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Abstract

Recently, new families of quaternary linear Reed-Muller codes RMs have been intro-

duced. They satisfy that, under the Gray map, the corresponding Z4-linear codes have the

same parameters and properties (length, dimension, minimum distance, inclusion, and du-

ality relation) as the codes of the binary linear Reed-Muller family. The kernel of a binary

code C is K(C) = {x ∈ Zn2 : C + x = C}. The dimension of the kernel is a structural

invariant for equivalent binary codes. In this work, the dimension of the kernel for these

new families of Z4-linear Reed-Muller codes is established. This result is sufficient to give

a full classification of these new families of Z4-linear Reed-Muller codes up to equivalence.

A quaternary linear Hadamard code C is a code over Z4 that under the Gray map,

the corresponding Z4-linear code is a binary Hadamard code. It is well known that qua-

ternary linear Hadamard codes are included in the RMs families of codes. The per-

mutation automorphism group of a quaternary linear code C of length n is defined as

PAut(C) = {σ ∈ Sn : σ(C) = C}. In this dissertation, the order of the permutation auto-

morphism group of all quaternary linear Hadamard codes is established. Moreover, these

groups are completely characterized by providing their generators and also by computing

the orbits of their action on C. Since the dual of a Hadamard code is an extended 1-perfect

code in the quaternary sense, the permutation automorphism group of the quaternary linear

extended 1-perfect codes is also established.

A la literatura recent hi podem trobar la introducció de noves famílies de codis de Reed-

Muller quaternaris lineals RMs. Les imatges d'aquests nous codis a través del mapa de

Gray són codis binaris Z4-lineals que comparteixen els paràmetres i les propietats (longitud,
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dimensió, distància mínima, inclusió, i relació de dualitat) amb la família de codis de Reed-

Muller binaris lineals. El kernel d'un codi binari C es defineix com K(C) = {x ∈ Zn2 :

C + x = C}. La dimensió del kernel és un invariant estructural per els codis binaris

equivalents. Part d'aquesta tesi consisteix en establir els valors de la dimensió del kernel

per aquestes noves famílies de codis de Reed-Muller Z4-lineals. Tot i que dos codis Z4-

lineals no equivalents poden compartir el mateix valor de la dimensió del kernel, en el cas

dels codis de Reed-Muller RMs aquest resultat es suficient per donar-ne una classificació

completa.

Per altra banda, un codi quaternari lineal de Hadamard C, és un codi que un cop li

hem aplicat el mapa de Gray obtenim un codi binari de Hadamard. És conegut que els

codis de Hadamard quaternaris formen part de les famílies de codis quaternaris de Reed-

MullerRMs. Definim el grup de permutacions d'un codi quaternari lineal com PAut(C) =

{σ ∈ Sn : σ(C) = C}. Com a resultat d'aquesta tesi també s'estableix l'ordre dels grups de

permutacions de les famílies de codis de Hadamard quaternaris. A més a més, aquests grups

són caracteritzats proporcionant la forma dels seus generadors i la forma de les òrbites del

grup PAut(C) actuant sobre el codi C. Sabem que el codi dual, en el sentit quaternari, d'un

codi de Hadamard és un codi 1-perfecte estès. D'aquesta manera els resultats obtinguts

sobre el grup de permutacions es poden transportar a una família de codis quaternaris 1-

perfectes estesos.
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Chapter 1

Introduction

The best way to start reading a thesis is a good thought. So, let me say you “This wohk

is great”. As you have seen, it is not as good as it looks because there is an error. Very

quickly you replace “wohk” by “work” and the meaning becomes clear. You have used

some coding theory techniques to solve this situation by detecting and correcting an error,

but how did you do it? In your subconscious, three assumptions has been made:

1. You are looking for an English word.

2. You are looking for a four-letter word.

3. The most likely situation is that one letter is wrong instead of more than one.

Assumption 1 allowed us to detect the error. There are lots of four-letter words in English,

but assumption 3 is justifying the choose of word “work”, which is probably the only

English word we could make by changing one letter. In other situation, if we had received

the word “oork” we would have chosen lots of possible words by switching only one letter,

i.e. “work, pork, cork, ...”. So, we would have not corrected the error. Finally, if we had

received an English word, but not the sent one, we would not have caught the error. Say for

example “fork”.

The above situation is an example of a decoder algorithm in a digital communication

scheme. This is crucial in telecommunication, where data is sent over a noisy channel

where information might change before it is received. The aim of coding theory is to

1
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Message 
Source Encoder Channel Decoder Receiver

Error from noise

Figure 1.1: Communication scheme

find codes which allow to encode and decode in an easy way, to detect and correct errors

produced in the channel, and to maximize the data transferred by unit per time.

In 1948, Claude Shannon started coding theory with the publication [Sha48]. For more

than 50 years, coding theory has grown up feeding on mathematics and engineering and has

became a pillar of the Information Society. There are applications to almost every area of

communication such as satellite and cellular telephone transmission, Internet connections,

compact disc recording, and data storage.

A digital communication scheme is formed by a source which sends information to

a receiver through a transmission channel. In this channel, there might exist some noise

which changes some bits of the sent information.

The encoder adds redundancy to the information generated by the source. When this

information is received, the decoder can use this redundancy to detect and correct the er-

rors added by the transmission channel. Recall the English code example. We corrected

“wohk” to “work” because words like “wojk , kohk, ...” has no sense in English. Thus, the

redundancy in the language is helpful for communication purposes. In other words, all the

possible words of a fixed length are not English words. Only a subset of these combinations

are part of the English code.

Historically, in coding theory, the binary alphabet is commonly used insted of the En-

glish one. Thus, codes are subsets of Zn2 , which is the space of binary words of length n.

We call them binary codes. Recalling assumption 1, we need an easy way to know which

words are part of the code and which are not. In English, there are the Oxford dictionaries.

In Zn2 , if you do not want to store an explicit list of codewords, you can use linear codes.

In other words, you can use the algebraic structure of the vector space. Thus, for any linear
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code there is a generator matrix and a parity check matrix which makes easier the use of

the code than looking at a dictionary. Imagine that “operating” with a small set of words,

you could generate any English word.

On the other hand, it is known that there exist some binary nonlinear codes with good

properties. Indeed, there exist several binary nonlinear codes having twice as many code-

words as the best binary linear code with the same length and minimum distance. Among

these codes, there are the Preparata-like and Kerdock-like codes. Whenever a code is non-

linear, there are two invariants of the code that give information about how far is that code

to be linear: the rank and dimension of the kernel.

An important step in coding theory was achieved when it was proved that the nonlinear

codes mentioned above could be considered as quaternary linear codes under the Gray map

image [Nec89]. The term Z4-linear code is used to denote such a binary code with an alge-

braic structure over Z4, whereas the codes defined as subsets of Z4 are called quaternary

linear codes.

One of the simplest and most important family of binary linear codes is the Reed-

Muller family of codes, denoted by RM . The importance of these codes lies in the fact

that they are relatively easy to encode and decode using majority-logic circuits. In general,

the Reed-Muller codes are not Z4-linear codes, but in 2007, a way to construct families of

quaternary linear codes denoted byRMs such that, under the Gray map, the corresponding

Z4-linear codes have exactly the same properties as the binary linear Reed-Muller codes

was presented [PRS07, PRS09]. In this dissertation, we will focus on these quaternary

linear Reed-Muller codes.

This dissertation is presented and organized as a compendium of publications. Because

of the space constraints of most of the publications, the contributions appended to this doc-

ument do not include many details nor a complete background on the topic they deal with.

It is for this reason that we found convenient to provide the appropriate background and

introduce some of the main definitions and techniques of coding theory in Chapter 2. In

that chapter you will find all the definitions about binary and quaternary codes as well as

the concepts of equivalence between codes. Chapter 3 gives an introduction to the RMs

families of quaternary linear Reed-Muller codes. Chapter 4 reviews and summarizes the re-

sults of the publications making up this dissertation, shows the storyline that links them up,
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and discusses their relevance. Finally, Chapter 5 concludes this dissertation and proposes

some future lines of research. A copy of all contributions comprising this compendium is

provided at the end of this document, ordered by publication date.



Chapter 2

Coding Theory

This chapter is a review of coding theory. There are definitions and results which will be

used on subsequent chapters and contributions. Section 2.1 starts by introducing some con-

cepts related to binary codes. For more information about classic coding theory see [MS77,

PHB98]. In Section 2.2, there are the basics concepts about quaternary linear codes and

how they are connected with the concept of Z4-linear codes. A more extensive review can

be found in [HKC+94, Wan97]. Section 2.3 contains a review of the extended 1-perfect

codes and Hadamard codes which will be included in the families of quaternary linear

Reed-Muller codes RMs. In Section 2.4, the concept of equivalence between codes is in-

troduced. This leads us to the definition of the permutation automorphism group of a code.

Finally, in Section 2.5, the concepts of rank and dimension of the kernel of a binary code

are introduced.

2.1 Binary codes

Let Z2 be the ring of integers modulo two. Let Zn2 be the set of all binary words of length

n. Any nonempty subset C of Zn2 is a binary code and a subgroup of Zn2 is called a binary

linear code or a Z2-linear code. The elements of a code are called codewords. Since Z2 is

a finite field, the dimension of a binary linear code C, denoted by k, can be defined as the

dimension of the linear subspace C in Z2.

5



6 CHAPTER 2. CODING THEORY

The Hamming distance dH(u, v) between two words u, v ∈ Zn2 is the number of co-

ordinates in which u and v differ. The Hamming weight of a word u ∈ Zn2 , denoted by

wH(u), is the number of nonzero coordinates of u. If C is a binary code, then we assume

that 0 ∈ C, where 0 is the all-zero codeword. In general, a bold number will be a codeword

where this number is repeated in all the coordinates. The minimum Hamming distance d of

C is the minimum value of dH(u, v) for u, v ∈ C satisfying u 6= v. The minimum Ham-

ming weight of C, denoted by wH(C), is the minimum value of wH(u) for u ∈ C \ {0}.
The error correcting capability is e = bd−1

2
c and C is an e-error correcting binary code.

The covering radius of a binary code C, denoted by ρ, is the maximum value of d(v, C)

over all words v ∈ Zn2 . In terms of Hamming spheres, it is the smallest integer ρ such that

the spheres with that radius centered at the codewords of C cover the whole space.

Let Ai be the number of codewords of Hamming weight i in a binary code C, then

the set {A0, . . . , An} is called the weight distribution of C. The weight enumerator of

C is defined as the polynomial WC(X, Y ) =
∑n

i=0 AiX
n−iY i, which is an homogenous

polynomial of degree n in X and Y .

Consider the translate classes of a binary code C, C+x = {u+x : u ∈ C}, where the

word x ∈ Zn2 . If C is a binary linear code, then the translate classes are also called cosets.

Each word of Zn2 of weight less than or equal to e is on a different translate of C. A binary

code C is called distance invariant if the weight distribution of C + v is the same for any

v ∈ C. If C is distance invariant and 0 ∈ C, then the minimum Hamming distance and the

minimum Hamming weight coincide.

The inner product for any two words u, v ∈ Zn2 is defined as:

〈u, v〉 =
n∑

i=1

uivi ∈ Z2.

If 〈u, v〉 = 0, then u and v are called orthogonal. Let C be a binary code, we define the

orthogonal code of C, denoted by C⊥, as the set of codewords which are orthogonal to all

codewords of C:

C⊥ = {x ∈ Zn2 : 〈x, u〉 = 0 ∀u ∈ C}.

When C is a linear code, then C⊥ is called the dual of the code C. If C ⊂ C⊥ then C is
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called self-orthogonal code and, if C = C⊥ then C is called self-dual code. The following

relation between the weight enumerator of a code and its dual is called the MacWilliams

identity [MS77].

WC⊥(X, Y ) =
1

|C|WC(X + Y,X − Y ). (2.1)

In the literature [MS77], there are examples of binary nonlinear codes with better pa-

rameters than any binary linear codes. This makes interesting the study of binary nonlinear

codes despite the lack of linear structure.

For example, the Preparata codes are an infinite family of codes, denoted by P (m) of

length 2m with 22m−2m codewords and minimum distance 6 for all even m ≥ 4. Moreover,

the Kerdock codes are another family of codes, denoted by K(m) of length 2m with 22m

codewords and minimum distance 2m−1 − 2(m−2)/2. Despite these two families contains

codes which are nonlinear they hold the MacWilliams transform (see Equation 2.1). This

fact suggests a kind of duality relation, which will be clarified in Section 2.2. The point

which makes interesting to study binary nonlinear codes is that sometimes we find great

nonlinear codes. For example, the codes P (m) and K(m) appear to contain at least twice

as many codewords as the best linear code with the same length and minimum distance.

2.2 Quaternary linear codes

Let Z4 be the integers ring modulo 4. Let Zn4 be the set of all quaternary words of length

n. Any nonempty subset C of Zn4 is a quaternary code of length n and if C is a subgroup of

Zn4 then C is called a quaternary linear code.

In contrast to binary codes, the metric used with quaternary codes is not the Hamming

one, but the Lee metric. We define the Lee weights over the elements in Z4 as: wL(0) = 0,

wL(1) = wL(3) = 1, wL(2) = 2. The Lee weight of a word u ∈ Zn4 is the addition of the

weights of its coordinates, whereas the Lee distance dL(u, v) between two words u, v ∈ Zn4
is defined as dL(u, v) = wL(u − v). The minimum Lee distance of a quaternary code C is

the minimum value of dL(u, v) for u, v ∈ C satisfying u 6= v. The minimum Lee weight of

a quaternary code C, denoted by wL(C), is the minimum value of wL(u) for u ∈ C \ {0}.
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The Gray map, φ : Zn4 −→ Z2n
2 given by φ((v1, . . . , vn)) = (ϕ(v1), . . . , ϕ(vn)), where

ϕ(0) = (0, 0), ϕ(1) = (0, 1), ϕ(2) = (1, 1), ϕ(3) = (1, 0), is an isometry which

transforms Lee distances over Zn4 into Hamming distances over Z2n
2 . Therefore, the mini-

mum Lee weight of a quaternary code C coincides with the minimum Hamming weight of

C = φ(C). Thus, if φ(C) is distance invariant we can say that C is distance invariant and if

0 ∈ C then, the minimum Lee weight and the minimum Lee distance coincide.

Let C be a quaternary linear code. Since C is a subgroup of Zn4 , it is isomorphic to

an abelian structure Zγ2 × Zδ4. Therefore, C is of type 2γ4δ as a group, it has |C| = 2γ+2δ

codewords and 2γ+δ of these have order two. The binary imageC = φ(C) of any quaternary

linear code C of length n and type 2γ4δ is called a Z4-linear code of length 2n and type

2γ4δ.

Two quaternary linear codes C1 and C2 both of length n and type 2γ4δ are said to be

permutation equivalent, if one can be obtained from the other by permuting the coordinates.

The concept of equivalent codes is deeply discussed in Section 2.4.

Let C be a quaternary linear code. Although C is not a free module, every codeword is

uniquely expressible in the form

γ∑

i=1

λiui +
δ∑

j=1

µjvj,

where λi ∈ Z2 for 1 ≤ i ≤ γ, µj ∈ Z4 for 1 ≤ j ≤ δ and ui, vj are codewords in Zn4 of

order two and four, respectively. The codewords ui, vj give us a generator matrix G of size

(γ + δ)× n for the code C. In [HKC+94], it was shown that any quaternary linear code of

type 2γ4δ is permutation equivalent to a quaternary linear code with a canonical generator

matrix of the form

GS =

(
2T 2Iγ 0

S R Iδ

)
, (2.2)

where R, T are matrices over Z2 of size δ × γ and γ × (n− γ − δ), respectively; and S is

a matrix over Z4 of size δ × (n− γ − δ).
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Example 1 Let C be a quaternary linear code with generator matrix

G =




0 0 0 0 0 2 2 0

0 0 0 0 0 0 0 2

2 0 2 1 1 1 2 1

0 0 0 2 0 1 1 1

0 0 0 0 2 1 3 1



.

The code C is permutation equivalent using the permutation (7, 8) to a quaternary linear

code C ′ with the generator matrix G ′ in the canonical form showed in Matrix (2.2), where

G ′ =




0 0 0 2 2 2 0 0

2 0 2 3 3 1 1 0

2 0 2 3 1 0 0 1


 .

Therefore, the code C is of type 4221, so it has 422 = 32 codewords.

The following two lemmas were proved for quaternary words and quaternary linear

codes, respectively, in [HKC+94]. Let u ∗ v denote the component-wise product, for any

u, v ∈ Zn4 .

Lemma 1 ([HKC+94, Wan97]) For all u, v ∈ Zn4 , we have

φ(u+ v) = φ(u) + φ(v) + φ(2u ∗ v).

Note that if u or v are words in Zn4 of order two, then φ(u+ v) = φ(u) + φ(v).

Lemma 2 ([HKC+94, Wan97]) Let C be a quaternary linear code. The Z4-linear code

C = φ(C) is a binary linear code if and only if 2u ∗ v ∈ C for all u, v ∈ C.

Note that if G is a generator matrix of a quaternary linear code C and {ui}γi=1 and

{vj}δj=0 the rows of order two and order four in G, respectively, the Z4-linear code C =

φ(C) is a binary linear code if and only if 2vj ∗vk ∈ C, for all j, k satisfying 1 ≤ j < k ≤ δ.
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The usual inner product for any two words u, v ∈ Zn4 is defined as:

〈u, v〉 = u·In·vt,

where In is the identity matrix of size n.

Let K2 =

(
1 0

0 3

)
be a matrix over Z4 and define Kn =

⊗log2 n
j=1 K2 for any n = 2m,

where
⊗

denotes the Kronecker product of matrices. The Kronecker inner product for any

two words u, v ∈ Z2m

4 is defined as:

〈u, v〉⊗n = u·Kn·vt.

Given a quaternary linear code C of length n, the quaternary dual code of C, denoted

by C⊥, is defined as

C⊥ = {u ∈ Zn4 : 〈u, v〉 = 0 for all v ∈ C}.

Given a quaternary linear code C of length n = 2m, the quaternary Kronecker dual code of

C, denoted by C⊥⊗ , is defined as

C⊥⊗ = {u ∈ Zn4 : 〈u, v〉⊗n = 0 for all v ∈ C}.

Note that 〈u, v〉⊗n = u·Kn·vt = 〈u, v·Kn〉. Hence, both quaternary dual codes are

the same by changing some coordinates of sign. We will talk more carefully about code

equivalences in Section 2.4. For both inner products, the dual code is also a quaternary

linear code, that is a subgroup of Zn4 .

Given a quaternary linear code C of length n and type 2γ4δ, the quaternary dual code is

of length n and type 2γ4n−γ−δ [HKC+94]. If the generator matrix G of C is in the canonical

form given by Matrix (2.2) then, the generator matrix HS of the dual code C⊥ can be

computed as follows:

HS =

(
0 2Iγ 2Rt

In−γ−δ T t −(S +RT )t

)
. (2.3)
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Example 2 Since the generator matrix G ′ of C ′ in Example 1 is written in the canonical

form then, the generator matrix H′ of C ′⊥ can be computed using Matrix (2.3). The gener-

ator matrix of C⊥ is the matrixH applying the permutation (7, 8) toH′, where

H′ =




0 0 0 0 0 2 0 2

1 0 0 0 0 0 2 2

0 1 0 0 0 0 0 0

0 0 1 0 0 0 2 2

0 0 0 1 0 1 1 0

0 0 0 0 1 1 3 0




.

Therefore, the code C⊥ is of type 4521, so it has 452 = 2048 codewords.

The weight enumerator polynomial of C⊥ is related to the weight enumerator polyno-

mial of C by the MacWilliams identity [Del73] showed in Section 2.1. The corresponding

binary code φ(C⊥) is denoted by C⊥ and called the Z4-dual code of C. Notice that C and

C⊥ are not dual in the binary linear sense, but the weight enumerator polynomial of C⊥ is

the MacWilliams transform (see Equation 2.1) of the weight enumerator polynomial of C.

C quaternary dual−−−−−−−→ C⊥

φ−1

x
yφ

C C⊥

In recent years, quaternary linear codes have attracted the attention of the coding com-

munity as several notorious binary nonlinear codes like Kerdock codes and Preparata codes

were found to be binary images under the Gray map of a quaternary linear code [Nec89,

HKC+94]. This discovery opened the way for a broader study of quaternary codes, which

has constituted a rapidly growing area of coding theory. As we said in Section 2.1, Ker-

dock and Preparata codes holds the MacWilliams identity. That is because they are Z4-dual

codes.

This dissertation is focused on quaternary linear codes and Z4-linear codes. However,

it is interesting to mention that there is a generalization of these codes called Z2Z4-additive

codes and Z2Z4-linear codes, respectively [RBH89, PR97b].
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A code C is Z2Z4-additive if the set of coordinates can be partitioned into two sub-

sets X and Y such that the punctured code of C by deleting the coordinates outside X

(respectively, Y ) is a binary linear code (respectively, a quaternary linear code). Their

corresponding binary images, via the Gray map, are called Z2Z4-linear codes. The funda-

mental parameters as well as the standard forms for generator and parity-check matrices

and the duality concepts of these codes are studied in [BFCP+10].

2.3 Extended 1-perfect and Hadamard codes

Let C be a binary code of length n. The code C is said to be perfect if for some integer

r ≥ 0, every x ∈ Zn2 is within distance r from exactly one codeword ofC. This definition is

equivalent to say that the covering radius of the code C coincides with the error correcting

capability e of the code C. Thus, C is said to be an e− perfect code.

In [ZL73, Tie73], it is shown that the only parameters for nontrivial binary perfect codes

are the 3-perfect Golay code of length 23 and the 1-perfect codes of length n = 2m − 1.

We will focus on the 1-perfect ones.

Binary 1-perfect codes have length n = 2m − 1 and minimum distance 3. They have

2n−m codewords. Binary linear 1-perfect codes are unique up to equivalence, they are the

well-known Hamming codes and they exist for any m ≥ 2. On the other hand, there are

lots of binary nonlinear 1-perfect codes and they exist for any m ≥ 4.

Given a binary 1-perfect code of length 2m−1, when we add an even parity coordinate to

all codewords, we obtain a binary code of length n = 2m with minimum distance 4. These

codes are called extended 1-perfect codes. It is known that there are quaternary linear codes

such that, under the Gray map, they became Z4-linear extended 1-perfect codes. We call

them quaternary linear extended 1-perfect codes.

Given m ≥ 1, a binary code with 2m+1 codewords, minimum distance 2m−1 and length

n = 2m is called a Hadamard code. In a Hadamard code, all the codewords, except the

all-one and all-zero codewords, have Hamming weight n/2, where n is the length of the

code.

The dual code of the extended Hamming code of length n = 2m is the linear Hadamard

code. Moreover, the Z4-dual code of every Z4-linear extended 1-perfect code is a Z4-linear
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Hadamard code [Kro01]. There are quaternary linear codes such that, under the Gray map,

they become Z4-linear Hadamard codes. We call these codes quaternary linear Hadamard

codes. Moreover, the quaternary dual of a quaternary linear extended 1-perfect code is a

quaternary linear Hadamard code.

There is a recursive construction for the generator matrices of the quaternary linear

Hadamard codes. We can contruct one generator matrix Hδ,m for every m ≥ 1 and 1 ≤
δ ≤ bm+1

2
c in the following way:

H1,1 =
(

1
)

;

Hδ,m =

(
Hδ,m−1 Hδ,m−1

0 2

)
if m > 2δ − 1, δ ≥ 1;

Hδ,m =

(
Hδ−1,m−2 Hδ−1,m−2 Hδ−1,m−2 Hδ−1,m−2

0 1 2 3

)
if m = 2δ − 1, δ ≥ 2.

Example 3 For m = 5, we can construct the following three generator matrices for qua-

ternary linear Hadamard codes. Note that, every Hδ,m is the parity check matrix of the

quaternary linear extended 1-perfect code denoted by Eδ,m.

H1,5 =




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2

0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2

0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2

0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2




.

H2,5 =




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 0 0 0 2 2 2 2 0 0 0 0 2 2 2 2

0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2




.

H3,5 =




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3


 .
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2.4 Equivalent codes

In this section, we ask when two codes are “essentially the same”. We term this concept

“equivalence”. Usually, we are interested in properties of codes, such as the weight distri-

bution, which remains unchanged when passing from one code to another that is essentially

the same.

Two binary linear codes could be considered “the same” if they were isomorphic as

vector spaces. However, in that case the concept of weight is lost: codewords of one

weight may be sent to codewords of different weight by the isomorphism. Moreover, we

are interested in equivalences between codes which could be nonlinear or over other rings.

Clearly, any permutation of coordinates or translation by one word, which sends one code

to another one, preserves the weight of codewords, regardless of the field or even a ring.

This idea leads us to the definitions of code equivalences.

Let Sn be the symmetric group of permutations on the set {1, . . . , n}, where id ∈ Sn
is the identity permutation. Let R be a ring. The group operation in Sn is the function

composition, denoted by ◦. The composition σ1 ◦ σ2 maps any element x to σ1(σ2(x)). A

σ ∈ Sn acts linearly on words of Rn by permuting the coordinates, σ((c1, c2, . . . , cn)) =

(cσ−1(1), cσ−1(2), . . . , cσ−1(n)).

Two codes C1 ⊆ Rn and C2 ⊆ Rn are said to be equivalent if there is a word x ∈ Rn

and a coordinate permutation π such that C2 = {x + π(c) : c ∈ C1}. They are said to

be permutation equivalent if there is a permutation of coordinates which sends C1 to C2.

The set of coordinate permutations that map a code C to itself forms a group called the

permutation automorphism group of the code C denoted by PAut(C). Hence, if C is a

code of length n, then PAut(C) is a subgroup of the symmetric group Sn.

When we are considering codes over a ring which is not Z2, equivalence could take

a more general form. Despite the permutation equivalence, there are more general maps

which preserve the Lee weight of codewords. These maps also include those which multi-

ply the coordinates of the codewords by units of the ring.

A monomial matrix is a square matrix with exactly one nonzero divisor entry in each

row and column. A monomial matrix M can be represented as a product of a diagonal

matrix D and a permutation matrix P . Hence, M = DP . Note that the entries in the
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diagonal of D should be units. Thus, in Z4 means that the entries are 1 or 3.

Let C1 and C2 be two linear codes of the same length over the ring R. Let G1 be the

generator matrix of C1. Then C1 and C2 are monomially equivalent if there is a monomial

matrixM so that G1M is a generator matrix of C2. Moreover, if two quaternary linear codes

C1 and C2 are monomially equivalent then, the corresponding Z4-linear codes C1 = φ(C1)

and C2 = φ(C2) are permutation equivalent.

As it happens in the permutation equivalence case, now the set of monomial matrices

that map a code C to itself forms the group MAut(C) called the monomial automorphism

group of C. Since any permutation can be seen as a permutation matrix, in general, PAut(C)
is a subgroup of MAut(C).

Let C be a quaternary linear code. Let C = φ(C) be the binary image under the Gray

map, that is, the corresponding Z4-linear code. In this situation we can study three groups:

PAut(C), MAut(C) and PAut(C). As we said, PAut(C) ⊆ MAut(C). Finally, the study

of MAut(C) can help to determine a subgroup of PAut(C).

In the literature, we can find several studies of the permutation automorphism groups

of some known binary codes. The permutation automorphism group of the Z2Z4-linear ex-

tended 1-perfect codes, which include the Z4-linear extended 1-perfect codes, was studied

in [Kro11]. Moreover, the permutation automorphism group of the span of the same codes

was studied in [PR02]. In general, the permutation automorphism group of (nonlinear)

binary 1-perfect codes was studied before, obtaining some partial results [HPW09, Hed05,

ASH05, FCPV11].

Let us recall some fundamental concepts of group theory applied to the permutation

automorphism group A = PAut(C) acting on the code C. On the one hand, the orbit

of a codeword u ∈ C under the action of A is the set A(u) = {σ(u) : σ ∈ A}. Note

that, since A is the permutation automorphism group of C, A(u) ⊆ C. Moreover, two

codewords u, v ∈ C are said to be A-equivalent if there exists a permutation σ ∈ A such

that σ(u) = v. Since this is an equivalence relation,C is partitioned into classes or orbits. If

there is only one orbit, it is said that the action is transitive. On the other hand, the stabilizer

of u ∈ C in A is the subgroup Nu = {σ ∈ A : σ(u) = u}. Finally, the orbit-stabilizer

theorem shows that |A| = |A(u)||Nu| for all u ∈ A [Cam99].
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2.5 Rank and dimension of the kernel

In Section 2.4, we showed when two codes are “essentially the same” introducing the

concept of equivalence. Now, given two binary codes we want to answer whether they

are equivalent or not. We can solve this situation by doing an exhaustive search of all

permutations, but it is an NP-hard problem. Thus, we will use invariants of binary codes to

solve it.

We will use the rank and dimension of the kernel for binary codes. These two invariants

do not always give a full classification of codes, since two nonequivalent codes could have

the same rank and dimension of the kernel. In spite of that, they can help in classification,

since if two codes have different ranks or dimension of the kernel, they are nonequivalent.

We will focus on Z4-linear codes. Recall that Z4-linear code is a binary code which

is the Gray map image of a quaternary linear code. Let C be a quaternary linear code of

length n and type 2γ4δ and let C = φ(C) be the corresponding Z4-linear code of length 2n.

The rank rC of a binary code C is the dimension of the linear span of the codewords of C.

We will talk about the rank of a quaternary linear code C or the rank of the corresponding

Z4-linear code C = φ(C) as the same value. Thus, rC = rC . The rank of Z4-linear codes

was studied in [FCPV08], where the authors showed that there exists a Z4-linear code C

with rC = rank(C) for any possible value of rC .

The following theorem shows the lower and the upper bounds for the rank of any qua-

ternary linear code. Moreover, it also proves that there always exists a quaternary linear

code for every possible value of the rank between these bounds.

Theorem 3 ([FCPV10, FCPV08]) There exists a quaternary linear code C of length n

and type 2γ4δ with rank rC for any

rC ∈ {γ + 2δ, . . . ,min(n+ δ, γ + 2δ +

(
δ

2

)
)}.

Note that when rC = γ + 2δ, the corresponding Z4-linear code by using the Gray map

is a binary linear code, and it corresponds to the lower bound of the rank.

The kernel of a binary code C is K(C) = {x ∈ Zn2 : C + x = C}. Let C be a

quaternary linear code and let C = φ(C) be the corresponding Z4-linear code with kernel
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K(C) of dimension kC . The kernel of C, denoted by K(C), is defined as the inverse Gray

map image ofK(C), that isK(C) = φ−1(K(C)). Furthermore, the dimension of the kernel

of C is defined as the dimension of the kernel of C = φ(C), and is denoted by kC .

Lemma 4 ([FCPV10, FCPV08]) Let C be a quaternary linear code. Then,

K(C) = {u : u ∈ C and 2u ∗ v ∈ C,∀v ∈ C}.

Note that if G is a generator matrix of a quaternary linear code C, then u ∈ K(C) if and

only if u ∈ C and 2u ∗ v ∈ C for all v ∈ G. Moreover, by Lemma 4, all codewords of order

two in C belong to K(C). It is also clear that if the word 1 belongs to C, then it is also in

K(C). Finally, note that K(C) is a linear subcode of C [FCPV10, FCPV08].

The following theorem shows the lower and the upper bounds for the dimension of the

kernel of any quaternary linear code. Furthermore, it also proves that there always exists a

quaternary linear code for every possible value of the dimension of the kernel.

Theorem 5 ([FCPV08]) There exists a quaternary linear code C of length n and type 2γ4δ

with dimension of the kernel of C as kC for any

kC ∈





{γ + δ, . . . , γ + 2δ − 2, γ + 2δ} if s ≥ 2

{γ + 2(δ − d δ−1
2
e), . . . , γ + 2(δ − 1), γ + 2δ} if s = 1

{γ + 2δ} if s = 0,

where s = n− γ − δ.

Note that when kC = γ + 2δ, the corresponding Z4-linear code is a binary linear code,

and it corresponds to the upper bound for the dimension of the kernel.

In Section 2.3, we defined the Z4-linear Hadamard and Z4-linear extended 1-perfect

codes. In [Kro01], a full classification of such codes using these two invariants is given.

One of the most fundamentals parts of this dissertation is the classification of the Z4-linear

Reed-Muller codes presented in Chapter 3, which contain the Z4-linear Hadamard and Z4-

linear extended 1-perfect codes.
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The dimension of the kernel and the rank of Z4-linear Hadamard codesHδ,m = φ(Hδ,m)

of type 2γ4δ and Z4-linear extended 1-perfect codes Eδ,m = φ(Eδ,m) of type 2γ̄4δ̄ were

studied in [BPR03, PRV04, Kro01]. Specifically,

kHδ,m =

{
γ + 2δ if δ = 1, 2;

γ + δ + 1 if δ ≥ 3;
(2.4)

kEδ,m =





γ̄ + δ̄ +m if δ = 1;

γ̄ + δ̄ + 2 if δ = 2;

γ̄ + δ̄ + 1 if δ ≥ 3;

(2.5)

rHδ,m =

{
γ + 2δ if δ = 1, 2;

γ + 2δ +
(
δ−1

2

)
if δ ≥ 3;

(2.6)

rEδ,m = γ̄ + 2δ̄ + δ = 2m−1 + δ̄; (2.7)

except rE1,4 = 11.

Recall that the codes Hδ,m and Eδ,m are quaternary duals. Thus, you can compute the

type of the dual code by using the equations γ̄ = γ and δ̄ = 2m−1 − γ − δ.

Example 4 For m = 5, we have δ ∈ {1, 2, 3}. See Example 3 for the generator matrices

of the three codes Hδ,m. The same matrices are the parity check matrices of the three

dual codes Eδ,m. Now, we show the rank and dimension of kernel of their corresponding

Z4-linear codes:

kH1,5 = 6 rH1,5 = 6

kH2,5 = 6 rH2,5 = 6

kH3,5 = 4 rH3,5 = 7

kE1,5 = 20 rE1,5 = 27

kE2,5 = 16 rE2,5 = 28

kE3,5 = 14 rE3,5 = 29

It is proved that H1,5 and H2,5 are equivalent codes. Then, for m = 5 there are only

two nonequivalent Z4-linear Hadamard codes and three nonequivalent Z4-linear extended

1-perfect codes.



2.5. RANK AND DIMENSION OF THE KERNEL 19

The point is that the Gray map images of H1,5 and H2,5 are two Z4-linear equivalent

codes but, the Gray map images of their dual codes E1,5 and E2,5 are nonequivalent. Ob-

serve that the quaternary dual operation is not preserving the nonequivalence of Z4-linear

codes.

The next two theorems generalizes these classification results. Note that Theorem 6

was proved using the dimension of the kernel and Theorem 7 was proved using the rank.

Theorem 6 ([Kro01]) For each δ ∈ {1, . . . , b(m − 1)/2c} there exists a unique (up to

equivalence) Z4-linear Hadamard code C of length 2m ≥ 16, such that the code of C is of

type 2γ4δ where γ = m+ 1− 2δ.

Theorem 7 ([Kro01]) For each δ ∈ {1, . . . , b(m + 1)/2c} there exists a unique (up to

equivalence) Z4-linear extended 1-perfect code C of length 2m ≥ 16, such that the Z4-dual

code of C is of type 2γ4δ where γ = m+ 1− 2δ.
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Chapter 3

Reed-Muller codes

In this chapter, the Reed-Muller codes will be explained. First of all, binary linear Reed-

Muller codes and their parameters and properties will be presented. Then, we will talk

about some families of quaternary linear Reed-Muller codes proposed in different papers

trying to generalize the binary linear Reed-Muller family of codes. Finally, we will present

theRMs families of codes as a good generalization of the binary linear Reed-Muller codes.

3.1 Binary linear Reed-Muller codes

The usual binary linear Reed-Muller family of codes is one of the oldest interesting family

of codes. The first construction of such codes was presented by Muller in [Mul54]. Later,

the decoding algorithm was presented by Reed in [Ree54]. This family will be denoted by

RM . The codes in this family are easy to decode and their combinatorial properties are of

great interest to produce new optimal codes.

The binary linear rth-order Reed-Muller code RM(r,m) with 0 ≤ r ≤ m and m ≥ 1

can be described by using the Plotkin construction as follows [MS77]:

RM(r,m) = {(u|u+ v) : u ∈ RM(r,m− 1), v ∈ RM(r − 1,m− 1)},

where RM(0,m) is the repetition code {0,1}, RM(m,m) is the universe code, and "|"
denotes concatenation. For m = 1, there are only two codes: the repetition code RM(0, 1)

21
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and the universe code RM(1, 1). For every code RM(r,m), its generator matrix will be

denoted byG(r,m). The codes in theRM family have the parameters and properties quoted

in the following lemma.

Lemma 8 ([MS77]) A binary linear rth-order Reed-Muller code RM(r,m) with m ≥ 1

and 0 ≤ r ≤ m has the following parameters and properties:

1. the length is n = 2m;

2. the minimum distance is d = 2m−r;

3. the dimension is k =
r∑

i=0

(
m

i

)
;

4. the code RM(r − 1,m) is a subcode of RM(r,m) for 0 < r ≤ m;

5. the code RM(r,m) is the dual code of RM(m− 1− r,m) for 0 ≤ r < m.

Example 5 For m = 2, there are three binary linear Reed-Muller codes and the generator

matrices G(r,m) are:

G(0,2) =
(

1 1 1 1
)

; G(1,2) =




1 0 1 0

0 1 0 1

0 0 1 1


 ; G(2,2) =




1 1 1 1

0 1 0 1

0 0 1 1

0 0 0 1



.

It is easy to check that these three codes satisfy all the parameters and properties quoted in

Lemma 8.

3.2 New Plotkin constructions

One way to construct the RM family of codes is by using the Plotkin construction. In this

subsection, two generalizations of the Plotkin construction over quaternary linear codes

will be introduced.
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Definition 9 (Plotkin Construction) LetA andB be two quaternary linear codes of length

n, types 2γA4δA and 2γB4δB , and minimum distances dA and dB, respectively. A new qua-

ternary linear code PC(A,B) is defined as

PC(A,B) = {(u|u+ v) : u ∈ A, v ∈ B}.

It is easy to see that if GA and GB are generator matrices of A and B, respectively, then

the matrix

GPC =

(
GA GA
0 GB

)

is a generator matrix of the code PC(A,B). Moreover, the code PC(A,B) is of length 2n,

type 2γA+γB4δA+δB , and minimum distance d = min{2dA, dB} [PRS07, PRS09].

Definition 10 (BQ-Plotkin Construction) Let A, B, and C be three quaternary linear

codes of length n; types 2γA4δA , 2γB4δB , and 2γC4δC ; and minimum distances dA, dB, and

dC , respectively. Let GA, GB, and GC be generator matrices of the codes A, B, and C, re-

spectively. A new code BQ(A,B, C) is defined as the quaternary linear code generated

by

GBQ =




GA GA GA GA
0 G ′B 2G ′B 3G ′B
0 0 ĜB ĜB
0 0 0 GC



,

where G ′B is the matrix obtained from GB after switching twos by ones in their γB rows of

order two, and ĜB is the matrix obtained from GB after removing their γB rows of order

two.

The code BQ(A,B, C) is of length 4n, type 2γA+γC4δA+γB+2δB+δC , and minimum dis-

tance d = min{4dA, 2dB, dC} [PRS07, PRS09].
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3.3 Quaternary linear Reed-Muller codes

In [HKC+94], Hammons, Kumar, Calderbank, Sloane, and Solé showed that several fami-

lies of binary codes are Z4-linear. In particular, they proved that the binary linear rth-order

Reed-Muller code RM(r,m) is Z4-linear for r = 0, 1, 2,m− 1,m and is not Z4-linear for

r = m− 2 (m ≥ 5). In a subsequent work, Hou, Lahtonen, and Koponen [HLK98] proved

that RM(r,m) is not Z4-linear for 3 ≤ r ≤ m− 2 (m ≥ 5).

In the recent literature [BFP05, BFCP08, HKC+94, PR97a, Sol07, Wan97], several

families of quaternary linear codes have been proposed and studied trying to generalize

the RM family. However, when the corresponding Z4-linear codes are taken, they do not

satisfy all the properties quoted in Lemma 8. Finally, in [PRS07, PRS09], new quaternary

linear Reed-Muller families, denoted byRMs, such that the corresponding Z4-linear codes

have the parameters and properties described in Lemma 8, were proposed.

Now, we will try to explain brie�y the differences between all these quaternary Reed-

Muller families trying to generalize the binary linear Reed-Muller codes. In [HKC+94],

a construction of codes, called QRM and based on Z4-linear codes, such that after do-

ing modulo two we obtain the binary linear Reed-Muller codes is introduced. The code

QRM(1,m) is a quaternary linear Kerdock code and its orthogonal codeQRM(m−2,m)

is a quaternary linear Preparata code. This result is generalized in [BFP05], where a class

QRM(r,m) of quaternary codes is described, which includesQRM(r,m) codes, as well

as all the quaternary linear Kerdock and quaternary linear Preparata codes. In [BFP05,

BFCP08] such family of codes is studied, and their parameters and the dimension of the

kernel and rank are computed.

In [PR97a], a generalization of the Plotkin construction to construct a new family of

Reed-Muller codes calledARM is introduced. In [Sol07], a Plotkin construction to obtain

a sequence of quaternary linear Reed-Muller codes called LRM families is used. In both

last quoted constructions, the images of the obtained codes under the Gray map are binary

codes with the same parameters as the binary linear Reed-Muller codes. However, they do

not satisfy the properties 4 and 5 quoted in Lemma 8.

It was a natural question to ask for the existence of families of quaternary linear codes

such that, under the Gray map, the corresponding Z4-linear codes have the same parameters
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and properties as the well-known family of binary linear Reed-Muller codes. In these new

families presented in [PRS07, PRS09], like in the usual RM(r,m) family, the code with

r = 1 has to be a Hadamard code and the code with r = m − 2 has to be an extended

1-perfect code.

Let s, r,m be three integers such that m ≥ 2, 0 ≤ r ≤ m, and 0 ≤ s ≤ bm−1
2
c.

The generator matrix Gs(r,m) of the quaternary linear rth-order Reed-Muller code of the

family s denoted byRMs(r,m) can be constructed in a recursive way by using the Plotkin

construction given by Definition 9 as follows:

RMs(r,m) = PC(RMs(r,m− 1),RMs(r − 1,m− 1)),

where RMs(r,m) with r < 0 is defined as the zero code, RMs(0,m) is defined as the

repetition code with only the all-zero and all-two vectors, and RMs(r,m) with r ≥ m is

defined as the whole space Zm−1
4 . Moreover, form = 1, there is only one family with s = 0,

and in this family there are only the zero, repetition and universe codes for r < 0, r = 0

and r > 0, respectively. In this case, the generator matrix ofRM0(0, 1) is G0(0,1) =
(

2
)

and the generator matrix ofRM0(1, 1) is G0(1,1) =
(

1
)

.

Example 6 For m = 2, the generator matrices of RM0(r, 2), 0 ≤ r ≤ 2, are the follow-

ing:

G0(0,2) =
(

2 2
)

; G0(1,2) =

(
0 2

1 1

)
; G0(2,2) =

(
1 0

0 1

)
.

Note that when m is odd, theRMs family with s = m−1
2

can not be generated by using

this construction. The first time that a new family is generated, we will use the BQ-Plotkin

construction instead of the Plotkin construction. In this case, for any m ≥ 3 and odd, given

RMs−1(r,m−2),RMs−1(r−1,m−2) andRMs−1(r−2,m−2), theRMs(r,m) code

can be constructed by using the BQ-Plotkin construction given by Definition 10 as follows:

RMs(r,m) = BQ(RMs−1(r,m− 2),RMs−1(r − 1,m− 2),RMs−1(r − 2,m− 2)).

Example 7 Form = 3, there are two families. TheRM0 family can be generated by using

the Plotkin construction. On the other hand, the new RM1 family has to be generated by
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Table 3.1: RMs(r,m) codes: (γ, δ)

m
HHHHHHs

r
0 1 2 3 4 5 6

1 0 (1,0) (0,1)
2 0 (1,0) (1,1) (0,2)

3
0 (1,0) (2,1) (1,3) (0,4)
1 (1,0) (0,2) (1,3) (0,4)

4
0 (1,0) (3,1) (3,4) (1,7) (0,8)
1 (1,0) (1,2) (1,5) (1,7) (0,8)

5
0 (1,0) (4,1) (6,5) (4,11) (1,15) (0,16)
1 (1,0) (2,2) (2,7) (2,12) (1,15) (0,16)
2 (1,0) (0,3) (2,7) (0,13) (1,15) (0,16)

6
0 (1,0) (5,1) (10,6) (10,16) (5,26) (1,31) (0,32)
1 (1,0) (3,2) (4,9) (4,19) (3,27) (1,31) (0,32)
2 (1,0) (1,3) (2,10) (2,20) (1,28) (1,31) (0,32)

using the BQ-Plotkin construction. The generator matrices of RM1(r, 3), 0 ≤ r ≤ 3, are

the following:

G1(0,3) =
(

2 2 2 2
)

; G1(1,3) =

(
1 1 1 1

0 1 2 3

)
;

G1(2,3) =




1 1 1 1

0 1 2 3

0 0 1 1

0 0 0 2




; G1(3,3) =




1 1 1 1

0 1 2 3

0 0 1 1

0 0 0 1



.

Table 3.1 shows codes in the RMs families for 1 ≤ m ≤ 6. Each code is represented

by (γ, δ), where 2γ4δ is the type of the code.

In [PRS07, PRS09], it is proved that these new families of quaternary linear Reed-

Muller codes, denoted by RMs, satisfy that, under the Gray map, the corresponding

Z4-linear codes have the same parameters and properties (length, dimension, minimum
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distance, inclusion and duality relationship) as the well known RM family. Contrary to

the binary linear case, where there is only one RM family, in the quaternary case there

are bm+1
2
c families for each value of m. These families will be distinguished by using

subindexes s from the set {0, . . . , bm−1
2
c}.

Lemma 11 ([PRS07, PRS09]) A quaternary linear Reed-Muller code RMs(r,m), with

m ≥ 1, 0 ≤ r ≤ m, and 0 ≤ s ≤ bm−1
2
c, has the following parameters and properties:

1. the binary length is N = 2m;

2. the minimum distance is d = 2m−r;

3. the number of codewords is 2k, where k =
r∑

i=0

(
m

i

)
;

4. the code RMs(r − 1,m) is a subcode of RMs(r,m) for 0 < r ≤ m; The code

RMs(0,m) is the repetition code with only one nonzero codeword (the all-two vec-

tor). The code RMs(m,m) is the whole space Z2m−1

4 and RMs(m − 1,m) is the

even code (i.e. the code with all the vectors of even weight);

5. the codes RMs(1,m) and RMs(m − 2,m), after the Gray map, are Z4-linear

Hadamard and Z4-linear extended perfect codes, respectively;

6. the codeRMs(r,m) is the dual code ofRMs(m− 1− r,m) for −1 ≤ r ≤ m.

All the contributions in this dissertation will be in the context of the RMs families of

Reed-Muller codes. Actually, different properties like the rank, the dimension of the kernel

and the automorphism groups will be studied for such codes.
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Chapter 4

Contributions

In this chapter, we summarize the results of the contributions making up this dissertation.

Chapters 2 and 3 have already given a background that relates the articles appended to this

document. However, we summarize it here, with the aim of justifying the thematic unity of

this compendium.

The aforesaid contributions are the publications listed below.

(i) Pernas, J.; Pujol, J.; Villanueva, M., Kernel Dimension for Some Families of Quater-

nary Reed-Muller Codes. (MMICS) Lecture Notes in Computer Science, vol. 5393.,

pp: 128-141. ISSN: 0302-9743. December 2008.

(ii) Pernas, J.; Pujol, J.; Villanueva, M., Rank for Some Families of Quaternary Reed-

Muller Codes. (18AAECC) Lecture Notes in Computer Science, vol. 5527., pp:

43-52. ISSN: 0302-9743. June 2009.

(iii) Pernas, J.; Pujol, J.; Villanueva, M., Classification for Some Families of Quaternary

Reed-Muller Codes. IEEE Transactions on Information Theory, vol. 57, no. 9, pp.

6043–6051. September 2011.

(iv) Pernas, J.; Pujol, J.; Villanueva, M., On the Permutation Automorphism Group of

Quaternary Linear Hadamard Codes. 3rd International Castle Meeting on Coding

Theory and Applications, Servei de publicacions UAB, pp. 213-218. September

2011.

29
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(v) Pernas, J.; Pujol, J.; Villanueva, M., Characterization of the Automorphism Group o

Quaternary Linear Hadamard Codes. Accepted to Designs, Codes and Cryptography,

February 2012.

Contributions (i), (ii) and (iv) are published in conference proceedings. Actually, con-

tributions (i) and (ii) correspond to conferences in the CORE ranking scored as a C and

B, respectively. Contribution (iii) is an article published in a journal with an impact factor

of 2.73(Q1) in the JCR(2010). Contribution (v) is also an article accepted in a journal with

an impact factor of 0.83(Q2) in the JCR(2010).

4.1 Classification of Reed-Muller Codes

In Section 3.3, the RMs families of quaternary linear Reed-Muller codes are described.

Remember that given m ≥ 1 and r ∈ {0, . . . ,m}, there is one code RMs(r,m) for every

s ∈ {0, . . . , bm−1
2
c}. By Lemma 11, we know the parameters of these bm+1

2
c codes. The

length is 2m, the minimum distance is 2m−r, and the number of codewords is 2k, where k =
∑r

i=0

(
m
i

)
. Given r and m, all the codes share the same parameters for every s. Although

having the same parameters, the corresponding Z4-linear codes could be nonequivalent.

The aim of the publications (i), (ii) and (iii) is to give a full classification of theRMs

families of Reed-Muller codes. That is, to proof the nonequivalence of φ(RMs(r,m))

codes for every s ∈ {0, . . . , bm−1
2
c}. As it was done before with the Z4-linear Hadamard

codes and Z4-linear extended 1-perfect codes (see Section 2.5), the rank and dimension of

the kernel will help in giving this classification.

In Section 2.3, quaternary linear Hadamard codes and their construction are introduced.

These Hadamard codes are included in the RMs families. Indeed, the codes RMs(1,m)

are the quaternary linear Hadamard codes. As it is known, the quaternary dual code of a

quaternary linear Hadamard code is a quaternary linear extended 1-perfect code. Thus, the

codesRMs(m− 2,m) are the quaternary linear extended 1-perfect codes.

In [Kro01], the rank of the codes φ(RMs(1,m)), where m ≥ 4, is established. The

author proved that the rank of theRM0(1,m) andRM1(1,m) are the same and they have

different value for the rest of cases s ∈ {2, . . . , bm−1
2
c}. Hence, the author claimed that
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there were bm−1
2
c nonequivalent Z4-linear Hadamard codes. In the same article [Kro01],

the dimension of the kernel of the codes φ(RMs(m− 2,m)), where m ≥ 4, is established

too. The dimension of the kernel is different for every s ∈ {0, . . . , bm−1
2
c}. Thus, the

author claimed that there were bm+1
2
c nonequivalent Z4-linear extended 1-perfect codes.

Contributions (i), (ii) and (iii) were motivated by these results and with the aim to com-

plete the classification for the codes φ(RMs(r,m)) where m ≥ 4 and r ∈ {2, . . . ,m−3}.
Contribution (i) represents the first study of the dimension of kernel of theRM0(r,m)

codes. When s = 0, there are no order four codewords in the generator matrix except the

all-one codeword (see construction in Section 3.3). That fact makes easier to work with

the family of codes RM0. Thus, in (i) we established the dimension of the kernel for the

RM0 family of codes and we suggested that a generalization of the method used should

work for rest of theRMs families.

In Contribution (ii), we tried to compute the rank for allRMs(r,m) families of codes.

Our hope was that working with the rank could be easier than working with the kernel.

However, it was even harder than the kernel, so we just established the rank for the codes

RMs(2,m) and RMs(m − 3,m) with s ∈ {2, . . . , bm−1
2
c}. After that, we realized that

we should go back to the computation of the dimension of the kernel.

Finally, in contribution (iii) we gave the full classification of the corresponding Z4-

linear codes of the RMs families of Reed-Muller codes. To solve the problem, we es-

tablished the dimension of the kernel of every RMs(r,m) code, where m ≥ 1, r ∈
{0, . . . ,m}, and s ∈ {0, . . . , bm−1

2
c}. We realized that the method used in (i) was too

complicated to be generalized for s ∈ {1, . . . , bm−1
2
c}. Moreover, in [RR08] was proved

that RM0(r,m) = ZRM−(r,m − 1). The ZRM−(r,m − 1) codes were introduced

in [BFCP08] as well as their dimension of the kernel. Since the case s = 0 was indirectly

solved then, we focused on the general case for s ≥ 1 and finally we claimed Theorem 12,

which establishes the value of the dimension of the kernel for each code. Table 4.1 shows

the dimension of the kernel for all RMs(r,m) codes with m ≤ 6. Before claiming the

full classification given by Theorem 13, it was necessary to prove that the cases where the

dimension of the kernel are the same, the codes are equivalent.

Theorem 12 For all m ≥ 1, r ∈ {0, . . . ,m} and s ∈ {0, . . . , bm−1
2
c} the dimension of the

kernel ofRMs(r,m) of type 2γ4δ is
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Table 4.1: Type 2γ4δ and dimension of the kernel ks(r,m) for all RMs(r,m) codes with
m ≤ 6, showing them in the form (γ, δ) ks(r,m)

m
HHHHHs

r
0 1 2 3 4 5 6

1 0 (1,0) 1 (0,1) 2
2 0 (1,0) 1 (1,1) 3 (0,2) 4

3 0 (1,0) 1 (2,1) 4 (1,3) 7 (0,4) 8
1 (1,0) 1 (0,2) 4 (1,3) 7 (0,4) 8

4 0 (1,0) 1 (3,1) 5 (3,4) 11 (1,7) 15 (0,8) 16
1 (1,0) 1 (1,2) 5 (1,5) 8 (1,7) 15 (0,8) 16

5
0 (1,0) 1 (4,1) 6 (6,5) 16 (4,11) 20 (1,15) 31 (0,16) 32
1 (1,0) 1 (2,2) 6 (2,7) 11 (2,12) 16 (1,15) 31 (0,16) 32
2 (1,0) 1 (0,3) 4 (2,7) 11 (0,13) 14 (1,15) 31 (0,16) 32

6
0 (1,0) 1 (5,1) 7 (10,6) 22 (10,16) 32 (5,26) 37 (1,31) 63 (0,32) 64
1 (1,0) 1 (3,2) 7 (4,9) 15 (4,19) 25 (3,27) 32 (1,31) 63 (0,32) 64
2 (1,0) 1 (1,3) 5 (2,10) 13 (2,20) 23 (1,28) 30 (1,31) 63 (0,32) 64

1. ks(0,m) = 1, ks(m−1,m) = 2m − 1, ks(m,m) = 2m.

2. If s = 0,

k0(r,m) =

{
γ + 2δ for r = 1

γ + δ +m for r ∈ {2, . . . ,m− 2}.

3. If s = 1, k1(r,m) = γ + δ + 2 for r ∈ {1, 2, . . . ,m− 2}.

4. If s ≥ 2, ks(r,m) = γ+δ+1 for r ∈ {1, 2, . . . ,m−2}, except k2(2,5) = γ+δ+2 = 11.

Theorem 13 For all m ≥ 3 and r = 1, there are at least bm−1
2
c nonequivalent binary

codes with the same parameters as the code RM(1,m).

For allm ≥ 4 and 2 ≤ r ≤ m−2, there are at least bm+1
2
c nonequivalent binary codes

with the same parameters as the code RM(r,m), except when m is odd, and r is even. In

this case, there are at least m−1
2

nonequivalent binary codes with the same parameters as

the code RM(r,m).
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4.2 Permutation automorphism groups

The vector spaces considered in coding theory usually have both metrical and algebraic

structures. From the point of view of the parameters of an error-correcting code, the metri-

cal one is the most important, while the algebraic properties give an advantage in construct-

ing codes, developing coding and decoding algorithms, and other applications. In this sec-

tion, we will talk about these algebraic properties of codes, the permutation automorphism

group of a quaternary linear code. Actually, in contributions (iv) and (v), we characterized

the permutation automorphism group of theRMs(1,m) andRMs(m− 2,m) codes.

Recall the definition of the permutation automorphism group of a quaternary linear

code given in Section 2.4:

PAut(C) = {σ ∈ Sn : σ(C) = C},

where C is a quaternary linear code and Sn the symmetric group on a set of n symbols.

The order of the group PAut(C) is an invariant of the code C. Thus, knowing this group

order could be used for classification purposes like the dimension of the kernel or the rank.

The permutation automorphism group gives a lot of information of the code. It can help to

establish metrical properties, like the weight distribution, or it can be useful in some other

practical goals like in the decoding algorithms.

In the literature, we can find several studies of the permutation automorphism groups

for some known binary codes. The permutation automorphism group of Z2Z4-linear ex-

tended 1-perfect codes, which include the Z4-linear extended 1-perfect codes, was stud-

ied in [Kro11]. Moreover, the permutation automorphism group of the span of the same

codes was studied in [PR02]. In general, the permutation automorphism group of (non-

linear) binary 1-perfect codes has also been studied before, obtaining some partial results

[HPW09, Hed05, ASH05, FCPV11]. Note that all these results are focused on the per-

mutation automorphism groups of binary codes. Our work is focused on the permutation

automorphism group of a quaternary linear code despite the code could be seen as a binary

code under the Gray map.

Initially, we had considered to study the permutation automorphism group of all the

families of quaternary linear Reed-Muller codesRMs presented in Chapter 3. Quickly, we
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realized that it would be better to start with the RMs(1,m) and RMs(m − 2,m) codes.

Since the permutation automorphism group of the dual code is the same as the original

code, we studied both cases at once. Recall that RMs(1,m) are the quaternary linear

Hadamard codes and the RMs(m − 2,m) are the quaternary linear extended 1-perfect

codes. Both codes are described in Section 2.3.

In order to study the permutation automorphism group of the RMs(1,m), we have

computed them for some fixed s and m using an algorithm presented in [Feu09]. Contri-

bution (iv) is an extended abstract presented at the International Castle Meeting on Cod-

ing Theory and Applications in 2011. The main result was to establish the order of the

permutation automorphism groups for the Hadamard codes RMs(1,m) and their duals

RMs(m−2,m). In (iv), there is a sketch of the proof for the order of that group. Looking

for a characterization of the PAut(RMs(1,m)) we obtained a classification of its code-

words by computing the orbits of their action onRMs(1,m).

Finally, in contribution (v), the results about the order of the permutation automor-

phism group of the quaternary linear Hadamard codes are proved. Moreover, the groups

are completely characterized by giving a method to describe the generators of the group.

Theorem 14 and Corollary 15 give the order of these groups, and Table 4.2 shows some

examples.

Theorem 14 Let Hs,m be the quaternary linear Hadamard code of length n = 2m−1,

where m ≥ 1 and 0 ≤ s ≤ bm−1
2
c. The order of the permutation automorphism group

Ps,m = PAut(Hs,m) is

(i) |P0,1| = 1;

(ii) |Ps,m| = |Ps−1,m−2| · 4s−1 · (22s+2 − 2s+2), if m = 2s+ 1, s ≥ 1;

(iii) |Ps,m| = |Ps,m−1| · 2m−s−2 · (2m−s − 2s+1), if m > 2s+ 1, s ≥ 0.

Corollary 15 Let Hs,m be the quaternary linear Hadamard code of length n = 2m−1,

where m ≥ 1 and 0 ≤ s ≤ bm−1
2
c. Let Es,m = H⊥s,m be its quaternary dual code, which is

a quaternary linear extended 1-perfect code. Then, PAut(Hs,m) = PAut(Es,m).
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Table 4.2: Order of Ps,m = PAut(Hs,m) for 1 ≤ m ≤ 8.
HHHHHs

m
1 2 3 4 5 6 7 8

0 1 2 23 · 3 26 · 3 · 7 210 · 3 · 7 · 15 . . . . . . . . .
1 23 26 210 · 3 215 · 3 · 7 221 · 3 · 7 · 15 . . .
2 29 · 3 214 · 3 220 · 32 227 · 32 · 7
3 218 · 3 · 7 225 · 3 · 7

4.3 MAGMA implementation

MAGMA is a software package designed to solve computationally hard problems in algebra,

number theory, geometry and combinatorics. Currently, it supports the basic facilities for

linear codes over integer residue rings and Galois rings (see [CB94]), including additional

functionality for the special case of codes over Z4, or equivalently quaternary linear codes.

New functions that expand the current functionality for codes over Z4 have been devel-

oped as a contribution of this dissertation. Since the MAGMA version 2.15 − 15, version

1.2 of this package is included by default and it is not necessary to be installed. However,

the latest version 1.4 can be downloaded from http://www.ccg.uab.cat as well as

its reference manual [PPV12b].

The functions included in the developed package expand the current functionality for

codes over Z4 in MAGMA. Specifically, there are functions which give new constructions

for some families (RMs, LRM) of codes over Z4 and constructions to obtain new codes

over Z4 from given codes over Z4 (Chapter 3). Moreover, efficient functions for computing

the rank and dimension of the kernel of any code over Z4 are also included, as well as

general functions to compute the coset leaders for a subcode in a code over Z4. Finally,

there are also functions to compute the permutation automorphism group for Hadamard

and extended 1-perfect codes over Z4, and their cardinal.
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Chapter 5

Conclusion

5.1 Summary

Coding theory was introduced in [Sha48] in order to provide reliability in communications.

The discipline was born with the aim to solve an engineering problem using an important

mathematical background. Sometimes it is difficult to know if you are doing coding theory

or pathological mathematics. The study of the apparently useless mathematical objects is

more than enough to make me happy. Moreover, when you ask for the “utility” concept in

the research context, it becomes fuzzy. I am sure that the study of the automorphism group

of some combinatorial objects will not change the world, but it has changed me. And I

think that it was the most important goal of the PhD.

This dissertation was developed as a compendium of publications. That means that

other people, who are experts in this area, found interesting the presented results. This

system is a good metric for “utility”. Maybe it is not the best since, a priori, lots of experts

can be wrong about what is interesting or not. However, the learning process has not

finished with the PhD and thus, all together we will improve this “utility” metric.

The results presented in this dissertation are all included in the scope of quaternary

linear Reed-Muller codesRMs. We can separate them in three blocks.

First of all, we established the dimension of the kernel for every code RMs(r,m),

where m ≥ 1, r ∈ {0, . . . ,m} and s ∈ {0, . . . , bm−1
2
c}, included in the RMs families.

We also studied the rank of RMs(2,m) and RMs(m− 3,m) codes. Using the results of

37
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the dimension of the kernel, the corresponding Z4-linear codes to the RMs families were

classified up to code equivalence. These results can be found in [PPV08, PPV09, PPV11a].

The second part is about the permutation automorphism group of quaternary linear

Hadamard codes and quaternary linear extended 1-perfect codes. These codes are included

in theRMs families. They are theRMs(1,m) andRMs(m− 2,m) codes, respectively.

Actually, we established the order and the generators of their permutation automorphism

groups. We also studied the structure of such codes, since we classified their codewords

into orbits on the action of its permutation automorphism group. These contributions can

be found in [PPV11b, PPV12a].

Finally, we implemented a package, which is included by default in MAGMA software.

This package gives a collection of functions to work with quaternary linear codes. We

implemented functions to construct the RMs families as well as other quaternary linear

Reed-Muller families like LRM. Moreover, there are efficient functions to compute the

rank and the kernel of a quaternary code. You can also find functions to compute the

permutation automorphism group for quaternary Hadamard and extended 1-perfect codes,

and their cardinal.

5.2 Future Research

In this section, we point out some open problems that derive from this dissertation and

deserve further investigation.

First of all, it would be interesting to give a classification of the families of Z2Z4-

linear Reed-Muller codes introduced in [PRR09] by computing the rank or the dimension

of the kernel, just as it was done in this dissertation for the Z4-linear Reed-Muller codes.

Also related to these families of Z2Z4-linear Reed-Muller codes, it would be interesting to

develop a MAGMA package providing the tools to construct them.

Another open problem is to complete the permutation automorphism group of all codes

in the RMs families. It does not seem easy to solve. To establish the group for the

Hadamard case, we used the highly regular structure of the code. The same technique

could be very painful for the general case. Moreover, the studied permutation automor-

phism group could be extended to the monomial automorphism group. Remember that the
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PAut(C) is a subgroup of MAut(C). Finally, it could be interesting to study the relation

between the MAut(C) and PAut(φ(C)).
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Abstract. Recently, new families of quaternary linear Reed-Muller
codes such that, after the Gray map, the corresponding Z4-linear codes
have the same parameters and properties as the codes in the usual binary
linear Reed-Muller family have been introduced. A structural invariant,
the kernel dimension, for binary codes can be used to classify these Z4-
linear codes. The kernel dimension for these Z4-linear codes is established
generalizing the known results about the kernel dimension for Z4-linear
Hadamard and Z4-linear extended 1-perfect codes.

Keywords: Kernel dimension, quaternary codes, Reed-Muller codes,
Z4-linear codes.

1 Introduction

Let Z2 and Z4 be the ring of integers modulo 2 and modulo 4, respectively.
Let Zn

2 be the set of all binary vectors of length n and let Zn
4 be the set of

all quaternary vectors of length n. Any nonempty subset C of Zn
2 is a binary

code and a subgroup of Zn
2 is called a binary linear code or a Z2-linear code.

Equivalently, any nonempty subset C of Zn
4 is a quaternary code and a subgroup

of Zn
4 is called a quaternary linear code.

The Hamming distance dH(u, v) between two vectors u, v ∈ Zn
2 is the number

of coordinates in which u and v differ. The Hamming weight of a vector u ∈ Zn
2 ,

denoted by wH(u), is the number of nonzero coordinates of u. The minimum
Hamming distance of a binary code C is the minimum value of dH(u, v) for
u, v ∈ C satisfying u �= v. The minimum Hamming weight of a binary code C,
denoted by wmin(C), is the minimum value of wH(u), for u ∈ C \ {0}.

We define the Lee weights over the elements in Z4 as: wL(0) = 0, wL(1) =
wL(3) = 1, wL(2) = 2. The Lee weight of a vector u ∈ Zn

4 , denoted by wL(u), is
the addition of the weights of its coordinates, whereas the Lee distance dL(u, v)
between two vectors u, v ∈ Zn

4 is dL(u, v) = wL(u − v). The minimum Lee
distance of a quaternary code C is the minimum value of dL(u, v) for u, v ∈ C
satisfying u �= v. The minimum Lee weight of a quaternary code C, denoted by
wmin(C), is the minimum value of wL(0, u), for u ∈ C \ {0}.

� This work was supported in part by the Spanish MEC and the European FEDER
under Grant MTM2006-03250.
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The Gray map, φ : Zn
4 −→ Z2n

2 given by φ(v1, . . . , vn) = (ϕ(v1), . . . , ϕ(vn))
where ϕ(0) = (0, 0), ϕ(1) = (0, 1), ϕ(2) = (1, 1), ϕ(3) = (1, 0), is an isome-
try which transforms Lee distances defined in a quaternary code C over Zn

4 to
Hamming distances defined in the corresponding binary code C = φ(C). There-
fore, wmin(C) = wmin(C). Note that the binary length of the binary code C is
N = 2n.

Let C be a quaternary linear code. Since C is a subgroup of Zn
4 , it is isomorphic

to an abelian structure Zγ
2 × Zδ

4. Therefore, C is of type 2γ4δ as a group, it has
|C| = 2γ+2δ codewords and 2γ+δ codewords of order two. Moreover, the binary
image C = φ(C) of any quaternary linear code C of length n and type 2γ4δ is
called a Z4-linear code of binary length N = 2n and type 2γ4δ.

Two binary codes C1 and C2 of length n are said to be isomorphic if there is
a coordinate permutation π such that C2 = {π(c) : c ∈ C1}. They are said to
be equivalent if there is a vector a ∈ Zn

2 and a coordinate permutation π such
that C2 = {a+π(c) : c ∈ C1} [14]. Two quaternary linear codes C1 and C2 both
of length n and type 2γ4δ are said to be monomially equivalent, if one can be
obtained from the other by permuting the coordinates and (if necessary) chang-
ing the signs of certain coordinates. They are said to be permutation equivalent
if they differ only by a permutation of coordinates [12]. Note that if two quater-
nary linear codes C1 and C2 are monomially equivalent, then the corresponding
Z4-linear codes C1 = φ(C1) and C2 = φ(C2) are isomorphic.

Two structural invariants for binary codes are the rank and dimension of the
kernel. The rank of a binary code C, denoted by rC , is simply the dimension
of 〈C〉, which is the linear span of the codewords of C. The kernel of a binary
code C, denoted by K(C), is the set of vectors that leave C invariant under
translation, i.e. K(C) = {x ∈ Zn

2 : C + x = C}. If C contains the all-zero
vector, then K(C) is a binary linear subcode of C. In general, C can be written
as the union of cosets of K(C), and K(C) is the largest such linear code for
which this is true [1]. The dimension of the kernel of C will be denoted by kC .

These two invariants do not give a full classification of binary codes, since
two nonequivalent binary codes could have the same rank and dimension of the
kernel. In spite of that, they can help in classification, since if two binary codes
have different ranks or dimensions of the kernel, they are nonequivalent.

In [10], Hammons et al. showed that several families of binary codes are Z4-
linear. In particular, they considered the binary linear Reed-Muller family of
codes, denoted by RM , and proved that the binary linear rth-order Reed-Muller
code RM(r, m) of length 2m is Z4-linear for r = 0, 1, 2, m − 1, m and is not Z4-
linear for r = m − 2 (m ≥ 5). In a subsequent work [11], Hou et al. proved that
RM(r, m) is not Z4-linear for 3 ≤ r ≤ m − 2 (m ≥ 5).

It is well-known that an easy way to built the binary linear Reed-Muller family
of codes RM is using the Plotkin construction [14]. In [16],[17], new quaternary
Plotkin constructions were introduced to build new families of quaternary linear
Reed-Muller codes, denoted by RMs. The quaternary linear Reed-Muller codes
RMs(r, m) of length 2m−1, for m ≥ 1, 0 ≤ r ≤ m and 0 ≤ s ≤ 	m−1

2 
, in
these new families satisfy that the corresponding Z4-linear codes have the same
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parameters and properties (length, dimension, minimum distance, inclusion and
duality relationship) as the binary linear codes in the well-known RM family.
Contrary to the binary linear case, where there is only one family, in the qua-
ternary case there are 	m+1

2 
 families for each value of m. These families will be
distinguished using subindexes s from the set {0, . . . , 	m−1

2 
}.
The dimension of the kernel and rank have been studied for some fami-

lies of Z4-linear codes [2],[5],[6],[13],[15]. In the RM family, the RM(1, m) and
RM(m−2, m) binary codes are a linear Hadamard and extended 1-perfect code,
respectively. Recall that a Hadamard code of length n = 2m is a binary code with
2n codewords and minimum Hamming distance n/2, and an extended 1-perfect
code of length n = 2m is a binary code with 2n−m codewords and minimum
Hamming distance 4. Equivalently, in the RMs families, the corresponding Z4-
linear code of any RMs(1, m) and RMs(m−2, m) is a Hadamard and extended
1-perfect code, respectively [16],[17]. For the corresponding Z4-linear codes of
RMs(1, m) and RMs(m − 2, m), the rank and kernel dimension were studied
and computed in [6],[13],[15]. Specifically,

kH =

{
γ + δ + 1 if s ≥ 2
γ + 2δ if s = 0, 1

and kP =

⎧
⎨
⎩

γ̄ + δ̄ + 1 if s ≥ 2
γ̄ + δ̄ + 2 if s = 1
γ̄ + δ̄ + m if s = 0.

, (1)

where H = φ(RMs(1, m)) of type 2γ4δ and P = φ(RMs(m − 2, m)) of type
2γ̄4δ̄.

The aim of this paper is the study of the dimension of the kernel for the
quaternary linear Reed-Muller families of codes RMs, generalizing the known
results about the kernel dimension for the RMs(1, m) and RMs(m−2, m) codes.
The paper is organized as follows. In Section 2, we recall some properties related
to quaternary linear codes and the kernel of these codes. Moreover, we describe
the construction of the RMs families of codes. In Section 3, we establish the
dimension of the kernel for all codes in the RMs family with s = 0. In Section 4,
we give the main results about the kernel dimension for all the RMs families.
Finally, the conclusions are given in Section 5.

Magma is a software package designed to solve computationally hard prob-
lems in algebra, number theory, geometry and combinatorics. Currently it sup-
ports the basic facilities for linear codes over integer residue rings and Galois
rings (see [7]), including additional functionality for the special case of codes
over Z4, or equivalently quaternary linear codes. New functions that expand the
current functionality for codes over Z4 have been developed by the authors as a
new package. Specifically, these functions allow to construct the RMs families
and some Plotkin constructions for quaternary linear codes. Moreover, efficient
functions for computing the rank and dimension of the kernel of any quaternary
linear code are included. A beta version of this new package and the manual
with the description of all functions can be downloaded from the web page
http://www.ccg.uab.cat.
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2 Preliminaries

2.1 Quaternary Linear Codes

Let C be a quaternary linear code of length n and type 2γ4δ. Although C is not
a free module, every codeword is uniquely expressible in the form

γ∑

i=1

λiui +
δ∑

j=1

μjvj ,

where λi ∈ Z2 for 1 ≤ i ≤ γ, μj ∈ Z4 for 1 ≤ j ≤ δ and ui, vj are vectors in Zn
4

of order two and four, respectively. The vectors ui, vj give us a generator matrix
G of size (γ + δ) × n for the code C. Moreover, G will also be used to denote the
set of all vectors ui, vj .

In [10], it was shown that any quaternary linear code of type 2γ4δ is permu-
tation equivalent to a quaternary linear code with a canonical generator matrix
of the form

(
2T 2Iγ 0
S R Iδ

)
,

where R, T are matrices over Z2 of size δ × γ and γ × (n − γ − δ), respectively;
and S is a matrix over Z4 of size δ × (n − γ − δ).

The concepts of duality for quaternary linear codes were also studied in [10],
where the inner product for any two vectors u, v ∈ Zn

4 is defined as

u · v =
n∑

i=1

uivi ∈ Z4.

Then, the dual code of C, denoted by C⊥, is defined in the standard way

C⊥ = {v ∈ Zn
4 : u · v = 0 for all u ∈ C}.

The corresponding binary code φ(C⊥) is denoted by C⊥ and called the Z4-dual
code of C. Moreover, the dual code C⊥, which is also a quaternary linear code,
is of type 2γ4n−γ−δ.

The all-zero and all-one vector will be denoted by 0 and 1, respectively. It
will be clear by the context whether we refer to binary vectors or quaternary
vectors.

Let C be a quaternary linear code and let C = φ(C) be the corresponding
Z4-linear code with kernel K(C). The kernel of C, denoted by K(C), is defined as
the inverse Gray map image of K(C), that is K(C) = φ−1(K(C)). Furthermore,
the dimension of the kernel of C is defined as the dimension of the kernel of
C = φ(C), and also denoted by kC .

Let u ∗ v denote the component-wise product for any u, v ∈ Zn
4 .

Lemma 1 ([8],[9]). Let C be a quaternary linear code. Then,

K(C) = {u : u ∈ C and 2u ∗ v ∈ C, ∀v ∈ C}.
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Note that if G is a generator matrix of a quaternary linear code C, then u ∈ K(C)
if and only if u ∈ C and 2u ∗ v ∈ C for all v ∈ G. Moreover, by Lemma 1, all
codewords of order two in C belong to K(C). It is also clear that if the vector 1
belongs to C, then it is also in K(C). Finally, note that K(C) is a linear subcode
of C [8],[9].

2.2 Quaternary Linear Reed-Muller Codes

Recall that a binary linear rth-order Reed-Muller code RM(r, m) with 0 ≤ r ≤
m and m ≥ 2 can be described using the Plotkin construction as follows [14]:

RM(r, m) = {(u|u + v) : u ∈ RM(r, m − 1), v ∈ RM(r − 1, m − 1)},

where RM(0, m) is the repetition code {0,1}, RM(m, m) is the universe code,
and “|” denotes concatenation. For m = 1, there are only two codes: the repe-
tition code RM(0, 1) and the universe code RM(1, 1). This RM family has the
parameters and properties quoted in the following proposition.

Proposition 2 ([14]). A binary linear rth-order Reed-Muller code RM(r, m)
with m ≥ 1 and 0 ≤ r ≤ m has the following parameters and properties:

1. the length is n = 2m;
2. the minimum Hamming distance is d = 2m−r;

3. the dimension is k =

r∑

i=0

(
m

i

)
;

4. the code RM(r − 1, m) is a subcode of RM(r, m) for 0 < r ≤ m;
5. the code RM(r, m) is the dual code of RM(m − 1 − r, m) for 0 ≤ r < m.

In the recent literature [2],[3],[10],[18],[19] several families of quaternary linear
codes have been proposed and studied trying to generalize the RM family. How-
ever, when the corresponding Z4-linear codes are taken, they do not satisfy
all the properties quoted in Proposition 2. In [16],[17], new quaternary linear
Reed-Muller families, RMs, such that the corresponding Z4-linear codes have
the parameters and properties described in Proposition 2, were proposed. The
following two Plotkin constructions are necessary to generate these new RMs

families.

Definition 3 (Plotkin Construction). Let A and B be two quaternary linear
codes of length n, types 2γA4δA and 2γB4δB , and minimum distances dA and
dB, respectively. A new quaternary linear code PC(A, B) is defined as

PC(A, B) = {(u|u + v) : u ∈ A, v ∈ B}.

It is easy to see that if GA and GB are generator matrices of A and B, respectively,
then the matrix

GPC =

(
GA GA
0 GB

)

is a generator matrix of the code PC(A, B). Moreover, the code PC(A, B) is of
length 2n, type 2γA+γB4δA+δB , and minimum distance d = min{2dA, dB} [16],[17].
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Definition 4 (BQ-Plotkin Construction). Let A, B, and C be three quater-
nary linear codes of length n; types 2γA4δA , 2γB4δB , and 2γC4δC ; and minimum
distances dA, dB, and dC, respectively. Let GA, GB, and GC be generator matrices
of the codes A, B, and C, respectively. A new code BQ(A, B, C) is defined as the
quaternary linear code generated by

GBQ =

⎛
⎜⎜⎝

GA GA GA GA
0 G′

B 2G′
B 3G′

B
0 0 ĜB ĜB
0 0 0 GC

⎞
⎟⎟⎠ ,

where G′
B is the matrix obtained from GB after switching twos by ones in their γB

rows of order two, and ĜB is the matrix obtained from GB after removing their
γB rows of order two.

The code BQ(A, B, C) is of length 4n, type 2γA+γC 4δA+γB+2δB+δC , and minimum
distance d = min{4dA, 2dB, dC} [16],[17].

Now, the quaternary linear Reed-Muller codes RMs(r, m) of length 2m−1,
for m ≥ 1, 0 ≤ r ≤ m, and 0 ≤ s ≤ 	m−1

2 
, will be defined. For the recursive
construction it will be convenient to define them also for r < 0 and r > m. We
begin by considering the trivial cases. The code RMs(r, m) with r < 0 is defined
as the zero code. The code RMs(0, m) is defined as the repetition code with
only the all-zero and all-two vectors. The code RMs(r, m) with r ≥ m is defined
as the whole space Zm−1

4 . For m = 1, there is only one family with s = 0, and
in this family there are only the zero, repetition and universe codes for r < 0,
r = 0 and r ≥ 1, respectively. In this case, the generator matrix of RM0(0, 1) is
G0(0,1) =

(
2
)

and the generator matrix of RM0(1, 1) is G0(1,1) =
(
1
)
.

For any m ≥ 2, given RMs(r, m − 1) and RMs(r − 1, m − 1) codes, where
0 ≤ s ≤ 	m−2

2 
, the RMs(r, m) code can be constructed in a recursive way
using the Plotkin construction given by Definition 3 as follows:

RMs(r, m) = PC(RMs(r, m − 1), RMs(r − 1, m − 1)).

For example, for m = 2, the generator matrices of RM0(r, 2), 0 ≤ r ≤ 2, are
the following:

G0(0,2) =
(
2 2

)
; G0(1,2) =

(
0 2
1 1

)
; G0(2,2) =

(
1 0
0 1

)
.

Note that when m is odd, the RMs family with s = m−1
2 can not be generated

using the Plotkin construction. In this case, for any m ≥ 3, m odd and s = m−1
2 ,

given RMs−1(r, m − 2), RMs−1(r − 1, m − 2) and RMs−1(r − 2, m − 2), the
RMs(r, m) code can be constructed using the BQ-Plotkin construction given
by Definition 4 as follows:

RMs(r, m) = BQ(RMs−1(r, m−2), RMs−1(r−1, m−2), RMs−1(r−2, m−2)).

For example, for m = 3, there are two families. The RM0 family can be gen-
erated using the Plotkin construction. On the other hand, the RM1 family has
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to be generated using the BQ-Plotkin construction. The generator matrices of
RM1(r, 3), 0 ≤ r ≤ 3, are the following: G1(0,3) =

(
2 2 2 2

)
;

G1(1,3) =

(
1 1 1 1
0 1 2 3

)
; G1(2,3) =

⎛
⎜⎜⎝

1 1 1 1
0 1 2 3
0 0 1 1
0 0 0 2

⎞
⎟⎟⎠ ; G1(3,3) =

⎛
⎜⎜⎝

1 1 1 1
0 1 2 3
0 0 1 1
0 0 0 1

⎞
⎟⎟⎠ .

Table 1 shows the type 2γ4δ of all these RMs(r, m) codes for m ≤ 7.
The following proposition summarizes the parameters and properties of these

RMs families of codes.

Proposition 5 ([16],[17]). A quaternary linear Reed-Muller code RMs(r, m),
with m ≥ 1, 0 ≤ r ≤ m, and 0 ≤ s ≤ 	m−1

2 
, has the following parameters and
properties:

1. the length is n = 2m−1;
2. the minimum Lee distance is d = 2m−r;

3. the number of codewords is 2k, where k =
r∑

i=0

(
m

i

)
;

4. the code RMs(r − 1, m) is a subcode of RMs(r, m) for 0 ≤ r ≤ m;
5. the codes RMs(1, m) and RMs(m−2, m), after the Gray map, are Z4-linear

Hadamard and Z4-linear extended perfect codes, respectively;
6. the code RMs(r, m) is the dual code of RMs(m−1−r, m) for −1 ≤ r ≤ m.

In the next two sections, for all these codes RMs(r, m) we will establish the
dimension of the kernel, which will be denoted by ks(r,m) instead of kRMs(r,m).

3 Kernel Dimensions for the RMs Family with s = 0

In this section, we will compute the dimension of the kernel for the quaternary
linear Reed-Muller codes in the RMs family with s = 0. As we have shown in
Subsection 2.2, these codes can be constructed using the Plotkin construction.

Let C be a quaternary linear code. The code 2C is obtained from C by multi-
plying by two all codewords of C. Note that if G is a generator matrix of C, then
2G is a generator matrix of 2C.

Lemma 6. For all m ≥ 1 and r ∈ {0, . . . , m−1}, 2RM0(r+1, m) ⊆ RM0(r, m).

Proof. We proceed by induction. For m = 1, there are the zero, repetition and
universe codes for r < 0, r = 0, and r > 0, respectively. The lemma is true for
these codes.

For m ≥ 2, assume that the result is true. Let Gr−1,m−1, Gr,m−1 and Gr+1,m−1

be generator matrices of RM0(r−1, m−1), RM0(r, m−1) and RM0(r+1, m−
1), respectively. Using the Plotkin construction given by Definition 3 we obtain
two new codes RM0(r, m) and RM0(r + 1, m) with generator matrices

Gr,m =

(
Gr,m−1 Gr,m−1

0 Gr−1,m−1

)
, Gr+1,m =

(
Gr+1,m−1 Gr+1,m−1

0 Gr,m−1

)
,
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respectively. Since 2RM0(r + 1, m − 1) ⊆ RM0(r, m − 1), the submatrix
2(Gr+1,m−1 Gr+1,m−1) generates a code contained in the code generated by the
submatrix (Gr,m−1 Gr,m−1). The same argument can be used for the submatri-
ces (0 Gr,m−1) and (0 Gr−1,m−1). Thus the code 2RM0(r + 1, m) generated
by 2Gr+1,m is contained in the code RM0(r, m) generated by Gr,m. ��

Let Wm−1 be the set of order four vectors {wm−1
1 , . . . , wm−1

m } over Z2m−1

4 defined
as follows:

wm−1
1 = 12m−1

= 1,

wm−1
i = (02m−i |12m−i

)2
i−2

, for i ∈ {2, . . . , m}.

Note that, for i ∈ {2, . . . , m − 1}, we have that (wm−2
i |wm−2

i ) = wm−1
i+1 .

By Proposition 5, since the corresponding Z4-linear code of any RMs(1, m)
is a Hadamard code, 1 ∈ RMs(1, m) [13]. Moreover, for all r ≥ 1, the vector
1 ∈ RMs(r, m) by the inclusion property, and also belongs to the kernel of
RMs(r, m) by Lemma 1.

Lemma 7. For all m ≥ 2 and r ∈ {2, . . . , m}, Wm−1 is a subset of RM0(r, m).

Proof. It is clear that wm−1
1 = 1 ∈ RM0(r, m) for r ≥ 1 and 0 ∈ RM0(r, m)

for r ≥ 0. Hence, for m = 1, W 0 = {1} is a subset of RM0(1, 1). For m ≥ 2, the
subsequent RM0(r, m) codes are obtained using the Plotkin construction given
by Definition 3 as follows:

RM0(r, m) = PC(RM0(r, m − 1), RM0(r − 1, m − 1)).

We proceed by induction on m. For m = 2, we have the set W 1 = {w1
1, w

1
2}

and the lemma is true, since RM0(r, 2) is the universe code for r ≥ 2.
For m ≥ 3, since 0 ∈ RM0(r, m−1) and 1 ∈ RM0(r−1, m−1) for r ≥ 2, then

(0|0+1) = wm−1
2 ∈ RM0(r, m) for r ≥ 2. In general, if x ∈ RM0(r, m−1), then

(x|x + 0) = (x|x) ∈ RM0(r, m). Since wm−2
i ∈ RM0(r, m − 1), for r ≥ 2 and

2 ≤ i ≤ m − 1, it is clear that (wm−2
i |wm−2

i ) = wm−1
i+1 ∈ RM0(r, m). Therefore,

wm−1
i ∈ RM0(r, m) for r ≥ 2 and 1 ≤ i ≤ m. ��

By Lemma 7, for all m ≥ 2 and r ∈ {2, . . . , m}, there is a generator matrix

G0(r,m) =

(
Gγ

Gδ

)
of the code RM0(r, m) of type 2γ4δ, such that Wm−1 is a

submatrix of Gδ, where Gγ and Gδ are the γ and δ generators of order two and
four, respectively. In Proposition 10, for all m ≥ 4 and r ∈ {2, . . . , m − 2}, we
will show that the kernel of RM0(r, m) is generated by the matrix

⎛
⎝

Gγ

2Gδ

Wm−1

⎞
⎠ . (2)
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Lemma 8. Let C1 and C2 be two quaternary linear codes of length n with gen-
erator matrices G1 and G2, respectively, such that C2 ⊆ C1. Let C = PC(C1, C2) of
length 2n. If x ∈ C1 and y ∈ C2, then (x|x + y) ∈ K(C) if and only if x ∈ K(C1),
2y ∗ u ∈ C2, and 2x ∗ v ∈ C2, for all u ∈ G1 and v ∈ G2.

Proof. The codeword (x|x + y) ∈ K(C) if and only if 2(x|x + y) ∗ (u|u) ∈ C and
2(x|x + y) ∗ (0|v) ∈ C for all u, v in G1, G2, respectively. That means (2x ∗ u|2x ∗
u + 2y ∗ u) ∈ C, ∀u ∈ G1, and (0|2x ∗ v + 2y ∗ v) ∈ C, ∀v ∈ G2. That is, x ∈ K(C1)
and 2y ∗ u ∈ C2, ∀u ∈ G1, and 2x ∗ v + 2y ∗ v ∈ C2, ∀v ∈ G2. Note that since
C2 ⊆ C1, the condition 2y ∗ u ∈ C2 ∀u ∈ G1 implies that 2y ∗ v ∈ C2 ∀v ∈ G2.
Therefore, 2x ∗ v + 2y ∗ v ∈ C2 ∀v ∈ G2 is simplified to 2x ∗ v ∈ C2 ∀v ∈ G2. ��
Note that if 2y ∗u ∈ C2 for all u ∈ G1, then y ∈ K(C2). Furthermore, x could not
belong to C2, but if x ∈ C2 then x ∈ K(C2).

Proposition 9. For all m ≥ 1 and r ∈ {0, 1, 2, m − 1, m}, the corresponding
Z4-linear code of RM0(r, m) is a binary linear code.

Proof. For r = 0, r = m − 1 and r = m, the corresponding Z4-linear codes of
RM0(r, m) are the repetition, the even weight and the universe codes, respec-
tively, which are binary linear codes. For r = 1, the corresponding Z4-linear code
of RM0(r, m) is the binary linear Hadamard code [16],[17].

Finally, for r = 2, the RM0(2, m) code is constructed as PC(RM0(2, m −
1), RM0(1, m − 1)). We proceed by induction on m. For m = 2, the code
RM0(2, 2) is the universe code. For m ≥ 3, we can assume that φ(RM0(2, m −
1)) and φ(RM0(1, m − 1)) are binary linear codes. The generator matrix of
RM0(2, m) only have vectors of the form (x|x) and (0|y) for all x ∈ G0(2,m−1),
y ∈ G0(1,m−1). By Lemmas 6 and 8, since x ∈ K(RM0(2, m − 1)) and the only
vector of order four in the generator matrix of RM0(1, m − 1)) is 1, the vector
(x|x) ∈ K(RM0(2, m)), ∀x ∈ G0(2,m−1). By Lemmas 6, 8 and the same argu-
ment, the vector (0|y) ∈ K(RM0(2, m)), ∀y ∈ G0(1,m−1). Thus all the vectors in
the generator matrix of RM0(2, m) belong to the kernel of RM0(2, m). There-
fore, the corresponding Z4-linear code of RM0(2, m) is a binary linear code. ��
Let A and B be two matrices. If B is a submatrix of A, then we will use A\B to
denote the matrix A without the rows of B. Recall that we will also use A and
B to denote the set of row vectors of A and B, respectively. Moreover, if B ⊆ A
then we will use A \ B to denote the set of row vectors in A which are not in B.

Proposition 10. For all m ≥ 4 and r ∈ {2, . . . , m−2}, the kernel of RM0(r, m)

of type 2γ4δ is the quaternary linear code generated by

⎛
⎝

Gγ

2Gδ

Wm−1

⎞
⎠, where Gγ and

Gδ are the γ and δ generators of order two and four of RM0(r, m), respectively.

Proof. For m = 4, there is only the code RM0(2, 4). By Proposition 9, the cor-
responding Z4-linear code of RM0(2, m) is a binary linear code. Since Wm−1 ⊆
RM0(2, m) and δ = m, the preposition is true for all the codes RM0(2, m).
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For m = 5, the code RM0(3, 5) is the first one under the Gray map, the
binary code is nonlinear. In this case, we can compute its kernel and see that

can be generated by

⎛
⎝

Gγ

2Gδ

W 4

⎞
⎠.

By Lemma 7, there is a generator matrix for any RM0(r, m) with r ≥ 2,
which can be written as follows:

⎛
⎜⎜⎝

Gγ

2Gδ

Gδ \ Wm−1

Wm−1

⎞
⎟⎟⎠ .

For m > 5, assume that the lemma is true for m − 1. Let C1 = RM0(r, m − 1)
and C2 = RM0(r − 1, m − 1) of types 2γ4δ and 2γ′

4δ′
, respectively. Let C =

RM0(r, m) = PC(C1, C2) be the new code with a generator matrix of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Gγ Gγ

2Gδ 2Gδ

Gδ \ Wm−2 Gδ \ Wm−2

Wm−2 Wm−2

0 Gγ′

0 2Gδ′

0 Gδ′ \ Wm−2

0 Wm−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The vectors of order two are always in the kernel. By Lemma 8, the vectors that
are not in the kernels of C1 and C2 can not be in the kernel of C. This excludes
the row vectors in (Gδ \Wm−2 | Gδ \Wm−2) and (0 | Gδ′ \Wm−2), and their linear
combinations with the kernel of C. Since Wm−2 ⊆ K(C1) and Wm−2 ⊆ K(C2),
the row vectors of the form (Wm−2 | Wm−2) are in K(C). For the vectors of
the form (0 | Wm−2), we have two cases. By Lemmas 6 and 8, (0|1) ∈ K(C).
On the other hand, the vectors wi ∈ Wm−2, 2 ≤ i ≤ m − 1, have weight 2m−3.
By Proposition 5, wmin(C) = wmin(C2) and 2wmin(C) = wmin(C1). For every
vector y in the space generated by Wm−2 \ 1, there is another vector of order
four, u ∈ G1, such that the weight of 2y ∗u is less than wmin(C). Thus y /∈ K(C).
Finally, (Wm−2 | Wm−2) ∪ (0|1) = Wm−1. ��

Note that the case r = 2 is included in both Propositions 9 and 10. That is, the
corresponding Z4-linear code of any RM0(2, m) is always a binary linear code
and RM0(2, m) can be generated by a matrix of the form (2).

Corollary 11. For all m ≥ 1 and 0 ≤ r ≤ m, the dimension of the kernel of
RM0(r, m) of type 2γ4δ is

k0(r,m) =

{
γ + 2δ if r ∈ {0, 1, m − 1, m}
γ + δ + m if r ∈ {2, . . . , m − 2}.
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Proof. Straightforward from Propositions 9 and 10. ��

Note that, the kernel, as a binary linear code, is generated by

⎛
⎝

φ(Gγ)
φ(2Gδ)

φ(Wm−1)

⎞
⎠ ,

where all these vectors are linear independent over Zm
2 .

4 Kernel Dimensions for the RMs Families

In this section, the general case when s > 0 is studied. We will establish the di-
mension of the kernel for any quaternary linear Reed-Muller code in these RMs

families. This invariant, the kernel dimension, will help us to the classification
of these codes.

As we have shown in Subsection 2.2, these quaternary linear Reed-Muller
codes RMs(r, m) can be obtained using the Plotkin construction, except when
m is odd and s = m−1

2 . In this case, they are obtained using the BQ-Plotkin
construction. Note that some of these codes could be constructed using any of
these two constructions.

Theorem 12. For all m ≥ 1, 0 ≤ r ≤ m, and 0 ≤ s ≤ 	m−1
2 
, the dimension

of the kernel of RMs(r, m) of type 2γ4δ is

1. ks(0,m) = 1, ks(m−1,m) = 2m − 1, ks(m,m) = 2m.
2. If s = 0,

k0(r,m) =

{
γ + 2δ if r = 1
γ + δ + m if r ∈ {2, . . . , m − 2}.

3. If s = 1, k1(r,m) = γ + δ + 2 for all r ∈ {1, 2, . . . , m − 2}.
4. If s ≥ 2, ks(r,m) = γ + δ + 1 for all r ∈ {1, 2, . . . , m − 2}, except the case

k2(2,5) = γ + δ + 2 = 11.

Proof. It is straightforward to see that ks(0,m) = 1, ks(m−1,m) = 2m − 1, and
ks(m,m) = 2m, because φ(RMs(0, m)), φ(RMs(m−1, m)), and φ(RMs(m, m))
are the repetition, the even weight, and the universe codes, respectively.

The case s = 0 is proved in Corollary 11. The cases s = 1 and s ≥ 2 can be
proved using similar arguments to that for the case s = 0. When s = 1 there are
only two generators of order four in the kernel of RM1(r, m), wm−1

1 = 1 and
wm−1

2 . When s ≥ 2 there is only one generator of order four wm−1
1 = 1 in the

kernel of RMs(r, m), except for the code RM2(2, 5). Since φ(RM2(2, 5)) and
φ(RM2(1, 5)) are equivalent k2(2,5) = 11 = γ + δ + 2. ��

Note that Theorem 12 includes the previous results about the kernel dimension
for Z4-linear Hadamard and Z4-linear extended 1-perfect codes [6],[13],[15] or
(1). Table 1 shows the type 2γ4δ and the dimension of the kernel of all these
RMs(r, m) codes for m ≤ 7.
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Table 1. Type 2γ4δ and kernel dimension ks(r,m) for all RMs(r,m) codes with m ≤ 7,
showing them in the form (γ, δ) ks(r,m)

m�
��s

r
0 1 2 3 4 5 6 7

1 0 (1,0) 1 (0,1) 2

2 0 (1,0) 1 (1,1) 3 (0,2) 4

3
0 (1,0) 1 (2,1) 4 (1,3) 7 (0,4) 8
1 (1,0) 1 (0,2) 4 (1,3) 7 (0,4) 8

4
0 (1,0) 1 (3,1) 5 (3,4) 11 (1,7) 15 (0,8) 16
1 (1,0) 1 (1,2) 5 (1,5) 8 (1,7) 15 (0,8) 16

5
0 (1,0) 1 (4,1) 6 (6,5) 16 (4,11) 20 (1,15) 31 (0,16) 32
1 (1,0) 1 (2,2) 6 (2,7) 11 (2,12) 16 (1,15) 31 (0,16) 32
2 (1,0) 1 (0,3) 4 (2,7) 11 (0,13) 14 (1,15) 31 (0,16) 32

6
0 (1,0) 1 (5,1) 7 (10,6) 22 (10,16) 32 (5,26) 37 (1,31) 63 (0,32) 64
1 (1,0) 1 (3,2) 7 (4,9) 15 (4,19) 25 (3,27) 32 (1,31) 63 (0,32) 64
2 (1,0) 1 (1,3) 5 (2,10) 13 (2,20) 23 (1,28) 30 (1,31) 63 (0,32) 64

7

0 (1,0) 1 (6,1) 8 (15,7) 29 (20,22) 49 (15,42) 64 (6,57) 70 (1,63) 127 (0,64) 128
1 (1,0) 1 (4,2) 8 (7,11) 20 (8,28) 38 (7,46) 55 (4,58) 64 (1,63) 127 (0,64) 128
2 (1,0) 1 (2,3) 6 (3,13) 17 (4,30) 35 (3,48) 52 (2,59) 62 (1,63) 127 (0,64) 128
3 (1,0) 1 (0,4) 5 (3,13) 17 (0,32) 33 (3,48) 52 (0,60) 61 (1,63) 127 (0,64) 128

The next theorem proves that there are at least 	m−1
2 
 nonequivalent binary

codes with the same parameters as the code RM(r, m).

Lemma 13. Given two codes RMs(r, m) and RMs′(r, m) of type 2γ4δ and
2γ′

4δ′
respectively, such that s < s′, we have that γ + δ > γ′ + δ′, except one

case: if m is odd, r even, s = m−3
2 , and s′ = m−1

2 , then γ + δ = γ′ + δ′.

Proof. When RMs(r, m) and RMs′(r, m) are obtained using the Plotkin con-
struction, it is easy to see that γ + δ > γ′ + δ′.

If m is odd and s′ = m−1
2 , the code RMs′(r, m) is obtained using the BQ-

Plotkin construction. Without loss of generality, we can assume that s = s′ − 1
and RMs(r, m) is obtained using the Plotkin construction. Using the recursive
definition of γ = γs(r,m), δ = δs(r,m), γ′ = γs′(r,m), and δ = δs′(r,m), we have that
γs(r,m) + δs(r,m) − γs′(r,m) − δs′(r,m) = γs′−1(r−1,m−2). Hence, if γs′−1(r−1,m−2) �=
0 then γs(r,m) + δs(r,m) > γs′(r,m) + δs′(r,m), and if γs′−1(r−1,m−2) = 0 then
γs(r,m) + δs(r,m) = γs′(r,m) + δs′(r,m), which is when r is even. ��

Theorem 14. For all m ≥ 4 and r = 1, there are at least 	m−1
2 
 nonequivalent

binary codes with the same parameters as the code RM(1, m).
For all m ≥ 4 and 2 ≤ r ≤ m − 2, there are at least 	m+1

2 
 nonequivalent
binary codes with the same parameters as the code RM(r, m), except when m
is odd, and r is even. In this case, there are at least m−1

2 nonequivalent binary
codes with the same parameters as the code RM(r, m).
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Proof. For r = 1, the result was proved in [13]. For 2 ≤ r ≤ m − 2, the proof is
consequence of Theorem 12 and Lemma 13. ��

5 Conclusions

In a recent paper [17], new families of quaternary linear codes, the RMs(r, m)
codes, are constructed in such a way that, after the Gray map, the Z4-linear
codes fulfill the same properties and fundamental characteristics as the binary
linear Reed-Muller codes. In this paper, a structural invariant for binary codes,
the kernel dimension, is used to classify these new families of codes. Using a
recursive construction, we give the generator matrices of the kernel and compute
the exact values of the kernel dimension for all the feasible values of s, r and m.
This invariant allows us to classify all the codes except when m is odd, m ≥ 5,
and r is even. In a further research we will also compute the rank, another
structural invariant for binary codes, and give a complete classification of these
families of codes.
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Abstract. Recently, new families of quaternary linear Reed-Muller codes
such that, after the Gray map, the corresponding Z4-linear codes have
the same parameters and properties as the codes in the usual binary lin-
ear Reed-Muller family have been introduced. A structural invariant, the
rank, for binary codes is used to classify some of these Z4-linear codes. The
rank is established generalizing the known results about the rank for Z4-
linear Hadamard and Z4-linear extended 1-perfect codes.

Keywords: Rank, quaternary codes, Reed-Muller codes, Z4-linear codes.

1 Introduction

Let Z2 and Z4 be the ring of integers modulo 2 and modulo 4, respectively. Let Zn
2

be the set of all binary vectors of length n and let Zn
4 be the set of all quaternary

vectors of length n. Any nonempty subset C of Zn
2 is a binary code and a

subgroup of Zn
2 is called a binary linear code or a Z2-linear code. Equivalently,

any nonempty subset C of Zn
4 is a quaternary code and a subgroup of Zn

4 is called
a quaternary linear code. Some authors also use the term “quaternary codes” to
refer to additive codes over GF (4) [1], but note that these are not the codes we
are considering in this paper.

The Hamming distance dH(u, v) between two vectors u, v ∈ Zn
2 is the number

of coordinates in which u and v differ. The Hamming weight of a vector u ∈ Zn
2 ,

denoted by wH(u), is the number of nonzero coordinates of u. The minimum
Hamming distance of a binary code C is the minimum value of dH(u, v) for
u, v ∈ C satisfying u �= v.

The Gray map, φ : Zn
4 −→ Z2n

2 given by φ(v1, . . . , vn) = (ϕ(v1), . . . , ϕ(vn))
where ϕ(0) = (0, 0), ϕ(1) = (0, 1), ϕ(2) = (1, 1), ϕ(3) = (1, 0), is an isometry
which transforms Lee distances over Zn

4 into Hamming distances over Z2n
2 .

Let C be a quaternary linear code. Since C is a subgroup of Zn
4 , it is isomorphic

to an abelian structure Zγ
2 × Zδ

4. Therefore, C is of type 2γ4δ as a group, it has
|C| = 2γ+2δ codewords and 2γ+δ codewords of order two. The binary image
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C = φ(C) of any quaternary linear code C of length n and type 2γ4δ is called a
Z4-linear code of binary length N = 2n and type 2γ4δ.

Two binary codes C1 and C2 of length n are said to be isomorphic if there is
a coordinate permutation π such that C2 = {π(c) : c ∈ C1}. They are said to
be equivalent if there is a vector a ∈ Zn

2 and a coordinate permutation π such
that C2 = {a+π(c) : c ∈ C1} [11]. Two quaternary linear codes C1 and C2 both
of length n and type 2γ4δ are said to be monomially equivalent, if one can be
obtained from the other by permuting the coordinates and (if necessary) chang-
ing the signs of certain coordinates. They are said to be permutation equivalent
if they differ only by a permutation of coordinates [9]. Note that if two quater-
nary linear codes C1 and C2 are monomially equivalent, then the corresponding
Z4-linear codes C1 = φ(C1) and C2 = φ(C2) are isomorphic.

Two structural invariants for binary codes are the rank and dimension of the
kernel. The rank of a binary code C, denoted by rC , is simply the dimension
of 〈C〉, which is the linear span of the codewords of C. The kernel of a binary
code C, denoted by K(C), is the set of vectors that leave C invariant under
translation, i.e. K(C) = {x ∈ Zn

2 : C + x = C}. If C contains the all-zero
vector, then K(C) is a binary linear subcode of C. The dimension of the kernel
of C will be denoted by kC . These two invariants do not give a full classification
of binary codes, since two nonisomorphic binary codes could have the same rank
and dimension of the kernel. In spite of that, they can help in classification,
since if two binary codes have different ranks or dimensions of the kernel, they
are nonisomorphic.

It is well-known that an easy way to built the binary linear Reed-Muller family
of codes, denoted by RM , is using the Plotkin construction [11]. In [14],[15], Pujol
et al. introduced new quaternary Plotkin constructions to build new families of
quaternary linear Reed-Muller codes, denoted by RMs. The quaternary linear
Reed-Muller codes RMs(r, m) of length 2m−1, for m ≥ 1, 0 ≤ r ≤ m and
0 ≤ s ≤ 	m−1

2 
, in these new families satisfy that the corresponding Z4-linear
codes have the same parameters and properties (length, dimension, minimum
distance, inclusion and duality relationship) as the binary linear codes in the well-
known RM family. In the binary case, there is only one family. In contrast, in the
quaternary case, for each m there are 	m+1

2 
 families, which will be distinguished
using subindexes s from the set {0, . . . , 	m−1

2 
}.
The dimension of the kernel and rank have been studied for some families of

Z4-linear codes [2], [4], [5], [10], [12]. In the RM family, the RM(1, m) and
RM(m − 2, m) binary codes are a linear Hadamard and extended 1-perfect
code, respectively. Recall that a Hadamard code of length n = 2m is a binary
code with 2n codewords and minimum Hamming distance n/2, and an extended
1-perfect code of length n = 2m is a binary code with 2n−m codewords and
minimum Hamming distance 4. Equivalently, in the RMs families, the corre-
sponding Z4-linear code of any RMs(1, m) and RMs(m − 2, m) is a Hadamard
and extended 1-perfect code, respectively [14],[15]. For the corresponding Z4-
linear codes of RMs(1, m) and RMs(m − 2, m), the rank were studied and
computed in [5],[10].
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Specifically,

rH =

{
γ + 2δ if s = 0, 1

γ + 2δ +
(
δ−1
2

)
if s ≥ 2

and (1)

rP = γ̄ + 2δ̄ + δ = 2m−1 + δ̄ (except rP = 11, if m = 4 and s = 0), where
H = φ(RMs(1, m)) of type 2γ4δ and P = φ(RMs(m − 2, m)) of type 2γ̄4δ̄.

The dimension of the kernel was computed for all RMs(r, m) codes in [13].
The aim of this paper is the study of the rank for these codes, generalizing
the known results about the rank for the RMs(r, m) codes with r ∈ {0, 1, m −
2, m − 1, m} [5],[10]. The paper is organized as follows. In Section 2, we recall
some properties related to quaternary linear codes and the rank of these codes.
Moreover, we describe the construction of the RMs families of codes. In Sec-
tion 3, we establish the rank for all codes in the RMs families with s ∈ {0, 1}.
Furthermore, we establish the rank for the RMs(r, m) codes with r ∈ {2, m−3}.
In Section 4, we show that the rank allows us to classify the RMs(r, m) codes
with r ∈ {2, m − 3}. Finally, the conclusions are given in Section 5.

2 Preliminaries

2.1 Quaternary Linear Codes

Let C be a quaternary linear code of length n and type 2γ4δ. Although C is not
a free module, every codeword is uniquely expressible in the form

γ∑

i=1

λiui +
δ∑

j=1

μjvj ,

where λi ∈ Z2 for 1 ≤ i ≤ γ, μj ∈ Z4 for 1 ≤ j ≤ δ and ui, vj are vectors in Zn
4

of order two and four, respectively. The vectors ui, vj give us a generator matrix
G of size (γ + δ) × n for the code C. In [8], it was shown that any quaternary
linear code of type 2γ4δ is permutation equivalent to a quaternary linear code
with a canonical generator matrix of the form

(
2T 2Iγ 0
S R Iδ

)
, (2)

where R, T are matrices over Z2 of size δ × γ and γ × (n − γ − δ), respectively;
and S is a matrix over Z4 of size δ × (n − γ − δ).

The concepts of duality for quaternary linear codes were also studied in [8],
where the inner product for any two vectors u, v ∈ Zn

4 is defined as u · v =∑n
i=1 uivi ∈ Z4. Then, the dual code of C, denoted by C⊥, is defined in the

standard way C⊥ = {v ∈ Zn
4 : u · v = 0 for all u ∈ C}. The corresponding binary

code φ(C⊥) is denoted by C⊥ and called the Z4-dual code of C = φ(C). Moreover,
the dual code C⊥, which is also a quaternary linear code, is of type 2γ4n−γ−δ.

Let u ∗ v denote the component-wise product for any u, v ∈ Zn
4 .

Lemma 1 ([6],[7]). Let C be a quaternary linear code of type 2γ4δ and let C =
φ(C) be the corresponding Z4-linear code. Let G be a generator matrix of C and let
{ui}γ

i=1 be the rows of order two and {vj}δ
j=0 the rows of order four in G. Then,

〈C〉 is generated by {φ(ui)}γ
i=1, {φ(vj), φ(2vj)}δ

j=1 and {φ(2vj ∗ vk)}1≤j<k≤δ .
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2.2 Quaternary Linear Reed-Muller Codes

Recall that a binary linear rth-order Reed-Muller code RM(r, m) with 0 ≤ r ≤
m and m ≥ 2 can be described using the Plotkin construction as follows [11]:

RM(r, m) = {(u|u + v) : u ∈ RM(r, m − 1), v ∈ RM(r − 1, m − 1)},

where RM(0, m) is the repetition code {0,1}, RM(m, m) is the universe code,
and ”|” denotes concatenation. For m = 1, there are only two codes: the repeti-
tion code RM(0, 1) and the universe code RM(1, 1). This RM family of codes

has length 2m, minimum distance 2m−r and dimension

r∑

i=0

(
m

i

)
. Moreover, the

code RM(r−1, m) is a subcode of RM(r, m) and the code RM(r, m) is the dual
code of RM(m − 1 − r, m) for 0 ≤ r < m.

In the recent literature [2],[3],[8],[16],[17] several families of quaternary linear
codes have been proposed and studied trying to generalize the RM family. How-
ever, when the corresponding Z4-linear codes are taken, they do not satisfy all
the same properties as the RM family. In [14],[15], new quaternary linear Reed-
Muller families, RMs, such that the corresponding Z4-linear codes have the
parameters and properties of RM family of codes, were proposed. The following
two constructions are necessary to generate these new RMs families.

Definition 2 (Plotkin Construction). Let A and B be two quaternary linear
codes of length n, types 2γA4δA and 2γB4δB , and minimum distances dA and
dB, respectively. A new quaternary linear code PC(A, B) is defined as

PC(A, B) = {(u|u + v) : u ∈ A, v ∈ B}.

It is easy to see that if GA and GB are generator matrices of A and B, respectively,
then the matrix

GPC =

(
GA GA
0 GB

)

is a generator matrix of the code PC(A, B). Moreover, the code PC(A, B) is of
length 2n, type 2γA+γB4δA+δB , and minimum distance d = min{2dA, dB} [14],[15].

Definition 3 (BQ-Plotkin Construction). Let A, B, and C be three quater-
nary linear codes of length n; types 2γA4δA , 2γB4δB , and 2γC4δC ; and minimum
distances dA, dB, and dC, respectively. Let GA, GB, and GC be generator matrices
of the codes A, B, and C, respectively. A new code BQ(A, B, C) is defined as the
quaternary linear code generated by

GBQ =

⎛
⎜⎜⎝

GA GA GA GA
0 G′

B 2G′
B 3G′

B
0 0 ĜB ĜB
0 0 0 GC

⎞
⎟⎟⎠ ,

where G′
B is the matrix obtained from GB after switching twos by ones in their γB

rows of order two, and ĜB is the matrix obtained from GB after removing their
γB rows of order two.
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The code BQ(A, B, C) is of length 4n, type 2γA+γC 4δA+γB+2δB+δC , and minimum
distance d = min{4dA, 2dB, dC} [14],[15].

Now, the quaternary linear Reed-Muller codes RMs(r, m) of length 2m−1,
for m ≥ 1, 0 ≤ r ≤ m, and 0 ≤ s ≤ 	m−1

2 
, will be defined. For the recursive
construction it will be convenient to define them also for r < 0 and r > m. We
begin by considering the trivial cases. The code RMs(r, m) with r < 0 is defined
as the zero code. The code RMs(0, m) is defined as the repetition code with
only the all-zero and all-two vectors. The code RMs(r, m) with r ≥ m is defined
as the whole space Zm−1

4 . For m = 1, there is only one family with s = 0, and
in this family there are only the zero, repetition and universe codes for r < 0,
r = 0 and r ≥ 1, respectively. In this case, the generator matrix of RM0(0, 1) is
G0(0,1) =

(
2
)

and the generator matrix of RM0(1, 1) is G0(1,1) =
(
1
)
.

For any m ≥ 2, given RMs(r, m − 1) and RMs(r − 1, m − 1) codes, where
0 ≤ s ≤ 	m−2

2 
, the RMs(r, m) code can be constructed in a recursive way
using the Plotkin construction given by Definition 2 as follows:

RMs(r, m) = PC(RMs(r, m − 1), RMs(r − 1, m − 1)).

For example, for m = 2, the generator matrices of RM0(r, 2), 0 ≤ r ≤ 2, are
the following:

G0(0,2) =
(
2 2

)
; G0(1,2) =

(
0 2
1 1

)
; G0(2,2) =

(
1 0
0 1

)
.

Note that when m is odd, the RMs family with s = m−1
2 can not be generated

using the Plotkin construction. In this case, for any m ≥ 3, m odd and s = m−1
2 ,

given RMs−1(r, m − 2), RMs−1(r − 1, m − 2) and RMs−1(r − 2, m − 2), the
RMs(r, m) code can be constructed using the BQ-Plotkin construction given
by Definition 3 as follows:

RMs(r, m) = BQ(RMs−1(r, m−2), RMs−1(r−1, m−2), RMs−1(r−2, m−2)).

For example, for m = 3, there are two families. The RM0 family can be gen-
erated using the Plotkin construction. On the other hand, the RM1 family has
to be generated using the BQ-Plotkin construction. The generator matrices of
RM1(r, 3), 0 ≤ r ≤ 3, are the following: G1(0,3) =

(
2 2 2 2

)
;

G1(1,3) =

(
1 1 1 1
0 1 2 3

)
; G1(2,3) =

⎛
⎜⎜⎝

1 1 1 1
0 1 2 3
0 0 1 1
0 0 0 2

⎞
⎟⎟⎠ ; G1(3,3) =

⎛
⎜⎜⎝

1 1 1 1
0 1 2 3
0 0 1 1
0 0 0 1

⎞
⎟⎟⎠ .

Table 1 shows the type 2γ4δ of all these RMs(r, m) codes for m ≤ 10.
The following proposition summarizes the parameters and properties of these

RMs families of codes.

Proposition 4 ([14],[15]). A quaternary linear Reed-Muller code RMs(r, m),
with m ≥ 1, 0 ≤ r ≤ m, and 0 ≤ s ≤ 	m−1

2 
, has the following parameters and
properties:
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1. the length is n = 2m−1;

2. the minimum distance is d = 2m−r;

3. the number of codewords is 2k, where k =

r∑

i=0

(
m

i

)
;

4. the code RMs(r − 1, m) is a subcode of RMs(r, m) for 0 ≤ r ≤ m;

5. the codes RMs(1, m) and RMs(m−2, m), after the Gray map, are Z4-linear
Hadamard and Z4-linear extended perfect codes, respectively;

6. the code RMs(r, m) is the dual code of RMs(m−1−r, m) for −1 ≤ r ≤ m.

3 Rank for Some Infinite Families of RMs(r, m) Codes

In this section, we will compute the rank for some infinite families of the qua-
ternary linear Reed-Muller codes RMs(r, m). The rank of RMs(r, m) will be
denoted by rs(r,m) instead of rRMs(r,m).

First of all, we will recall the result that gives us which of the RMs(r, m) codes
are binary liner codes after the Gray map. Note that if we have a quaternary
linear code of type 2γ4δ which is a binary linear code after the Gray map, we
can compute the rank as γ + 2δ [6],[7].

Proposition 5 ([13]). For all m ≥ 1, the corresponding Z4-linear code of the
RMs(r, m) code is a binary linear code if and only if

⎧
⎨
⎩

s = 0 and r ∈ {0, 1, 2, m − 1, m},
s = 1 and r ∈ {0, 1, m − 1, m},
s ≥ 2 and r ∈ {0, m − 1, m}.

Now, we will give an expression for the parameters γ and δ of a quaternary linear
Reed-Muller code RMs(r, m) of type 2γ4δ, depending on s, r and m.

Lemma 6. Let C be a quaternary linear Reed-Muller code RMs(r, m) of type
2γ4δ. Then, for s ≥ 0, m ≥ 2s + 1 and 0 ≤ r ≤ m,

γ =

� r
2 �∑

i=0

(
m − 2s − 1

r − 2i

)(
s

i

)
and δ =

1

2

r∑

i=0

(
m

i

)
− γ

2
.

The next proposition gives us an important result for these quaternary linear
Reed-Muller codes. In some cases, we obtain two codes with the same rank, but
different s. We will prove that these codes are equal. This proposition will be
used for the classification of some of the RMs(r, m) codes in Section 4, and it
will also be used to calculate the rank of these codes as exceptions.

Proposition 7. Given two codes RMs(r, m) and RMs−1(r, m) of type 2γ4δ

and 2γ′
4δ′

, respectively, such that m ≥ 3 is odd, r ≥ 2 is even, and s = m−1
2 ,

then RMs(r, m) = RMs−1(r, m).
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Proof. The generator matrix Gs−1(r,m) of RMs−1(r, m) is obtained using the
Plotkin construction from RMs−1(r −1, m−1) and RMs−1(r, m−1). Further-
more, the generator matrices of RMs−1(r −1, m−1) and RMs−1(r, m−1) can
be obtained using Plotkin construction again from codes with m − 2 value. So
we can write the generator matrix Gs−1(r,m) as follows:

Gs−1(r,m) =

⎛
⎜⎜⎝

Gs−1(r,m−2) Gs−1(r,m−2) Gs−1(r,m−2) Gs−1(r,m−2)

0 Gs−1(r−1,m−2) 0 Gs−1(r−1,m−2)

0 0 Gs−1(r−1,m−2) Gs−1(r−1,m−2)

0 0 0 Gs−1(r−2,m−2)

⎞
⎟⎟⎠ .

The generator matrix Gs(r,m) of RMs(r, m) can be obtained using the BQ-
Plotkin construction given by Definition 3. Since r is even and m is odd, r − 1
and m − 2 are odd. In this case any RMs−1(r − 1, m − 2) code, where s = m−1

2 ,

is of type 204δ′′
. This result can be proved by induction on m and using the BQ-

Plotkin construction. Since Gs−1(r−1,m−2) is of type 204δ′′
, then G′

s−1(r−1,m−2) =

Gs−1(r−1,m−2) and Ĝs−1(r−1,m−2) = Gs−1(r−1,m−2). It is easy to find a linear
combination of rows that transforms the matrix Gs−1(r,m) into the matrix Gs(r,m).

Now, we will give a recursive way to compute the rank for all Reed-Muller codes
in the RM0 and RM1 families. Note that the first binary nonlinear code is
RM0(3, 5). Thus, for m < 5 the rank is γ + 2δ.

Proposition 8. Let C be a quaternary linear Reed-Muller code RM0(r, m). The
rank of C for m ≥ 5 is

r0(r,m) = r0(r,m−1) + r0(r−1,m−1) +

{
0 if r ∈ {0, 1, 2, m − 1, m}(

m−2
2r−3

)
if r ∈ {3, . . . , m − 2}

Proposition 9. Let C be a quaternary linear Reed-Muller code RM1(r, m). The
rank of C for m ≥ 5 is

r1(r,m) = r1(r,m−1) + r1(r−1,m−1) +

⎧
⎨
⎩

0 if r ∈ {0, 1, m − 1, m}
m − 2 if r = 2

2
(

m−1
2r−3

)
if r ∈ {3, . . . , m − 2}.

The next proposition gives the rank for all quaternary linear Reed-Muller codes
with r ∈ {0, 1, m − 3, m − 2, m − 1, m} and any s.

Proposition 10. Let RMs(r, m) be a quaternary linear Reed-Muller code of
type 2γ4δ. The rank of RMs(r, m) can be computed as

rs(r,m) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ + 2δ if r ∈ {0, m − 1, m}
γ + 2δ if r = 1 and s ∈ {0, 1}
γ + 2δ +

(
δ−1
2

)
if r = 1 and s ≥ 2

2m−1 + δ if r = m − 3 and m > 6
2m−1 + δ if r = m − 2 and m > 4.
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Finally, the next proposition gives a recursive way to compute the rank of all
quaternary linear Reed-Muller codes with r = 2 and any s.

Proposition 11. Let RMs(2, m) be a quaternary linear Reed-Muller code of
type 2γ4δ. The rank of RMs(2, m) can be computed as

rs(2,m) = rs(2,m−1) + rs(1,m−1) + 2s +

(
s + 1

2

)
(m − s − 3),

except when m is odd and s = m−1
2 , since the rank is rs(2,m) = rs−1(2,m).

When m is odd and s = m−1
2 , by Proposition 7, the codes RMs(2, m) and

RMs−1(2, m) are equals. Thus, the rank is also the same. Note that, for s = 0
and r = 2, we have a binary linear code and the rank is γ + 2δ.

4 Classification of Some Families of RMs(r, m) Codes

In this section, we will show that this invariant, the rank, will allow us to clas-
sify these RMs(r, m) codes in some cases depending on the parameter r. This
classification was given for r = 1 and r = m − 2 [5], [10]. Now, we will extend
this result for r = 2 and r = m − 3. We are close to generalize this result for all
0 ≤ r ≤ m, but it is not easy to obtain a general form to compute the rank for
all quaternary linear Reed-Muller codes RMs(r, m).

Table 1 shows the type 2γ4δ and the rank of all these RMs(r, m) codes
for m ≤ 10. In these examples, you can see that the rank is always different,
except for the codes quoted in Proposition 7. If two codes have different rank,
we can say that they are nonisomorphic. The next theorem proves that for a
given m ≥ 4, and r ∈ {2, m − 3}2, the RMs(r, m) codes have different rank, so
they are nonisomorphic. In some cases, there is an exception, but we know by
Proposition 7 that the codes are equal.

Theorem 12. For all m ≥ 4 and r ∈ {2, m−3}, there are at least 	m+1
2 
 noni-

somorphic binary codes with the same parameters as the code RM(r, m), except
when m is odd, and r is even. In this case, there are at least m−1

2 nonisomorphic
binary codes with the same parameters as the code RM(r, m).

Proof. By Proposition 11, we know that rs(2,m) = rs(2,m−1) + rs(1,m−1) + 2s +(
s+1
2

)
(m − s − 3). If r = 1, the code is Hadamard and rs(1,m−1) increases or

is equal to, depending on s. For m ≥ 4 the expression 2s +
(
s+1
2

)
(m − s − 3)

also increases, depending on s. We can suppose that rs(2,m−1) is crescent on s
for m = 4 and proceed by induction on m. Therefore, rs(2,m) is different for
every s, except when m is odd, where we have two codes with the same rank.
By Proposition 7, these two codes are equal.

By Proposition 10, we know that rs(m−3,m) = 2m−1 + δ. In Proposition 6, we
can see a way to compute γ. Since r = m − 3, then the value of γ is decreasing
on s. Thus, δ is crescent and the rank is also crescent, depending on s. When
m is odd and r is even, we have again the case of two equal codes, solved in
Proposition 7.
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Table 1. Type 2γ4δ and rank rs(r,m) for all RMs(r,m) codes with m ≤ 10 and
r ∈ {0, 1, 2, 3}, showing them in the form (γ, δ) rs(r,m)

m ���s
r

0 1 2 m − 3 m − 2 m − 1 m

1 0 (1,0) 1 (0,1) 2 (1,0) 1 (0,1) 2

2 0 (1,0) 1 (1,1) 3 (0,2) 4 (1,0) 1 (1,1) 3 (0,2) 4

3
0 (1,0) 1 (2,1) 4 (1,3) 7 (1,0) 1 (2,1) 4 (1,3) 7 (0,4) 8
1 (1,0) 1 (0,2) 4 (1,3) 7 (1,0) 1 (0,2) 4 (1,3) 7 (0,4) 8

4
0 (1,0) 1 (3,1) 5 (3,4) 11 (3,1) 5 (3,4) 11 (1,7) 15 (0,8) 16
1 (1,0) 1 (1,2) 5 (1,5) 13 (1,2) 5 (1,5) 13 (1,7) 15 (0,8) 16

5
0 (1,0) 1 (4,1) 6 (6,5) 16 (6,5) 16 (4,11) 27 (1,15) 31 (0,16) 32
1 (1,0) 1 (2,2) 6 (2,7) 21 (2,7) 21 (2,12) 28 (1,15) 31 (0,16) 32
2 (1,0) 1 (0,3) 7 (2,7) 21 (2,7) 21 (0,13) 29 (1,15) 31 (0,16) 32

6
0 (1,0) 1 (5,1) 7 (10,6) 22 (. . . ) (10,16) 47 (5,26) 58 (1,31) 63 (0,32) 64
1 (1,0) 1 (3,2) 7 (4,9) 31 (. . . ) (4,19) 51 (3,27) 59 (1,31) 63 (0,32) 64
2 (1,0) 1 (1,3) 8 (2,10) 35 (. . . ) (2,20) 52 (1,28) 60 (1,31) 63 (0,32) 64

7

0 (1,0) 1 (6,1) 8 (15,7) 29 (. . . ) (15,42) 106 (6,57) 121 (1,63) 127 (0,64) 128
1 (1,0) 1 (4,2) 8 (7,11) 43 (. . . ) (7,46) 110 (4,58) 122 (1,63) 127 (0,64) 128
2 (1,0) 1 (2,3) 9 (3,13) 53 (. . . ) (3,48) 112 (2,59) 123 (1,63) 127 (0,64) 128
3 (1,0) 1 (0,4) 11 (3,13) 53 (. . . ) (3,48) 112 (0,60) 124 (1,63) 127 (0,64) 128

8

0 (1,0) 1 (7,1) 9 (21,8) 37 (. . . ) (21, 99) 227 (7,120) 248 (1,127) 255 ( 0,128) 256
1 (1,0) 1 (5,2) 9 (11,13) 57 (. . . ) (11,104) 232 (5,121) 249 (1,127) 255 ( 0,128) 256
2 (1,0) 1 (3,3) 10 (5,16) 75 (. . . ) (5,107) 235 (3,122) 250 (1,127) 255 ( 0,128) 256
3 (1,0) 1 (1,4) 12 (3,17) 82 (. . . ) (3,108) 236 (1,123) 251 (1,127) 255 ( 0,128) 256

9

0 (1,0) 1 (8,1) 10 (28,9) 46 (. . . ) (28,219) 475 (8,247) 503 (1,255) 511 (0,256) 512
1 (1,0) 1 (6,2) 10 (16,15) 73 (. . . ) (16,225) 481 (6,248) 504 (1,255) 511 (0,256) 512
2 (1,0) 1 (4,3) 11 (8,19) 101 (. . . ) (8,229) 485 (4,249) 505 (1,255) 511 (0,256) 512
3 (1,0) 1 (2,4) 13 (4,21) 118 (. . . ) (4,231) 487 (2,250) 506 (1,255) 511 (0,256) 512
3 (1,0) 1 (0,5) 16 (4,21) 118 (. . . ) (4,231) 487 (0,251) 507 (1,255) 511 (0,256) 512

10

0 (1,0) 1 (7,1) 11 (36,10) 56 (. . . ) (36,466) 978 (9,502) 1014 (1,511) 1023 (0,512) 1024
1 (1,0) 1 (5,2) 11 (22,17) 91 (. . . ) (22,473) 985 (7,503) 1015 (1,511) 1023 (0,512) 1024
2 (1,0) 1 (3,3) 12 (12,22) 131 (. . . ) (12,478) 990 (5,504) 1016 (1,511) 1023 (0,512) 1024
3 (1,0) 1 (1,4) 14 (6,25) 161 (. . . ) ( 6,481) 993 (3,505) 1017 (1,511) 1023 (0,512) 1024
3 (1,0) 1 (1,5) 17 (4,26) 172 (. . . ) ( 4,482) 994 (1,506) 1018 (1,511) 1023 (0,512) 1024

5 Conclusions

In a recent paper [15], new families of quaternary linear codes, the RMs(r, m)
codes, are constructed in such a way that, after the Gray map, the Z4-linear
codes fulfill the same properties and fundamental characteristics as the binary
linear Reed-Muller codes. In this paper, a structural invariant for binary codes,
the rank, is used to classify some of these new families of codes. Specifically, we
classified the RMs(r, m) codes with r ∈ {2, m− 3}. The RMs(r, m) codes with
r ∈ {0, 1, m − 2, m − 1, m} were already classified using the rank [5],[10]. As a
future research, it would be interesting to compute the rank for the RMs(r, m)
codes with r ∈ {3, . . . , m − 4} and s ≥ 2, in order to see whether it is possible
to obtain a full classification of all these RMs(r, m) codes using this invariant.

In this paper, we also proved that, when m is odd, m ≥ 5, and r is even, there
are two codes with the same rank, because these two codes are equal. Moreover,
we also computed the rank for all codes in the RM0 and RM1 families.
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Classification of Some Families of
Quaternary Reed–Muller Codes

Jaume Pernas, Jaume Pujol, and Mercè Villanueva

Abstract—Recently, new families of quaternary linear
Reed–Muller codes have been introduced. They satisfy that,
after the Gray map, the corresponding �-linear codes have the
same parameters and properties as the codes of the binary linear
Reed–Muller family. A structural invariant, the dimension of
the kernel, for binary codes is used to classify completely these
�-linear codes. The dimension of the kernel for these �-linear

codes is established generalizing the known results about the
dimension of the kernel for �-linear Hadamard and �-linear
extended 1-perfect codes.

Index Terms— �-linear codes, kernel, quaternary codes,
Reed–Muller codes.

I. INTRODUCTION

L ET and be the ring of integers modulo 2 and modulo
4, respectively. Let be the set of all binary vectors of

length and let be the set of all quaternary vectors of length
. Any nonempty subset of is a binary code and a subgroup

of is called a binary linear code. Equivalently, any nonempty
subset of is a quaternary code and a subgroup of is
called a quaternary linear code. The all-zero and all-one vector
will be denoted by and , respectively. Let denote the
component-wise product for any , or , . It will
be clear by the context whether we refer to binary or quaternary
vectors.

The Hamming distance between two vectors ,
is the number of coordinates in which and differ. The

Hamming weight of a vector , denoted by , is the
number of nonzero coordinates of . The minimum Hamming
distance of a binary code is the minimum value of
for , satisfying . The minimum Hamming weight
of a binary code , denoted by , is the minimum value
of for . We define the Lee weights over
the elements in as: , ,

. The Lee weight of a vector , denoted by
, is the addition of the weights of its coordinates, whereas

the Lee distance between two vectors , is
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. The minimum Lee distance of a qua-
ternary code is the minimum value of for ,
satisfying . The minimum Lee weight of a quaternary
code , denoted by , is the minimum value of
for . The Gray map, given by

where ,
, , , is an isom-

etry which transforms Lee distances over into Hamming dis-
tances over . Therefore, the minimum Lee weight of a qua-
ternary code coincides with the minimum Hamming weight
of .

Let be a quaternary linear code. Since is a subgroup of
, it is isomorphic to an abelian structure . Therefore,

is of type as a group, it has codewords and
codewords of order two. The binary image of

any quaternary linear code of length and type is called
a -linear code of length and type .

Two binary codes and of length are said to be iso-
morphic if there is a coordinate permutation such that

. They are said to be equivalent if there is
a vector and a coordinate permutation such that

[2]. Two quaternary linear codes
and both of length and type are said to be mono-

mially equivalent, if one can be obtained from the other by per-
muting the coordinates and (if necessary) changing the signs of
certain coordinates. They are said to be permutation equivalent
if they differ only by a permutation of coordinates [3]. Note that
if two quaternary linear codes and are monomially equiv-
alent, then the corresponding -linear codes and

are isomorphic. Therefore, if and are
not isomorphic, then and are not monomially equivalent.

Two structural invariants for binary codes are the rank and di-
mension of the kernel. The rank of a binary code is simply
the dimension of , which is the linear span of the code-
words of . The kernel of a binary code , denoted by ,
is the set of vectors that leave invariant under translation, i.e.,

. If contains the all-zero
vector, then is a binary linear subcode of . In general,

can be written as the union of cosets of , and is
the largest such linear code for which this is true [4]. These two
invariants do not give a full classification of binary codes, since
two nonisomorphic binary codes could have the same rank and
dimension of the kernel. In spite of that, they can help in clas-
sification, since if two binary codes have different ranks or di-
mensions of the kernel, they are nonisomorphic.

In [5], Hammons et al. showed that several families of
binary codes are -linear. In particular, they considered the
binary linear Reed–Muller family of codes, denoted by ,

0018-9448/$26.00 © 2011 IEEE
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and proved that the binary linear th-order Reed–Muller code
of length is -linear for , 1, 2, ,

and is not -linear for . In a subsequent
work [6], Hou et al. proved that is not -linear for

.
It is well-known that an easy way to build the family is

using the Plotkin construction [2]. In [7], [8], Pujol et al. intro-
duced new quaternary Plotkin constructions to build new fami-
lies of quaternary linear Reed–Muller codes, denoted by .
The quaternary linear Reed–Muller codes of length

, defined for , and ,
satisfy that the corresponding -linear codes have the same
parameters and properties (length, dimension, minimum dis-
tance, inclusion and duality relationship) as the binary linear
codes in the well-known family. In the binary case, there
is only one family. In contrast, in the quaternary case, for each

there are families, which will be distinguished using
subindexes from the set . The dimension of

will be denoted by .
The dimension of the kernel and rank have been studied for

some families of -linear codes [9]–[13]. In the family,
the and is a linear Hadamard and
extended 1-perfect code, respectively. Recall that a Hadamard
code of length is a binary code with codewords and
minimum Hamming distance , and an extended 1-perfect
code of length is a binary code with codewords
and minimum Hamming distance 4. Equivalently, in the
families, the corresponding -linear code of any
and is a Hadamard and extended 1-perfect
code, respectively [7], [8].

The dimension of the kernel and the rank of these codes were
studied and computed in [11]–[13]. Specifically

if
if

if
if
if

(1)

where the type of and is
and , respectively.

The aim of this paper is to classify the quaternary linear
Reed–Muller codes for all and . In order
to establish this classification, we will study the dimension
of the kernel for these codes, generalizing the known results
about the dimension of the kernel for the and

codes. The paper is organized as follows. In
Section II, we recall some properties related to quaternary linear
codes and the kernel of these codes. Moreover, we describe the
construction of the families of codes. In Section III, we
establish the kernel and its dimension for all codes in the
family. In Section IV, we give the main results about the kernel
and its dimension for all codes in the families, with

. In Section V, we show that we can use this invariant, the
dimension of the kernel, to classify completely the codes in the

families. Finally, the conclusions are given in Section VI.

We would also like to mention that we have developed in
Magma several functions that expand the current functionality
for codes over [14], [15]. Specifically, these functions allow
to construct the new families of codes and Plotkin con-
structions for quaternary linear codes. Moreover, there are also
efficient functions for computing the rank and dimension of the
kernel of any quaternary linear code. These functions are in-
cluded in Magma distribution, since version 2.15–15, but they
can also be downloaded from the web page http://ccsg.uab.cat.

II. PRELIMINARIES

A. Quaternary Linear Codes

Let be a quaternary linear code of length and type .
Although is not a free module, every codeword is uniquely
expressible in the form

where for , for and
, are vectors in of order two and four, respectively. The

vectors , give us a generator matrix of size
for the code . The submatrices with only and vectors are
denoted by and , respectively. Moreover, , and
will also be used to denote the sets of its row vectors.

The concepts of duality for quaternary linear codes were also
studied in [5], where the inner product for any two vectors ,

is defined as . Then, the
dual code of , denoted by , is defined in the standard way

. The corresponding
binary code is denoted by and called the -dual
code of . Moreover, the dual code , which is also
a quaternary linear code, is of type .

Let be a quaternary linear code and let be the cor-
responding -linear code with kernel . The kernel of ,
denoted by , is defined as the inverse Gray map image of

, that is . Furthermore, the dimen-
sion of is defined as the dimension of . The fol-
lowing lemma gives another way to describe .

Lemma 1 ([16], [17]): Let be a quaternary linear code.
Then, .

Note that if is a generator matrix of a quaternary linear code
, then if and only if and for all
. Moreover, all codewords of order two in belong to . It

is also clear that if , then . Finally, we mention
that is a quaternary linear subcode of and its dimension
defined as above is , where , and
that there exists a set of row vectors of order
four in , such that

(2)

where and . If then
. [16], [17].
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B. Quaternary Linear Reed–Muller Codes

Recall that a binary linear th-order Reed–Muller code
, with and , can be described

using the Plotkin construction as follows [2]:

where is the repetition code , is
the universe code, and “ ” denotes concatenation. For ,
there are only two codes: the repetition code and the
universe code . This family has the parameters
and properties quoted in the following proposition.

Proposition 2 ([2]): A binary linear th-order Reed–Muller
code , with and , has the following
parameters and properties:

1) the length is ;
2) the minimum Hamming distance is ;

3) the dimension is ;

4) the code is a subcode of for
;

5) the code is the dual code of
for .

In the recent literature [5], [9], [18]–[20] several families
of quaternary linear codes have been proposed and studied
trying to generalize the family. However, when the
corresponding -linear codes are taken, they do not satisfy
all the properties quoted in Proposition 2. In [7], [8], new
quaternary linear Reed–Muller families, , such that the
corresponding -linear codes have the parameters and proper-
ties described in Proposition 2, were proposed. The following
two Plotkin constructions are necessary to generate these new

families.

Definition 3 (Plotkin Construction): Let and be two qua-
ternary linear codes of length , types and , and
minimum Lee distances and , respectively. A new quater-
nary linear code is defined as

It is easy to see that if and are generator matrices of
and , respectively, then the matrix

is a generator matrix of the code . Moreover, the code
is of length , type , and minimum

Lee distance [7], [8].

Definition 4 (BQ-Plotkin Construction): Let , , and be
three quaternary linear codes of length ; types , ,
and ; and minimum Lee distances , , and , respec-
tively. Let , , and be generator matrices of the codes

, , and , respectively. A new code is defined
as the quaternary linear code generated by

where is the matrix obtained from after switching twos by
ones in their rows of order two, and is the matrix obtained
from after removing their rows of order two.

The code is of type ,
length , and minimum Lee distance
[7], [8].

Now, the quaternary linear Reed–Muller codes
of length , for , , and

, will be defined. For the recursive construction, it will
be convenient to define them also for and . The
code with is defined as the zero code. The
code is defined as the repetition code with only the
all-zero and all-two vectors. The code with
is defined as the universe code, that is, the whole space .
For , there is only one family with , and in this
family there are only the zero, repetition and universe codes for

, and , respectively. In this case, the generator
matrix of is , and the generator matrix
of is , where .

For any , given and
codes, where , the code can be

constructed in a recursive way using the Plotkin construction
given by Definition 3, as follows:

For example, for , the generator matrices of ,
, are the following: ;

Note that when is odd, the family with
can not be generated using the Plotkin construction. In this case,
for any , odd and , given

, and , the
code can be constructed using the BQ-Plotkin con-

struction given by Definition 4 as follows:

For example, for , there are two families. The
family can be generated using the Plotkin construction. On
the other hand, the family has to be generated using
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TABLE I
TYPE � � AND DIMENSION OF THE KERNEL � FOR ALL�� ����� CODES WITH � � �, SHOWING THEM IN THE FORM ��� ���

the BQ-Plotkin construction. The generator matrices of
, , are the following:

The generator matrices will be exactly the matrices
obtained following this construction process unless otherwise
stated. The following proposition summarizes the parameters
and properties of these families of codes.

Proposition 5 ([7], [8]): A quaternary linear Reed–Muller
code , with , , and

, has the following parameters and properties:
1) the length is ;
2) the minimum Lee distance is ;
3) the number of codewords is ;
4) the code is a subcode of for

;
5) the codes and , after the

Gray map, are -linear Hadamard and -linear extended
1-perfect codes, respectively;

6) the code is the dual code of
for .

III. KERNEL FOR THE CODES

The purpose of this section is to establish the dimension of
the kernel for all codes in the family. Moreover, we will
give a generator matrix of the kernel, from a generator matrix
of the code.

First of all, we will give an expression for the parameters
and of a quaternary linear Reed–Muller code of
type , depending on , and . Table I shows the type

of all these codes for . In order to distinguish the
and of the different codes, we will denote them
by and , respectively. Moreover, the kernel of
any quaternary linear Reed–Muller code will
be denoted by . For the following expressions, we will
consider that , when .

Lemma 6: Let be a quaternary linear Reed–Muller code
of type . Then, for , , and

,

Proof: The code can be constructed using the Plotkin
and BQ-Plotkin constructions. By the results about the type of
these constructions given in Section II-B, and using induction on

, for all and , we obtain . Since
by Proposition 5, we obtain the expression

for .

Proposition 7: For all and , the di-
mension of the kernel of of type is

if
if .

Proof: In [21], it was proved that
. The codes, de-

fined for all and , were intro-
duced in [18]. Since is a binary
linear code for [18], in these
cases, the dimension of the kernel is .
On the other hand, for , we know
that the dimension of is equal to the dimension of

, which is [18],
[21]. By Lemma 6, and due to the fact that , we have

and . It is easy to check that
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. Therefore,
the equality holds.

Lemma 8: Let and be two quaternary linear codes of
length with generator matrices and , respectively, such
that . Let of length . If and

, then if and only if ,
, and for all and .

Proof: The codeword if and only if
and for all , in

, , respectively. That means for
all , and for all . That is,

and for all , and
for all . Note that since , the condition
for all implies that for all . Therefore,

for all is simplified to
for all .

Corollary 9: Let and be two quaternary linear codes of
length , such that . Let of length . If

, where and , then
and . That is, .

Proof: Straightforward from Lemma 8.

Let be a quaternary linear code. The code is obtained
from by multiplying by two all codewords of . Note that if
is a generator matrix of , then is a generator matrix of .

Lemma 10: For all and ,
.

Proof: Let , and be three quaternary linear codes
such that and . It is easy to see that

. Since the codes satisfy
this relationship for all , and the codes for

and can be obtained using the Plotkin construc-
tion, the result follows.

Since is a linear subcode of , now we will give a gen-
erator matrix of for all and
from . Note that for all and

, is a binary linear code, so
and it is generated by .

Let define the set of vectors and
for . Clearly, the length of the

vectors in is , and follows from
. Moreover, by construction for all

.

Proposition 11: For all and , the
kernel of of type is a linear subcode of type

generated by

Proof: By Lemma 1, . In the next
paragraph, we will show that . Applying the
Gray map to all row vectors of , we obtain
linear independent binary vectors. Therefore, by Proposition 7,
once we prove that , we will have that
is generated by .

We said before that for
all . By Proposition 7, for all ,
is a binary linear code after the Gray map, so

. For the same reason, we also
have that for all . Assume
the result is true for and . By Lemma 8, it
follows that and implies that

. Thus, for all
. Again by Lemma 8, it follows that

if and only if , which it holds
by Lemma 10. Therefore, for all , as
we wanted to show.

IV. KERNEL FOR THE CODES,

In this section, we will establish the dimension of the kernel
for all the codes with . At the same time, we
will give a generator matrix of the kernel, from a generator ma-
trix of the code. In order to do that, first we will prove some re-
sults concerning the constructions and properties of these codes.

Lemma 12: For all , and
, .

Proof: Assume that .
Hence, is a subcode of the subcode
of that contains all codewords of order two. After
the Gray map, and are binary linear codes of dimension

and , respectively. Because of the
former is a subcode of the latter follows

. Now, we are going to prove that
, so the initial assumption is false.

It is easy to check the trivial cases where
for all , and

for all . Now, we proceed by
induction to prove the result for all and .
For , and , it is clear that

(see Table I). For any and
, assume that for all

, and for all
. By the result on the parameters and

for the codes obtained using the BQ-Plotkin
construction, we have that

Moreover, since , we have that
, and

In fact, by the induction hypothesis, we have
, . Finally, we finish

the induction for any and . Now, by the
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result on the parameters and for the codes obtained using
the Plotkin construction we have that

Again, by the induction hypothesis, it follows that
, .

Lemma 13 ([7], [8]): Let , and be the quaternary
linear Reed–Muller codes , and

, with generator matrices , and , re-
spectively. Then, and , where
and are the codes generated by and , respectively.

Lemma 14: Let , and be the quaternary linear
Reed–Muller codes , and

, with generator matrices , and ,
respectively. Let , , . If , ,
and , then
if and only if , , , ,

, , , , and
for all , , and

.
Proof: The codeword

if and only if ,
, and

for all , , and . That is,
, , , , ,

, , ,
and for all ,

, and . Finally, we can simplify these
conditions using Lemma 13.

Corollary 15: Let , and be the quaternary linear
Reed–Muller codes , and

, respectively. Let . If
, where

, , and , then ,
, and .

Proof: If ,
then
for all . That is, , ,
and . By Lemma 13, we know that , , and

are submatrices of . Thus, we can say that ,
, , and . Since is the code

generated by and is the matrix after removing the
rows of order two, we can say that . Moreover,

for all , so .

Proposition 16: For all , and
, the corresponding -linear codes of

and are binary linear codes.
Proof: For , and , the corre-

sponding -linear codes of are the repetition, the
even weight and the universe codes, respectively, which are bi-
nary linear codes. For , the corresponding -linear code
of is the binary linear Hadamard code [7], [8].

Note that for all and ,
is a binary linear code, so

and it is generated by . Now, we will
show that , for all and , is
generated by

where .

Proposition 17: For all and , the
kernel of of type is a linear subcode of type

generated by , and .
Proof: By (1), we know that
. Note that , since . For these two

cases, it is easy to check that the kernel is generated by .
Hence, the result is true for , and we just need to prove
it for every and . We proceed by
induction on . The known cases will be
used to complete each induction step.

Let be the code generated by . Assume that
for all . By Lemma

8, since , then for
all . Moreover, it is clear that .
Therefore, for all .

By Corollary 9, we have that
. Since and

are the unique vectors of order four in for
all , we have that , , ,
are the only vectors of order four in the generator matrix of

for all .
Moreover, since is a subcode of ,
and can be written as a union of cosets of

[16], [17]. Actually, looking at their types, the code
is the union of four cosets

of with leaders given by the vectors , ,
, . Now, we are going to see that the three

nonzero leaders are not in , which will give us that
.

By Lemma 8, if and only if
, which is not true by Lemma 12.

Hence, . For the other two leaders, we need
the vector of min-
imum weight . By Lemma 1, if and
only if for all .
By Plotkin construction, . Therefore, since

is of weight and have min-
imum weight , . Likewise

.

Finally, we will focus on the codes with . Note that for
all , and ,
is a binary linear code, so and it is
generated by . Now, we will show that , for all

, and , is generated by

except , which is generated by .
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Proposition 18: For all , and
, the kernel of of type is

a linear subcode of type generated by , and
. There is an exception, the kernel of

is generated by and
.

Proof: By (1), we know that
when . For these cases, it is easy to check

that the kernel is generated by and with
, respectively. By Propositions 20 and 17,

and . Therefore, the
result holds for , and .

Now, we will proceed by induction on and
(when the codes can be constructed using the Plotkin con-

struction), and by induction on odd and , or
equivalently on and (when the codes are
constructed using the BQ-Plotkin construction).

In the former, in order to begin the induction on without
any exception, we will compute the kernel for , and

. It is easy to check that in these cases the proposition
is true (see Table I). Hence, we will proceed by induction on

for every and . Since
all these cases can be constructed using the Plotkin construction,
using similar arguments as in the proof of Proposition 17, and
the induction hypothesis, the result is true for all these codes.

In the latter, in order to begin the induction on without any
exception, we will compute the kernel for , and

. It is also easy to check that in this case the proposition is
true (see Table I). Moreover, by Proposition 20,

and
for all and . Hence, the result is true for
and . In the next paragraph, we will proceed by induction
on for every and .
The known cases for will be used to
complete each induction step.

Let be the code generated by . Since
by Lemma 1, and , it is clear

that for all . Moreover,
since is a subcode of , the code can
be written as a union of cosets of [16], [17]. Actually,
looking at their types, is the union of cosets

of . The set of leaders is ,
where with . Now, we are going to see that
the nonzero leaders are not in , which will give us that

.
Assume that for all

. Thus, by Corollary 15 only the
subset of leaders , where

, and ,
could be in for all . Now, we will
see that . By Lemma 14, if
or , then ,

. This is a not true, since

, by Lemma 12. Again by Lemma
14, if , then

. This is not true, since

by Lemma
13, and
by Lemma 12. Using the same arguments, it is easy to see
that the other nonzero leaders are not in . Hence

for all .

V. CLASSIFICATION OF THE FAMILIES

In this section, we will show that this invariant, the dimension
of the kernel, will allow us to classify completely the codes in
the families for all and .

As we have shown in Section II-B, the quaternary linear
Reed–Muller codes can be obtained using the
Plotkin construction, except when is odd and . In
this case, they are obtained using the BQ-Plotkin construction.
Note that some of these codes could be constructed using any
of these two constructions.

Theorem 19: For all , and
, the dimension of the kernel of of type

is
1) , , .
2) If ,

for
for .

3) If , , for .
4) If , , for ,

except .
Proof: It is straightforward to see that ,

, and , because
, , and

are the repetition, the even weight, and the universe codes,
respectively. The cases , and are proved in
Propositions 7, 17, and 18, respectively.

Note that Theorem 19 includes the previous results about the
dimension of the kernel for -linear Hadamard and -linear
extended 1-perfect codes [11]–[13] or (1). Table I shows the type

and the dimension of the kernel of all these
codes for .

Proposition 20: For all , , and
we have

, except one case: if is odd, even and , then
and

.
Proof: First of all, note that

when , since in these
cases the codes are equal for any . Now, we
will proceed by induction on . Except when
odd and , the codes are obtained using
the Plotkin construction. In these cases it is easy to see that

, by Definition 3.
On the other hand, when odd and , the

and codes are obtained using the
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BQ-Plotkin and Plotkin construction, respectively. Therefore,
the generator matrices can be constructed as

and

By Definitions 3 and 4, we have that
. By Lemma 6,

if and only if is even. Hence, if is even,
then , otherwise

. Moreover, if is
even, since , then the generator matrices sat-
isfy that .
In this case, it is easy to find a linear combination of rows that
transforms the matrix into the matrix , and
then the codes are equals.

Theorem 21: For all and , there are at least
nonisomorphic binary codes with the same parameters

as the code .
For all and , there are at least

nonisomorphic binary codes with the same parameters as the
code , except when is odd, and is even. In this
case, there are at least nonisomorphic binary codes with
the same parameters as the code .

Proof: For , the result was proved in [12]. For
, the proof is consequence of Theorem 19 and Propo-

sition 20.

VI. CONCLUSIONS

In a recent paper [8], new families of quaternary linear codes,
the codes, are constructed in such a way that, after
the Gray map, the -linear codes fulfill the same properties and
fundamental characteristics as the binary linear Reed–Muller
codes. In this paper, a structural invariant for binary codes, the
dimension of the kernel, is used to classify these new families
of quaternary linear Reed–Muller codes as well as their binary
images under the Gray map. Note that all these codes are com-
pletely classified from , and the dimension of the kernel.
Using a recursive construction, we give the generator matrices
of the kernel and compute the exact values of the dimension of
the kernel for all the feasible values of , and . This invariant
allows us to classify all the codes except when is odd, ,
and is even. In these cases, there are two codes with the same
dimension of the kernel, but in fact these two codes are equal.

As we already mentioned, there are other families of quater-
nary linear Reed–Muller codes, like the ones presented in [19],
denoted by . The codes in are con-
structed starting from all quaternary linear Hadamard and ex-
tended 1-perfect codes and using just the Plotkin construction.
Therefore, their corresponding -linear codes do not satisfy
the properties (4) and (5) quoted in Proposition 2. Moreover,
after computing the dimension of the kernel for the
codes, they are not included in the family. For ex-

ample, for and , the three codes have
dimensions of the kernel , and the two
codes have dimensions of the kernel . Note that each
code in is monomially equivalent to a code in

, and vice versa, for all and
. Finally, note that we could construct more quater-

nary linear Reed–Muller codes, using the same techniques as in
[19] and the codes not included in the
codes. These new codes, which will may not satisfy the prop-
erties (4) and (5) quoted in Proposition 2, will probably not be
equivalent neither to the nor to the
codes.

Another family of quaternary Reed–Muller codes are the
ones presented in [5], denoted by . The codes in

can not be compared with the codes,
as quaternary codes. Note that the minimum Lee distances of
the codes are exactly the same as the minimum
Hamming distances of the codes, and for the
codes these distances are not known. On the other hand, after
the modulo 2 map for the codes, and the Gray
map for the codes, we obtain binary codes with
the same parameters as the codes. The difference is that
the former are always linear, and the latter are nonlinear, for
example, for all and .
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Abstract. A quaternary linear Hadamard code C is a code over Z4 such that, after the Gray
map, gives a binary Hadamard code. The permutation automorphism group of a quaternary
linear code C is defined as PAut(C) = {� 2 Sn : �(C) = C}. In this paper, the order of the
permutation automorphism group of all quaternary linear Hadamard codes is established by
computing the orbits of the action of PAut(C) on C. Since the dual of a Hadamard code is
an extended 1-perfect code in the quaternary sense, their permutation automorphism group is
also computed.

Keywords: Quaternary linear codes, Hadamard codes, 1-perfect codes, permutation auto-
morphism group.

1 Introduction

Let Z2 and Z4 be the ring of integers modulo 2 and modulo 4, respectively. Let Zn
2 be the set

of all binary vectors of length n and let Zn
4 be the set of all quaternary vectors of length n.

Any nonempty subset C of Zn
2 is a binary code and a subgroup of Zn

2 is called a binary linear
code. Equivalently, any nonempty subset C of Zn

4 is a quaternary code and a subgroup of Zn
4

is called a quaternary linear code.
Let C be a quaternary linear code. Since C is a subgroup of Zn

4 , it is isomorphic to an
abelian structure Z�2 ⇥ Z�4. Therefore, C is of type 2�4� as a group, it has |C| = 2�+2�

codewords and 2�+� codewords of order two. Let � be the Gray map defined as � : Zn
4 �!

Z2n
2 , �(v1, . . . , vn) = ('(v1), . . . , '(vn)), where '(0) = (0, 0), '(1) = (0, 1), '(2) =

(1, 1), '(3) = (1, 0). The binary image C = �(C) of any quaternary linear code C of length
n and type 2�4� is called a Z4-linear code of length 2n and type 2�4� .

Recently, new families of quaternary linear Reed-Muller codes such that, after the Gray
map, the corresponding Z4-linear codes have the same parameters and properties as the
? This work has been partially supported by the Spanish MICINN under Grants PCI2006-A7-0616 and

TIN2010-17358, and by the Catalan AGAUR under Grant 2009SGR1224.
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codes in the usual binary linear Reed-Muller family have been introduced [1,2]. Specifi-
cally, there are bm+1

2 c such families, and these quaternary codes of length 2m�1 are denoted
by RMs(r, m), m � 1, 0  r  m and 0  s  bm�1

2 c. It is known that all Z4-linear
Hadamard and extended 1-perfect codes are included in these Reed-Muller families of codes
taking r = 1 and r = m�2, respectively. The codes for these two values of r were classified
in [3] using the dimension of the kernel and the rank, respectively. Later, all codes from these
families were classified in [4] using the dimension of the kernel.

Let Sn be the symmetric group of permutations on the set {1, . . . , n}. A � 2 Sn acts
on words of Zn

4 by permuting the coordinates, �((c1, c2, . . . , cn)) = (c��1(1), c��1(2), . . . ,
c��1(n)). The group operation in Sn is the function composition, denoted by juxtaposition of
the permutations. The composition �1�2 maps any element x to �1(�2(x)). The permutation
automorphism group of a quaternary linear code C is defined as PAut(C) = {� 2 Sn :
�(C) = C}, where �(C) = {�(c) : c 2 C}. It is said that two quaternary linear codes C1 and
C2 of length n are permutational equivalent if there exists � 2 Sn such that C1 = �(C2).

The automorphism group of a code is an invariant, so it can help in the classification
of some families of codes. Moreover, knowing the automorphism group can also be used in
decoding algorithms and to describe some other properties like the weight distribution. The
automorphism group of Z2Z4-linear 1-perfect codes, which include the Z4-linear 1-perfect
codes, has been studied in [5]. In general, the permutation automorphism group of (nonlinear)
binary 1-perfect codes has also been studied before, obtaining some partial results [6,7,8,9].

In this paper, we will study the permutation automorphism group of the quaternary linear
Hadamard codes, that is, PAut(RMs(1, m)) for any m � 1 and 0  s  bm�1

2 c. For
shortness reasons we will denote this group by Ps,m = PAut(RMs(1, m))  Sn, where
n = 2m�1; the Hadamard code by Hs,m = RMs(1, m); and its generator matrix by Gs,m.

The orbit of a codeword u 2 Hs,m under the action of Ps,m is denoted by the set
Ps,m(u) = {�(u) : � 2 Ps,m}. Note that, since Ps,m is the permutation automorphism
group of Hs,m, Ps,m(u) ✓ Hs,m. Moreover, two codewords u, v 2 Hs,m are said to be
Ps,m-equivalent if there exists a permutation � 2 Ps,m such that �(u) = v. Since this is
an equivalence relationship, Hs,m is partitioned into classes or orbits. On the other hand, the
stabiliser of u 2 Hs,m in Ps,m is denoted by the subgroup Nu

s,m = {� 2 Ps,m : �(u) = u}.
Moreover, given a set {u1, . . . , ut}, the stabiliser of all this set of codewords is denoted by
Nu1,...,ut

s,m = {� 2 Ps,m : �(ui) = ui, 8i 2 {1, . . . , t}}. Finally, the orbit-stabiliser theorem
shows that |Ps,m| = |Ps,m(u)||Nu

s,m| for all u 2 Hs,m [10].

2 Quaternary linear Hadamard codes

Now, we give a recursive construction for the quaternary linear Hadamard codes Hs,m, m �
1 and 0  s  bm�1

2 c. For every admissible pair s and m, there is one Hadamard code of
length 2m�1 and type 2m�2s�14s+1. In [1,2], a general way to construct RMs(r, m) codes
is described, but for this particular case where r = 1, the following recursive construction
can also be used:

G0,1 =
�
1
�
;

Gs,m =

✓
Gs,m�1 Gs,m�1

0 2

◆
if m > 2s + 1, s � 0; (1)
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Gs,m =

✓
Gs�1,m�2 Gs�1,m�2 Gs�1,m�2 Gs�1,m�2

0 1 2 3

◆
if m = 2s + 1, s � 1; (2)

where 0, 1, 2 and 3 means the repetition of symbol 0, 1, 2 and 3, respectively.
Using this construction, the vectors of order four remain in the upper part of the generator

matrix Gs,m and the vectors of order two in the lower part. From now on, given a Hadamard
code Hs,m of type 2�4� , we will denote by {v1, . . . , v�} the vectors of order four in Gs,m

and {u1, . . . , u�} the vectors of order two, conserving the order given by the construction of
Gs,m.

Lemma 1. The codewords of a quaternary linear Hadamard code Hs,m of length n = 2m�1,
where m � 1 and 0  s  bm�1

2 c, can be classified into three types:

(a) The four codewords 0, 1, 2 and 3.
(b) The codewords with only zeros and twos or only ones and threes. The number of zeros,

ones, twos or threes is always n/2 in each codeword.
(c) The codewords with all symbols 0, 1, 2, 3. The number of zeros, ones, twos and threes is

always n/4 in each codeword.

Moreover, there are 4 codewords of type (a), 2m�s+1� 4 of type (b), and 2m+1� 2m�s+1 of
type (c).

Proof. The code H0,1 only contains the four codewords of type (a). The result can be proved
by induction on m separated in two cases: for m > 2s + 1 using the construction given by
matrix (1), and for m = 2s + 1 using the construction given by matrix (2). ut

3 Permutation automorphism groups

In this section, we will give the order of the permutation automorphism group for the codes
Hs,m, where m � 1 and 0  s  bm�1

2 c. In order to study these groups, we computed
them for some fixed s and m. We used a program presented in [11] which can compute
automorphism groups of quaternary linear codes.

Note that, P0,m = PAut(H0,m) is isomorphic to the permutation automorphism group of
the binary linear Hadamard code of length 2m�1, which is the general affine group GA(m�
1, 2) [12]. Therefore, |P0,m| = |GA(m� 1, 2)| = 2m�1(2m�1� 1)(2m�1� 2) . . . (2m�1�
2m�2), which is equivalent to the expression given by Theorem 6 taking s = 0.

By construction using matrix (1), given a permutation of degree n = 2m�2 that fixes the
Hadamard code generated by the matrix Gs,m�1, it is possible to construct a permutation of
degree 2n that fixes the Hadamard code generated by Gs,m as it follows. Let � 2 Sn be a
permutation. We define the permutation (�|�) = ⌧�⌧� 2 S2n where ⌧ = (1, 1 + n)(2, 2 +
n) . . . (n, 2n). Note that ⌧�⌧ is the same permutation as � but applied on the coordinates
{n + 1, . . . , 2n}. Then, it is easy to see that � and ⌧�⌧ are disjoint, and if � 2 Ps,m�1

then (�|�) 2 Ps,m. Let P < Sn be a subgroup of permutations. We define the subgroup
(P |P ) = {(�|�) : � 2 P} < S2n. By construction, P fixes the code Hs,m�1 if and only if
(P |P ) fixes the code Hs,m.

Proposition 2. The codewords of Hs,m of length n = 2m�1, where m � 1 odd and s =
m�1

2 , are partitioned into the next orbits under the action of Ps,m:
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(i) four orbits of one element with the four codewords of type (a);
(ii) one orbit with the codewords of order two and type (b) with 2m�s�2 elements; another

orbit with the codewords of order four and type (b) with 2m�s � 2 elements;
(iii) one orbit with the codewords of type (c) with 2m+1 � 2m�s+1 elements.

Proof. The result can be proved by induction on m � 1 odd, and using Lemma 1. An impor-
tant fact is that, in this case, the code Hs,m is of type 204s+1, so there are not rows of order
two in the generator matrix Gs,m. ut

Corollary 3. Let Hs,m be a quaternary linear Hadamard code of length n = 2m�1, where
m � 1 odd and s = m�1

2 . The permutation automorphism group of the codewords of type
(c) is Ps,m.

Proposition 4. The codewords of Hs,m of length n = 2m�1, where m � 1 and 0  s 
bm�2

2 c, are partitioned into the next orbits under the action of Ps,m:

(i) four orbits of one element with the four codewords of type (a);
(ii) one orbit with the codewords of type (b) and form u =

P�
i=1 �ivi, �i 2 {0, 2} with

2s+1 � 2 elements; another orbit with the codewords of type (b) and form u + 1 with
2s+1 � 2 elements;

(iii) one orbit with the remaining codewords of order two and type (b) with 2m�s � 2s+1

elements; another orbit with the remaining codewords of order four and type (b) with
2m�s � 2s+1 elements;

(iv) one orbit with the codewords of type (c) with 2m+1 � 2m�s+1 elements.

Proof. The result can be proved by induction on m > 2s + 1, and using Lemma 1. In this
case, there are two orbits more because the codewords of type (b) are partitioned into four
orbits. That is consequence of the fact that the codewords {u1, . . . , u�} in Gs,m are not linear
combinations of the codewords {v1, . . . , v�} in Gs,m. ut

Corollary 5. Let Hs,m be a quaternary linear Hadamard code of length n = 2m�1, where
m � 1 and 0  s  bm�2

2 c. The permutation automorphism group of the codewords of type
(c) is Ps,m.

Theorem 6. Let Hs,m be a quaternary linear Hadamard code of length n = 2m�1, where
m � 1 and 0  s  bm�1

2 c. The order of the permutation automorphism group Ps,m =
PAut(Hs,m) is:

– |P0,1| = 1;
– |Ps,m| = |Ps�1,m�2| · 4s�1 · (22s+2 � 2s+2), if m = 2s + 1;
– |Ps,m| = |Ps,m�1| · 2m�s�2 · (2m�s � 2s+1), if m > 2s + 1.

Proof. The code H0,1 is of length 1, so the permutation automorphism group P0,1 only con-
tains the identity permutation.

In general, first of all, note that the stabiliser N
u� ,...,u1,v�,...,v2
s,m only contains the identity

permutation. This can be proved by induction on the rows of the generator matrix Gs,m. Thus,
we can compute the order of |Ps,m| using the orbit-stabiliser property recursively as follows:

|Ps,m| = |Ps,m(u�)||Nu�
s,m| = |Ps,m(u�)||Nu�

s,m(u��1)||Nu� ,u��1
s,m | = · · ·
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= |Ps,m(u�)||Nu�
s,m(u��1)||Nu� ,u��1

s,m (u��2)| · · · |Nu� ,...,u1
s,m (v�)|

|Nu� ,...,u1,v�
s,m (v��1)| · · · |Nu� ,...,u1,v�,...,v3

s,m (v2)||Nu� ,...,u1,v�,...,v2
s,m |.

For m > 2s + 1, the chain of orbits for the codewords {u��1, . . . , u1, v�, . . . , v2} is
the same as for Hs,m�1, but having double number of codewords: (v|v) and (v|v + 2).
Then, we can rewrite the above expression as |Ps,m| = |Ps,m�1| · 2�+��2 · |Ps,m(u�)|.
The result follows since by Proposition 4 we know the size of the orbit that contains u� and
� + � � 2 = m� s� 2.

For m = 2s + 1, we have a similar scenario, except that the chain of orbits contains four
times more codewords than for Hs�1,m�1, since the code is also four times bigger. Moreover,
in this case � = 0, so the first orbit is Ps,m(v�). Since the size of this orbit containing v� is
given by Proposition 2, the result follows. ut

Corollary 7. Let Hs,m be a quaternary linear Hadamard code of length n = 2m�1, where
m � 1 and 0  s  bm�1

2 c. The order of the permutation automorphism group Ps,m =
PAut(Hs,m) is:

– |P0,1| = 1;
– |Ps,m| =

Qs
i=1 23i(2i � 1), if m = 2s + 1 and s � 1;

– |Ps,m| = |Ps,2s+1|
Qm

i=2s+2 2i�1(2i�2s�1 � 1), if m > 2s + 1.

Table 1. Order of Ps,m = PAut(Hs,m) for 1  m  9. Note that n = 2m�1.

@
@@s
m

1 2 3 4 5 6 7 8 9

0 1 2 23 · 3 26 · 3 · 7 210 · 3 · 7 · 15 . . . . . . . . . . . .
1 23 26 210 · 3 215 · 3 · 7 221 · 3 · 7 · 15 . . . . . .
2 29 · 3 214 · 3 220 · 32 227 · 32 · 7 235 · 32 · 7 · 15

3 218 · 3 · 7 225 · 3 · 7 233 · 32 · 7

4 230 · 3 · 7 · 15

Given a quaternary linear code C of length n = 2m, the inner product for any two vectors
u, v 2 Zn

4 is defined as: hu, vi =
Pn

i=1 uivi 2 Z4, and the quaternary dual code of C,
denoted by C?, is defined in the standard way as:

C? = {u 2 Zn
4 : hu, vi = 0 for all v 2 C}.

Note that the quaternary dual of a Hadamard code Hs,m is a quaternary linear extended
1-perfect code denoted by Es,m = H?

s,m. It is easy to prove that for any quaternary lin-
ear code C, we have that PAut(C) = PAut(C?). Therefore, in particular, PAut(Hs,m) =
PAut(Es,m).
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4 Conclusions

Several problems related to quaternary codes can be addressed by computing the automor-
phism group of these codes. In this paper, the order of the permutation automorphism grup of
all quaternary linear Hadamard codes and their duals (all quaternary linear extended 1-perfect
codes) is computed. To compute this order, the structure of the orbits of the codewords under
the action of this group is deeply studied. In a further work a complete description of these
permutation automorphism groups and their relations with the corresponding binary codes
will be established, as well as, a generalization of these results for all quaternary linear Reed
Muller codes RMs(r, m), m � 1, 0  r  m and 0  s  bm�1

2 c [2].
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1. J. Pujol, J. Rifà, and F. I. Solov’eva, “Quaternary Plotkin constructions and quaternary Reed-Muller
codes,” in Proc. Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, ser. LNCS,
vol. 4851, India, Dec. 2007, pp. 148–157.
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Abstract A quaternary linear Hadamard code C is a code over Z4 that
under the Gray map, gives a binary Hadamard code. The permutation au-
tomorphism group of a quaternary linear code C of length n is defined as
PAut(C) = {σ ∈ Sn : σ(C) = C}. In this paper, the order of the permutation
automorphism group of a family of quaternary linear Hadamard codes is es-
tablished. Moreover, these groups are completely characterized by computing
the orbits of the action of PAut(C) on C and by giving the generators of the
group. Since the dual of a Hadamard code is an extended 1-perfect code in
the quaternary sense, the permutation automorphism group of these codes is
also computed.

Keywords Quaternary linear codes, Hadamard codes, 1-perfect codes,
permutation automorphism group.

1 Introduction

Let Z2 and Z4 be respectively the ring of integers modulo 2 and modulo 4.
Let Zn2 be the set of all binary words of length n and let Zn4 be the set of
all quaternary words of length n. Any nonempty subset C of Zn2 is a binary
code and a subgroup of Zn2 is called a binary linear code. Equivalently, any
nonempty subset C of Zn4 is a quaternary code and a subgroup of Zn4 is called
a quaternary linear code.
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17358, and by the Catalan AGAUR under Grant 2009SGR1224. The material in this paper
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Let C be a quaternary linear code. Since C is a subgroup of Zn4 , it is isomor-
phic to an abelian structure Zγ2 × Zδ4. Therefore, C is of type 2γ4δ as a group:
it has |C| = 2γ+2δ codewords and 2γ+δ of these have order two. Let φ be the
Gray map defined as φ : Zn4 −→ Z2n

2 , φ(v1, . . . , vn) = (ϕ(v1), . . . , ϕ(vn)), where
ϕ(0) = (0, 0), ϕ(1) = (0, 1), ϕ(2) = (1, 1), ϕ(3) = (1, 0). The binary image
C = φ(C) of any quaternary linear code C of length n and type 2γ4δ is called
a Z4-linear code of length 2n and type 2γ4δ.

Recently, new families of quaternary linear Reed-Muller codes such that,
under the Gray map, the corresponding Z4-linear codes have the same param-
eters and properties (length, dimension, minimum distance, inclusion and du-
ality relation) as those in the usual binary linear Reed-Muller family have been
introduced [2,3]. Specifically, there are bm+1

2 c such families, and these qua-
ternary codes of length 2m−1 are denoted by RMs(r,m), m ≥ 1, 0 ≤ r ≤ m
and 0 ≤ s ≤ bm−12 c. It is known that all Z4-linear Hadamard and extended 1-
perfect codes are included in these Reed-Muller families of codes taking r = 1
and r = m−2, respectively. These codes for r = 1 and r = m−2 were classified
in [4] by using the dimension of the kernel and the rank, respectively. Later,
the corresponding Z4-linear codes for allRMs(r,m) codes were classified in [5]
by using the dimension of the kernel.

Let Sn be the symmetric group of permutations on the set {1, . . . , n},
and let id ∈ Sn be the identity permutation. The group operation in Sn is the
function composition, denoted by ◦. The composition σ1◦σ2 maps any element
x to σ1(σ2(x)). A σ ∈ Sn acts linearly on words of Zn2 or Zn4 by permuting the
coordinates, σ((c1, c2, . . . , cn)) = (cσ−1(1), cσ−1(2), . . . , cσ−1(n)).

Two quaternary linear codes C1 and C2 of length n are said to be mono-
mially equivalent, if one can be obtained from the other by permuting the
coordinates and (if necessary) changing the signs of certain coordinates. They
are said to be permutation equivalent if they differ only by a permutation of
coordinates. The permutation automorphism group of a quaternary linear code
C is defined as PAut(C) = {σ ∈ Sn : σ(C) = C}, where σ(C) = {σ(c) : c ∈ C}.

The permutation automorphism group of a code is an invariant, so it can
help in the classification of some families of codes. Moreover, the automor-
phism group can also be used in decoding algorithms and to describe some
other properties like the weight distribution. The permutation automorphism
group of Z2Z4-linear extended 1-perfect codes, which include the Z4-linear
extended 1-perfect codes, has been studied in [6,7]. The permutation auto-
morphism group of (nonlinear) binary 1-perfect codes has also been studied
before, obtaining some partial results [8–11].

In this paper, we will study the permutation automorphism group of a
family of quaternary linear Hadamard codes, that is, PAut(RMs(1,m)) for
any m ≥ 1 and 0 ≤ s ≤ bm−12 c. For shortness reasons, we will denote this
group by Ps,m = PAut(RMs(1,m)) ≤ Sn, where n = 2m−1, the Hadamard
code by Hs,m = RMs(1,m), and its generator matrix by Gs,m.

Let us recall some fundamental concepts of group theory applied to the
group Ps,m acting on Hs,m. The orbit of a codeword u ∈ Hs,m under the
action of Ps,m is the set Ps,m(u) = {σ(u) : σ ∈ Ps,m}. Note that, since Ps,m
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is the permutation automorphism group of Hs,m, Ps,m(u) ⊆ Hs,m. Moreover,
two codewords u, v ∈ Hs,m are said to be Ps,m-equivalent if there exists a
permutation σ ∈ Ps,m such that σ(u) = v. Since this is an equivalence relation,
Hs,m is partitioned into classes or orbits. If there is only one orbit, it is said
that the action is transitive. The stabilizer of u ∈ Hs,m in Ps,m is the subgroup
Nu
s,m = {σ ∈ Ps,m : σ(u) = u}. Finally, the orbit-stabilizer theorem shows that
|Ps,m| = |Ps,m(u)||Nu

s,m| for all u ∈ Hs,m [12].

2 Quaternary linear Hadamard codes

In this section, we will give a recursive construction for the quaternary linear
Hadamard codes Hs,m, m ≥ 1 and 0 ≤ s ≤ bm−12 c, and a classification of their
codewords.

For every admissible pair s and m, there is a quaternary linear Hadamard
code Hs,m of length 2m−1 and type 2m−2s−14s+1. In [2,3], a general method
to construct the RMs(r,m) codes is described. However, when r = 1, in
order to construct the codes Hs,m, the following recursive construction of their
generator matrices Gs,m over the ring Z4 can also be used:

G0,1 =
(
1
)

;

Gs,m =

(
Gs,m−1 Gs,m−1

0 2

)
if m > 2s+ 1, s ≥ 0; (1)

Gs,m =

(
Gs−1,m−2 Gs−1,m−2 Gs−1,m−2 Gs−1,m−2

0 1 2 3

)
if m = 2s+ 1, s ≥ 1; (2)

where 0, 1, 2 and 3 means the repetition of symbol 0, 1, 2 and 3, respectively.
Using this construction, the rows of order four remain in the upper part

of the generator matrix Gs,m and the rows of order two in the lower part.
From now on, given a Hadamard code Hs,m of type 2γ4δ, we will denote
by {v1, . . . , vδ} the rows of order four in Gs,m and {u1, . . . , uγ} the rows of
order two, maintaining the order given by the construction of Gs,m. Note that
we always have that v2 = (0, 1, 2, 3, 0, 1, . . . , 0, 1, 2, 3), vδ = (0,1,2,3) and
uγ = (0,2).

Lemma 1 The codewords of the quaternary linear Hadamard code Hs,m of
length n = 2m−1, where m ≥ 1 and 0 ≤ s ≤ bm−12 c, can be classified into three
types.

(a) The four codewords 0, 1, 2 and 3.
(b) The codewords with only zeros and twos or only ones and threes. The

number of zeros, ones, twos and threes is in each codeword always n/2.
(c) The codewords with all symbols 0, 1, 2, 3. The number of zeros, ones, twos

and threes is in each codeword always n/4.

Moreover, there are 4 codewords of type (a), 2m−s+1 − 4 of type (b), and
2m+1 − 2m−s+1 of type (c).
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Proof The code H0,1 only contains the four codewords of type (a). The result
for m ≥ 2 can be proved by induction on m. Assume that for any 1 ≤ m′ < m
and s ≥ 0 the code Hs,m′ has its codewords classified into these three types.
On the one hand, if m > 2s+1, the code Hs,m is constructed using matrix (1).
In this case, Hs,m = {(u, u), (u, u+ 2) : u ∈ Hs,m−1}. If u is of type (a), (b)
or (c), then (u, u) is of type (a), (b) or (c), respectively, and (u, u + 2) is of
type (b), (b) or (c), respectively. On the other hand, if m = 2s + 1, the code
Hs,m is constructed using matrix (2). In this case, Hs,m = {(u, u, u, u), (u, u+
1, u+ 2, u+ 3), (u, u+ 2, u, u+ 2), (u, u+ 3, u+ 2, u+ 1) : u ∈ Hs−1,m−2}.
Using the above argument, it is also easy to see that these codewords are of
type (a), (b) or (c).

Finally, we will determine how many codewords of each type there are.
The four codewords of type (a) are in any code Hs,m by construction. The
codewords of order two are of type (b). Any codeword with only ones and
threes can be written as a codeword of order two plus 1. Therefore, since
there are 2γ+δ = 2m−s codewords of order two, we have 2m−s+1 − 4 of type
(b). The total number of codewords is 2m+1, so the rest of codewords must be
of type (c). ut

3 Permutation automorphism groups

In this section, we will establish the order of the permutation automorphism
groups Ps,m for the codes Hs,m. Moreover, we will completely describe these
groups by computing the orbits of the action of Ps,m on Hs,m and by giving
the generators of the group. In order to study these groups, we have computed
them for some fixed s and m using a computer program presented in [13].

It is easy to see that P0,m is isomorphic to the permutation automorphism
group of the binary linear Hadamard code of length 2m−1, which is the gen-
eral affine group GA(m − 1, 2) [14]. Therefore, |P0,m| = |GA(m − 1, 2)| =
2m−1(2m−1 − 1)(2m−1 − 2) . . . (2m−1 − 2m−2), which is equivalent to the ex-
pression given by Theorem 1 or Corollary 2 taking s = 0. The results in this
section will focus on codes with s ≥ 1.

Given two permutations σ1 ∈ Sn1 and σ2 ∈ Sn2 , we define the permutation
(σ1|σ2) ∈ Sn1+n2 , where σ1 acts on the coordinates {1, . . . , n1} and σ2 acts
on the coordinates {n1 + 1, . . . , n1 + n2}. In the same way, we can introduce
the permutation (σ1|σ2| . . . |σk). It is easy to see that if σ ∈ Ps,m−1 then
(σ|σ) ∈ Ps,m, and if σ ∈ Ps−1,m−2 then (σ|σ|σ|σ) ∈ Ps,m. Given a subgroup
of permutations P ≤ Sn, we define the subgroup (P |P ) = {(σ|σ) : σ ∈ P} ≤
S2n and, in general the subgroup (P |P | . . . |P ) = {(σ|σ| . . . |σ) : σ ∈ P}. We
also define the subgroups (id|P ) = {(id|σ) : σ ∈ P}, and (id|P |P 2|P 3) =
{(id|σ|σ2|σ3) : σ ∈ P} when P is commutative.

Let As,m and Bs,m be two subsets of permutations defined as:

As,m = {σ ∈ Sn : σ(c) = c+ wc, wc ∈ {0,1,2,3}, ∀c ∈ Gs,m}, (3)

Bs,m = {σ ∈ Sn : σ(c) = c+ wc, wc ∈ {0,2}, ∀c ∈ Gs,m}. (4)



Char. of the Aut. Group of Quat. Linear Hadamard codes 5

where n = 2m−1. These two subsets will play an important role for determining
the structure of Ps,m.

Lemma 2 Let As,m and Bs,m be the subsets defined in (3) and (4), respec-
tively.

(i) The subsets As,m and Bs,m are subgroups of Ps,m and Bs,m ≤ As,m.
(ii) The subgroups As,m and Bs,m are commutative.

(iii) The subgroups As,m E Ps,m and Bs,m E Ps,m are normal.

Proof Note that the words 0,1,2 and 3 belong to any code Hs,m. Moreover,
any permutation of either As,m or Bs,m fixes the code Hs,m, so As,m ⊆ Ps,m
and Bs,m ⊆ Ps,m. It is easy to check that they are subgroups of Ps,m and
Bs,m ≤ As,m. Furthermore, As,m and Bs,m are commutative. Clearly, for any
σ1, σ2 in As,m or Bs,m, we have that σ1 ◦ σ2(c) = σ2 ◦ σ1(c) = c + wc + w′c
for all c ∈ Hs,m, since σ1(c) = c + wc and σ2(c) = c + w′c, where wc and
w′c ∈ {0,1,2,3}, and the codewords 0,1,2 and 3 are invariant under any
permutation. Finally, the same technique can be used to proof the normality
of both subgroups. Let σ ∈ As,m. For all τ ∈ Ps,m and c ∈ Hs,m, we have
that τ ◦ σ ◦ τ−1(c) = τ(σ(τ−1(c))) = τ(τ−1(c) +wτ−1(c)) = c+wτ−1(c), where
wτ−1(c) ∈ {0,1,2,3}. Thus, τ ◦ σ ◦ τ−1 ∈ As,m. ut

Lemma 3 The subgroup As,m has order n = 2m−1 and is generated by

(i) A0,1 = {id};
(ii) As,m = 〈(As−1,m−2|As−1,m−2|As−1,m−2|As−1,m−2), σ1〉, if m = 2s+ 1;

(iii) As,m = 〈(As,m−1|As,m−1), σ2〉, if m > 2s+ 1;

where σ1 =
∏n/4
i=1(i, i+n/4, i+n/2, i+ 3n/4) and σ2 =

∏n/2
i=1(i, i+n/2).

Proof We will start by showing that the generators belong to As,m. For m = 1,
it is obvious. For m = 2s+ 1, the code is constructed using Matrix (2), so we
consider the coordinates of any codeword as divided into four blocks of the
same size. It is clear that if σ ∈ As−1,m−2, then (σ|σ|σ|σ) ∈ As,m. Moreover,
since σ1 just cycles the four blocks of any codeword, and σ1(c) = c + 3 for
c = (0,1,2,3), we have that σ1 ∈ As,m. For m > 2s+1, the code is constructed
using Matrix (1), so now we consider the coordinates as divided into two blocks.
Since σ2 cycles the blocks of any codeword, the above argument can also be
used to prove this case.

Let X and Y be the groups X = (As−1,m−2|As−1,m−2|As−1,m−2|As−1,m−2)
and Y = (As,m−1|As,m−1). Note that X ∩〈σ1〉 = {id}, since the permutations
in 〈σ1〉 cycle blocks and the ones in X do not. For the same reason, Y ∩〈σ2〉 =
{id}. Moreover, since As,m is commutative by Lemma 2, |〈X,σ1〉| = |X||〈σ1〉|
and |〈Y, σ2〉| = |Y ||〈σ2〉|. Note that σ1 is of order four and σ2 of order two.
Then, by induction on m, it is easy to prove that the subgroups 〈X,σ1〉 ≤ As,m
and 〈Y, σ2〉 ≤ As,m are both of order 2m−1.

By induction on m, As,m is transitive on the set of coordinates {1, 2, . . . , n}:
for m = 1, the group is trivial; assuming that As,m′ is transitive for all 1 ≤
m′ < m, and using the fact that σ1 and σ2 cycle the blocks. Finally, since the
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group As,m is commutative by Lemma 2, and transitive on {1, 2, . . . , n}, the
stabilizer of every point is trivial. Therefore, the order of As,m is n = 2m−1.
ut
Corollary 1 The subgroup Bs,m has order 2m−s−1 and is generated by

(i) B0,1 = {id};
(ii) Bs,m = 〈(Bs−1,m−2|Bs−1,m−2|Bs−1,m−2|Bs−1,m−2), σ2

1〉, if m = 2s+ 1;
(iii) Bs,m = 〈(Bs,m−1|Bs,m−1), σ2〉, if m > 2s+ 1;

where σ1 =
∏n/4
i=1(i, i+n/4, i+n/2, i+ 3n/4) and σ2 =

∏n/2
i=1(i, i+n/2).

Proof By Lemma 2, Bs,m ≤ As,m. Also note that the permutations in As,m are
of order 1, 2 or 4; and the ones in Bs,m are of order either 1 or 2. Moreover, it is
not difficult to check that if σ ∈ As,m and σ is of order 1 or 2, then σ ∈ Bs,m.
Thus |Bs,m| = 2m−2s−12s = 2m−s−1. ut

In order to describe some permutations of Ps,m, we will need the appli-

cation fb(τ) =
∏b
i=1 ((t1 − 1)b+ i, (t2 − 1)b+ i) defined for any transposition

τ = (t1, t2). For any permutation σ that can be expressed as a product of
disjoint transpositions, σ =

∏
τi, we define fb(σ) =

∏
fb(τi). Note that fb(σ)

is a permutation similar to σ, but moving blocks of coordinates of length b.
Moreover, if σ ∈ Sn/b, then fb(σ) ∈ Sn
Lemma 4 Let Ps,m be the permutation automorphism group of the code Hs,m
of length n = 2m−1, where m ≥ 3 and 1 ≤ s ≤ bm−12 c. Then, π1, π2 ∈ Ps,m if
m = 2s + 1 ≥ 5, π3, π4 ∈ Ps,m if m > 2s + 1, and π5 ∈ Ps,m if m > 2s + 2,
where

(i) π1 = (id|σ3|σ2
3 |σ3

3) ∈ Sn with σ3 = (p|p| . . . |p) ∈ Sn/4 and p = (1, 2, 3, 4) ∈
S4;

(ii) π2 = (qm−2|qm−2|qm−2|qm−2) ◦ qm ∈ Sn with q3 = id, qm = f2m−5(q5) ∈
Sn and q5 = (2, 5)(3, 9)(4, 13)(7, 10)(8, 14)(12, 15) ∈ S16;

(iii) π3 = (id|σ4) ∈ Sn with σ4 = (p2|p2| . . . |p2) ∈ Sn/2;

(iv) π4 =
∏n/4
i=1(2i− 1, 2i− 1 + n/2) ∈ Sn;

(v) π5 =
∏n/4
i=1(i, i+ n/2) ∈ Sn.

Proof

(i) By Lemma 3, since p ∈ A1,3, σ3 ∈ As−1,m−2. Thus, it is easy to see that
π1 fixes all the rows of Gs,m except v2, and π1(v2) = v2 + 3vδ. Therefore,
π1 ∈ Ps,m.

(ii) It is easy to check that q5 ∈ P2,5. Moreover, assuming that qm−2 ∈
Ps−1,m−2, we have that (qm−2|qm−2|qm−2|qm−2) ∈ Ps,m by induction.
The permutation qm moves blocks of coordinates of length 2m−5. Thus,
it is easy to see that qm fixes all the rows of Gs,m except vδ−1 and vδ,
qm(vδ) = vδ−1, and qm(vδ−1) = vδ. Therefore, π2 ∈ Ps,m.

(iii) By Corollary 1, since p2 ∈ B1,3, σ4 ∈ Bs,m−1. Moreover, since m > 2s+1,
Gs,m is of the form given by (1). Applying the permutation π3 to the
rows of the form (w,w), we obtain either (w,w) or (w,w+ 2), which are
codewords.
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(iv) Since m > 2s+ 1, Gs,m is of the form given by (1). The permutation π4
fixes all the rows of Gs,m, except uγ = (0,2), since they are of the form
(w,w). Moreover, π4(uγ) = uγ + 2v2 + 2 is a codeword.

(v) Since m > 2s+2, Gs,m is of the form given by (1) and uγ−1 = (0,2,0,2).
The permutation π5 fixes all the rows of Gs,m, except uγ = (0,2), since
they are of the form (w,w). Moreover, π5(uγ) = uγ + uγ−1 + 2 is a
codeword.

ut

The codewords of the quaternary linear Hadamard code Hs,m are parti-
tioned into orbits under the action of its permutation automorphism group
Ps,m. The next Propositions 1 and 2 give us a description of these orbits in
terms of the codewords of type (a), (b) and (c) defined in Lemma 1.

Proposition 1 The codewords of Hs,m of length n = 2m−1, where m ≥ 3
odd and s = m−1

2 , are partitioned into the following orbits under the action of
Ps,m:

(i) four orbits of just one element, each containing one of the four codewords
of type (a);

(ii) one orbit with the codewords of order two and type (b) with 2m−s − 2
elements; another orbit with the codewords of order four and type (b)
with 2m−s − 2 elements;

(iii) one orbit with the codewords of type (c) with 2m+1 − 2m−s+1 elements.

Proof Note that codewords of different types or orders can not be in the same
orbit, so there are at least 7 orbits by Lemma 1. Also note that, in this case,
since m = 2s + 1, the code Hs,m is of type 204s+1. Thus, there are not any
rows of order two in the generator matrix Gs,m. That is, all codewords of type
(b) and order two are of the form 2v for some v of type (c). Equivalently, all
codewords of type (b) and order four are of the form 2v+1 for some v of type
(c). Therefore, since 2σ(v) = σ(2v) and 2σ(v) + 1 = σ(2v + 1) for any σ ∈ Sn
and any word v, it is enough to prove that all codewords of type (c) are in the
same orbit.

Now, we prove that there is only one orbit of type (c), by induction on
m ≥ 3 odd. For m = 3, we can compute the group and see that the result is
true. Assume that there are exactly 7 orbits (with only one orbit of type (c))
for Hs−1,m−2. Note that Hs,m = {(u, u, u, u), (u, u+ 1, u+ 2, u+ 3), (u, u+
2, u, u + 2), (u, u + 3, u + 2, u + 1) : u ∈ Hs−1,m−2}. Therefore, under the
action of (Ps−1,m−2|Ps−1,m−2|Ps−1,m−2|Ps−1,m−2) ≤ Ps,m, all codewords of
Hs,m are partitioned into 28 orbits, 16 of them of type (c). We will show that
the codewords in the 4 orbits coming from the orbit of type (c) inHs−1,m−2 are
in the same orbit under the action of Ps,m. Note that the second row v2 in Gs,m
is in one of these 4 orbits of type (c). Moreover, using π1 = (id|σ1|σ2

1 |σ3
1) ∈ Ps,m

as defined in Lemma 4, since σ1(v2) = v2 + 3, we have that π1, π2
1 and π3

1

move v2 among these 4 orbits. On the other hand, the 12 remaining orbits of
type (c) are of the form (u, u+ 1, u+ 2, u+ 3) or (u, u+ 3, u+ 2, u+ 1) with
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u ∈ Hs−1,m−2 of type (a) or (b). Let x = (x1, x2, x3, x4, . . . , xn) be one of the
codewords in these 12 orbits. Using π2 ∈ Ps,m defined in Lemma 4, we have
that π2(x) = y, where y = (x1, xn4 +1, x 2n

4 +1, x 3n
4 +1, . . . ). By construction,

{x1, xn4 +1, x 2n
4 +1, x 3n

4 +1} = {0, 1, 2, 3}, so y belongs to one of the previous 4
orbits.

It is straightforward to obtain the number of codewords in every orbit by
Lemma 1. ut

Proposition 2 The codewords of Hs,m of length n = 2m−1, where m ≥ 3 and
1 ≤ s ≤ bm−22 c, are partitioned into the following orbits under the action of
Ps,m:

(i) four orbits of just one element, each containing one of the four codewords
of type (a);

(ii) one orbit with the codewords of type (b) and form u =
∑δ
i=1 λivi, λi ∈

{0, 2} with 2s+1 − 2 elements; another orbit with the codewords of type
(b) and form u+ 1 with 2s+1 − 2 elements;

(iii) one orbit with the remaining codewords of order two and type (b) with
2m−s − 2s+1 elements; another orbit with the remaining codewords of
order four and type (b) with 2m−s − 2s+1 elements;

(iv) one orbit with the codewords of type (c) with 2m+1 − 2m−s+1 elements.

Proof By Lemma 1, there are at least 7 orbits such that each one contains
codewords of the same type and order. We will prove the statement by in-
duction on m. Using also Proposition 1, we can assume that this is true for
Hs,m−1 for all m > 2s+1. Note that Hs,m = {(u, u), (u, u+2) : u ∈ Hs,m−1}.

We start by proving point (iv). All codewords of type (c) in Hs,m−1 are
in the same orbit under the action of Ps,m−1. Thus, under the action of
(Ps,m−1|Ps,m−1) ≤ Ps,m, there are 2 orbits with codewords of type (c) inHs,m,
{(u, u) : u ∈ Hs,m−1 of type (c)} and {(u, u + 2) : u ∈ Hs,m−1 of type (c)}.
Using π3 = (id|σ4) ∈ Ps,m defined in Lemma 4, since σ4(v2) = v2 + 2, we have
that π3(v2, v2) = (v2, v2 + 2). Therefore, all codewords of type (c) in Hs,m are
in the same orbit.

For points (ii) and (iii), we just need to prove that there are exactly 2
orbits with all codewords of order two and type (b). Since all codewords of

order two and form u =
∑δ
i=1 λivi, λi ∈ {0, 2}, are constructed from codewords

of type (c), clearly they belong to the same orbit. For the remaining codewords
of order two and type (b), we need to distinguish two cases.

If m = 2s+2, all codewords of order two and type (b) in Hs,m−1 are in one
orbit under the action of Ps,m−1. Thus, under the action of (Ps,m−1|Ps,m−1),
there are 4 orbits with codewords of order two and type (b) in Hs,m: two of
the forms (2v, 2v) and (2v, 2v + 2), and two with the codewords (0,2) and
(2,0). The one with codewords of the form (2v, 2v) gives the orbit of point
(ii). Using π4 ∈ Ps,m as defined in Lemma 4, it is easy to see that all codewords
in the other 3 orbits are in the same orbit under the action of Ps,m. Note that
π4(0,2) = (2v′, 2v′+2) and π4(2,0) = (2v′′, 2v′′+2) for some v′, v′′ ∈ Hs,m−1.
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On the other hand, if m > 2s + 2, the orbits from points (ii) and (iii)
in Hs,m−1 are not empty. Therefore, under the action of (Ps,m−1|Ps,m−1),
there are 6 orbits with codewords of order two and type (b) in Hs,m: four of
the forms (2v, 2v), (2v, 2v+ 2), (u, u) and (u, u+ 2), where 2v and u are from
orbits (ii) and (iii), respectively; and two with the codewords (0,2) and (2,0).
The one with codewords of the form (2v, 2v) gives the orbit of point (ii). Now,
we will see that the codewords in the other 5 orbits are in the same orbit
under the action of Ps,m. Using π5 ∈ Ps,m as defined in Lemma 4, it is easy to
check that π5(0,2) = (2,0,0,2) and π5(2,0) = (0,2,2,0), which are of the
form (u, u+ 2). We can also see that π5(2v, 2v + 2) = (2v, 2v) + (2,0,0,2) =
(2v, 2v) + (2,0,2,0) + (0,0,2,2), which is also of the form (u, u+ 2). Taking
σ2 from Corollary 1, it is easy to see that (id|σ2) ∈ (id|Bs,m−1) ≤ Ps,m and
(id|σ2)(0,2,0,2) = (0,2,2,0), which is again of the form (u, u+ 2).

We will see that the previous 2 orbits can not be joined. Suppose that there
is τ ∈ Ps,m such that u(iii) = τ(u(ii)), where u(ii) is in the orbit of point (ii)
and u(iii) is in the orbit of point (iii). Then, there is v(ii) of type (c) such that
u(ii) = 2v(ii). Since τ(v(ii)) must be of type (c), and u(iii) = 2τ(v(ii)), we have
that u(iii) is in the orbit of point (ii). This gives us a contradiction, so there
are exactly 2 orbits.

It is straightforward to count the number of codewords in every orbit by
Lemma 1. ut

Theorem 1 Let Hs,m be the quaternary linear Hadamard code of length n =
2m−1, where m ≥ 1 and 0 ≤ s ≤ bm−12 c. The order of the permutation auto-
morphism group Ps,m = PAut(Hs,m) is

(i) |P0,1| = 1;
(ii) |Ps,m| = |Ps−1,m−2| · 4s−1 · (22s+2 − 2s+2), if m = 2s+ 1, s ≥ 1;

(iii) |Ps,m| = |Ps,m−1| · 2m−s−2 · (2m−s − 2s+1), if m > 2s+ 1, s ≥ 0.

Proof The code H0,1 is of length 1, so P0,1 = {id}.
For m > 2s + 1, the generator matrix Gs,m is given by (1), so Hs,m =

{(u, u), (u, u + 2) : u ∈ Hs,m−1}. By the orbit-stabilizer theorem, |Ps,m| =
|Ps,m(uγ)||Nuγ

s,m|, where uγ = (0,2). By Proposition 2 (iii), the size of the
orbit that contains uγ is |Ps,m(uγ)| = 2m−s − 2s+1. The permutations in the
stabilizer of uγ must be of the form (ς1|ς2), where ς1, ς2 ∈ Ps,m−1. If ς1 = ς2, we
have that (Ps,m−1|Ps,m−1) ≤ Nuγ

s,m. If ς1 6= ς2, we also have that the permuta-
tions of the form (id|ς2◦ς−11 ) belongs to N

uγ
s,m, because (ς−11 |ς−11 ) ∈ Nuγ

s,m. Since
the codewords of Hs,m are of the form (u, u) or (u, u+ 2), where u ∈ Hs,m−1,
ς2 ◦ ς−11 belongs to Bs,m−1. Thus, N

uγ
s,m = 〈(Ps,m−1|Ps,m−1), (id|Bs,m−1)〉.

Since Bs,m−1 E Ps,m−1 by Lemma 2, then (Ps,m−1|Ps,m−1) and (id|Bs,m−1)
commute. Moreover, it is clear that (Ps,m−1|Ps,m−1) ∩ (id|Bs,m−1) = {id}.
Therefore, |Nuγ

s,m| = |〈(Ps,m−1|Ps,m−1), (id|Bs,m−1)〉| = |Ps,m−1||Bs,m−1|. The
result follows, since |Bs,m−1| = 2m−s−2 by Corollary 1.

For m = 2s + 1, the generator matrix Gs,m is given by (2), so Hs,m =
{(u, u, u, u), (u, u+1, u+2, u+3), (u, u+2, u, u+2), (u, u+3, u+2, u+1) : u ∈
Hs−1,m−2}. By the orbit-stabilizer theorem, |Ps,m| = |Ps,m(vδ)||Nvδ

s,m|, where
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Table 1 Order of Ps,m = PAut(Hs,m) for 1 ≤ m ≤ 8.

HHHHs
m

1 2 3 4 5 6 7 8

0 1 2 23 · 3 26 · 3 · 7 210 · 3 · 7 · 15 . . . . . . . . .
1 23 26 210 · 3 215 · 3 · 7 221 · 3 · 7 · 15 . . .
2 29 · 3 214 · 3 220 · 32 227 · 32 · 7
3 218 · 3 · 7 225 · 3 · 7

vδ = (0,1,2,3). By Proposition 1 (iii), the size of the orbit that contains vδ is
|Ps,m(vδ)| = 22s+2−2s+2. Using the same technique as in the case m > 2s+1,
we have that (Ps−1,m−2|Ps−1,m−2|Ps−1,m−2|Ps−1,m−2) ≤ Nvδ

s,m, and the rest of
permutations in Nvδ

s,m are of the form (id|ς1|ς2|ς3), where ς1, ς2, ς3 ∈ Ps−1,m−2.
Since these permutations (id|ς1|ς2|ς3) applied to any codeword must main-
tain any of the four possible forms described before, ς1, ς3 ∈ As−1,m−2. More-
over, ς1(ς3(v)) = v for all v ∈ Hs−1,m−2. That is, ς1 ◦ ς3 ∈ Nv

s−1,m−2 for all
v ∈ Hs−1,m−2. It is not difficult to see that the intersection of all stabilizers
is {id}. Then, ς3 = ς−11 = ς31 . Equivalently, ς2 = ς−21 = ς21 . Therefore, Nvδ

s,m =
〈(Ps−1,m−2|Ps−1,m−2|Ps−1,m−2|Ps−1,m−2), (id|As−1,m−2|A2

s−1,m−2|A3
s−1,m−2)〉.

Finally, using again the same arguments as in the case m > 2s + 1, |Nvδ
s,m| =

|Ps−1,m−2||As−1,m−2| = |Ps−1,m−2|2m−3 = |Ps−1,m−2|4s−1, by Lemma 2 and
Proposition 3. ut

Corollary 2 Let Hs,m be the quaternary linear Hadamard code of length
n = 2m−1, where m ≥ 1 and 0 ≤ s ≤ bm−12 c. The order of the permuta-
tion automorphism group Ps,m = PAut(Hs,m) is

(i) |P0,1| = 1;
(ii) |Ps,m| =

∏s
i=1 23i(2i − 1), if m = 2s+ 1, s ≥ 1;

(iii) |Ps,m| = |Ps,2s+1|
∏m
i=2s+2 2i−1(2i−2s−1 − 1), if m > 2s+ 1, s ≥ 0.

Theorem 2 Let Hs,m be the quaternary linear Hadamard code of length n =
2m−1, where m ≥ 3 and 1 ≤ s ≤ bm−12 c. The permutation automorphism
group Ps,m = PAut(Hs,m) is generated by

(i) P1,3 = 〈(2, 4), (1, 2)(3, 4)〉;
(ii) Ps,m = 〈(Ps−1,m−2|Ps−1,m−2|Ps−1,m−2|Ps−1,m−2),

(id|As−1,m−2|A2
s−1,m−2|A3

s−1,m−2), π2〉, if m = 2s+ 1, s ≥ 2;
(iii) Ps,m = 〈(Ps,m−1|Ps,m−1), (id|Bs,m−1), π4〉, if m = 2s+ 2, s ≥ 1;
(iv) Ps,m = 〈(Ps,m−1|Ps,m−1), (id|Bs,m−1), π5〉, if m > 2s+ 2, s ≥ 1;

where π2, π4, π5 are defined in Lemma 4.

Proof The same proof applies to all of the cases. By the proof of Theorem 1,
note that without the permutations π2, π4 and π5, we obtain the stabilizer of
the row uγ = (0,2) or vδ = (0,1,2,3). By Propositions 1 and 2, π2, π4 and
π5, are the permutations needed to obtain all of the orbits. ut
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The next proposition gives another characterization of Ps,m in terms of the
codewords of type (c).

Proposition 3 Let Hs,m be the quaternary linear Hadamard code of length
n = 2m−1, where m ≥ 3 and 1 ≤ s ≤ bm−12 c. The permutation automorphism
group of the codewords of type (c) is Ps,m.

Proof Let P ′s,m be the permutation automorphism group of the codewords of
type (c). Since s ≥ 1, the row v2 ∈ Gs,m, and the set of codewords of type (c) is
not empty. It is clear that Ps,m ⊆ P ′s,m. In order to prove that P ′s,m ⊆ Ps,m, we
take any τ ∈ P ′s,m. We have that τ(v1) ∈ Hs,m. Moreover, the rows vi ∈ Gs,m
for all i ∈ {2, . . . , δ} are of type (c), thus τ(vi) ∈ Hs,m. As for the rows
uj ∈ Gs,m for all j ∈ {1, . . . , γ}, since uj + v2 is a codeword of type (c), then
τ(uj + v2) ∈ Hs,m. Therefore, τ(uj) = τ(uj + v2)− τ(v2) ∈ Hs,m. ut

Given a quaternary linear code C of length n = 2m, the inner product
for any two words u, v ∈ Zn4 is defined as: 〈u, v〉 =

∑n
i=1 uivi ∈ Z4, and the

quaternary dual code of C, denoted by C⊥, is defined in the usual way as:

C⊥ = {u ∈ Zn4 : 〈u, v〉 = 0 for all v ∈ C}.

Corollary 3 Let Hs,m be the quaternary linear Hadamard code of length
n = 2m−1, where m ≥ 1 and 0 ≤ s ≤ bm−12 c. Let Es,m = H⊥s,m be its qua-
ternary dual code, which is a quaternary linear extended 1-perfect code. Then,
PAut(Hs,m) = PAut(Es,m).

Proof We observe that for any quaternary linear code C, thus PAut(C) =
PAut(C⊥).

4 Conclusions

Several problems related to quaternary codes can be addressed by computing
the automorphism group of these codes. In this paper, the order of the per-
mutation automorphism group PAut(Hs,m) of a family of quaternary linear
Hadamard codes Hs,m and their duals (quaternary linear extended 1-perfect
codes) is computed. The groups are completely characterized by providing
their generators and also by computing their action on Hs,m

Given any monomial matrix M (with nonzero entries 1 and 3), we can
obtain another code Hs,m ·M , which is monomially equivalent to Hs,m. In
a further work, we will study the permutation automorphism groups of these
equivalent codes, as well as the monomial automorphism group MAut(Hs,m) of
Hs,m. Recall that the monomial automorphism group MAut(C) of C is the set
of all monomial matrices M such that CM = C. It would also be interesting to
generalize these results to all quaternary linear Reed Muller codes RMs(r,m),
m ≥ 1, 0 ≤ r ≤ m and 0 ≤ s ≤ bm−12 c [3].
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