Least Squares algorithm
for t = 1 to titer1 do
Coordinate Estimation:
for t′ = 1 to titer2 do
for i = 1 to N2 do

x̂i(t) = x̂i(t − 1) + γx
P

jεSi
(δij − dij)eij

end for
end for
Path Loss Estimation:
for t′ = 1 to titer2 do
for i = 1 to N2 do
for j = 1 to NSi do

α̂ij(t) = α̂ij(t − 1) − γα log(10)
P0−RSSij

5
1

α2
ij

δij(δij − dij)

δij = 10
P0−Pij
10αij

end for
end for

end for
Node Selection Criterion
if t == 1 then

Si = {i1, i2, ..., iNSi}
if RSS-based criterion then

NSi = nRSSth

else if Distance-based criterion then
NSi = nδ

else if GDOP-based criterion then
NSi = nGDOP

end if
end if

end for
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Table 3.2: Simulation Parameters.

Simulation Parameters Parameter Value
Size of Sensor Field 50 × 50 m
Number of Non-Located Nodes (N2) 30
Number of Anchors (N1) 4�–25
Path Loss Exponent αij 2�–5
Standard Deviation σv 1 dB
First-Meter RSS P0 −50 dBm
Energy Consumption to Transmit or Receive µTx or µRx 400 nJ

3.6.1 Initial Position Estimation

The use of a gradient descent algorithm requires a good starting point in order to
achieve better results. The initial position estimate proposed previously is a centroid
method due to its simplicity. The initial accuracy given by the centroid method could
be affected by the anchors position and also by the number of nodes n anch used by the
centroid. For that reason, in the following lines a study of different scenarios and ap-
proaches in order to obtain the best possible performance of the localization algorithm
is presented.

In order to achieve a sufcient accurate initial position estimate without increasing
the complexity of the algorithm, we propose to use a centroid algorithm. It is a simple
algorithm that could give an approximate value near the real position. As commented in
the previous chapter, the centroid algorithm could achieve a better accuracy including a
weight. Hence, we present different options of weights (see table 3.3) in order to decide
which is the suitable one able to be used in our localization algorithm. Moreover, we

Table 3.3: Proposed weights.

w1 wa = 1/nanch

w2 wa = RSSa
Pna

i=1

„
1− RSSiPna

i=1 RSSi

«

w3 wa =
1

δaPna
i=1

“
1
δi

”

w4 wa =
1

δ3
a

Pna
i=1

„
1

δ3
i

«

w5 wa =
1

δ5
a

Pna
i=1

„
1

δ5
i

«
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also study which is the effect that produces the number of anchors used by the centroid.
The centroid algorithm is highly dependent on the number of anchors used.

Table 3.4: Accuracy of the initial position estimation (circular anchor distribution).
!!!!!!!!nanchors

wa
w1 w2 w3 w4 w5

1 12.83 12.33 10.50 11.83 12.26
2 10.83 11.32 10.05 8.53 10.90
3 13.89 12.94 10.84 8.98 11.03
4 15.80 14.98 11.29 8.62 11.3
5 17.06 15.91 13.89 8.75 12.5
10 20.04 19.82 14.61 8.54 13.98
15 20.04 19.82 14.61 8.54 13.98

Table 3.5: Accuracy of the initial position estimation (Grid anchor distribution).
!!!!!!!!nanchors

wa
w1 w2 w3 w4 w5

1 7.62 9.20 6.96 7.32 7.57
2 7.31 8.00 6.62 6.74 6.93
3 7.11 7.65 6.02 5.93 6.5
4 9.09 9.86 7.15 6.42 6.57
5 10.41 11.21 7.64 6.86 6.62
10 13.98 13.92 9.94 7.51 6.74
15 15.93 15.93 11.13 7.94 7.3

If one observes the results the best initial estimates are obtained when a centroid
with a weight equal to δ3

ij . This fact is valid at both anchor distributions. On the other
hand, the circular distribution only requires two anchor nodes to achieve the lowest
value instead of the three that the grid distribution scenario needs.

In the sequel we present the accuracy of the proposed solution comparing when the
algorithm estimates the path loss exponent and when not. Furthermore, a comparison
between the presented algorithm and two other localization algorithms (a distributed
and a centralized) is also presented.
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3.6.2 Accuracy of the path-loss and distance estimates

The RSS-based measurements are those range measurements used in localization al-
gorithms that are less complex but with a low accuracy. They are highly affected by
the path-loss and shadowing effects. Their accuracy depend on how good is the model
used, usually obtained through an off-line measurement campaign. The major cons is
that a recalibration process is needed when the environment changes.

In our case, the RSS measurements are modelled through the well-known path-loss
and shadowing model (see (2.11)). In order to extract the distance an ML estimation
is used (see (2.13)).In order to estimate the distance, the path-loss exponent of the
environment has to be known.

In the proposed algorithm an on-line estimation of the path-loss is introduced, that,
using the RSS measurements, the algorithm estimates for each individual link its cor-
respondent path-loss value. Figure 3.12 shows the error achieved by the algorithm
compared to the use of a constant value equal to 3.5, which is the middle value that this
exponent takes.

GDOP-
based

Distance-
based

RSS-
based

Circular- 
based

0.590.690.68OLPL

0.950.860.95

Grid- 
Based

0.580.650.64OLPL

0.850.950.99

α = 3.5

α = 3.5

Selection 
Criteria

Figure 3.12: Accuracy of the Path-loss exponent (N 1 = 16)

GDOP-
based

Distance-
based

RSS-
based

Circular- 
based

6.94.57OLPL

9.55.29

Grid- 
Based

6.16.59.4OLPL

6.97.512.5

α = 3.5

α = 3.5

Selection 
Criteria

Figure 3.13: Accuracy of the distance estimates (N1 = 16)
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All the results shown by these two tables, 3.12 and 3.13, reect the best results
obtained by the On-line Path-Loss (OLPL) localization algorithm. Lower values of
error are achieved by means of estimating the path loss value on line. Hence, the
estimation carried out by the localization algorithm is better than considering a xed
value for all the links.

The introduction of the OLPL proposed in the localization algorithm improves both
values, the path loss and the distance estimates. The errors reected at both tables show
that if the path loss value is estimated by the algorithm, the results are improved, and,
moreover, the algorithm is able to change the values dynamically as the environment
changes.

3.6.3 Performance of the Node Selection Mechanisms

Now we study the performance of the different node selection criterion at both scenar-
ios presented. For each criterion, we present different results. The rst are devoted
to explore which is the best number of nodes that should be selected under the node
selection criterion. Then, we present the gain in terms of energy consumption. They
are obtained by means of comparing the number of cooperating nodes when the node
selection mechanism is used or not. Finally, the mean absolute error mean versus the
number of anchor nodes are presented. The results are done by means of comparing
both anchor distributions and between selecting or not the cooperating nodes.

RSS-based Criterion Performance

The rst node selection criterion analysed is the RSS-based Selection. This method
xes an RSS threshold that guarantees a minimum number, in mean, of anchor nodes
inside each cooperating group S i. Hence, the nodes are selected depending on their re-
ceived RSS. If RSSij is greater than the RSSth, then the node j is selected to conform
the modied cooperating group.

As previously commented, the path loss exponents take different values for each
link. Compared to the work developed in [Bel10], where the path loss exponent was
considered constant, now we obtain the mean value between all the cooperating nodes
inside group Si in order to estimate the RSS threshold.

ᾱSi =
∑NSi

i=1 αij

NSi

(3.37)

(3.38)

Once the algorithm has estimated a position and a value of all the path loss exponents,
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the RSS threshold is estimated by means of using (3.12) with the mean value of the
path loss exponent (3.38). With these equations each non-located estimates its RSS th

in order to discard those nodes inside the initial cooperating group that has a lower
value of RSS.

Selection of the number of cooperating nodes This is an important point when a
node selection mechanism is included in the localization algorithm. The rst parameter
that has to be dened is the number of nodes that has to be selected by the criterion.
This number should be the one that achieves the best trade-off between accuracy versus
energy consumption.

Simulation results are presented in order to decide which is the suitable number of
cooperating nodes, because it is not straightforward to obtain the value of cooperating
nodes that optimize the system behaviour.
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Figure 3.14: RSS-based node selection with a circular anchor distribution
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Figure 3.15: RSS-based node selection with a grid-based anchor distribution
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Observing the results shown in Figures 3.14 and 3.15, the best results are achieved
with a mean number of anchors equal to two. The probability of having an error higher
to an error threshold eth shows that having a mean number of two anchor nodes inside
each group Si offers the best accuracy to the location algorithm. With this value of
Nm, every non-located node is able to x an RSS th in order to select their cooperating
nodes.

Energy efficiency and number of nodes cooperating comparison Moreover, the
RSS-based node selection xes an RSS threshold but the number of nodes inside the
cooperating is not xed. These values varies depending on the proximity of more or
less neighbours; hence the node density of the network. Also having a higher number
of anchor nodes inside the area of the network helps to increase the RSS threshold and,
hence, the reduction of the mean number of cooperating nodes. This fact is reected in
the Figure 3.16.

Results reect that the higher the number of anchors, the higher the node density,
and hence, the lower the mean number of cooperating nodes. As previously com-
mented, the energy consumption is directly related with the number of cooperating
nodes. One could observe the difference in terms of mean number of cooperating
nodes between a localization algorithm with and without a node selection mechanism
in Figure 3.16. This difference is reected in the percentage of reduction of the energy
consumption. Results of the circular anchor distribution (see Figure 3.16(a)) oscillates
between a 50% (with N1 = 4) and 83% (with N1 = 25). On the other hand the grid
anchor distribution scenario (see Figure 3.16(b)) obtains values between 58% and 89%
(with N 1 = 4 and N1 = 25 respectively). As it is expected, a high density of an-
chor nodes becomes in a reduction of the number of cooperating nodes and, hence, a
reduction of the energy consumption. The major difference between both scenarios is
that with a grid distribution the results achieved are better when the number of anchors
is higher. On the other hand, when the number of anchors is reduced, the grid-based
anchor distribution achieves a better energy efciency.

One can notice that the no-selection algorithm stills achieves a percentage of re-
duction. The hardware is limited by its sensitivity in terms of RSS level. Nodes can
only receive messages with an RSS above a threshold. For that reason, a no-selection
algorithm can achieve a certain level of energy reduction.

Accuracy of the localization algorithm In Figure 3.17, the mean absolute error for
different values of N1 is plotted. The results show, in both anchor distributions, grid
and circular, at the RSS-based node selection localization algorithm achieves a better
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(a) Circular anchor distribution
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(b) Grid anchor distribution

Figure 3.16: Mean number of Cooperating nodes and percentage of reduction of the
energy consumption (Nm = 2)

accuracy than an LS localization algorithm without node selection mechanisms. As the
results commented from the previous Figure 3.16, the grid-based distribution achieves
the best results only with an scenario with 25 anchors. On the contrary, with lower
values of anchor nodes the circular distribution scenario present a higher accuracy.
One can also see that, when N1 = 16, the mean absolute error of both scenarios is
comparable.

Distance-based Criterion Performance

Selection of the number of cooperating nodes As previously commented, we rst
present the results of the probability of outage, that allows us to know the most suitable
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Figure 3.17: Mean absolute error versus mean number of anchor nodes(solid line: RSS
node selection, dashed line: Non-selection)

number of cooperating nodes. We want to discover the value that achieves the better
performance in terms of accuracy.
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Figure 3.18: Distance-based node selection with a circular anchor distribution

Observing the results shown in Figures 3.18 and 3.19, the best results are achieved
with 6 cooperative anchors. Hence, the node selection mechanism selects n δ = 6 nodes
to cooperate with each non-located node (see Figures 3.18(a) and 3.19(a)). Although,
the differences between the different number of anchors are not so reliable, it is shown
in the respective tables that the best best position accuracy is achieved with 6 nodes
cooperating. For that reason, the following simulations will assume a number of 6
cooperating nodes.
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Figure 3.19: Distance-based node selection with a grid-based anchor distribution

Energy efficiency and number of nodes cooperating comparison In order to re-
ect the efciency in terms of energy consumption, Figure 3.20 shows the differences
in terms of nodes used and the percentage of reduction of the energy consumption.

As the node selection criterion imposes a xed number of cooperating nodes the
percentage of reduction of the energy consumption is practically linear as the number
of anchors increases (see Figure 3.20). The results in terms of percentage of reduction
of εconsumed oscillate between an 81% and the 88% for both anchor distributions.
The efciency in terms of energy consumption has been demonstrated with the results
achieved.

Accuracy of the localization algorithm The results shown in Figure 3.21 reects
that the accuracy between our On-Line Path Loss Node Selection (OLPL-NS) localiza-
tion algorithm and a non-selection localization algorithm is similar . Hence, in terms
of accuracy, our proposal maintains a satisfactory performance.

However, the results presented previously demonstrate that the node selection local-
ization algorithm is more energy efcient compared to a localization algorithm without
this node selection mechanism.

It is also remarkable that the grid-based anchor distribution scenario offers a poorer
results in terms of accuracy when the number of anchors are lower or equal than 16 an-
chors. The best results are achieved with a number of 25 anchors an a grid distribution.
The error mean values are
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(a) Circular anchor distribution
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(b) Grid anchor distribution

Figure 3.20: Mean number of Cooperating nodes and percentage of reduction of the
energy consumption (nδ = 6)

GDOP-based Criterion Performance

Selection of the number of cooperating nodes As it has been done with the previous
methods, we rst observe which is the suitable value of sectors that obtains the best
accuracy in terms of positioning error.

Observing the results shown in Figures 3.22(a) and 3.23(a), the best results are
achieved when the algorithm divides the radio range in 10 sectors.

In this case, as it has happened with the RSS-based node selection mechanism,
using 10 sectors does not mean that the number of cooperating is 10. The node selection
criterion divides in 10 sectors but it could occur that in some sector there is not node or
the angle estimation done could not be correct, and, hence, the selection is not done as
correct as one wants. The total number of cooperative nodes, in mean, are reected in
Tables 3.22(b) and 3.23(b). In both cases, having 10 different sectors results in a mean
number of cooperating nodes equal to, approximately, 6.
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Figure 3.21: Mean absolute error versus mean number of anchor nodes(solid line:
Distance-based node selection, dashed line: Non-selection)
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Figure 3.22: GDOP-based node selection with a circular anchor distribution

Although results in terms of efciency are very similar, the best results is achieved
with 10 sectors. In terms of accuracy, the difference between having more or less
sectors are, depending on the case, not so much remarkable. But, if one talks in terms
of energy efciency, the node selection has a big impact on them, that is reected in
the following results.

Energy efficiency and number of nodes cooperating comparison In order to re-
ect the efciency in terms of energy consumption, Figure 3.24 shows the differences
in terms of nodes used and the percentage of reduction of the energy consumption.

The results reect an average percentage reduction between 83% and the 89% with



80 Chapter 3. On-line Path Loss Estimation & Node Selection Localization Algorithm

P ou
t (e

m
ea

n >
 e

th
)

eth (m)

(a) Outage Probability (N1 = 4)

18,97,3520

mean num. of 
coop. nodes

6,35

2,66

5,22

3,72

19,42

19,54

19,2

Mean absolute 
error (m)

1910

8

6

4

num. of 
sectors

(b) Table of results

Figure 3.23: GDOP-based node selection with a grid-based anchor distribution

N1

Pe
rc

en
ta

ge
 o

f r
ed

uc
tio

n 
of

 e
ne

rg
y 

co
ns

um
pt

io
n

M
ea

n 
nu

m
be

r o
f c

oo
pe

ra
tin

g 
no

de
s 

(N
S i)

(a) Circular anchor distribution
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(b) Grid anchor distribution

Figure 3.24: Mean number of Cooperating nodes and percentage of reduction of the
energy consumption (nsectors = 10) (GDOP-based node selection)
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respect to a circular anchor distribution and 82% and the 86% with respect to a grid-
based anchor distribution. These results reect the average value of reduction. As in
the RSS-based node selection criterion, the GDOP-based criterion xes the number of
sectors, but the nal number of nodes that will cooperate is not exactly known. These
number will depend on the accurate estimation of the classication inside the different
sectors.
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Figure 3.25: Mean absolute error versus mean number of anchor nodes(solid line:
GDOP-based node selection, dashed line: No-selection)

Accuracy of the localization algorithm The results shown in Figure 3.25, as in the
distance-based node selection, reects a similar accuracy between an algorithm with
node selection in comparison with a non-selection localization algorithm. the bene-
t that introduces the node selection mechanism is more reected in terms of energy
consumption. Moreover, the network reduces its trafc, and, hence, the possibility of
packet loses or errors.

Again, the grid-based anchor distribution achieves a higher accuracy when N 1 =
25. For lower values the circular anchor distribution achieves a higher accuracy. Only
remark, the very similar accuracy obtained in the case of a 16 anchor scenario, at both
scenarios.

Summary

The results reect two different situations. When the anchor nodes are distributed
in a circular distribution the best results are achieved by the distance-based selection
criterion. On the other hand, when the anchor distribution is grid-based, the best results
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are achieved with the GDOP-based criterion. These results reects an idea commented
before. Not all the algorithms are suitable to be used in all situations or scenarios.

The GDOP-based criterion works better when the anchors are distributed follow-
ing a grid, because the distribution of the anchors are geometrically-distributed better.
More concretely, each non-located node has more probability of being inside an are
covered by more than one anchor node. This anchor distribution is, under a geometri-
cal point-of-view, more similar to the convex-hull; hence, better distributed to achieve
a lower GDOP value. Moreover, the best results are achieved when the number of
anchor nodes are higher than 9.

On the contrary, the distance-based algorithm is better when the circular distri-
bution is used. The geometry of the anchors inside each cooperating group are not
equitable as before. Hence, the distribution of the anchors also affects the overall
performance. With this distribution, the number of anchor nodes in each cooperating
group, when a GDOP-based criterion is used, is lower, hence, each non-located node
has less reliable information. For that reason, the distance-based criterion works better.

3.6.4 Comparison with Existing Methods

In this subsection we will compare our proposed algorithm On-Line Path Loss Node
Selection Least Squares (OLPL-NS-LS) with two different existing solutions: a dis-
tributed method based on a Maximum Likelihood algorithm (ML) and centralised al-
gorithm based on Multidimensional Scaling (MDS). We apply the on-line path loss
estimation to all the methods in order to achieve a fair comparison between them. Only
our OLPL-NS-LS method present the node selection method proposed. Moreover, the
three criteria are used. We will compare the performance of our method in terms of
both energy consumption and positioning accuracy.

Comparison with Maximum Likelihood Localization Algorithm

The Maximum Likelihood, as presented in the chapter 2, is also a non-bayesian esti-
mator. The major difference between LS and ML methods is that ML approaches take
advantage of the statistics of noise sources and LS approach does not. The cost func-
tion that characterizes the ML algorithms, and the one that has to be minimized, is the
following:

CML(x) = b2
N2∑

i=1

∑

jεSi

(
log
(

zj→i

f(xi − xj)

))2

. (3.39)
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(a) Comparison with RSS-based node selection mechanism
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(b) Comparison with Distance-based node selection mechanism
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(c) Comparison with GDOP-based node selection mechanism

Figure 3.26: Mean absolute error mean vs. N1 (solid line: OLPL-NS-LS algorithm,
dashed line: ML algorithm)

In Figure 3.26, the results obtained by the three different node selection mecha-
nisms are shown. In Figure 3.26(a) the accuracy achieved by th OLPL-NS-LS algo-
rithm is very similar to the achieved by the ML algorithm. The similarity is higher
when the grid-based anchor distribution is used. As occurs at the previous results, the
accuracy obtained in a grid-based anchor scenario with N 1 higher than 16 is better.
This conclusions could be transferred to the results of the distance-based node selec-
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tion mechanism presented in Figure 3.26(b), because the behaviour of the accuracy is
the same as in the RSS-based node selection case. Finally, in Figure 3.26(c), they are
shown the comparison between the GDOP-based mechanism and the ML algorithm.
One can see, that the results are, approximately the same. The difference, in terms of
mean absolute error, are almost negligible.

Although the results in terms of accuracy are almost the same in all the simulations
presented, there exists a feature that improves the performance of the OLPL-NS-LS.
The results in terms of energy efciency are highly improved by our proposal. The
benet introduced by the node selection criteria used makes considerably more efcient
the OLPL-NS-LS versus the ML algorithm. The percentage of reduction of the energy
consumption of the network oscillates between the 50%, with a value of N 1 = 4, and
90%, with a value of N1 = 25. Hence, the introduction of a node selection criterion
does not affect the accuracy of the localization algorithm and increases the efciency
in terms of energy consumption.

Comparison with MultiDimensional Scaling Algorithm

The MDS algorithm is a simple centralized approach that builds a global map using
classical MDS [Sha03]. MDS works well on networks with relatively uniform node
density but less well on more irregular networks.

As observed in Figure 3.27 the proposed OLPL-NS-LS algorithm outperforms the
MDS localization algorithm. This gain is achieved thanks to the introduction of node
selection criteria. In this case it is compared a distributed method (OLPL-NS-LS) with
a centralized method (MDS). On the one hand, a centralized method includes more
distant nodes. Then, nodes with a high error on their distance estimates are used. On
the other hand, all possible nodes inside each group S i are also used in the path loss
estimation process. Probably, these nodes that are not near to a node i would not have
a similar propagation conditions compared to those nodes that are closer. For that
reason a node selection scheme allows to reduce the mean absolute error results in an
RSS-based distance estimated.

Furthermore, it is also important to remark the reduction of the energy consump-
tion. According to our energy consumption model, the use of a reduced cooperating
group S i produces a reduction in the energy consumed by the network. The reduction
of the energy consumption achieved by the OLPL-NS-LS algorithm oscillates, again,
between 50% and 90%, compared to the energy consumed by a method without node
selection mechanism (see Figures 3.27(a) 3.27(b) and 3.27(c)).

In this case there exists a benet in both features: the accuracy and energy con-
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(a) Comparison with RSS-based node selection mechanism
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(b) Comparison with Distance-based node selection mechanism
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(c) Comparison with GDOP-based node selection mechanism

Figure 3.27: Mean absolute error mean vs. N1 (solid line: OLPL-NS-LS algorithm,
dashed line: MDS algorithm)

sumption. It is remarkable the benet achieved in the mean absolute error. The differ-
ence oscillates between 3 and 5 meters.

3.7 Experimental Results

In this section experimental results are presented. The measurements done in an indoor
scenario have been carried out with the Mica2 motes @ 915MHz of Crossbow [Xbo]
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and Z1 motes @ 2.4GHz of Zolertia [zol]. Two different kind of hardware are used in
order to compare the differences between the two frequency regimes. The scenario is
presented in Figure 3.28.

There are N2 = 20 non-located nodes and two different number of anchors N 1: 4
and 9. The non-located nodes are normally distributed in an 8 x 12 meters scenario,
while the anchors are distributed with a circular and a grid-based distribution (3.28).

y 
(m

)

x(m)

4 anchors scenario
 9 anchors scenario
non-located nodes

(a) Circular anchor distribution

4 anchors scenario
 9 anchors scenario
non-located nodes

y 
(m

)

x(m)

(b) Grid-based anchor distribution

Figure 3.28: Experimental Scenario

3.7.1 Circular Anchor Distribution

In Figure 3.29 the results obtained are shown for the three different node selection
criteria. The results of the RSS-based node selection mechanism is presented in Figure
3.29(a). Although the results between the two different hardware are approximately the
same, better accuracy is achieved by the mica2 motes. The path-loss and shadowing
model used depends on the frequency band used. The path-loss and shadowing model
is modelled as [Gol05]:

RSSij = PTx + K − 10αij log10(dij), (3.40)

where PTx is the power transmit by a node and K a unitless constant that depends on
the antenna characteristics and the average channel attenuation. More concretely, when
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a omnidirectional antenna is assumed, the K values is obtained as:

K = 20 log10
c/f

4πd0
. (3.41)

With a higher value of frequency, theK value becomes higher; hence, more propagation
looses. In our case, the values at 900 MHz and 2.4 GHz are -31.5 dB and -40 dB,
respectively.

Furthermore, the major difference is achieved in the scenario with 4 anchors. One
could also observe that the behaviour of the error is similar at the obtained with the
simulations. With a higher number of nodes cooperating the error is slightly better
(approximately 20 cm), but the energy consumption is higher.

If one observes the results of the Distance-based node selection criterion (Figure
3.29(b)) the difference between both hardware used is very remarkable. Lower accu-
racy are obtained with the mica2 motes. This is due to this method highly depends on
the accuracy of the distance estimates and mica2 motes works at 900 Mhz; hence, the
pathloss and shadowing affect less at this frequency band, as explained before. Fur-
thermore, the mean number of nodes that achieves a better accuracy is equal to 6. The
same value obtained at the simulation scenarios presented at the previous section.

Finally, the results achieved by the GDOP-based node selection criterion are shown
in Figure 3.29(c). Again, the best value for the NSi is 6. With this value of cooperating
the accuracy achieved is equal to 1.67 and 1.63 meters, when the z1 and mica2 motes
are used respectively, with N1 = 9, and 2 and 1.96 meters with N1 = 4. The differ-
ences between both hardware are not so high. The GDOP-based algorithm does not
only take into account the distance estimate of the cooperating. The selection mech-
anism also incorporates the geometry information, hence both hardware used has a
similar performance.

3.7.2 Grid-based Anchor Distribution

The grid-based anchor distribution results are shown in Figure 3.30. The results of the
RSS-based node selection mechanism is presented in Figure 3.30(a). The results be-
tween the two motes are very similar when there are 9 anchors. With lower number of
anchors the results achieved by the Z1 motes are worse. The grid anchor distribution
positions the 4 anchor nodes at the scenario corners; hence, compared with the circular
distribution, non-located nodes located far away from the corners have a lower proba-
bility of having an anchor node inside theri cooperating group. This fact is reected in
the results. As previously commented, the Mica2 motes have better results at the time
of estimating the distances (see Figure 2.9(b)), and this fact is reected in the accuracy
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(a) RSS-based node selection
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(b) Distance-based node selection
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(c) GDOP-based node selection

Figure 3.29: Mean absolute error mean vs. NSi (Circular anchor distribution) (solid
line: mica2 motes, dashed line: z1 motes)

results. Only when the number of anchors is increased, and the proximity of them to
the rest of the nodes is higher, the accuracy of both motes is comparable.

Moreover, the results of distance-based node selection results show a difference
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(c) GDOP-based node selection

Figure 3.30: Mean absolute error mean vs. N1 (Grid anchor distribution) (solid line:
mica2 motes, dashed line: z1 motes)

with respect to RSS-based selection criterion (see Figure 3.30(b)). The distance-based
selection relies on the selection based on their distances instead of the RSS; hence,
the criterion includes the estimation of the path loss done by the algorithm. Now,
although the best accuracy is achieved by the mica2 motes, the z1 motes achieves
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better performance. Furthermore, the best result in all scenarios is achieved with a
mean number of 6 nodes cooperating validating the value achieved with the simulation
results.

The GDOP-based node selection criterion are shown in Figure 3.30(c). Again, the
best value for the NSi is 6. The differences between both hardware are not so high, but
in this occasion the z1 motes outperforms the mica2 motes. The error achieved with 4
anchor nodes is 2.45 with z1 motes and 2.6 meters with mica2 motes. In a 6 anchor
nodes scenario, z1 motes achieved 1.8 meter error and the mica2 motes an error equal
to 1.9 meters.

3.7.3 Comparison

In tables 3.31 one could observe the gains achieved by the different section criteria in
terms of mean absolute error and energy consumption, when mica2 motes are used.
As it occurs at the simulation results, the best selection criterion, when the circular
distribution is used, is the distance based criterion. As the results reects, we do not
achieve a gain in terms of positioning error but the difference of mean absolute error
is only of 4 cm with N1 = 4 and 5 cm when N1 = 9. The node selection mechanism
does not achieve better results but the energy consumption is considerably reduced.
The selection mechanism allows to obtain a gain equal to 82.3% with N 1 = 4 and
85% with N1 = 9. On the other hand, with a grid based anchor distribution, the
best performance is achieved with a GDOP based selection criterion. In this case, the
mean absolute error achieved is lower compared to the non-selection case. Moreover,
the energy consumed when the selection method is done is, again, lower than with a
non-selection localization algorithm.

GDOP-
based

Distance-
based

RSS-
based

Circular- 
based

-2.4%-2.6%-1.5%

-4.3%-2.3%-7.4%

Grid- 
Based

3.7%-2.08%-0.6%

4.5%-2.53%-7.4%

Selection 
Criteria

N1 = 4

N1 = 4

N1 = 9

N1 = 9

(a) Gain in terms of mean absolute error

GDOP-
based

Distance-
based

RSS-
based

Circular- 
based

77%82.3%67.5%

79%85%57%

Grid- 
Based

78%75%67.5%

80%83.5%57%

Selection 
Criteria

N1 = 4

N1 = 4

N1 = 9

N1 = 9

(b) Gain in terms of energy consumption

Figure 3.31: Gain results of mica2

If we focus now on the results of the z1 motes, the results (see 3.32) reect the
same behaviour as those obtained with the simulations. The best selection criterion
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is the distance based when a circular distribution of the anchors is assumed, and the
GDOP based when the grid distribution is used. Moreover, the energy consumption
is considerably reduced. The node selection algorithm performance is better in both
features, the mean absolute error and the energy consumption is reduced.

GDOP-
based

Distance-
based

RSS-
based

Circular- 
based

-1.5%7.18%-16%

1.3%1.88%-1%

Grid- 
Based

3.9%3.3%-1.5%

6.25%-1.09%-7.4%

Selection 
Criteria

N1 = 4

N1 = 4

N1 = 9

N1 = 9

(a) Gain in terms of mean absolute error
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RSS-
based

Circular- 
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77%82%40%

79%85%35%

Grid- 
Based

78%72%50%

82%73%65%

Selection 
Criteria

N1 = 4

N1 = 4

N1 = 9

N1 = 9

(b) Gain in terms of energy consumption

Figure 3.32: Gain results of z1

3.8 Summary

The basic issue that we follow is to implement a pragmatic localization algorithm as
simple as possible, energy efcient but without sacricing the accuracy.

Based on an RSS-based Least Squares localization algorithm we introduce two
modications in order to achieve a good trade-off between accuracy versus energy
efciency: an on-line path loss estimation and a node selection mechanism.

With the introduction of an on-line path loss estimation, the proposed algorithm
is able to achieve better estimates of the inter-node distances. The major advantage
is the avoidance of giving to the nodes a model of the environment, done with an a
priori measurement campaign. Moreover, the adaptability of the algorithm is increased
in front of other localization algorithms based also on RSS range measurements. We
estimate this parameter using the RSS measurements; hence, we maintain our purpose
of simplicity.

WSN are battery powered networks and it is necessary be as energy-efcient as
possible. In that sense, we propose to limit the nodes that cooperate; hence, we reduce
the exchange of messages, reducing the possibility of packet loses due to collisions and
reducing the information that a node has to process. Three are the different approaches
proposed: RSS-based, distance-based and GDOP-based node selection criterion.

In order to study the viability of these proposals different simulations and experi-
mental values are carried out. The results show that the accuracy achieved by distance-
based node selection mechanism achieves the best trade-off between accuracy versus
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energy consumption when the anchors are circularly distributed. With a grid-based dis-
tribution, the GDOP-based node selection criterion shows the best trade-off between
accuracy versus energy consumption. Reducing the number of cooperating nodes by
means of a node selection mechanism allows to achieve an energy consumption gain
that oscillates between the 70% and the 83%. The reduction of cooperating nodes al-
lows to the algorithm reduce the number of messages and the information to process
but the localization accuracy is maintained. These results are reected in the simulated
and experimental results.

We also reect the impact of having an on-line path loss estimation. Results show
that better distance estimates are obtained. Moreover better behaviour in terms of mean
absolute error is achieved. As previously discussed, this estimation is done with the
RSS measurements obtained with the normal messages sent by all the nodes; hence,
we do not increase the cost of the nodes with extra equipment.

We could summarized that the proposals introduced in an RSS-based distributed
cooperative LS localization algorithm allows us to achieve a good trade-off between
accuracy versus energy consumption. This summary is reected at the experimental
results. They show that the distance-based criterion achieves gains, in terms of mean
absolute error, that oscillate between the 2% and the 8%. The gains achieved by the
GDOP-based criterion oscillates between the 4% and the 6.25%.



Chapter 4

Mobile Node Localization and
Tracking

THE increasing interest on WSNs has motivated the appearance of different appli-
cations. Sometimes, an application needs to know the position of a mobile node.

This requirement has motivated the appearance of tracking algorithms devoted to lo-
cate mobile nodes. But the mobility of the nodes causes some problems to estimate the
position, and hence, to track a mobile node. For that reason, in this chapter we propose
an RSS-based tracking algorithm.

4.1 Introduction

In chapter 2, different works aimed at tracking mobile nodes in WSN have been pre-
sented. For example, in [Vu08] the authors present a positioning method of xed nodes
based on the minimization of an ML function that is latter used as a tracking method.
Basically, they propose to follow the movement of a node by repeatedly using the MSE
algorithm over a predened period of time. In [Ber08], authors have also presented
another RSS-based tracking system in which the mobile node estimates their position
by means of using three different estimators: Maximum Likelihood, Least Squares and
Maximum Ratio Combining.

Although all these methods are used and developed for tracking purposes, they do
not include other features that characterizes a moving target, such as: velocity, acceler-
ation, etc. In order to include these features many other methods have been developed
in the literature. Methods such as kalman lters, and its derivatives, and the particle l-

93
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ters include these features. As commented previously, PF algorithms [Aru02, Ahm10]
is a suboptimal non-linear lter that performs estimation using sequential Monte Carlo
methods to represent the probability density function of the target state. These ap-
proaches do not assume that the system and the measurement processes are linear. The
Kalman Filter (KF) [OS07, Cac09, Di08] has become the most common method used
to track mobile nodes. KF bases their functionality on two steps: a prediction step fol-
lowed by a correction step. Although the KF is a method that assumes a linear signal
model, posterior extensions, such Extended KF or Uscented KF, consider a non-linear
systems. All of them are characterized by assuming that all error terms and measure-
ments have a Gaussian distribution.

Another important issue is to obtain a good accuracy by means of using low-
complex and low-cost methods, able to be used in a WSN. At the previous chapter the
feasibility of using RSS-based measurements in localization algorithms has been pre-
sented. RSS-based measurements are the simplest range-based way to achieve distance
estimates; moreover, these measurements consume less resources and do not impose
any cost increase in hardware. Some works such as [Vu08, Ber08, Guv03, Cac09],
have used these range measurement as the way to obtain inter-node distance estimates.
Authors in [Cac09] say that the use of RSS-based tracking algorithms are not very
extended. Hence, their use make the development of a tracking algorithm more chal-
lenging.

In this chapter, we present an RSS-based tracking algorithm based on a Kalman
Filter. Our proposal is to increase the accuracy of the RSS-based methods by means
of introducing a Window-based RSS correction mechanism that improves performance
when compared to existing methods. Moreover, we prove the proposed tracking al-
gorithm in two different scenarios: outdoor and indoor. The errors that affect the
RSS measurements in both scenarios are very different. Nevertheless, we adapt our
Window-based mechanism to both environments achieving a higher accuracy com-
pared to other existing methods.

4.2 Overview of the Kalman Filter

Our proposals are both based on a Kalman Filter, more concretely in a KF for the
outdoor algorithm and an EKF for the indoor algorithm. For that reason, we present
both solution with more details in the following subsections.

The Kalman Filter was rst introduced by Rudolph Emil Kalman in [Kal60]. The
presented algorithm estimates an unknown variable using measurements affected by
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noise. The main advantage is that the estimation is done over time, i.e., KF does not
only use a single measurement. The basic functionality of this lter is based on a
prediction-correction operation and it is considered optimal due to its nal purpose
is to minimize the estimated error covariance [Wel01]. Since its rst publication, the
Kalman Filter has become a recursive eld of research study and vastly applied in the
area of autonomous or assisted navigation.

The KF works in a two-step process: the prediction step, where the algorithm esti-
mates the current state variable, and the correction step, where, thanks to the corrupted
measurements, the KF update the estimation done at the previous step. This algorithm
basically assumes that the system is a linear dynamical one, and the error and the mea-
surements are Gaussian distributed [Aru02].

When the dynamics cannot be represented as a linear combination of the state vari-
ables, there exist some approximations to the optimal solution as the Extended Kalman
Filter (EKF) or the Unscented Kalman Filter among others. In recent years, KF has
been used in the eld of navigation because it is considered a simple and robust lter.

4.2.1 Kalman Filter

The basic characteristic of the Kalman Filter is its recursive behaviour. The KF only
uses the previous estimate and the current measurements; hence, the lter could be
consider as a memoryless algorithm.

The KF is normally conceptualized in two different phases: predict and correction.
At the prediction phase the algorithm calculates an state estimate by means of using
the previous time state estimate. Then, the correction time step renes the current state
estimate using the current measurements.

The rst step is characterized by two variables: x̂−(k+1), the a priori state estimate
at time k+1, and P(k+1)−, the a priori error covariance matrix which is an estimated
accuracy of the state estimate.

The state estimate is obtained as:

x̂−1(k + 1) = F(k)x̂(k) + V(k)v(k), (4.1)

v(k) are the noise of the process and the observations modelled as Gaussian variable
with zero mean covariance R, the F matrix relates the process state with the previous
state, and V the input/control matrix. Moreover, the estimate covariance is estimated
as:

P−(k + 1) = F(k + 1)P(k)F(k + 1)T +Q(k + 1), (4.2)
1we denote the a priori estimation with the superscript -
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whereQ is the process noise covariance matrix.
As previously said, the basis of a Kalman lter is to obtain a posteriori estimator

x̂(k + 1) thanks to a priori estimator x̂−(k + 1) and the correction through the obser-
vation prediction errorHx̂−(k + 1); hence is considered a predictor-correct estimator.

At the second step, the lter corrects the a priori estimation by means of introducing
the measurement equations to nally obtain a posteriori estimation of the process state.
The equations in order to obtain the a posteriori estimate are the following:

K(k + 1) = P−(k + 1)HT
(
HP−(k + 1)HT + R

)−1 (4.3)

x̂(k + 1) = x̂−(k + 1) +K(k + 1)
(
z(k + 1) −Hx̂−(k + 1)

)
(4.4)

P(k + 1) = (I−K(k + 1)H)P−(k + 1), (4.5)

where R is the covariance matrix of the measurement noise.
In this stage the KF estimates the so-called Kalman gain K(k + 1), that takes into

account the current statistics of the state and the measurement noise. This gain is used
later to minimize the covariance of the a posteriori error. Another important factor is
the residual or the observation innovation�’s

(
z(k + 1) −Hx̂−(k + 1)

)
. The residual

reects the divergence between the predicted estimate Hx̂−(k + 1) and the current
measurements z(k + 1). In addition to the previous gain, the lter is capable to correct
the a priori estimation.

All these equations and the global procedure of the Kalman lter is summarized in
Figure 4.1.

A major cons that could affect the performance of the KF is the estimation of the
noise covariances Q and R. These two matrices are very difcult to estimate. Never-
theless, they are not the only issue that affects the optimality of the KF. If an optimal
KF is desired, then white Gaussian noise and a model that perfectly ts the real system
are also necessary.

Although, KF could not achieve its optimal performance, it is a highly used algo-
rithm in order to track moving objects in WSNs [Di08, Nab08].

4.2.2 Extended Kalman Filter

The KF basically estimates a state x of a discrete-time process modelled with a linear
equation. But: it is possible to model any process in a linear way?.

Moreover, the measurements could not have a linear relationship with the process.
The Extended Kalman Filter (EKF) is a suboptimal alternative that linearises the model
at each step; hence, we are able to use a non-linear model.
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Kalman Filter

Time Update Eq.

x̂−(k + 1) = F (k + 1)x̂(k)
P−(k + 1) = F (k + 1)P (k)FT (k + 1) + V (k + 1)Q(k + 1)V T (k + 1)

Measurement Update Eq.

Corrections Predictions

Initial estimates for
x̂(k)P (k)

K(k + 1) = P−(k + 1)H(k + 1)T
(
H(k + 1)P−(k + 1)H(k + 1)T + R

)−1

x̂(k + 1) = x̂−(k + 1) + K(k + 1)
(
z(k + 1) − H(k + 1)x̂−(k + 1)

)

P (k + 1) = (I − K(k + 1)H(k + 1))P−(k + 1)

Figure 4.1: Kalman Filter Procedure

In this case, the equations presented at the previous subsection should be modied,
as, now, the process is modelled as a non-linear stochastic difference equation:

x−(k + 1) = f (x(k), u(k)) (4.6)

with a measurement z equal to:

z(k + 1) = h
(
x−(k + 1)

)
, (4.7)

where f (x(k), u(k)) and h (x−(k + 1)) are non-linear functions that depend on the
current state and time.

As previously discussed, the basic idea of the EKF is to linearise the equations
(4.6) and (4.7), through the calculation of the partial derivatives of the process and
measurements functions. Once the equations are linearised, the standard Kalman lter
equations are applied. Hence, the EKF is also divided in two different stages.

The rst stage is responsible to obtain the linearisation of the functions f and h and
to convert them into the linear matrices A andH. They are obtained as:

A(k + 1) =
∂f(x)
∂x

∣∣∣∣
x=x̂(k)

(4.8)

H(k + 1) =
∂h(x)
∂x

∣∣∣∣
x=x̂−(k+1)

(4.9)

The equations that describe the EKF algorithm are summarized in the following
equations, shown in the following Figure 4.2
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Extended 
Kalman Filter

Time Update Eq.

Measurement Update Eq.

Corrections Predictions

Initial estimates for
x̂−(k + 1) = f[k, x̂(k)]
P−(k + 1) = A(k + 1)P (k)AT (k + 1) + V QV T

K(k + 1) = P−(k + 1)HT (k + 1)
(
H(k + 1)P−(k + 1)HT (k + 1) + R

)−1

x̂(k + 1) = x̂−(k + 1) + K(k + 1) (z(k + 1) − h[k, x̂(k)])
P (k + 1) = (I − K(k + 1)H(k + 1))P−(k + 1)

x̂(k)P (k)

Figure 4.2: Extended Kalman Filter equations

The linearisation, i.e. the Jacobian, of f and h is computed each time step with
current predicted states. Once these matrices are constructed, they are able to be used
at the KF.

Compared to the KF, the EKF is not an optimal estimator. Moreover, the linearisa-
tion could cause a quickly divergence, if the initial estimate is not sufciently accurate
or the process is modelled incorrectly. Furthermore, another inconvenient is that the
estimated covariance matrix tends to underestimate the true covariance matrix; hence,
the algorithm could become inconsistent in the statistical sense.

Nevertheless, EKF has a valuable algorithm used in navigation systems, and mostly
recent in tracking algorithms in WSNs [Liu08, Zhu06].

4.3 Outdoor Mobile Node Tracking

The rst contribution is a method to track mobile nodes in outdoor scenarios.
More specically, our purpose is to develop a tracking algorithm able to be used

with med-high speed nodes (e.g car users). To do so, a xed infrastructure is placed
in an outdoor scenario. The benets that we achieve using an algorithm based on
WSN compared to other existing methods, such as GPS, are: more precision in urban
environments due to the bad behaviour of GPS signals propagation in urban areas and
a lower energy consumption.

In the following subsections, we present the scenario in detail, the procedure devel-
oped and the experimental results obtained.
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4.3.1 Scenario Description

As previously commented, we consider a xed WSN deployed in an urban scenario.
Let us consider a wireless sensor network with N1 anchor nodes, whose exact locations
are known. The main goal is to estimate the location of a non-located node with the
help of anchor nodes.

Figure 4.3: Example of and outdoor scenario

These nodes transmit a message that contains their positions. Thanks to the infor-
mation collected and the RSS range measurements from the xed nodes, the algorithm
is able to detect, locate and track the mobile node.

RSS Measurements Model

As we consider an RSS-based tracking algorithm, we need to adopt the model that best
ts the real propagation conditions. The most accepted option in WSN is to model
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the received power through the well known radio-propagation path loss and shadowing
model. The RSS can be expressed as the power received in node j from a signal
transmitted by node i, Pij , as:

RSSij = Pij = P0 − 10αij log10 dij − vij (dBm), (4.10)

As we will see later, the high variability of the RSS measurements will be simulated
by means of assuming a higher value of the v ij .

In the case of mobile nodes, some effects, such as Rayleigh fading, appears. These
effects induced by the mobility are taken into account at the experimental validation in
order to adapt the algorithm.

4.3.2 RSS-based Outdoor Tracking Algorithm

RSS-based algorithms have to raise certain challenges. RSS measurements offer a low
accuracy but, however, they provide the simplest way to obtain inter-node distance
estimates. Our basic interest is to offer a pragmatic solution easy to implement and
low-cost. For that reason, although RSS measurements offer low accurate results, our
proposal is to improve the existing solutions by means of correcting the RSS measure-
ments.

Moreover, the med-high velocities assumed also affects these measurements. hence,
when an algorithm is designed, one has to take into account all these limitations, that
could, considerably, affect the overall performance.

Two major problems appear when practical RSS measurements are considered:

• RSS errors: Measurements reveal the appearance of different effects (such as
Rayleigh) not present when xed non-located nodes are considered. At the pre-
vious chapter, the principal range measurement error effect has been the shad-
owing effect. In this occasion, the obtention of an environment model is more
complicated than in a static environment. Hence, the distance estimates obtained
through the RSS measurements will have a higher error.

• Connectivity errors: The connectivity with the nodes would change faster than
in a static scenario. This rapid change of the neighbour nodes that a mobile node
could detect depends on the velocity that the mobile node takes. In the scenario
proposed, the mobile node is inside a car, hence, the velocities that the node
takes are considered to be med-high. The connectivity with the neighbour nodes
in this scenario will have a high variation.
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With the knowledge of all the issues that an outdoor tracking algorithm introduces,
one has to wonder: which is the most suitable tracking algorithm to be used?

Proposed Solution

We have to, basically, take into account the two basic differences between the previ-
ous xed proposals: the appearance of more error effects, and, high variability of the
connectivity.

These effects induced by the mobility difcult to obtain a valid model of the RSS
measurements. Hence the distance estimates can have a higher error. Hence, a weighted
centroid algorithm seems to be more valuable compared to a trilateration method.

As commented at the beginning of this chapter, localization algorithms previously
presented usually do not include many other parameters, such as velocity or direction,
that could improve the position estimates. For that reason, methods, such as Kalman
Filters, has been in last years proposed as a tracking method solution.

Moreover, the rapidly variability of the neighbours connectivity becomes in hopes
back and forward of the position estimate. For that reason, a RSS Correction mech-
anism is proposed to be included. This modication allows us to minimize the bad
effects due to the high velocities of the scenario; hence, trying to achieve a higher
accuracy without increasing the complexity.

The localization and tracking algorithm procedure is shown in Figure 4.4. In the
following lines, we explain with more detail all the parts that compose the outdoor
tracking algorithm in order to adapt the method of the previous chapter to a mobile
scenario.

Step 1 - Messages Reception

During a time period T, the mobile node recollect the messages transmit by the xed
network. The information extracted from the messages are the different RSS and the
xed node identier. This information is saved in a matrix P as:

P =

[
RSS1 RSS2 · · ·RSSNSi

IdRx,1 IdRx,2 · · · IdRx,NSi

]
, (4.11)

where RSSi is the received power from node i in dBms and IdRx,i is the value
that indicates the existence of a measure, i.e. if IdRx,i is equal to 1, this means that
at that time the mobile node has received a message from node i. The RSS values are
continously updating during all the time period. We do not erase any value, although
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Step 1 - 
Messages 
Reception

Step 3 - 
Node Selection

Step 4 - 
A priori 
Position 

Estimation

RSScor,iStep 2 - 
Window-Based RSS 

Correction

Step 5 - 
A Posteriori 

Position 
Estimation

di = ||(xpt , ypt) − (xpt−1 , ypt−1)||

v̂

Si

i = [1, 2, · · · , na]

Figure 4.4: RSS-based Outdoor Tracking Procedure

the measurement has been done at the beginning of the time period. These errors are
corrected with the work done at the step 2.

Step 2 - Window-based RSS Correction

This correction mechanism tries to reduce the bad effects explained before.
All the nodes that do not have any RSS measurement (i.e. their Id=0) or all of them

that have a value of RSS lower than a threshold, modify their RSS value following our
proposal.

The power received is modelled depending on the distance d and the exponent γ,
that determines the decrease of the power depending on the distance, as:

RSS = P0 − 10γ log10(d), (4.12)

where P0 is the power received at a reference distance of 1 meter (obtained experimen-
tally). Hence, the propagation loses are estimated as:

Lprop = 10γ log10(d). (4.13)

As shown in Figure 4.4, the Window-based corrector depends on the estimated
velocity. We adapt the correction depending on the velocity. For that reason, we dene
different zones that the mobile node could take.

• range 1: [vth1, vth2)



4.3. Outdoor Mobile Node Tracking 103

• range 2: [vth2, vth3)

• range 3: [vth3, vth4)

where the vthi are the different thresholds that limits the different zones. Once we have
decided the thresholds, we have to determine which are the values of the correction
factors. Our proposal is to obtain them depending on the propagation loses formula
(4.13). We rst calculate the mean velocity of every range as:

vm,range1 = (vth1 + vth2/2)

vm,range2 = (vth2 + vth3/2)

vm,range3 = (vth3 + vth4/2)

For every mean value of velocity, we can estimate the distance that a mobile node could
move away as:

dm,range1 = vm,range1tperiod

dm,range2 = vm,range2tperiod

dm,range3 = vm,range3tperiod

With these distances we can obtain those looses with the equation (4.13), and,
hence, we can update the values of the power that we should received as:

RSS(t + 1) = RSS(t) − Lprop,rangei . (4.14)

We update the previous measurement received RSS(t) with the propagation loses
depending on the velocity. Although the exponent γ value depend on the scenario, we
assume a constant value equal to 2.5 that works in a general outdoor case.

The introduction of this window-based mechanism is motivated by the movement
of the non-located nodes. The messages received suffer from variations and range
measurement errors, and, moreover, these variations increase as the velocity increases.
These problems in the connectivity and in the RSS values measured cause changes on
the proximity in a short period of time (see Figure 4.5).

In a straight line scenario, the major problem is the possibility of having an esti-
mated position that jumps forward and backward. With the proposed Window-based
mechanism, we introduce a method that corrects the RSS variations by means of adapt-
ing the correction to the node velocity (see Figure 4.6).
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Figure 4.5: Temporal representation of the RSS measurements done at two nodes

Step 3 - Node Selection

As in the previous chapter, we introduce a node selection criterion in order to improve
the overall performance. The closer the nodes, the more reliable information obtained
from an anchor.

In our case, the closest nodes are those nodes with the highest RSS received. The
node selection mechanism sort the RSS measurements received from higher to lower

Received power
at node 1

(dBm)

Time (s)
T

Received power
at node 2

(dBm)

Time (s)
T

Real Measured Power Estimated power values
with the Window-based
Correction Mechanism

Figure 4.6: Temporal representation of the corrected RSS measurements done at two
nodes
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values. Being the sorted RSS measurements done the following:

RSSa > RSSb > ... > RSSf ∀a, b, ..., f ∈ Si (4.15)

The node selection mechanism modies the cooperating group S i to:

Si = [abc] (4.16)

Finally, the number of anchors nodes na is xed to three. Compared to the previous
chapter, the number of the selected anchors are lower. The reason is that, now, the
mobility of the nodes affects the RSS measurements received. The RSS can not reect
the real RSS, hence, we can erroneously use far away nodes. for that reason we have
to limit the node selection to a lower number.

Step 4 - A Priori Node Position Estimation

If we want to guarantee a position inside the area of interest a better option is a centroid
algorithm. This simple method, as previously commented in chapter 2, offers the pos-
sibility of estimating a node position thanks to the anchor coordinates. The higher the
number of anchors the more precision of the position estimate. If the scenario is anal-
ysed in detail, one can see that the network offers a high number of xed nodes; hence,
a good accuracy could be obtain with a centroid method. Furthermore, the position of
the node will be always inside the desired area.

In order to give a better accuracy to the position estimate offered by the centroid,
a weight is introduced at the time of the estimation. Hence, the weighted centroid
estimates the position as:

(xm, ym) =

(
na∑

i=1

wixi,
na∑

i=1

wiyi

)
, (4.17)

where the weights wi are obtain as:

wi =
RSSi

∑na

i=1

(
1 − RSSiPna

i=1 RSSi

) , (4.18)

where RSSi is the signal strength received from any anchor of the group n a. In this
occasion are selected the three anchor nodes with the highest RSS.

A weighted algorithm ensures to us a localization inside the network area. Nev-
ertheless, the variability of the measures produces a high oscillation of the position
estimates. As the scenario considered (see Figure 4.3) is a straight street, we can limit
the possible path that a node can follow. Hence, the previous localization method could
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be improved by means of projecting the weighted centroid result onto the straight line
in the middle of the street. Thanks to the projection of the positions, the localization
algorithm will achieve a better representation of the position of the node (see Figure
4.7).

X

X

X
X

X

X

X

X
X

X

X Weighted Centroid Estimates
X Projected Weighted Centroid Estimates

Figure 4.7: Projection of the weighted centroid estimates

As the anchors positions are known, it is straightforward to obtain the formula of
a straight line in the middle of the area where the car moves. The projected weighted
positions are estimated as follows:

[
xm

ym

]
=

[
xw

yw

]
+
(

b − a1xw − a2yw

a2
1 + a2

2

)[
a1

a2

]
, (4.19)
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where

m =
y1 − y0

x1 − x0

b = y0 − x0m

a1 = −m

a2 = 1.

where (x0, y0) and (x1, y1) the coordinates of initial and nal points that dene the pro-
jected straight line, (xw, yw) the weighted mean coordinates estimates and (xm, ym)
the projected coordinates.

Other Localization Methods The following methods are also simple methods to
obtain an initial position estimate. We will present two different options that later will
be compared with our proposal in terms of accuracy.

• Trilateration The rst method presented is the trilateration. Hence, the mobile
node needs 3 messages from 3 different anchor nodes. Instead of using a multi-
lateration localization algorithm. The restriction to 3 cooperating nodes is moti-
vated by the inherent multiplicative error of RSS distance estimates. The further
the node, the higher the distance error. Hence, the algorithm selects those 3
nodes with the highest RSS received.

Once the mobile node has select the cooperative nodes, given the power received
RSS ij in Equation (4.10), an ML estimate of the actual distance can be derived
as:

δij = 10
P0−RSSij

10αij . (4.20)

The algorithm estimates these distances assuming an equal value of the path loss
exponent.

Finally, the position is estimated as:

A · pm = b, (4.21)

where

A =

[
x1 − x2 y1 − y2

x1 − x3 y1 − y3

]

b =

[
x2

1 − x2
2 + y2

1 − y2
2 + δ2

2 − δ2
1

x2
1 − x2

3 + y2
1 − y2

3 + δ2
3 − δ2

1

]

pm =

[
xm

ym

]
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where (xm, ym) are the mobile nodes coordinates, (xi, yi)∀i ∈ [1, 2, 3] are the
anchors coordinates and δi ∀i ∈ [1, 2, 3] are the distance estimates from the mo-
bile node to the selected anchors.

This matrix equations could be solved through an LS closed-form solution as:

pm =

[
xm

ym

]
=
(
ATA

)−1
ATb. (4.22)

• Weighted Centroid The weighted centroid algorithm is the our proposed solution
excluding the projection part. As commented before, we assure a priori position
estimate inside the area of interest. Moreover, the inclusion of a weight helps to
increase the accuracy of the algorithm, because we give more reliability to those
nodes with higher RSS. Hence, we give a high ponderation to those nodes that
are, probably, closer to the mobile node.

Step 5 - One Dimensional Kalman Filter

The major drawback that all the localization methods present is the high variability of
the estimates obtained. Although this behaviour is not observable in an static gure, the
position estimates backs down and up due to the variability of the RSS measurements.
One has to take into account that the algorithm is using RSS-range based measurements
in a rapidly environment (the mobile node is moving at velocities between 10 and 20
km/h) and this velocity is not taking into account by the projected weighted algorithm
proposed.

For that reason, a Kalman lter is introduced in the localization and tracking pro-
cedure. The KF used is a one dimensional kalman lter, because the algorithm projects
the position on a centred straight line, hence, it is only necessary to estimate how many
meters has moved the mobile node through this line.

The equations that characterizes our 1DKF are:

• State vector: The state vector is formed by only two variables: the distance d

that the mobile node has moved through the centred straight line and the velocity
v of the mobile node.

x =

[
d

v

]
(4.23)

• State equation: Each state is obtained through a position-velocity model as:

x(n) =

[
1 T

0 1

]
x(n − 1) +

[
T 2/2

T

]
v(n − 1) (4.24)
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• Observation equation: the KF only considers the observation of the distance
that the mobile node has moved away from the previous position estimate d.
Hence, the observation equation becomes:

z(n) = [1 0] x(n − 1) (4.25)

The basic operation of the 1-Dimensional Kalman Filter (1DKF) is shown in the
Figure 4.8.

1D-KF

v

(xm0, ym0)

x̂m(t + 1) = x̂m(t) + γx

∑

jεSi

(δij − dij)eij

[
1 T
0 1

]

if t=0

if t >0

v=0

if t=0

if t >0

d̂ai = ||(xm(t), ym(t)) − (xa1, ya1)||

sv = (x̂, v̂, ŷ, θ̂)
z = (d1, d2, d3, · · · , dna, v, θ)

Figure 4.8: 1-Dimensional Kalman Filter

The procedure of the outdoor tracking algorithm is summarized in the Algorithm
2.

4.3.3 Simulation Results

We consider a xed network composed by N1 equal to 6 nodes and a mobile node
moving at two different velocities. The nodes are divided in two different straight lines
separated 10 meters. Moreover, the nodes at the same line are separated 5 meters. the
parameters assumed at the simulations are summarized at the following table 4.1.

In the following subsections, we evaluate the performance of the two diffrent parts
of the algorithm: the a priori and the a posteriori position estimate.
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Algorithm 2 RSS-based Outdoor Tracking Algorithm
Messages Reception

P =

[
RSS1 RSS2 · · ·RSSNSi

IdRx,1 IdRx,2 · · · IdRx,NSi

]

Window-based RSS Correction
if v < vth1 then
for i = 1 to NSi do

RSSi(t + 1) = RSSi(t) − γ1

end for
else if vth1 < v < vth2 then
for i = 1 to NSi do

RSSi(t + 1) = RSSi(t) − γ2

end for
else
for i = 1 to NSi do

RSSi(t + 1) = RSSi(t) − γ3

end for
end if
Node Selection:
being RSSa > RSSb > ... > RSSf ∀a, b, ..., f ∈ Si

then na = [abc]

Coordinates Estimation:
(x, y) = (

∑na

i=1 wixi,
∑na

i=1 wiyi)

Projected Coordinates:[
xm

ym

]
=

[
x

y

]
+
(

b − a1x − a2y

a2
1 + a2

2

)[
a1

a2

]

A Posteriori Position Estimate:
1Dimensional Kalman Filter
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Table 4.1: Simulation Parameters.

Simulation Parameters Parameter Value
Size of Sensor Field 10 × 15 m
Number of Anchors (N1) 4
Path Loss Exponent αij 2.5
Standard Deviation σv 5 dB
First-Meter RSS P0 −50 dBm
Velocity v1 = 10km/h & v2 = 20km/h

A Priori Position Estimate

The a priori position estimation proposed is compared, in terms of accuracy, with two
other proposals: a trilateration method and a weighted centroid. The projection of the
weighted centroid results, which is our proposal, is done thanks to the a priori knowl-
edge of the map. The results of the mean absolute errors achieved at both velocities
are summarized in the table 4.9. The trilateration method obtain the worst results. The
propagation model used is not sufciently accurate in order to obtain good inter-node
distance estimates. Hence, the trilateration method inherit these errors.

Moreover, the weighted centroid method obtains good results, although, the pro-
jected weighted centroid outperforms it. A gain of the 18 % with a v=10km/h and a of
gain 10% with a v=20km/h are achieved.

Projected 
Weighted 
Centroid

Weighted 
Centroid

Trilateration

Mean 
Absolute 
Error (m)

Velocity 
(km\h)

Positioning 
Method

10

20

10

20

10

20

>10

>10

2.14

2.62

1.75

2.35

Figure 4.9: A priori methods accuracy comparison
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A Posteriori Position Estimate

In this section we simulate the effects of the introduction of our window-based RSS
correction mechanism. The results show the increased accuracy achieved by our pro-
posal. The errors produced by the high variability and rapid changes of the connectivity
are minimized with the Window-based RSS mechanism. The differences between the
proposed algorithm and the 1DKF are reected in the gains achieved: a 65% with a
low velocity and a 30% with a high velocity.

Window-based 
& 1D-KF

1D-KF

Mean 
Absolute 
Error (m)

Velocity 
(km\h)

A Posteriori 
Position 

Estimation

4.57

2.55

1.57

10

20

10

20 1.78

Figure 4.10: A posteriori methods accuracy comparison

Besides, our proposal achieves more accurate results than the a priori position esti-
mate. Gains achieve are a 10% with 10 km/h and a 24% with 20 km/h.

4.3.4 Experimental Results

The experimental scenario is a street from a parking located inside the university cam-
pus. As shown in Figure 4.11, we placed 20 xed anchor nodes along a straight street.
The two queues of nodes were separated 10 meters and the distance between two nodes
at the same line was 5 meters. The total longitude of the street is 50 meters. The differ-
ent experimental results are obtained at two different velocities: 10 km/h and 20 km/h.

XALOC Project

This work has been experimentally demonstrated in the framework of project XALOC
(Regional Project2). For that reason, in the following lines we briey present the
XALOC scenario and the purposes of the project.

The main purpose of the project was the design of a car parking platform based
on wireless sensor networks (WSN). UAB contributed with the development of WSN-

2INFOREGIÓ project XALOC - XArxes de sensors per a la gestió d�’aparcaments públics i LOCalització
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Figure 4.11: Outdoor scenario

and WIFI-based positioning systems devoted to efciently guide the drivers to available
parking spaces. The platform developed is able to detect free parking spaces and lo-
calize vehicles. With this information, the system guides the drivers to the free parking
spaces in the area of interest.

The XALOC project, apart from this navigation application, has developed a xed
platform based on a WSN. These nodes detect the presence or absence of a car at their
parking place position. This information is transmitted through a central point that is
connected to a central server that maintains an actualization of the total network. This
information is processed and then sent to street panels (see Figure 4.12(a)) in order to
inform to the drivers of the free spaces, taking the idea from the panels of an indoor
parking (see Figure 4.12(b)), vastly extended.

Hence, the main objectives of the XALOC project could be summarized as follows:

• The detection of free parking spaces.

• Determine the localization of the users that want to nd a free space.

• Guide the drivers to free parking spaces with the panels or messages to their
navigators.

With this system is possible to achieve a better management of the trafc in urban
environments, by means of reducing the no-direction navigation of the drivers that are
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(a) Street panel indicator (b) Indoor parking panel

Figure 4.12: Example of indicator panels

searching a free parking. In addition, a diminution of the trafc could become in an
improvement of the circulation and, moreover, it is possible to reduce the pollution
caused by the car residues.

A Priori Position Estimation Results

The results of the different a priori methods presented in the previous step 4 are pre-
sented here. In order to compare the benets that we achieved with our proposal we
rst present the trilateration method and, then, the weighted centroid.

Trilateration The reliability of the trilateration algorithm is mostly dependent on the
distance estimates δi. When RSS range measurements are used, the higher the distance,
the higher the distance estimate error. In our proposal, the node selection mechanism
propose tries to select those nodes with more reliable distance estimates, e.g. those
closer nodes.

The results are shown in Figures 4.13 and 4.14. The environment changes very
rapidly as the mobile node moves. Moreover, the higher the velocity, the higher the
errors obtained. With this high variations of the environment, the obtention of a good
model and, hence, the good estimation of the internode distances is more difcult.

Furthermore, some measurements could estimate a position outside the area of in-
terest. Although trilteration is a good localization algorithm, the low accurate distance
estimates affects so much the positions accuracy.

Weighted Centroid The weighted centroid algorithm is introduced in order to re-
duce the errors achieved with the trilateration method. As previously commented, the
weighted centroid does not depend on the distance estimates, hence we assure a posi-
tion inside the desired area and we avoid the necessity of obtaining a good propagation
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Figure 4.13: Position tracking done at low velocity (≈ 10km/h)
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Figure 4.14: Position tracking done at high velocity (≈ 20km/h)

model to transform the RSS measurements to distance.

The accuracy of this method is reected in Figures 4.15 and 4.16. The position esti-
mates are now always inside the area of interest. For that reason the weighted centroid
method achieves a better accuracy compared to that achieved by the trilateration.

Although weighted centroid guarantees that the position estimation will be inside
the measurement region it does not offer an accurate position to the mobile node. The
majority of the positions shown at both Figures are concentrated in an area and they do
not reect the real movement of the mobile node along the area.
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Figure 4.15: Position tracking done at low velocity (≈ 10km/h)
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Figure 4.16: Position tracking done at high velocity (≈ 20km/h)

Projected Weighted Centroid A comparison between having or not the projection
of the position is done in Figures 4.17 and 4.18. As commented before, as we know
the map of the scenario we can take the advantage of this knowledge and projecting the
position estimates to the a priori known path that the node could follow.

The benets could be shown in both Figures. The position estimates are now al-
ways located inside the desired area and have less variations. Moreover, thanks to the
projection method, the algorithm could offer a more stable position estimate to the user.

At the end of this section, a brief summary, in terms of mean absolute error is
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Figure 4.17: Position tracking done at low velocity (≈ 10km/h)
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Figure 4.18: Position tracking done at high velocity (≈ 20km/h)

presented.

A Posteriori Position Estimate Results

In this part we are evaluating the accuracy obtained with our 1D-KF with the Window-
based correction mechanism compared to the accuracy of a 1D-KF without the cor-
rection mechanism. Both methods uses the projected weighted centroid as a priori
position estimation. Now the measurements are done every 2.5s (the time period as-
sumed). Compared to the previous results, now we do not estimate the position when
four messages are received.

In Figures 4.19 and 4.20 the performance, when the 1D-KF is introduced, is shown.
One could observe that the estimates obtained reect better the path followed by the
mobile node. The major drawback still observed is the jumps that the estimates have.
Although the track is, more or less, followed, it exists some points at which the position
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goes back. Moreover, this fact becomes in huge jumps of position estimates that not
reects the reality.
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Figure 4.19: Position tracking done at low velocity (≈ 10km/h)
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Figure 4.20: Position tracking done at high velocity (≈ 20km/h)

If one compares the results obtained in 4.19 and 4.20 with the results in Figures 4.21
and 4.22, the hopes forward and backward are practically avoided. With the Window-
based correction, the tracking algorithm improves their overall performance achieving
a better results in terms of accuracy. We achieve a gain of 37.79% with v=10 km/h
and of 61.74% with v=20km/h. Moreover, the uncertainty of the RSS measurements is
controlled with our proposal.

Summary

The experimental results validate the proposed strategy. With respect to the a priori
position estimate step, the projected weighted centroid have increased the accuracy of



4.3. Outdoor Mobile Node Tracking 119

Anchors Sensors
Position Estimates
Real Position

N
or

th
in

g 
(m

)

Easting (m)

10m

5m Real path

Figure 4.21: Position tracking done at low velocity (≈ 10km/h)
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Figure 4.22: Position tracking done at high velocity (≈ 20km/h)

the tracking algorithm. The results have demonstrated that the inclusion of a priori
knowledge of the possible path that the mobile node could follow reduces the mean ab-
solute error. Moreover, we have validated the disregard of the distance-based method
presented (trilateration), because it is very difcult to obtain an accurate propagation
model (see table 4.23(a)). Furthermore, the a posteriori position estimation based on a
KF has shown that increases the accuracy. Nevertheless, the variability of the measure-
ments due to the mid-high velocities considered still affects the 1D-KF performance.
The Window-based RSS correction mechanism proposed has reduced this variability
problem, and, hence, it has increased the accuracy of the tracking algorithm (see table
4.23(b)).

Compared to the algorithm without using the window-based correction mechanism,
our proposal achieves a gain of 37.8% with 10 km/h and of 61.7% with 20 km/h. If that
comparison is done between the a priori position estimate and the a posteriori estimate
obtained with our proposal tha gains achieved are 16.4% and 21.7% with 10 and 20
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Figure 4.23: Experimental Accuracy Results

km/h, respectively.

4.4 Indoor Mobile Node Tracking

The indoor localization is a widely eld under study in the past literature as explained
2. The easy-deployment of WSN in indoor environments has impulsed an interest on
the development of tracking algorithms devoted to this kind of networks. The indoor
tracking method could be applied in different nal applications, such as: to monitor
patients in a hospital (as in [Red10]); to monitor elder people who lives alone; or to
control the packaging inside a warehouse. The advantage of developing a tracking
algorithm in a WSN is that the tracking algorithm could be complemented with any
other features that are sensed by the nodes.

In order to achieve an easy-deployable and energy-efcient algorithm, an indoor
localization based on RSS range measurements is proposed.

Compared to the previous section, now we want to solve the same problem but new
impairment appear as we consider an indoor environment. Although the velocities con-
sider in indoor scenarios are much lower than before, other effects, such as multipath
and obstacles, badly affect the RSS measurements.

Compared to other works that includes inertial navigation systems [Sch11, Kli08,
Fan05], our pragmatic approach avoids the use of additional sensors such as accelerom-
eters, gyroscopes, etc.
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4.4.1 Scenario Description

In this case the tracking algorithm is applied in an indoor WSN. The idea is to develop
a system to track a person or a moving object inside a building.

The mobile node is able to estimate their position thanks to a given number of xed
nodes distributed along the scenario (see Figure 4.24). Mobile node receives messages
from this xed nodes. With the information transmitted the node is able to estimate
and track its position.

Following the approach presented in the outdoor case, our proposal is to minimize
the bad effects explained with another window-based RSS control mechanism. In this
case, we propose, as before, a tracking algorithm composed by two parts: a rts stage
in which the node estimates a priori position that is then corrected at the second stage
by means of using a Kalman Filter, in this occasion a 2D KF.

RSS Measurements and Distance Modelling

As previously commented, we consider an RSS-based tracking algorithm. RSS mea-
surements are used to obtain inter-node distance estimates. Power received is modelled
through the well known radio-propagation path loss and shadowing model. The RSS
can be expressed as the power received in node j from a signal transmitted by node i,
Pij , as:

RSSij = Pij = P0 − 10αij log10 dij − vij (dBm), (4.26)

Given the received power RSS ij in equation (4.26), an ML estimate of the actual
distance can be derived as:

δij = 10
P0−RSSij

10αij (4.27)

In order to reect the high variability of the RSS measurements, we assume a variance
higher than this assumed in the previous xed localization algorithms. This difference
is reected in the different RSS measurements shown in Figures 4.25. In both Figures,
the RSS measurements received by two anchor nodes during a time period are shown.
The variability of the measurements produces errors at the time of estimating the mean
value of the RSS measurements.

4.4.2 RSS-based Indoor Tracking Algorithm

The tracking algorithm proposed wants to take advantage from the RSS measurements.
As commented in the previous chapter, the RSS measurements are badly affected by
the pathloss and shadowing effects. Hence, a good propagation model is necessary, if
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Figure 4.24: Example of an indoor scenario

RSS-based distance estimates are used. In this occasion, and compared to the outdoor
scenario, the distance between the mobile nodes and the anchor nodes are lower than in
the previous outdoor scenario. Hence, the multiplicative error of the distance estimates
will be lower. For that reason, we will take advantage of this estimates at the time of
estimating the position.

Moreover, our proposal differs from the previous localization methods in one sense:
the velocity of the node. Although the mobile node moves slower than before, the
velocity still increases the variability of the range measurements. Experimental cam-
paigns reveal that the uncertainty is very high. The major drawback that affects the
range measurements done is the possible reception of messages with a higher RSS
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Figure 4.25: Example of indoor measurements

compared to the expected value of the RSS model. Which is the best option to imple-
ment?

• A Priori Position Estimation As commented above, a tracking algorithm based
on a Kalman Filter estimates a process state, thanks to series of measurements.
The measurements, in our case are the calculated distances through the following
equation:

dmi =
√

(xm − xi)2 + (ym − yi)2, (4.28)

where (xm, ym) and (xi, yi) are, respectively, the mobile and anchor node coor-
dinates.

These mobile node coordinates are obtained through a localization algorithm.
Our proposal is to use a weighted LS algorithm. The results obtained at the
previous chapter reveal the viability of using this approach in an indoor envi-
ronment. The accuracy provided by these localization algorithm is good and the
complexity needed is not so high. Moreover a node selection mechanism is also
introduced, hence, the energy consumption is also reduced.

• A Posteriori Position Estimation The positions obtained a priori are then in-
troduced as measurements at the EKF, that renes those position estimates. In
this case, we base our proposal on an Extended Kalman Filter. The process that
denes our tracking algorithm is a not linear one; hence, it is necessary to use
this suboptimal solution.

The major drawback that we comment previously is the high variability of the
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RSS range measurements. High values of variance are achieved with the ex-
perimental measures done. The estimation of the RSS variances allows to us to
propose two mechanisms in order to improve the performance of the tracking
algorithm.

First proposal is related with the parameters that regulates the EKF. As explained
previously, the EKF model equations are affected by white Gaussian errors.
These errors are reected on the parameters R and Q. Although they are nor-
mally assumed xed, our proposal is to update the values of these parameters
depending on the variance. Hence the EKF adapts their behaviour to the RSS
measurements.

Our second proposal is to introduce a mechanism that controls the variability
of the range measurements, similar to the previous window-based RSS control
mechanism. The main difference is that, now, instead of using the velocity, the
estimated RSS variance is the feature that controls the correction.

In the following section the different parts of the algorithm are presented in order
to gives an in depth explanation of the proposed tracking algorithm. This procedure is
shown in the Figure 4.26. All the procedure are summarized at the end of the explana-
tion in the Algorithm 2.

Step 1 - 
Messages 
Reception

Step 2 - 
RSS Variance 

estimation

Step 3 - 
Window-Based RSS 

Correction

Step 5 - 
Distance Estimation

Step 4 - 
Node Selection

Step 6 - 
A Priori 
Position 

Estimation

Step 8 - 
A Posteriori 

Position 
Estimation

Step 7 - 
RQ Update 
Mechanism

ˆvar(RSSi)

RSScor,i

δ

ˆvar(RSSi)

di = ||(xpt , ypt) − (xpt−1 , ypt−1)||
(R,Q)

i = [1, 2, · · · , na]

P

Figure 4.26: RSS-based Indoor Tracking Procedure

Proposed Solution

Step 1 - Messages Reception

During a time period T, the mobile node recollect the messages transmit by the xed
network. The information that extracted from the messages are the different RSS and
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the xed node identier. This information is saved in a matrix P as:

P =

[
RSS1 RSS2 · · · RSSNSi

nPckRx,i nPckRx,i · · · nPckRx,i

]
, (4.29)

where pRx,i is the vector with all the received power from node i in dBms and
nPckRx,i is the value that indicates the number of measures done. All the RSS values
are saved during all the time period. We do not erase any value, although the measure-
ment has been done at the beginning of the time period. The nal value used is the
mean value of all the messages received as:

¯RSSi(t + 1) =
∑nPckRx

j=1 RSSj

nPckRx

(4.30)

Step 2 - RSS Variance Estimation

As previously explained, the RSS measurements done in an static indoor scenario suffer
from a high variability. Moreover, when the node has mobility this feature is increased
.

This high variability of the measurements is reected in the variance of the RSS
values received during a time period T . The higher the variance, the higher the mea-
surements errors. For that reason, we propose to estimate this variance in order to take
advantage of it. The values are obtained as:

vari =

∑nPckRx,i

j=1

(
RSSj −

PnPckRx,i
j=1 RSSj

nP ckRx

)2

nPckRx

(4.31)

Thanks to the RSS variance estimates, we can control and reduce this bad effect by
means of using the proposed window-based RSS correction (Step 3). Moreover, with
the RQ update mechanism (Step 7) we could inform to the Kalman lter that the
measurements from these nodes are less reliable, and, hence, we could adapt the RQ
Kalman parameters to increase the EKF accuracy. Finally, we also used them to intro-
duce the velocity measurement to the Kalman Filter (Step 8).

Step 3 - Window-based RSS Correction

As previously commented , in an indoor environment the RSS measurements suffer
from shadowing and path loss effects. These factors are present in the propagation
looses (Lprop).

RSS = P0 − Lprop. (4.32)
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But the uncertainty introduced is more evident when the non-located node is mov-
ing along the scenario. This highly variation could produce non-realistic measurements
that could seriously affect the tracking algorithm performance. For that reason, and tak-
ing advantage of the RSS variance estimations, we propose an RSS control mechanism.
The basic purpose is trying to reduce the error that suffers the RSS measurements. We
can remark that we avoid the use of inertial sensors, such as gyroscopes or accelerom-
eters. They increase the cost of the nodes and can consume more energy resources that
limits the battery life of the hardware.

The control mechanism performance works as follows. Depending on the value of
the variance, the control mechanism applies a correction factor to the RSS measured.

As in the outdoor case, we now dene different variance ranges as:

• range 1: [varth1, varth2)

• range 2: [varth2, varth3)

• range 3: [varth3, varth4)

where the varthi are the different thresholds that limits the different zones.
Once we have the thresholds, we have to decide which are the values of the correc-

tion factors. Our proposal is to use the estimated variance multiplied by a factor. The
values are obtained as:

Lrange1 = variγrange1

Lrange2 = variγrange3

Lrange3 = variγrange3

With these values, we can update the values of the power that we should received
as:

PRx(t + 1) = PRx(t) − Lrangei. (4.33)

We update the previous measurement received PRx(t) with the estimated correction
factors. Although the exponent γ value depend on the scenario, we assume a constant
value equal to 2.3, that, in a general case works.

Step 4 - Node Selection

As in the previous chapter, we introduce a node selection criterion in order to improve
the overall performance. The closer the nodes, the more reliable information obtained
from the anchor.



4.4. Indoor Mobile Node Tracking 127

In our case, the closest nodes are those nodes with the highest RSS received. The
node selection mechanism sort the RSS measurements received from higher to lower
values. Being the sorted RSS measurements the following:

RSSa > RSSb > ... > RSSf ∀a, b, ..., f ∈ Si (4.34)

As commented previously, the mobility of the nodes induces bad effects to the RSS
measurements. The introduction of an on-line path loss estimation based on this RSS
measurements can be affected by these mobility errors. For that reason, we assume a
xed value of the path loss exponent, hence, the RSS-based node selection criterion
used becomes the same as the distance-based used at the previous Chapter.

The node selection mechanism modies the cooperating group S i to:

Si = [abcd] (4.35)

Finally, the number of anchors nodes na is xed to four. Now, we use 4 anchors
instead of the 3 used at the outdoor case because, now, the velocity assume is lower
and the real distances between the mobile node and the anchors distributed in the indoor
environment are lower.

Step 5 - Distance Estimation

Given the corrected RSS values from the selected nodes and considering the path loss
and shadowing model presented before (see equation (4.10)), an ML estimate of the
actual distance can be derived as:

δij = 10
P0−RSSij

10αij (4.36)

The algorithm estimates these distances assuming an equal value of the path loss expo-
nent. We do not introduce the on-line path loss estimation because

Step 6 - A Priori Position Estimation

The Kalman Filter depends on a set of measurements done at each time step. In
our tracking algorithm these measurements are the distance between mobile node and
each anchor obtained through their coordinates

(
d̂ij =

√
(xi − xj)2 + (yi − yj)2

)
.

Hence, an important point is having the best a priori mobile node position estimate, in
order to give the best possible measurements to the KF.

In that sense, we propose to use a distributed weighted LS. Compared to the out-
door scenario presented in the previous section, the indoor scenario has a lower density
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of anchor nodes. As the area is considerably reduced, the number of anchors necessary
should be reduced. For that reason, we propose to use a weighted LS localization al-
gorithm, because, the weighted centroid, as seen in chapter 2, has a better performance
when the anchor density is high. Furthermore, a weight based on the inter-node dis-
tance estimates are introduced in order to give a higher reliability to those closer anchor
nodes.

These step is formed by two substeps:

Weight Estimation wi =
1

δ2
ai

∑na

i=1

(
1

δ2
ai

)

Position Estimation x̂m(t + 1) = x̂m(t) + γx
∑

jεSi

wi(δij − dij)eij

Other Localization Methods We want to compare the proposed weighted LS algo-
rithm with the previous weighted centroid method.

• Weighted Centroid: The weighted centroid algorithm used at the previous pro-
posal is a simple approach that assures a position inside the scenario desired.
The position estimate is obtained as:

(x, y) =

(
na∑

i=1

wixi,
na∑

i=1

wiyi

)
(4.37)

The weight is the same as the previously dened for the weighted LS.

Moreover, we will also compare the performance of both algorithms with the weight
used in the outdoor case. Being the weight:

wi =
RSSi

∑na

i=1

(
1 − RSSiPna

i=1 RSSi

) (4.38)

In the simulation and experimental results we will see the comparison, in terms of
accuracy, of our proposal and these other localization methods.

Step 7 - RQ Update Mechanism

Our proposal to improve the performance of a basic EKF is based on taking advantage
of the variance estimates done at the beginning. The covariance noise of the measure-
ments (R) and of the process (Q) are normally assumed constant, although they could
be obtained at each time step.



4.4. Indoor Mobile Node Tracking 129

The process and the measurements are highly dependant on the RSS measurements.
The variance estimates reects, in part, the accuracy of those measurements.

Due to this dependency, our proposal is to update these two factors depending on
the estimated variances. Following the idea of the Window-based RSS control of the
third step, the covariance update procedure modies the R and Q values based on the
same ranges presented before. Depending on the zone in which the mean variance
value is placed, the R and Q values are updated.

Rrange1, Qrange1 = varmeanηrange1

Rrange2, Qrange2 = varmeanηrange2

Rrange3, Qrange3 = varmeanηrange3

This RQ update mechanism allows to reduce the mobility errors through the RSS
variance estimates. With these measurements we can avoid the use of extra inertial
sensors that increase the cost of the nodes.

Step 8 - A Posteriori Position Estimation

The last step of the tracking algorithm studied is the introduction of, in this case, the
Extended Kalman Filter used to obtain a in order to a rened a posteriori position esti-
mate. As commented previously, the use of a localization algorithm from the chapter 2
is not the suitable option to track a mobile node. Features such as velocity or direction
are not contemplated in the majority of these algorithms. For that reason the Kalman
Filter and their suboptimal solutions has become, in recent years, a trending topic used
for tracking mobile nodes.

As the relationship between the measurements and the process matrix with the pro-
cess state is not linear, we propose a tracking algorithm based on an Extended Kalman
Filter. The equations that characterizes the KF used are:

• State vector: The state vector is formed by four variables: x and y are the
mobile node coordinates, the velocity v of the mobile node and θ the direction
of the mobile node.

sv =





x̂

v̂

ŷ

θ̂




(4.39)
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• State equation: Each state is obtained through a position-velocity model as:

sv(t) =





1 Tcos(θ) 0 0
0 1 0 0
0 Tsin(θ) 1 0
0 0 0 1




sv(t − 1) +





3T 0
2T 0
0 3T

0 4T




w(t − 1) (4.40)

• Observation equation: The EKF considers the observation of the distance be-
tween the mobile node and all anchors d. Moreover, the velocity, although it
is not estimated directly using an inertial sensor, is also introduced as a mea-
surement. Basically, if the variance is above a threshold, we assume a constant
velocity of 1 m/s. Figure 4.27 shows the difference of the RSS received and
their RSS variance estimates between static measurements (4.27(a)) and mobile
measurements (4.27(b)). The observation equation becomes:
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Figure 4.27: Comparison of variance estimates with and without movement

z(t) = [d1 d2 d3 · · · dna v 0] (4.41)

• Linearization of f and h non-linear equations Following the equations (4.8)
and (4.9) the EKF linearise the non-linear equations that model the process and
the measurements. Both matrices become as:

A(n) =





1 Tcos(θ) 0 −Tvsin(θ)
0 1 0 0
0 Tsin(θ) 1 Tvcos(θ)
0 0 0 1




(4.42)
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H(n) =





(x̂−xa1)
||(x̂,ŷ)−(xa1,ya1)|| 0 (ŷ−ya1)

||(x̂,ŷ)−(xa1,ya1)|| 0
(x̂−xa1)

||(x̂,ŷ)−(xa1,ya1)|| 0 (ŷ−ya1)
||(x̂,ŷ)−(xa1,ya1)|| 0

...
...

...
...

(x̂−xana )
||(x̂,ŷ)−(xana ,yana )|| 0 (ŷ−yana)

||(x̂,ŷ)−(xana ,yana)|| 0
0 1 0 0
0 0 0 1





(4.43)

All the functionality of the EKF is summarized in Figure 4.28

EKF
v

x̂m(t + 1) = x̂m(t) + γx

∑

jεSi

(δij − dij)eij

if t=0v=0

if t=0

if t>0

if varai > varth

v = 1
else

v = 0

d̂ai = ||(xm(t), ym(t)) − (xa1, ya1)||

sv = (x̂, v̂, ŷ, θ̂)
z = (d1, d2, d3, · · · , dna, v, θ) F =





1 Tcos(θ) 0 0
0 1 0 0
0 Tsin(θ) 1 0
0 0 0 1





(xm0, ym0)

Figure 4.28: EKF algorithm

In the following Algorithm 3 is summarized the Indoor Tracking procedure.

4.4.3 Simulation Results

This section presents the performance of the proposed location and tracking algorithm.
The simulated scenario and the assumed simulation parameters are presented in Ta-
ble 4.2. Two different paths are done (see Figure 4.29) and only four anchors, located
at the corners, are used.

The results achieved are summarized in tables 4.30(a) and 4.30(b). But we will talk
in more detail in the following sections.
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Algorithm 3 Tracking Algorithm Procedure
Messages Reception

P =

[
RSS1 RSS2 · · · RSSNSi

nPckRx,i nPckRx,i · · · nPckRx,i

]

Variance Estimation:
for i = 1 to na do

vari =

PnPckRx
j=1

 
RSSj−

PnPckRx
j=1 RSSj

nPckRx

!2

nPckRx

end for

Window-based RSS Correction
for i = 1 to NSi do
if vari < varth1 then

¯RSSi(t + 1) = ¯RSSi(t + 1) − γ1

else if vari < varth2 then
¯RSSi(t + 1) = ¯RSSi(t + 1) − γ2

else
¯RSSi(t + 1) = ¯RSSi(t + 1) − γ3

end if
end for

Node Selection
being RSSa > RSSb > ... > RSSf ∀a, b, ..., f ∈ Si

then na = [abcd]

Distance Estimation
for i = 1 to na do
δi = 10

RSS0−RSSi
10α

end for

A Priori Position Estimate
x̂m(t + 1) = x̂m(t) + γx

∑
jεSi

(δij − dij)eij

RQ Update
if varmean < varth1 then
{R, Q} = varmeanη1

else if varmean < varth2 then
{R, Q} = varmeanη2

else
{R, Q} = varmeanη3

end if

A Posteriori Position Estimate
Extended Kalman Filter
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Table 4.2: Simulation Parameters.

Simulation Parameters Parameter Value
Size of Sensor Field 8.4 × 14 m
Number of Anchors (N1) 4
Path Loss Exponent αij 2.35
Standard Deviation σv 10 dB
First-Meter RSS P0 −49 dBm
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Figure 4.29: Indoor Scenario Simulated

A Priori Position Estimation

The a priori estimation proposed, i.e. the weighted (w2) LS algorithm, will be com-
pared with: a weighted LS with another weight (w1) and a weighted centroid with the
same weight. In the following table 4.3 are summarized the different methods and both
weights.

Weighted LS: comparison of both weights The comparison between the proposed
weights based on the distance estimates and the weight w1 based on RSS measurements
is very remarkable. Our proposal achieves a gain of the 15%, at path 1, and a 28% of
gain at path 2. In a reduced scenario, as the one simulated, the difference of RSS levels
are not sufciently high to have a remarkable impact on the position method accuracy.
The differences between the RSS of the selected nodes are not sufciently high in order
to have an impact on the weight. Hence, the weighted LS with w1 results are similar to
those obtained without weight.
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Figure 4.30: Simulation Accuracy Results

Weighted LS versus Weighted Centroid On the other hand, the comparison of our
weighted LS with the weighted centroid is done with the same weight (w 2). Once
again, our proposal achieves a gain at both paths, a 5% and a 14% at path 1 and path
2, respectively. Although, the gain for the path 1 is not so high, for the path 2 the
accuracy is more improved. For that reason, our proposal is the best option to be used
as an priori position estimation procedure.
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Table 4.3: A Priori Positioning Methods

Positioning
method Position estimation Weight

Least Squares

& weight w2 x̂m(t + 1) = x̂m(t) + γx
P

jεSi
wi(δij − dij)eij wi =

1
δ2
ai

Pna
i=1

 
1

δ2
ai

!

Centroid

& weight w2 (x, y) =
`Pna

i=1 wixi,
Pna

i=1 wiyi
´

wi =

1
δ2
ai

Pna
i=1

 
1

δ2
ai

!

Least Squares
& weight w1 x̂m(t + 1) = x̂m(t) + γx

P
jεSi

wi(δij − dij)eij wi =
RSSi

Pna
i=1

 
1− RSSiPna

i=1 RSSi

!

A Posteriori Position Estimation

In this section, we present the behaviour of both proposals: the window-based RSS
correction and the RQ-update mechanism.

Window-based RSS Correction performance The Window-based RSS correction
allows to the algorithm to correct those RSS measurements that highly deviates from
thier real values due to the multipath and obstacles present in an indoor scenario.
Our pragmatic proposal outperforms an Extended Kalman lter without it. the gain
achieved is: 3% at path 1 and a 11% at path 2. The mechanism correct some RSS
measurements deviations and allows to increase the overall performance, and hence,
the accuracy of the tracking algorithm.

RQ-update Mechanism The RQ-update mechanism is introduced in order to adapt
the noise covariances matrices of the EKF. Although, they are normally considered
xed, if we adapt these matrices depending on the estimated RSS variances, we give to
the EKF more information of how reliable are the model and the measurements. Again,
our mechanism achieves a better performance. The gain achieved is, approximately of:
a 14% at path 1 and a 16% at path 2. one can notice that the improvement offered by
the RQ-update mechanism is a little bit higher than those offered by the window-based
RSS correction mechanism. Nevertheless, both proposals increases the accuracy of the
tracking algorithm.
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4.4.4 Experimental results

All the experiment results are done in an indoor scenario of 8 m x 14 m squared area.
We consider N1 = 4 anchor nodes located at the corners of the scenario. Furthermore,
two different paths are done (see Figure 4.31) in order to obtain different behaviours of
the algorithm in an indoor environment.

(a) Path 1 (b) Path 2

Figure 4.31: Indoor Scenario

A Priori Position Estimation Results

In this occasion, we also show two comparisons:

• Our proposal based on a weighted LS with a weight w2 compared to a weighted
LS with a weight w1

• Our proposal based on a weighted LS with a weight w2 compared to a weighted
centroid with a weight w2

The results of a weighted centroid with the weight w1 is not presented since their
results are not sufciently accurate. The major problem is that the difference of the
RSS measured are not signicant; hence, the weights are practically equal. Without
the inuence of the weights, the centroid method estimates a position at the center of
the scenario, hence very far away from the real positions.
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Weighted LS: comparison of both weights The comparison of the different weights
applied to a distributed LS localization algorithm is shown in Figures and 4.32. The
best results are obtained with our proposal at both paths. The gain achieved at path 1
(4.32(b)) is a 47% while in path 2 (4.32(a)) the gain is a 32%. The difference in terms
of accuracy is signicantly increased.

The weight w1 depends on the difference between the RSS values. As commented
previously, these differences are not sufciently different, hence, the weights obtained
are very similar. For that reason the effect of the weights are practically negligible.
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Figure 4.32: Weighted w1 LS vs Weighted w2 LS

Weighted LS versus Weighted Centroid Now the comparison is between our dis-
tributed LS with a weight w2 compared to a weighted centroid with the same weight.
The results are shown in Figures 4.33(b) and 4.33(a). In this occasion, although again
our proposal has a better performance, the gain achieved is not so high as before. The
gain at path 1 is a 29% and at path 2 a 14% meters. One can note that the weight
w2 based on the estimated distances is better instead of using the RSS (used in weight
w1). This occurs because, as commented previously, the difference between the RSS
received is not sufciently high, hence the effect of the weights are not reected.

Moreover, the results achieved with the weighted centroid are less accurate as ex-
pected. The centroid accuracy is highly related with the number of anchors. The lower
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the number of anchors, the lower possible position estimates. The proposed weighted
LS provides better results.
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Figure 4.33: Weighted LS vs Weighted Centroid

A Posteriori Position Estimation

Window-based RSS Correction performance The high variability of the RSS mea-
surements, reected in the RSS variance estimates, produces an error that affects the
performance of the tracking algorithm. With the proposed Window-based mechanism
we are able to minimize this bad effect, and, hence, improving the overall performance.

Both results are shown in Figure 4.34. If one observes the results of path 1 (Figure
4.34(a)) our proposal achieves a better performance. The mean error achieved with the
Window-based control mechanism is 1.8 meters. On the contrary, the mean error of a
tracking algorithm without the proposed control mechanism is 2 meters. We achieve
an improvement of a 10%. The same behaviour is achieved at the second path. The
mean absolute error achieved with our proposed control mechanism is 1.6 meters while
without this mechanism the error achieved by the tracking algorithm is 2 meters. In this
case, we obtain a gain of the 40%.

The improvement of the tracking algorithm is achieved at both experimental paths.
Moreover, our proposal is only based on the RSS measurements; hence, we are not
increasing the cost of the network requiring extra hardware.
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Figure 4.34: RSS Control mechanism vs Non-Control Mechanism

RQ-update Mechanism Finally we compare the performance of our proposal, that
contains an RQ-update mechanism, with a tracking algorithm without this mechanism
(see Figures 4.35(b) and 4.35(a)). It is usually assumed xed values to these values.
But the RSS variance estimates reects the error that the measurement and the process
could have. For that reason, we take advantage of the variance estimates knowledge to
update the R and Q values and, hence, we could give more valuable information to the
EKF to improve their behaviour.

This update mechanism again allow to our proposal to achieve a better perfor-
mance. The gain between both methods is a 36% at the path 1 and a 5% at the path
2.

Summary

The inclusion of the proposed mechanisms helps the algorithm to increase the accuracy.
Two tables (4.36(a) and 4.36(b)) summarize all the comparisons for the two paths. The
results reects the good performance achieved by our proposal.

Moreover, both mechanisms depend on the RSS variance estimations. Those es-
timates are obtained though the RSS measurements done. These measurements does
not increase the cost of the network, as they are obtain from the propagation signals
without increasing the required hardware. Hence, as we want, our pragmatic approach
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Figure 4.35: RQ Update mechanism vs. Non-update mechanism

increases the accuracy of the tracking algorithm in indoor environments. The gain
achieved with the path 1 is a 40.96% and with the path 2 is a 23.73%.

4.5 Summary

The RSS-based tracking algorithms have become in the last years a very challenged
eld of research. The simplicity of these range measurements allows to achieve a
simple algorithm that would also be energy efcient. But their lower accuracy could
badly affects the performance accuracy.

In this chapter we have presented two different proposals: an outdoor and an indoor
algorithm. The different problems inherent to the use of RSS measurements have mo-
tivated us to developed two different tracking algorithms. Both algorithms introduces
a control mechanism based on window levels.

The outdoor measurements reect a high variability of the connectivity between
the mobile node and the anchor nodes. The window-based mechanism helps to control
this high variability giving to the tracking algorithm more stability. This fact helps to
achieve a higher performance and, as we want, using the simplest range measurements
that a node could do.

At the indoor measurements, we do not have problems with this connectivity vari-
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Figure 4.36: Experimental Accuracy Results

ability but the measurements suffer a higher uncertainty. These variability of the RSSs
measured by the mobile node badly affects the overall performance. The main problem
is the false measurements that moves far away the position estimate from its real loca-
tion. For that reason, an RSS-control mechanism is introduced. Taking advantage of
the estimated variance of the RSS received, we propose a window-based control mech-
anism that tries to correct the measured RSSs. Moreover, we also propose to adapt



142 Chapter 4. Mobile Node Localization and Tracking

the noise error covariances of the EKF, also with the RSS variance estimates. Another
Window-based mechanism is also used to adapt, at each time step, these KF factors.

Both mechanisms introduced are based on the RSS variance estimates. Our pro-
posals achieves gains of the 23.7% and of the 40.9% without using additional sensors,
such as gyroscopes or accelerometers.

The experimental results at both proposals demonstrates the viability of implement-
ing at a real environment and validates the simulation done at the outdoor and indoor
scenarios. The simplicity of the algorithm makes it feasible to be used in a real network.
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Conclusions and Future Work

THIS PhD dissertation has explored RSS-based localization and tracking algorithms
in Wireless Sensor Networks (WSN) and justied their applicability in real envi-

ronments. First, we have considered an indoor static wireless sensor network com-
posed of nodes with known positions (anchors) and nodes with unknown location
(non-located nodes). In this scenario, we have derived an on-line path loss estima-
tion mechanism. The radio propagation model necessary to obtain distance estimates
from RSS range measurements is estimated by the localization algorithm. Hence, we
have avoided the necessity of making an a priori measurement campaign and we have
given to the localization algorithm an on-line adaptability to every environment. Apart
from the adaptation of the algorithm to the scenario, three node selection criteria have
been proposed to improve the overall performance. The selection mechanism results
have obtained good accuracy. Moreover, the use of selected nodes has achieved a re-
duction in terms of energy consumption. Apart from the localization of xed nodes,
we have studied the localization and the tracking of a mobile sensor node in an outdoor
and an indoor environment. The RSS-based measurements suffers from many errors
and the mobility of the nodes increases them. In this scenario, we have proposed a
correction mechanism devoted to diminishing these bad effects, and, hence, increasing
the accuracy of the tracking algorithm.

5.1 Conclusions

After motivating the PhD thesis, a review on cooperative schemes for wireless sensor
networks (WSN) has been provided in Chapter 2. Among all of them, a special em-
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phasis has been given to RSS-based measurement techniques, because they provide
suitable solutions for practical implementations.

Although RSS-based measurements are the simplest method, their accuracy de-
pends on how accurate is the propagation model. In order to avoid to make an off-line
modelling of the environment, in Chapter 3 a cooperative localization algorithm that
dynamically estimates the path loss exponent has been proposed. This estimation is
carried out by means of using the RSS measurements devoted not to increase the cost
of the network.

Afterwards, the reduction of the complexity and the message exchange is the rea-
son that motivates the investigation of this kind of algorithms and also to propose three
different node selection criteria: the rst one based on the RSS range measurements;
the second one based on estimated inter-node distances; and nally one based on Ge-
ometric Dilution Of Position concept. The proposed node selection criteria have been
easily integrated in the localization algorithm due to they also use the RSS range mea-
surements.

Finally, a comparison with other existing methods have been presented. Results
have shown that, by selecting nodes, better results in terms of a good trade-off between
accuracy and energy efciency have been achieved. One can observe that results show
that with a circular anchor distribution, the best criterion is the distance-based, while,
with a grid-based anchor distribution, the GDOP-based criterion works better. Besides,
practical examples based on real WSN have been presented that achieve gains in terms
of mean absolute error between the 2% and the 8%.

Chapter 4 has been devoted to the study of an outdoor and an indoor tracking algo-
rithm. More concretely, we have proposed two different RSS-based distributed tracking
algorithm devoted to locate a mobile node. In this mobile scenario, the RSS range mea-
surements have present a high variability that difcult their usage. For that reason, a
Window-based RSS correction tracking algorithm has been proposed in order to dimin-
ish the errors that the range measurements suffers due to the movement. Both proposals
are based on a Kalman Filter approach in order to rene the position estimates.

The outdoor scenario measurements have presented a high variability in terms of
RSS measurements and inter-node connectivity due to mid-high velocities considered.
This RSS variations, that affects the tracking algorithm performance, have been cor-
rected by means of using a window-based mechanism. Depending on the velocity
estimated by the KF, we have proposed to correct those RSS measurements with a
velocity-adapted correction value. Simulation and experimental results have shown
that the accuracy is improved, the error is reduced a 37.8% at 10 km/h and a 61.7% at
20 km/h, without increasing the cost and the complexity of the algorithm.
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The indoor scenario measurements have also presented a high variability although
the velocity assumed is lower. Following the outdoor correction mechanism, we have
developed another Window-based RSS correction mechanism, but, now, depending on
the RSS variance estimates; hence, without using inertial sensors. Besides, an RQ up-
date mechanism is introduced in order to increase the accuracy of the Extended Kalman
Filter used to rene the position estimate. Again, simulation and experimental results
that we have carried out have shown that the proposed tracking algorithm achieves a
considerable gain (between a 23.7% and a 40.9%) without increasing the complexity
and the cost of the network nodes.

5.2 Future Work

In the following we detail some of the questions that should be addressed in future
extensions of this dissertation. In Chapter 3 some of the possibilities are:

• To make an exhaustive campaign of measurements at different environments in
order to have a more in-depth study of the radio propagation characteristics. An
in-depth knowledge of the propagation characteristics is important to take into
account more errors that the environment could introduce at the time of develop-
ing the on-line channel estimation characteristics proposed.

• Proving the viability of our proposals for a 3D positionig algorithm. The intro-
duction of the third dimension gives the opportunity to give more added value to
our algorithm.

• To extend the experimental measurements to a large scale network in order to
revalidate the simulation results obtained. The behaviour when the number of
nodes is increased have not been experimentally done and it would be interesting
having these measurements.

In Chapter 4 we consider the following extensions:

• To include more mobile nodes inside the network. The multiple nodes tracking
algorithm is an interesting application in order to study cooperative approaches,
studied at chapter 3, in mobile nodes.

• To compare the behaviour of the proposed solution with a tracking algorithm
assisted with inertial systems.
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• Make an study of an scenario composed by different rooms separated by walls, in
order to investigate how the scenario distribution affects the RSS measurements,
and, hence, how we can tune our window-based mechanism in order to reduce
these bad effects.
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