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Abstract  i 

 

NITRIDE SEMICONDUCTORS STUDIED BY ATOM PROBE 

TOMOGRAPHY AND CORRELATIVE TECHNIQUES 
SAMANTHA E. BENNETT 

 
Optoelectronic devices fabricated from nitride semiconductors include blue and green 

light emitting diodes (LEDs) and laser diodes (LDs).  To design efficient devices, the 

structure and composition of the constituent materials must be well-characterised.  

Traditional microscopy techniques used to examine nitride semiconductors include 

transmission electron microscopy (TEM), and atomic force microscopy (AFM).  This 

thesis describes the study of nitride semiconductor materials using these traditional 

methods, as well as atom probe tomography (APT), a technique more usually applied to 

metals that provides three-dimensional (3D) compositional information at the atomic 

scale.  By using both APT and correlative microscopy techniques, a more complete 

understanding of the material can be gained, which can potentially lead to higher-

efficiency, longer-lasting devices.  

 
Defects, such as threading dislocations (TDs), can harm device performance.  An AFM-

based technique was used to show that TDs affect the local electrical properties of nitride 

materials.  To investigate any compositional changes around the TD, APT studies of 

TDs were attempted, and evidence for oxygen enrichment near the TD was observed.  

The dopant level in nitride devices also affects their optoelectronic properties, and the 

combination of APT and TEM was used to show that Mg dopants were preferentially 

incorporated into pyramidal inversion domains, with a Mg content two orders of 

magnitude above the background level. 

 
Much debate has been focused on the microstructural origin of charge carrier localisation 

in InGaN.  Alloy inhomogeneities have often been suggested to provide this localisation, 

yet APT has revealed InGaN quantum wells to be a statistically random alloy.  Electron 

beam irradiation in the TEM caused damage to the InGaN, however, and a statistically 

significant deviation from a random alloy distribution was then observed by APT.  The 

alloy homogeneity of InAlN was also studied, and this alloy system provided a unique 

opportunity to study gallium implantation damage to the APT sample caused during 

sample preparation by the focused ion beam (FIB).   

 
The combination of APT with traditional microscopy techniques made it possible to 

achieve a thorough understanding of a wide variety of nitride semiconductor materials.   
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1  
INTRODUCTION 

Since the mid-1990s, group III-nitride materials (GaN, AlN, InN and their alloys) have 

been the subject of intense research, with these efforts leading to the development of 

optoelectronic devices such as light emitting diodes (LEDs) and laser diodes (LDs)1.  

These III-nitride based devices can emit light over a wide range of wavelengths, from 

visible to ultraviolet (UV), and have been successfully commercialised for mass-market 

applications.  High brightness LEDs emitting brilliant blue, green, or white light are 

manufactured in great quantities, for uses ranging from bicycle lights to full colour 

displays.  Furthermore, the realisation of III-nitride based LDs has ushered in the newest 

generation of high density optical data storage systems, such as the Blu-ray Disc™ 

technology currently employed in home entertainment and computing systems. 

 

Although the applications of LEDs are ever-broadening, their widespread use as energy 

efficient home and office lighting has yet to be achieved, and still requires advances in 

material and device performance2.  Yet the performance of III-nitride based devices may 

be limited by underlying material properties that are not completely understood, even 

after nearly two decades of research.  For instance, there is significant controversy over 

the role of crystalline defects known as threading dislocations (TDs), very high densities 
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of which are found in III-nitride based devices.  Such high TD densities (around 

109 cm-2) would destroy the light-emission from LEDs and LDs made from other 

semiconductors3, yet III-nitride materials seem to possess a unique feature, or set of 

features, rendering the material largely immune to the harmful effects of TDs.  To 

unravel this apparent anomaly, and to overcome other challenges currently inhibiting 

III-nitride based device performance, an understanding of the material‟s structure at the 

nanoscale is crucial.   

 

In this thesis, a novel characterisation technique known as atom probe tomography 

(APT) has been used alongside more conventional microscopy techniques, such as 

atomic force microscopy (AFM) and transmission electron microscopy (TEM), to study 

the nanostructure of III-nitride materials.  The investigations reported in this work can 

be divided into three main areas: 

 studies of defects, 

 studies of alloy homogeneity, 

 and studies of a full device structure. 

 

During the course of these investigations, various materials questions were explored.  

Throughout this work, however, the overarching aim was to evaluate the capabilities of 

the APT technique, as applied to III-nitride research.  

 

In Chapter 2, the characterisation techniques employed in the remainder of this work are 

described, focusing specifically on how best to apply them to the study of III-nitride 

materials.  The next six chapters report experimental results obtained in the three areas 

listed above.  Each experimental chapter is self-contained, and begins with a literature 

survey on specific areas of relevance.  Chapters 3 to 5 focus on defects.  Chapter 3 

describes AFM and TEM studies of TDs, after which, in Chapter 4, APT characterisation 

of TDs is attempted.  In Chapter 5, small Mg-rich defects found in p-type GaN are 

investigated using both APT and TEM, enabling a comparison of the information gained 

about the defects by both techniques.  Chapters 6 and 7 then focus on alloy 

homogeneity.  Chapter 6 returns to the question of light emission from III-nitride 

devices, by using APT to investigate the structural origins of charge carrier localisation in 

InGaN, with particular attention paid to the possibility of localisation at non-random 

fluctuations in indium content.  In Chapter 7, the first APT studies of the alloy InAlN 
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are reported, again with a focus on possible indium clustering.  Chapter 8 then presents 

an APT study of a full LD structure, with data collected from n-type layers, the InGaN 

active region, and p-type layers in the structure.  Finally, concluding remarks and future 

directions for research are presented in Chapter 9. 

 

The remainder of this chapter will present the basic properties of III-nitrides, followed 

by a discussion of heteroepitaxial growth, and an introduction to optoelectronic devices 

based on III-nitrides.  Finally, the technique of atom probe tomography will be 

introduced, as it is still a niche technique, and therefore unfamiliar to many scientists. 

1.1. MATERIAL PROPERTIES OF III-NITRIDES 

1.1.1. CRYSTAL STRUCTURE 

Although the III-nitrides crystallise in both the wurtzite (WZ) and zinc blende (ZB) 

structures, the WZ structure is thermodynamically more stable, and has therefore been 

the subject of most research4.  As the samples used in this work are all of the WZ 

structure, the ZB structure will not be discussed, although further information can be 

found in the review by Orton and Foxon4.  The WZ structure consists of alternating 

biatomic close-packed (0001) planes of group III atoms (Ga, In, or Al) and N atoms, 

stacked in an ABABABAB sequence.  Figure 1.1 shows a schematic diagram of a unit cell 

of WZ GaN, viewed in projection along the [0001] direction, indicating the atomic 

positions and principal crystallographic directions5.  The lattice parameter, a, is labeled, 

and the plane spacing in the [0001] direction is defined by the lattice parameter, c.  The 

parameter u describes the displacement of the anion along the [0001] axis, or „c-axis‟, and 

has been found to be 0.377 for GaN6, deviating from the ideal value of 3/8, or 0.375.  

 

Figure 1.1. From 

Cherns5, a schematic 

diagram of one unit 

cell of WZ GaN, 

viewed along the 

[0001] direction.  The 

lattice parameter, a, is 

labeled. 
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Figure 1.2 shows a schematic diagram of the GaN WZ structure, viewed along the [1̄1̄20] 

direction, with the c lattice parameter labeled5.  The diagram illustrates GaN grown along 

the [0001] direction.  Layers grown in this orientation are described as „Ga-polar‟.  Most 

GaN grown by metal-organic vapour phase epitaxy (MOVPE) is Ga-polar, with the 

alternative structure being N-face polarity, in which the growth proceeds along the [0001̄] 

direction. 

 

Figure 1.2. From Cherns5, a schematic diagram of the WZ GaN structure, viewed 

along the [1̄1̄20] direction, with the lattice parameter, c, labeled.  This structure 

depicts Ga-polar GaN.   

The room temperature lattice parameters for the III-nitride materials, according to a 

recent review by Vurgaftman and Meyer7, are summarised in table 1.1.  There is some 

debate regarding these values, and this controversy has recently been discussed by 

Moram and Vickers8. 

Table 1.1. Lattice parameters for the III-nitride materials7.  

Material a (Ǻ) c (Ǻ) 

GaN 3.189 5.185 

AlN 3.112 4.982 

InN 3.545 5.703 

By mixing two III-nitride materials, a binary nitride alloy can be formed.  For instance, 

InGaN is an alloy commonly used in the active region of LED and LD devices.  To 

Substrate 
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specify the amount of In present in the alloy, the notation InxGa1-xN is used, where x 

denotes the fraction of In atoms that substitute for Ga atoms on group III lattice sites.  

The lattice parameters for InxGa1-xN and the other binary nitrides can be approximated 

using a linear interpolation between the two components, according to Vegard‟s law: 

  a = (1-x) aGaN + x aInN 

and  

  c = (1-x) cGaN + x cInN 

 

It should be noted that some theoretical work has suggested that for InGaN layers with 

compositions close to 50 %, there is a significant deviation from Vegard‟s law9, yet in this 

work the In content of the samples studied does not exceed 30 %, so the preceding 

equations should suffice to estimate the lattice parameters.  Consensus as to a possible 

deviation from Vegard‟s law for InAlN has yet to be reached in the scientific community, 

although theoretical studies have predicted a slight deviation9,10. 

1.1.2. POLARISATION 

Due to the partially ionic nature of the bonding in III-nitrides, and the absence of 

inversion symmetry in the WZ structure (the [0001] and [0001̄] directions are 

crystallographically distinct), the materials exhibit a „spontaneous polarisation‟, with a net 

dipole along the c-axis.  In addition to this spontaneous polarisation, the III-nitrides 

show a large piezoelectric response to elastic strain, resulting in a „piezoelectric 

polarisation‟ when strained.  In a theoretical study, Bernardini et al.11 found that the 

spontaneous polarisation in III-nitrides is very large, compared with other 

semiconductors, and that the absolute values for the piezoelectric constants are up to ten 

times larger than those found for other III-V and II-VI compounds.  Thus, polarisation 

effects can have a significant impact on the optical properties of structures fabricated 

from the III-nitrides, such as quantum wells.  This effect will be discussed further in 

section 1.3.1. 

1.1.3. BAND STRUCTURE 

The III-nitrides are direct band gap semiconductors, making them suitable materials for 

optoelectronic devices, as light emission can be realised via recombination of electrons 

and holes without the need for phonon mediation.  Figure 1.3 shows the band gaps of 

GaN, AlN, and InN (green circles), plotted against their a lattice parameter.  To illustrate 

the wavelengths of light produced at the various band gap energies, the visible colours in 
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the solar spectrum are shown at the right of the figure.  The widely acknowledged band 

gap energies of GaN and AlN are 3.51 eV and 6.25 eV, respectively7.  Recently, the 

accepted value for the band gap energy of InN has been revised, from near 2 eV, to 

0.78 eV7.  With band gap energies ranging from 0.78 eV to 6.25 eV, devices made from 

alloys of III-nitride materials can in theory be designed to emit light of any colour in the 

visible spectrum, and into the infra-red and UV.  The band gaps of binary nitride alloys 

vary continuously between the values of the end members, as illustrated with black lines 

in figure 1.3.   

 

Figure 1.3. From Wu12, a diagram 

showing the band gaps of AlN, 

GaN, and InN (green circles), as a 

function of their a lattice constant.  

The variations of bandgap with 

composition for the binary nitride 

alloys are indicated with black 

lines.  For comparison, the visible 

colours in the solar spectrum are 

shown on the right of the diagram.   

The composition dependences of the band gaps for the binary nitride alloys are assumed 

to follow a simple quadratic form, as stated by Vurgaftman and Meyer7: 

  Eg(A1-xBx) = (1-x)Eg(A) + xEg(B) – x(1-x)C   

 

where Eg is the band gap energy, and C is defined as the bowing parameter, which 

describes the deviation from a linear interpolation between the band gap values of the 

two end members, A and B.  The non-linearity evident in the black lines in figure 1.3 

illustrates this bowing.  Although the bowing parameter for InGaN is accepted to be very 

close to 1.4 eV, there is little consensus on the value for either AlGaN or InAlN.  After a 

review of the literature, Safta et al.13 suggested the value for the AlGaN bowing parameter 

was likely to be near 0.7 eV for unstrained material, although they noted that reported 

values ranged between -0.8 and 2.6 eV.  For InAlN, bowing parameters of between 2.2 

and 6 eV have been stated in the literature14.  This wide range in the reported value may 

be due to a lack of high quality material.  Further information about InAlN can be found 

in a recent review by Wu12, in which the author reported the InAlN bowing parameter to 
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be near 5 eV.  With such uncertainty as to the bowing parameters for AlGaN and InAlN, 

the only reliable representation of the bowing parameter in figure 1.3 is that of InGaN. 

1.2. HETEROEPITAXIAL GROWTH OF III-NITRIDES 

The homoepitaxial growth of III-nitride materials is rare, due to the difficulties faced in 

synthesising high quality bulk single crystal substrates15.  Efforts to produce GaN 

substrates are hindered by the extremely high vapour pressure of nitrogen required in 

most growth techniques.  Although high temperature, high pressure growth has been 

successfully used to produce single crystal GaN substrates15,16, these are currently very 

costly.  In the absence of bulk substrates, nearly all III-nitride based devices realised to 

date have been grown on foreign substrates.  This heteroepitaxial growth is most often 

achieved using c-plane sapphire (α-Al2O3) substrates, as was the case for all samples 

examined in this work.  Alternative substrates include both single crystal SiC and Si15, 

with the latter being extremely attractive due to the low cost of Si wafers, and the 

possibility to integrate III-nitride device fabrication with existing Si-based electronics 

manufacturing, to reduce the cost of such devices.   

 

Heteroepitaxial growth has been fruitfully employed in spite of the large differences in 

lattice constants and thermal expansion coefficients between the substrates and the 

III-nitride thin films15.  In the case of GaN on sapphire, the 112̄0> direction of the 

GaN is oriented parallel to the 11̄00> direction of the sapphire, which results in a lattice 

mismatch of approximately 16 %.  This strain is accommodated by a network of misfit 

dislocations at the substrate/film interface.  Figure 1.4 shows these misfit dislocations, 

marked with stars, in a Fourier filtered high resolution TEM image17.     Extremely high 

densities of TDs (109 to 1011 cm-2) are also thought to arise due to strain, although they 

do not relieve it15.  Three types of TDs are observed: pure edge, or „a-type‟ (Burgers 

vector, b = 1/3 112̄0>), pure screw, or „c-type‟ (b = <0001>), and mixed, or „c+a type‟ 

(b = 1/3 112̄3>).  Further discussion of the origin and effect of TDs will be presented 

in section 3.2.   
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Figure 1.4. From 

Ruterana and Nouet17, a 

Fourier filtered high 

resolution TEM image of 

misfit dislocations 

(marked with stars) at 

the GaN on sapphire 

interface. 

Finally, it should be noted that GaN grown directly on sapphire at high growth 

temperatures results in isolated islands, and cannot produce material suitable for devices.  

To achieve reasonable quality material, a number of methods have been developed  (and 

are reviewed by Gibart15), with one important step being the use of a low temperature 

buffer layer (or nucleation layer) of GaN at the first stage of growth.  GaN material can 

subsequently be grown at a high temperature on the low temperature buffer layer, and 

the resulting material can be suitable for devices.  The various growth methods used for 

the III-nitride samples studied in this work will be described in section 2.1.  

1.3. DEVICES BASED ON III-NITRIDES 

1.3.1. LIGHT EMITTING DIODES 

Much of the driving force for III-nitride research has stemmed from their application in 

LED devices.  Akasaki18 reviewed the key breakthroughs in the history of III-nitride 

based LED and LD devices, highlighting the realisation of the first blue/UV LED in 

1989.  The first successful III-nitride based LED was a homojunction device, consisting 

of a junction between p-doped and n-doped regions of a single material18.  Schematic 

diagrams of the band structure of a homojunction under zero bias and forward bias are 

shown in figures 1.5a and 1.5b, respectively19.  Under forward bias, electrons (closed 

circles) in the conduction band of the n-type region diffuse towards the p-type region, 

and holes (open circles) in the valence band of the p-type region similarly diffuse towards 

the n-type region.  These minority carriers can then radiatively recombine with majority 

carriers (electrons in the n-type region, and holes in the p-type region), resulting in the 

emission of a photon with energy close to that of the band gap.  Alternatively, 
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non-radiative recombination can occur, in which energy is released as a phonon.  

Typically, non-radiative recombination is caused by the presence of electronic states 

within the band gap, due to impurities and crystal defects, such as TDs19.   

 

To maximise the probability that carriers will recombine radiatively, the carrier density 

can be increased with the use of a narrower band gap material between the p- and n-type 

layers.  By confining the charge carriers to a limited volume, known as the „active region‟, 

the lifetime of carriers prior to recombination (radiative lifetime) is reduced, and the 

efficiency of the device is thereby increased.  This type of device is termed a double 

heterostructure, and figure 1.5c illustrates the confinement of charge carriers in the active 

region, when the device is under forward bias.  InGaN has been used extensively as the 

active region in GaN-based LEDs.  When the thickness of this active region falls below 

about 10 nm, quantum mechanical effects become significant, acting to quantise the  

energy levels within the layer, which can then best be described as a 

„quantum well‟ (QW)19.  This quantisation of energy levels can be applied to tune the 

emission wavelength of the device by varying the thickness of the QW.   

 

Figure 1.5. After Schubert19, schematic 

diagrams of the band structure, with 

electrons and holes shown as closed and 

open circles, respectively.  The 

conduction band energy (EC), Fermi 

energy (EF), and valence band energy 

(EV) are labeled.  (a) Homojunction 

under zero bias.  (b) Homojunction 

under forward bias.  The recombination 

of an electron and a hole results in 

emission of a photon, of energy hν.  

(c) Double heterostructure under 

forward bias.  The charge carriers are 

confined to the central active region.   

 

 

 

In a nitride double heterostructure device, the lattice mismatch between the QW and the 

surrounding material leads to strain in the QW, which gives rise to an internal electric 

(a) 

(b) 

(c) 
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field.  The electric field causes bending of the band structure, which lowers the transition 

energy, leading to a „redshift‟ of the emission wavelength.  This effect, known as the 

quantum confined Stark effect (QCSE), is illustrated in figure 1.6.  Electrons and holes 

are shown as closed and open circles, respectively, and the conduction band (CB) and 

valence band (VB) are labeled for clarity.  The QCSE results in a shift of the transition 

energy from that labeled ΔEg,QW1 to that labeled ΔEg1, which is an amount approximately 

equal to the sum of the shifts of the first electron energy level (ΔEe1) and the hole energy 

level (ΔEh1), caused by band bending.  As the thickness of the QW increases, the effect of 

the QCSE becomes more pronounced, leading to further lowering of the transition 

energy, labeled ΔEg2.  Additionally, the carriers are spatially separated, which increases the 

radiative lifetime, thus decreasing the device efficiency. 

 

Figure 1.6. After Zhu20, a schematic diagram, illustrating the QCSE in a thin and a 

thick QW.  Electrons and holes are shown as closed and open circles, 

respectively, and the conduction band (CB) and valence band (VB) are labeled.  

The internal electric field leads to band bending and acts to spatially separate the 

charge carriers.  The effect of band bending is to decrease the transition energy 

(from ΔEg,QW1 to ΔEg1).  The QCSE becomes more pronounced as the QW 

thickness is increased, resulting in a further decrease of the transition energy 

(labeled ΔEg2). 

VB 

CB 

QW1 without 

electric field 

QW1 with 

electric field 

QW2 with electric field  

 (thicker well) 

ΔEg,QW1 ΔEg1 

ΔEe1 

ΔEh1 

ΔEg2 
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1.3.2. LASER DIODES  

The first III-nitride based injection LD was reported by Nakamura et al.21 in 1996.  The 

authors used an InGaN multiple QW (MQW) active region, into which charge carriers 

were injected under forward bias, just as described in the last section for LED devices.  

Whereas LEDs emit photons in a process known as spontaneous emission, LD devices 

also utilise the phenomenon of stimulated emission.  In this process, the transit of a 

photon causes an excited electron to decay (due to the effect of the photon‟s 

electromagnetic field), producing another photon traveling in the same direction.  The 

two photons are coherent, having the same polarisation and phase.  Stimulated emission 

thereby leads to gain in the active region, given sufficient injection of carriers.  The 

photons must also be confined within the active region to maintain the stimulated 

emission.  This confinement can be realised with cladding layers (using a material with a 

lower refractive index) on either side of the active region.  If the amplification due to 

stimulated emission is greater than the loss due to absorption, then the diode is said to 

„lase‟. 

 

Figure 1.7 shows the structure used by Nakamura et al.21 to create a violet-emitting LD.  

The active region consisted of 26 periods of In0.2Ga0.8N/In0.05Ga0.95N MQWs.  

Confinement of the emitted photons was achieved with the use of Al0.15Ga0.85N cladding 

layers.  Under forward bias, this structure was observed to lase with an emission 

wavelength of 417 nm, above a threshold current of 1.7 A.  

 

Figure 1.7. From Nakamura et al.21, a schematic diagram of the structure of a 

violet-emitting LD with an InGaN MQW active region.   
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1.4. ATOM PROBE TOMOGRAPHY 

Precise nanostructural characterisation is becoming ever more important, due to 

miniaturisation trends observed in many areas of research and commercial device design.  

The technique of atom probe tomography (APT) can provide three dimensional (3D) 

compositional information at the atomic scale with very high sensitivity, and with a field 

of view currently in excess of 100 nm × 100 nm × 1 µm on the latest instruments22.  

 

The development of the technique began with work by Müller23, who created the field 

electron emission microscope in 1935.  Twenty years later, atomic resolution was 

achieved with the field ion microscope (FIM), and the later addition of a time-of-flight 

mass spectrometer made it possible to chemically identify individual ions24.  Finally, with 

the development of the position-sensitive atom probe (PoSAP) in 1988 by Cerezo et al.25, 

true 3D compositional data were obtained.  Recently, the advent of the local electrode 

atom probe (LEAP) has provided considerably increased data collection rates, making it 

possible to analyse much greater volumes of material26.  Further description of the LEAP 

instrument and the APT technique will be provided in section 2.5. 
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2  
TECHNIQUES 

2.1. SAMPLE GROWTH 

The samples studied in the experimental chapters of this work have either been grown by 

metal-organic vapour phase epitaxy (MOVPE) in Cambridge or by molecular beam 

epitaxy (MBE) at Sharp Laboratories of Europe.  Although the specific growth 

conditions for each sample will be given at the start of each chapter, the following 

sections provide an overview of these growth techniques. 

2.1.1. MOVPE GROWTH 

In MOVPE growth, gaseous precursor molecules are transported using a carrier gas to a 

heated substrate where they react to form a crystalline film with an epitaxial relationship 

to the substrate27.  For the growth of III-nitrides, the most commonly used group-III 

metal-organic precursors are trimethylgallium (TMG, Ga(CH3)3), trimethylindium 

(TMI, In(CH3)3), and trimethylaluminium (TMA, Al(CH3)3).  Liquid TMG and TMA, and 

a solution containing TMI are stored in bubblers, where the temperature is carefully 

selected to control the vapour pressure over the source material27.  A carrier gas (usually 

nitrogen or hydrogen) flows through the bubbler, saturating with vapour from the 

group-III source and transporting this vapour to the substrate.  At the substrate, the 
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group-III precursor reacts with a nitrogen source, most commonly15 ammonia (NH3).  

Although intermediate reactions at the substrate may not be completely understood, the 

net reaction to produce crystalline GaN is as follows27:  

  Ga(CH3)3 (g) + NH3 (g)  GaN (s) + 3CH4 (g) 

 

The MOVPE samples studied in this work were grown in Cambridge by 

Dr. Rachel Oliver and Dr. Menno Kappers, using a 6 × 2 inch Thomas Swan 

close-coupled showerhead reactor.  A schematic28 of this type of reactor can be seen in 

figure 2.1.  The showerhead design has a large number of tiny outlet tubes through which 

the gases flow to the substrate.  By using half of these tubes for metal-organics and half 

for ammonia, the two precursors are physically separated until they are close to the 

substrate, thus minimising unwanted gas-phase reactions. 

 

Figure 2.1. From 

Thrush28, schematic 

of a 6 × 2 inch 

Thomas Swan close-

coupled showerhead 

MOVPE reactor.  

The metal-organic 

precursors and the 

NH3 are stored in 

separate chambers 

before they are 

combined and react 

at the substrate.  

Parameters that can be tuned to alter the MOVPE growth include the substrate 

temperature, reactor pressure, flow rate of the gases into the reactor, and the ratio of 

partial pressures of group-V to group-III precursors, known as the V/III ratio.  

Typically, high temperatures are required for GaN growth (1000 ºC – 1100 ºC), which 

increases the cracking efficiency of the ammonia precursor, as well as allowing higher 

surface mobilities to be obtained, so that the film surface roughness can be minimised 

and the point defect density kept low.  At these high temperatures, a high V/III ratio 

(104 – 105) prevents loss of the volatile nitrogen species, and stabilises the (0001) surface.  
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By altering the growth conditions in the reactor, changes can be induced in a growing 

GaN film: for instance, in the „3D to 2D‟ growth transition, altering the temperature, 

pressure and V/III ratio induces 3D GaN islands on sapphire to coalesce and growth to 

then continue as a 2D film29.  This transition has been found to decrease the TD 

density30, and illustrates the power that the MOVPE grower has to influence the resultant 

film quality.   

 

High quality InGaN is much harder to grow than GaN due to the fact that InN 

dissociates at temperatures lower than the standard GaN growth temperature.  InGaN 

growth must be performed below 850 ºC, resulting in slow surface diffusion that can lead 

to increased point defect and impurity incorporation.  The incorporation of In strongly 

increases with decreasing growth temperature31,32, which indicates that In incorporation is 

limited by evaporation of the indium species from the surface.  It has been shown that 

high growth rates can „trap‟ the In within the growing layer27, leading to an increased In 

content of the film.  The In content is also sensitive to the choice of carrier gas: using 

hydrogen substantially decreases the In incorporation, possibly by slowing the reaction 

between TMI and ammonia33.  Thus, nitrogen is used throughout this work as the carrier 

gas for InGaN growth.   

 

In MOVPE growth, n-type doping is straightforward, with silicon being the typical 

dopant.  Silane (SiH4) is used as the precursor, and dopant densities of 1 × 1017 to 

2 × 1019 cm-3 can be achieved without difficulty27.  In this work, p-type GaN is realised 

using Mg dopants provided by a bis-cyclopentadienyl magnesium (Cp2Mg) source.  The 

Cp2Mg used is a solid, which makes it difficult to control the amount of Mg precursor 

supplied, as compared with the liquid metal-organics.  An additional difficulty arises 

during MOVPE growth, as Mg-H acceptor complexes form, which passivate the 

acceptor.  To break this bond, a high temperature hydrogen-free annealing step is used34.  

Typically p-type carrier densities are much lower than in n-type GaN.  P-type doping of 

GaN will be discussed further in section 5.2.1. 

2.1.2. MBE GROWTH 

MBE is an ultra-high vacuum technique (with base pressures from 10-7 to 10-10 Torr) that 

results in high purity epitaxial films with precise control of composition4.  Unlike 

MOVPE, which uses precursors, MBE uses molecular beams of atoms that are directed 
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onto a heated substrate.  These beams can be switched on and off nearly instantaneously 

with mechanical shutters, enabling control of composition down to a single monolayer.  

This precise growth can be monitored with the use of reflection high-energy electron 

diffraction (RHEED)35, giving real-time feedback on film growth.  Although MBE is 

usually considered to be a more precise, yet slower technique, in the growth of nitride 

materials, the low pressures used in MBE can lead to low surface mobilities.  This low 

mobility can cause poor surface roughness, making the controlled growth of layers with 

precise thickness difficult. 

  

In MBE, beams of group III atoms are introduced using high purity metallic effusion 

cells35.  For the supply of atomic nitrogen, a variety of methods have been used, with the 

two most popular being nitrogen plasmas and ammonia.  In what is known as plasma-

assisted MBE, or PAMBE, the strong bond of the N2 molecule can be dissociated in a 

plasma environment.  The most successful PAMBE techniques are electron cyclotron 

resonance36,37 and radio-frequency38 (RF-PAMBE) plasma sources.  As in MOVPE, 

thermal dissociation of ammonia can be used to supply nitrogen in MBE systems, 

although the cracking efficiency can be low at typical MBE growth temperatures of 

between 650 ºC and 800 ºC.  This method is sometimes known as „reactive MBE‟.   

 

The MBE samples studied in this work were grown at Sharp Laboratories of Europe 

using a combination of RF-PAMBE and reactive MBE in a Veeco V80 MBE system.  

The Ga, In and Al were supplied using effusion cells.  For RF-PAMBE, the N2 was 

dissociated using a Veeco UNI-Bulb RF Plasma Source, and for the reactive MBE, the 

NH3 was thermally cracked at the substrate surface.  All MBE samples were grown on 

ultra-low dislocation density (ULD) GaN templates supplied by Lumilog.  These 

templates are comprised of 10 µm of MOVPE-grown GaN on a sapphire substrate.  The 

TD density was specified by the supplier to be below 8 × 107 cm-2.   

2.2. AFM 

Atomic force microscopy (AFM) methods offer a wide variety of characterisation tools 

for the study of mechanical, electrical and magnetic properties of surfaces.  These 

different methods can be described broadly as microscopy techniques in which a small, 

sharp physical probe, known as a tip, is rastered across a specimen surface to acquire an 
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image.  The tip is located on the end of a cantilever, which is deflected by interactions 

with the surface as it is scanned.  Tip-sample interactions include attraction due to 

Van der Waals forces and repulsion due to overlap of the electron clouds of the surface 

and the tip.  The deflection is measured with a laser reflected off the cantilever surface, 

and a feedback loop is often used to maintain a constant tip-surface interaction.  In this 

work, two types of AFM, intermittent-contact mode topographic imaging and Kelvin 

probe force microscopy (KPFM), were used to image the topography and surface 

potential of our samples, respectively.  

 

2.2.1. TOPOGRAPHIC IMAGING 

AFM is a non-destructive technique with which to study semiconductor surfaces.  In this 

work, a Veeco Dimension 3100 AFM with RTESP tips (with a nominal apex radius of 

8 nm) was used to acquire surface topography images, information that is especially 

useful in the study of TDs, which terminate at surface pits.  The AFM can be operated in 

several modes, including contact mode, intermittent-contact mode (or TappingMode™) 

and non-contact mode39.  All images taken in this work used TappingMode™, in which 

the tip at the end of a cantilever is driven by a piezo-oscillator near its resonant 

frequency.  As the tip is brought close to the sample, the interaction between the tip and 

the sample leads to a force gradient that changes the cantilever‟s resonant frequency, and 

therefore alters the vibration amplitude (for a constant drive frequency)40.  In addition, 

the tip is positioned so that it makes contact with, or „taps‟, the surface at the bottom of 

each oscillation.  This contact results in damping of the oscillation amplitude.  As the tip 

is scanned across the surface (using voltages applied to a piezoelectric crystal), the 

tip-sample distance will change.  A feedback loop is used to respond to the resulting 

changes in the vibration amplitude by moving the tip vertically so that the amplitude, and 

therefore the tip-sample distance, is kept constant as far as is possible.  In this way, a map 

of the surface topography can be obtained39.  Figure 2.2 shows a schematic of an AFM 

setup.     

 

Vertical resolution in AFM is excellent, limited only by the vertical scanner movement 

precision, which is usually sub-Ǻngstrom, and noise from the surrounding environment.  

The lateral resolution depends upon the radius of the tip apex, with smaller tips being 

able to achieve better lateral resolution.  In practice, tips with radii less than 10 – 20 nm 



Techniques  18 

 

 

are used, and these can detect the existence of features smaller than this radius, although 

the relative error in the feature width will be large.  It should be noted that the images 

collected must contain sufficient pixel densities to achieve this resolution, and that the tip 

can blunt or pick up debris during the scan, which will reduce the lateral resolution.  

Additionally, the tip shape can affect the vertical resolution, if gaps between structures 

are so narrow that the tip cannot penetrate to the bottom of the gap39.   
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Figure 2.2. From Oliver41, schematic of an AFM setup.  The tip (at the end of a 

cantilever) is scanned across a sample.  The cantilever deflection is measured 

with a laser, and a feedback system runs between the computer (PC) and the 

piezoelectric motor (x,y and z motion) to continuously adjust the height of the tip 

so that the amplitude of oscillation of the cantilever remains constant.  The 

controller is used to manage the data.  

2.2.2. KPFM 

KPFM uses metal-coated tips to investigate the surface potential of a material.  In 

KPFM, the tip initially scans the surface in TappingMode™ to record the changes in 

surface topography.  The tip is then re-scanned along the same line, but at a small 

distance away from the surface (this is known as a lift scan), following the topographic 

contour from the first scan.  During the lift scan, no mechanical vibration is applied to 
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the cantilever.  Instead, a voltage of magnitude Vac is applied, giving rise to an oscillating 

force as follows: 

  F = dC/dz (ΔVdc Vac) 

 

where dC/dz is the tip-sample capacitance gradient and ΔVdc is the difference in potential 

between the tip and the sample.  The applied AC bias will vibrate the cantilever unless 

ΔVdc is zero, in which case the surface potential and applied potential are the same.  

Therefore, by using a feedback circuit to adjust the potential applied to the tip so that the 

cantilever remains still, a map of the surface potential can be obtained39.  In this work, 

KPFM scans were taken using Pt/Ir coated tips on the Veeco Dimension 3100 AFM.   

 

As KPFM is based on a lift scan, it is important that the topographic scan has accurately 

tracked the surface, and that the sample or scanner has not drifted significantly between 

the two scans.  Additionally, artefacts in KPFM measurements can be related to the 

topography of the sample surface.  During the lift-scan, the tip-sample distance is 

assumed to be constant; however, the tip-sample capacitance gradient may depend on the 

topography.  For instance, above a surface depression, the proportion of tip-surface area 

close to the surface may be increased39.  In this work, attempts were made to evaluate 

KPFM data to assess the effect of topography-related artefacts.  

2.3. TEM 

The family of transmission electron microscopy (TEM) techniques is based on the elastic 

and inelastic interaction between high energy electrons (typically 100 – 400 keV, 

produced by either thermionic or field emission) and a sample that has been thinned to 

the point of electron transparency.  A wide range of information can be obtained, 

including structural, compositional, and electronic properties of the sample.  The 

following sections describe the method of TEM sample preparation used in this work, 

followed by the specific TEM-based methods employed to characterise our 

semiconductor samples. 
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2.3.1. TEM SAMPLE PREPARATION 

TEM samples must be thin, first and foremost, to permit electron transparency, but also 

to minimise the problems arising from projection of the volume of the sample into a 

2D image42.  For the techniques used in this work, suitable thicknesses were in the range 

of 50 to 100 nm.  Such thinning of the semiconductor wafers was realised using a 

complex and delicate process, which is not suitable for large areas.  Cross-sectional TEM 

samples, therefore, can only assess about one part in 109 of the surface area of a typical 

2 inch GaN wafer43.  Although these images are often highly informative, properties 

deduced about the entire GaN film from such small sample areas can prove inaccurate if 

the film displays inhomogeneities.  It can therefore be important to verify conclusions 

based on cross-sectional TEM using complementary characterisation techniques, where 

possible.  

 

TEM samples of nitride epitaxial layers can fall into one of two categories, depending on 

their orientation: those made thin perpendicular to the growth direction are known as 

cross-sectional samples, and those thinned parallel to the growth direction are known as 

plan-view samples.  All of the TEM samples prepared in this work were cross-sectional 

samples.  These were prepared using a succession of steps, very similar to those used by 

Cherns5.  The method can be described as follows: an area near the centre of a wafer was 

selected, avoiding the regions nearest the edge that are more likely to suffer from growth 

inhomogeneities.  The wafers were cleaved into 3 mm × 3mm pieces with their edges 

parallel to the [112̄0] and [11̄00] directions, using a diamond scribe.  If the sample needed 

to be investigated along both the [112̄0] and [11̄00] zone axes, the halves of the sandwich 

were rotated 90 degrees with respect to each other.  This allows a range of 

crystallographic directions to be accessible in the TEM with minimal tilt.  After cleaning 

the pieces in acetone and absolute ethanol, the two GaN faces were glued together with 

Araldite® epoxy to make a sandwich structure.  The epoxy was set by heating to about 

100 ºC for 30 minutes.   

 

The sandwich structure was manually ground to create parallel sides, after which it was 

mounted with wax on a South Bay Technology™ Tripod Polisher and the direction to be 

thinned was polished using diamond impregnated mats of 30 µm, 15, 6, 3, and 1 µm 

grain size.  Water was flowed over the mats to remove debris and provide lubricant 
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during polishing.  The wax was then dissolved with acetone, and the sandwich structure 

was cleaned in ethanol.  Then the polished, mirror-smooth surface was glued with epoxy 

to a copper TEM grid.  The sandwich structure, being still 2 mm or more in thickness, 

was then mounted on a stub with wax and manually ground using a Gatan Disc Grinder 

with progressively finer SiC discs (starting with P240 and finishing with P400) until the 

sample was approximately 50 µm thick.  A Gatan Dimpler with a rotating brass wheel 

and 6 µm diamond paste was then used to create a dimple at the centre of the sample.  

The final thickness after these mechanical polishing steps was typically about 20 µm.  

The sample was then carefully removed from the stub by immersion in acetone, followed 

by washing with ethanol.   

  

At this point, a Gatan precision ion polishing system (PIPS™) was used to mill the 

sample with argon ions until a hole appeared.  The samples were milled with a beam 

energy of 5 keV and incident angles of ± 7 degrees.  Double beam modulation was used 

to avoid milling the Cu grid.  When a tiny hole appeared in the sample, the beam energy 

was reduced to 2.5 keV to finish the sample with limited ion milling damage.  The 

regions adjacent to the hole are electron transparent, and the thickness of the sample can 

be estimated by white light interference fringes.  Figure 2.3 shows a finished cross 

sectional TEM sample, in which the black fringe closest to the hole indicates the region 

where the thickness is approximately 100 nm (marked with red arrows). 

 

Figure 2.3. Optical micrograph 

of a cross-sectional TEM 

sample.  The sapphire, glue 

and GaN layers are indicated, 

as is the black fringe closest to 

the hole (red arrow), at which 

point the thickness is 

approximately 100 nm.   

The mechanical thinning and ion milling procedure undertaken to prepare cross-sectional 

TEM samples can create amorphous regions near the sample surface44.  These regions 

are detrimental to TEM investigations focused on the properties of the crystalline 

material.  To help remove this amorphous layer, some of the finished TEM samples were 

etched in a saturated solution of potassium hydroxide (KOH) at 60 ºC for 60 s, followed 

by immersion in deionised water to prevent further etching, and cleaning in ethanol.   
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2.3.2. CONVENTIONAL TEM IMAGING 

Conventional TEM makes use of electrons that are elastically scattered by Bragg 

diffraction as they pass through the sample.  One or more of the diffracted beams can be 

selected in the back focal plane, by means of a suitably-sized objective aperture, to form 

an image42.  If the transmitted beam is selected, by blocking the other beams with the 

objective aperture, then a bright field (BF) image is formed, as illustrated in figure 2.4a.  

In BF images, features in the sample that more strongly diffract the electron beam are 

darker.  If the aperture is used to select a diffracted beam, then a dark field (DF) image is 

obtained.  As illustrated in figure 2.4b, in practice the incident beam is tilted so that the 

diffracted beam travels down the optic axis, to avoid increasing problems with lens 

imperfections encountered if the image beam is far from the optic axis42.  In DF images, 

strongly diffracting features such as defects are brighter than the surrounding material.  

Dark field images are identified by which diffraction spot, or which reciprocal lattice 

vector g, is used.  In this work, BF and DF images have been used for basic imaging of 

sample structure and for defect analysis.   

  

Figure 2.4. After Cherns5, ray diagrams showing different configurations in the 

TEM to obtain (a) BF images, resulting from selection of the transmitted beam 

with the objective aperture.  (b) DF images, resulting from selection of a 

diffracted beam.  The incident beam is tilted so that the diffracted beam travels 

down the optic axis to minimise the effect of lens aberrations. 
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Although TDs can be observed in thin films using standard BF and DF imaging, an 

alternative technique is often used, called weak beam dark field (WBDF) imaging45.  This 

technique involves the formation of a DF diffraction contrast image in which the useful 

information is given by the weakly excited beams42.  Figure 2.5 illustrates the diffraction 

condition for the commonly used g-3g WBDF images, in which the image is formed 

from the diffracted beam g, while the 3g reflection is shown as at the Bragg condition. 

(In fact, in true WBDF images, the crystal is tilted slightly so that the 3g reflection is not 

precisely at the Bragg condition; hence no diffracted beam is strong, which avoids double 

peaks in the image.)  As it is not at the Bragg condition, the diffracted beam g is weak; 

however, in strained regions of the specimen, such as around TD cores, the diffracting 

planes are bent back into the Bragg condition.  This strain causes the TDs to appear as 

bright, narrow lines that are a few nm wide42, much narrower than in standard DF 

images.  Additionally, the positions of the lines are well defined with respect to the 

dislocation cores.   

 

Figure 2.5. From Williams and 

Carter42, representation of the g-3g 

WBDF condition using the Ewald 

sphere model, showing that g is 

tilted onto the optic axis to form the 

image, while the 3g reflection is 

shown as at the Bragg condition 

(although in true WBDF images, 

the crystal is tilted to ensure that 

the 3g reflection is slightly off axis).  

As discussed in section 1.2, there are three types of perfect dislocations: edge, screw and 

mixed, each described by their Burgers vector, b.  Contrast in WBDF images can be used 

to determine the character of these dislocations.  Although the theory behind this 

technique is complicated42 and will not be discussed here, its application is relatively 

simple: as in standard BF and DF images, pure screw dislocations are expected to be out 

of contrast, or invisible, when g ∙ b = 0, where g is the diffracted beam used to form the 

image.  Pure edge dislocations will be invisible when g ∙ b = 0 and g ∙ b × u = 0, where u 

is the line vector of the TD.  Thus, in GaN, when g = 0002, only screw and mixed TDs 

will be visible, and when g = 112̄0, only edge and mixed dislocations will show contrast46.   
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The conventional TEM images taken in this work were obtained using either a Philips 

CM30 TEM operating at 300 keV with a LaB6 source or an FEI Tecnai™ F20 G2 

operating at 200 kV with a Schottky type field emission gun (FEG).   

2.3.3. HIGH RESOLUTION IMAGING WITH ENERGY FILTERING 

State of the art imaging with high resolution TEM (HRTEM) allows atomic columns to 

be resolved in most inorganic materials, enabling the investigation of atomic-scale 

microstructural defects47.  The use of HRTEM in this work is limited to Chapter 5, where 

the technique is combined with energy filtering to produce lattice fringe images of 

pyramidal defects.  Only the basic principles of both techniques will be provided in this 

section, with references provided to more comprehensive texts.   

 

Lattice fringe images result from the interference between the direct beam and one or 

more beams diffracted within the sample42,47.  Lattice fringes cannot be readily interpreted 

as a direct image of the structure due to contrast reversals that result when the defocus of 

the objective lens is changed, making it difficult to select the optimum objective defocus.  

Additionally, contrast reversals are also observed due to changes in specimen thickness.  

However, these images do contain useful structural information.  In this work, HRTEM 

images were used simply to observe the contrast arising from defects in the material.   

 

The HRTEM image contrast was enhanced using energy-filtered TEM (EFTEM), in 

which a filter was used to remove all of the inelastically scattered electrons (except those 

scattered by phonons)48.   Energy filtering is carried out after the electrons have passed 

through the sample and all the lenses belonging to the TEM.  The EFTEM system is 

comprised of an electron energy-loss (EEL) spectrometer, an energy filter and a charge-

coupled device (CCD) camera, as illustrated in figure 2.648.  All HRTEM with energy 

filtering done in this work has been carried out on an FEI Tecnai™ F20 G2, which is 

fitted with a post-column Gatan Imaging Filter (GIF).  The electron beam passes 

through the GIF entrance aperture and enters the spectrometer, where it is deflected 

through 90 degrees in a circular orbit by a magnetic field.  Electrons that have lost 

energy, and therefore velocity, through inelastic collisions in the sample will move 

through a different orbit than electrons that have undergone only elastic collisions.  

Thus, electrons with different energies are spatially separated and focused at different 

positions, forming an EEL spectrum in the plane of the energy selecting slit.  For 
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enhanced contrast, the slit is positioned to allow only electrons that have not lost energy 

to pass through.  The transmitted electrons are refocused and the final image is recorded 

using the CCD camera.   

 

Figure 2.6. After Wang et al.48, schematic of an EFTEM system.  After passing 

through the sample and the TEM lenses, the electrons are dispersed according to 

their energies by a magnetic field in the EEL spectrometer.  An energy selecting 

slit permits electrons with a certain range of energy losses to pass through, after 

which a set of lenses re-form the image, which is recorded with the CCD camera. 

2.3.4. Z-CONTRAST IMAGING 

In scanning TEM (STEM), the electron beam is focused to form an image of the source 

at the specimen in a tightly focused spot, or probe49.  The probe can be rastered across 

the sample automatically by the microscope computer, using the scanning deflection 

coils, and an image can be formed by plotting the intensity as a function of probe 

position.  Low angle scattered electrons are collected with a bright field detector or an 

EEL spectrometer.  In 1979, Howie proposed that an annular detector with inner angle θi 
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greater than 40 mrad could be used to collect electrons scattered to higher angles, and 

that this scattering would be dominated by incoherent thermal diffuse scattering (TDS)50.  

The first STEM with a high angle annular dark field (HAADF) detector was built in 

Crewe‟s laboratory, and reported in 198051.  Figure 2.7 shows a schematic of a 

STEM-HAADF system.   

 

 

 

 

 

 

 

Figure 2.7. Schematic of the STEM-HAADF system configuration.  The probe is 

rastered across the sample and high angle scattered electrons are collected by an 

annular detector with an inner collection angle θi and an outer collection angle θ0.   

The intensity of the high angle elastic scattering incident on the ADF detector is 

approximately dependent on the square of the atomic number, Z2, notionally providing 

directly interpretable chemical contrast in the resulting images (although the images do 

contain some strain contrast)49.  In this work, STEM-HAADF has been used to study 

structures such as the InGaN QWs seen in figure 2.8, in which indium shows brighter 

contrast due to its higher atomic number.  All STEM-HAADF was carried out using an 

FEI Tecnai™ F20 G2 instrument operating at 200 kV with a FEG electron source, in 

which the minimum probe size was approximately 2 nm.  

 

Figure 2.8. STEM-HAADF image of 

InGaN QWs, in which the QWs show 

brighter contrast due to the higher 

atomic number of indium.   
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2.3.5. COMPOSITIONAL MEASUREMENTS 

In Chapter 5, pyramidal defects are observed using HRTEM with energy filtering, and 

two techniques are used in an attempt to observe their composition:  the first makes use 

of EEL spectroscopy (EELS) in STEM mode, the second uses energy filtering to create a 

compositional map.  Neither STEM-EELS nor EFTEM mapping proved successful at 

measuring the defects' composition, most probably because of the small defect size.  

These techniques will therefore only be introduced in brief.    

   

In STEM-EELS, inelastically scattered electrons are accelerated through the EEL 

spectrometer, as described in section 2.3.3.  For energy losses from 50 eV up to several 

thousand eV, the inelastic scattering events involve core electron orbitals on atom sites49.  

These inner-shell ionisations lead to core-loss edges, which can be observed in the EEL 

spectrum.  With STEM-EELS, the probe can be positioned on a feature of interest and 

the spectrum that results can be analysed to obtain local compositional information. 

 

Compositional information can also be obtained using EFTEM elemental mapping52.  By 

adjusting the energy selecting slit to permit electrons of certain energy losses to pass 

through, elementally sensitive images can be obtained.  A background subtraction is 

usually necessary, as the ionisation signal often sits on a strongly decreasing background 

signal.  In this work, two methods of background subtraction were used:  first, the jump 

ratio technique was used, in which an image recorded using electrons at the energy of the 

maximum of the ionisation peak is divided by an image recorded using electrons just 

before the peak.  A ratio greater than one provides evidence of an ionisation peak at that 

energy.  The second method used was the three-window mapping technique, in which 

two images are acquired using pre-peak energy windows and one image is acquired using 

electrons at the ionisation peak maximum.  The two pre-peak images are used to obtain a 

fit for the background, which is extrapolated and subtracted from the intensity measured 

at the peak.  Using either method of background subtraction, an elemental map can be 

obtained.   
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2.4. FIB/SEM 

In this work, dual beam focused ion beam/scanning electron microscope (FIB/SEM) 

systems have been used extensively to prepare atom probe samples.  The method of APT 

sample preparation will be described in section 2.5.2.  First, the basic principles of the 

SEM and the FIB will be introduced.     

2.4.1. SEM 

The SEM uses a fine electron probe rastered across the sample, similar to that discussed 

in the section on STEM.  In contrast to STEM, SEM imaging does not require electrons 

to be transmitted through the sample, but instead uses various signals generated from the 

beam-sample interaction, so there is no requirement for either high accelerating voltages 

or for the sample to be electron transparent.  In fact, bulk samples can be examined with 

little to no sample preparation and a wide variety of materials can be examined in the 

SEM53.   

 

In an SEM, the fine electron probe is formed by an electron gun and a set of lenses, and 

scanned over the specimen, generating a variety of detectable signals, as illustrated in 

figure 2.954.  In modern SEM instruments, multiple imaging and analytical detectors can 

simultaneously collect these various signals.  The electron signal used in this work was 

the secondary electron (SE) signal, produced when electrons from the primary beam 

transfer sufficient energy to an electron in the material for it to be ionised.  If the SEs are 

generated close to the surface (within approximately 30 nm), then they can escape from 

the sample.  The SE signal gives topographic contrast in part due to the dependence of 

the local SE yield on the tilt of the sample54.    
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Figure 2.9. From Reichelt54, a schematic of signals produced by the incident 

electron beam in the SEM.   

The SE signal can be detected using an Everhart-Thornley detector55 (ETD), which sits 

within the SEM chamber and consists of a Faraday cage that is positively biased to attract 

the SEs.  Once attracted into the Faraday cage, the electrons are accelerated onto a 

scintillator held at a very high positive voltage, where they are converted to photons and 

recorded by a photomultiplier56.  For better resolution, a Through The Lens (TTL) 

detector can be used, where the specimen sits very close the lower objective pole piece to 

minimise the effects of aberrations of the objective lens.  The SEs spiral upward through 

the magnetic field within the bore of the objective lens and are then deflected off axis to 

be recorded by an ETD placed laterally above the lens54.  Both types of SE detector have 

been used in this work.  

 

The resolution of the SEM depends upon the sample volume from which the signal was 

generated.  This volume is dependent on the type of signal used, the size of the probe, 

and the energy of the incident electrons.  Higher energy incident electrons produce larger 

interaction volumes, usually resulting in lower spatial resolution due to the large volume 

sampled.  The signal used can also affect the resolution: low energy SEs can only escape 

from the top few nanometers of the sample.  In contrast, backscattered electrons (BSEs) 

(produced when an incident electron is scattered by an atom through such a high angle 

that it escapes the sample) have higher energies than SEs and can escape from depths of 

hundreds of nanometers.  Figure 2.10 is a schematic54 of the origin and escape depths of 

signals in the SEM.  Although the BSE signal gives good compositional contrast because 

the high angle scattering is atomic number dependent, the BSE detector on the 
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FIB/SEM primarily used in this work did not function properly, and so only SEs were 

used for imaging.     

 

Figure 2.10.  From Reichelt54, illustration of the origin and escape depth of the 

signals produced by the beam-sample interaction in the SEM: secondary 

electrons (SE) have an escape depth (tSE) within a few nanometers of the surface, 

whereas back scattered electrons (BSE) can escape from depths of hundreds of 

nanometers (tBSE).  The electron range (R), and therefore the interaction volume, 

increases with increasing incident beam energy. 

2.4.2. FIB 

The FIB is effectively a combination between a precision machining tool and a scanning 

ion microscope, similar to the SEM, but with a beam of Ga+ ions57.  The gallium ions are 

produced with a liquid-metal ion source, after which they are focused into a beam by an 

electric field, passed through apertures, and finally rastered across the surface of the 

sample.  The accelerating voltage is typically 30 kV, although voltages down to 2 kV can 

often be accessed.  Just as in the SEM, the ion beam-sample interaction produces a 

variety of signals, including SEs that can be used for imaging.  In fact, FIB and SEM 

instruments have so many complementary features and uses that they have been 
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produced as a dual beam FIB/SEM, in which the techniques can be used in parallel and 

tasks can be achieved that are beyond the limitations of either individual system57.   

 

The use of gallium ions in the FIB, rather than electrons, gives the technique 

functionality and applicability distinct from the SEM.  When the focused gallium beam 

hits the sample, the high momentum, relatively heavy ions collide with the atoms at the 

surface, causing a small amount of material to be sputtered.  This milling capability can 

be harnessed for precise modification of the material surface, with FIB instruments 

allowing for control of the sputter rate, location and depth.  In this work, FIB milling of 

samples was monitored using SEM imaging because the electron beam causes little 

appreciable damage to the sample, compared with imaging using the gallium beam.  

 

The versatility of the FIB can be demonstrated by its ability to deposit material as readily 

as it can mill, as illustrated in figure 2.1157.  The addition of a gas delivery system is all 

that is needed to realise this change in function.  The gas, usually a metal-organic 

compound, is cracked at the sample surface using the gallium beam, resulting in the 

heavy metal atoms remaining on the surface as the organic material is removed by the 

FIB vacuum system.  Metals such as Pt can be deposited in this way, although it is 

important to note that this ion beam deposited „platinum‟ in fact contains approximately 

half Pt and half impurities including carbon, oxygen and gallium57.  This „platinum‟ is 

effectively semi-insulating, and is suitable either as „glue‟ to attach one piece of material 

to another, or as a protective layer.   

 

Figure 2.11. 

From Yao57, an 

illustration of 

the deposition 

and milling 

capabilities of 

the FIB. 
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It would be remiss to omit the significant drawback of the FIB milling technique: the 

detrimental effects of beam-induced damage.  Bombardment of the sample with the 

gallium beam results in some level of gallium implantation, and can cause the formation 

of an amorphous layer.  Some of this damage can be removed with low energy milling58 

at 5 kV.  Section 7.2.3 will discuss the topic of FIB damage in greater detail.  

 

The dual beam FIB/SEM instruments used in this work were the FEI Company™ Nova 

NanoLab™ and the FEI Company™ Helios Nanolab™.  Both were equipped with an 

Omniprobe Autoprobe™ micromanipulator to enable the movement of samples within 

the chamber.  

2.5. APT 

Chapter 1 provided a brief history of the atom probe tomography (APT) technique and 

an introduction to its capabilities.  The local electrode atom probe (LEAP) instrument 

represents the state of the art in APT, and has been used throughout this work.  The 

following sections will focus on the LEAP, first providing an overview of the technique.  

Next, APT samples will be discussed, including the requirements for their geometry and 

the method of sample preparation in the FIB.  More detail will then be given regarding 

ion evaporation and detection in the LEAP, followed by discussion about how ions are 

chemically identified and spatially mapped to their original locations.  The section will 

conclude with an overview of APT data reconstruction using the Imago Visualization 

and Analysis Software (IVAS). 

2.5.1. LEAP OVERVIEW  

The development of the LEAP instrument has transformed the field of atom probe 

tomography, allowing much larger volumes to be accessed in a fraction of the time, 

compared with previous instruments26.  The LEAP produces 3D compositional images at 

the atomic scale by the controlled evaporation of atoms as ions from a tiny, needle-

shaped sample held at a very high voltage in a vacuum chamber59.  A schematic60 of the 

LEAP can be seen in figure 2.12.  A high voltage is applied to the sample, which creates a 

strong electric field that is concentrated at the sharp tip of the sample.  This field should 

be just below the evaporation field of the material, so that the extra energy needed to 

field evaporate an ion can be supplied in a controlled manner.  With high conductivity 
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samples (>102 S/cm), this extra energy can be supplied with a voltage pulse to the local 

electrode61, which brings the field at the tip above the threshold for field evaporation at 

that temperature.  Voltage pulsing cannot be used with low conductivity samples, such as 

semiconductors.  However, such samples can be analysed using the technique of laser 

pulsed APT62, in which a laser pulse hits the sample apex to induce a brief temperature 

spike.  The evaporation field drops as the temperature is raised, enabling field 

evaporation. 

 

Figure 2.12. From Seidman60, schematic of the LEAP with an array of samples.  A 

positive potential, Vex, is applied to the APT sample and controlled field 

evaporation is induced with either a voltage pulse to the local electrode (Vpulse) or 

a laser pulse to the sample tip.  The evaporated ion is accelerated through the 

local electrode and to the detector.  

The evaporated ion is then accelerated through an electric field to a detector, where the 

signal is amplified, and information about the ion‟s chemical identity and original 

position is collected.  These capabilities will be discussed in later sections, but first the 

samples required for APT are discussed, for good quality sample preparation is the key to 

a successful APT experiment. 

2.5.2. APT SAMPLES 

With increased data collection and analysis rates possible with the LEAP, preparation of 

samples with the specific requirements for APT studies has become a bottleneck in the 
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process.  The samples must be needle shaped, gradually tapering to a tip with a radius of 

less than 100 nm, to ensure that the field is sufficient at the tip apex for field 

evaporation24.  Metal samples can be prepared by a relatively straightforward 

electropolishing technique.  To access a wider variety of materials, including 

semiconductors, FIB-based techniques have been developed for bulk or site-specific 

APT sample preparation63.  The FIB-based sample preparation method best suited to 

semiconductor wafers is known as „liftout and annular milling‟, and has recently been 

described by Thompson et al.64.  Galtrey65 was the first to use a similar liftout technique 

with GaN on sapphire, making note of the peculiarities of the material system, such as 

the propensity for material redeposition during milling steps.  The liftout and annular 

milling technique has been used throughout this work to prepare APT samples using a 

dual beam FIB/SEM.   

 

Prior to sample preparation in the FIB/SEM, the semiconductor wafer was cleaned and 

sputter coated with a thin layer of platinum (less than 100 nm).  The sputter coating 

functions to provide contrast at the location of the surface in cross-sectional SEM 

imaging.  Once the wafer was in the FIB/SEM, the area desired for liftout was first 

protected by depositing approximately 100 nm of platinum with the ion beam (known as 

FIB-Pt), as the ion beam milling can damage the sample24.  Next, a portion of 

semiconductor material was lifted out, leaving the sapphire substrate behind.  It should 

be noted that milling into the sapphire ought to be avoided, as the sapphire redeposits 

extensively65.  This liftout was achieved by milling two trenches in the wafer that meet to 

produce a wedge-shaped membrane of approximately 3 µm in thickness and up to 30 µm 

in length.  In this work, the trenches were milled at a stage tilt of 22 degrees, resulting in 

a wedge with an equilateral triangular cross-section.   

 

After the wedge was milled, one side was cut free and a micromanipulator needle was 

brought into contact and attached using FIB-Pt glue.  The remaining side of the wedge 

was then milled to free it from the wafer, leaving the membrane attached to only the 

micromanipulator.  Figure 2.13 shows a sample membrane being lifted out from the 

wafer by the micromanipulator.  The wedge was then transported within the FIB/SEM 

chamber to a sample mount.  Two different sample mounts were used in this work: first, 

for samples only studied by APT, etched silicon microtip sample mounts were used.  

These microtips were produced by Imago Scientific Instruments on silicon coupons, 
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each containing an array of 36 microtips.  With the local electrode geometry, it is possible 

to analyse samples that are on adjacent microtips.  Figure 2.14 shows a sample on the 

micromanipulator needle prior to mounting on a silicon microtip, showing the FIB-Pt 

gas injection system (GIS) on the left and the adjacent microtips.  The sample was 

attached to the microtip with FIB-Pt and then cut free from the micromanipulator.  This 

process can be repeated to allow one liftout wedge to be mounted onto multiple 

microtips.  Figure 2.15 shows the wedge once it was attached to the micromanipulator 

using FIB-Pt glue.   

 

Figure 2.13.  Image taken 

using SEs generated by the ion 

beam in the FIB/SEM (ion 

beam image), showing a sample 

membrane attached with FIB-Pt 

to a micromanipulator needle.  

The membrane is being lifted 

out, to be transported to the 

sample mount.   

 

 

Figure 2.14.  Ion beam image, 

showing a sample membrane 

mounted on a micromanipulator 

needle above a Si microtip array.  

The FIB-Pt GIS needle shown 

on the left supplies the metal-

organic gas required for the FIB-

Pt glue.  
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Figure 2.15.  Ion beam image of 

the sample membrane mounted 

on the Si microtip with FIB-Pt 

glue.   

 

For those samples that were analysed by both APT and TEM, a different sample mount 

was required.  This was comprised of an electropolished tungsten wire in a copper tube, 

and designed to fit into both the LEAP and the TEM using a Fischione Model 2050 

on-axis rotation tomography holder.  The tungsten wire (outer diameter 0.125 mm) was 

electropolished in the Department of Materials at Oxford University, with the assistance 

of Dr. David Saxey.  With the sharp end of the wire free for sample mounting, the blunt 

end was fitted into a copper tube (Goodfellows, outer diameter 1 mm, inner diameter 

0.3 mm).  The fit was tight, so crimping of the copper tube was both unnecessary and 

avoided, as crimping may have caused the sample to tilt off-axis - an unsatisfactory 

geometry for our TEM experiments.  Prior to mounting the sample on the 

copper/tungsten (Cu/W) sample mount, the electropolished end of the tungsten needle 

was milled with the ion beam to create a flat platform of a similar size to those on the 

microtips.  Figure 2.16 shows a wedge mounted onto the tungsten needle of a Cu/W 

sample mount.   

Sample membrane 

Si microtip 

FIB-Pt glue 
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Figure 2.16. Image taken using 

SEs generated by the electron 

beam in the FIB/SEM (electron 

beam image), showing a sample 

wedge mounted onto a tungsten 

needle (part of the Cu/W sample 

mount). 

Once the sample membrane was attached to a suitable mount, the sample was sharpened 

into a needle using annular milling: with the sample tilted so that the ion beam was 

parallel to the long axis of the sample, the beam was rastered in a spiral pattern that 

defined an annulus.  Three annular milling steps were carried out, all using a 30 keV ion 

beam.  The first used an outer radius greater than the sample width, and an inner radius 

of approximately 1 µm.  In the second and third annular milling steps, the inner radius 

was made smaller, first to 400 nm and then to 250 nm, and the ion beam current was also 

decreased in steps, to minimise the gallium beam damage.  As a final step, to both 

remove damaged layers and to sharpen the APT sample, a „low keV cleanup‟ step was 

used, in which a 5 keV ion beam is used to mill the entire sample58.  This step was 

continued for at least 30 s, but may be prolonged, if the region of interest is located far 

below the surface in the semiconductor sample.  Further discussion of Ga beam damage, 

and low energy cleanup to remove damaged material will be presented in Chapter 7.  A 

finished APT sample is shown in figure 2.17.  It is important to mill away any „parasitic 

tips‟, which are any sharp tips within approximately 15 µm of the end of the sample, as 

these could be the source of undesired evaporation in the LEAP.   
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Figure 2.17. Electron beam 

image of a finished APT 

sample, after low keV 

cleanup.  The final tip 

radius is significantly 

smaller than the 100 nm 

scale bar.   

APT samples are notoriously delicate and many fracture in the LEAP before any useful 

data is collected.  The fracture is often due to the attractive force between the oppositely 

charged tip and local electrode, causing stresses in the tip66 of up to 10 GPa.  By 

optimising the sample preparation to produce robust samples, however, the proportion 

of useful samples can be maximised.  APT samples with sharp tips begin field 

evaporating at a lower applied DC voltage than blunt samples, which is advantageous 

because there is an upper limit on the DC voltage of about 15 kV (although in practice 

the voltage is usually limited by the local electrode, which often begins to emit at about 

11 kV).  The entire sample should not be sharp, however, because a wide base gives 

better mechanical stability.  Thus, conical shaped samples with good 

sample/FIB-Pt/mount bonds tend to be the most successful.    

2.5.3. ION EVAPORATION 

In theory, field evaporation can be modeled in a straightforward way by assuming that 

the sample has a hemispherical end radius, and that there is a unique relationship 

between a point on the sample and a point on the detector.  Although these models are 

incredibly useful, there are some problems associated with the assumptions, and some 

steps that can be taken to correct the errors that arise.  These issues of ion evaporation 

will be discussed in this section.  

FIB-Pt  

Si microtip  

APT 
sample  
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The shape of an APT tip is modeled as roughly hemispherical.  This model can be used 

to find the field, F, at the apex of a sample with end radius, r, resulting from an applied 

standing voltage, V, as follows: 

  F = V / kf r 

 

The geometric factor, kf, represents the deviation from a free sphere, and depends on the 

sample shank angle67.  The true tip shape may deviate from this model, being either 

flatter or sharper.  Where the tip is locally sharper, the field will be enhanced, leading to 

increased evaporation.  This leads to reshaping of the tip in the initial stages of 

evaporation (during sample „turn-on‟), in which the end shape becomes more regular.  

Data collected during this period is of poor quality, and is generally excluded from data 

analysis.  As the sample runs and material is removed, the tip blunts, causing the end 

radius to increase.  To retain the same field (monitored by the instrument as retaining a 

constant detection rate, defined as the fraction of pulses that result in a detected ion) the 

standing voltage is automatically increased, up to the limits of the instrumentation, or 

when the sample fractures.  This limit defines the depth that can be analysed in an APT 

sample, which is rarely greater than 1 µm.   

 

Trajectory aberrations can occur in multiphase materials when the evaporation fields of 

the two materials differ.  In the case where there are precipitates with a high evaporation 

field in a matrix with a low evaporation field, evaporation of the matrix will occur, but 

the field will not be high enough to cause evaporation of the precipitate atoms.  This will 

eventually cause the precipitates to protrude from the surface of the sample, creating a 

locally enhanced field.  When the field builds up to the point that the precipitate is 

evaporated, the trajectories of the ions will result in the precipitate having a much higher 

magnification67.  There is little that can be done about such trajectory aberrations in the 

data collection, and compensation in the reconstruction is not yet mundane.  In this 

work, where such aberrations are likely, this will be noted, and an attempt made to 

elucidate their effect on the data.   

 

Finally, it is important to note that ions can leave at very slightly different times during 

the laser pulse.  This „time of departure spread‟ will cause the ion‟s time of flight to 

deviate slightly from that expected for an ion of its type, reducing the mass resolution.  



Techniques  40 

 

 

To mitigate this problem, a longer flight time can be used, which improves the mass 

resolution.  One way of increasing the flight time is to use an electrostatic compensating 

lens, or a reflectron68.  The reflectron is located between the sample and the detector and 

lengthens the flight path of the ions by deflecting them through an angle of 

approximately 156 degrees using a biased 3D metallic mesh.  In this work, all but one of 

the APT data sets were collected on a LEAP equipped with a reflectron.  More details of 

the LEAP specifications and run conditions will be provided in each chapter.   

2.5.4. ION DETECTION 

Ion detection in the LEAP is based on a micro-channel plate (MCP), which is made up 

of many cylindrical lead-doped glass channels, of aspect ratio near 40, sandwiched 

between a pair of electrodes.  This design creates an electric field along each one of the 

channels.  When an ion hits the wall of the channel, a secondary electron is produced, 

which leads to a cascade of up to 1,000 SEs as they ricochet and multiply down the 

length of the channel.  This gain is independent of the ion type for all elements when the 

standing voltage is above 3 kV, which is below the normal standing voltage for data 

collection.  A chevron of two MCPs is used, with plate tilts of +8 and -8 degrees, 

respectively.  Using two MCPs prevents saturation of the electron cascade, thereby 

leading to higher gain.  If ions strike the detector between the channels, they will not 

generate a SE cascade, and the ion will not be recorded.  Although this happens with 

around 40 percent of the ions, there is no partiality as to which ions are stopped.   

 

In the LEAP, the anode at the back of the MCP is a delay line detector (DLD)24.  This 

detector features two delay lines perpendicular to each other, and a third running 

diagonally.  When the electrons from the MCP strike the delay line at some location, they 

travel to each end of the line.  The arrival times are measured at each end, and these 

times are converted into the true x and y positions on the detector, allowing the position 

of the ion‟s impact to be determined.  With three delay lines, two ions can strike the 

detector at the same time, and they only need be separated by 5 ns in the time taken to 

travel to the end of the delay line for their positions to be resolved24.    

 

As mentioned previously, the standing voltage is optimised to ensure a constant 

detection rate.  This rate is held low, in the vicinity of one percent, which represents one 
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ion detected for every 100 laser pulses.  This low rate is maintained to minimise the 

chance of two or more ions striking the detector at once.   

2.5.5. CHEMICAL IDENTIFICATION 

APT uses time of flight mass spectrometry to determine the chemical identity of the ions 

that strike the detector.  This technique measures the ion‟s time of flight from the tip to 

the detector, using the fact that ions with larger mass-to-charge ratios will be accelerated 

less by the same electric field than those with smaller mass-to-charge ratios.  For 

example, singly charged gallium will have a time of flight that is more than twice as long 

as singly charged nitrogen.  As the evaporation event is triggered by the laser pulse, 

which is applied with a nanosecond duration, the pulse provides a starting time for the 

ion flight.  The ion impact at the detector is recorded as the end of the flight time.   

 

The potential energy of an atom on the surface (neV) is converted into kinetic energy 

(½mv2) when the ion leaves the specimen.  Here, n is the charge state of the ion, e is the 

charge on an electron, V is the voltage difference between the sample and the detector, 

m is the atomic mass, and v is the velocity of the ion, which can be written as the 

sample-detector distance over the flight time taken, d/t.  Balancing the two energies24, it 

can be shown that the mass-to-charge ratio can be determined by the time of flight, given 

a known DC voltage and tip-detector distance: 

  m/n = 2eV (t 2/d 2) 

   

The detected ions can be represented by a histogram of the ion counts across a spectrum 

of mass-to-charge state ratios, usually referred to as a mass spectrum, as shown in 

figure 2.18.  The peaks are manually assigned ion types, as indicated by the coloured 

ranges.  Two features of the mass spectrum are worth noting: first, the peaks can be very 

closely spaced, making it difficult to resolve them.  As previously discussed, the LEAP 

system equipped with a reflectron has a longer flight path and can therefore give a mass 

resolution, Δm/m, of up to 1/2000 (where Δm is the full-width at half maximum value 

using a peak at, or close to, a mass-to-charge state ratio of 27), whereas without the 

reflectron the mass resolution can be 1/200.  Both mass resolutions are sufficient to 

distinguish ions of adjacent atomic number.  The second feature of note is that the peaks 

show tails leading to higher mass-to-charge ratios.  These tails usually correspond to ions 

evaporating soon after the laser pulses, as the specimen temperature is still returning to 
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its base level.  They can be minimised by changing run conditions, such as lowering the 

laser power (laser energy per pulse).  It should be noted, however, that the mass 

spectrum in figure 2.18 is shown with a logarithmic scale, and the peak tails contribute 

little to the overall signal.  Other noise in the mass spectrum will arise due to electronic 

noise in the instrument and evaporation of contamination ions adsorbed onto the 

sample, but this noise is usually observed at very low levels.   

 

Figure 2.18. Mass spectrum of an iron-containing GaN sample studied with the 

LEAP.  The coloured ranges have been manually applied to assign ion types to 

the peaks observed. 

To demonstrate typical mass spectra collected in this work, Appendix 1 shows an 

experimentally obtained spectrum from a GaN sample and one from an InAlN sample.   

2.5.6. SPATIAL INFORMATION AND RESOLUTION 

Although the chemical identity of the ion is determined from its time of flight, its original 

location in the sample must also be found.  This 3D spatial information can be 

determined with a combination of the x and y hit position on the detector and the hit 

sequence.   

 

As previously discussed, there is ideally a one-to-one correspondence between each point 

on the surface of the sample and a point on the detector.  The trajectory from the sample 
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to the detector would be a straight line if the sample were a free sphere.  In reality, the 

ions bend inwards as they move towards the detector.  This reduces the magnification, η, 

by a factor known as the image compression factor (ICF), ξ.  The magnification can 

therefore be defined as follows: 

  η = d/r ξ   

 

The sample-detector distance is d, and r is the tip radius67.  The magnification that results 

is approximately one million times.  Using this model, the x and y positions on the 

detector can be used to map the ion to its x,y position in the sample.  To determine the 

z position, the model supposes that each evaporated ion lowers the surface by a depth 

defined as a shell of the tip radius that has a volume equal to the volume of the ion69.  

Scaling in the z-direction is determined using both the detection efficiency, which gives 

the depth of material evaporated for a given number of detected ions (and lateral field of 

view), and the atomic density of the material.    

 

After supposedly determining the exact 3D position of each ion collected, any 

knowledgeable microscopist would ask, „What is the resolution of this technique?‟.  

Gault et al.69 recently discussed the meaning and quantification of resolution in APT, 

where the idea of resolution differs from conventional techniques that are based on 

diffraction of radiation.  In these diffraction-based techniques, the resolution is defined 

by the smallest distance between features that can be resolved, such as adjacent atoms.  

With APT, adjacent atoms will almost certainly both be detected separately, and so by 

this definition the resolution is sub-Ǻngstrom.  However trajectory aberrations like those 

in multiphase materials discussed previously can introduce errors into the 3D position, as 

can any lateral movement of atoms on the sample surface.  Lateral movement is 

minimised by holding the sample at low temperature during evaporation69.  Temperatures 

as low as 20 K are used, although very low temperatures can cause the sample to fracture 

more easily.  With low temperature evaporation, and in regions that do not suffer 

significant trajectory aberrations, the lateral resolution60 of APT data can be 0.3 to 

0.5 nm.  The depth resolution is even better than in x and y, with z-resolution60 down to 

0.1 nm.   
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2.5.7. APT DATA RECONSTRUCTION 

Raw APT data must be reconstructed before it can be analysed.  The reconstruction 

process was carried out using the IVAS software produced by Imago Scientific 

instruments, in which raw data is converted into a 3D atom map.   

 

To satisfactorily reconstruct the data, a number of parameters must be defined.  These 

include parameters of the material (atomic density), of the APT sample (shank angle), 

and of the LEAP itself, such as the detection efficiency, ICF, and sample-detector 

distance.  In practice, many of these parameters are difficult to determine, so standard 

values are used, and the reconstruction is optimised by tuning parameters such as the 

evaporation field of the material to reproduce known features of the sample.  These 

features include the spacing between MQWs, as determined by X-ray diffraction, or the 

fact that the wells are flat, as determined by TEM.   

 

A key user-defined step of the reconstruction process is the ranging of the mass 

spectrum.  As shown in figure 2.18, ranges are defined which include the mass spectrum 

peaks, and these ranges are assigned identities, such as Ga, In or N2 (such compound 

ions can often be evaporated).  Correct identification and assignment of peaks must be 

achieved to produce accurate data.  Ranging and identification can be difficult when two 

ions with the same mass-to-charge ratio are both present: for instance, N2
+ and Si+ both 

have peaks at 28 mass-to-charge ratio.  For Si-doped GaN, this can make quantification 

of the dopant level impossible. 

 

With the mass spectrum ranges and the reconstruction parameters defined, IVAS then 

produces a 3D atom map of the APT data.  This data can then be analysed in a number 

of different ways, which will be explored in later chapters.   
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3  
AFM AND TEM STUDIES OF 

THREADING DISLOCATIONS 

3.1. AIMS 

Electronic and optoelectronic devices based on heteroepitaxially-grown GaN have 

achieved success despite having a high density of TDs.  Although the origin of these TDs 

is debated, they have been shown to have negative effects on devices, such as reducing 

the lifetime of laser diodes70, and increasing leakage currents in blue and green LEDs71.  

Thus, many methods for TD density reduction have been developed to improve the 

performance of such devices.  To evaluate these TD reduction techniques, a variety of 

methods can be used to quantify the TD density, including AFM, TEM and 

cathodoluminescence (CL); however these vary in time intensity of sample preparation, 

area measured, and ability to resolve closely spaced TDs.   

 

Some dislocation reduction techniques introduce a further complication to measuring the 

TD density: the method results in a non-uniform distribution of dislocations.  One such 

technique is epitaxial lateral overgrowth (ELOG) (described in detail in section 3.2.4), 

which results in areas of greatly differing TD density over typical length scales of 10 µm 
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or greater.  To measure the dislocation density and distribution in such samples, a 

technique which accesses large areas must be employed.   

3.1.1. BROAD AREA AFM 

The first aim of this chapter was to use AFM to image an ELOG sample over broad 

areas with high resolution.  If such images could be obtained, the next aim was to 

evaluate a program called PITS, written by Dr. David Holec, which automatically 

identifies TD pits in an AFM image, and could greatly reduce the effort needed to find 

the dislocation density, compared with manual counting.   

3.1.2. SURFACE POTENTIAL 

Our next aim was to determine what effect, if any, the TDs had on the surface potential 

in the ELOG sample.  Motivating this study is the charged dislocations model (discussed 

in section 3.2.2.2), which suggests that TDs may interact with charge carriers in devices 

because they themselves are charged.  Using KPFM, as described in section 2.2.2, we 

hoped to study the effect that the TDs had on the surrounding surface potential.  We 

aimed to quantify this effect by extracting the surface potential value at each TD pit, 

thereby finding the change in surface potential associated with the presence of 

dislocations. 

3.2. BACKGROUND 

The characterisation of TDs in GaN-based materials forms a large part of this and other 

chapters of this work.  Therefore, some necessary background is presented here on the 

origin and effect of TDs, followed by some ways in which TD densities can be measured 

experimentally.  The key TD density reduction technique used in this chapter, ELOG, is 

then introduced.     

3.2.1. ORIGIN OF TDS 

There has been much debate surrounding the origin of TDs in GaN-based devices 

grown on sapphire.  It has been suggested that TDs are generated where GaN islands 

coalesce during early stages of film growth72.  Although the island coalescence model is 

often cited in the literature, and has been supported by experimental work73,74 others have 

challenged its validity75,76 ,77,78.  This debate will be examined in the following sections.  
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3.2.1.1. Island coalescence theory 

The theory of TD generation at island coalescence boundaries was developed with 

information gleaned from TEM studies of fully coalesced GaN wafers.  Using a variety 

of cross-sectional and plan-view TEM micrographs, Ning et al.72 created a model for TD 

generation where slightly misoriented GaN islands grow together.  Where the islands 

coalesce with slightly differing tilt or twist relative to the sapphire substrate, TDs are 

generated.  Ning et al.72 propose that edge dislocations are formed at the coalescence of 

islands of differing twist (defined as a rotation about the [0001] axis), and screw 

dislocations are formed at the coalescence of islands of differing tilt (defined as a rotation 

about an axis perpendicular to [0001]).  Mixed dislocations, which show both edge and 

screw character, form as a result of islands both tilted and twisted with respect to each 

other.  Figure 3.1 illustrates the model, showing an edge dislocation resulting from 

coalescence of twisted islands.   

 

Figure 3.1. From 

Ning et al.72, a schematic 

diagram illustrating the 

coalescence of GaN islands 

that are rotated around the 

[0001] axis with respect to 

each other, resulting in an 

edge, or ‘a-type’ dislocation 

at the boundary. 

Work by Wu et al.73 supported the theory of TD generation at island coalescence 

boundaries.  WBDF TEM images were used to suggest that edge dislocations were 

localised at the island boundaries, as shown in figure 3.2a (with g = 112̄0, edge and mixed 

TDs visible).  In this image of a fully coalesced film, Wu et al.73 suggest that the two 

regions of high dislocation density are coalescence boundaries.  These same regions were 

also studied with an imaging condition that highlights screw and mixed TDs (g = 0002), 

as seen in figure 3.2b.  The authors attributed the presence of mixed and screw TDs away 

from the coalescence boundaries to an initial spiral growth mechanism, in which the 

island contained a central mixed or screw dislocation.   
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Figure 3.2. From Wu et al.73, WBDF TEM images of the same area of a coalesced 

GaN film. (a) Image with g = 112̄0, showing two regions with high densities of 

edge and mixed TDs, which are suggested to be at coalescence boundaries. 

(b) Image with g = 0002, showing screw and mixed TDs both at and away from 

the coalescence boundaries.  Initial spiral growth was suggested to centre around 

these mixed or screw TDs.  

Although there may appear to be strong TEM-based evidence for the island coalescence 

model, it is important to note that Wu et al.73 have not actually shown that the observed 

clusters of dislocations were formed at island coalescence boundaries, nor that these TDs 

do not arise through some other possible mechanism.  Additionally, conclusions drawn 

from cross-sectional TEM images invite doubts of validity due to questions regarding the 

sample thickness and the statistical relevance of the images.  The first difficulty is in light 

of the problem of projecting the full thickness of the TEM sample into a 2D image.  The 

second simply speaks to the small area analysed per image, and the difficulty in making 

enough samples to collect data that can be regarded as statistically relevant.  Thus, such 

TEM-based evidence must be examined with these difficulties in mind.   

3.2.1.2. Challenges to the island coalescence theory 

Other investigations into the origin of TDs in heteroepitaxial GaN have shown 

experimental evidence that challenges the island coalescence theory.  Using 
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cross-sectional TEM images taken at different stages as the islands coalesced, 

Narayanan et al.75 showed no evidence of TDs at the coalescence boundaries.  Figures 

3.3a and 3.3b show WBDF (g = 0002) and BF (g = 112̄0) TEM images, respectively, of 

the same area of a GaN film after 20 s of high temperature growth.  With these 

micrographs, Narayanan et al.75 demonstrated that edge and mixed TDs existed within the 

GaN islands before they have fully coalesced, and were not, therefore, only created upon 

misoriented island coalescence.  The authors then examined TEM images of the GaN 

film upon further coalescence, after 75 s of high temperature growth.  Figures 3.3c and 

3.3d show WBDF TEM images of the same area with g = 0002 and g = 11̄00, 

respectively, where the 11̄00 reflection highlights the mixed type TDs.  In these 

micrographs, no dislocations were found at the coalescence boundary.  Again, both the 

projection problem and the problem of small accessible volume exist in these cross-

sectional TEM images. 

 

As an alternative mechanism for TD generation, Narayanan et al.75 suggest that the TDs 

arise as a result of defects close to the sapphire/GaN interface.  Detailed mechanisms for 

generation of all types of TD are proposed, and their study presents TEM-based 

evidence for the creation of mixed, or „c+a type‟ TDs through coalescence of two Frank 

faults.  Hypotheses for the generation of edge and screw type TDs have yet to be 

confirmed.  In a further study, the same authors showed that, in fact, misoriented islands 

can grow together and cause TDs if the growth temperature and ramp rate are not 

carefully controlled76.  They suggest, however, that with control over these growth 

parameters, well-oriented islands generate far fewer TDs at coalescence boundaries.   
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Figure 3.3. From Narayanan et al.75, cross-sectional TEM images taken at 

different stages of GaN layer growth. (a) and (b) are the same area, after 20 s of 

high temperature GaN growth. (a) WBDF TEM image, g = 0002.  (b) BF TEM 

image, g = 112̄0.  (c) and (d) are the same area, after 75 s of high temperature 

GaN growth.  (c) WBDF TEM image, g = 0002.  (d) WBDF TEM image, 

g = 11̄00.  

AFM studies have lent further statistical significance to the TEM-based conclusion that 

TDs do not form at coalescence boundaries by analysing far greater areas.  After a silane 

treatment designed to reveal all types of TDs on the surface of GaN films79, Oliver et al.78 

used AFM to study where TDs were present on small and large islands of a partially 

coalesced film.  Figure 3.4 shows a typical AFM image containing a coalescence 

boundary between two hexagonal islands.  The white box indicates the boundary region.  

Using this and many other similar images, the authors showed there was no increase in 
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TDs within the boundary: the overall TD density was (51) × 107 cm-2, which compared 

closely to the density within the coalescence boundary region of (41) × 107 cm-2.  The 

study also revealed that there was no evidence of the spiral growth mechanism proposed 

by Wu et al.73.  

 

Figure 3.4. From Oliver et al.78, 

AFM amplitude image of GaN 

islands on a partially coalesced 

film.  The coalescence of two 

hexagonal islands can be seen, 

where the white box indicates the 

coalescence boundary region.  

Black circles indicate TDs.  This 

and many other images show that 

no increase in TD density is 

observed at the coalescence 

boundary. 

A fundamental barrier to the complete understanding of the origin of TDs is that it is 

impossible to say with certainty where the dislocations started by examining a coalesced 

film.  To circumvent this problem, films with increasing levels of coalescence have been 

studied, yet the results have been widely varying: some researchers suggest that TDs are 

created at coalescence boundaries72,73, whereas others find no increase in dislocation 

density at these boundaries75,78.  It may be possible that the formation of TDs at 

coalescence boundaries depends strongly on growth conditions, as suggested by 

Narayanan et al.76.  In which case, certain growth conditions might give rise to 

misoriented islands that coalesce to form TDs, yet other conditions do not cause such 

dislocations to arise.   

 

In a recent study, Moram et al.77 used statistically reliable spatial analysis techniques to 

investigate the validity of the island coalescence model.  AFM was used to examine broad 

areas of silane-treated79 GaN samples grown either with or without island coalescence 

steps to study the types and spatial distributions of the TDs.  The authors investigated 

TD clustering on a length scale of less than one micrometer using radial distribution 

functions (RDFs), which show the density of other TDs as a function of distance from 
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the selected dislocation, averaged over all TDs in the data set.  Figure 3.5 shows a typical 

RDF for an edge dislocation, which indicates clustering on a length scale less than 

150 nm.  This clustering is entirely due to linear arrays of edge TDs: the open squares 

show the experimental data with linear arrays removed, showing that the clustering 

disappears.   

 

Figure 3.5. From Moram et al.77, an RDF for edge TD positions for a GaN film 

without an island coalescence step.  Gray boundaries show 99 % confidence limits 

for a random distribution.  Filled squares indicate experimental data, and open 

squares show the same data with linear arrays removed.  The inset shows an AFM 

topography image (vertical scale of 9 nm) of a linear array of edge TDs, which are 

the cause of the clustering that is observed below 150 nm.   

These linear arrays have been attributed to island coalescence boundaries80; however 

Moram et al.77 showed that the sample with the highest array density had no islands 

present during growth.  Additionally, longer arrays would be expected in films grown 

with larger islands, yet this was not observed.  The authors conclude that the spatial 

analysis is not consistent with the island coalescence model, and instead is consistent 

with spatially random generation of edge and mixed TDs in low TD density 

heteroepitaxial films.  The observed arrays of edge TDs are suggested to arise from 

thermally activated motion of TDs (via climb), consistent with the classic metallurgical 

„recovery‟ process, which promotes TD annihilation and creates energetically stable linear 

arrays of edge dislocations.   
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It seems that further work is needed to determine the exact origin of TDs, and to 

investigate the model of TD motion during growth.  This work should continue the 

recent trend towards the use of statistically relevant characterisation techniques. 

3.2.2. EFFECT OF TDS 

TDs have a deleterious effect in most semiconductors, causing poorer performance in 

devices made from high defect density material than those fabricated from relatively 

defect-free material.  In other III-V semiconductors, such as GaAs81 and GaP82, it has 

been shown that devices suffer a significant efficiency reduction with dislocation 

densities greater than approximately 4 × 105 cm-2.  

 

GaN-based devices exhibit a much lower sensitivity to defects than other III-V or II-VI 

semiconductors.  Working GaN LEDs, for example, have been shown to contain 

dislocation densities that are extremely high (2-10 × 1010 cm-2), far in excess of that 

tolerated by other semiconductors3.  Yet TDs do have negative effects in GaN-based 

devices.  In addition to the shortened lifetimes of laser diodes70, and increased leakage 

currents in blue and green LEDs71 previously mentioned, high densities of TDs also 

reduce the efficiency of near-UV LEDs83, lower electron mobilities in high electron 

mobility transistors84 and cause a number of other problems. 

 

These facts beg the following questions: by what mechanism do TDs affect the 

properties of GaN, and how is this mechanism different in GaN, compared to other 

III-V or II-VI materials?  Two models for this mechanism will be examined in the next 

sections: one in which charge carriers recombine non-radiatively at TDs, and another in 

which charge carriers are repelled from TDs because they are electrically charged.    

3.2.2.1. Non-radiative recombination model 

As discussed in section 1.3.1, non-radiative recombination occurs when charge carriers 

recombine to generate phonons, releasing energy as heat.  Non-radiative recombination 

is detrimental to devices because it decreases the IQE by preventing radiative 

recombination of carriers, and increases the heat output, which can damage the device in 

a variety of ways.   
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A number of studies have proposed that TDs act as non-radiative recombination centres 

in GaN85,86.  To show the correspondence between TD location and reduced light 

output, TEM85 or AFM images86 are often used alongside CL measurements.  

Sugahara et al.85 showed that the location of TDs (found via plan-view TEM), 

corresponded to dark spots in the CL map, as shown in figure 3.6.  The authors claimed 

this correspondence provided direct evidence that TDs were non-radiative 

recombination centres.  These studies, however, simply show a correlation between TDs 

and reduced luminescence.  Although they cite non-radiative recombination as the cause 

of this reduction in light output, they do not conclusively show that the carriers are 

arriving at the TD at all, or that once they arrive, they are recombining non-radiatively.    

 

Figure 3.6. From Sugahara et al.85, CL and plan-view TEM images of the same 

area on a GaN film, in which TDs are visible in the TEM image and 

corresponding dark spots are visible in the CL.  

Finally, it is worth mentioning that since charge carriers in GaN are thought to exist as 

bound excitons, the impact of non-radiative recombination will depend on the exciton 

lifetime in the material and also on the timescale of the non-radiative recombination 

process.  For instance, if radiative recombination occurs much more quickly than 

diffusion to defects and non-radiative recombination, then radiative recombination will 

be the dominant process. 

3.2.2.2. Charged dislocations model 

With a simple geometric model, a dangling bond would be expected at the dislocation 

cores, rendering the TDs charged.  A schematic diagram of an edge dislocation with such 

a dangling bond can be seen in figure 3.787.  Impurity segregation to the TD cores could 
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neutralise such dangling bonds, yet the extent to which this occurs is unknown, which 

suggests that investigations into the charge state of TDs in GaN are needed.  

 

Figure 3.7. After Knott87, A geometric model showing a dangling bond at an edge 

dislocation in GaN.  

Electron holography has been used to study the electrical activity of TDs, informing the 

debate on the behaviour of charge carriers near dislocations.  With this TEM-based 

technique, the crystal inner potential around TDs in p-type88, n-type89, and undoped 

GaN90 was examined.  Dislocations were found to be highly charged in all of these 

studies.  In p-type GaN, edge TDs were found to be positively charged, as shown in 

figure 3.8, and in n-type GaN, the TDs were found to be negatively charged.  This result 

indicates that the dislocations repel the majority carriers in both p-type and n-type GaN.  

If the carriers are repelled from the dislocations, then radiative recombination would be 

less likely to occur in the material around the TDs.  Hence, it would be possible to see 

spots with reduced emission around TDs in CL images without the TDs being non-

radiative recombination centres.  Again, this interpretation would depend strongly on 

radiative recombination rates and carrier diffusion rates.   
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Figure 3.8. After Cherns 

et al.88, map of the inner 

potential near an edge 

TD in p-type GaN.  The 

dislocation is shown 

where the dashed lines 

cross, and the potential 

is highly positive in the 

region nearest the TD.  

The colour scale is given 

in volts.  

It is worth noting that the samples made by Cherns et al.89 were prepared using ion 

milling, which could result in preferential milling around the TDs due to their altered 

stress state.  If the sample were thinner at the dislocations, then inaccurate results could 

be obtained from the holography studies.  Although the authors correct for the thickness 

variation resulting from a wedge-shaped sample, they do not consider possible thickness 

changes near the TDs.  Further work to ensure the validity of the analysis would lend 

greater weight to authors‟ conclusions.   

 

Simpkins et al.91 used KPFM to image the topography and surface potential of a 

1.5 × 1.5 µm2 area of a GaN film.  They were thus able to indicate the positions of the 

TDs on the surface potential map, as shown in figure 3.9.  The TDs are seemingly 

associated with decreased surface potential in the area surrounding the defect.  The 

authors present KPFM images of up to 10 × 10 µm2 in area, but the corresponding 

topography images do not have sufficient resolution to identify the TD pits.   
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Figure 3.9. From Simpkins et al.91, 

a 1.5 × 1.5 µm2 KPFM image of 

GaN with the location of TDs 

indicated with open white circles.  

The TDs seem to be associated 

with a reduction in surface 

potential.  The gray scale 

corresponds to a range of 25 mV.   

The weight of evidence provided by the electron holography and KPFM studies suggests 

that TDs in GaN are highly electrically active.  By repelling the majority carriers, charged 

TDs could lead to dark spots in the luminescence measurements without causing non-

radiative recombination.  Yet there is one question that has been largely ignored by the 

literature: if charge carriers in GaN exist as excitons, which are quasi-particles with no 

overall charge, why would they be affected by charged TDs?  For the dislocation charge 

to affect the charge carriers, the force exerted by the dislocation must overcome the 

exciton binding energy.  This energy is 25 meV in GaN, which is relatively high 

compared with 4 meV for GaAs92.  Only by separating the exciton can the TD charge 

influence the individual carriers.   

3.2.3. METHODS OF MEASURING TDS 

A number of methods exist to study the dislocation density and types present in GaN 

films, including cross-sectional and plan-view TEM, CL and AFM.  Three important 

areas in which these techniques differ are ease of sample preparation, ability to 

distinguish different types of TDs, and area imaged. 

 

Using cross-sectional TEM samples, information about the TD types present, their 

arrangement, and behaviour, such as bending, can be observed.  The dislocation density, 

however, is difficult to measure accurately by cross-sectional TEM, since it is 

problematical to determine the sample thickness, projection effects can make it difficult 

to resolve dislocations, and the area of the original film surface sampled is extremely 
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small.  Plan-view TEM samples can be used, however, and an imaging technique has 

been developed that reveals all types of TDs in a single image over an approximately 

25 µm2 area, even when the sample is bent93.  Thus, TEM-based techniques have the 

obvious advantage of enabling differentiation of screw, edge, and mixed TD.  However, 

as mentioned, the area analysed in such images is often very small, leading to doubts 

about the statistical significance of the results.  Additionally, the sample preparation is 

difficult and time consuming.  

 

CL imaging in the SEM has been used to access larger areas than can be studied in the 

TEM.  TDs are believed to be associated with dark spots in CL images, as shown in 

figure 3.1094.  This method has the advantage of quick and easy sample preparation, 

however, at this time it is not possible to differentiate the types of TDs, and it can be 

impossible to resolve dark spots arising from individual dislocations in areas of high TD 

density.  

 

Figure 3.10. From Hemmingsson et al.94, panchromatic CL image of a GaN film, 

showing dark spots in the luminescence believed to be associated with TDs.  

The AFM can be used to study TDs over large areas in GaN films by imaging the small 

pits in the surface of the film that are associated with the termination of dislocations.  

The size of these pits in as-grown epilayers varies by type: edge TDs give rise to much 

smaller pits than mixed and screw TDs, making the detection of edge dislocation pits 

challenging95.  A number of etching methods have been developed to increase the size of 

these pits for easier imaging95,96,97; however all of these methods require ex-situ treatment 

of the GaN film.  Recently, an in-situ treatment has been developed using silane and 
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ammonia that can be performed directly in the MOVPE reactor after growth of the GaN 

film79.  This treatment increases the size of the pits associated with TDs so that they can 

be imaged straightforwardly in the AFM, with edge TDs having a width of around 35 nm 

and those with a screw component having a width of around 55 nm.  Thus, the pit size 

can be used to distinguish the edge TDs from those with a screw component (screw and 

mixed TDs), although it is not possible to distinguish screw from mixed TDs.  

Additionally, the pits remain small enough that it is possible to resolve adjacent TDs in 

films with dislocation densities up to 5 × 109 cm-2.  With quick and easy sample 

preparation, large areas analysed and the ability to distinguish edge dislocations from 

those with a screw character, the AFM-based method has many advantages over CL and 

TEM-based methods.   

3.2.4. ELOG 

The dislocation reduction technique used in this chapter, ELOG, is an ex-situ method in 

which a dielectric mask (SiNx or SiO2) is patterned onto the surface of a GaN film prior 

to further growth15.  The mask filters defects by physically stopping their progress 

through the GaN film.  Typically, the process begins with a GaN seed layer a few 

micrometres thick grown on a suitable substrate.  The film is removed from the reactor 

and the dielectric mask is deposited using chemical vapour deposition (or a similar 

technique).  Photolithography is used to etch the mask into periodic stripes, oriented 

along a specific crystallographic direction.  The resulting masked GaN seed layer is 

returned to the reactor.  Growth of GaN is restarted, resulting in selected area epitaxy, in 

which the GaN grows only where the underlying seed layer is exposed (called „window‟ 

regions), not wetting the dielectric mask.  Over the mask, in the „wing‟ regions, GaN 

grows laterally, resulting in a very low dislocation density within these areas.   

 

In this simple ELOG process, the window regions contain the same TD density as the 

seed layer.  However, with a method called 2-Step ELOG, Marchand et al.98 showed that 

the growth conditions can be tuned to induce a morphological change in the GaN layer.  

By tailoring the growth conditions to favour the formation of {112̄2} facets, triangular 

pyramidal stripes can be formed, which induce TDs to bend over by 90 degrees into the 

(0001) basal plane.  Coalescence is then achieved by changing the growth conditions to 

favour lateral growth.  As the GaN growth continues, the bent TDs can meet and 

annihilate, reducing the dislocation density.  Additionally, voids often form at the 
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coalescence boundaries, and TDs can be terminated at these voids.  Those dislocations 

that are allowed to propagate to the surface can often be found in two distinct bands: 

one as a result of dislocations that failed to bend over, usually in the middle of the 

window region, and one as a result of TDs that formed at the coalescence boundary and 

propagated in the growth direction.  A schematic of the 2-Step ELOG technique can be 

seen in figure 3.11.  With this technique, an average TD density of 1.7 × 107 cm-2 has 

been achieved over the whole surface of the film, with an even lower TD density of 

5 × 106 cm-2 away from the coalescence boundaries15.  

 

Figure 3.11. Schematic diagram of the 2-Step ELOG process.  TDs are shown as 

solid black lines; the mask is shown in red.  Dislocations propagate through the 

window regions of the mask and tend to bend over where they meet the {112̄2} 

facets.  At the coalescence boundary voids can form, at which dislocations can be 

terminated.  Two bands of TDs often result at the surface: one at the middle of 

the window region, and one at the coalescence boundary. 

3.3. EXPERIMENTAL 

3.3.1. SAMPLE GROWTH 

The ELOG sample used in this study was grown on a c-plane sapphire substrate with a 

miscut of 0.25º ± 0.10º toward (112̄0) with a 6 × 2 inch Thomas Swan close-coupled 

showerhead MOVPE reactor.  A „high TD density‟ template was then grown on the 

substrate.  Growth of this template was begun with a low temperature GaN nucleation 
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layer, grown at 540 ºC, using TMG and ammonia as precursors, with hydrogen as the 

carrier gas.  Growth of GaN was then continued with a higher temperature, at 1,020 ºC, 

under a flow of 10 slm ammonia and 10 slm hydrogen, and with a high V:III ratio of 

approximately 1,310.  These conditions encouraged lateral growth, resulting in a flat, 2D 

layer throughout template growth.  Such templates have a TD density of around 

5 × 109 cm-2. 

 

On the high TD density template, a SiNx mask was then deposited in-situ for 1 h at 

860 ºC.  Optical lithography was used ex-situ to pattern the mask, forming 5 µm stripes 

and 5 µm windows running parallel to the [11̄00] direction.  After returning the wafer to 

the growth reactor, a 2-Step ELOG process was employed.  First, epitaxial GaN growth 

through the window regions occurred at 980 ºC, 400 Torr and a V:III ratio of 200, 

forming GaN stripes with a triangular cross-section bounded by {112̄2} facets.  To 

induce coalescence and planarisation by favouring lateral growth, the growth conditions 

were changed to 1020 ºC, 100 Torr, and a V:III ratio of 1300.   

 

A surface silane treatment was employed to increase the size of the TD pits on the GaN 

surface79.  The film was exposed to a SiH4 flux of 200 mmol/min under a 20 slm 

NH3/H2 flow (NH3/H2 ratio of 1:1) at 860 ºC for 240 s. 

3.3.2. AFM 

AFM scans were carried out in intermittent-contact mode using a Veeco 

Dimension 3100 with RTESP tips (with a nominal apex radius of 8 nm) and a 

Nanoscope V controller.  With this recently improved controller, broad area images with 

high pixel densities could be collected, due to the increased sampling rate available.  The 

sampling rate is important because when an AFM scan is taken, the height of the surface 

is sampled many times for each pixel, with the data recorded for that pixel being an 

average of these samples, producing an image with low noise.  For a fixed time taken to 

scan one line (scan rate) and a fixed sampling rate, any increase in the number of pixels 

per line results in a reduction in the number of times the height is sampled for each pixel, 

leading to increased noise in the image.  To achieve low noise images whilst increasing 

the number of pixels per line, an increased sampling rate must be used.   
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The Nanoscope V controller has a sampling rate of 500 kHz, a significant improvement 

over the Nanoscope IV, which had a sampling rate of 64 kHz.  To ensure the best quality 

images, a low scan rate of 0.3 Hz was used and Veeco RTESP tips with a nominal apex 

radius of 8 nm were employed.  Both topographic and amplitude error images were 

obtained.  

3.3.3. PITS PROGRAM 

A software program called PITS has been developed by Dr. David Holec for the 

automated detection of TD pits in JPEG images of AFM scans.  According to Dr. Holec, 

after converting the initial image to grayscale, the program uses three filters applied to the 

image to enhance the pit contrast and to reduce noise.  The first of these calculates the 

absolute values of the x and y derivatives of the image.  The pit searching analysis can be 

performed on one of the derivatives, or on their combination, depending on image 

quality.  As AFM images have a fast-scan direction corresponding to the x direction, 

analysis based on the x derivative gives better results because it avoids the common 

artificial contrast steps in the y direction associated with tip changes.  The next filter blurs 

the image to reduce the noise by replacing the intensity of a given pixel by the averaged 

intensity of that pixel and the four adjacent pixels.  Finally, an intensity threshold filter is 

used to remove noise, leaving only areas of sudden changes in intensity in the original 

image.  These areas are identified as TD pits.  The user is able to modify this threshold to 

fine tune the pit selection.  Additionally, pits can be added and removed in the final stage.  

Once suitably identified, pit coordinates can be exported and maps of the TD density in 

the image can be produced.   

3.3.4. TEM  

TEM samples were prepared using the standard technique, as described in section 2.3.1.  

TEM images were obtained using a Philips CM30 300 kV analytical TEM equipped with 

a LaB6 source.  WBDF images were taken using a g-3g diffraction condition.   

3.3.5. KPFM 

Surface potential data were collected in parallel with topographic scans on the AFM.  For 

these KPFM studies, Veeco SCM-PIT tips were used, which are coated with 20 nm of 

Pt/Ir and have a nominal apex radius of 20 nm.  Scan sizes and pixel densities were 

slightly lower in our KPFM studies than in the basic topographic measurements, due to 

the need for two scans per line (one topographic and one surface potential), as described 
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in section 2.2.2.  Thus, KPFM scans take twice as long to complete as images for which 

only topographic information is recorded.   

 

To quantify the effect of TDs on the surface potential, the mean potential at the pit 

locations was found.  First, the PITS program was used to find the dislocation 

coordinates in the topography image.  Then, a routine using a Microsoft Excel Macro 

was used to find the potential at each of the TD pit coordinates in the corresponding 

KPFM data set, and the mean of these data was calculated.   

3.4. RESULTS AND DISCUSSION 

3.4.1. AFM 

Our 2-Step ELOG sample was characterised using AFM to obtain broad area, high 

resolution topography images.  Such images can be of great value when assessing this 

type of dislocation reduction technique, which results in areas of greatly differing TD 

density.  Three distinct areas were studied to determine whether there were changes in 

the image attributes.  A typical 30 µm × 30 µm image with 4992 × 4992 pixels can be 

seen in figure 3.12. 

 

It is difficult to appreciate the level of detail present in the broad area image at the size at 

which it has been reproduced here.  To show what can be seen at the full resolution, a 

small portion of the image (indicated by the white box) is displayed in figure 3.13.  Both 

terraces and surface steps can be seen clearly, with measurement of step heights showing 

that both single monolayer steps (approximately 0.25 nm) and bilayer steps 

(approximately 0.5 nm) are present.  TD pits can be identified, which have widths of 5-10 

pixels in the original data set.  The average dislocation density over the whole image was 

found by a manual counting technique to be 1.2 × 108 cm-2.  The other two images had 

dislocation densities of 1.3 × 108 cm-2 and 9.2 × 107 cm-2, similar to that of the image in 

figure 3.12. 
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Figure 3.12. A 30 µm × 30 µm AFM topography scan of 2-Step ELOG GaN with 

4992 × 4992 pixels.  The vertical scale is 40 nm.  The resolution is sufficient to 

resolve details including the TD pits within this broad area image.   

 

Figure 3.13. A 3 µm × 3 µm section of 

the AFM scan shown in figure 3.12, 

corresponding to the region marked by 

the white box.  The vertical scale is 

20 nm.  Surface steps and TD pits can 

be seen clearly.   

3 µm 

500 nm 
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The locations of the TD pits were found by hand in all three of the 30 µm × 30 µm 

AFM images.  TD pits were manually ringed in red to highlight the dislocations in the 

broad area images.  Figure 3.14 shows the highlighted dislocation pits from the image in 

figure 3.12.  Figure 3.15 is a contour plot produced by dividing up the topography image 

into 1 × 1 µm2 boxes, counting the TDs, and plotting the data using Microsoft Excel.  In 

both representations of the data, it can be seen that the dislocation density is highly non-

uniform, with alternating wide and narrow bands of TD pits.  The overall periodicity of 

the bands (defined as the distance from one wide band to the next, running 

perpendicular to the bands) is approximately 10 µm.  This periodicity corresponds to the 

period spacing of the ELOG mask stripes.  As discussed in section 3.2.4, the alternating 

broad and narrow bands suggest that one corresponds to the coalescence boundary and 

one to the middle of the window region, a feature that will be addressed further in 

section 3.4.3 on TEM. 

 

Figure 3.14.   

The 30 µm × 30 µm 

AFM topography 

scan seen in figure 

3.12 with TD pits 

ringed in red.   

3 µm 
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Figure 3.15.  TD contour plot produced by dividing up the image seen in figure 

3.12 into 1 × 1 µm2 boxes, counting the number of TDs per box, and plotting in 

Microsoft Excel as a contour plot.  The key is in units of TDs / µm2. 

3.4.2. PITS 

The PITS program was used to automatically identify the TD pits in the three 

30 µm × 30 µm AFM topography scans.  Figure 3.16 shows a 5 µm portion of the image 

in figure 3.12 after PITS has been applied to find the dislocations and ring them in red.   

 

Figure 3.16. A 5 µm portion of the 

AFM topography image found in 

figure 3.12, with red rings around 

TD pits that have been 

automatically applied by the 

PITS program.  This method 

greatly decreases the time 

needed for the analysis of TD 

density and distribution.  

500 nm 
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By tuning the intensity threshold filter, it is possible to use the PITS program to 

accurately identify most TD pits in the images studied here.  To evaluate the accuracy of 

PITS compared with manual counting, the dislocation density was found by each method 

for the three images.  The results can be seen in table 3.1, which shows good agreement 

between manual counting and the much less time-consuming PITS program. 

 

Table 3.1. Comparison of the TD dislocation densities found by manual counting 

and by the PITS program for three 30 µm × 30 µm AFM topography scans of 

2-Step ELOG GaN with 4992 × 4992 pixels.   

Image TD density measured by manual 

counting (cm-2) 

TD density measured with the PITS 

program (cm-2) 

1 1.2 × 108  1.2 × 108 

2 1.3 × 108 1.4 × 108 

3 9.2 × 107 9.5 × 107  

3.4.3. TEM 

To investigate the origin of the broad and narrow bands of TDs observed in the AFM 

images, WBDF TEM was used to study a cross-sectional sample of 2-Step ELOG GaN.  

The TEM data are shown in figure 3.17.  Dislocations can be observed to propagate 

through the window regions of the mask, after which some are induced to bend over 

where they meet the {112̄2} facets (indicated with solid white lines, as illustrated in 

figure 3.11).  Some of the TDs which propagate laterally are annihilated at the voids 

present at the coalescence boundary.  Interactions between TDs can lead to annihilation 

or to dislocations forming at the coalescence boundary and propagating in the growth 

direction.  It can be seen that the 2-Step ELOG process is not wholly effective in 

inducing dislocation bending: some TDs propagate through the top of the triangular 

stripe, perhaps indicating that at the beginning of the lateral growth stage, (0001) facets 

were still present at the top of the stripes of GaN, which would allow TDs to propagate 

in the growth direction.  Thus, it appears that the broad dislocation band is associated 

with the middle of the window region, and the narrow band with the coalescence 

boundary.   
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Figure 3.17. g = 0002 

(g-3g) WBDF TEM 

image of 2-Step 

ELOG GaN.  The 

solid lines indicate 

the {112̄2} facets, 

which induce some 

TD bending.  The 

broad band of TDs 

results from the 

middle of the 

window region, and 

the narrow band 

from the coalescence 

boundary. 

3.4.4. KPFM 

KPFM was used to study the 2-Step ELOG sample to observe the effect of TDs on the 

surface potential.  Two KPFM scans were taken in parallel with topography scans, and 

figure 3.18a shows a 20 µm × 20 µm topography image with 2048 × 2048 pixels.  The 

resolution is sufficient to resolve the TD pits, and the same type of broad and narrow 

bands are observed here as highlighted in figure 3.14.  The corresponding surface 

potential map can be seen in figure 3.18b, which shows bands of dark contrast (lower 

potential) in the KPFM data, which appear to run along the same direction as the TDs.  

Figure 3.18c shows an overlay of the TD pit positions on the surface potential map, 

using the inhomogeneous pattern of TDs to demonstrate that many of the areas of lower 

potential in the KPFM data contain a high density of TDs.  The broad bands of 

dislocations correspond to the darkest contrast, and many of the TDs seen either in the 

narrow bands or in regions between the bands also show locally lower potential.  That 

being said, not all areas around TDs show dark contrast, and not all of the areas with 

lowered potential contain dislocations.  On the whole, however, it does appear that most 

TDs are associated with lowered surface potential.  This result is consistent with the 

KPFM study by Simpkins et al.91, in which they showed a lower potential associated with 

Narrow TD 

band 

Broad TD 

band 

2 µm 

Void 
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the TDs in a very small area of 2.25 µm2. The present work shows the same for the 

majority of TDs over the much larger area of 400 µm2. 

  

 

Figure 3.18. (a) 20 µm × 20 µm topographic AFM image of 2-Step ELOG GaN with 

2048 × 2048 pixels and a vertical scale of 15 nm.   (b) KPFM data collected in parallel 

with (a), with a voltage scale of 107 mV.  (c) The KPFM data from (b) overlaid with 

red circles indicating the positions of TD pits observed in (a).  

2 µm 2 µm 

2 µm (c) 

(a) (b) 
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To quantify the change in KPFM signal at the TDs, an Excel Macro was used to find the 

mean signal at the dislocation positions.  At the dislocations, the surface potential signal 

was lowered by 9.5 mV compared to the mean potential found for the entire image.  To 

assess the hypothesis that these two means were different, a student t-test was applied, 

and suggested a confidence level significantly greater than 99.95% that the mean 

potential reduction observed at the dislocation sites is genuine.  This high confidence 

level reflects the fact that the mean values were calculated from data collected from a 

very large number of TD locations, made possible by imaging over such broad areas. 

 

With the potential shown to be lowered on average by the presence of TDs, it is 

important to consider what might cause the dislocations to exhibit a different potential, 

compared to the surrounding material.  Also, why might some TDs but not others show 

this lowered potential?  As mentioned previously, a simple geometric model would 

suggest the presence of a dangling bond at the dislocation core, which would render the 

dislocation charged.  Impurity segregation to the TD core could neutralise this charge, 

although the extent to which this occurs is unknown and difficult to study.  This amount 

of segregation could conceivably vary over the film, causing only some TDs to show a 

lowered potential.  With the 3D-2D growth method, as used in the ELOG sample, the 

V/III ratio is changed during growth, which could cause the impurity level to vary across 

the sample.  Additionally, as GaN is a piezoelectric material, in which an electric field is 

caused by strain, it is also possible that the lowered potential could be caused by the 

strain field surrounding the dislocation.  Strain fields would be expected to be present 

around every TD, which does not seem consistent with the fact that some dislocations 

do not exhibit a lowered potential.  However, in an ELOG sample containing arrays of 

TDs, the strain around TDs might be expected to vary depending on their location.  

Later, in Chapter 4 of this work, an attempt is made to shed light on these questions by 

using atom probe to try to determine the level of impurity segregation to dislocation 

cores.   

3.5. SUMMARY 

In this chapter, an AFM with a high sampling rate controller has been used to image an 

ELOG sample over 30 µm × 30 µm areas with very high resolution, making it possible 

to see TD pits over broad areas.  Manual counting of the TD pits was compared to the 
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PITS program by using each method to find dislocation densities in three broad area 

AFM images.  The results compared favourably, showing that this software tool can be 

used to automate pit finding and greatly reduce the analysis time required.  Both broad 

area AFM and the PITS program can be applied outside of the work described here to 

study samples that have very low dislocation densities, or patterns in the TD distribution, 

and they can also be used to provide the large amounts of data required to give statistical 

relevance to conclusions based on AFM data. 

 

KPFM was used to study the surface potential of the ELOG sample.  The KPFM data 

showed a correlation between the location of TDs and a lowering of the surface 

potential.  Although not all TDs are associated with lowered potential, the mean lowering 

of the potential at the TD pits was quantified and compared with the mean potential for 

the entire image.  The difference in the two means was found to be genuine using a 

student-t test, with a confidence level of over 99.95%. 
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4 
APT STUDIES OF THREADING 

DISLOCATIONS 

4.1. AIMS 

4.1.1. APT OF A DISLOCATION 

In this chapter, our first aim was to characterise a sample containing InGaN/GaN 

multiple QWs (MQWs) using TEM, to investigate how TDs running through the wells 

affected the well morphology.  We then hoped to use APT to study a TD as it ran 

through the MQWs.  We aimed to use any perturbation of the MQWs to reveal the TD 

position.  It was hoped that, after identifying the position of the TD in the APT data, we 

could investigate any compositional changes at the dislocation, such as impurity or 

dopant segregation. 

4.1.2. COMPARATIVE MICROSCOPY: APT AND TEM 

The second aim of this chapter was to examine the same dislocation in both the TEM 

and the LEAP.  We aimed to make a sample, containing a dislocation, on a mount with 

geometry appropriate for study in both instruments.  It was hoped that the TEM could 

first be used to verify the presence of the dislocation, ascertain the dislocation type, 
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characterise its position in the sample, and determine how it perturbed the MQWs, and 

then the LEAP could then be used to investigate the composition at the dislocation.  

4.2. OVERVIEW OF EXPERIMENTAL WORK 

The aims of this chapter were very ambitious.  As far as is known, APT data of a 

dislocation in a compound semiconductor have never been reported in the literature.  

Unfortunately, the aims as set out in the previous section were not achieved; however, 

experiments related to these aims were accomplished and have yielded interesting results.  

This section gives a guide to the studies that will be reported in this chapter.   

 

A new sample preparation technique, described in section 4.5.1, was used in an attempt 

to capture a dislocation in an APT sample.  These samples had a side-on orientation, in 

which the MQWs run parallel to the long axis, and the TDs run perpendicular, along the 

short axis of the sample.  Standard orientation APT samples were also studied, and in 

two of these samples a V-pit defect, believed to be associated with a TD, was observed 

perturbing the wells.    

 

A TD was successfully captured in an APT sample that was appropriate for study in both 

the TEM and the LEAP.  The presence of the TD was verified with the TEM, and the 

TD position was estimated within the sample.  Unfortunately, after running for a short 

time in the LEAP, the sample fractured, rendering the desired comparison impossible in 

this instance.   

4.3. BACKGROUND   

As V-pit defects are discussed in this chapter, this section will begin with some 

background on the structure and origin of these defects.  The discussion will then focus 

on the study of composition at dislocations in semiconductors using TEM-based 

methods.  Finally, APT investigations into the composition at dislocations in both metal 

and semiconductor materials will be described. 
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4.3.1. V-PITS  

When TDs intersect InGaN/GaN MQWs, they have been observed to disrupt the 

InGaN layer, resulting in defects called „V-pits‟99,100,101.  V-pits are initiated at a TD, and if 

a GaN capping layer is grown above the MQWs, the V-pit is filled in, while the TD 

propagates to the film surface.  These defects have been characterised using 

STEM-HAADF100,101, and figure 4.1a shows a Z-contrast image of a V-pit in an 

InGaN/GaN MQW sample, capped with GaN101.  Within the V-pit, contrast from 

uninterrupted wells can be seen, as a result of projection of material in front or behind 

the defect in the TEM sample. Figure 4.1b is a schematic diagram of the V-pit101.   

 

Figure 4.1. From Yang et al.101, (a) STEM-HAADF image of a V-pit initiated at a 

TD in an InGaN/GaN MQW sample that has been capped with GaN.  The V-pit 

shows contrast from uninterrupted MQWs due to projection of material in front or 

behind the defect through the TEM sample.  (b) Schematic diagram of the 

structure of a V-pit, illustrating the inverted hexagonal pyramid shape.    

Wu et al.99 found the structure of these defects to be an empty inverted hexagonal 

pyramid shape, where the six sidewalls are {101̄1} planes that form an open hexagon on 

the (0001) plane.  The authors found that the sidewalls contained InGaN QWs, which 

are thinner than the wells on the (0001) planes.  Although a number of studies have 

reported these thin sidewall QWs99,100,101, recently Ding and Zeng102 used energy-

dispersive X-ray spectroscopy (EDX) analysis in the TEM to dispute the existence of 

such sidewall InGaN QWs: the authors claimed that In was not present in the sidewall 

regions, and that the contrast observed in the TEM related to interference fringes due to 

(a) (b) TD 

GaN cap 

TD 

V-pit 
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lattice strain.  It is possible that the samples studied by Ding and Zeng102 were grown 

under conditions that did not produce sidewall QWs, but that sidewall QWs are seen in 

samples grown under different conditions.  However, the authors make the more general 

assertion that their experiments show that sidewall QWs must not exist.   

 

Kim et al.103 suggested that strain caused by the lattice mismatch between InGaN and 

GaN is a primary cause for V-pit formation; however, the authors did not clearly state 

the mechanism by which the V-pits relieved this strain.  Wu et al.99 instead suggested that 

V-pit formation can be attributed to reduced Ga incorporation on the pyramidal {101̄1} 

planes, in comparison with growth on the adjacent (0001) plane.  The defect morphology 

is suggested to be kinetically governed, due to limited surface diffusion observed at the 

low growth temperatures required for InGaN.  At higher temperatures, such as those 

used for GaN growth, the V-pit is quickly planarised, due to increased surface diffusion.   

 

Yang et al.101 have suggested that In atoms can be trapped and segregated in the strain 

field around a TD, resulting in a kind of small mask, which hinders the migration of Ga 

atoms on the (0001) plane.  Once the mask impedes the layer-by-layer growth on the 

(0001) surface, growth is continued on the {101̄1} facets, leading to the formation of a 

V-pit.  Z-contrast images showing a bright spot at the V-pit apex have been used as 

evidence for this effect.  Contrary to this model, however, Hangleiter et al.104 observe 

V-pits that initiate below the InGaN wells, which suggests that V-pit formation can 

occur in the absence of indium.   

4.3.2. TEM STUDIES OF DISLOCATION COMPOSITION 

TEM has long been used to investigate the structural properties of dislocations in 

semiconductors, yet only recently has it been possible to resolve the core structures of 

dislocations at the atomic level105.  With improving resolution, it has become possible to 

investigate the composition at dislocations using TEM.  STEM-EELS paired with 

STEM-HAADF (discussed in sections 2.3.4 and 2.3.5) can be used to obtain a direct 

correlation between the atomic structure and the local composition, enabling the study of 

composition variations at TDs106.  In this section, recent TEM studies of the local 

chemistry at dislocations in semiconductors will be discussed. 
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Xu et al.105 have studied an isolated partial dislocation in beryllium-doped GaAs.  A 

STEM-EELS probe was scanned across the associated intrinsic stacking fault (ISF), 

which was imaged simultaneously using STEM-HAADF.  EEL spectra were obtained at 

the points indicated in figure 4.2, and the intensity ratios of the peaks of As/Ga and 

Be/C are shown in the inset (C used for calibration)105.  The scale bar represents 0.5 nm.  

The EELS results reveal Ga and Be enrichment at the ISF.  The authors claim that a 

suitable combination of imaging, local spectroscopy and theoretical modeling allows for a 

full characterisation of individual dislocation cores, including segregation effects; 

however, they do not acknowledge that TEM is limited to 2D representations of what 

may be interesting 3D segregation behaviours at dislocation cores. 

 

Figure 4.2. From Xu et al.105, 

STEM-HAADF image of an 

ISF in GaAs, where the scale 

bar represents 0.5 nm.  Red 

circles show the positions of the 

STEM probe at which EEL 

spectra were collected.  The 

inset shows the relative 

concentrations of As/Ga (black 

squares) and Be/C (red circles) 

as the probe crosses the ISF.  

There is both Ga and Be 

enrichment at the ISF.  

Hawkridge and Cherns107 have studied the composition of TD cores in GaN.  In a 

previous study, Cherns et al.108 observed that some screw dislocations in undoped, 

MOVPE-grown GaN are of open core type, called nanopipes.  The structure of these 

nanopipes was studied using STEM-HAADF, with accompanying compositional 

information obtained with EELS107.  Figure 4.3a shows an HAADF image of an open 

core screw dislocation.  The results of the EELS measurements, showing the 

compositional variation across the dislocation, are shown in figure 4.3b.  The positions of 

the arrows in the composition profile indicate the corresponding arrows in the HAADF 

image.  The N signal can be seen to drop as the edge of the nanopipe is approached, 

coinciding with a rise in the O signal, which reaches a maximum at the wall of the 

nanopipe.  The authors assert that because the STEM-HAADF lattice structure contrast 
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can still be observed where there is depleted nitrogen, the oxygen is substituting on 

nitrogen sites.  They state that such a structure would require Ga vacancies to maintain 

charge neutrality, which is consistent with the drop in Ga signal observed in the 

concentration profile in the region nearest the nanopipe.   

 

In support of these conclusions, Arslan et al.106 also used EELS to show a decreased N 

signal and an increased O signal as the edge of a nanopipe was approached.  Additionally, 

the authors studied a normal, or full core, screw TD, at which minimal oxygen 

segregation was observed.  These studies represent the first attempts to characterise the 

composition at TDs in GaN.  Although substantial evidence has been presented showing 

oxygen segregation to nanopipes, it seems that further work is needed to characterise 

edge and mixed TDs, as well as to verify the absence of oxygen segregation at full core 

screw dislocations.   

 

Figure 4.3. From Hawkridge 

et al.107, (a) STEM-HAADF 

image of an open core screw 

dislocation in GaN.  

 

(b) EELS data showing a 

compositional profile across 

the open core TD seen in 

(a).  As the edge of the TD is 

approached, the N signal 

drops (shown by an unfilled 

arrow), and the O signal 

rises, to a maximum at the 

nanopipe wall.  The Ga 

signal also drops in this 

region.  

(a) 

(b) 
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4.3.3. APT STUDIES OF DISLOCATION COMPOSITION 

Studying dislocations with the atom probe has proved challenging, but a small number of 

studies have been reported.  These works are mainly restricted to metal samples using 

voltage pulsed APT.  In this section, APT studies of TDs in metals are discussed, 

followed by the only known study of a dislocation in a semiconductor sample, reported 

in 2007 in Science109. 

 

The first atom probe studies of dislocations were carried out in Oxford, where the 

segregation of carbon atoms to dislocations in Fe-C alloys was observed110.  In a later 

paper from the Oxford group, Wilde et al.111 used non-destructive FIM imaging to 

pinpoint a dislocation at the surface of the electropolished tip.  Atom probe analysis was 

then centred at the defect, and the authors showed that the TD was surrounded by a 

Cottrell atmosphere, which is a tiny cloud of impurity atoms around a dislocation112.  In 

their seminal paper, published in 1947, Cottrell and Bilby112 proposed that these 

atmospheres form due to strain relaxation that occurs when interstitial atoms migrate to 

regions in which the crystal structure has been expanded by a dislocation.  Direct 

evidence for these atmospheres is difficult to obtain, due to the high spatial resolution 

required; however with atom probe the C-rich Cottrell atmosphere was clearly observed.   

 

Blavette et al.113 used APT to characterise boron-doped iron-aluminium alloys.  The 

authors were able to resolve the atomic planes in the material and thereby observe an 

extra half-plane of Al-rich material at an edge TD.  The dislocation was surrounded by a 

B-rich Cottrell atmosphere, and a reconstructed atom map of the decorated TD can be 

seen in figure 4.4, with only boron atoms shown for clarity.  The APT analysis proceeded 

from left to right.  A cylindrical envelope illustrates the rod-like morphology of the solute 

enriched region, in which the boron segregates parallel to the dislocation line.  This 

example and the C-rich atmosphere described above demonstrate that APT is capable of 

3D representation of the solute density along the line of the dislocation, in contrast to 

the 2D information that can usually be obtained using TEM. 
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Figure 4.4. From 

Blavette et al.113, an atom 

map showing a B-rich 

Cottrell atmosphere 

around an edge TD in 

an ordered Fe/Al alloy.  

The Fe and Al atoms are 

omitted for clarity.  

In another study of dislocations in metals, Miller114 used APT to study neutron-irradiated 

pressure vessel steel welds.  An atom map of such a weld can be seen in figure 4.5, with 

Cu atoms shown in green and P atoms shown in orange.  Cu precipitates and P 

segregation can be observed along the dislocations.  As Cu precipitates have a direct 

effect on the longevity of this material in nuclear reactors, such direct observations of 

their size and distribution are extremely valuable.  Although the author mentions that the 

use of TEM can be useful to determine the character of the dislocation prior to APT 

analysis, this characterisation was apparently not achieved for this particular sample.   

 

Figure 4.5. From Miller114, an 

atom map of a neutron-

irradiated pressure vessel steel 

weld. Cu precipitates and P 

atoms are observed to segregate 

to what are stated to be 

dislocations.  Cu is shown in 

green, and P in orange, with all 

other atoms omitted for clarity.   

Recently, a dislocation has been captured in a sample of As-implanted Si, which is the 

first reported study of a dislocation in a semiconductor material109.  The ion implantation 
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of arsenic dopant atoms results in damage to the silicon, which can be partially repaired 

using thermal treatment.  Thermally stable dislocation loops remain, however, and 

As-rich Cottrell atmospheres are formed at these dislocation loops.  Using APT, 

Thompson et al.109 were able to provide quantitative information about the location of 

individual dopant atoms relative to the dislocation loops.  Figure 4.6a shows a TEM 

image of the As-implanted Si after annealing at 600 ºC for 30 min and at 1000 ºC for 

30 s.  A dislocation loop can be seen, which was shown to contain As using EDX.   

 

Figure 4.6b shows an APT data set of the same material, although taken from a different 

area of the sample.  Only 0.5 % of the Si atoms are shown (as gray dots) for clarity.  The 

purple, ring-shaped surfaces are 2 at.% As isoconcentration surfaces, inside which the As 

concentration exceeds 2 at.%.  These features are thought to relate to the type of 

dislocation loops seen in the TEM image, and the As distribution was found to be 

indicative of a Cottrell atmosphere.  From the bulk to the Cottrell atmosphere (over 

3 nm), the As concentration was found to increase by a factor of ten.  Although no scale 

bar is provided with the atom probe data set, the authors mention that the blue oxide 

layer at the top of the image is roughly 2 nm in depth.  The utility of this study can be 

understood by considering the impact that these Cottrell atmospheres might have on 

devices fabricated from this material.  In the next generation of Si electronics, the 

minimal features will be on the order of 10 nm.  If one As-rich dislocation loop were 

present within such a device, it could render it unusable109.   

 

The APT studies discussed in this section serve to demonstrate the remarkable potential 

of the technique in the 3D characterisation of dislocations, allowing details of the local 

chemistry of the defect to be observed.  
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Figure 4.6. From Thompson et al.109, As-implanted Si after thermal treatment 

(30 min at 600 ºC, 30 s at 1000 ºC), containing As-rich Cottrell atmospheres at 

dislocation loops.  (a) TEM image of a dislocation loop.  (b) APT data set, 

showing Si as gray dots (only 0.5 % shown).  An oxide of approximately 2 nm 

thickness is seen on the surface of the sample, shown with blue surfaces.  As-rich 

ring-shaped defects related to the dislocation loops seen in (a) can be observed, 

and are shown with purple isoconcentration surfaces at 2 at.% As. 

4.4. EXPERIMENTAL 

4.4.1. SAMPLE GROWTH 

The samples used in this chapter were grown by Dr. Rachel Oliver on c-plane sapphire 

substrates using a 6 × 2 inch Thomas Swan close-coupled showerhead MOVPE reactor.  

In Sample A, a „low TD density‟ template was used.  This template was begun with a 

GaN nucleation layer, as described for the high TD density template in section 3.3.1.  

After the 2D nucleation layer was grown, the temperature was ramped to 1,020 ºC, and 

the sample was annealed under a flow of 1.5 slm ammonia and 18.5 slm hydrogen, with a 

V:III ratio of 715 for 300 s, to encourage growth of 3D GaN islands.  Finally, lateral 

growth leading to coalescence of the islands was encouraged using a high V:III ratio.  

The final template had a flat, 2D surface with a greatly reduced TD density compared to 

the 2D growth used for high TD density templates.  The low TD density templates used 

(a) (b) 
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in this work were grown by this 3D to 2D method and contain TD densities of between 

3 - 5 × 108 cm-2, as reported by Oliver et al.79. 

 

On top of the low TD density template, a MQW stack was grown at 740 °C, consisting 

of ten repeats of InGaN/GaN.  The V/III ratio during InGaN growth was 

approximately 33,000, and the molar flows of TMI and TMG were 8 μmol/min and 

5.5 μmol/min, respectively.  In a separate run, a portion of the wafer was capped with a 

GaN layer, found to be of thickness 260 nm ± 5 nm by Dr. Clifford McAleese (using 

XRD).  During capping, the growth temperature was approximately 1000 °C. 

 

Sample A was previously characterised by Dr. Mark Galtrey, who found the TD density 

to be (8.1 ± 0.6) × 108 cm-2 (by measuring the density of pits observed in AFM), and the 

QW stack to be comprised of GaN layers of thickness 7.0 ± 0.1 nm and InxGa1-xN layers 

of thickness 2.4 ± 0.1 nm, with indium fraction x = 0.183 ± 0.005 (using XRD)65.   

 

Sample B was grown on a high TD density GaN template, as described in section 3.3.1.  

A 1 µm Si-doped GaN layer was then grown at 1020 °C, after which the MQWs were 

grown to the same specifications as in Sample A.  A portion of the wafer was capped in 

the same run as the portion from Sample A, resulting in a GaN cap of equal thickness.  

To obtain an estimate of the TD density of the template, a silane-treated highly resistive 

template (grown to the same specifications used in Sample B) was studied using AFM.  

The PITS program was used to find the TD density, which was approximately 

6.8 × 109 cm-2.  Although the comparison is imperfect, Sample B clearly has a much 

higher TD density than Sample A.  Dr. Clifford McAleese found the QW stack in 

Sample B to be comprised of GaN layers of thickness 7.7 ± 0.1 nm and InxGa1-xN layers 

of thickness 2.6 ± 0.1 nm, with indium fraction x = 0.179 ± 0.007 (using XRD). 

4.4.2. STEM-HAADF  

Z-contrast imaging was used to observe the MQW morphology, including the V-pits in 

the capped Sample B.  The TEM sample was prepared with the standard mechanical 

polishing method, followed by ion milling, and etching with KOH, as described in 

section 2.3.1.  STEM-HAADF was performed using an FEI Tecnai™ F20 G2 operating 

at 200 kV with a FEG and images were taken just off the <112̄0> zone axis.   
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4.4.3. APT SAMPLE PREPARATION 

APT samples used in this chapter were prepared using an FEI Company™ Helios 

Nanolab™ dual beam FIB/SEM equipped with an Omniprobe Autoprobe™ 200 

micromanipulator.  A number of samples in this chapter were prepared using the 

standard liftout and annular milling procedure, with both microtip and Cu/W sample 

mounts, as described in section 2.5.2.  The capped Sample B was used for samples 

prepared on microtips, and Sample B without a cap was used for the sample on a Cu/W 

sample mount, which was examined in the TEM.   

 

A new sample preparation technique was developed for the work presented in this 

chapter, in which the sample was turned and milled in a side-on orientation.  Sample A 

and Sample B (both capped with GaN) were used for side-on APT samples.  A 

description of the development of this sample preparation method is provided in section 

4.5.1, where related SEM images illustrate the results of the method used. 

4.4.4. TEM OF APT SAMPLES 

TEM images of the APT sample on a Cu/W mount were taken with the assistance of 

Dr. Jonathan Barnard using an FEI Tecnai™ F20 G2 operating at 200 kV with a FEG.  

The Cu tube end of the sample holder was inserted into a Fischione Model 2050 on-axis 

rotation tomography holder using a standard 1 mm diameter cartridge. 

 

The APT sample was imaged using STEM-HAADF.  Images were taken near the 

<112̄0> zone axis and then, after rotating the sample through approximately 30 degrees, 

near the <11̄00> zone axis.  The strain contrast around the TD was sufficient to 

determine its approximate location in the image. 

4.4.5. APT 

All APT samples in this chapter were run at the OPAL EPSRC National Atom Probe 

Facility at Oxford University, in collaboration with Prof. Alfred Cerezo and Prof. George 

Smith, and with the kind help and supervision of Dr. David Saxey.  A LEAP 3000X HR 

was used, which was equipped with a reflectron and picosecond duration laser pulsing.  

Details of the LEAP conditions used for each run will be presented in section 4.5, with 

the associated APT data set.  Once the data were collected, the APT reconstructions 
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were optimised to obtain flat wells and the correct well spacings, as indicated by TEM 

and XRD.   

4.5. RESULTS AND DISCUSSION 

4.5.1. SIDE-ON APT SAMPLE PREPARATION  

The first aim of this chapter was to use APT to study a TD as it ran through MQWs.  As 

Sample B was grown on a high TD density template, for which an approximate TD 

density of 6.8 × 109 cm-2 was obtained, it was possible to estimate the likelihood of 

capturing a TD in a standard orientation sample.  Using a circular field of view of 

100 nm in diameter, one TD could be expected to be captured in about every two 

samples, on average.  To increase the chance that the APT sample would contain a 

dislocation, a side-on sample preparation method was used.  A successful side-on sample 

contained the MQWs running down the long axis of the sample, and the TDs running 

across the APT sample.  As depths of up to 1 µm can be analysed in APT samples, on 

average each sample could be expected to contain about seven TDs.  In addition, with 

the MQWs running down the sample, the superior z-resolution of APT could be used to 

investigate in-plane In concentration variations (the question of „In clustering‟), which 

will be discussed in Chapter 6. 

 

Side-on samples were prepared with the use of the recently developed Axial Rotational 

Manipulator (ARM) from Imago Scientific Instruments.  First, a wedge of material was 

lifted out using the method described in section 2.5.2, ensuring that the width of the 

liftout wedge was sufficient to later form the long axis of the APT sample.  Once freely 

attached to the micromanipulator needle in the FIB/SEM, the wedge was transported 

within the chamber to the ARM.  Two schematic diagrams of the ARM can be seen in 

figure 4.7.  An electropolished W needle is held under a plate with two screws, after 

which the needle bends through 90 degrees over the side of the aluminium base.  To use 

the ARM, the end of the sample wedge not attached to the micromanipulator was glued 

to the ARM needle with FIB-Pt.  Figure 4.8 shows this transfer taking place, with the 

micromanipulator on the left and the ARM needle on the right.  Once the wedge was 

attached to the ARM needle, it was cut free from the micromanipulator.  The ARM, with 

the sample attached, was taken out of the FIB/SEM chamber, and the W needle was 

rotated through 90 degrees to create a side-on wedge.  
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Figure 4.7. Schematic diagrams showing 

two views of the ARM.  The arrows 

indicate that the W needle (black) can 

be rotated through 90 degrees once the 

wedge is attached to the needle, to turn 

the wedge on its side.   

 

 

Figure 4.8. Electron beam image of 

the sample being transferred from 

the micromanipulator to the ARM 

needle.  FIB-Pt is used to glue the 

sample to the ARM, after which the 

micromanipulator is cut away.  

Once the sample has been rotated 

through 90 degrees by the ARM, 

the sample is transferred back to 

the micromanipulator in the same 

way.   

After returning the ARM with the sample to the FIB/SEM chamber, the side-on wedge 

was transferred back to the micromanipulator.  The standard procedure for mounting 

samples on microtips was then followed, to create multiple side-on wedges that were 

ready to be sharpened.  Figure 4.9 shows a side-on wedge mounted on a microtip.  The 

MQWs were capped with approximately 260 nm of GaN, so that distance was measured 

in from the bright contrast of the sputter coated Pt layer that marked the position of the 

surface.  Annular milling could then be centred on the MQWs, as indicated with dashed 

red lines in figure 4.9.  The standard annular milling steps were carried out to sharpen the 

APT sample, producing a finished sample, as shown in figure 4.10.   

1 cm 

Micromanipulator 

Sample  
ARM W needle 

FIB-Pt GIS  
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Figure 4.9. Electron beam image of a 

side-on wedge mounted onto a 

microtip.  The bright contrast running 

down the right side of the wedge is the 

sputter coated Pt layer.  The MQWs 

run down the length of the sample, 

illustrated by dashed white lines.  The 

MQWs were centred in the annular 

milling patterns, as indicated by 

dashed red lines.  

 

Figure 4.10.  An electron beam image 

of a finished side-on sample, 

containing MQWs running down the 

length of the sample and TDs running 

across the sample.  The tip diameter is 

less than 100 nm, gradually increasing 

in size to around 200 nm. 

4.5.2. STEM-HAADF 

Z-contrast imaging of thin foil TEM samples of Sample B was used to characterise the 

MQWs and to observe how the interaction with TDs affected their morphology.  Figure 

4.11a shows the MQW stack, with bright contrast corresponding to the InGaN wells.  

All ten wells appear to be flat and fairly uniform, although the top well appears 

somewhat thinner than the others, possibly due to material from the final GaN barrier 

and InGaN QW desorbing during the temperature ramp that was used during the first 

part of the growth run in which the additional GaN cap was deposited.  This image is 

representative of areas without TDs, and the morphology seems consistent with previous 

observations of single temperature MQW growth115. 

Sputter coated Pt  

Microtip 

MQWs  

FIB-Pt glue 

Microtip 

MQWs  TDs  
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V-pits were observed in the MQWs, associated with TDs.  No V-pits were observed that 

began below the wells, as observed by Hangleiter et al.104.  In all cases, the V-pits 

appeared to show InGaN layer sidewall decoration with thin InGaN QWs, consistent 

with the model of Wu et al.99.  An image of such a V-pit can be seen in figure 4.11b, 

showing clear contrast of thin InGaN wells on the sidewalls.  Although contrast 

associated with a TD cannot be seen at the apex of the V-pit in this image, many other 

V-pits were observed that showed contrast at a TD (as shown in figure 4.12).  In this 

image, the V-pit appears to begin at the second well, although it is likely that the sample 

is too thin to contain the entire V-pit, and some of the defect and the associated TD 

have been milled away.  The top well is missing, which suggests that the tenth well 

thickness may diminish in the vicinity of a V-pit.  Of note, there does appear to be 

increased contrast at the apex of the defect, as described by Yang et al.101, however the 

lower wells also appear brighter than those near the top of the stack, indicating that the 

brighter contrast could simply be due to a greater sample thickness near the bottom of 

the MQW stack.  

 

 

Figure 4.11. STEM-HAADF images of the MQW stack in the capped Sample B.  

(a) Region without any TDs visible, in which the QWs are flat and fairly uniform.  

(b) V-pit observed in the MQW stack, in which thin InGaN wells decorate the 

sidewalls of the defect. 

(a) (b) 
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A V-pit was observed that showed significant misalignment between wells on either side 

of the defect, as shown in figure 4.12.  The degree of misalignment appeared to increase 

gradually during the sample growth, as indicated by the dashed white lines in the figure.   

 

Figure 4.12. STEM-HAADF image of a 

V-pit in the MQW stack in the capped 

Sample B.  Thin InGaN QWs are again 

observed on the sidewalls of the V-pit.  The 

QWs are increasingly misaligned as growth 

is continued through the MQW stack, 

illustrated with dashed white lines 

connecting wells of equal number in the 

growth sequence.   

4.5.3. APT OF TDS 

Unfortunately, all eleven side-on samples that were made from Sample B fractured in the 

LEAP, with only one providing a small data set, in which some of the MQWs were 

observed, but no indication of a TD was seen.  By contrast, the yield of standard 

orientation samples of the same material was three useful data sets out of five samples.  

In light of this difference, it was thought that perhaps in the side-on orientation, the high 

density of TDs increased the likelihood of fracture, which will be discussed further in 

section 4.5.5.  In an attempt to reduce any problems arising due to the high dislocation 

density, side-on samples were prepared from capped Sample A, which had a lower TD 

density.  It was estimated that one TD would be captured for every 1.2 side-on samples, 

on average.  During attempts to run Sample A tips in the LEAP, base temperatures from 

30 K up to 70 K were used, as very low temperatures can sometimes lead to sample 

fracture.  Laser powers of up to 1 nJ were also used in an attempt to induce „soft‟ turn-on 

at a low voltage.  Finally, voltage pulsed mode was attempted.  In all cases, a 

contamination-like spectrum was observed, quickly followed by sample fracture.   

 

Atom probe data sets from Sample B were also obtained in the standard orientation.  As 

previously mentioned, the likelihood of capturing a TD in standard orientation samples 
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was lower than for side-on samples, and so these samples were initially run simply to 

provide a reference for side-on data sets; however, the standard orientation data 

contained features consistent with V-pits in two data sets.  In section 4.5.2, V-pits were 

shown to be associated with TDs in this material using STEM-HAADF.     

 

The two APT data sets that contained a V-pit were collected using a LEAP base 

temperature of 30 K, and a laser pulse energy, or laser power, of 0.01 nJ.  This laser 

power was the lowest value possible with the LEAP control software, and was used 

because this energy gives a Ga:N ratio near one.  With higher laser powers, problems 

with the observed stoichiometry can arise, and the observed Ga:N ratio can be greater 

than one.  Another run parameter that has an effect on the GaN stoichiometry is the 

evaporation rate: as the evaporation rate was increased, up to approximately 4 %, the 

GaN stoichiometry gradually improved, although the effect was smaller than that caused 

by varying the laser power.  In this chapter, one sample was run at an evaporation rate of 

2 %, and the other at 4 %.   

 

In an attempt to prevent fracture of the APT samples, the final run conditions were 

approached slowly: the run was started with an evaporation rate of 0.5 %, and a laser 

energy of 0.2 nJ.  These conditions were used to enable the APT sample to begin field 

evaporating, or „turn on‟ at a low standing voltage.  A layer of contaminants was usually 

adsorbed onto the APT sample, and a higher field was often necessary to evaporate this 

layer than the GaN material below.  By using a high laser power (which results in a lower 

standing voltage), this contamination layer could be evaporated and the laser pulse energy 

could be lowered quickly in response to control the evaporation of GaN, and then 

lowered gradually to find the ideal evaporation conditions.  The evaporation rate was 

gradually increased, both to optimise to the observed GaN stoichiometry and to 

accelerate data collection.   

 

One of the data sets contained the full MQW stack with a small portion of a V-pit.  An 

atom map of the reconstruction can be seen in figure 4.13a, with 0.5 % of Ga atoms 

shown in blue and 25 % of In atoms shown in orange, with all other atoms omitted for 

clarity.  Figure 4.13b shows a slice parallel to the z-axis from the same data set (these 

slices are known as „clippings‟, and can be defined parallel to the x, y, or z axes), which 

allows the V-pit to be seen more clearly.  Thin sidewall QWs are observed using APT, 
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similar to those seen with TEM.  This result is in contrast to the assertion of Ding and 

Zeng102 that sidewall QWs are a TEM artefact and do not actually exist.  Unfortunately, 

the V-pit was not centred in the APT sample, and only the side of the defect was 

observed.  The associated TD is likely to be just to the left of the data sets as they are 

shown in figure 4.13, meaning that the final stage of annular milling probably removed 

the dislocation.   

  

Figure 4.13. Reconstructed atom maps of Sample B, showing all ten QWs and the 

side of a V-pit.  Indium atoms are shown as orange dots (25 % visible) and Ga 

atoms are shown as blue dots (0.5 % visible).  (a) Entire MQW region of the data 

set shown, with 50 nm markers on the scale.  (b) A clipping through the APT 

data set, showing 25 % of In atoms as dots of size 2, which highlights the V-pit 

and shows thin InGaN QWs decorating the sidewall of the defect.  

In the second APT data set, the V-pit was located more centrally.  Figure 4.14a is an 

atom map of the reconstructed data, with 2 % of Ga atoms and 100 % of In atoms 

shown.  The top of the V-pit is very close to one edge of the APT sample, and the defect 

runs through five QWs in total before the point at which the sample fractured.  

Figure 4.14b is a clipping through the APT data set (with only In atoms visible) that 

shows the MQWs and the thin wells decorating the sidewalls of the V-pit.  Figure 4.15a 

shows the clipping of the data set seen in figure 4.14b displayed with a 2.5 at.% In 

isoconcentration surface, which is a surface formed by joining up regions of 2.5 at.% In.  

The sidewall QWs can clearly be observed to be thinner than the MQWs at this 

(a) (b) 
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isoconcentration value, as was the case for all values used.  Figure 4.15b is a top view of 

the data set, using 2.5 at.% In isoconcentration surfaces.  The radius of the V-pit can be 

seen to decrease as the apex is approached.  

  

Figure 4.14. Reconstructed atom maps of the second data set of Sample B, 

showing five QWs and a large portion of a V-pit.  Indium atoms are shown as 

orange dots (100 % visible) and Ga atoms are shown as blue dots (2 % visible).  

(a) Entire MQW region of the data set shown, with 10 nm markers on the scale.  

(b) A clipping through the data set, showing 100 % of In atoms as dots of size 2.  

  

Figure 4.15. (a) Data set from figure 4.14b, with the QWs shown using a 2.5 at.% 

In isoconcentration surface.  (b) Top view of the data set shown in figure 4.14a, 

using a 2.5 at.% In isoconcentration surface.  

(a) (b) 

(a) (b) 
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Given that the second data set fractured after just five QWs, it is interesting to estimate 

the position of the TD with respect to this fracture.  It is important to understand, 

however, that the APT reconstruction may be more accurate in the z-direction than in x 

and y, because the reconstruction was optimised to ensure the correct z-spacings between 

the wells.  To evaluate the APT reconstruction of the V-pit, the Z-contrast images were 

used to find the average V-pit structure: the width of the pit was measured (defined as 

the distance between the top edges of the V-pit), as well as the angle of the sidewall QWs 

from the vertical.  The average V-pit had a width of 64 nm and sidewall QWs running at 

an angle of 29 º.  The structural information gleaned from the Z-contrast images was 

then used to re-scale the APT data to ensure that the angle of the sidewall QWs was 

close to the average value for the V-pits.  This need for re-scaling indicates imperfections 

in the lateral scale of the APT reconstruction.  Figure 4.16 shows a schematic diagram 

overlaid on the re-scaled APT data set from figure 4.15a, estimating the shape of the V-

pit.  The QWs are shown as red dashed lines.  The TD is assumed to run through the 

midline of the V-pit, which has been estimated from the TEM images to be 32 nm from 

the top edge.  The TD is shown as a red dotted line.  Assuming that this diagram comes 

close to the true shape of the V-pit, the APT sample appears to have fractured at or near 

the intersection of the sample with the dislocation.   

 
As the data set may contain material at or near the core of a TD, it is worth investigating 

whether there are any compositional changes in the vicinity of the TD, such as might be 

caused by impurity or dopant segregation.  The data set did contain an observable oxygen 

peak in the mass spectrum.  As a number of studies have found TDs in GaN to be 

O-rich107,106, the distribution of O was investigated.  Figure 4.17 shows 100 % of the In 

atoms as orange dots, and 100 % of the O atoms as spheres of 0.3 nm diameter.  A side 

view of the data set is shown in figure 4.17a, whereas figure 4.17b is a top view.  In the 

vicinity of the V-pit, the O content is noticeably increased.  To quantify this difference, a 

cylindrical region of interest of 10 nm in diameter and 40 nm in length was defined 

within the O-rich volume, parallel to the long axis of the data set, and centred at the 

estimated location of the V-pit apex.  The O level in this region was found to be 

0.023 at.%, or 2 × 1019 cm-3.  On the other side of the data set, a similar region of interest 

had a barely discernable O peak in the mass spectrum, yielding an O content of just 

0.0065 at.%, or 0.6 × 1019 cm-3.  The O-rich region seems too large to be an O Cottrell 

atmosphere.  It may instead be related to O surface contamination, which will be 

discussed further in section 7.4.1.1. 



APT studies of threading dislocations  93 

 

 

 

Figure 4.16. Schematic diagram of the shape of the V-pit, overlaid on the APT 

data shown in figure 4.15a, after lateral scaling.  The average distance from the 

Vpit edge to its midpoint was found to be 32 nm (using Z-contrast images).  The 

TD is shown as a red dotted line running through the apex of the V-pit.    

  

Figure 4.17. Data set from figure 4.14a, with 100 % of In atoms shown as orange 

dots, and 100 % of O atoms shown as red spheres of 0.3 nm diameter.  (a) Side 

view.  (b) Top view.  Both (a) and (b) show more O in the vicinity of the V-pit.   

TD 

32 nm 

Θ = 29º 
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4.5.4. TEM OF APT SAMPLES 

The second aim of this chapter involved comparative microscopy: it was hoped that an 

APT sample containing a TD running through MQWs could be examined using both the 

TEM and the LEAP.  As the sample was to be studied with two instruments, the sample 

mount geometry had to be suitable for both.  Microtip coupons could not be studied in 

the TEM, so alternative Cu/W mounts were used, which were suitable for LEAP 

analysis.  The Cu/W mounts were designed with Cu tubes of 1 mm outer diameter, 

specifically selected to fit into the Fischione on-axis rotation tomography holder.   

 

A sample was prepared from the uncapped Sample B wafer using the standard lift-out 

and annular milling procedure in the FIB/SEM.  Efforts were made to select an 

individual dislocation, to ensure that the sample contained a TD, and to attempt to 

centre this dislocation in the APT tip.  The uncapped sample was used because the 

surface pits were visible in SEM images, as shown in figure 4.18.  Unfortunately, the 

location of the selected TD pit proved difficult to track once the protective FIB-Pt layer 

was deposited and the wafer was lifted out.  A sample was, however, made from an area 

with a relatively high density of TDs, to maximise the chance of capturing a dislocation.    

 

Figure 4.18. Electron beam image 

of the surface of uncapped 

Sample B, in which V-pits 

associated with TDs can be seen 

on the surface of the wafer.   

The APT sample was then examined using STEM-HAADF.  Unfortunately, the MQW 

stack was milled away in the sample preparation process.  Using the uncapped sample, 

the MQWs were directly below the surface of the wafer.  Despite efforts to minimise the 

amount of material removed from the sample apex, the MQWs were not successfully 

retained.  The sample did, however, contain two TDs, as shown in figure 4.19a.  One 

dislocation can be seen terminating at the edge of the sample, halfway up the tip, whereas 

the other can be seen sloping gradually from the bottom and terminating much nearer to 
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the end of the sample.  Another image of the sample was taken after rotating through 

30 degrees, as shown in figure 4.19b.   

  

Figure 4.19. (a) STEM-HAADF 

image of the APT sample made 

from uncapped Sample B, 

taken near the <11̄00> zone 

axis.  Two TDs are visible, one 

which exits the sample halfway 

up the side, and another that 

continues to the sample tip.  

(b) STEM-HAADF image of 

the same sample as in (a), after 

a 30 degree rotation to near the 

<112̄0> zone axis.   

The location of the TD within the APT sample, which is assumed to be circular in 

cross-section, can be estimated using the relative change in position of the two TDs 

(referred to as the shorter and the longer TD) in the TEM images.  Figure 4.20 illustrates 

the method used to estimate the TD position, which uses the exit of the shorter TD 

from the sample as the point of reference.  In figure 4.20a, a red circle is overlaid on the 

image from figure 4.19a.  The circle has the point of exit of the shorter TD on its edge, 

which is marked with a red „x‟ (and a vertical line across the circle), and has a diameter 

defined by the sample width.  The longer TD is highlighted using a red sloping line, and 

the point at which it intersects the circle is indicated by another „x‟ (and a vertical line).  

In figure 4.20b, the same procedure is applied to the image from figure 4.19b, using a 

yellow circle.   

 

The red and yellow circles are overlaid in figure 4.20c, after a 30 degree rotation of the 

red circle, corresponding to the rotation of the sample.  The black „x‟ where the shorter 

TD exited the sample was used as the point of alignment for the circles.  Where the red 

and yellow lines on the right meet indicates the estimated location of the TD, as viewed 

from the above the sample.  The estimated TD position is shown by a black star.  The 

(a) (b) (c) 
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diameter of the sample just above the point of TD exit was different in the two images 

(taken at equal magnification), indicating that the APT sample was actually slightly 

oval-shaped in cross section, which will lead to some errors in the analysis.  As LEAP 

data are collected from the central region of the sample, two areas of 100 nm in diameter 

are indicated in figure 4.20c.  The yellow dashed circle corresponds to the central region, 

as estimated from (b), and the red dashed circle similarly corresponds to the central 

region estimated using (a).  With both estimates, the TD appears to be contained in the 

central region of the APT sample, making it suitable for APT analysis.  

  

 

Figure 4.20.  Method used to determine the location of the TD in the APT 

sample.  (a) Overlay of the TD locations observed at this angle onto the image 

from figure 4.19a. (b) Similar overlay onto the image from figure 4.19b.  (c) The 

TD positions recorded from the two images, rotated and overlaid to estimate of 

the TD position within the sample, as viewed from above.  The dashed lines 

correspond to the estimates of the 100 nm diameter central regions of the sample 

(the red dashed line is the central region of the red circle).  The TD, marked with 

a star, is thereby suggested to be within the central region of the APT sample.   
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The APT sample containing the TDs was then studied using the LEAP.  Initially, the 

sample began to run with an evaporation pattern indicative of sample reshaping.  A 

temperature of 26 K was used, as well as a relatively high laser power of 0.1 nJ, and an 

evaporation rate of 0.5 %, with a pulse repetition rate of 80 kHz (this was lower than the 

standard repetition rate, and was used to allow the heat to leave the tip between pulses, 

to achieve good mass resolution).  As the sample appeared to have reshaped itself, the 

run was stopped and the pulse repetition rate was turned up to 200 kHz for faster data 

collection.   

 

In this second run, all other run conditions were kept the same, and a mass spectrum 

indicative of GaN was observed.  Unfortunately, the sample fractured after four million 

atoms were collected, which is a relatively small data set when compared with the 34 

million atoms collected in the atom map shown in figure 4.13.  Oxygen was present in 

the mass spectrum, and figure 4.21 shows an atom map of the 4 million ions collected 

from the APT sample, with 3 % of Ga atoms shown as blue dots, and an 

isoconcentration surface at 3 at.% O.  The oxygen concentration appears to be 

substantially increased along a linear feature, however, this feature angles across the top 

of the data set, which suggests that it is not associated with the TD, which would be 

expected to have a large component in the z-direction, even if it were slightly inclined.  

The O-rich feature could possibly be an oxide layer on the GaN, or might be linked to 

surface contamination, but this is difficult to confirm.    

 

Figure 4.21. Reconstructed 

atom map of the APT 

sample shown to contain a 

TD using TEM.  An 

isoconcentration surface of 

3 at.% oxygen is shown in 

red, indicating an O-rich 

linear feature running 

across the top of the 

sample.    
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4.5.5 DISCUSSION 

By examining the successes and failures of the various APT samples presented in this 

chapter, one could surmise that TDs may cause failure in APT samples.  Sample fracture 

occurred in every one of the side-on samples, which were almost guaranteed to contain a 

TD due to their orientation.  As GaN is a piezoelectric material, it is possible that that 

strain fields surrounding the TDs lead to electric fields that increase the stress on the 

sample when a voltage is applied, with the large number of dislocations found in the side-

on orientation possibly exacerbating this effect.   

 

In the standard orientation samples, several V-pits associated with TDs were observed.  

The dataset which contained a large portion of a V-pit only ran through five QWs, and 

an estimate of the possible TD position in the V-pit suggests that the sample may have 

fractured when the dislocation was reached.   

 

Finally, the sample that was known to contain a TD failed after a relatively short run.  In 

the TEM images, the TD was observed to slope gradually up to near the tip of the 

sample; however initial evaporation in the LEAP may have begun in an area without the 

TD.  Sample fracture may then have occurred when evaporation of the sample revealed 

the TD.  Before this theory can carry much weight, however, more efforts are needed to 

run samples known to contain a TD.   

4.6. SUMMARY 

In this chapter, a method of preparing side-on samples was used for the first time with 

GaN to make samples in which the MQWs ran down the long axis of the sample.  

Although these side-on samples were not productive, two data sets were collected from 

standard orientation samples, each containing a V-pit.  STEM-HAADF images showed 

that such V-pits were associated with TDs, and that thin QWs decorated the sidewalls of 

the defects.  The APT data also showed thin sidewall QWs in both data sets, refuting the 

recent claim made by Ding and Zeng102 that sidewall QWs are an artefact of TEM 

imaging.  In the APT data set that contained a large section of a V-pit, the position of the 

associated TD was estimated as near the point of fracture, indicating that TDs may cause 

sample failure.  APT analysis showed an O-enriched region near the estimated position 

of the TD.   
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A TD was then captured in an APT sample on a Cu/W sample mount, and examined in 

the TEM.  The position of the TD was estimated to be near the centre of the sample, 

making it appropriate for study in the LEAP.  Unfortunately, although the sample began 

to run in the atom probe, it fractured after a small data set was collected.  No feature 

clearly associated with the TD could be seen.  Although an O-rich linear feature was 

observed, it ran across the top of the reconstructed data set, rather than along the axis of 

the sample, as would be expected for a TD. 
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5 
APT AND TEM STUDIES OF P-TYPE 

SUPERLATTICES 

5.1. AIMS 

5.1.1. APT OF P-TYPE SUPERLATTICES 

AlGaN/GaN superlattices (SLs) are often used to boost the carrier concentration in 

Mg-doped p-type GaN.  In this chapter, we hoped to study a series of superlattices, 

grown with increasing Mg fluxes.  Hall measurements conducted by Dr. Joy Sumner116 

indicated a drop in carrier concentration for increasing dopant concentrations, indicating 

that the additional Mg was not increasing the conductivity as desired.  Additionally, SIMS 

characterisation suggested that the AlGaN layers contained more Mg than the GaN 

layers in all three SLs, although the two materials were nominally doped to the same 

level.  In light of these findings, the first aim of this chapter was to use APT to 

investigate the 3D Mg distribution of all three superlattice samples.  We hoped to use the 

APT data to identify any inhomogeneities in the Mg distribution, such as Mg-rich 

regions, in an effort to better understand the SIMS and Hall results.  



APT and TEM studies of p-type superlattices 101 

 

 

5.1.2. TEM OF P-TYPE SUPERLATTICES 

If Mg-rich regions were observed in the APT data of the superlattice samples, our second 

aim was to characterise their structure and composition using TEM, and to evaluate their 

similarity to literature reports of Mg-rich defects in p-type GaN.   

5.1.3. COMPARISON BETWEEN APT AND TEM 

Finally, if Mg-rich regions were characterised by both APT and TEM, the last aim of this 

chapter was to compare what could be learned about such regions using the two 

techniques.  In this way, the strengths and weaknesses of APT and TEM as applied to 

this study could be compared.  

5.2. BACKGROUND 

5.2.1. P-TYPE DOPING OF GAN 

Non-intentionally doped GaN usually shows n-type conductivity; however this residual 

doping level can be reduced sufficiently to allow controllable p-type doping117.  After 

many groups struggled to realise p-type GaN, Amano et al.118 succeeded in 1989, using 

controlled Mg doping with a bis-cyclopentadienyl magnesium (Cp2Mg) source.  As-

grown Mg-doped GaN was found to be semi-insulating, yet Amano et al.118 achieved p-

type conductivity using a low-energy electron-beam irradiation (LEEBI) treatment after 

growth.  In 1992, Nakamura et al.34 showed that low conductive p-type GaN could be 

achieved using thermal annealing at temperatures around 700 ºC in a hydrogen-free 

atmosphere.  The authors concluded that hydrogen was responsible for passivation of 

the acceptors through the formation of neutral Mg-H acceptor complexes34.  The LEEBI 

treatment and thermal annealing were suggested to provide the energy to break the Mg-H 

bond, activating Mg to be an acceptor117,118.  The thermal annealing technique has 

become the standard method for dopant activation because it is straightforward, reliable, 

and can be implemented in-situ, within the MOVPE growth reactor. 

 

Although thermal annealing can be used to activate hydrogenated Mg, p-type 

conductivity in GaN is intrinsically limited by the high ionisation energy of Mg (of 

approximately 200 meV)119.  The deep nature of the Mg acceptor results in a low doping 

efficiency119: dopant concentrations at the 1019 cm-3 level are required to achieve hole 

densities on the order of 1017 cm-3.  Obloh et al.119 used Hall measurements to study the 
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charge carrier density as a function of Mg concentration, as measured by SIMS.  The 

authors found that the hole density reached a maximum at a Mg concentration of 

approximately 3 × 1019 cm-3, thereafter decreasing with increasing dopant concentration, 

as shown in figure 5.1.   

 

Figure 5.1. From Obloh et al.119, 

Hall measurements of hole 

density plotted with respect to 

SIMS measurements of Mg 

dopant concentration (black 

squares).  The line is a guide to 

the eye, showing that the hole 

density reaches a maximum at 

approximately 3 × 1019 cm-3. 

5.2.2. DEFECTS OBSERVED IN P-TYPE GAN 

In Mg-doped GaN with high Mg concentrations, such as those at which Obloh et al.119 

saw a decrease in conductivity, the Mg dopants have been observed to segregate to a 

variety of structural defects, such as rectangular and triangular pinholes120, and pyramidal 

inversion domains (PIDs)121,122.  Figure 5.2 shows an HRTEM image of a PID, with a 

schematic diagram in the inset, illustrating the proposed structure of the defect121.  The 

orientation of the PIDs was found to depend on the polarity of the material, with the tip 

of the PID found to always point in the [0001̄] direction.  In this study, Vennéguès et 

al.121 found that the size of the defects (measured as the width of the side parallel to the 

basal plane) ranged between 2 and 20 nm.  Benaissa et al.122 used STEM-EELS to 

characterise similar PIDs, showing them to be Mg-rich122.  Densities of these PIDs were 

observed to be very high (approximately 1018 cm-3), suggesting that the presence of these 

defects can exert a considerable influence on the properties of p-type GaN films.  It is 

worth noting that such PIDs have not been observed in GaN without Mg dopants. 
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Figure 5.2. From Vennéguès 

et al.121, a cross-sectional 

HRTEM image of a PID, with 

the tip of the defect pointing 

towards the [0001̄] direction.  

The inset shows a schematic 

diagram of the defect 

structure proposed by the 

authors.    

5.2.3. P-TYPE SUPERLATTICES 

To increase the charge carrier density in Mg-doped GaN, an AlGaN/GaN superlattice 

can be used123.  The alternating layers of GaN and AlGaN are strained, due to the 

mismatch of their lattice constants, resulting in piezoelectric fields.  These fields induce a 

periodic oscillation of the valence band edge, as shown in the calculated band diagram in 

figure 5.3, where the circles represent the energy of the Mg acceptors.  At the points 

where the valence band edge is above the Fermi energy (indicated with the dashed line), 

the acceptors are ionised.  This occurs in the regions near the GaN/AlGaN interface, 

and the resulting holes accumulate close to the AlGaN/GaN interface.  Although the SL 

structure leads to parallel sheets of confined carriers, the spatially averaged hole density 

can enhanced by up to ten times over bulk p-type GaN.   

 

Figure 5.3. From Kozodoy 

et al.123, a calculated valence 

band diagram for a Mg-doped 

AlGaN/GaN SL with 

piezoelectric fields taken into 

account.  The dashed line 

indicates the Fermi energy.  

The circles represent the 

energy of the Mg acceptor, 

shown as filled when ionised.  
Growth direction 

[0001] 
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5.3. EXPERIMENTAL 

5.3.1. SAMPLE GROWTH 

The three SL samples used in this chapter were grown by Dr. Rachel Oliver on c-plane 

sapphire substrates using a 6 × 2 inch Thomas Swan close-coupled showerhead MOVPE 

reactor.  A high TD density template was used, as described in section 3.3.1.  The SL was 

then grown at 1000 ºC, and was comprised of 24 repeat periods of approximately 10.5 

nm Al0.11Ga0.89N and approximately 10.5 nm GaN.  The low, medium, and high Mg flux 

SLs were grown with Cp2Mg fluxes of 0.243 µmol/minute, 0.364 µmol/minute, and 

0.490 µmol/minute, respectively.  To activate the Mg dopants, the sample was annealed 

at 780 ºC for 1200 s in N2.  In a separate run, the wafer was capped with 500 nm of 

non-intentionally doped GaN at 1005 ºC, to facilitate APT sample preparation. 

5.3.2. SIMS 

For preliminary characterisation of the Mg content of the SL layers, SIMS analysis was 

carried out at Loughborough Surface Analysis Ltd. by Dr. Alison Chew, using a Cameca 

IMS 3f.  As standard samples for Mg in AlGaN were not available at the time of testing, 

the reliability of the SIMS data is limited.  Figure 5.4 shows the SIMS data for the 

medium Mg flux SL, with the Mg trace in purple and the AlN trace in black.  An 

oscillation in the Mg content is observed with the same period as the SL (which was also 

observed in the low and high Mg flux samples), indicating that the two materials in the 

SL have different Mg contents.  Although the data appear to suggest that the GaN layers 

contain Al, this is almost certainly due to ion beam-induced intermixing between the thin 

SL layers that occurred during the SIMS measurement.  This intermixing effect may also 

cause the observed decrease in oscillation of the Mg and AlN traces as data are collected 

from deeper into the sample, where intermixing becomes more significant.  It appears 

that where there is more AlN, in the AlGaN layers, the level of Mg is correspondingly 

higher (illustrated with the dashed line), suggesting that the AlGaN layers contain more 

Mg than the GaN layers.  The Mg level is observed to fall off with increasing distance 

into the sample.  Dr. Joy Sumner measured the carrier concentration of these three SL 

samples using Hall probe116.  Figure 5.5 shows that the carrier concentration (black 

squares) drops as the Mg flux is increased in the SL series, consistent with the findings of 

Obloh et al.119.  The average Mg content of the SLs found by SIMS is also shown (blue 

squares).   
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Figure 5.4. SIMS data for the medium Mg flux SL.  Oscillations can be seen in 

the Mg concentration, which correspond to the SL layers.  The period of one 

oscillation is approximately 21 nm, which is the same as one period of the SL.  

The dashed line serves to illustrate that peaks in the AlN trace, indicating the 

AlGaN layers, correspond to peaks in the Mg concentration.  
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Figure 5.5. From Sumner116, Hall probe data showing a drop in charge carrier 

concentration with increasing Mg flux (black squares).  The blue squares show 

the average SL Mg concentration for the three SL samples, as found by SIMS.  
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5.3.3. APT SAMPLE PREPARATION 

APT samples used in this chapter were prepared using the standard liftout and annular 

milling procedure, with microtip sample mounts, as described in section 2.5.2.  For the 

medium Mg flux SL, the APT samples were prepared by Mr. David Olson of Imago 

Scientific Instruments, using an FEI Company™ Nova Nanolab™ dual beam FIB/SEM 

equipped with an Omniprobe Autoprobe™ 200 micromanipulator.  APT samples of the 

low and high Mg flux SLs were prepared in Cambridge by the author, using an FEI 

Company™ Helios Nanolab™ dual beam FIB/SEM with an Omniprobe Autoprobe™ 

200 micromanipulator. 

5.3.4. APT 

APT samples of the medium Mg flux sample were analysed at Imago Scientific 

Instruments with the assistance of Mr. Robert Ulfig, using a LEAP 3000X Si with 

picosecond duration laser pulsing.  Although this instrument was not equipped with an 

energy compensating reflectron, the mass resolution was more than sufficient to identify 

the peaks in the mass spectrum.  APT analysis of the low and high Mg flux SL samples 

was carried out at the OPAL EPSRC National Atom Probe Facility at Oxford University, 

as described in section 4.4.5.  Details of the LEAP conditions used for each run will be 

presented in section 5.4.1, with the associated APT data set.   

 

The APT data sets were reconstructed in IVAS by optimising the reconstruction 

parameters to ensure flat AlGaN layers (as observed by TEM) and the correct layer 

spacing, as far as was possible.   

5.3.5. TEM  

A TEM thin foil was prepared from the medium Mg flux SL, using the standard methods 

of mechanical polishing, ion milling with the PIPS™, and KOH etching, as described in 

section 2.3.1.  Lattice fringe images with zero-loss energy filtering for improved contrast 

were taken on the <112̄0> zone axis.  Compositional measurements were attempted 

using both STEM-EELS and EFTEM mapping.  Finally, WBDF imaging was used to 

investigate the existence of inversion domains.  All TEM studies reported in this work of 

the SL sample were undertaken using an FEI Tecnai™ F20 G2 operating at 200 kV with 

a FEG, and with the kind supervision and extensive assistance of Dr. Jonathan Barnard.   
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5.4. RESULTS AND DISCUSSION 

5.4.1. APT 

Atom probe data sets were collected from all three Mg-doped AlGaN/GaN SL samples, 

permitting the 3D Mg distribution to be studied for the entire sample series. 

5.4.1.1. Reconstructed Atom Maps of the SLs 

The low Mg flux APT sample began evaporating in the SL layers, making it impossible to 

know the source location of the data set within the SL.  The sample preparation was, 

however, tailored to aim for the top of the SL.  This SL was analysed using a base 

temperature of 25 K, a laser power of 0.03 nJ, and an evaporation rate of 3 %.  The final 

run conditions were approached slowly, to prevent sample fracture and to tune the 

conditions for optimal GaN stoichiometry.  Although AlGaN and GaN will certainly 

have different evaporation fields, this difference was observed to be minimal, as the 

standing voltage did not change appreciably when the evaporation uncovered the next 

layer. 

 

Figure 5.6a shows a reconstructed atom map of the low Mg flux sample, with 100 % of 

the Mg atoms shown as purple spheres of radius 0.2 nm, and 5 % of the Al atoms shown 

as light blue dots (all other atoms omitted for clarity).  The alternating layer structure of 

the SL can be observed, with the Al atoms indicating the AlGaN layers, and the GaN 

layers indicated by a lack of Al atoms.  The SL layers are tilted, indicating that the liftout 

wedge was tilted slightly during the sample preparation, probably when brought into 

contact with the microtip.  Figure 5.6b shows the SL layers straight-on, by rotating the 

data set to a different angle.  Although simply looking at an atom map is not a reliable 

way to judge the existence of Mg-rich regions, or „clusters‟, the low Mg flux sample 

appears to show a fairly even distribution of Mg.  In the following section, the observed 

Mg distributions in the three SLs will be compared to the distributions expected from a 

random alloy, to determine if any clustering of non-random origin is present.   
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Figure 5.6. Reconstructed atom maps of the low Mg flux SL, with 100 % of Mg 

atoms shown as spheres of radius 0.2 nm, and 5 % of Al atoms shown as light blue 

dots (all other atoms omitted for clarity).  The layers of AlGaN are characterised 

by a high density of Al atoms, alternating with the GaN layers, characterised by a 

lack of Al atoms.  The Mg atoms appear to be fairly evenly distributed.   

(a) Orientation showing the SL layers are tilted relative to the long axis of the 

APT sample.  (b) Orientation looking straight down the SL layers.   

 

Both the medium and high Mg flux samples began evaporating in the GaN cap above the 

SL, so the data obtained are certainly from the top of the SL.  APT data were collected 

from the medium Mg flux sample using a base temperature of 25 K, and a laser power of 

0.02 nJ.  The SL layers were uncovered after evaporating part of the GaN cap, resulting 

in the sample being relatively wide at the SL layers.  To progress through the layers where 

the sample was wide, large numbers of atoms needed to be evaporated, which 

necessitated high evaporation rates due to limited available time.  During evaporation of 

(a) (b) 
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the SL layers, the evaporation rate was gradually increased from 3 % to 5.5 %.  The high 

Mg flux SL was also analysed using a base temperature of 25 K, but a higher laser power 

of 0.2 nJ was used to limit the stress on the sample, as the data set was collected from the 

last available tip.  The first 40 million atoms of the 55 million atom data set were 

evaporated using a 2 % evaporation rate.  To obtain the maximum amount of data in the 

time available, the final 15 million ions were collected at evaporation rates gradually 

increasing from 2 % to 4.5 %.  Figure 5.7a and 5.7b show reconstructed atom maps of 

the SL layers from the medium and high Mg flux samples, respectively, with the same 

display specifications as in figure 5.6.  It appears that Mg clusters exist in both data sets.   

 

 

Figure 5.7. Reconstructed atom maps, with 100 % of Mg atoms shown as spheres 

of radius 0.2 nm, and 5 % of Al atoms shown as light blue dots (all other atoms 

omitted for clarity).  Both atom maps appear to contain regions of increased Mg 

content.  (a) Medium Mg flux sample.  (b) High Mg flux sample.   

Isoconcentration surfaces can also be used to represent the APT data.  Figure 5.8 shows 

the medium Mg flux sample, with the top and bottom of the AlGaN layers shown using 

blue 5.5 at.% isoconcentration surfaces (corresponding to the nominal AlyGa1-yN layer 

content of y = 0.11, assuming near stoichiometry in the GaN).  The alternating AlGaN 

and GaN layers are labeled for clarity.  Mg-rich clusters are highlighted using purple 

1.5 at.% Mg isoconcentration surfaces.  In this sample, the level of Mg is much lower on 

(a) (b) 
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average away from these clusters (approximately 0.02 at.%), so 1.5 at.% represents 

regions of significant Mg enrichment.  It is important to note that the number and size of 

the Mg clusters depends on the isoconcentration surface used, as well as the level of 

smoothing.  For layer isoconcentration surfaces, as shown in figure 5.8, a high level of 

smoothing is desirable; however the high level of smoothing also acts to „spread out‟ the 

Mg content of the clusters, so a lower level of smoothing is used in quantitative studies 

of the Mg clusters.  From the reconstructed data, it can be seen that there are more Mg 

clusters in the AlGaN layers than in the GaN layers (with approximately 

(1.0 ± 0.4) × 10-4 clusters per nm3 in the AlGaN and (1.0 ± 0.6) × 10-5 clusters per nm3 

in the GaN, on average).   

 

Figure 5.8. Reconstructed data set of the medium Mg flux SL, showing 5.5 at.% 

Al isoconcentration surfaces in blue at the top and bottom of each AlGaN layer 

(layers labeled for clarity), and 1.5 at.% Mg isoconcentration surfaces, showing 

the Mg-rich clusters. 

5.4.1.2. Existence of Clustering 

The atom maps in the preceding section appear to show that Mg clusters are present in 

the medium and high Mg flux samples, and that the low Mg flux sample does not exhibit 

such strong clustering.  However, it is important to evaluate whether the observed 

distribution of Mg in fact deviates from that expected from a random alloy distribution.  

Thus, any observed clusters can be defined as having a random or non-random origin.   
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To assess whether the Mg distributions in our data sets would be expected to arise from 

random alloy fluctuations, the observed distribution was compared to a binomial 

distribution using a Pearson‟s χ2 test124.  This test is used in this chapter to determine the 

existence of Mg clusters, as well as in Chapters 6 and 7 to assess the In distribution in 

InGaN QWs and InAlN, respectively, therefore it is described in full here.   

 

To conduct a χ2 test, the volume of interest is first divided into blocks, or bins, each 

containing a certain number of atoms.  The bin size selected is important, and should be 

chosen to contain a reasonable number of atoms of the species under investigation.  If a 

material containing, say, five atomic percent Mg is divided into 100 atom bins, each bin 

would be expected to have five Mg atoms.  A bin size of 10 atoms, however, would lead 

to only one Mg atom in every other bin, on average, indicating that the bin size is too 

small.  Bin sizes corresponding to a volume much larger than the scale of the clustering 

investigated are also unsuitable, as Galtrey et al.124 discussed in their investigation of 

possible In clustering in InGaN QWs.  In this work, bin sizes were varied from 25 atoms 

up to more than 200 atoms, to ensure that the deviation from randomness was studied at 

multiple length scales.  Once the data are divided into bins, the χ2 statistic can be 

calculated as follows: 

  χ 2 = Σ ((Nobs – Nexp)
2 / Nexp) 

 

where Nobs is the number of bins observed in the experimental data at a certain Mg 

content, and Nexp is the number of bins that would be expected from a random alloy, as 

modeled by a binomial distribution.  Where necessary, several Mg contents were 

combined to ensure that all of the expected frequencies were greater than 5, as is 

generally advised for the χ2 test.  Finally, using the χ 2 value and the number of degrees of 

freedom (DOF) in the measurement, a χ 2 critical value, or p value, can be found.  The p 

value indicates the probability that the observed distribution could have occurred by 

chance in a random alloy.  A p value of less than or equal to 0.05 is generally interpreted 

as justification for rejecting the null hypothesis that the observed distribution is random.     

 

When the χ2 test was applied to the SL layers for the medium and high Mg flux SLs, the 

observed Mg distributions showed large deviations from the binomial distributions 

expected for a random alloy: for 100 atom bins, the p value for the medium and high Mg 
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flux samples was 0.000 for 8 and 10 DOF, respectively, indicating that the both SLs 

contained Mg clusters of a non-random origin.  Figure 5.9a shows this deviation from 

randomness for the medium Mg flux SL, with a dashed line indicating the binomial 

distribution, and purple data points showing the observed Mg distribution.  In section 

5.4.1.4, the Mg-rich clusters will be examined in detail.  χ2 analysis of the low Mg flux 

sample resulted in a p value of 0.995, indicating that there were no clusters of a non-

random origin; however, this analysis was based on just 2 DOF for 100 atom bins, due to 

the low level of Mg in the SL, which indicates that the statistical test has little relevance in 

this case.  Varying the bin size from 25 to 500 atoms did not improve the statistical 

significance of the χ2 analysis for the low Mg flux SL.  A comparison between observed 

and expected Mg distributions for the low Mg flux SL is shown in figure 5.9b. 
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Figure 5.9. A comparison between the observed distribution of Mg (purple data 

points with error bars) and a binomial distribution.  (a) For the medium Mg flux 

sample, showing the deviation of the Mg distribution from the binomial, which 

(a) 

(b) 
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indicates that the clusters have a non-random origin.  (b) For the low Mg flux SL. 

5.4.1.3. Mg Content of the SL 

With both SIMS and APT data for all three of our SLs, it is possible to compare Mg 

concentration data found by each technique.  It is worth noting, however, that APT is 

best used for relative, rather than absolute compositional information, as run conditions 

can affect the absolute composition observed, but are unlikely to alter the relative 

compositions within a data set.  In this section, the Mg contents found by APT and 

SIMS for the SL as a whole, as well as the different types of layers will be compared.  

Additionally, using the APT data, the Mg content was measured away from the clusters 

in both types of layers, to investigate the Mg layer content without the influence of the 

Mg clusters.  The compositions presented in this section, and throughout this work, were 

found using the bulk composition from the manual ranging of the mass spectrum.  

 

The overall Mg concentration of the three SLs was measured using atom probe, and 

figure 5.10 shows the Mg contents measured for the three SLs, plotted against the Mg 

flux with which the samples were grown.  The APT data indicate that the Mg content 

increases with increasing Mg flux, as would be expected.  Corresponding SIMS 

measurements are shown in figure 5.5, however, this same trend was not clearly observed 

in the SIMS data.   
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Figure 5.10. Mg contents measured using APT for the three SLs, plotted against 

the Mg flux with which each SL was grown.  The Mg content is observed to 

increase with increasing Mg flux.   
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The SIMS measurements indicated that the AlGaN contained more Mg than the GaN, 

so the Mg contents of the two materials were found by APT, for comparison.  The layers 

were isolated using 5.5 at.% Al isoconcentration surfaces, as shown in figure 5.8.  For the 

medium and high Mg flux data sets, the Mg content of every layer was obtained.  The 

low Mg flux data set contained many SL repeats, and as the layer isolation was highly 

time consuming with the current software, two SL repeats were measured each from the 

top, middle, and bottom of the data set.  Table 5.1 summarises the difference in average 

Mg content in the AlGaN and GaN layers for the three SLs.  In the low Mg flux sample, 

the APT data indicated that the two materials had similar Mg contents, although the 

AlGaN seemed to contain slightly more Mg.  As the Mg flux was increased in the series, 

however, the average AlGaN layer Mg content was observed to rise much more than in 

the GaN.  Additionally, within the AlGaN layers of the medium and high Mg flux 

samples, the standard deviation is notably higher, indicating a greater variation in the Mg 

contents of the individual AlGaN layers.   

Table 5.1. Average Mg contents of the AlGaN and GaN layers, measured by APT.  

SL type Mg content of the AlGaN layers 

(Mg cm-3) 

Mg content of the GaN layers 

(Mg cm-3) 

Low Mg flux (1.5 ± 0.1) × 1019                                           

(standard deviation of 0.2 × 1019) 

(1.3 ± 0.1) × 1019                                           

(standard deviation of 0.2 × 1019) 

Medium Mg flux (4.3 ± 0.6) × 1019                                           

(standard deviation of 1.2 × 1019) 

(1.6 ± 0.2) × 1019                                           

(standard deviation of 0.3 × 1019) 

High Mg flux (4.5 ± 0.5) × 1019                                           

(standard deviation of 1.1 × 1019) 

(1.9 ± 0.1) × 1019                                           

(standard deviation of 0.3 × 1019) 

 

As the Mg contents of the individual layers were measured by APT, it is possible to 

compare the SIMS and APT values for each layer.  Figure 5.11 shows the Mg content of 

the layers from the top three SL repeats, as measured by APT, overlaid on the SIMS 

measurement for the medium Mg flux sample.  The Mg content of the AlGaN layers is 

shown using purple circles, whereas the GaN layer Mg content is shown using purple 

diamonds.  It should be noted that there were problems calibrating the SIMS data, as 

previously discussed, and so this comparison does not speak to the accuracy of the APT 

data.  In fact, given the inaccuracies that may exist in both techniques, the results are 
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remarkably similar.  The APT data appear to reinforce the SIMS observation that the Mg 

content decreased with distance into the sample. 
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Figure 5.11. Comparison between SIMS and APT data for the medium Mg flux 

SL.  The SIMS Mg trace is shown in black, and this is overlaid with the Mg 

contents of each layer, as measured by APT.  The AlGaN layers correspond to the 

purple circles, and the GaN layers correspond to the purple diamonds. 

 

To observe the difference in Mg contents of the two materials, without contribution 

from the clustered Mg, volumes away from the clusters were sampled.  A region of 

interest (ROI) of 10 nm × 10 nm × 5 nm was used to sample a volume within one type 

of material.  Samples were taken in both types of layers for the SLs that showed 

clustering.  Table 5.2 summarises the average Mg contents for the volumes sampled 

within each material.  Although there seems to be a higher Mg content in the AlGaN 

layers in both SL samples, an unpaired Student‟s t-test was applied, and suggested that 

there is not a genuine difference between the two means.  Thus, these data suggest that 

the two materials incorporate similar amounts of Mg away from the clusters, with the 

excess Mg incorporation fueling the formation of clusters.  The greater Mg content 

observed in the AlGaN layers seems to be mainly due to the presence of Mg-rich 

clusters, which are preferentially located in the AlGaN.  It is also interesting to note that 

the Mg content away from the clusters is similar to the Mg content of the low Mg flux 
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SL, which may indicate that the low Mg flux SL contained a Mg content close to the 

limit, above which clusters begin to form under these growth conditions.  

Table 5.2. Average Mg contents of the AlGaN and GaN layers away from the 

clusters, measured by sampling with ROIs of 10 nm × 10 nm × 5 nm wholly 

contained within one type of material. 

SL type Mg content of the AlGaN layers 

(Mg cm-3) 

Mg content of the GaN layers 

(Mg cm-3) 

Medium Mg flux (1.6 ± 0.4) × 1019                                          (1.1 ± 0.3) × 1019                                            

High Mg flux (2.5 ± 0.9) × 1019                                            (1.2 ± 0.5) × 1019                                            

5.4.1.4. Mg-Rich Clusters 

As mentioned previously, the number of clusters and their size and shape are affected 

both by the isoconcentration value selected and the level of data smoothing used.  To 

study the small clusters in our SLs, the smoothing was set to a low level (1 nm3 volume 

pixel (voxel) size and 1 nm delocalisation in all directions), and a 4 at.% Mg 

isoconcentration value was chosen.  With these values, it was possible to avoid selecting 

random background fluctuations in the Mg distribution.  Additionally, the resulting 

surfaces visually appeared to provide a reasonable estimate for the boundary of the Mg-

rich regions.  In this section, the size and Mg content of the clusters is discussed.   

 

The cluster size was defined as the greatest extent of the isoconcentration surface, and 

was measured for all clusters in the top three AlGaN/GaN repeats (which could be 

compared between the two SLs) of the medium and high Mg flux samples.  The average 

size was remarkably similar in the two SLs, with the medium Mg flux sample having an 

average cluster size of 4.2 nm ± 0.2 nm, and the high Mg flux SL having an average 

cluster size of 4.0 nm ± 0.2 nm.  (The systematic error present in this measurement is 

currently extremely difficult to determine.  The errors given here are the “standard 

error”, σ/√N, where σ is the standard deviation and N is the number of measurements.)  

To assess the hypothesis that these two means were different, an unpaired Student‟s t-test 

was applied to the size data from the two SLs, and suggested that there is not a genuine 

difference between the two means.  Therefore, it appears that the even if the Mg flux is 
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different during SL growth, the resulting Mg clusters have a similar average size.  The 

high Mg flux sample instead showed a greater cluster density: over the same volume in 

the top three repeats, the medium Mg flux sample contained 49 clusters, whereas the 

high Mg flux sample contained 57 clusters.   

 

As the clusters have a lateral dimension that extends to just 4 nm on average, traditional 

microscopy techniques would struggle to ascertain their composition.  With the APT 

data set, it was straightforward to obtain the average bulk Mg content within the clusters.  

Firstly, it is worth mentioning that the clusters do contain Ga, and those clusters in the 

AlGaN layers also contain Al, suggesting that they are not inclusions of an MgxNy 

compound such as Mg3N2, as has been proposed in the literature122, but rather they are 

volumes within the AlGaN or GaN matrix that show significant Mg enrichment.  

 

To find the average cluster Mg content, an elliptical ROI (2 nm × 2 nm × 1 nm) was 

defined near the centre of each cluster in the top AlGaN layer, and the bulk composition 

within the ellipse was found.  For the medium Mg flux sample, the average Mg content 

was 7.7 at.% (or 6.8 × 1021 Mg cm-3), with a standard deviation of 1.8 at.%.  The high Mg 

flux sample had a higher average cluster Mg content of 11.0 at.% (or 9.7 × 1021 Mg cm-3), 

with a standard deviation of 3.1 at.%.  Again, a Student‟s t-test was applied to assess the 

hypothesis that the two means were different, and suggested a confidence level greater 

than 99.95 % that the high Mg flux SL contained clusters with greater Mg content than 

the medium Mg flux SL.  The considerably elevated Mg level within the clusters can be 

appreciated by comparing the average cluster Mg content with the Mg levels observed 

away from the clusters, summarised in table 5.2.  There were too few clusters in the GaN 

layers to provide a meaningful average composition for comparison.   

 

The suggestion in the literature that Mg segregates to the outside of Mg-rich inversion 

domains122 motivated a study of the distribution of Mg within the clusters observed by 

APT.  To observe how the Mg content changed through each cluster, a rectangular ROI 

of 1 nm × 1 nm × 10 nm was positioned through the middle of the cluster, as shown in 

figure 5.12a.  To study compositional changes on such small length scales, the smoothing 

was set to a very low level (0.5 nm3 voxel size and 0.5 nm delocalisation in all directions).  

A one dimensional (1D) concentration profile was calculated along the length of the 

ROI, and can be seen in figure 5.12b.  By observing five separate clusters, it was found 
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that the Mg content increases substantially from the background level at the edges of the 

clusters; however, the Mg concentration is not then observed to drop off towards the 

cluster centre.  Thus, there is no evidence from the APT data set that the Mg segregates 

to the outside of the Mg-rich regions.  Yet it should be noted that the data shown in 

figure 5.12b are very noisy, due to the limited number of atoms per region used to 

calculate the 1D concentration profile.  It may, therefore, be difficult to draw clear 

conclusions on this issue for such small clusters. 
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Figure 5.12. (a) Rectangular ROI of 1 nm × 1 nm × 10 nm running through a Mg 

cluster, used to measure the concentration profile across the cluster.  

(b) 1D concentration profile from the ROI pictured in (a), showing that the Mg 

level increases sharply at the edge of the cluster, but does not then drop off 

towards the middle of the cluster.   

5.4.2. TEM 

Having observed Mg-rich clusters in the APT, TEM was used to investigate their 

structure and composition, as well as to evaluate their similarity to defects reported in the 

literature121,120,122.  Due to the time consuming nature of TEM sample preparation and 

analysis, only the medium Mg flux SL was selected for TEM analysis. 

(a) (b) 
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5.4.2.1. Energy Filtered Lattice Fringe Images 

The small size of the Mg-rich regions makes it challenging to image them through the 

thickness of the TEM sample.  As mentioned in section 5.3.5, a KOH treatment of the 

TEM sample was used to remove amorphous material, which helped in the imaging of 

the Mg-rich regions.  Energy filtered HRTEM images were obtained of the clusters, and 

a cross-sectional image of the SL can be seen in figure 5.13a.  The GaN and AlGaN 

layers are labeled, with the interfaces indicated by dotted lines.  A small portion of the 

image, containing a defect (indicated by the white box in figure 5.13a), is shown in figure 

5.13b.  The defects were observed to be triangular in cross-section, with the tip of every 

defect pointing in the [0001̄] direction, consistent with Mg-rich PIDs reported in the 

literature121,122.  The defects are seen in both types of layer, but not in the non-

intentionally doped GaN cap, suggesting that the defects are related to the presence of 

Mg dopants.   

 

 

Figure 5.13. (a) Cross-sectional energy filtered HRTEM image of the top layers of 

the medium Mg flux SL and the non-intentionally doped GaN capping layer.  

Dotted lines provide a guide to the layer interfaces, and the layers are labeled.  

Pyramidal defects, triangular in cross-section, can be seen in the SL layers, but 

not in the GaN cap.  (b) Detail from the white box in (a), containing a defect.   

(a) (b) 
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The average defect size was found from the TEM images by measuring the widest extent 

of the triangular base.  The average size of the defects was found to be 5.1 nm ± 0.8 nm.  

A comparison between defect and cluster sizes measured by TEM and APT, respectively, 

will be discussed in section 5.4.3. 

5.4.2.2. Compositional Measurements 

Compositional measurements of the defects were attempted using both STEM-EELS 

and EFTEM mapping (with both jump ratio and three window technique background 

subtraction).  Unfortunately, it was not possible to detect Mg in the defects or in the 

surrounding matrix using either method, making it impossible in this case to determine 

whether they were Mg-rich.  The measurements made with these techniques are 

hampered by the relatively large sample thickness through which the small defects must 

be analysed, as well as by the projection of a 3D volume into a 2D image.  

5.4.2.3. Inversion Domains 

The structure of the defects observed in our SL sample was similar to those reported in 

the literature to be inversion domains.  To confirm that our defects contained similar 

reversals of the crystal polarity, WBDF images of the same area were taken using the 

(0002) and (0002̄) reflections.  Contrast reversal was observed between the two images, 

as shown in figure 5.14, which is typical of inversion domains121. 

  

Figure 5.14. (a) (0002) WBDF TEM image of two defects, taken along the [101̄0] 

axis.  (b) (0002̄) WBDF TEM image of the same defects as in (a).  Contrast 

reversal between the two images indicates that the defects are inversion domains.  

5.4.3. COMPARISON OF INFORMATION GAINED BY APT AND TEM 

The similarity in size and distribution of the clusters and defects measured by APT and 

TEM, respectively, suggests that the features observed by each technique are the same, 

and can best be described as Mg-rich PIDs.  In addition, similar PIDs have been 

(a) (b) 
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observed in the literature121, and reported to be Mg-rich122, lending weight to the 

conclusion that the Mg-rich clusters observed by APT are the same as the PIDs observed 

by TEM.  With information about the numerical density, size, shape, and Mg content of 

these PIDs, measured by one or both techniques, it is possible to compare the 

information obtained about the Mg-rich PIDs. 

 

The numerical density of the clusters can be obtained easily in the APT data set, due to 

the 3D nature of the information.  In the TEM study, on the other hand, this density is 

much more difficult to determine.  Firstly, the thickness of the sample can be difficult to 

determine, and secondly, projection of the 3D sample information into the 2D image 

may obscure some defects entirely, or cause multiple PIDs to appear as one.  Thus, 

numerical density is much more easily characterised using APT, for our SL data.  It 

should be noted that 3D TEM techniques, such as electron tomography, may provide 

greater insight into the numerical density, but these methods have not yet been attempted 

with this sample.     

 

When considering the size of the clusters measured by APT, it is important to consider 

whether the Mg-rich regions had a sufficiently different evaporation field to the 

surrounding matrix to cause trajectory aberrations, resulting in magnification errors 

within the reconstructed data set125.  The similarity in average feature size measured by 

both APT and TEM suggests that local magnification effects did not substantially 

influence the size of the features observed by APT.  This indicates, therefore, that the 

Mg-rich regions are unlikely to have had a significantly different evaporation field to the 

surrounding matrix.  Although the sizes of the regions were similarly measured between 

APT and TEM, the information gained about the features is fundamentally different: in 

TEM, the size of the inversion domain is measured.  APT instead measures the extent of 

the Mg-rich region, which could, like a Cottrell atmosphere around a TD, extend beyond 

the boundaries of the structural defect.  With TEM measurement of the structural defect, 

it is also important to note that the feature size could be underestimated if the defect 

were to intersect the TEM sample surface.  

 

A similar comment can be made about the shape measured by the two methods: the 

shape of the PID is measured by TEM, whereas the shape of the Mg-rich region is 

measured by APT.  In APT, the isoconcentration value and smoothing selected further 
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complicates the definition of feature shape, as the observed shape can change depending 

on the values chosen.  Additionally, even if the Mg were to lie exactly within the PID, the 

random fluctuations in the Mg distribution could blur the isoconcentration surface.  

Therefore, the fact that the APT does not show a pyramidal cluster shape does not 

provide conclusive information about whether the Mg-rich region is enclosed within the 

PID.  TEM and APT of the same defect could provide insight into this question. 

 

The composition of the PIDs was only found using APT, as both TEM-based methods 

were unsuccessful at studying the composition of such small defects.  The APT data set 

permitted the average Mg content of the clusters to be obtained, and allowed an attempt 

to be made to study the Mg content variation within the clusters.   

 

The preceding discussion, comparing the information gained by APT and TEM about 

the medium Mg flux sample, is summarised in table 5.3.  It is evident that a wealth of 

information can be obtained about even tiny features such as the PIDs observed in our 

SLs, by making use of the combination of APT and TEM techniques.   

Table 5.3. Comparison between information gained about the Mg-rich regions by 

APT and TEM for the medium Mg flux sample. 

Defect/ 

Cluster 

Property 

APT TEM 

Density 

More clusters in AlGaN than GaN                                 

AlGaN (1 ± 0.4) × 10-4 clusters/nm3 

GaN (1 ± 0.6) × 10-5 clusters/nm3 

(on average) 

More defects in AlGaN than GaN                           

(numerical density difficult to 

obtain due to unknown thickness 

of TEM sample) 

Size 
4.2 nm ± 0.2 nm                

(estimates size of Mg-rich region) 

5.1 ± 0.8 nm                              

(at widest extent of the defect) 

Shape 
Difficult to determine                    

(Mg-rich regions do not appear to 

have a pyramidal shape) 

Triangular in cross-section, all 

pointing in the [0001̄] direction 

Mg 

content 

7.7 at.% average Mg content, with a 

standard deviation of 1.8 at.% 

STEM-EELS and EFTEM 

mapping both unsuccessful  
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5.5. SUMMARY 

In this chapter, a series of three Mg-doped SLs grown with different Mg fluxes was 

characterised using APT and TEM.  Atom maps were reconstructed for all three samples, 

and the APT data suggested that the medium and high Mg flux SLs contained Mg-rich 

clusters, and that the low Mg flux SL was devoid of such clustering.  Statistical methods 

were used to confirm this observation, by comparing the observed Mg distributions with 

those expected from a random alloy.  In this way, the clusters in the medium and high 

Mg flux SLs were shown to have a non-random origin.   

 

The Mg content of the SL as a whole was measured by APT, which indicated that as the 

Mg flux was increased, the SL Mg incorporation also increased.  As the SIMS 

measurements indicated that the AlGaN contained more Mg than the GaN, the different 

layer Mg contents were studied using the APT data, both with and without the influence 

of the Mg-rich clusters.  The APT data confirmed that the AlGaN contained more Mg, 

and suggested that much of the excess Mg was due to the increased density of clusters in 

the AlGaN layers.  Away from the clusters, the three SL samples were found to have 

similar Mg contents.  From this result, one might expect that the SL samples would show 

similar carrier concentrations.  The observed decrease in carrier concentration as the Mg 

flux was increased through the SL series suggests that the Mg clusters have an additional 

detrimental effect on the conductivity.  This effect may be caused by local electrical 

charge or carrier trapping at the clusters; however further investigations are needed to 

determine the cause of any detrimental effect of the Mg-rich clusters on the electrical 

properties of the SL. 

 

The size of the Mg clusters was measured by APT, along with their average Mg content.  

The clusters were found to have an average size of approximately 4 nm, and to contain 

Mg levels two orders of magnitude higher than the background level.  The Mg content 

was not observed to fall off at the centre of the clusters, and so the APT data did not 

provide any evidence that the Mg segregates to the outside of the Mg-rich regions.  

 

Finally, a TEM sample of the medium Mg flux sample was examined using energy 

filtered HRTEM and WBDF.  PIDs were observed in the Mg-doped SL layers, similar to 

those reported in the literature.  As the size and distribution of these defects was 
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comparable to the clusters observed in the APT, it was concluded that the two 

techniques were measuring the same feature, allowing a comparison to be made between 

the information gained about the Mg-rich PIDs by both techniques.  The two techniques 

are highly complementary, in this case providing a large amount of information about 

our Mg-rich PIDs. 
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6  
APT STUDIES OF THE 

MICROSTRUCTURAL ORIGIN OF 

LOCALISATION IN INGAN 

6.1. AIMS 

Chapter 3 introduced the remarkable capacity of GaN-based devices to emit light, 

despite their high threading dislocation density.  The reason for this behaviour has been a 

subject of intense debate, and many mechanisms have been suggested for localisation of 

charge carriers away from defects in the InGaN QWs that make up the active region of 

such devices.  In this chapter, we will discuss the microstructural origin of localisation in 

InGaN, and attempt to improve our understanding of the possible localisation 

mechanisms by using APT to study InGaN/GaN MQWs. 

6.1.1. APT OF BLUE QWS 

Recently, APT has been used to study InGaN/GaN MQWs in an attempt to answer the 

questions surrounding the existence of indium „clusters‟, which have been suggested to 

localise the charge carriers126.  Building on this work, our first aim was to study a blue-
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emitting InGaN/GaN MQW structure with APT, using both standard orientation and 

side-on samples.  It was hoped that with the side-on samples, as described in section 

4.5.1, it would be possible to collect a large amount of data from the MQWs running 

down the length of the APT sample.  Additionally, with the side-on samples, we aimed to 

use the superior z-resolution of the LEAP to investigate the In distribution in the plane 

of the wells in more detail than has previously been possible.  If the standard orientation 

and side-on APT data sets could be obtained, we hoped to compare the observed In 

distributions from the InGaN MQWs to those expected from a random alloy.   

6.1.2. APT OF ELECTRON BEAM IRRADIATED BLUE QWS 

It has been proposed that electron beam exposure during TEM-based characterisation 

damages InGaN, causing strain contrast that has previously been attributed to In 

clustering127.  The next aim of this chapter was to prepare APT samples containing blue-

emitting InGaN/GaN MQWs, and to irradiate a number of these samples with a known 

electron beam dose in the TEM.  We then aimed to run both irradiated samples and non-

irradiated reference samples in the LEAP.  If data sets from both types of sample were 

collected, we aimed to assess any changes in the In distribution, as well as any other 

changes in the sample microstructure, between the reference and irradiated samples.   

6.1.3. APT OF GREEN QWS WITH GROSS WELL-WIDTH FLUCTUATIONS  

Broader scale microstructures have been observed in InGaN MQWs, which may 

function to keep carriers away from dislocations104,128,129,130.  One such microstructure, in 

which gross fluctuations in QW width were observed, resulted in particularly efficient 

green emission129.  The next aim of this chapter was to use APT to study green-emitting 

MQWs with these gross well-width fluctuations, to investigate the morphology and 

composition of the wells, in an effort to study how these properties might affect the 

charge carrier recombination.  

6.1.4. APT OF MBE-GROWN QWS 

The previous aims of this chapter have focused on the characterisation of MOVPE-

grown InGaN MQWs.  Our final aim was to use APT to study a QW that was grown by 

MBE.  If a data set containing an MBE-grown InGaN QW was obtained, we hoped to 

again compare the In distribution observed with that expected from a random alloy.  In 

this way, we could compare the MBE and MOVPE-grown samples, and thereby extend 

our understanding of InGaN/GaN QW microstructure to include MBE-grown material. 
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6.2. BACKGROUND 

In this section, some of the proposed mechanisms for localisation of carriers in InGaN 

will be introduced, with the discussion focusing on those mechanisms investigated in the 

experimental work in this chapter.  Particular attention will be paid to the model that 

postulates carrier localisation at non-random variations in the In distribution on the 3 to 

5 nm scale, usually termed „indium clustering‟, as well as experiments that seem to refute 

this model.  A number of other localisation mechanisms will then be discussed in brief.  

The final section focuses on QWs that show gross well-width fluctuations, as broader 

scale microstructure (on the 100 nm scale) has also been shown to affect the 

luminescence from QWs.  

6.2.1. LOCALISATION IN INGAN QWS 

6.2.1.1. Light Output and Carrier Recombination 

As introduced in Chapter 1, GaN-based LEDs and LDs often employ InGaN QWs in 

the active region of the device, from which light emission is achieved.  However, TDs 

have been suggested to act as non-radiative recombination centres, limiting the efficiency 

of such devices131.  To explain the seeming paradox of bright light output from high TD 

density material, it has long been suggested that some feature of the micro- or 

nano-structure prevents carriers from diffusing to TDs, hence preventing non-radiative 

recombination.  The next section will focus on the model of In clustering.   

6.2.1.2. Indium Clustering Model 

The existence of In clusters within InGaN QWs was proposed by Narukawa et al.132.  

Cross-sectional TEM imaging was used to examine the microstructure of the QWs, 

which were found to contain small dark regions of strain contrast, with diameters of 

between 2 and 5 nm.  Figure 6.1 shows a cross sectional image that exhibited this 

contrast, which was presented by Narukawa et al.132.  The authors interpreted these 

regions to be self-formed quantum dots, which energy dispersive X-ray spectroscopy 

(EDX) analysis suggested were rich in In, compared to the surrounding well.  It should 

be noted, however, that the error on these EDX measurements may have been large, as 

the authors mention that there was significant spreading of the incident electron beam 
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used for analysis, and do not specify the size of the incident probe.  Such clusters would 

be expected to localise carriers, due to the reduced bandgap of the In-rich material133. 

 

Figure 6.1. From Narukawa 

et al.132, a cross-sectional TEM 

image of InGaN MQWs, in which 

blotchy contrast can be observed 

within the wells.  This strain 

contrast was interpreted as self-

formed quantum dot-like regions, 

which EDX analysis suggested 

were In-rich.  

In support of the In clustering model, Gerthsen et al.134 used lattice fringe spacing analysis 

of HRTEM images to suggest that the In enrichment of the clusters could be in excess of 

0.8 (here quoted as the value of x in InxGa1-xN).  Figure 6.2 shows a colour map of the 

local In content of the QW, which contains a small region with In content greater than 

x = 0.73.   

  

Figure 6.2. From Gerthsen et al.134, a map of local In concentration within an 

InGaN QW, produced using lattice fringe spacing analysis of HRTEM images.  

A small region can be observed that was suggested to have more than x = 0.73 In.   

The observed regions of high In content were proposed to have formed by spinodal 

decomposition, a barrier-less phase separation mechanism132.  This conclusion was based 

20 nm 
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on the theoretical phase diagram of bulk, relaxed InGaN proposed by Ho and 

Stringfellow135, as shown in figure 6.3.  At typical InGaN growth temperatures of 

between 700 and 800 ºC, their calculations suggested that for blue and green-emitting 

QWs (containing around x =0.2 In), decomposition would occur, leading to regions of 

high and low In content.  With experimental evidence for In clustering, alongside the 

theoretical basis for cluster formation, it seemed that the enigma of GaN-based LEDs 

had been explained.  

 

Figure 6.3. From Ho and 

Stringfellow135, a theoretical phase 

diagram calculated for bulk InGaN, 

suggesting that spinodal 

decomposition would occur in the 

InGaN QW regions of blue and 

green-emitting QWs, which contain 

about x = 0.2.    

6.2.1.3. Challenges to the Indium Clustering Model 

It is important to note that the phase diagram calculated by Ho and Stringfellow135 did 

not take into account coherency strains, which would occur between the In-rich clusters 

and the In-depleted matrix if decomposition were to occur.  Such coherency strains 

could provide an energetic barrier to decomposition.  Further problems with the In 

clustering model also began to surface: Karpov136 recognised that the phase diagram 

shown above was for bulk-like relaxed GaN, and did not accurately model InGaN QWs 

that are biaxially strained, due to lattice mismatch with GaN.  Karpov136 calculated the 

phase diagram of biaxially strained InGaN, which can be seen in figure 6.4.  The spinode 

was dramatically shifted to higher indium contents and lower temperatures, implying that 

phase separation would not occur in blue and green-emitting QWs.  Indeed, the author 

calculated that InGaN should be a random alloy in blue, green and UV-emitting QWs.  

In support of these findings, recent phase equilibria calculations by Chan et al.133 also 

suggest that the spinode is suppressed by biaxial strain.   
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Figure 6.4. From Karpov136, a 

theoretical phase diagram 

calculated for InGaN, taking into 

account the effect of biaxial 

strains.  Compared to bulk 

InGaN, phase separation is 

suppressed at low In contents, 

suggesting that phase separation 

would not occur in blue, green 

and UV-emitting QWs.  

Doubt was cast onto the TEM-based evidence for indium clustering by Smeeton et al.127 

and O‟Neill et al.137, who both observed that the high electron current density incident on 

TEM specimens during their examination appeared to be damaging the QWs.  Both 

reports found that InGaN QWs that had not been exposed to the electron beam prior to 

the image being taken showed little to none of the strain contrast previously associated 

with clustering.  Upon further exposure to the electron beam, however, these rather 

uniform QWs were observed to develop definite fluctuations in strain contrast.  Figure 

6.5a-d shows the evolution of strain contrast observed by Smeeton et al.127, using 

HRTEM lattice fringe images with increasing exposure times to a 200 kV electron beam 

flux of approximately 35 A cm-2.   

 

Figure 6.5. From Smeeton et al.127, HRTEM lattice fringe images, showing the 

effect of increasing exposure time of the InGaN QW to a 200 kV electron beam 

flux of approximately 35 A cm-2.  (a) 20 s exposure, (b) 220 s exposure, (c) 420 s 

exposure, (d) 620 s exposure.   
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Smeeton et al.127 noted that the strain contrast shown in figure 6.5d was typical of QW 

images obtained when particular care was not paid to minimising the electron beam 

exposure, and that the image shows contrast similar to what might be expected from 

genuine clustering.  Both sets of authors concluded that the potential certainly existed for 

false cluster detection in TEM experiments, which cast significant doubt onto the validity 

of the In clustering model.  In a further study, Smeeton et al.138 showed that this electron 

beam-induced strain contrast was present even in a TEM sample that was prepared 

without thinning in the PIPS™, which could cause ion beam damage to the sample.   

 

To circumvent the problem of electron beam damage, APT was used to study the In 

distribution in InGaN QWs126,115.  Galtrey et al.115 used the LEAP to study both blue and 

green-emitting QWs.  In the resulting APT data sets, regions were selected from within 

the QW layers, and the data were divided into blocks of, for instance, 50 atoms.  The 

indium content of these blocks was measured and the observed distribution of In 

contents was compared with a random alloy, which would be expected to follow a 

binomial distribution.  Figure 6.6a shows a reconstructed atom map of three green-

emitting InGaN/GaN QWs, with the In atoms shown as black and the Ga atoms shown 

as gray.  All other ions are omitted for clarity.  The results of the statistical analysis can be 

seen in figure 6.6b, where the observed In distribution is shown with crosses, and the 

binomial distribution with a black line.   

 
 

Figure 6.6. From Galtrey et al.115, (a) Reconstructed atom map of green-emitting 

InGaN/GaN QWs, with In atoms shown in black, Ga atoms shown in gray, and 

all other atoms omitted.  (b) Comparison between the observed In distribution 

from (a) (black crosses) and the distribution expected from a random alloy.    

(a) (b) 
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Galtrey et al.115 conducted a χ2 test to compare the observed and predicted distributions, 

as described in section 5.4.1.2, and found no statistically significant deviation from 

randomness.  Thus, it was concluded that the APT data provided no evidence for 

clustering in either sample, implying that In clusters cannot be necessary for bright light 

emission from InGaN QWs.  Yet in their APT analysis, the authors could have achieved 

better spatial resolution: the QW material was located in the x-y plane of the data set, and 

the spatial resolution of the technique is better in the z-direction than in the x and y 

directions.  Further weight could therefore be lent to the authors‟ conclusions if the 

clustering analysis were performed on QW material that ran down the length of the APT 

sample, to take advantage of the superior z-resolution.  It is also important to note that 

the APT data presented by Galtrey et al.115 do not imply that In clusters are never present 

in InGaN QWs. 

6.2.1.4. Alternative Localisation Mechanisms  

In addition to In clustering, a number of other charge carrier localisation mechanisms 

have been suggested, and may be of great importance, due to the doubts cast upon the 

existence of In clusters.  Firstly, a number of theoretical studies have predicted that 

charge carriers may be localised at a near-atomic level, even in an entirely random alloy of 

InN and GaN139,140,133.  Wang140 modelled wurtzite InGaN, predicting hole localisation at 

chains of atoms containing just two adjacent In atoms.  These -In-N-In- chains would be 

expected to exist even in a random alloy.  Experimental work in support of these 

theoretical conclusions was provided by Chichibu et al.141, who used positron annihilation 

spectroscopy to provide evidence for hole localisation on a short length scale, which the 

authors suggested was due to localisation at these -In-N-In- chains.  However, a recent 

theoretical work by Chan et al.133 found no obvious correlation between -In-N-In- chains 

and charge carrier localisation.  However, the authors reported that in a random alloy the 

compositional fluctuations do act to strongly localise the holes.  It should be noted that 

such atomic scale localisation may be present in InGaN QWs, regardless of other 

nanoscale or broader scale localisation mechanisms.   

 

Nanoscale fluctuations in QW width, of the order of one or two monolayers, have also 

been suggested to be highly effective as a mechanism for carrier localisation142.  In 

InGaN QWs, slight changes in well thickness would be expected to decrease the 

confinement energy as the QW width increases; in addition, the high piezoelectric 
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constants of this material also lead to band-bending in the strained QWs, an effect that 

increases with the well thickness143.  In fact, Graham et al.142 calculated that for a 3.3 nm 

thick QW with 25 % In, a one monolayer increase in thickness would shift the transition 

energy by 58 meV, which could localise charge carriers at room temperature.  In support 

of this model, APT115 and TEM144 studies of InGaN QWs have demonstrated the 

existence of monolayer and bilayer fluctuations in well-width through investigation of 

upper and lower QW interface roughness.  Recently, Watson-Parris et al.145 calculated the 

localisation lengths of the electrons and holes in InGaN QWs using numerical solutions 

of the effective mass Schrödinger equation.  The authors‟ model took into account the 

results of APT studies of InGaN QWs115: the distribution of In atoms was modelled as 

random, and the effect of well width fluctuations was also considered.  The well width 

fluctuations were found to decrease the electron localisation length, although this effect 

was negligible for the holes.  In agreement with the work of Chan et al.133, the authors 

reported that the holes were localised around regions of high indium fraction within the 

random InGaN alloy. 

 

Finally, broader scale microstructures have also been proposed to prevent carriers from 

reaching TDs and non-radiatively recombining.  This effect differs slightly from the 

previously discussed localisation mechanisms, in which carriers are localised in a small 

region: these broad scale microstructures are suggested to provide a barrier to carrier 

diffusion to the TD, whilst allowing the charge carriers to otherwise move freely within 

the QW.  As discussed in Chapter 4, Hangleiter et al.104 observed V-pits in InGaN QWs.  

The sidewalls of these V-pits were decorated with thinner QWs, which would result in a 

higher potential in the region surrounding the TD, preventing the carriers from reaching 

the dislocation.  Additionally, Grandjean et al.130 found that pinning of surface steps by 

TDs during InGaN growth led to thinning of the QWs.  Such broad scale screening of 

dislocations may indeed function alongside nanoscale and atomic scale charge carrier 

localisation.   

 

Another broad scale microstructure that has been shown to affect the luminescence 

properties of InGaN QWs has been termed „QW network structures‟129,146.  These 

structures are particularly relevant to the experiments that will be described in section 

6.4.3, and are therefore discussed in more detail below. 
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6.2.2. QW NETWORK STRUCTURES  

Van der Laak et al.129 used TEM to observe gross thickness fluctuations in MOVPE-

grown InGaN QWs.  In this case, the term gross refers to fluctuations of between 

several monolayers and the full width of the well, in which case a gap is observed in the 

QW, filled with GaN.  The authors postulated that the „gappy‟ QW morphology was a 

result of the two-temperature MOVPE growth method used, in which the InGaN QW 

growth temperature was lower than that used for GaN barrier growth, and the QW was 

left exposed during the temperature ramp required for GaN growth.   

 

Van der Laak et al.129 then used AFM to study thin InGaN epilayers grown to have a 

surface representative of the gappy QW morphology: the epilayers were subjected to a 

temperature ramp similar to that used for GaN barrier growth, and then immediately 

cooled.  The AFM images showed a network of interlinking InGaN strips, aligned 

roughly parallel to the [112̄0] direction, and separated by GaN-filled troughs, as shown in 

figure 6.7a.  TEM was used to further characterise these network structures, and figure 

6.7b shows a STEM-HAADF image of a cross-section through one of these strips, with 

crosses indicating the probe positions for EDX analyses of the In:Ga ratio.  The EDX 

data are shown in figure 6.7c, suggesting that the centre of the strip is In rich, and the In 

content falls off towards the edges.  The authors suggested that this composition profile 

would localise excitons at the centres of these strips. 

 

As InGaN QWs grown by this two-temperature method have been shown to have high 

internal quantum efficiencies147, van der Laak et al.129 studied the relationship between the 

InGaN strips and the position of TDs.  Using a bright field multi-beam imaging 

technique that revealed all types of TDs93, the authors showed that 90 ± 10 % of the 

TDs pass through the QW either in the gaps between strips, or in the very edges of the 

strips, where the In content is lower.  This observation has more recently been confirmed 

by CL data143.  The QW morphology thus results in screening effect, due to the higher 

potential around the dislocations. 
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Figure 6.7. From van der Laak et al.129, (a) an AFM image of an InGaN epilayer, 

grown to have a morphology similar to an InGaN QW grown by a two-

temperature method.  A network of interlinking InGaN strips can be observed, 

aligned roughly parallel to the [112̄0] direction.  (b) STEM-HAADF cross-

sectional image looking down an InGaN strip from a network structure.  The 

crosses indicate the positions of the probe for EDX analysis.  (c) EDX results, 

showing that the centre of the strip is In-rich, and the In content decreases 

towards the edges of the strip.   

6.3. EXPERIMENTAL 

6.3.1. SAMPLE GROWTH 

The blue-emitting MQW samples studied in this chapter have been described in 

section 4.4.1, as Sample A and Sample B, both capped with GaN to facilitate APT 

sample preparation.   

 

The green-emitting sample with gross well-width fluctuations was grown on a low TD 

density template using a 3D to 2D method, as described in section 4.4.1.  On this 

template, an In0.2Ga0.8N/GaN 10 QW structure was grown with a two temperature 

method, in which the InGaN wells were grown at 680 ºC and the GaN barriers were 

grown at 860 ºC.  No growth took place during the temperature ramp between the well 

(b) 

(c) 
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and barrier growth.  This green-emitting sample was previously characterised by 

Dr. Pedro Costa, who used cross-sectional STEM-HAADF imaging to study the gross 

fluctuations in well-width, as shown in figure 6.8.  Gaps can be observed in the QWs, as 

labeled in the figure.  Additionally, the photoluminescence from this sample was 

analysed, and for the 552 nm emission wavelength, it exhibited a high internal quantum 

efficiency of 12 %147. 

 

Figure 6.8. From Costa et al.147, a 

cross-sectional STEM-HAADF 

image of the green-emitting 

sample studied in this chapter.  

The wells were observed to exhibit 

gross fluctuations in width, even 

appearing to be absent in some 

regions, leaving a gap in the QW.   

Finally, the MBE-grown InGaN QW was grown at Sharp Laboratories of Europe, as 

discussed in section 2.1.2.  The QW was part of a full sequence of layers used in a green-

emitting laser diode.  Figure 6.9 shows the nominal layer structure, including the Si or Mg 

dopants used in each layer to produce either n-type or p-type material, respectively.  The 

10 µm MOVPE-grown GaN template was supplied by Lumilog.  On this template, the 

layers up to the InGaN QW were grown by reactive MBE.  Both the QW and the 

AlGaN layer immediately above it were then grown by RF-PAMBE.  The subsequent 

layers were then grown by reactive MBE.  The Mg dopant level in the p-type layers was 

measured with SIMS at Sharp Laboratories of Europe, and found to be in the range of 

3 – 5 × 1019 cm-3.   

 

Electroluminescence (EL) measurements on the MBE-grown sample were provided by 

Sharp Laboratories of Europe, and showed that an area near the centre of the wafer had 

an emission wavelength of approximately 540 nm, whereas an area nearer the edge had 

an emission wavelength nearer to 490 nm.  This difference was believed to be due to the 

substrate mounting during MBE growth, which caused the wafer temperature to increase 

slightly from the centre to the edge of the sample.  Although only data from the QW will 

Gaps 
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be examined in this chapter, further characterisation of the laser diode structure will be 

the subject of Chapter 8. 

Nominal Layer Structure Dopant

10 nm GaN Mg

595 nm Al0.045Ga0.955N Mg

235 nm GaN Mg

5 nm Al0.2Ga0.8N

3.5 nm In0.18Ga0.82N QW

20 nm GaN

100 nm In0.02Ga0.98N Si

55 nm GaN Si

480 x (1.6 nm Al0.1Ga0.9N + 1.6 nm GaN) 

superlattice

Si

220 nm GaN Si

10 um GaN Si

Al2O3 substrate
 

Figure 6.9. Nominal layer 

structure of the green-

emitting laser diode 

structure, grown by MBE 

at Sharp Laboratories of 

Europe.  The InGaN QW 

studied in this chapter 

was grown to be 3.5 nm 

thick, with x = 0.18 In.  

Mg and Si were used to 

dope the material p- and 

n-type, respectively.  The 

dopant used is indicated 

to the right of each layer.  

6.3.2. APT SAMPLE PREPARATION 

The APT samples used in this chapter were prepared using the standard liftout and 

annular milling method, as described in section 2.5.2.  All samples were prepared in 

Cambridge, using an FEI Company™ Helios Nanolab™ dual beam FIB/SEM with an 

Omniprobe Autoprobe™ 200 micromanipulator.  The samples were mounted onto 

microtips, with the exception of the APT sample that was exposed to the electron beam 

in the TEM, which used a Cu/W needle mount.  The side-on orientation samples were 

prepared using the method described in section 4.5.1.   

6.3.3. TEM 

The blue QW sample on a Cu/W mount was imaged and electron beam irradiated with 

the TEM, using instrumentation as described in section 4.4.4, and with the help of 

Dr. Jonathan Barnard.  The QWs were imaged prior to TEM-mode irradiation using 

STEM-HAADF, with effort taken to limit the electron dose to the InGaN in order to 

take „pre-damage‟ images.  The STEM-HAADF images were taken near the <112̄0> 

zone axis.  The QWs were then exposed to the 200 kV electron beam in TEM-mode for 

a total of 64 minutes.  Although this irradiation time was longer than the exposure times 
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shown to damage InGaN QWs by Smeeton et al.127, the APT sample was significantly 

thicker (greater than 150 nm in diameter at the QWs) than the TEM thin foils presented 

by the authors, and this experiment aimed to ensure that damage to the QWs had 

occurred.  The current entering the CCD camera was measured with a picoammeter and 

the current density incident on the sample was found by dividing this value by the 

irradiated area.  The current density during electron beam exposure was approximately 

1.1 A cm-2.  STEM-HAADF images were taken after irradiation, to obtain „post-damage‟ 

images of the InGaN QWs, again near the <112̄0> zone axis. 

6.3.4. APT 

All APT experiments described in this chapter were carried out at the OPAL EPSRC 

National Atom Probe Facility at Oxford University, as described in section 4.4.5.  Details 

of the LEAP conditions used for each run will be presented in section 6.4, with the 

associated APT data set.  Once the data were collected, the APT reconstructions were 

optimised as far as possible to obtain flat layers and correct layer spacings, as indicated by 

TEM. 

6.4. RESULTS AND DISCUSSION 

6.4.1. BLUE QWS 

6.4.1.1. Standard Orientation QWs 

In an attempt to reproduce the work of Galtrey et al.115, and to thereby determine 

whether the results obtained were consistent with those previously reported, standard 

orientation APT samples of the blue-emitting InGaN QWs were run in the LEAP.  One 

data set was collected from Sample A and one from Sample B, although a second data set 

from Sample A was collected as a reference for the electron beam irradiated QWs, and 

will be discussed in section 6.4.2.  It should be noted that Sample A and Sample B were 

grown with the same InGaN QW growth recipe, just on different TD density templates.  

No V-pits associated with TDs were observed in the data used for In distribution 

analysis.   

 

The data set from Sample A was collected using a base temperature of 30 K, a laser pulse 

energy of 0.1 nJ and an evaporation rate of 2.5 %.  All ten QWs were observed, as shown 
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in figure 6.10a, with 100 % of In atoms shown as orange dots, and 2.5 % of Ga atoms 

shown as blue dots.  The reconstruction shows the QWs increasingly bowing near the 

bottom of the QW stack, indicating that the field changed slightly during the run (only a 

global field value can be used in the reconstruction).  To minimise pole-related density 

fluctuations, and to obtain flat layers throughout, a central cylinder of 20 nm × 110 nm 

running perpendicular to the QWs was selected, as shown in figure 6.10b. Within this 

cylinder, each QW was isolated using an isoconcentration surface set at half the 

maximum In content of the well.  The volumes enclosed were divided into 100 atom 

bins, and the data from all ten QWs was combined for χ2 analysis. 

 

 

Figure 6.10. (a) Side view of the entire reconstructed atom map of the standard 

orientation data set from Sample A.  2.5 % of Ga atoms are shown as blue dots, 

with 100 % of In atoms shown as orange dots.  The QWs near the top are flatter 

than the ones towards the bottom of the stack, due to changes in the evaporation 

field during the run.  (b) A central cylinder of 20 nm × 110 nm, selected from (a) to 

minimise the effect of QW bowing and pole-related density fluctuations. 

The χ2 analysis of Sample A suggested no statistically significant deviation from 

randomness for the In distribution within the QWs.  Bin sizes were varied between 25 

and 200 atoms, with similar results achieved for all bin sizes.  For 100 ion bins, the p 

value was found to be 0.96 for 14 DOF, which strongly suggests that there were not any 

(a) (b) 
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non-random In clusters present in our MQW sample.  Figure 6.11 shows the observed In 

frequency distribution, compared with the binomial.  To check that the combined χ2 

analysis was representative of the individual QWs, the p value of each well was 

computed, and no well showed evidence of non-random In clustering.   
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Figure 6.11. A comparison between the observed distribution of In within all ten 

QWs of Sample A, and that expected from a random alloy.  The volume within the 

QWs was split into 100 atom blocks and the In content of each block was 

calculated.  χ2 analysis shows no significant deviation from randomness.  

The data set from Sample B was discussed in section 4.5.3, as it contained all ten QWs 

and a small portion of a V-pit.  A reconstructed atom map of the data set can be seen in 

figure 4.13.  A central cylinder, away from the V-pit, was selected for analysis of the In 

distribution.  As the data set was wider than that of Sample A (shown in figure 6.10a), a 

slightly wider cylinder of 35 nm × 110 nm was selected.  The InGaN QWs were again 

isolated using isoconcentration surfaces with values corresponding to half of the 

maximum In content of each well.  The combined χ2 analysis for all ten QWs with 100 

ion bins resulted in a p value of 0.24 for 17 DOF.  These results and those for Sample A 

support the conclusion that non-random In clusters were not present in our InGaN 

MQWs, in agreement with the work of Galtrey et al.115.  
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6.4.1.2. Side-on Orientation QWs 

As previously mentioned, the spatial resolution of APT in the z-direction is better than 

that in the x-y plane.  To take advantage of the improved z-resolution, side-on APT 

samples were prepared from capped Sample A and Sample B, as described in section 

4.5.1.  It was hoped that these side-on samples would serve to both to capture a TD and 

to collect data from the MQWs as they ran down the length of the sample.  As discussed 

in section 4.5.3, all of the side-on samples fractured in the LEAP, although one small 

data set of Sample B, with approximately 350,000 atoms, was obtained that contained the 

InGaN MQWs.  This data set was collected using a base temperature of 30 K, a laser 

pulse energy of 0.1 nJ and low evaporation rates of between 0.2 % and 0.5 %.  The mass 

spectrum collected during the run was noisier than typically observed for standard 

orientation samples, and so the run was stopped prior to specimen fracture to test the 

suitability of the local electrode: the local electrode is a consumable part of the LEAP, 

and if dirty or damaged, can cause noise in the mass spectrum.  The local electrode was 

found to be suitable, but unfortunately, when evaporation was restarted under the same 

run conditions, the specimen fractured.   

 

The side-on data set was collected during the initial stages of evaporation, when the tip 

was likely to still have been reshaping.  This effect is evident from the inhomogeneous 

distribution of atoms on the detector, which can be seen as a large decrease in atomic 

density from one side of the data set to the other.  Figure 6.12a shows a top view of the 

entire data set, with 100 % of In atoms shown as orange spheres of 0.1 nm diameter, and 

25 % of Ga atoms shown as blue dots, with all other atoms omitted.  The density on the 

right of the data set drops to almost nothing, which suggests that the tip was initially 

flatter on that side, resulting in a local electric field well below the threshold for field 

evaporation.  An oxygen peak was detected in the mass spectrum, and the distribution of 

O was investigated.  Figure 6.12b shows 100 % of the O atoms as red spheres of 

diameter 0.2 nm, in addition to the In and Ga, shown as in figure 6.10a.  The O atoms 

are clearly observed at the edge of the low density region, suggesting that they originate 

from O-rich surface contamination, which was in the process of being removed as the tip 

reshaped itself during turn on.  It should be noted that the reconstruction parameters 

could not be optimised in this case to provide completely flat layers, however this should 

not significantly affect the In distribution within the wells.   
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Figure 6.12. (a) Top view showing the reconstructed atom map of the small side-

on data set from Sample B.  25 % of Ga atoms are shown as blue dots, with 100 % 

of In atoms shown as orange spheres of 0.1 nm diameter.  The density of atoms 

falls to almost nothing on the right of the data set, indicating that the tip was still 

reshaping, with the right side being flatter.  Portions of four InGaN QWs can be 

observed, with two complete wells collected.  (b) 100 % of O atoms are shown as 

red circles of diameter 0.2 nm, overlaid on the atom map from (a). 

Figure 6.13 shows a side view of the reconstructed data set, with the same image 

specifications as in figure 6.12a.  On the left side of the data set, where the tip shape was 

already conducive to evaporation, two InGaN QWs can be seen that run down the 

length of the sample.  These QWs were used to study the In distribution, taking 

advantage of the improved z-resolution to determine whether there was any indication of 

nanoscale In clustering.  Only the regions inside the QWs were used, and these were 

isolated using isoconcentration surfaces at half the maximum In content of each QW.  

For the QW shown on the left in figure 6.13, or „QW 1‟, the isoconcentration surface 

used was 4.5 at.% In, while the QW on the right, or „QW 2‟, was isolated using a 4.8 at.% 

In isoconcentration surface. 

 

(a) (b) 
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Figure 6.13. Side view of the 

reconstructed atom map of 

the small side-on data set 

from Sample B.  25 % of Ga 

atoms are shown as blue 

dots, with 100 % of In 

atoms shown as orange 

spheres of 0.1 nm diameter.  

Two InGaN QWs are 

observed on the high 

density side of the data set.  

The distribution of In was studied by dividing the volume within the QWs into 100 atom 

bins and using a χ2 test to compare the observed distributions with those expected from 

a random alloy, as described in section 5.4.1.2.  For QW 1, the p value was 0.11 for 

12 DOF, which implies that it is not possible to reject the null hypothesis that the 

InGaN is a random alloy.  For QW 2, which was closer to the low density region, the 

p value was 0.06, which is just above the threshold below which a deviation from 

randomness would be indicated.  Thus, the results from analysis of the In distribution in 

the side-on data set are in agreement with the results from the standard orientation data 

sets and the previous observation by Galtrey et al.115.   

 

The distributions of Ga and N2 were also analysed in the side-on dataset.  Although the 

N2 distribution showed no deviation from randomness, as would be expected, the Ga 

surprisingly showed a clear non-random distribution within the QW regions (in the 

barriers there was no indication of a deviation from randomness in the Ga distribution).  

At 100 atom bins, QW 1 and QW 2 both showed Ga distributions with p values of 0.00, 

for 24 and 27 DOF, respectively.  This non-random Ga distribution casts doubt onto the 

validity of the In distribution analysis, since a random distribution of In would be 

expected to be associated with a random Ga distribution, given that In sits on Ga sites.  

It should be noted, however, that this region of the sample was liable to have been 

damaged by implanted Ga atoms from the Ga+ ion beam during FIB/SEM sample 

preparation, which may have altered the distribution of Ga.  FIB damage of APT 

samples will be investigated further in Chapter 7. 
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As the side-on data set was extremely small, likely to have been obtained during tip 

reshaping, and contained a non-random distribution of Ga in the QW regions, these data 

are not particularly reliable.  Yet, even with these issues, the In distribution was still not 

observed to deviate significantly from randomness.  Although firm conclusions cannot 

be drawn from this data set, it certainly does not provide any evidence for indium 

clustering.   

 

On the weight of evidence, both from the work in this chapter, and from the evidence 

presented by Galtrey et al.115, it seems apparent that the blue-emitting InGaN QWs 

studied do not show any evidence for In clustering, implying that these clusters cannot 

be necessary for bright light emission.  Although this negative result has now been 

repeatedly observed, those critical of such APT studies have suggested that nanoscale 

In-rich clustering might not be detected by APT, even if it were present.  Therefore, it 

would be highly interesting to examine a sample with known clustering in the LEAP, to 

determine whether these clusters could be observed.  Such an investigation is the subject 

of the next section. 

6.4.2. ELECTRON BEAM IRRADIATED BLUE QWS 

Both Smeeton et al.127 and O‟Neill et al.137 challenged the TEM-based evidence for the In 

clustering model by suggesting that the observed contrast was a result of electron beam 

induced damage.  In light of this controversy, the next aim of this chapter was to irradiate 

an APT sample containing InGaN QWs in the TEM, in an effort to induce this damage, 

and then to study both the irradiated sample and a reference non-irradiated sample in the 

LEAP.  APT data were successfully collected from both irradiated and non-irradiated 

blue-emitting QWs from Sample B, making it possible to study any changes induced.  

6.4.2.1. TEM of the APT Sample 

An APT sample was made from Sample B on a Cu/W mount, as described in section 

4.5.4.  In this case, the sample was prepared from the capped Sample B, to reduce the 

likelihood that the MQWs would be milled away during APT sample preparation.  An 

image of the MQWs was taken using STEM-HAADF prior to significant damage by 

electron beam irradiation in TEM-mode, with every effort taken to minimise the 

exposure time.  This image can be seen in figure 6.14a, and shows that all ten QWs were 
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captured in the APT sample, below approximately 100 nm of GaN cap.  A layer was 

observed surrounding the end of the tip, and this was found to be amorphous, although 

slight QW contrast could still be seen.  An EDX line profile showed that the layer 

contained mostly Ga and O.  The sample was then exposed to 64 minutes of 

approximately 1.1 A cm-2 current density in TEM-mode, after which a post-damage 

STEM-HAADF image was taken, as seen in figure 6.14b.  The post-damage image 

showed blotchy strain contrast both in the MQW stack and in the GaN cap.   

 

  

Figure 6.14. STEM-HAADF images of the InGaN/GaN blue-emitting MQWs in 

capped Sample B, in which InGaN QWs show brighter contrast.  (a) Pre-damage 

image taken prior to irradiation in TEM-mode, in which the wells appear 

uniform.  An amorphous layer can be seen surrounding part of the tip, which was 

shown to be Ga and O-rich.  (b) Post-damage image taken after 64 minutes of 

TEM-mode electron beam irradiation with a current density of approximately 

1.1 A cm-2.  Blotchy strain contrast can be observed throughout the MQW stack 

and in the GaN capping layer.   

(a) (b) 
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The O-rich amorphous layer surrounding the APT sample was observed by TEM for the 

first time here, although the side-on sample showed what appeared to be an O-rich 

contamination layer in the APT data.  The cause of this amorphous region is not yet 

understood.  Interestingly, in the similarly-prepared APT sample with a TD shown in 

figure 4.19, no amorphous region was observed, nor was such a layer observed by 

Galtrey65 in similar TEM studies of APT samples.  The amorphous layer observed here 

clearly showed blotchy strain contrast after irradiation.  As the TEM image is a projection 

through the entire sample, it is difficult to say whether the MQWs themselves showed 

significant strain contrast, or if projection through the amorphous region made the QWs, 

barriers, and GaN cap simply appear to show such contrast.  By the very nature of the 

technique, however, the electron beam penetrated the entire sample.  Additionally, the 

exposure time was long, which would suggest that any damage typically observed in 

TEM studies of In clustering would have been induced in these MQWs. 

6.4.2.2. APT 

The APT data set from the irradiated MQW sample was collected using a base 

temperature of 26 K.  In an effort to evaporate through the amorphous layer, without 

fracturing the sample, a high laser power of 0.8 nJ was initially used, with an evaporation 

rate of 0.2 %.  Oxygen peaks were observed in the mass spectrum during this initial 

evaporation.  A burst of evaporation was observed, which indicated that the amorphous 

layer, and perhaps some of the GaN cap, may have popped off the end of the sample.  

The laser power was then lowered to 0.3 nJ, and the evaporation rate raised to 0.8 %, 

under which conditions data from the first four QWs were collected.  For the next three 

QWs, the laser power was lowered again to 0.1 nJ, while the evaporation rate was raised 

to 1.5 %.  Data from the final three QWs was collected with an evaporation rate of 2 %.  

As the evaporation rate and laser power can have some effect on the data observed, the 

data from QWs with the same evaporation rate were combined in the analysis. 

 

A non-irradiated reference of Sample B was run immediately after the irradiated sample, 

to ensure consistent LEAP performance.  As discussed in the last section, both standard 

and side-on orientation data sets from Sample B had already been collected, with neither 

showing evidence for In clustering.  The reference sample was run at a base temperature 

of 26 K.  Again, a burst of evaporation was observed during sample turn-on, indicating 

that perhaps an amorphous layer was also present on the reference sample.  After this 
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burst, the MQWs were observed.  The laser power was held constant at 0.1 nJ during 

data collection.  The evaporation rate was again increased gradually: the first QW was 

evaporated at 1 %, the next five QWs were evaporated at 1.5 %, and the final four QWs 

were evaporated at 2 %.  Although the evaporation rate has never been observed to have 

an effect on the evidence suggesting a lack of In clustering, an effort was made to run the 

damage reference sample at comparable evaporation rates to the irradiated sample.     

 

The atom maps collected from both samples did not show a visually perceptible 

difference in the QW In distribution.  Figures 6.15a and 6.15b show a 35 nm central 

cylinder from the irradiated and reference sample, respectively, with 100 % of In atoms 

shown as orange dots and all other atoms omitted for clarity.  As mentioned in section 

5.4.1.1, however, visual examination is not an effective technique to determine the 

existence of nanoscale clustering.  Statistical evaluation of both samples was undertaken 

using χ2 analysis.  Again, the central cylinder was used for analysis, and the QWs were 

isolated using In isoconcentration surfaces set at half the maximum QW concentration.  

  

Figure 6.15. Reconstructed atom maps of 35 nm diameter central cylinders from 

the APT data sets of Sample B, with 100 % of the In atoms shown as orange dots. 

(a) After electron beam irradiation in the TEM.  (b) Without irradiation.   

(a) (b) 
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The QWs in the reference sample were divided into 100 atom blocks for χ2 analysis.  The 

QWs collected at the three evaporation rates of 1 %, 1.5 %, and 2 % showed p values of 

0.94 for 14 DOF, 0.28 for 19 DOF, and 0.17 for 18 DOF, respectively.  These results 

indicate that the In distribution within the reference sample was consistent with that 

observed for the standard orientation Sample B data set in the previous section, showing 

no indication of In clustering.  The irradiated sample, on the other hand, showed a 

statistically significant deviation from randomness: within the top four QWs, with 100 

atom bins, the In p value was 0.00 for 19 DOF.  Figure 6.16 compares the observed In 

distribution with that expected from a random alloy.  A lower frequency than expected 

was observed at intermediate In contents, whereas greater than expected numbers of bins 

were observed containing either low or high amounts of In.  These data suggest that 

electron beam irradiation leads to clustering of the In within the InGaN QWs.   
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Figure 6.16. A comparison between the observed distribution of In within the top 

four QWs of electron beam irradiated Sample B, and that expected from a random 

alloy.  χ2 analysis with 100 atom blocks shows a statistically significant deviation 

from randomness. 

After data was collected from the first four QWs in the irradiated sample, the laser power 

was lowered to 0.1 nJ, and evaporation rates of 1.5 % and 2 % were used.  For the data 
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collected at an evaporation rate of 1.5 %, χ2 analysis with 100 atom bins indicated that 

the In distribution was right on the edge of a deviation from randomness: the p value was 

0.059 for 17 DOF, just above the threshold of 0.05.  The In distribution within the 

lowest three QWs again showed a deviation from randomness: with 100 atom bins, the p 

value was 0.00 for 19 DOF.  These results suggest that the statistical deviation from 

randomness observed in the top four wells was not simply related to the higher laser 

power used, as the bottom three wells also showed such a deviation.   

 

Many questions remain regarding the cause and extent of electron beam damage to 

InGaN QWs.  Although the APT results presented in this section indicate that 

irradiation causes In clustering, the level of clustering observed here does not extend to 

the level observed by Gerthsen et al.134, who identified clusters that the authors believed 

contained more than x = 0.73 In.  However, the results reported by Gerthsen et al.134 

appear unconvincing under further scrutiny: for the lattice fringe analysis to yield such 

high In content clusters, the TEM sample would be required to have a thickness similar 

to the size of the clusters, which only extend to a few nanometres, or the clusters would 

need to be rod-like, running through the entire sample.  In fact, it would be impossible to 

achieve the reported results given a reasonable sample thickness if the clusters were 

roughly spherical, with projection effects taken into account.  It is worth noting as well 

that the results reported by Gerthsen et al.134 are based upon relating the local lattice 

parameter to the In content, yet In content variations may not be the sole cause of local 

changes in lattice parameter, which could be affected by other damage mechanisms.   

 

More recent HRTEM studies have suggested that In fluctuations are smaller by an order 

of magnitude than the structures previously reported by Gerthsen et al.134, although they 

are suggested to be greater than random alloy fluctuations148.  In this section, we have 

observed that electron beam irradiation led to In fluctuations greater than would be 

expected from a random alloy, and that without this irradiation, no deviation from a 

random alloy distribution was observed. 

 

The Ga and N2 distributions were also compared between the irradiated and reference 

samples, using a volume in the middle of the GaN barrier, just below the first QW.  The 

volume was selected in each data set using a 35 nm × 5 nm region of interest, placed 

roughly equidistant from 5 % In isoconcentration surfaces, which were used to visualise 
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the top and bottom of the GaN barrier layer.  The volumes were divided into 100 ion 

bins, and the reference sample showed no deviation from randomness for either 

distribution: the p value for the Ga distribution was 0.08 for 25 DOF, and the p value for 

the N2 distribution was 0.47 for 19 DOF.  In the irradiated sample, however, both the 

Ga and N2 distributions had p values of 0.00, for 28 and 24 DOF, respectively.  Thus, it 

appears that electron beam irradiation also causes damage to the GaN layers.   

 

Finally, the effect of APT sample thickness on the amount of damage induced in the 

GaN was briefly investigated.  Volumes for study were selected in the irradiated data set 

using 35 nm × 3 nm regions of interest, placed just above and below the QWs.  Above 

the MQW stack, both the Ga and the N2 distributions were observed to have p values of 

0.00, for 27 and 23 DOF, respectively.  Below the QWs, neither distribution showed a 

deviation from randomness: the p value for the Ga distribution was 0.23 for 22 DOF, 

and the p value for the N2 distribution was 0.43 for 18 DOF.  These results suggest that 

the level of damage was greatest at the top of the MQW stack, decreasing as the APT 

sample thickness increased. 

6.4.3. GREEN-EMITTING QW NETWORK STRUCTURES 

The next aim of this chapter was to use APT to examine the brightly-emitting green 

QWs with gross well-width fluctuations characteristic of the network structures observed 

by van der Laak et al.129.  Five APT data sets were obtained that each contained the entire 

MQW stack.  Although the field of view in the LEAP was fairly small compared to the 

width of the InGaN strips, a number of gaps in the QWs were observed, consistent with 

the previous TEM observations147.  Figure 6.17 shows one of the APT data sets, 

collected using a base temperature of 30 K, a laser power of 0.01 nJ and an evaporation 

rate of 3 %.  100 % of the indium atoms are shown as orange dots, with 2.5 % of Ga 

atoms shown as blue dots.  This side-on view of the atom map resembles the cross-

sectional TEM images presented by Costa et al.147, in which the well width was observed 

to vary significantly, in some places even leaving gaps.   
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Figure 6.17. Reconstructed 

atom map of the green-emitting 

MQW sample with gross well-

width fluctuations.  All ten 

InGaN QWs can be observed, 

with 100 % of In atoms shown 

as orange dots.  Just 2.5 % of Ga 

atoms are shown as blue dots, 

with all other atoms omitted for 

clarity.  From the side, the APT 

data appears similar to the 

TEM images presented by 

Costa et al.147, in which the QWs 

were observed to vary in width, 

in places dropping to nothing.   

 

The 3D nature of the APT data set allows each well in the MQW stack to be examined 

from any angle, and top-view images clearly show elongated gaps in the QW layers.  Four 

QWs from the data set in figure 6.17 are shown in figure 6.18a-d, using 3.5 at.% In 

isoconcentration surfaces.  Although the shape of the gaps depends on the 

isoconcentration surface used, the APT data do show that the In content drops to near 

zero in some of the gaps.  For instance, the gap shown in figure 6.18a persists in the data 

set even with a 0.5 at.% In isoconcentration surface.  Despite the small field of view 

available in the atom probe, the observed microstructure appeared to be similar to the 

network structures seen by van der Laak et al.129.  
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Figure 6.18. Individual layers from the data set in figure 6.17, shown with 3.5 at.% 

In isoconcentration surfaces.  (a) and (d) show gaps in the wells, whereas (b) and 

(c) appear more uniform.   

 

In the network structures observed by van der Laak et al.129, the authors found that the In 

content of the InGaN strips decreased towards the edges.  This variation was proposed 

to localise carriers in the middle of the strips, and away from TDs.  To study how the In 

content varied from the body of the InGaN strip towards its edge in our APT data, a 

region of interest of 15 nm × 5 nm × 1 nm was defined within the QW, running from 

the centre of the strip towards the gap.  A 1D concentration profile was obtained along 

the long axis of this volume, and figure 6.19 shows that the In content falls as the edge of 

the InGaN strip is approached.  Comparable analysis across several QWs from different 

data sets revealed similar results, showing that the edges of the strips are less In-rich than 

the centres.  

(a) (b) 

(c) (d) 
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Figure 6.19. Indium 

1D concentration 

profile, from the 

centre of the InGaN 

strip, towards the 

edge.  The In content 

was observed to fall 

as the gap was 

approached.  

The network structures observed by van der Laak et al.129 showed gaps between the 

InGaN strips that were aligned roughly parallel to the [112̄0] direction.  The APT data 

sets were therefore analysed to determine whether the gaps in the QWs showed a 

preferential orientation.  The angles of the gaps were approximated using the 

isoconcentration surfaces, as shown in figure 6.20a.  On either side of a gap, lines were 

drawn between the points where the isoconcentration surface entered and exited the field 

of view.  The midline between these lines was drawn, with the use of an overlaid grid, 

and the angle between the midline and the y axis was found.  The orientations of the gaps 

are shown in the histogram in figure 6.20b, and there appears to be a peak at around 30 – 

45 º, although clear conclusions are difficult to draw, as the data set is very small.  The 

observed distribution suggests that the gaps may be aligned along a certain 

crystallographic direction, in support of the work by van der Laak et al.129. 

 

The APT studies of green-emitting InGaN QWs with gross well-width fluctuations have 

confirmed observations of the morphology and composition of the wells made by 

van der Laak et al.129.  The APT data showed that the InGaN strips are indeed In-rich at 

their centres, compared to their edges, which could provide a mechanism for excitonic 

localisation away from TDs.  In addition, analysis of the gap orientations suggested that 

the InGaN strips may show a preferential orientation, similar to previous observations of 

network structures129.  Future APT experiments might endeavour to determine the 

crystallographic direction of such orientation.  Optimisation of this type of broad scale 

QW morphology could play an important part in improving the efficiency of green-

emitting devices.   

Towards the edge of the InGaN strip  
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Figure 6.20. (a) Illustration of the method used to estimate the angle of the gaps, θ,  

relative to the y axis in the data set.   (b) Plot of the gap orientations observed, 

showing what appears to be a peak at around 30 – 45 º, which suggests that the 

gaps may be aligned along a certain crystallographic direction.   

6.4.4. MBE-GROWN QWS 

The final aim of this chapter was to extend the analysis of In distributions to an MBE-

grown QW.  The QW formed part of a full laser diode structure, described in section 

6.3.1, which will be discussed in more detail in Chapter 8 of this work.  As previously 

mentioned, a 540 nm emission wavelength was measured using EL at an area near the 

centre of the wafer, or „Region A‟, whereas an area nearer to the edge, or „Region B‟, 

grown at a higher temperature, showed a 490 nm emission wavelength.  APT samples 

were prepared from material lifted out of both Region A and Region B, and two data sets 

were collected from each area.   

 

All four data sets were collected with a base temperature of 30 K and a laser power of 

0.01 nJ, with evaporation rates that were gradually increased to 3 %.  One of the 

Region A data sets contained the full GaN layer above the QW, grown with a nominal 

thickness of 235 nm, which was helpful for reconstruction optimisation.  The same 

reconstruction parameters were applied to the other Region A and the two Region B data 

sets, resulting in layer thicknesses that compared reasonably well with the growth recipe.  

(a) (b) 

y 

x 

θ 
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A reconstructed atom map of one of the Region A data sets is shown in figure 6.21, with 

25 % of In atoms visible as orange dots and 25 % of Al atoms visible as light blue dots, 

with all other atoms omitted for clarity.  The InGaN QW and the 235 nm GaN layer are 

both labeled.  

 

Figure 6.21. Reconstructed atom map 

of the MBE-grown laser diode 

structure grown at Sharp Laboratories 

of Europe.  The sample is from the 

centre of the wafer, or Region A, 

which showed green wavelength 

emission.  25 % of In atoms are shown 

as orange dots and 25 % of the Al 

atoms are shown as light blue dots, 

with all other atoms omitted for clarity.  

The InGaN QW is near the middle of 

the data set, as indicated, and the 

235 nm GaN layer used for 

reconstruction optimisation is also 

labeled.  

As before, to minimise the impact of pole-related density fluctuations, a central cylinder 

of 35 nm diameter was selected for analysis in each of the four data sets.  Layer interfaces 

were aligned approximately perpendicular to the long axis of the cylinder.  Within this 

cylinder, the QW was again isolated using an In isoconcentration surface with a value 

equal to half the maximum In content of the well.  The QWs from the Region A data 

sets were found to have a maximum In content of x = 0.22 on average, whereas the 

maximum In content of the QWs from the Region B data sets was found to be just 

x = 0.16 on average.  The higher In content of the QW in Region A serves to explain the 

longer emission wavelength, compared to Region B.   

 

Once the QW was isolated in each data set, the volumes were divided into bins for χ2 

analysis, comparing the observed In distribution with that expected from a random alloy.  

On the whole, the observed In distributions from all four QWs were similar to those 

QW 

235 nm GaN layer 
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observed for MOVPE-grown material, in that no bins were found with significantly 

enriched In contents.  Yet the results of the χ2 analysis were somewhat inconclusive.  The 

p value for one of the Region A QWs was 0.10 for 14 DOF (with 100 atom bins), 

indicating no significant deviation from randomness.  The observed and expected 

distributions for this data set are shown in figure 6.22a.  The other Region A QW, 

however, had a p value of 0.00 for 17 DOF, indicating a statistically significant departure 

from a random alloy distribution.  In addition, the two Region B QWs also showed 

p values of 0.00 for 14 and 15 DOF.  A comparison between the observed and expected 

In distributions for a Region B QW can be seen in figure 6.22b. 
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Figure 6.22. A 

comparison between the 

observed distribution of 

In within the QW 

(isolated using an 

isoconcentration surface 

at half the maximum In 

content of the well) and 

that expected from a 

random alloy, with 100 

atom bins.  (a) QW from 

the central region, which 

showed no statistical 

deviation from a random 

distribution.  (b) QW 

from the edge region, 

which did show a 

deviation from a random 

alloy. 
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In the data set shown in figure 6.22b, as well as the other distributions that showed a 

statistical deviation from randomness, a large contribution to the χ2 value came from bins 

with very low In contents, whereas the contribution was much less from bins with high 

In contents.  This observation was in contrast to the electron beam irradiated QWs, 

(a) 

(b) 
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which showed excess In-rich bins, as well as bins with low In contents.  In light of this 

finding, the QWs were further characterised to determine whether the observed 

deviation from randomness related to an inhomogeneous distribution within the plane of 

the well, as would be expected in the presence of In clusters, or whether it arose from the 

variation in composition through the thickness of the well in the growth direction.   

 

To eliminate this uncertainty, it was necessary to understand the collection method for 

the bins containing the requisite number of atoms.  The software creates bins of size 

1 nm by 1 nm in y/z, with the x direction of variable length to include the selected 

number of atoms.  A region of interest with a depth of 1 nm in the z-direction was 

therefore defined near the centre of each QW, ensuring that only in-plane variations in 

the In content would be observed.  Within these regions, no significant deviation from 

randomness was observed for any of the data sets.  With 50 atom bins, the Region A 

QWs had p values of 0.98 for 9 DOF and 0.78 for 9 DOF.  The Region B QWs had 

p values of 0.43 for 8 DOF and 0.42 for 6 DOF.  Figure 6.23 shows the observed and 

expected distributions for the Region A data set that had a p value of 0.98.  It appears, 

therefore, that the through-thickness variations were the cause of the deviation from 

randomness observed in the MBE-grown QWs isolated with isoconcentration surfaces. 
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Figure 6.23. A comparison between the observed distribution of In within a QW 

from the central region (isolated using a region of interest near the centre of the 

well, with a depth of 1 nm) and that expected from a random alloy, with 50 atom 

bins.  No statistical deviation from randomness was observed. 
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It can be concluded that the MBE-grown InGaN QWs investigated in this section 

showed no indication of in-plane In variations that deviated from those expected from a 

random alloy.  These data strongly suggest that InGaN QWs grown by MBE show a 

microstructure similar to MOVPE-grown wells, in which In clusters are not necessary for 

bright light emission.  

6.5. SUMMARY 

In this chapter, several APT investigations of InGaN QWs were reported.  First, blue-

emitting MQWs were studied using both standard and side-on orientation APT samples.  

In support of the work by Galtrey et al.115, standard orientation APT samples grown on 

both high and low TD density templates showed no indication of non-random In 

clustering.  Although the side-on data set was small, and had a number of other issues, χ2 

analysis showed that the observed In distribution did not show a statistically significant 

deviation from that expected for a random alloy.  The weight of evidence strongly 

suggests that In clusters cannot be a microstructure necessary for devices with an InGaN 

active region. 

 

To study whether electron beam irradiation caused In clustering in the InGaN MQWs, 

both irradiated and non-irradiated reference samples were studied by APT.  Visual 

inspection of the atom maps did not reveal a difference between the two samples.  

However, χ2 analysis of the irradiated and reference data sets showed that the irradiated 

sample exhibited a deviation from randomness in the In distribution, in contrast to the 

reference sample, in which no such deviation was observed.  Additionally, irradiation 

caused damage to the GaN, with both the Ga and N2 distributions exhibiting 

non-random clustering.  Thus, it has been shown that the APT technique is capable of 

identifying non-randomness in InGaN QWs, a result which suggests that if as-grown 

QWs were to show a deviation from randomness, this clustering could be observed by 

APT.   

 

The next investigation reported was an APT study of high efficiency green-emitting 

MQWs that had been observed by TEM to show gross well-width fluctuations.  

Consistent with these previous studies, gaps were observed between InGaN strips in the 
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APT data.  These InGaN strips were found to be In-rich at their centres, and to show a 

preferential orientation.   

 

The final investigation reported in this chapter extended the analysis of In distribution to 

MBE-grown InGaN QWs.  Four data sets were obtained of a green-emitting laser diode 

structure, in which an InGaN QW formed the active region.  Although the χ2 analysis of 

the In distribution was at first inconclusive, further studies were undertaken in which just 

the in-plane variations in the In content were taken into account.  These studies showed 

no indication of in-plane In variations that would suggest the presence of statistically 

non-random In clustering. 
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7  
APT STUDIES OF INALN 

7.1. AIMS 

In Chapter 6, APT was used to study the alloy InGaN, which has been employed 

extensively in the active region of light-emitting devices.  In this chapter, we continue to 

investigate binary nitride alloys, turning now to APT studies of the less commonly used 

alloy InAlN. 

7.1.1. APT OF MOVPE-GROWN INALN 

The initial aim of this chapter was to carry out the first APT studies of thick InAlN layers 

by studying an MOVPE-grown InAlN/GaN distributed Bragg reflector.  If data sets 

could be obtained, the In distribution within the InAlN would be assessed, to investigate 

whether there was evidence of phase separation in the material.  If possible, the structure 

of the InAlN/GaN interfaces would also be investigated. 

7.1.2. APT OF MBE-GROWN INALN 

The next aim of this chapter was to use APT to study MBE-grown InAlN, which would 

again represent the first investigation of its kind.  If APT data were obtained, the In 

distribution would be studied to determine whether there was any indication of phase 

separation in MBE-grown InAlN, and thereby observe any difference in microstructure 
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between MOVPE and MBE-grown material.  MBE-grown InAlN samples have been 

reported to show columnar domains, with In-rich domain boundaries149,150.  Such a 

structure would be expected to show an observed In distribution that deviated from a 

random alloy distribution. 

7.1.3. FIB GALLIUM IMPLANTATION DAMAGE 

Although the dual beam FIB/SEM is an invaluable tool for the fabrication of APT 

samples from semiconductor materials, and has therefore been used to prepare all 

samples used in this work, the Ga ion beam does cause ion implantation damage.  In 

previous chapters, the materials under investigation contained native Ga, making it 

difficult to study the ion beam Ga (or „FIB-Ga‟) implantation damage.  The final aim of 

this chapter was to use the thick InAlN layers in both the MOVPE and MBE-grown 

samples to assess the implantation of FIB-Ga. 

7.2. BACKGROUND 

As its growth has proved challenging, InAlN is the least characterised and employed of 

the binary nitride alloys: much less is known about its properties, compared to AlGaN 

and InGaN.  In this section, the microstructure of InAlN will be discussed, with 

particular attention paid to the possibility of phase separation in the alloy studied in this 

chapter.  The damage caused by the ion beam in the FIB will also be discussed, as the 

implantation of Ga ions is applicable to all FIB-prepared APT samples in this thesis. 

7.2.1. INALN 

The basic properties of InAlN are far from well understood, as discussed in section 1.1.  

It is known, however, that InAlN can be grown lattice-matched to GaN by using an In 

fraction of around x = 0.18151.  Such material was grown at approximately 800 ºC to 

produce strain-free layers for application in distributed Bragg reflectors (DBRs)151.  DBRs 

are multilayer mirrors, made from alternating layers of two different materials with 

different refractive indices.  These structures exhibit a high reflectivity around a desired 

wavelength, with a lower reflectivity at other wavelengths, due to interference of light 

reflected from the DBR interfaces.  The growth of lattice-matched DBRs can prevent 

cracking within the structure, which is highly advantageous, as cracks can lead to poor 

DBR performance because the reflectivity is dependent on the uniformity of the layer 

thicknesses.  DBRs are mainly used to create microcavities in semiconductor devices, 
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such as vertical cavity surface emitting lasers (VCSELs), as well as being used as 

reflectors at the back of LEDs to increase the total light output14.  In this chapter, both 

the MOVPE-grown DBR and the MBE-grown InAlN samples were produced near 

lattice-matched to GaN.   

 

A solid phase miscibility gap has been suggested to exist for the InAlN system, raising 

the issue of phase separation, as was discussed in some depth with regard to InGaN in 

section 6.2.  Teles et al.152 used first principles calculations to calculate the phase diagram 

for cubic InxAl1-xN (plotting temperature against In composition, x).  Although the 

InAlN studied in this chapter is of the wurtzite crystal structure, it has been proposed 

that the thermodynamic properties should not vary greatly between the cubic and 

hexagonal structures153.  Figure 7.1 shows the calculated phase diagram.  At 800 ºC, the 

temperature at which InAlN lattice matched to GaN can be grown by MOVPE14, 

spinodal decomposition is predicted for In contents between approximately 0.10 and 

0.85.  MBE-grown InAlN lattice matched to GaN can be grown at 600 ºC, at which 

temperature spinodal decomposition is predicted for alloys with In contents between 

0.05 and 0.90.  This result predicts phase separation for the alloys studied in this chapter. 

 

Figure 7.1. From Teles et al.152, 

a calculated phase diagram for 

unstrained cubic InxAl1-xN 

alloys.  The solid line indicates 

the binodal curve, and the 

dashed line indicates the 

spinodal curve. 

The preceding phase diagram was calculated for unstrained InAlN, ignoring the possible 

effects caused by biaxial epitaxial strain of the InAlN layers, as was shown to have a 

significant effect on the phase diagram for InGaN136.  With lattice-matching of the InAlN 

to the GaN substrate, no biaxial strain would be anticipated.  However, coherency strain 

between the pseudomorphic phase separated regions could have an effect on the phase 

diagram, and Elyukhin et al.153 attempted to study this effect using a modified valence 
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force field calculation.  The results predicted stabilisation of InAlN due to coherency 

strain, with the miscibility gap moved to lower temperatures.  The authors suggested that 

phase separation would not be expected for lattice-matched InAlN grown by MOVPE at 

800 ºC, although the MBE-grown InAlN at 600 ºC was suggested to be near the 

decomposition threshold.  Thus, coherency strains could act to shift the miscibility gap in 

such a way as to produce different microstructures in the MOVPE and MBE-grown 

InAlN alloys studied in this chapter.  As these and other theoretical studies do not agree 

on whether lattice-matched InAlN will undergo spinodal decomposition, the opportunity 

exists for experimental studies of InAlN microstructure to clarify this question. 

7.2.2. MICROSTRUCTURAL CHARACTERISATION OF INALN 

Although both MOVPE and MBE have been used to grow InAlN, few studies have 

focused on the microstructure of the material or the effect of growth conditions on this 

microstructure.  As the structure of InAlN lattice matched to GaN is of particular 

interest, this section will first discuss studies of the surface morphology of such layers, as 

their morphology is relevant to investigations of the interface structure in the lattice-

matched DBR structure studied here.  TEM studies of microstructure of InAlN layers 

will then be presented, as such investigations are relevant to studies of the In distribution. 

 

Sadler et al.154 used light microscopy and AFM to assess the surface morphology of 

MOVPE-grown InAlN layers that were lattice-matched to GaN.  The growth 

temperature and ammonia flux were varied to study the effect on the surface roughness.  

The authors found that a growth temperature of 790 ºC and an ammonia flux of 4 slm 

led to a lattice matched relationship between the InAlN and the GaN, with reasonable 

fine-scale roughness.  These growth conditions were found to produce an InAlN surface 

microstructure with dislocation-related pits, as well as hillocks, where the hillocks were 

reported to be 50 to 200 nm in diameter and 2 - 3 nm in height, as shown in the AFM 

image in figure 7.2155.  Hillocks of diameter closer to 50 nm could be captured in the field 

of view accessible in the LEAP, similar to the gaps in the QWs observed in section 6.4.3.   
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Figure 7.2. From Sadler et al.155, 

an AFM image of an InAlN 

surface, grown at 790 ºC with an 

ammonia flux of 4 slm.  Hillocks 

can be observed, as well as 

dislocation-related surface pits, 

which are indicated with arrows.  

The microstructure of MOVPE-grown InAlN lattice-matched to GaN was studied by 

Carlin et al.156 at École Polytechnique Fédérale de Lausanne (EPFL), where much of the 

work on InAlN has taken place.  The authors grew a 20 period InAlN/GaN DBR on a 

GaN buffer layer, and used cross-sectional TEM to study the microstructure.  A high 

magnification image of the DBR can be seen in figure 7.3a, with the GaN layers having 

brighter contrast.  The layer interfaces are observed to be sharp and flat.  A lower 

magnification image of the full DBR structure can be seen in Figure 7.3b, showing TDs 

as lines of dark contrast, which originate at the GaN/sapphire interface, with no 

noticeable increase in TD density within the DBR.  No evidence for phase separation 

was observed in these MOVPE-grown InAlN layers.   

  

Figure 7.3. From Carlin et al.156, TEM images of a 20 period InAlN/GaN DBR, 

grown with the InAlN lattice matched to the GaN.  The GaN layers show brighter 

contrast.  (a) High magnification image, showing sharp and flat interfaces.  

(b) Lower magnification image, which highlights TDs as lines of dark contrast 

running parallel to the growth direction.  Additional TDs do not appear to be 

generated by the DBR.   

Pits 

(a) (b) 
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TEM studies of MBE-grown InAlN lattice matched to GaN have revealed a 

microstructure indicative of phase separation.  Zhou et al.150 observed lateral non-

uniformities in composition in InAlN epilayers with In compositions between x = 0.13 

and 0.19.  A hexagonal honeycomb structure was revealed using TEM, with cells of 5 to 

10 nm in diameter, oriented parallel to the (0001) growth direction.  STEM-HAADF was 

then used to show that the cell walls were In-rich.  The authors claimed that this 

structure did not arise by spinodal decomposition.  Instead, they proposed a mechanism 

in which compositional non-uniformities developed in the early stages of growth, leading 

to the hexagonal honeycomb structure.  The mechanism that the authors proposed is not 

very clear, however, and little evidence was provided in support of their assertions.  

 

In a later study of similar MBE-grown material, Sahonta et al.149 observed similar 

honeycomb-like structures.  Figure 7.4a shows a plan-view TEM image of a 100 nm thick 

InAlN film grown near lattice-matched to GaN, which shows evidence of a honeycomb 

structure.  A STEM-HAADF image of the same area is shown in figure 7.4b, which 

shows bright contrast at the cell walls, due to increased In content.  The authors 

disagreed with the formation mechanism proposed by Zhou et al.150, instead suggesting 

that the In composition modulations could be attributed to the initial formation of 

Al-rich platelets, due to the high sticking coefficient of Al on GaN at the low growth 

temperatures.  Incorporation of In is increased at platelet boundaries, leading to the 

honeycomb structure.  It is not yet known whether this honeycomb structure is found in 

all MBE-grown InAlN films, or if it occurs only under specific growth conditions.   

 

Figure 7.4. From Sahonta et al.149, a plan-view TEM image of a 100 nm thick 

InAlN layer grown near lattice matched to the GaN template.  (a) TEM image.  

(b) STEM-HAADF image of the same area as in (a), showing bright contrast at 

the cell walls, due to elevated In content.  

(a) (b) 
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7.2.3. FIB GALLIUM IMPLANTATION 

As discussed in section 2.4.2, FIB-based APT sample preparation results in implantation 

of Ga ions, which can produce damaged regions and amorphise crystalline materials.  In 

addition to these detrimental effects, the implanted Ga can also lead to APT sample 

fracture, due to the stress resulting from the large size of the Ga atoms.  The extent of 

Ga implantation into the sample can be directly measured by APT in some materials, 

making it possible to evaluate the damage, as well as the effectiveness of steps taken to 

minimise the ion implantation157.  Figure 7.5 shows a reconstructed atom map of FIB-Ga 

implantation into a Si APT sample, with only Ga atoms shown in red.  The sample was 

prepared using annular milling with a 30 keV ion beam, and Ga implantation has clearly 

occurred at the apex of the APT sample and down the sidewalls64.  The central region, 

marked with dashed lines, corresponds to a typical field of view formerly attainable in a 

narrower field of view atom probe instrument.  This accessible volume has now been 

significantly increased, and data from such damaged sidewall regions are now being 

collected using the LEAP.   

 

Figure 7.5. From Thompson et al.64, a 

reconstructed atom map of implanted 

Ga ions in a Si APT sample.  Ga ions 

are shown as red dots, with all other 

ions omitted for clarity.  The APT 

sample was prepared by annular 

milling with a 30 keV ion beam.  Ga 

implantation is evident at the sample 

apex and down the sidewalls.  The 

dashed lines correspond to the field of 

view formerly attainable on narrower 

field of view APT instruments.  

The level of Ga implantation can be minimised with the use of a protective layer 

deposited on the wafer surface in the region desired for liftout.  FIB-Pt is often used for 

this protective layer, and Thompson et al.64 used the “Stopping and Range of Ions in 

Matter” (SRIM) software to estimate the thickness required to prevent Ga ion 

penetration into the sample below.  The authors‟ SRIM calculations suggest that at 

30 keV, 10 nm of Pt is required to prevent Ga implantation into the APT sample.  As the 
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FIB-Pt is approximately 50 % Pt, and this material was surmised to be less effective at 

stopping the Ga ions, the authors suggested that a 200 nm thick FIB-Pt layer should be 

more than sufficient to protect the underlying sample64.   

 

Thompson et al.58 showed that a clean-up step can be employed to remove FIB-Ga 

implanted material after the final stage of annular milling.  Using low energy (2 to 5 keV) 

ion beam milling, the quantity and penetration depth of the FIB-Ga can be dramatically 

reduced.  The authors prepared Si APT samples at 30 keV, and subsequently used a 

clean-up step on a number of these at either 2 keV or 5 keV.  Data sets containing one 

million Si atoms were collected from each type of sample.  By overlaying the resulting 

mass spectra in the region of the Ga peaks, the damage reduction can be observed: 

figure 7.6 shows the Ga mass-to-charge region for the Si APT sample prepared with a 

30 keV ion beam (red), overlaid with the spectrum from a sample initially prepared at 

30 keV and subsequently cleaned with a 5 keV ion beam (pink), or a 2 keV ion beam 

(blue).  The observed Ga concentration is reduced almost to zero following the 2 keV 

cleaning step.  A 5 keV low energy clean-up step was used for all APT samples prepared 

in this thesis.  It has been shown that low energy milling also causes samples to sharpen 

slightly65, which is beneficial, as the sample is likely to turn on at a lower standing voltage.   

 

Figure 7.6. From Thompson et al.58, the mass spectrum from Si APT samples, in 

the region of the Ga peaks.  The red spectrum corresponds to a sample that was 

prepared by annular milling with a 30 keV Ga ion beam.  The pink and blue 

spectra correspond to samples initially prepared with a 30 keV ion beam, which 

then underwent a low energy clean-up step at 5 keV or 2 keV, respectively.  The 

extent of Ga implantation is significantly reduced with the low energy clean-up.   
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7.3. EXPERIMENTAL 

7.3.1. SAMPLE GROWTH 

The InAlN/GaN DBR sample used in this chapter was grown by Dr. Rachel Oliver on a 

c-plane sapphire substrate using a 6 × 2 inch Thomas Swan close-coupled showerhead 

MOVPE reactor.  A low TD density template was used, as described in section 4.4.1.  

On this template, the 30 period DBR was grown, with each period nominally made up of 

48.3 nm of InAlN and 45.5 nm of GaN.  Dr. Tom Sadler found the approximate 

composition of the InAlN layers in the DBR by examining calibration layers grown 

before and after the DBR growth run14.  As the composition was found by XRD to be 

18.4 ± 0.8 % In before the growth run, and 18.6 ± 0.8 % In after, it was assumed that 

the InAlN layers in the DBR all had the same composition, of approximately 18.5 %. 

 

The InAlN layers in the DBR were grown at 790 ºC, with an ammonia flux of 4 slm 

(178.4 mmol min-1), a TMI flux of 16.1 µmol min-1, a TMA flux of 15.8 µmol min-1, and a 

nitrogen carrier gas flow rate of 16 slm, at a pressure of 50 Torr.  The GaN layers were 

grown using a two temperature method158, which began with growth of 10 nm of GaN at 

the same temperature as the InAlN, with an ammonia flux of 446 mmol min-1, and a 

TMG flux of 82 µmol min-1.  The carrier gas was then switched to hydrogen, and the 

temperature was ramped to 1000 ºC, whilst the pressure was increased to 100 Torr.  The 

remainder of the GaN layer was then grown under these conditions, with a TMG flux of 

340 µmol min-1.   

 

The DBR sample was previously characterised by Dr. Tom Sadler, using 

STEM-HAADF14.  Figure 7.7a shows a cross-sectional Z-contrast image of the 30 period 

DBR, with the GaN layers showing brighter contrast than the InAlN layers.  The layers 

appear remarkably uniform in thickness, with flat interfaces.  High resolution 

STEM-HAADF images can be seen in figure 7.7b and 7.7c, which show the GaN on 

InAlN interface and the InAlN on GaN interface, respectively.  The GaN on InAlN 

interface appears to have a rougher interface morphology.  The high resolution 

Z-contrast images show no obvious evidence of phase separation.     
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Figure 7.7. From Sadler14, cross-sectional STEM-HAADF images.  The GaN 

layers show brighter contrast than the InAlN layers.  (a) The 30 period 

InAlN/GaN DBR studied in this chapter.  (b) and (c) show high resolution 

images of the GaN on InAlN interface and the InAlN on GaN interface, 

respectively.  The GaN on InAlN interface shown in (b) appears to be rougher. 

 

The MBE-grown InAlN sample was grown at Sharp Laboratories of Europe, as 

discussed in section 2.1.2.  A 10 µm MOVPE-grown GaN template, supplied by 

Lumilog, was used.  On this template, a Si-doped 250 nm GaN layer was grown by 

reactive MBE at 900 ºC, followed by InAlN growth by RF-PAMBE at 600 ºC.  The 

composition was found by Sharp Laboratories of Europe to be 20 % In using XRD, 

although the systematic error in this measurement was reported to be unknown.  The 

InAlN layer had a nominal thickness of 100 nm.  Cross-sectional BF TEM images were 

provided by Sharp Laboratories of Europe, and one such image can be seen in figure 7.8.  

The InAlN layer is labeled for clarity.  Striations in contrast can be observed within the 

layer, running parallel to the growth direction.  These striations could be consistent with 

the honeycomb structure previously observed in MBE-grown InAlN149,150.   

(a) (b) 

(c) 

5 nm 

5 nm 
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Figure 7.8. Cross-sectional BF TEM image of the MBE-grown InAlN, taken at 

Sharp Laboratories of Europe.  The InAlN layer is labeled for clarity.  Striations in 

contrast are observed along the growth direction of the InAlN, which could be 

consistent with a honeycomb structure149,150.   

7.3.2. APT SAMPLE PREPARATION 

APT samples used in this chapter were prepared using the standard liftout and annular 

milling procedure, with microtip sample mounts, as described in section 2.5.2.  It should 

be noted that the FEI Company™ Helios Nanolab™ dual beam FIB/SEM employed 

for sample preparation was equipped with a monoisotopic 69Ga ion beam source. 

7.3.3. APT 

All APT experiments reported in this chapter were carried out at the OPAL EPSRC 

National Atom Probe Facility at Oxford University, as described in section 4.4.5.  Details 

of the LEAP conditions used for each run will be presented in section 7.4, with the 

associated APT data set.  The reconstructions of the data sets were optimised, where 

possible, to obtain flat layers and correct layer spacings, as indicated by TEM, although 

further comments on data reconstruction will also be provided in the next section.   

7.4. RESULTS AND DISCUSSION 

7.4.1. APT OF MOVPE-GROWN INALN 

7.4.1.1. Reconstructed Atom Maps of the DBR 

Two APT data sets were obtained from the MOVPE-grown InAlN/GaN DBR.  A base 

temperature of 30 K was used for both runs.  The first data set, or „DBR 1‟, was collected 

InAlN 

Glue 

Vacuum 

50 nm 
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using a laser pulse energy of 0.03 nJ and an evaporation rate of 1 %.  The data set 

contained the end of a GaN layer, followed by a full period of InAlN and GaN, ending 

just as the next InAlN layer began to evaporate.   

 

The InAlN and GaN were observed to have very different evaporation fields: the 

standing voltage, adjusted to maintain a constant detection rate, changed dramatically at 

the interface between the two materials.  Figure 7.9a shows the variation in standing 

voltage on the DBR 1 APT sample that occurred during the run.  At the point in the 

evaporation sequence labeled 1, the end of the GaN layer was observed, and the InAlN 

layer was just beginning to evaporate.  The point labeled 2 corresponds to the end of the 

InAlN layer, at which point the next GaN layer had begun evaporating.  Although the 

standing voltage would be expected to increase gradually as the tip blunts, the standing 

voltage was observed to increase sharply into point 1, upon initial evaporation of InAlN, 

and to decrease significantly into point 2, as the GaN evaporation commenced.  This 

behaviour suggests that InAlN has a significantly higher evaporation field than GaN.  

For comparison, figure 7.9b shows a similar voltage record during evaporation of the 

medium Mg flux AlGaN/GaN SL, in which it can be observed that the standing voltage 

increases gradually, without sharp increases or decreases.  This result indicates that 

AlGaN and GaN have similar evaporation fields.   

  

Figure 7.9. Record of the standing voltage required to maintain a constant detection 

rate during collection.  (a) The DBR 1 data set.  At the point in the ion sequence 

labeled 1, the InAlN layer is just beginning to evaporate.  At the point labeled 2, the 

InAlN layer is complete, and the GaN layer has begun to evaporate. (b) For 

comparison, the medium Mg flux AlGaN/GaN SL data set, which showed a 

gradual increase in voltage during evaporation of both AlGaN and GaN.  

 

1 2 

(a) (b) 
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The difference in evaporation fields between InAlN and GaN led to difficulties with data 

reconstruction.  In a „voltage‟ reconstruction, which is used for all reconstructions in this 

work unless otherwise stated, the radius of the reconstructed tip is defined according to 

the equation shown in section 2.5.2, in which the radius is inversely proportional to the 

evaporation field at the sample.  A global evaporation field parameter must be used for 

the reconstruction, which leads to inaccuracies in reconstructed data sets of materials 

with very different evaporation fields.  Although such problems could be mitigated with 

the use of layer-specific evaporation field values, this feature is not yet available in the 

commercial IVAS software used for data reconstruction.   

 

A voltage reconstruction of the DBR 1 data set is shown in figure 7.10a, with 50 % of In 

atoms shown as orange dots, and 10 % of Ga atoms shown as blue dots.  Although the 

GaN layer has been reconstructed with a layer thickness that is approximately correct, it 

is apparent that the global evaporation field value applied to the InAlN layer has caused 

it to be reconstructed with a reduced thickness and an unrealistically bulging shape.  In 

order to reconstruct that data with a realistic tip shape, a „shank angle‟ reconstruction was 

employed.  With this method, a constant shank angle is used to constrain the 

reconstructed tip, assuming a hemispherical end shape.  Although the shank angle of the 

APT sample can be estimated from FIB/SEM images taken during sample preparation, 

in practice, the value for shank angle is optimised to most accurately reproduce the layer 

thicknesses determined by TEM.   

 

For the DBR 1 data set, a 15 º shank angle was used.  The resulting shank angle 

reconstruction is shown in figure 7.10b, with 50 % of In atoms shown as orange dots, 

and 10 % of Ga atoms shown as blue dots.  Both the InAlN and GaN layers have layer 

thicknesses close to those observed by TEM.  Unfortunately, due to the large difference 

in evaporation field of the two materials, it is likely that the interfaces were not very 

accurately reconstructed.  Thus, it was not possible to study the structure of the DBR 

interfaces, as had been hoped.   
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Figure 7.10. Reconstructed atom maps of the DBR 1 data set, with 50 % of In 

atoms shown as orange dots, and 10 % of Ga atoms shown as blue dots.  

(a) Voltage reconstruction, in which the InAlN is inaccurately reconstructed.  

(b) Shank angle reconstruction with a 15 º angle, which yields layer thicknesses 

close to those observed by TEM.     

The In content of the InAlN layer was found to be 21.9 % (using a central cylinder for 

analysis), which is higher than the value of 18.5 % found by XRD.  It is worth noting, 

however, that InAlN has a higher evaporation field than GaN, which may cause more 

nitrogen atoms to be evaporated as N2
++, as opposed to N+.  It is difficult to differentiate 

between the two species, however, as both peaks are found at a mass-to-charge ratio of 

14.  If the observed peak in the DBR 1 data set was ranged as N2
++, then the resulting In 

content was 18.7 %, closer to the XRD value, although this also resulted in poor 

stoichiometry, with a nitrogen content of greater than 50 %.  As previously discussed, the 

run conditions can also affect the observed stoichiometry, and the run conditions may 

not have been completely optimised for the InAlN layers.  In light of these issues, it is 

difficult to determine the precise In content of the layer using the APT data.  

 

The second DBR data set, or „DBR 2‟, was collected using a laser pulse energy of 0.06 nJ 

and a lower evaporation rate of 0.2 %.  The data set also began at the end of a GaN layer, 

and contained a full period of InAlN and GaN, ending slightly further into the next 

(a) (b) 
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InAlN layer than DBR 1.  Figure 7.11a shows a 15 º shank angle reconstruction of the 

DBR 2 data set, with 50 % of In atoms shown as orange dots, and 10 % of Ga atoms 

shown as blue dots.  Within the top InAlN layer, a large area on the right hand side of 

the image was observed that was depleted of In.  The composition within this area was 

investigated, and found to be O-rich.  Figure 7.11b highlights this region within the top 

InAlN layer with a 5 at.% In isoconcentration surface, with O atoms shown as red 

spheres of 0.3 nm diameter and 10 % of Al atoms shown as green dots.  To quantify the 

level of O enrichment, a cylindrical region of interest of 5 nm diameter and 20 nm length 

was defined to the right of the In isoconcentration surface.  The O level was found to be 

7.5 at.% within this cylinder.  Away from the O-rich region, the In content of the InAlN 

layer was found to be 22.3 % (with the peak at 14 ranged as N+), which was again higher 

than that observed by XRD, yet similar to that found for the InAlN layer in DBR 1.   

 

 

Figure 7.11. (a) Atom map of the DBR 2 data set, using a 15 º shank angle 

reconstruction, with 50 % of In atoms shown as orange dots, and 10 % of Ga 

atoms shown as blue dots.  (b) The top InAlN layer from the data set in (a), 

shown with an orange In isoconcentration surface at 5 at.%.  O atoms are shown 

as red spheres of 0.3 nm diameter and 10 % of Al atoms are shown as green dots.  

An In-depleted region is observed at the top right of the layer, in which the 

O level is significantly enriched.  

 

(a) (b) 
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The reason for the O enrichment in the DBR 2 data set is not completely clear.  It may 

be that the O-rich region corresponds to a dislocation-related pit155, like those shown in 

figure 7.2, which has been filled in with GaN.  In section 4.5.3, O enrichment was 

observed near the estimated location of a TD within a V-pit, but in too large a region to 

be consistent with a Cottrell atmosphere, so O-rich surface contamination was suspected.  

Again, in section 6.4.1, O enrichment was proposed to be associated with contamination 

on the surface of the APT sample because evidence of tip reshaping was observed.  In 

the present case, the O may again be from surface contamination.  Yet in the DBR 2 data 

set, no significant difference in overall atomic density was observed that might indicate 

tip reshaping.   

 

To investigate the composition of the material near the O-enriched region in DBR 2, a 

cylindrical region of interest of 5 nm in diameter and 35 nm in length was defined across 

the top of the data set, running into the O-rich region, as shown with a top view image in 

figure 7.12a.  A 1D concentration profile, calculated down the long axis of the cylinder, is 

shown in figure 7.12b.  As the In-depleted and O-rich region is approached, the Ga 

content is observed to rise.  Although the mass spectrum contained both isotopes of Ga, 

the 69Ga/71Ga ratio in this region was higher than predicted by the natural occurrence of 

the isotopes, suggesting that the region contained excess 69Ga implanted by the FIB.   
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Figure 7.12. (a) Top view of the atom map of DBR 2, with 100 % of O atoms 

shown as red dots and 50 % of In atoms shown as orange dots.  A cylindrical 

region of interest of 5 nm in diameter and 35 nm in length was defined across the 

top of the data set, into the O-rich region.  (b) 1D concentration profile through 

the long axis of the cylinder from (a).   

(a) (b) 
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As the O-rich material may show evidence of ion beam damage, it is quite likely that the 

O-rich region is associated with surface contamination.  The difference in atomic density 

within the O-rich region between this data set and that shown in section 6.4.1 may be 

related to the very different evaporation fields of the materials in the DBR.  

7.4.1.2. Indium Distribution Studies 

With APT data from thick MOVPE-grown InAlN layers, it was possible to study the In 

distribution in order to investigate if there was any evidence of phase separation.  

Regions for analysis were selected within the top InAlN layers of both data sets.  The 

region selected from DBR 1 was a cylinder of 20 nm in diameter, and 30 nm in length, 

positioned near the centre of the data set, and away from visible Ga implantation 

damage.  χ2 analysis was carried out on this volume to compare the observed In 

distribution to that expected from a random alloy.  This comparison is shown in 

figure 7.13.  With 100 atom bins, the analysis indicated that the In distribution deviated 

from randomness: the p value was 0.000 for 16 DOF.  Greater than expected numbers of 

bins were observed containing both low and high amounts of In, suggesting that the 

InAlN had phase separated to some extent in this region.  Bin sizes of between 25 and 

200 atoms were examined, with all analyses suggesting a deviation from randomness.   
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Figure 7.13. A comparison between the observed distribution of In within the top 

InAlN layer of DBR 1, and that expected from a random alloy.  χ2 analysis with 

100 atom blocks showed a statistically significant deviation from randomness. 
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To determine whether the result for the In distribution within DBR 1 was in fact 

associated with through-thickness variations of the In content, the same analysis was 

undertaken on material from a shorter cylinder of 20 nm in length and 20 nm in 

diameter, positioned in the middle of the layer.  This material also showed a deviation 

from randomness, suggesting that the previous result was not associated with 

through-thickness In variations.  It is also worth noting that no deviation from 

randomness was observed in the Al or N2 distributions, despite the fact that Al would be 

expected to show such a deviation in a material with a non-random distribution of In, as 

InAlN is assumed to be a substitutional alloy. 

 

A smaller cylinder of 20 nm in diameter, and 10 nm in length was positioned away from 

the In-depleted region in the DBR 2 data set, in an area away from visible Ga 

implantation damage.  χ2 analysis was again carried out to determine if this data set also 

suggested some level of phase separation within the InAlN.  The plot of the expected 

and observed In distributions is shown in figure 7.14.  With 100 atom bins, the analysis 

indicated that there was no statistically significant deviation from randomness, although 

the p value of 0.058 for 16 DOF was close to the threshold of 0.05.  Bin sizes of between 

25 and 200 atoms were examined, with all analyses suggesting no statistically significant 

deviation from randomness.  As in the DBR 1 data set, no deviation from randomness 

was observed in the Al or N2 distributions.  With the In distributions from DBR 1 and 

DBR 2 showing seemingly conflicting results, it seems that further study is needed to 

determine whether phase separation occurs in MOVPE-grown InAlN that is lattice 

matched to GaN.  From the two data sets, it is impossible to tell whether the InAlN 

layers studied originate from the same part of the DBR.  It is possible, for instance, that 

data set DBR 1 contains a layer that was grown early in the DBR run, and that the other 

data set (DBR 2) is from a layer grown much later in the run.  If that were the case, then 

the layer grown first would have spent a much longer time at an elevated temperature 

and hence, phase separation might have occurred in this layer, but not in the other layer.   
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Figure 7.14. A comparison between the observed distribution of In within the top 

InAlN layer of DBR 2, and that expected from a random alloy.  χ2 analysis with 

100 atom bins showed no statistically significant deviation from randomness, 

although the p value observed was just above the threshold of 0.05. 

7.4.2. APT OF MBE-GROWN INALN 

7.4.2.1. Reconstructed Atom Maps of the InAlN Layer 

Three APT data sets were obtained from two samples of MBE-grown InAlN.  A base 

temperature of 25 K was used for all runs.  The samples proved fragile, so a higher laser 

power was used, in an effort to prevent fracture.  The first data set, or „MBE 1‟, was 

collected using a laser pulse energy of 0.4 nJ and an evaporation rate of 1.5 %.  There 

were no known features within the InAlN layer on which to base the reconstruction, as 

the sample fractured prior to reaching the interface with the underlying GaN.  Therefore, 

all three InAlN data sets were reconstructed using a 15 º shank angle reconstruction, as 

was used for the MOVPE-grown InAlN/GaN DBR data.  Figure 7.15 shows a 

reconstructed atom map of MBE 1, the largest of the three data sets collected, with 

100 % of In atoms shown as orange dots, and 100 % of Ga atoms shown as blue dots.  

FIB-Ga implantation is evident at the top of the data set, and will be discussed in the 

next section.  Using a central analysis cylinder, the In content of the InAlN layer in 

MBE 1 was found to be 25.5 % (with the peak at 14 ranged as N+), which was higher 

than the 20 % observed by XRD. 
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Figure 7.15. Reconstructed atom 

map of the MBE 1 data set, using a 

15 º shank angle reconstruction, 

with 100 % of In atoms shown as 

orange dots, and 100 % of Ga atoms 

shown as blue dots. 

 

The second and third data sets were collected from the same tip, and as such will be 

referred to as „MBE 2A‟ and „MBE 2B‟, where MBE 2A contains data from the tip of the 

APT sample, and MBE 2B contains data from material below.  Figure 7.16a shows an 

atom map of MBE 2A and figure 7.16b shows an atom map of MBE 2B, with the same 

image specifications as in figure 7.15.  The small data set MBE 2A contains little or no 

useful data from the InAlN layer, due to the large amount of FIB-Ga implantation 

damage.  The data from MBE 2B, however, originated from below the highly damaged 

region, and the central region of the data set appears to contain relatively undamaged 

InAlN material that is suitable for In distribution analysis.  Using a central analysis 

cylinder, the In content of the InAlN layer in MBE 2B was found to be 25.9 % (with the 

peak at 14 ranged as N+), which was again higher than the 20 % observed by XRD, but 

similar to that observed for MBE 1.  
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Figure 7.16. Reconstructed atom 

maps of the MBE-grown InAlN 

data sets, using a 15 º shank angle 

reconstruction, with 100 % of In 

atoms shown as orange dots, and 

100 % of Ga atoms shown as blue 

dots. (a) Data set MBE 2A, showing 

data from the tip of the APT 

sample.  Little useful data was 

collected in this data set, due to the 

extent of FIB-Ga implantation.  

(b) Data set MBE 2B, showing data 

collected from the region of the 

sample below that shown in (a).  

The central region appears to 

contain material useful for analysis.  

 

 

7.4.2.2. Indium Distribution Studies 

It was possible to study the In distribution in the MBE-grown InAlN by selecting regions 

for analysis away from the visibly FIB-Ga damaged regions in both the MBE 1 and MBE 

2B data sets.  A central cylinder of 30 nm in diameter, and 10 nm in length was defined 

in the MBE 1 data set, and χ2 analysis was carried out on this volume to investigate the 

existence of phase separation.  The comparison between observed and expected In 

distributions is shown in figure 7.17.  With 150 atom bins, the observed p value was 

0.000 for 21 DOF, indicating a non-random In distribution, and suggesting that the 

material may have undergone phase separation.  In the MBE 2B data set, a central 

cylinder of 20 nm in diameter and 10 nm in length was defined, and χ2 analysis yielded 

similar results: for 19 DOF, the p value was 0.00.  Comparable results for both data sets 

were obtained when the bin size was varied between 25 and 200 atoms, and no other 

species were found to have distributions that deviated from randomness.  Again, it is 

worth noting that if the In distribution is observed to deviate from randomness, the Al 

distribution should be expected to show such a deviation as well.    

(a) 

(b) 
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Figure 7.17. A comparison between the observed In distribution for MBE 1 and a 

binomial distribution, as would be expected for a random alloy.  χ2 analysis with 

150 atom bins showed a statistically significant deviation from randomness. 

 

Unlike the MOVPE-grown InAlN discussed in the previous section, the MBE-grown 

InAlN showed visible inhomogeneities in the In distribution within the atom maps.  

Figure 7.18 shows the MBE 2B data set, as shown in figure 7.16b, but with Ga atoms 

omitted and isoconcentration surfaces of 16.5 at.% In added.  The isoconcentration 

surfaces highlight columns of In rich material, running roughly parallel to the growth 

direction, which could be consistent with the honeycomb structures previously observed 

by TEM in MBE-grown InAlN149,150.  

 

Figure 7.18.  Data set MBE 

2B, shown as in figure 

7.16b, with Ga atoms 

omitted and In 

isoconcentration surfaces 

of 16.5 at.% added.  

Columns of In-rich 

material are seen running 

roughly parallel to the 

InAlN growth direction.    
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7.4.3. FIB GALLIUM IMPLANTATION DAMAGE 

The APT data sets presented in the previous sections contained evident FIB-Ga 

implantation.  In this section, the extent of the FIB-induced damage is examined.  First, 

an estimate of the implantation of Ga into InAlN at different accelerating voltages is 

found using the SRIM software package.  The Ga implantation is then studied in both 

the MBE-grown InAlN layer and also the MOVPE-grown DBR, in which the FIB-Ga 

must be differentiated from the native Ga from the GaN layers.    

7.4.3.1. Modeling of Ga Implantation into InAlN 

The SRIM software package was used to estimate the implantation depth and profile of 

FIB-Ga into InAlN lattice matched to GaN.  As these simulations model a stationary 

beam held over a planar surface, which is not milled away by the beam, they will not 

accurately represent the annular milling of a needle-shaped APT sample.  Yet the 

calculations give some insight into the maximum implantation depth of the FIB Ga beam 

at the energies used during sample preparation.  To perform the simulations, the density 

of the InAlN layer was estimated using a weighted average of the densities of InN and 

AlN.  Although the lattice parameters for InAlN are thought to deviate from Vegard‟s 

Law, as discussed in section 1.1.1, a weighted average was thought to provide a 

reasonable first approximation for the density of the lattice matched InAlN.  Figure 7.19a 

shows the calculated range of 30 keV Ga ions into a 100 nm InAlN layer, and 

figure 7.19b shows this range using 5 keV ions.  The y-axis corresponds to the sample 

surface.  As discussed in section 7.2.3, the 5 keV ion beam used for clean-up implants Ga 

to a much lower depth, of approximately 10 nm, compared to the 30 keV ion beam, 

which implants Ga up to 50 nm into the sample.   

  

Figure 7.19. SRIM-calculated ranges for Ga ions into InAlN that is lattice 

matched to GaN.  The y-axis corresponds to the sample surface. (a) Range for 

30 keV ions.  (b) Range for 5 keV ions.   

(a) (b) 
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7.4.3.2. Ga Implantation into MBE-Grown InAlN 

The APT data sets of the MBE-grown InAlN layers offer a unique opportunity to study 

FIB-Ga implantation into III-Nitride materials, due to the absence of native Ga.  

Figure 7.15 showed the FIB-Ga atoms implanted into MBE 1.  To quantify the level of 

implantation, a cylinder of 15 nm in diameter and 65 nm in length was defined in the 

centre of the data set, running parallel to the growth direction.  Figure 7.20 shows a 1D 

concentration profile running down the long axis of this cylinder.  The FIB-Ga can be 

observed at a considerably high level in the first 20 nm of the collected data, persisting at 

a level greater than 5 at.% up to 35 nm into the data set.  After that point, the In content 

is observed to stabilise at a level near the nominal value.  In light of the SRIM 

predictions, this result suggests that the 5 keV clean-up step was not completely 

successful at removing the Ga implantation due to the annular milling at 30 keV.  It 

should be noted, however, that the InAlN layer was not capped with GaN, as was the 

case for other samples studied in this work.  As such, the low keV clean-up step was kept 

shorter than with capped samples, in an effort preserve the InAlN layer within the APT 

sample.  These observations do, however, reinforce the importance of analysing material 

from central regions, positioned away from the significant FIB-Ga implantation often 

found at the top and sides of the data set, as has been attempted throughout this work. 
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Figure 7.20. 1D concentration profile through a cylinder of 15 nm in diameter and 

65 nm in length, defined parallel to the growth direction in the MBE 1 data set.  

The FIB-Ga level remains above 5 at.% up to 35 nm into the data set.   
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As the MBE 2B data set was collected below the damaged tip region, it is possible to 

visualise the implantation into the sidewalls of the APT sample.  Figure 7.21a shows a 

top view of the atom map of MBE 2B, with 100 % of the In atoms shown as orange 

dots, and 100 % of the Ga atoms shown as blue dots.  FIB-Ga can be observed from the 

sidewalls of the APT sample, extending between 5 and 10 nm in from the edge of the 

data set.  The Ga observed in the MBE-grown InAlN was monoisotopic, as seen in the 

Ga mass-to-charge region of the mass spectrum from MBE 2B, shown in figure 7.21b.  

The 69Ga peak is evident, but only a very small 71Ga peak can be observed above the 

background signal.   

 

  

Figure 7.21.  (a) Top view of the atom map of MBE 2B, with 100 % of the In atoms 

shown as orange dots, and 100 % of the Ga atoms shown as blue dots.  FIB-Ga 

implantation is evident around the edge of the data set, indicating damage to the 

sidewalls of the APT sample.  (b) The mass spectrum from the data set in (a), 

showing the Ga mass-to-charge region.  The peak at 69Ga, from the monoisotopic 

FIB-Ga source, is clearly observed.  Only a very small 71Ga peak can be identified 

above the background signal.   

7.4.3.3. Ga Implantation into MOVPE-Grown InAlN 

The MOVPE-grown DBR samples contain native Ga, in addition to Ga arising from FIB 

implantation.  It is possible to qualitatively separate these two effects by observing the 

distribution of the two isotopes of Ga: where there is only 69Ga, and little to no 71Ga, the 

region shows evidence of FIB-Ga damage.  In order to visualise the two isotopes of Ga, 

they were assigned different colours.  Figure 7.22 shows an atom map of the DBR 1 data 

set, with 20 % of 69Ga atoms shown as black dots, and 20 % of 71Ga atoms shown as red 

dots, with all other atoms omitted.  The GaN and InAlN layers are labeled for clarity.  

(a) (b) 

69Ga 71Ga 
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The GaN layers contain both isotopes, whereas the InAlN layer shows just 69Ga, 

indicating FIB implantation damage by the monoisotopic source.   

 

Figure 7.22. Atom map of the DBR 1 data 

set, showing 20 % of 69Ga atoms as black 

dots, and 20 % of 71Ga atoms as red dots.  

The GaN and InAlN layers are labeled 

for clarity.  The GaN layers contain both 

isotopes, whereas the InAlN layer 

contains just 69Ga atoms, due to FIB 

implantation damage.   

As in the MBE 2B data set, the FIB-Ga damage to the InAlN layer of DBR 1 was mainly 

restricted to the sample sidewalls.  Within a central cylinder of 15 nm in diameter and 

100 nm in length, the InAlN layer did not contain a measurable amount of either Ga 

isotope, as shown in a 1D concentration profile in figure 7.23.  The DBR layers are 

labeled for clarity.  This result illustrates that it can be possible to use central cylinders to 

access undamaged regions for analysis.   
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Figure 7.23. Central cylinder of 15 nm in diameter and 100 nm in length, running 

through the data set shown in figure 7.22.  Damage, associated with the 69Ga 

isotope, is not observed in the InAlN layer. 
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7.5. SUMMARY 

Both MOVPE-grown InAlN/GaN DBR samples and MBE-grown InAlN samples were 

successfully run in the LEAP.  Examination of the resulting data sets using χ2 analysis 

yielded dissimilar results for the materials grown by the two different methods.  The 

analysis of the In distribution in MOVPE-grown InAlN was inconclusive, with one data 

set suggesting a deviation from randomness in the observed In distribution, and a second 

showing no such deviation.  These results suggest that further investigation is needed to 

determine whether phase separation occurs in MOVPE-grown InAlN lattice matched to 

GaN.  The MBE-grown InAlN, on the other hand, showed both a statistically significant 

deviation from randomness, as well as visually identifiable regions of increased In 

content, although no deviation from randomness was observed in the Al distribution, as 

would be expected for a substitutional alloy.  Highlighted with In isoconcentration 

surfaces, the In-rich regions were observed to run roughly parallel to the growth 

direction of the InAlN, a result that could be consistent with the honeycomb structures 

previously observed by TEM in MBE-grown InAlN149,150.   

 

As InAlN does not contain native Ga, the extent of FIB-Ga implantation could be 

investigated.  The MBE-grown InAlN showed clear implantation to approximately 

35 nm at the tip of the APT sample, as well as damaged regions of between 5 and 10 nm 

down the sidewalls of the data set.  By examining the implantation of the 69Ga isotope, 

which is the only isotope found in the ion source for the FIB used in this work, the 

damage to the InAlN layer in the DBR data set could also be investigated, despite the 

fact that the sample contained native Ga.  Damage to the sidewall regions was found in 

the InAlN layer, however, a central cylinder was found to be without detectable FIB-Ga, 

implying that this material was not damaged, and could be used for analysis.  The results 

of the FIB implantation studies presented in this chapter reinforce the need to select 

central regions for analysis, away from the top of the data set, which is likely to contain 

more FIB-implanted Ga. 
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8 
APT STUDIES OF AN MBE-GROWN 

LASER DIODE STRUCTURE 

8.1. AIMS 

The aim of this chapter was to perform the first APT studies of an MBE-grown full laser 

diode (LD) structure.  The APT study of such a structure had a number of challenges, 

including the possibility of sample fracture caused by biaxial strain at the layer interfaces, 

and data reconstruction difficulties posed by the different evaporation fields of each 

layer.  As the LD contained a number of thick layers, obtaining an overall picture of the 

structure required the analysis of a significant volume of material, much more than could 

formerly be studied by APT with older instrumentation.  If data could be collected from 

multiple layers within the LD structure, it was hoped that questions could be answered 

about individual layers, regarding properties such as In distribution, bulk composition, 

and dopant level.  It should be noted that the In distribution studies reported for an 

MBE-grown InGaN QW in section 6.4.4 were in fact from the active region of the LD 

structure discussed here.  As such, the QW will not be addressed further in this chapter. 
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8.2. BACKGROUND 

8.2.1. MBE-GROWN LASER DIODES  

The basic properties of LDs were introduced in section 1.3.2.  Throughout the 

development and commercialisation of GaN-based LDs, epitaxial growth of these 

structures has been dominated by the MOVPE technique.  Although proponents of the 

alternative growth technique of MBE claim that it could provide advantages over 

MOVPE growth, such as reduced consumption of source materials159, until recently 

MBE had not been successfully used to produce high quality GaN-based LDs.  A 

breakthrough in this effort was announced in 2004, when the first MBE-grown LD was 

reported by Hooper et al.159.  The authors overcame difficulties with growing high quality 

InGaN to produce an InGaN MQW LD, with a structure as shown in figure 8.1.  The 

lower diode layers were doped with Si to produce n-type material, and the upper layers 

were doped with Mg to produce p-type material.  The p-type layers did not require an 

annealing step for activation of the Mg dopants.  The LD active region was formed of 

three InGaN QWs, separated by GaN barriers.  This type of LD is known as a separate 

confinement heterostructure (SCH), because the light produced in the MQW region is 

confined by outer barrier layers of AlGaN, which have a lower refractive index.  Lasing 

was observed from this structure at room temperature using pulsed current injection, 

demonstrating the potential of MBE for LD growth.   

 

Figure 8.1. From 

Hooper et al.159, schematic 

diagram of the structure of the 

InGaN MQW LD grown by 

MBE.  The layers below the 

InGaN MQWs are doped n-

type with Si, and the layers 

above the MQW active region 

are doped p-type with Mg.  The 

undoped AlGaN layers act as 

outer barriers, confining the 

light emitted from the MQW 

active region.   
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8.3. EXPERIMENTAL 

8.3.1. SAMPLE GROWTH 

The growth details and layer structure for the MBE-grown LD were provided in section 

6.3.1.  The nominal layer structure is reproduced here, with the layers contained in some 

or all of the four APT data sets shaded in green.  The results from the QW material were 

presented in section 6.4.4.  The individual layers that will be discussed in section 8.4 have 

colour coded text: indium distribution results from the 100 nm InGaN layer (orange text) 

will be presented in section 8.4.2.2.  Next, the actual composition of the layer that is 

nominally 20 nm of GaN (red text) will be discussed in section 8.4.2.3, followed by the 

Al content of the 5 nm AlGaN layer (blue text) in section 8.4.2.4.  Finally, the measured 

Mg dopant level in the nominally 235 nm GaN and 595 nm AlGaN layers (purple text) 

will be reported in section 8.4.2.5.  It is worth restating that the Mg dopant level in the 

p-type layers was measured with SIMS to be in the range of 3 - 5 × 1019 cm-3. 

Nominal Layer Structure Dopant

10 nm GaN Mg

595 nm Al0.045Ga0.955N Mg

235 nm GaN Mg

5 nm Al0.2Ga0.8N

3.5 nm In0.18Ga0.82N QW

20 nm GaN

100 nm In0.02Ga0.98N Si

55 nm GaN Si

480 x (1.6 nm Al0.1Ga0.9N + 1.6 nm GaN 

superlattice)

Si

220 nm GaN Si

10 um GaN Si

Al2O3 substrate
 

Figure 8.2. Nominal layer 

structure of the green-

emitting LD, grown by MBE 

at Sharp Laboratories of 

Europe.  The layers contained 

within some or all of the APT 

data sets are shaded green.  

The colour coded text serves 

to identify individual layers 

that will be discussed in 

section 8.4.  

8.3.2. TEM 

A TEM thin foil of the LD structure was prepared using the standard methods of 

mechanical polishing and ion milling with the PIPS™, as described in section 2.3.1.  

BF TEM images were taken along the [101̄0] zone axis using a Philips CM30 300 kV 

analytical TEM equipped with a LaB6 source. 
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8.3.3. APT SAMPLE PREPARATION 

The APT samples used in this chapter were previously described in section 6.3.2. 

8.3.4. APT 

The APT data sets reported in this chapter were collected at the OPAL EPSRC National 

Atom Probe Facility at Oxford University, as described in section 4.4.5.  Details of the 

LEAP conditions used for the runs were presented in section 6.4.4.  The data sets were 

reconstructed using shank angle reconstructions, as discussed in section 7.4.1.1, and 

optimised to obtain flat layers and correct layer spacings, as indicated by TEM and the 

nominal layer structure. 

8.4. RESULTS AND DISCUSSION 

8.4.1. TEM 

A thin film prepared from the LD structure was examined in the TEM.  Figure 8.3 shows 

a BF image, taken at 21,000 times magnification.  The MOVPE-grown GaN template is 

labeled, as are the QW and the GaN layer above (with a nominal layer thickness of 

235 nm).  The dark lines running in the growth direction are TDs, and are indicated using 

arrows.  In addition to those initiated at the template, some TDs were observed to arise 

at the QW or at the top of the GaN layer.  The overall TD density is low, however, 

which suggests that the APT samples were unlikely to have contained a dislocation.  The 

QW layer was observed to be flat, and this information was used to optimise the data 

reconstruction.  Finally, the nominally 235 nm thick GaN layer was measured by TEM to 

be closer to 350 nm in thickness.  Although this disparity may be due to inaccuracies in 

the magnification from the TEM, it suggests that a degree of caution should be exercised 

when considering the accuracy of the nominal layer structure of the LD. 
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Figure 8.3. BF TEM image of 

the MBE-grown LD structure.  

The MOVPE-grown template 

is labeled for clarity, as are the 

QW and the GaN layer above, 

nominally grown with a 

thickness of 235 nm.  The TDs 

are labeled, and can be 

observed to run in the growth 

direction, being initiated both 

at the template and at the QW 

and layers above.    

8.4.2. APT 

8.4.2.1. Atom Maps 

Four data sets were collected from the LD structure, as discussed in section 6.4.4: two 

from Region A and two from Region B, where Region A had a slightly lower growth 

temperature.  Although the LD structure contained many layers, which may each have 

had different evaporation fields, little difference was observed between the voltage and 

shank angle reconstructions, indicating that the evaporation fields were not significantly 

different between the layers.  In the end, a shank angle reconstruction was used to avoid 

a slight bowing of the data set around the QW and the 5 nm AlGaN layer.  

A reconstructed atom map of one Region A data set was shown in figure 6.21.  A second 

reconstructed atom map of the LD structure can be seen in figure 8.4.  This data set 

originated from Region B.  25 % of In atoms are visible as orange dots and 25 % of Al 

atoms are visible as light blue dots, with all other atoms omitted for clarity.  It is worth 

noting that the atoms visible in the nominally 235 nm GaN layer correspond to the 

background level, not due to identifiable In and Al peaks in the mass spectrum in that 

region.  The individual layers that will be discussed in the following sections are labeled 

and colour coded, using the same colour scheme as in figure 8.2.  As described in section 

6.4.4, a central cylinder of 35 nm diameter was used for all analysis. 

500 nm 

vacuum 

TDs 

MOVPE-grown GaN template 

QW 

Nominally 235 nm GaN 

layer 
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Figure 8.4. Reconstructed atom 

map of the MBE-grown LD 

structure grown at Sharp 

Laboratories of Europe.  The 

sample is from the edge of the 

wafer, or Region B, which showed 

blue-green wavelength emission.  

25 % of In atoms are shown as 

orange dots and 25 % of the Al 

atoms are shown as light blue dots, 

with all other atoms omitted for 

clarity.  The individual layers that 

will be discussed in sections 8.4.2.2 

through 8.4.2.5 are labeled and 

colour coded, with the same colour 

scheme as used in figure 8.2.   

8.4.2.2. Indium Distribution Study: 100 nm InGaN Layer 

The APT data from the 100 nm In0.02Ga0.98N layer were used to measure the In content 

of the layer, which was found to be x = 2.6 ± 0.1, close to the nominal value.  The 

InGaN layer was then studied to determine if there was any evidence of phase 

separation, indicated by a deviation from a random alloy distribution.  Kachkanov et al.160 

used an extended X-ray absorption fine structure (EXAFS) study to suggest that a 

non-random indium distribution was more likely to be found in low indium content 

layers than in those with high indium contents.  The authors reported that the EXAFS 

data showed weak phase separation in the form of InN-rich and GaN-rich InGaN 

regions, which increased as the In content fell, down to the lowest In composition 

studied160, of x = 0.1.  Yet the authors‟ suggestion that the phase separation increases as 

the amount of In falls is the opposite of what would be expected from a model of phase 

separation based on a phase diagram showing a spinode.  The authors propose no 

alternative model, however, which would support their assertions.  To determine if there 

235 nm GaN 

5 nm AlGaN 

100 nm InGaN 

20 nm GaN 
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was any evidence of such phase separation in the low In content layer of the LD, χ2 

analysis was used.   

 

In all four data sets, cylindrical regions of interest of 20 nm in diameter and 50 nm in 

length were defined within the 100 nm InGaN layer.  The cylinders were positioned in 

the centre of the data sets and in the middle of the 100 nm layer (as some of the data sets 

did not contain the full 100 nm InGaN layer).  χ2 analysis with 100 atom bins yielded 

clear results with regard to the possibility of phase separation: there was no indication of 

a deviation from randomness for the In distribution for any of the data sets.  The two 

Region A data sets had p values of 0.131 and 0.217 for 5 and 6 DOF, respectively.  For 

the two Region B data sets, the p values were 0.446 and 0.156 for 6 DOF in each case.  

Figure 8.5 shows the comparison between observed and expected In distribution for the 

100 nm InGaN layer from a Region B data set with 100 atom bins, which resulted in a 

p value of 0.446 for 6 DOF.  Bin sizes of between 50 and 200 atoms yielded similar 

results for the In distribution, indicating that there is no evidence for phase separation in 

this very low In content material, as predicted by phase diagrams of the InGaN alloy.  
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Figure 8.5. A comparison between the observed distribution of In within the 

100 nm InGaN layer of a Region B data set, and that expected from a random 

alloy, using 100 atom bins.  χ2 analysis indicated no deviation from randomness. 
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8.4.2.3. Composition of the Nominally 20 nm GaN Layer 

Although the 20 nm GaN layer was not intended to have any appreciable In content, a 

1D concentration profile through a data set from Region A indicates that the In level 

does not drop to zero within the 20 nm layer, as shown in figure 8.6a.  The InGaN QW, 

nominally 20 nm GaN layer, and 100 nm InGaN layer are labeled, for clarity.  The 

dashed line box in figure 8.6a indicates the region of the 1D concentration profile shown 

in figure 8.6b, in which it can be seen that the In level within the 20 nm layer is non-zero.   
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Figure 8.6. (a) 1D concentration profile showing the In content of a Region A data 

set.  The InGaN QW and 100 nm InGaN region are labeled, as is the nominally 

20 nm GaN layer.  (b) Portion of the 1D concentration profile indicated in (a) with 

a dashed line box.  The In content of the nominally 20 nm GaN layer is non-zero.  
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Figure 8.6b shows that the In level of the nominally 20 nm GaN layer (below the QW) is 

greater than the background level of In observed above the QW.  The In unintentionally 

present within this nominally In-free region may originate from the growth reactor, as 

some In may have been deposited on system components during the growth of the 

100 nm InGaN layer, and then migrated to the sample during the growth of the 

nominally 20 nm GaN layer.  Alternatively, the In may have accumulated on the surface 

of the thick InGaN layer below the nominally GaN layer during the InGaN growth and 

may have then been incorporated into the growing GaN.  To quantify the In content 

within this 20 nm layer, a cylindrical region of interest of 35 nm diameter and 15 nm 

length was defined within the central analysis cylinder, roughly in the middle of the layer.  

Table 8.1 shows the In content of the 20 nm layer in all four data sets.  This low, yet 

non-zero level of In would be difficult to detect within the structure with other 

techniques.  Such information can inform future LD growth, helping to optimise the 

nominal structure, which can potentially lead to improved device performance. 

Table 8.1. Indium content within the layer nominally grown to be 20 nm of GaN, 

in all four data sets of the green-emitting LD.    

 Region A data sets Region B data sets 

In content / x  0.004 0.007 0.006 0.007 

8.4.2.4. Al Content of the 5 nm AlGaN Layer 

Above the InGaN QW, a 5 nm AlGaN layer was grown with a nominal Al content of 

x = 0.2 (estimated with XRD studies of calibration layers).  The APT data were used to 

find the bulk level of Al within this layer, for comparison with the nominal value.  In all 

four data sets, the AlGaN layer was isolated using an isoconcentration surface set at half 

the maximum Al content of the layer.  Table 8.2 shows the Al content found within the 

5 nm AlGaN layer for all four data sets.  The measured Al content was observed to be 

close to, but slightly higher than the nominal value.  Both Region A and Region B 

showed similar AlGaN contents, which indicates that the difference in growth 

temperature had a lesser effect on the composition of the AlGaN layer, compared with 

the InGaN QW, as might be expected.  
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Table 8.2. Al content within the 5 nm AlGaN layer in all four data sets of the 

green-emitting LD. 

 Region A data sets Region B data sets 

Al content / x  0.22 ± 0.01 0.21 ± 0.01 0.21 ± 0.01 0.21 ± 0.01 

8.4.2.5. Mg Dopant Levels 

The final aim of this chapter was to use APT to study the dopant levels present in the 

LD structure.  Unfortunately, due to peak overlap between 28Si+ and N2
+, the level of Si 

dopants in the n-type layers cannot be revealed in this data set, or in any APT studies of 

III-Nitride materials.  In the p-type layers, however, it was possible to observe a peak in 

the mass spectrum associated with Mg, allowing the dopant level to be investigated.   

 

All four data sets contained material from the Mg-doped 235 nm GaN layer.  To find the 

Mg content of the GaN layer, cylindrical regions of interest of 35 nm diameter and 

225 nm in length were defined at the centre of each of the four data sets.  The Region A 

data set shown in figure 6.21 also contained a portion of the Mg-doped 595 nm AlGaN 

layer above the 235 nm GaN layer.  To study the Mg dopants within this AlGaN layer, a 

cylindrical region of interest of 35 nm in diameter and 7 nm in length was defined in the 

centre of the data set.  The Mg dopant levels found for the p-type layers of the LD data 

sets are shown in table 8.3. 

Table 8.3. Mg dopant level within the p-type layers in all four data sets of the 

green-emitting LD. 

Mg dopant level / cm-3 Region A data sets Region B data sets 

595 nm AlGaN layer 2.1 × 1019 - - - 

235 nm GaN layer 1.1 × 1019 9.7 × 1018 1.1 × 1019 1.8 × 1019 

 

The APT values for the Mg dopant level were found to be slightly lower than the SIMS 

measurements, which reported the Mg dopant level to be in the range of 

3 - 5 × 1019 cm-3.  It is worth noting, however, that the error bounds on the Mg level 

measured by SIMS were reported by Sharp Laboratories of Europe to be large.  

Reviewing the Mg levels measured by APT, both in this chapter and for the p-type 

superlattices studied in Chapter 5, it is found that in all cases the APT measurements 

were lower than the SIMS measurements.  Whether these results indicate a systematic 
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underestimate by APT, a systematic overestimate by SIMS, or pure coincidence is 

unknown. 

8.5. SUMMARY 

In this chapter, a full MBE-grown LD structure was examined in the LEAP.  Four data 

sets were obtained, two from Region A, and two from Region B.  These data sets are 

very large, containing in excess of 60 million atoms, which allowed for the analysis of 

much more material in a single run than could be collected on older atom probe 

instruments.  The data sets of the LD structure contained volumes of up to 400 nm in 

depth and 120 nm in width, including the active region, as well as the n and p-type layers.  

Although a larger volume of material was observed in the TEM image, the APT data set 

was significantly more informative. 

 

The four APT data sets collected enabled the detailed study of individual layers within 

the structure.  The question of phase separation in the InGaN layers was addressed using 

statistical analysis of both the InGaN QW and the 100 nm InGaN layer.  The results 

from the QW analysis were presented in Chapter 6.  Analysis of the In distribution 

within the 100 nm InGaN layer showed no indication of a deviation from randomness, a 

result which is consistent with what would be predicted by InGaN phase diagrams for 

strained layers.  The APT data also revealed that the layer intended to be 20 nm of GaN 

in fact contained a non-zero amount of In, perhaps due to residual In found in the 

reactor after growth of a thick layer of InGaN.  Next, the measured Al content of the 

5 nm AlGaN layer was reported, and found to be near the nominal value.  In fact, for all 

layers studied, the measured compositions were similar to the nominal compositions, 

with the notable exception of the non-zero In level found within the GaN layer.  Finally, 

the Mg dopant level was quantified in the p-type layers and compared with SIMS values.  

The APT data again provided a lower estimate of the Mg content than SIMS, consistent 

with the data reported in Chapter 5.  The reasons for this consistent difference are not 

yet clear.  Combining the information reported in this chapter with the QW studies 

presented in Chapter 6, APT has enabled a very thorough analysis of the MBE-grown 

LD structure.   
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9  
CONCLUDING REMARKS 

The use of APT and complementary microscopy techniques to study defects, alloys, and 

a full device structure made it possible to achieve the main aim of this work, set out in 

Chapter 1: evaluating the capabilities of APT, as applied to III-nitride research.   

 

With regard to defects, it was found that, unfortunately, TDs may cause fracture in 

III-nitride APT samples.  Yet one notable APT data set did contain a significant portion 

of a V-pit, associated with a TD, with the position of sample fracture estimated to be at 

the intersection with the TD core.  With that data set, the existence of sidewall QWs 

within the V-pit was confirmed, and O-enrichment near the TD was observed.  

In general, however, it was not possible to obtain APT data revealing the composition at 

the TDs, for correlation with KPFM observations showing that TDs were electrically 

active.  On the other hand, the application of APT to study Mg-rich defects in p-type 

AlGaN/GaN superlattices proved altogether successful, and the 3D compositional 

characterisation supplemented the structural information gained by TEM.  

 

This work presented the first APT studies of AlGaN and InAlN.  It was found that 

AlGaN has a similar evaporation field to GaN, making it straightforward to collect data 
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from samples containing both materials.  InAlN, in contrast, was found to have a much 

higher evaporation field than GaN (and hence presumably than other III-nitrides), which 

can cause difficulties in data collection and reconstruction when a sample contains 

InAlN, as well as other III-nitride materials.  Yet despite these problems, it has proved 

possible to use APT to study a number of InAlN samples.  APT was also used to 

investigate the microstructural origin of localisation in InGaN QWs.  Not only was the 

absence of a deviation from randomness in the In distribution observed, consistent with 

previous reports, but the presence of such a deviation was also revealed, after the InGaN 

QWs were exposed to the electron beam.  

 

Finally, a full MBE-grown LD device structure was analysed using APT.  The resulting 

data sets contained a large volume of material, starting in the n-type layers, and running 

through the active region into the p-type layers.  From one data set of the LD structure, 

it was possible to study a number of features of interest, including the In distribution 

within the QW, the p-type dopant level, and the bulk composition of individual layers.  It 

is interesting to surmise that such APT characterisation could be an invaluable tool in any 

attempts to reverse engineer these types of device structures. 

 

Overall, the work presented in this thesis demonstrates that APT is a highly valuable tool 

for III-nitrides research.  The technique has largely lived up to its promise to provide 3D 

compositional information at the nanoscale, revealing the composition of 5 nm Mg-rich 

features, and enabling binary nitride alloy homogeneity to be successfully characterised.  

In addition, the 3D nature of the technique made it possible to study the morphology 

and composition of InGaN QW network structures, as well as sidewall QWs decorating 

V-pits.  APT does not provide a definite answer to all questions, however, and there are 

certainly limitations to its applicability to III-nitride research.  The experiments reported 

in this thesis have shown that APT struggles to successfully analyse material containing 

TDs, perhaps because strain associated with the crystal defect leads to fracture of the 

APT sample.  Even when a data set has been successfully obtained, peak overlap in the 

mass spectrum obscures the answers to some important questions.  For instance, the 

peak overlap between the Si+ n-type dopants and N2
+ prevents characterisation of Si 

dopants in nitride materials.  Despite these issues, APT studies of III-nitrides can be 

highly informative, providing unique information.  The technique certainly has the 

potential to become an important tool in the characterisation of nitride materials.    
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The studies reported in this thesis represent just the start of the possible APT 

investigations into III-nitride materials.  To begin with, a number of other experiments 

can be recommended which could lead to a deeper understanding of the topics discussed 

in this work.  For instance, it would be useful to prepare more APT samples containing 

TDs, ensuring that the MQWs remain to serve as a marker for the TD position.  When 

examining the samples in the TEM, the type of TD should be determined, in addition to 

noting its position within the sample.  By running further samples with TDs in the 

LEAP, it should be possible either to collect an APT data set containing a dislocation, or 

to determine whether the position of fracture is consistently associated with the 

intersection with a TD, or a certain type of TD.  In addition to capturing a TD running 

through MQWs, it would be very interesting to observe a TD in p-type GaN, to 

investigate if the Mg dopants segregate to the dislocation.  

 

It would also be worthwhile to repeat the investigation of electron beam damage to 

InGaN MQWs.  Further APT samples of blue-emitting single-temperature InGaN QWs 

should be prepared, with an attempt made to capture the MQWs at the tip of the APT 

sample, as the amount of damage was seen to decrease with depth.  If a method could be 

found to avoid or eliminate the O-rich amorphous region that surrounded the APT 

sample reported in this work, that would make the information gained from the TEM 

images more easily interpretable.   

 

As all side-on APT samples that were prepared in this work fractured in the LEAP, it 

would be interesting to separate the role of TDs from that of crystal orientation in 

causing sample fracture.  This investigation would require the preparation of a side-on 

sample that did not contain a TD, a fact which could be confirmed by TEM.  A very low 

TD density template would be needed for material growth, and this could be provided 

either by growth on a free-standing GaN substrate, or on a wing region of an ELOG 

sample.  

 

Beyond investigations pertaining to the work reported in this thesis, APT can be applied 

to any avenue of III-nitride research that requires insight into the 3D nanoscale 

composition.  One notable opportunity pertains to the study of III-nitrides grown in 

other orientations, such as non- and semi-polar.  Such III-nitride materials have yet to be 
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studied with APT, and the question remains as to whether it will be possible to do so, as 

the effect of orientation is further complicated by the high density of crystal defects often 

found in such materials.  If these orientations can be investigated with APT, many of the 

questions already addressed for c-plane material will require examination anew.    

 

Although APT data sets can be highly informative, it is important to emphasise the utility 

of comparative microscopy in gaining a complete understanding of the material system.  

It is of great value to study the structure and composition of a material by two different 

methods, such as APT and TEM.  In future studies, however, emphasis should be placed 

on attempting to correlate the material‟s structure or composition with its properties.  

For instance, it should be possible to use CL to examine the luminescence from an area 

surrounding a TD, which may then be characterised by TEM and then APT.  In this way, 

a complete understanding of the structure – property link could be obtained.   

 

Lastly, it is hoped that the work contained in this thesis has demonstrated the ability of 

APT to characterise III-nitride materials, thereby providing unique and valuable 3D 

information.  

 

‘Nothing tends so much to the advancement of knowledge as the application of a new instrument.’ 

-- Sir Humphry Davy 
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APPENDIX 1 

Fig. 1. Example mass spectrum of GaN. 
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Fig. 2. Example mass spectrum of InAlN. 
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