

DISRUPTION MANAGEMENT –

THE AIRCRAFT RECOVERY PROBLEM

Memòria del Projecte Fi de Grau

De Gestió Aeronàutica

realitzat per

Pol Arias Melià

i dirigit per

Daniel Guimarans Serrano

Sabadell,12 de Juliol del 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/13326521?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 1

1.1 Planification and Viability . 1

1.2 Introduction to Disruption Management in Airline Industry . 3

1.3 Objectives . 5

1.3.1 Main Objective . 5

1.3.2 Specific Objectives . 6

2 Aircraft Recovery Problem 7

2.1 State-of-the-Art . 8

3 Introduction to Constraint Programming 11

3.1 Constraint Satisfaction . 13

3.2 ECLiPSe . 17

4 ARP Formulation and Implementation 19

4.1 CP Formulation . 19

4.2 Implementation characteristics 23

5 Application and Results 25

5.1 ARP scenarios . 25

5.2 Results . 28

1

CONTENTS 2

6 Conclusions 33

6.1 Future Work . 34

Chapter 1

Introduction

The main purpose is to create a small program capable of solving the Aircraft

Recovery Problem, that is included in the Disruption Management field.

In Chapter 1 we will introduce all the concepts in relation with Dis-

ruption Management, the viability plan and the objectives. In the second

chapter, the introduction to the Aircraft Recovery Problem and the state-of-

art. In Chapter 3, Constraint Programming (CP) and the platform Eclipse

will be presented. The fourth chapter, we will introduce the CP formu-

lation of the problem and some implementation issues. In Chapter 5 two

scenarios will be tested and both results will be given. Finally, in Chapter

6 some conclusions and further work will be given to complete the project.

1.1 Planification and Viability

The project was carried out according to a schedule. The schedule was the

first thing done and was planned using a Gantt.

In Table 1.1, are shown the cost related to the project.

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Gantt’s project

Spent Time 6 months 0 euros

Computer Department’s Computer 0 euros

Software ECLiPSe (Open Source) 0 euros

Total 0 euros

Table 1.1: Project’s attached costs

Basically, the project is feasible as does not have any costs attach. As

being a degree’s final project the hours dedicated to it are chargeable, the

computer used was a Toshiba that belong to the university and the software

was an open source program.

CHAPTER 1. INTRODUCTION 3

1.2 Introduction to Disruption Management

in Airline Industry

Operational disruptions are defined as a deviation from originally planned

operations. The airline industry is notably one of the most affected indus-

tries regarding operational disruptions and optimization based methods and

tools are commonly used in planning, disruptions, and scheduling. Plans

are usually made several months prior to the actual day of operation. As a

consequence, changes often occur in the period from the construction of the

plan to the day of operation. Thus, optimization tools play an important

role also in handling these changes.

Some examples of the importance of optimization in the airline industry

are shown on figures 1.2, 1.3, 1.4 . Figure 1.2 shows the percentage of delayed

flights. It can be observed that some years the delayed flights represent up

to 25 % of the total. Consequently, the complementary graphic can be seen

in Figure 1.3. Finally, Figure 1.4, shows the percentage of cancelled flights.

This project is focused on the disruption reallocation. Either if the dis-

ruptions occur by external factors or as the result of human action, there are

three major research areas on disruption reallocation:

• Aircraft Reallocation: When disruptions occur, the aircrafts must be

reallocated to the remaining flights.

• Crew Reallocation: Likewise aircrafts but scheduling constraints must

be considered as they have some limitations about the work hours.

• Passengers Reallocation: In this case, the main focus is to reallocate

all the passengers to flights that with the same destination.

CHAPTER 1. INTRODUCTION 4

Figure 1.2: Percentage Delayed Flights

Figure 1.3: Percentage On Time Flights

CHAPTER 1. INTRODUCTION 5

Figure 1.4: Percentage Cancelled Flights

However, at the day of operation, no planning tool have been able to

cope with the complexity of the numerous constraints should be considered

by unifying aircrafts, crew, and passenger concurrently in a single system.

1.3 Objectives

Like in all projects, in this one some objectives must be completed. There

are two kind of objectives the main objective and the secondary or specific

objectives. In this section, we will go through all of them.

1.3.1 Main Objective

The main objective of this project is to model the ARP from a constraint

programming (CP) point of view . The information required for this project

is extracted from previous papers that cope with the problem using heuristics,

CHAPTER 1. INTRODUCTION 6

metaheuristics or using network-models.

Also, two scenarios will be tested to verify that the implementation is

correct. In a further chapter both scenarios will be explained and tested.

1.3.2 Specific Objectives

In order to complete de main objective, a more specific targets must be

achieved. These milestones are important as they are previous steps to ac-

complish the implemented and final model.

• Familiarize with Constraint Programming (CP)

• Formally define all the constraints that will be used in the model. The

constraints have to be concise and well formulated.

• Complete the mathematical model which will be used as the basis of

the implementation.

Chapter 2

Aircraft Recovery Problem

The Aircraft Recovery Problem (ARP) is well defined in [9] and arises when

unforeseen events have disrupted an existing flight schedule, causing a ”cas-

cade” propagation affecting the successors flights e.g. bad weather on an

airport causes flights to be delayed. The first priority then is to restore the

flight schedule as much as possible, using the existing aircrafts, i.e. mini-

mize the number of cancellations and the total delay. ARP has been given

other names by different researchers and its precise definition varies accord-

ingly. Hence, it is important to define ARP as it is understood on [reference]:

”Given an original flight schedule and one or more disruptions, the Aircraft

Recovery Problem consists of delaying flights, canceling flights, and swapping

aircraft to flight assignments in order to create a feasible and more preferable

revised flight schedule. The term swap denotes that two flights, designated

to be undertaken by two specific aircrafts, are interchanged between these

aircrafts”.

The flight schedule includes all flights flown within a certain period of

time by a given fleet including the original departure, the expected flight

durations, and the connections between airports.

7

CHAPTER 2. AIRCRAFT RECOVERY PROBLEM 8

The ARP is included in the non-deterministic polynomial-time hard (NP-

Hard) problems. NP stands for non-deterministic polynomial-time, which

means that a problem can be solved in a polynomial time. So NP-Hard,

means that the bigger the problem is the computational time needed to solve

it increases exponentially.

2.1 State-of-the-Art

By far most of the work on operational recovery problems has been reported

on the aircraft resource. Since crews can be repositioned fairly easy and

standby crews are often available, the aircraft are seen as the scarce resource.

One of the firsts publications about aircraft recovery problem was published

by Teodorovic and Guberinic [11] . In their paper, one or more aircraft

are unavailable and the objective is to minimize the total passenger delays

by reassigning flights and retiming flights. The formulation is based on a

network-model. A branch-and-bound method is used to solve the problem.

In a later work the same authors considered aircraft shortage and pro-

posed an improved approach [12] . A heuristic algorithm based on dynamic

programming was developed to solve this lexicographic optimization prob-

lem . The constructed model allows cancellations, retimings and swaps. The

main objective is to minimize the number of cancellations.

Love et al.[9] presented a paper for the aircraft recovery problem based

on local search. The schedule is represented by the lines of work for each

available aircraft. In order to resolve the model, cancellations, delays or

reassignment of aircrafts are considered. Reassignments, both within a single

fleet or between fleets, can be handled. The objective function is to minimize

the recovery costs. Costs are related delays, cancellations and swaps. It is

CHAPTER 2. AIRCRAFT RECOVERY PROBLEM 9

even possible to assign costs on the individual flights in the recovery period,

in order to weight the importance of the different flights. This approach

was tested on the short-haul operation of British Airways (79 aircraft, 44

airports, 339 flights) and achieved promising solutions within 10 seconds.

Arguello et al. [4] [8] presented a method based on the metaheuristic

Greedy Randomized Adaptive Search Procedure (GRASP) to reschedule the

aircraft routings if one or more aircrafts are unavailable. The heuristic is

capable of canceling and retiming. As in the approach of Love et al. [9] also

allows swaps between fleets. The goal is to produce a recovery schedule in

order to restore the original schedule. The cost to be minimized includes

measures of passenger inconvenience and lost flight revenue. The approach

was also tested in a fleet of 16 aircraft, 42 flights and 13 airports.

In the papers of Yan and Yang [14] and Yan and Tu [15] four models were

developed to deal with the temporary unavailability of one single aircraft.

The models are developed specifically for small airlines. In the first model,

it is possible to cancel flights in order to repair the schedule. The second

model has an increased complexity and allows for both the cancellation of

flights and ferrying of spare aircraft. The third model considers cancellation

and retiming, and the last model incorporates all of the possible decisions,

and adds ferrying of aircraft. In all models swaps are allowed within a fleet.

The objective in all four models is to minimize the cost of schedule repair,

which includes passenger revenue. The first two models are rather simple and

are built as network flow models, which make them possible to be solved to

optimality very fast. The other two models contain side constraints, making

them hard to solve. They are solved using Lagrangian relaxation [5] and

subgradient optimization [7]. In all models, neither crew nor maintenance is

considered. In Yan and Tu [15], a multi-fleet version of the model described

CHAPTER 2. AIRCRAFT RECOVERY PROBLEM 10

above is presented. In this case, a larger aircraft type can be assigned to a

flight that originally was planned to be serviced with a smaller aircraft type.

Furthermore, flights that have more than one stop, some or all stops can be

deleted. The case study presented in [14] is based on China Airlines data.

The fleet consists of 12 aircraft serving 15 cities and covering 319 flights a

week. First two models solve the instances to optimality while the next ones

get within 1 percentage of optimality in a matter if minutes. In [15] the

experiments are performed on a test set of 26 aircraft divided into 3 different

fleets performing 273 flights a week. In total, the developed methods were

tested with 534 different scenarios. All problems were solved to optimality

or at most 1 % from optimality within 5.5 minutes.

Chapter 3

Introduction to Constraint

Programming

Constraint programming (CP) is a programming paradigm that uses con-

straints to relate variables to one another. It differs from other programming

languages, as it is not necessary to specify a secuence of steps to execute,

but rather the properties. The main applications areas to date are schedul-

ing, routing, planning, configuration, etc. Models in CP are based in three

steps: creating the variables, associate their corresponding doamains, and

finally the base of CP, to declare all the constraints relating all the variables.

As it is not needed the implementation of a search procedure, it gives more

flexibility to the model, and usabilty to the user. In fact, if new variable or

constraints wanted to be improved , it is not needed to do major changes in

the structure, as is not implemented the search to solve the problem.

The practical benefits of CP really began to emerge when it was embed-

ded in a programming language. Thus, CP is usually found embedded in a

logic programming language, such as Prolog. In that case, it is called Con-

straint Logic Programming (CLP), but it does not necessarily mean that CP

11

CHAPTER 3. INTRODUCTION TO CONSTRAINT PROGRAMMING12

is restricted to CLP. Constraints can be integrated also to typical imperative

languages like C/C++, e.g. COMET [13] or ILOG [1] , and Java, e.g. Cream

[10]. The program implementing the methodologies presented in this project

have been made using the CLP platform ECLiPSe [3].

CLP combines logic, that is used to specify a set of possibilities to be

explored by simple inbuilt search methods, with constraints, which are used

to minimize the search, by eliminating some impossible solutions or by nar-

rowing down the set of possibilities.

As explained before, CP solves problems based on constraints, in order to

find a feasible solution satisfying all the constraints. This class of problem is

known as Constraint Satisfaction Problem (CSP) and the maine mechanism

of solving it, is constraint propagation.

Constraint propagation works by reducing domains of variables, strength-

ening constraints, or creating new ones. This leads to a reduction of the

search space, making the problem easier to solve by some algorithms. Basi-

cally, with constraint propagation it shows how a decision affects the result.

A solution to a CSP is a full assignment to the variables of the problem,

in such a way that all constraints are satisfied at once. We may want to find:

• just one solution, with no preference to which one,

• all solutions,

• an optimal, or at least a good solution, given some objective function

defined in terms of some or all of the variables. In this case, the CSP

becomes a Constraint Optimization Problem (COP).

Finally, an important contribution of CP is to allow the end user to

control the search. The topic of search comes from the heart of AI, which

CHAPTER 3. INTRODUCTION TO CONSTRAINT PROGRAMMING13

has developed several algorithms to perform the search in a solution space.

End users search control is achieved by combining generic techniques, when

the generation of the whole search tree is unfeasible, and problem-specific

techniques, when there is an extra knowledge about special features of the

problem. Thus, while mathematical programming is mainly based in the ap-

plication of certain algorithms to a model, CP allows the user to take some

decisions on the search stage like the order of instantiation of the variables

and the order of selection of values from domains. Depending on those deci-

sions the way decisions are made is totally different and the performance of

the search algorithm can be highly affected.

3.1 Constraint Satisfaction

As it has been said above, constraint satisfaction is related to problems de-

fined over finite domains. Solutions to a CSP can be found by searching

(systematically) through the possible assignments of values to variables, that

is generating the whole search tree. Search methods can be divided into two

broad classes: those that traverse the space of partial solutions (or partial

value assignments), and those which explore the space of complete value

assignments (to all variables) stochastically.

From the theoretical point of view, solving a CSP is trivial using sys-

tematic exploration of the solution space. But that is not true from the

practical point of view, where the efficiency takes place. Even if system-

atic search methods (without additional improvements) look very simple and

non-efficient, they are important because they make the foundations of more

advanced and efficient algorithms.

The simplest algorithm that searches the space of complete labelings, is

CHAPTER 3. INTRODUCTION TO CONSTRAINT PROGRAMMING14

called Generate-and-Test (GT). The idea of GT is very simple: firstly, a

complete labeling of variables is randomly generated and, consequently, if

this labeling satisfies all the constraints then the solution is already found;

otherwise, another labeling is tried.

The GT algorithm is clearly a weak generic algorithm used only if ev-

erything else failed. Its efficiency is very poor for two reasons: it has a

non-informed generator and there is a late discovery of inconsistence. There

are two ways to improve efficiency in GT:

• To program a smart (informed) generator of valuations, i.e. able to

generate the complete valuation in such a way that the conflict found

by the test phase is minimized.

• To merge the generator and the tester, i.e. the validity of the con-

straint is tested as soon as its respective variables are instantiated.

This method is used by the backtracking approach.

As said before, Backtracking (BT) is a method used for solving CSPs by

incrementally extending a partial solution that specifies consistent values for

some of the variables, towards a complete solution, by repeatedly choosing

a value for another variable consistent with the values in the current partial

solution.

BT is a merge of the generating and testing phases of GT. The vari-

ables are labeled sequentially and as soon as all the variables relevant to a

constraint are instantiated, the validity of the constraint is checked. If a

partial solution violates any of the constraints, backtracking is performed to

the most recently instantiated variable that still has alternatives available.

Clearly, whenever a partial instantiation violates a constraint, backtracking

is able to eliminate a subspace from the Cartesian product of all variables do-

CHAPTER 3. INTRODUCTION TO CONSTRAINT PROGRAMMING15

mains. Hence, backtracking is strictly better than GT. However, its running

complexity for most non-trivial problems is still exponential.

There are three major drawbacks of the standard BT:

• Thrashing : it is a repeated failure (and consequent backtrack) due to

the same reason. This happens because there is no information stored

when a failure occurs. Thus, if there is a similar situation in the future

the search will also fail and backtrack.

• Redundant work: conflicting values of variables are not remembered.

This makes the search fail the same way in different branches of the

tree.

• Late detection of conflicts: conflict is not detected before it really oc-

curs.

More sofisticated and improved methods were proposed as consistency

techniques to detect the inconsistency of partial solutions sooner. There ex-

ist several consistency techniques, but most of them are not complete. For

this reason, these techniques are rarely used alone to solve a CSP completely.

The names of basic consistency techniques are derived from the graph no-

tions.A binary CSP can be represented as a constraint graph where nodes

correspond to variables and edges are labeled by constraints . Although this

representation can be applied only to binary CSPs, it is easy to show that

every CSP can be transformed to an equivalent binary CSP [6]. However,

in practice this operation is not likely to be worth doing and it is easier to

extend the algorithms so they can tackle non binary CSPs as well.

Among consistency techniques, some of the most common are:

• Node-Consistency : it removes values from variables domains that are

CHAPTER 3. INTRODUCTION TO CONSTRAINT PROGRAMMING16

inconsistent with constraints involving one variable, i.e. unary con-

straints. It is the simplest consistency technique.

• Arc-Consistency : it removes values from variables domains which are

inconsistent with constraints involving two variables, i.e. binary con-

straints.

• Path-Consistency : it requires for every pair of values of two variables

x and y satisfying the respective binary constraint that there exists a

value for each variable along some path between x and y such that all

binary constraints in the path are satisfied.

• K-Consistency and Strong K-Consistency : a constraint graph is k-

consistent if for every system of values for k− 1 variables satisfying all

the constraints among these variables, there is a value for an arbitrary

kth variable such that the constraints among these variables are satis-

fied. A constraint graph is strongly k-consistent if it is j-consistent for

all j ≤ k. All previously mentioned techniques can be generated by

k-consistency and strong k-consistency.

Attention should be paid to the use of these consistency techniques. They

provide a good mechanism to remove inconsistent values from variables do-

mains during search, but they often penalize with respect to efficiency terms.

For this reason, they are often neglected on designing efficient search algo-

rithms and substituted by heuristic approaches.

Finally, as said before, to cope with Constraint Optimization Problems

(COPs), to find the optimal solution of a problem, it is needed to take into

account a cost function. The appropriate search mechanism is a variation of

BT, called Branch-and-Bound (BB). During the search, BB maintains the

current best value of the cost function (bound) and, each time a solution with

CHAPTER 3. INTRODUCTION TO CONSTRAINT PROGRAMMING17

a smaller cost is found, its value is updated. There are many variations on the

BB algorithm. One consideration is what to do after a solution with a new

best cost is found. The simplest approach is to restart the computation with

the bound variable initialized to this new best cost. A less naive approach is

to continue the search for better solutions without restarting. In this case,

the cost function upper bound is constrained to the bound variable value.

Each time a solution with a new best cost is found, this cost is dynamically

imposed through this constraint. The constraint propagation triggered by

this constraint leads to a pruning of the search tree by identifying the nodes

under which no solution with a smaller cost can be present.

3.2 ECLiPSe

Eclipse is a multi-language software development environment comprising an

integrated development environment (IDE) and an extensible plug-in system.

Eclipse uses both Java or Constraint Programming languages, in this project

we will use the Constraint Programming language. It is a merge of three

systems:

• One enabled complex problems to be solved on multiprocessor hard-

ware, and eventually on a network of machines.

• The second supported advanced database techniques for intelligent pro-

cessing in data-intensive applications.

• The third system was CHIP, see Aggoun et al. [2]. CHIP incorporated

the concept of a constraint satisfaction problem into the logic program-

ming paradigm by using constraint variables ranging over user defined

finite domains. During the computation the values of the constraint

CHAPTER 3. INTRODUCTION TO CONSTRAINT PROGRAMMING18

variables are not known, only their current domains. If a variable do-

main shrinks to one value, then that is the final value of the variable.

The first released interface to an external state-of-the-art linear and mixed

integer programming package was in 1997. The integration of the finite do-

main solver and linear programming solver, supporting hybrid algorithms,

came in 2000. In 2001 the ic library was released. It supports constraints on

Booleans, integers and reals and meets the important demands of practical

use: it is sound, scalable, robust and orthogonal.

Chapter 4

ARP Formulation and

Implementation

It should be noticed that none publications have been found introducing a

CP formulation about the ARP. As explained before CP formulation is based

in three entities: 1)variables, 2)their domains and 3) the constraints relating

these variables. Below, we detail each of these entities corresponding to our

formulation of the ARP.

4.1 CP Formulation

The variables used in this formulation are:

• Xaf = X11..Xnm is a variable used for the assignation of one airplane

to one flight, with domain Xaf :: [0, 1]. Defined over the sets A and F,

is the first decision variable.

• A = a1..an are the set of airplanes available in each airport;

19

CHAPTER 4. ARP FORMULATION AND IMPLEMENTATION 20

• F = f1..fm where f is the number of flights available;

• Cf = C1..Cm is the set of flight cancelled, this variable is the second

used in the objective function.

• Df = d1..dm are the durations of each flight;

• STf = ST1..STm are the scheduled time of departure of each flight;

• Limit is the variable used to delimitate the sum of the delays, which

can derive to a cancel;

• Yfpp′ is a three dimensional list of lists used to know, of which airport

each flight departs from, and which airport arrives to.

• IDaf = id11..idnm are the set of delays introduced initially of each flight.

• Daf = d11..dnm are the set of delays calculated by the program, with

domain: Daf :: [0..Limit]

• Saf = S11..Snm are the set of starting times, with domains: Saf >= 0

and Saf =< STf + Limit

The variable above introduced are related through a set of constraints

that are described next:

CHAPTER 4. ARP FORMULATION AND IMPLEMENTATION 21

∑
a∈A

Xaf ≤ 1 ∀f ∈ F (4.1)

First, equation (4.1) forces a flight ’f’ to be assigned to only one aircraft

’a’ .Thus, one flight can only be assigned to one aircraft, but it allows one

aircraft to have more than one flight. We have introduced two constraints to

handle the flights cancelations:

XafDaf ≥ Limit⇔ Cf = 1 (4.2)

∑
a∈A

Xaf = 0∀f ∈ Cf (4.3)

The first equation (4.2) is used to delimit the delays, as it would not

be realistic to have unlimited delays, variable. As mentioned, ’Limit’ is the

maximum time that a flight can be delayed. If the delay is greater than

Limit, then the flight is cancelled, and so the variable Cf is set to 1. As

for the second equation (4.3), if the flight is cancelled, no aircraft can be

assigned and so the related variables Xaf should be null.

To model the starting times of the flights according to the assigned air-

craft, including the delays, we use the next equation:

Saf ′ ≥ Xaf ′Xaf (Saf +Df) (4.4)

Expression (4.4) uses the predecessor starting time plus the duration of

the flight to calculate the starting time of the successor. As not all the flights

have a successor (i.e the initial flights), and we need to take into account the

delays that are defined in the scenario.

CHAPTER 4. ARP FORMULATION AND IMPLEMENTATION 22

Saf ≥ Xaf (STf +Day) (4.5)

Using equation (4.5), the problems with the initialization of the scenario

are fixed as the starting time is forced to be greater or equal than the sched-

uled time plus the delays defined in the scenario.

To calculate the delay, the following constraint is defined:

Daf = (Saf − STf)Xaf (4.6)

In the equation above (4.6), the scheduled time and the starting time,

previously bounded, are used to calculate the delay of each flight assigned to

an aircraft.

The last constraint to complete the model is:

∑
f∈F

XafYfpp ≤ 1 ∀a ∈ A, ∀p, p′ ∈ P | p 6= p′ (4.7)

Equation (4.7) is used to delimit how many flights an aircraft may have

assigned in one airport. In this case the variable Yfpp is used to know which

flights depart from each airport.

Finally, the objective function is formed by the cumulative total delays

and the number of cancelations:

min α
∑
a∈A

∑
f∈F

XafDaf + β
∑
f∈F

Cf (4.8)

The equation (4.8) uses the variables Daf and Cf to calculate the total

delay and the flights canceled. As the cost of a cancelled flight is far superior

than the cost of a limited delay, the parameters α and β have been introduced

to adjust the weight of these two decision variables.

CHAPTER 4. ARP FORMULATION AND IMPLEMENTATION 23

4.2 Implementation characteristics

As in every formulation, when it comes the implementation part, we deal

with some difficulties, in this section some illustrative examples of how de-

lays, cancellations and swaps works will be introduced and some tricky im-

plementation steps will be explained.

In Figure 4.1, shows how a swap will be produced between two flights

and two aircrafts. Figure 4.2 displays how a delayed is handled. Finally, in

Figure 4.3 shows how a flight is cancelled.

Figure 4.1: Swap Flights

Figure 4.2: Delayed Flights

CHAPTER 4. ARP FORMULATION AND IMPLEMENTATION 24

Figure 4.3: Cancelled Flights

Regarding the search, it has been implemented using the branch and

bound algorithm (BB). In ECLiPSe the BB is already implemented, also it

gives us the opportunity to use other search methods such as the Limited

Discrepancy Search (LDS), Depth Bounded Search (DBS), etc.

Chapter 5

Application and Results

The ARP has been tested in two different scenarios and we have had some

results, but as none CP implementation has been found, the comparison

between this approach is impossible, as other papers use heuristics and these

are more efficient.

5.1 ARP scenarios

The first scenario was used to test a small problem of the ARP, in this case,

were used 3 aircrafts, 7 flights, and 4 airports. As shown in Figure 5.1 the

first two aircrafts are allocated on the first airport and the third one on the

second. As it can be seen any flight goes from one airport to another leaving

one in the middle.

Some inputs are introduced in Table 5.1 to complete the scenario, it shows

which flights have delays, and the depart scheduled time.

On Table 5.1 are shown all the scheduled times needed to run the first

Scenario, also to test an scenario with disruptions are introduced some delays

on Airport 1, where Flight 1 and Flight 2 depart.

25

CHAPTER 5. APPLICATION AND RESULTS 26

Figure 5.1: Scenario 1

On Figure 5.2 is done with 5 aircrafts, 17 flights, and 7 airports. In this

case, some flights jump from one airport to another, leaving one in the middle.

Here, two aircrafts are allocated on the first airport, two more aircrafts on

the third airport and finally the fifth aircraft departs from airport 4.

Also, in this scenario some inputs are introduced, Table 5.2. In this

case, airport 3 is where we include the disruptions, delaying every flights 120

minutes.

CHAPTER 5. APPLICATION AND RESULTS 27

Flights Scheduled Time Delay

Flight 1 0 60

Flight 2 20 70

Flight 3 0 0

Flight 4 130 0

Flight 5 150 0

Flight 6 100 0

Flight 7 250 0

Table 5.1: Scheduled and delay times for Scenario 1

Flights Scheduled Time Delay

Flight 1 0 0

Flight 2 20 0

Flight 3 100 0

Flight 4 130 0

Flight 5 0 120

Flight 6 30 120

Flight 7 210 120

Flight 8 250 120

Flight 9 0 0

Flight 10 330 0

Flight 11 150 0

Flight 12 250 0

Flight 13 420 0

Flight 14 470 0

Flight 15 240 0

Flight 16 250 0

Flight 17 350 0

Table 5.2: Scheduled and delay times for Scenario 2

CHAPTER 5. APPLICATION AND RESULTS 28

Figure 5.2: Scenario 2

5.2 Results

The tests were conducted using a 2Gb RAM and Core Duo of 2.6 GHz. In

both scenario were conducted two tests, the first one, without using delays

and the second applying some delays as explained before. The firs test is

useful as it shows how the problem is solved and letting us look for the

initial solution. Both scenario were tested using an α = 10 and a β = 1000.

The β is this big as we do not want any flight canceled.

In Figure 5.3, the allocation of which flight is assigned to which aircraft

without any delay. The ”cascade” propagation can bee seen here in a clear

CHAPTER 5. APPLICATION AND RESULTS 29

way.

Figure 5.3: Scenario 1 without delays

On the other hand, when the delays are applied, some changes appear.

In Figure 5.4, we observe how aircraft 1 takes flight 5 instead of flight 4, and

then takes flight number 7. The final cost in this case is 4380.

CHAPTER 5. APPLICATION AND RESULTS 30

Figure 5.4: Scenario 1 with delays

In figure 5.5, scenario 2 is tested without delays, and the result as in

scenario 1 shows how the initial solution is.

CHAPTER 5. APPLICATION AND RESULTS 31

Figure 5.5: Scenario 2 without delays

In a more complex scenario changes are more noticeable. In Figure 5.6,

flights 5, 6, 10, 12 , 13, 14, 16, 17 are assigned to a different aircraft. As a

result of this changes the final costs is up to 14800.

CHAPTER 5. APPLICATION AND RESULTS 32

Figure 5.6: Scenario 2 with delays

Chapter 6

Conclusions

The main objective of this project was to model the ARP in constraint pro-

gramming. As seen during the project we demonstrate that the objectives

are achieved, and that the ARP can be solved using CP. Our methodology al-

lows more flexibility, as small changes are needed to include new restrictions

to the problem.

Our project contributes to a new line of research of the ARP, using the

CP approach. We think that this approach could lead to a new perspective

for tackling this problem as the final goal is to include passengers and crew

reallocation. Using CP, the more constraints we have, the better.

But as every methodology it has its limitations. The CP search can not

compete with heuristics and metaheursitcs, as it searches all the possible

combinations finally finding the optimal solution, and thus a large computa-

tional time is required. This is a handicap when a big scenario is tested.

From a personal point of view, the project has been hard but interesting,

as it has allowed me to introduce myself into the optimization world, more

specifically into constraint programming, which I have really enjoyed.

33

CHAPTER 6. CONCLUSIONS 34

6.1 Future Work

Further research should be focused on the implementation of passengers and

crew reallocation jointly with the ARP, which is the final goal. Furthermore,

from a more specific point of view, the search should be improved, as the

branch and bound is not an efficient algorithm.

Bibliography

[1] ILOG Solver 6.3 Reference Manual, 2006.

[2] A. Aggoun, M. Dincbas, A. Herold, H. Simonis, and P. Van Hentenryck.

The chip system. Technical Report, 1987.

[3] K. Apt and M.Wallace. Constraint logic programming using eclipse.

Cambridge University Press, 2007.

[4] Michael F. Arguello, Jonathan F. Bard, and Gang Yu. Models and

methods for managing airline irregular operations. Operations Research

in the Airline Industry, pages 1 – 45, 1997.

[5] M. Fisher. The lagrangean relaxation method for solving integer pro-

gramming problems. Management Science, 27:1–28, 1981.

[6] F.Rossi, C. Petrie, and V. Dhar. On the equivalence of constraint satis-

faction problems. Technical report ACT-AI-222-89, 1989.

[7] M. Held and R.M. Karp. The travelling salesman problem and minimum

spanning trees: part ii. Mathematical Programming, 1:6–25, 1971.

[8] Michael F. Arguello, Jonathan F. Bard and Gang Yu. A grasp for aircraft

routing in response to groundings and delays. Journal of Combinatorial

Optimization, 5:211 – 228, 1997.

35

BIBLIOGRAPHY 36

[9] Michael Løve, Kim Riis Sørensen, Jesper Larsen and Jens Clausen. Dis-

ruption management for an airline -rescheduling of aircraft. Applications

of Evolutionary Computing, 2279:315 – 324, 2002.

[10] N. Tamura. Cream version 1.2 programmers guide. Available online:

http://bach.istc.kobe-u.ac.jp/cream/, 2004.

[11] Dusan Teodorovic and Slobodan Guberinic. Optimal dispatching strat-

egy on an airline network after a schedule perturbation. European Jour-

nal of Operational Research, 15:178 – 182, 1984.

[12] Dusan Teodorovic and Goran Stojkovic. Model for operational daily

airline scheduling. Transportation Planning and Technology, 14:273 –

285, 1990.

[13] P. van Henteryck and L. Michel. Constraint-based local serach. The

MIT Press, 2009.

[14] S. Yan and D.-H. Yang. A decision support framework for handling

schedule perturbation. Transportation Research B, 30(6):405 – 419,

1996.

[15] Shangyao Yan and Yu-Ping Tu. Multifleet routing and multistop flight

scheduling for schedule perturbation. European Journal of Operational

Research, 103:155 – 169, 1997.

	portada
	0_main

