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BACKGROUND AND WORK DESCRIPTION 

 

Migration, molt, reproduction and wintering, the main life-history stages of a seabird 

are irreversible and fit a routine with a circannual periodicity. For example, reproduction takes 

place more or less on the same dates year after year, and molt usually starts after 

reproduction and not the other way around. Transition from a stage to the next and their 

respective durations depend on a combination of endogenous and exogenous factors that 

have been optimized during each species͛ evolution (McNamara and Houston 2008).  Each 

stage entails tasks which involve a series of behavioral changes, and a different activity pattern 

characterizes each of these behaviors. 

Studies on factors that trigger and control these changes in animals have been conducted since 

the early XXth century (Szymanzki 1918), and by the end of the century it was already 

discovered a gene that regulates endogenous rhythms in vertebrates (Vitaterna et al 1994). 

Environmental cues are known to exert a strong influence on avian activity either directly or 

indirectly. Among these, photoperiod has been investigated for many decades (e.g. Gwinner 

1977, Noskov and Rymkevich 1982, Wikelski et al 2000), and, for instance, gonadal maturation 

(Jacobs and Wingfield 2000) and onset of molt (Dawson 2008) are two well known processes in 

which drastic changes of behavior are controlled by photoperiod. Other cues that may trigger 

behavioral changes are social stimulus, temperature and lunar cycle. 

Seabirds are animals that rely on visual cues to forage; therefore, light has a strong effect on 

their activity. The main source of natural light is sunlight, although it is not the only source: 

moonlight is very important in the night time. The lunar influence on the behavior of seabirds 

has been relatively poorly documented. For example, Moon phase affects nest attendance 

patterns (Mougeot and Bretagnolle 2000) and foraging behavior (Phalan et al 2007). 

Recent advances in electronic technology and particularly the development of miniaturized 

geolocator devices have made possiďle for the first tiŵe to ͞see the world through the 

seabirds’ eyes͟ (Burger and Shaffer 2008). Recent works based on geolocator data have shown 

that seaďirds͛ activity increases with Moon phase during the non-reproductive period 

(Yamamoto et al 2008, Mackley et al 2010). Pinet et al (2011) have shown that the behavior of 

another seabird species is modulated by both photoperiod and Moon phase throughout its 

annual cycle. 

In this work, I describe some of the features that characterize the activity and migration of a 

seaďird CorǇ͛s shearǁater Calonectris diomedea during approximately one year. I also explore 

the factors that likely shape the resulting patterns and, particularly, its periodicity. To achieve 

these objectives, I have principally used time series and regression analysis. Time series 

analysis is an array of techniques that take into account the correlational structure between 

data to obtain the model that best fits them, and thus make more accurate predictions. Its use 

here is, after Hart et al (2010) and Pinet et al (2011) works, one of the first applications to the 

analysis of logger data in seabirds. 

Recent investigations on seabird activity have already shown the influence of Moon and 

photoperiod. To my knowledge, this is the first time in which flight activity has been shown to 

be also influenced by the lunar phase and the number of hours of moonlight during the natural 
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night. An intriguing finding of this work is the lunar periodicity that pervades the annual cycle 

of this species. 

Reduced sample size has precluded the generation of reliable models to explore the factors 

that may influence onset of migration and arrival at the breeding and wintering areas. Males 

average earlier onset of migrations and arrival at their final destinations; however, differences 

are non-sigŶifiĐaŶt. ‘egardless of ǁhiĐh seǆ starts ŵigratiŶg earlier, CorǇ͛s “hearǁaters set the 
onset of its post-nuptial migration after the end of the African summer monsoon, as already 

shown by Felicísimo et al (2008). DuriŶg this ŵoŶsooŶ the preǀailiŶg ǁiŶds ͞ďloĐk͟ the passage 
of the equatorial belt, which seems to be a desert to seabirds, and therefore try to fly through 

as fast as they can. 

Pre-nuptial migration averages shorter than the post-nuptial one although differences are non-

significant. The factors behind this are unclear. 

Overall, this investigation provides some interesting results and leaves open questions that 

merit further study. 
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MEET CORY’S SHEARWATER 

 

 This section provides relevant information on the organism of study, and it is meant to 

understand and interpret this work in its underlying biological context. 

CorǇ͛s shearǁater is the largest of the EuropeaŶ shearwaters, with an average wingspan of 125 

cm and a weight of 600-800 g (C. d. borealis, mean size ± SD = 126.30 ± 5.33 cm, n = 127; mean 

mass ± SD = 785.80 ± 86.98 g, n = 771; Reyes-González and González-Solís 2012). It has 

rounded head, long wings and short tail. All ages show dull plumage, grayish brown on the 

upperparts and head, almost entirely white underparts, except the outer edge of the wings, 

which is dark. The upper tail coverts often form a narrow white band which separates tail and 

rump. CorǇ͛s shearwaters have a stout and long yellowish bill with blackish tip, which very 

patent nostrils; legs are pinkish (figures 1, 2). 

 

 

Figure 1. Calonectris diomedea borealis off Pico (Azores) on 12 June 2009. © Gerard Visser 

There is a slight but clear sexual dimorphism in size within each breeding pair, with males 

being on average 10% heavier than females (Navarro et al 2008). The width and length of the 

head and bill are the characters that best discriminate both sexes, with higher values in males 

(Lo Valvo 2001). Also, the upper tip of the bill is more developed in males (Navarro et al 2008). 
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Figure 2. Calonectris diomedea diomedea off Menorca on 17 July 2008. © Juan J Bazán 

Cory's Shearwater has the typical seabird morphology, with long slender wings adapted to 

make the most of the sea surface winds (González-Solís et al 2009). Its flight strategy is based 

on long glide sequences combined with sequences of active flapping, in which increases the 

energy consumption considerably. This flight pattern varies with wind speed although the bird 

always flies near the sea surface: with increasing wind speed decreases the frequency and 

duration of flapping flight and increases distance from the surface (Paiva et al 2010). 

CorǇ͛s shearǁater is a pelagiĐ seaďird that exclusively breeds on islands of the northeast 

Atlantic Ocean (subspecies C. d. borealis) and the Mediterranean Sea (subspecies C. d. 

diomedea) between 15 and 40oN and 28 and 33oW, concretely on Azores, Madeira, Selvagem, 

the Canaries and the Balearics (Bauer and von Glutz Blotzheim 1987). Its main wintering areas 
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are located at the confluence of the Brazil and Malvinas Currents on the continental shelf off 

the coast of Uruguay and southern Brazil, in the Canary Current off the coast of Western 

Sahara, Mauritania and Senegal, and in the Benguela and Agulhas Currents from the waters off 

Namibia to Mozambique Channel and the Indian Ocean. Therefore, most individuals are trans-

equatorial migrants which carry out loop-like migrations once a year (figure 3). 

 

  

Figure 3. Migratory routes of five individuals which wintered in the southern Atlantic and Indian 

Oceans (from González-Solís et al 2007). 

Cory's Shearwater lives at sea, mostly exploiting neritic zones on the continental shelves but 

also some oceanic areas, coming ashore only during the reproductive period. It uses warm and 

temperate waters of the subtropical North Atlantic and the Mediterranean. They are often 

associated with areas of high biological productivity and ocean fronts, emerging areas of deep 

water, or extensive continental shelves where prey on small surface animals, mainly small 

epipelagic fish, but also cephalopods and crustaceans. 

CorǇ͛s “hearwater is essentially a diurnal species, which invests much more time foraging 

during day time, while resting on the water most of the night time (Catry et al 2011). However, 

it is believed to be active at night, especially in moonlit nights during migration (Reyes-

González and González-Solís 2012). In the vicinity of the breeding colonies is largely nocturnal 

and only enters the nest at night, apparently to avoid predators. 

Arrival in the breeding grounds begins in late February and early March, when large groups of 

individuals come near the colonies (Thibault et al 1997). A few weeks later there is an exodus 

from the colony that lasts around 20 days. During this period the colony is timely visited by 

males, always at night, which defend their caves of conspecifics until the female comes to lay. 

During this pre-laying period females seldom visit the colony (Jouanin et al 2001). 

Females lay one single egg in late May or early June, immediately after their return to the 

colony (Ramos et al 2003). The incubation period spans seven to eight weeks, in which both 

members of the couple take long bouts (sometimes longer than one week; Bauer and von 

Glutz Blotzheim 1987). The juveniles fledge 12 to 14 weeks after hatching, in late September 

and October (Bauer and von Glutz Blotzheim 1987). 
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GEOLOCATORS 

 

 This section is largely based on excerpts from Fox (2010). It is meant to provide the 

basics to understand the nature of the data used. 

Obtaining new information on the natural world involves direct observation, measurement 

and experimentation. However, this can be challenging for species that are cryptic, rare or 

impossible to track continuously and directly. As a result, information on the life history, 

behavior, physiology, and ecology of many animals is scant or non-existent. Bio-loggers 

constitute a way around this problem; provide basic knowledge on the function of free-ranging 

organisms that can be useful to manage and conserve species and their habitats and to 

mitigate human impacts.  

͞The scientific field of bio-logging has existed for many years, but recent advances in electronic 

miniaturization and digital information processing and storage are providing new insights into 

the hidden lives of animals that can only be studied vicariously, that is, indirectly through the 

use of technology. Bio-logging generally involves an animal- borne instrument that monitors or 

records aspects of an animal's biology (e.g. behavior, movements, and physiology) and its 

environment. For example, bio-logging instruments can record video or still images of animal 

behavior and record data from a variety of sensors that monitor location and locomotion 

(three-dimensional movement), physiology (body temperature, heart rate, blood oxygen 

concentration), and environmental variables (ambient temperature, light level, oxygen 

concentration, salinity, sound). As bio-loggers become smaller and more data rich, our 

understanding of and capability to predict how animals function and interact with their 

environment grow larger͟ (Davis 2008). 

The geolocator is a logger equipped with a battery, an in-built microprocessor, a clock and a 

memory for data storage. It is encapsulated in a clear, water resistant package, with two 

external terminals for command and data transfers. The whole piece is mounted onto a plastic 

ring and attached on the leg of the bird. The aim of any attachment is to be of minimum size 

and weight, to cause as little danger to the tagged animal as possible and not to affect its 

behavior. It is paramount that the active part of the light sensor faces away from the body of 

the animal and is not shaded. 

The loggers deployed to the birds in the sample were Mk 4, which take a light level reading at 

one-minute intervals and, from those, saves to memory the maximum light measurement 

every recording interval (ten minutes). The value recorded at the end of each 10-minute 

period ranges from zero (minimum light sensitivity) to 64 (maximum light sensitivity). 

Light level geolocation is the calculation of position from ambient light level readings with 

reference to time, and is a highly effective technique for tracking long distance migratory 

species. After data download, decompressed data are processed using special software to 

estimate position: latitude from day/night length, and longitude from the absolute time of 

local midday/midnight. The accuracy of this technique is affected by a number of factors 

including season, latitude, cloud cover, interference from artificial light sources, changes in 

sensor orientation, etc. For these reasons, an average error ± SD of no better than 185 ± 115 

km should be expected for a flying seabird. In addition, for two or three weeks around each 

equinox, when day length is approximately equal everywhere, the calculation of latitude is 
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unreliable or impossible (longitude is unaffected by equinox) with threshold level geolocation. 

These errors will affect tremendously any calculation that depends on position, as 

moonrise/moonset and night-Moon overlap estimates. 

Mk 4 loggers also record wet/dry information. This is achieved by measuring conductivity; 

hence the wet state will only be recorded if the water is salty. Mk 4 sample for wet/dry every 3 

seconds and make a record of the total number of samples wet every 10 minutes. Given the 

sampling interval of 3 seconds, the value recorded at the end of each 10 minute period ranges 

from zero (always dry) to 200 (always wet). 

Shading, cloud and fog are thought to be the main uncontrollable sources of error. The intense 

artificial light of industrial line-fishing areas causes interference. Location fixing will only be 

possible when there is a daylight period and a dark night period within any 24 h. The 

determination of the sunset and sunrise times from the light data is, by far, the most uncertain 

step in the method and contributes the largest error. This is mostly due to unknown weather 

and shading conditions. The more these conditions differ from those at the time of the 

calibration, the larger the error. 

After download, logger files should be edited and analyzed with the TransEdit2 program (figure 

4) to obtain sunset and sunrise values corresponding to a chosen threshold value. The aim is to 

match the threshold value to a Sun elevation angle of about –5 degrees (when the light level is 

changing most rapidly and the Sun is still below the horizon). Unfortunately, data are usually 

far from ideal and need further processing. Each individual sunrise and sunset curve should be 

visually considered for acceptance and an appropriate confidence level applied to it. 

 

 

Figure 4. TransEdit2 screenshot showing the process to obtain sunrise and sunset values. Time is on 

the x axis, light on the y axis. The green and red vertical lines give sunset and sunrise for a threshold 

fixed at light = 30, respectively. 

The Compensate movement box is usually best turned on. Once the transition times have been 

converted into locations using astronomical formulae, this function goes some way to 

compensate for bird movement. For example, a bird flying west will see a longer day period 

than a static target at a point half way through its jourŶeǇ, ďeĐause it ͞folloǁs͟ the Sun. 

Therefore, the latitude calculation needs to be compensated depending on the change on 

longitude. The compensation assumes the bird has been moving uniformly between sunrise 

and sunset (noon data) or sunset and sunrise (midnight data) and is based on the last plotted 

point (therefore, if the last point has an erroneous longitude value then the next point will be 
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poorly compensated). Fast flying birds moving north or south will also produce some change in 

day length which will shift the apparent noon position and result in longitude error. 

 

Mkϰ loggers haǀe a ŵass of aďout ϭϬ g, less thaŶ Ϯ% the ďird͛s ŵass. Igual et al (2005) and 

Passos et al (2010) showed that light loggers including the Mk 4 neither affect neither the well-

being nor the behavior of seabirds. 
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DEFINITIONS 

 

Numerous concepts and variables will be used in the sections hereafter. Before 

proceeding, I provide their definitions and how they have been obtained so that their meaning 

and significance can be understood. 

 

Annual cycle 

 Life history stages of birds are known to have a circannual periodicity (Gwinner 2003): 

they largely repeat migration, reproduction and molt every year approximately in the same 

dates. Here, I refer to four phases of the annual cycle of CorǇ͛s “hearǁater: 

 Breeding: is the seasoŶ that ďegiŶs ǁith the ďirds͛ arriǀal iŶto their ĐoloŶies aŶd fiŶishes ǁith 
the post-nuptial migration. It encompasses all the reproductive period and its different 

phases, although it may also include other life history stages such as the onset of plumage 

molt. 

 Post-nuptial migration: is the journey that birds carry out from the breeding to the wintering 

grounds in the fall. 

 Wintering: is the period that spans from the end of the post-nuptial migration until the onset 

of the pre-nuptial migration. Birds winter in a vast but concrete pelagic area year after year.  

 Pre-nuptial migration: is the journey back from the wintering to the breeding grounds that 

birds carry out in late winter or early spring. 

I am treating each one of these phases as homogeneous, although birds engage in different 

stages within each phase, such as incubation or brooding during the breeding season, which 

may entail radical changes of behavior, and therefore of activity patterns. 

 

Photoperiod and natural night 

The photoperiod is defined as the time elapsed from sunrise until sunset calculated at 

the local position, and taken from the logger files. 

Natural night is defined as the interval of darkness from sunset until the next sunrise, 

therefore encompassing two consecutive dates. 

 

Activity 

  At sea activity can be coarsely classified in two categories: flight and foraging. 

Activity is one of the primary data obtained by the loggers, and the response variable in most 

of the analyses. As it has been already mentioned, activity is recorded as a summary of the 

conductivity sensor every ten minutes, and ranges from 0 (always dry) to 200 (always wet). 

The resolution of this variable is relatively poor for estimating real number of landings or to 

estimate bout lengths, for instance. 



AĐtiǀitǇ aŶd ŵigratioŶ of CorǇ͛s “hearǁater                                                                                                         10 

 

 

Flight activity is defined as the time spent off the water. By subtracting the original activity to 

200, I obtained more intuitive values: flight activity ranges, then, from 0 (always on/in the 

water) to 200 (always off the water) for each recorded interval. 

CorǇ͛s shearǁaters are striĐt pelagiĐ ďirds eǆĐept iŶ the ďreediŶg seasoŶ, at the ďegiŶŶiŶg of 
which males defend their nests, and later on both members of the pair take long bouts in their 

burrow. Loggers will record continuous activity off the water in this situation, as well as an 

anomalous daylight pattern because of the bird covering the sensor (figure 5). I have removed 

the dates in which this false flight activity happened. 

 

Figure 5. Light record for individual 2298001 from June 15 until June 22. Normal registers show null 

light levels for the night time and light levels = 64 for the daytime. This bird was incubating during the 

interval 16-2 June. These days show an anomalous spiky pattern compared to the rectangular one 

corresponding to non-incubating days. 

However, during the pre-laying and the chick-rearing periods birds also enter their burrows 

exclusively at night, altering also the true activity pattern. This noise has not been removed, 

although the period and the duration of these visits are relatively short. 

I also considered separately diurnal and nocturnal flight activity as the flight activity during 

daytime and the natural night time, respectively. 

For comparative purposes (for instance, between day and night), it is necessary to correct 

absolute activity values. For this reason, I defined two new metrics of flight activity: 

 Relative flight activity is the total diurnal or nocturnal flight activity divided by the total 

flight activity accumulated between two consecutive sunrises. 

 Corrected flight activity is the total diurnal or nocturnal flight activity multiplied by the 

fraction of daytime or night time in 24 h, respectively. 

 

Landing activity can be interpreted as a proxy of foraging activity, and it is defined as the 

number of 10-minute intervals (the logger resolution) in which the bird shifts from the wet to 

the dry state at least once. Thus, it is a count variable that takes values 0 or 1 for each 10-

minute interval. 
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This is a coarse approach to the real landing activity since it is impossible to determine the 

number of state shifts within each 10-minute interval from the logger summary. One knows for 

certain that there has been no state change for activity values equal to 0 or 200, and that there 

has been one state change for activity values equal to 1 or 199. For values from 2 to 198 we 

can expect an increase of the number of landings in the interval 200 to 100, and then a more 

or less symmetrical decrease in the interval 100 to 0 depending on factors such as the wind 

ĐoŶditioŶs, tiŵe of daǇ, phase of the aŶŶual ĐǇĐle, digestiǀe state ;͚full͛ to ͚huŶgrǇ͛Ϳ or deŶsitǇ 
of prey.  However, this potential gradient was not considered here since the estimation of the 

real number of landings from the logger activity record would need additional empirical 

information. 

 

Lunar phase 

Lunar phases are created by changing angles (relative positions) of the Earth, the 

Moon and the Sun, as the Moon orbits the Earth. Lunar phase is the same at any position on 

the Earth and it ranges from 0o (New Moon) to 180o (Full Moon). 

Some additional astronomical basics are needed to understand and interpret the results 

associated to lunar phase and lunar month. 

A synodic month is defined as the average time between new moons and has been observed 

to be 29.53059 days (29 days, 12 hours, 44 minutes, 2.8 seconds) long. A new moon or a full 

moon happens when the Moon crosses the plane that is perpendicular to the Earth's orbital 

plane and passes through the centers of the Earth and the Sun. Interestingly, the Moon 

finishes its orbit around the Earth in 27.32166 days, but it has not finished a full cycle until it 

reaches the point in its orbit where the Sun is in the same position (sidereal month). A synodic 

month is longer than a sidereal month because the Earth-Moon system is orbiting the Sun in 

the same direction as the Moon is orbiting the Earth. Therefore, the Sun appears to move with 

respect to the stars, and it takes about 2.2 days longer for the Moon to return to the apparent 

position of the Sun. 

 

Night-Moon overlap 

 Night-Moon overlap is the number of hours of moonlight during the natural night. In 

general there is a positive correlation between the lunar phase and the night-Moon overlap, 

i.e. when lunar phase is increasing from new to full Moon, the Moon tends to be more hours 

visible during the night time. 
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DATASET 

 

 Basic information on each bird identity is being linked to the logger primary data and 

to one environmental cue (Moon phase) with the aim to develop the final dataset that has 

been used in this work. 

 

Basic information of the bird sample 

The dataset is based on 20 breeding birds from the Veneguera colony in Gran Canaria 

captured in June and July 2007, which were deployed with Mk 4 loggers for approximately one 

year. The basic information of this sample (table 1) is: 

 Bird identity: number reference of the metal band attached onto one leg with which they 

are individually marked 

 Sex 

 Deployment and recovery dates of the logger attached to each individual. 

 

Logger data 

The data registered by the logger consist of time, conductivity and light 

measurements. TransEdit2 software allows the estimation of other variables, of which I took 

two geographical positions per date, and the dusk and dawn times. These data are further 

elaborated to obtain the photoperiod, and the natural night (see Definitions). 

 

Phenology data 

 IŶitial dates for the four priŶĐipal eǀeŶts that diǀide the iŶdiǀidual͛s aŶŶual ĐǇĐle are 
also estimated from logger data (table 1). 

Arrival at the breeding colonies is estimated as the first day that the bird is anew within the 

home range of its breeding colony. 

Arrival at the wintering area is estimated as the first day that the bird enters the core area of 

its own wintering range, as defined by the positions of the same birds during the wintering 

period subsequent to the arrival. 

Commencement of pre-nuptial and post-nuptial migration is estimated as the first day in which 

the bird is out of its own wintering range or out of the home range of its breeding colony, 

respectively. 
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Individual Sex Deployed Recovered Post-nuptial Wintering Pre-nuptial Breeding 

2196001 1 20/07/07 01/05/08 19/11/07 05/12/07 20/02/08 17/03/08 

2201001 2 18/06/07 01/05/08 28/11/07 31/12/07 09/02/08 14/03/08 

2202001 2 21/07/07 28/04/08 15/11/07 04/12/07 14/02/08 15/03/08 

2208001 2 25/07/07 29/04/08 22/11/07 02/12/07 25/02/08 30/03/08 

2276001 2 16/06/07 01/05/08 13/11/07 01/12/07 14/02/08 10/03/08 

2278001 1 16/07/07 25/04/08 30/10/07 27/11/07 13/02/08 29/02/08 

2282001 1 20/07/07 01/05/08 06/12/07 24/01/08 16/03/08 06/04/08 

2285001 1 20/07/07 01/05/08 19/11/07 06/12/07 18/02/08 04/03/08 

2287001 2 23/07/07 30/04/08 21/11/07 04/12/07 13/02/08 29/02/08 

2288001 2 25/07/07 30/04/08 20/11/07 16/12/07 20/03/08 11/04/08 

2290001 2 20/07/07 28/04/08 13/11/07 04/12/07 21/02/08 17/03/08 

2291001 1 16/07/07 30/04/08 21/11/07 15/12/07 06/03/08 22/03/08 

2292001 1 16/07/07 28/04/08 10/11/07 03/12/07 05/02/08 16/02/08 

2294001 2 25/07/07 20/07/08 02/12/07 30/12/07 17/02/08 04/03/08 

2296001 2 24/07/07 27/04/08 20/11/07 17/12/07 03/03/08 29/03/08 

2297001 1 16/07/07 26/04/08 11/11/07 06/12/07 08/02/08 19/02/08 

2298001 2 20/07/07 21/07/08 01/12/07 30/12/07 19/02/08 18/03/08 

2299001 1 16/07/07 26/04/08 04/11/07 02/12/07 03/02/08 21/02/08 

2300001 1 20/07/07 29/04/08 18/11/07 13/12/07 29/02/08 10/03/08 

2303001 1 16/07/07 02/05/08 14/11/07 05/12/07 21/02/08 16/03/08 

Table 1. Basic information and phenology data used in this work. 

 

Moon data 

 Moon data have been obtained from The Institut de Mécanique Céleste et de Calcul 

des Éphémérides (IMCCE) and downloaded from: 

 http://www.imcce.fr/fr/ephemerides/formulaire/form_ephepos.php 

Moonrise and moonset varies with latitude and longitude, and calculations require a complex 

algorithm. A calculator of moonrise and moonset is implemented in package moonsun in R. 

The instruction to obtain them is easily applied as a function using date and position: 

f= function(M){options( latitude = M[1], longitude = M[2] ) 

as.gmt( moon.rst( jday = jd( M[5], M[4], M[3] ) ) )} 

From moonrise and moonset can be derived the night-Moon overlap (see Definitions). 

 

http://www.imcce.fr/fr/ephemerides/formulaire/form_ephepos.php
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Time data 

All time data are referred to the Greenwich meridian time (GMT). 

 

Final dataset 

 I removed records from the complete dataset corresponding to the date of 

deployment and before it, and the records corresponding to the date of recovery and after it. I 

also removed the dates in which individuals were inferred to be incubating , as indicated by 

anomalies in their light record. The latter were defined as dates from May, June and July (the 

ones in which the incubation is known to happen in this species) for which the mean light 

value registered during daytime was 90% of the mean daytime light value for the whole 

period. 
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DATA TREATMENT AND ANALYSES 

 

 Data management, plots and analyses have been carried out with R (The R Foundation 

for Statistical Computing 2012). 

 Activity and positional data are quite noisy, they have an oscillating pattern that has to 

be graphically treated in order to present cleaner plots. I applied to the photoperiod, and the 

activity series an arithmetic moving average of period n = 7 in order to smooth out the original 

spiky curves. 

 

Sample versus individual activity and migration patterns 

I studied the aĐtiǀitǇ aŶd ŵigratorǇ patterŶs of CorǇ͛s “hearǁater at the saŵple leǀel 
(considering all 20 individuals in the sample). I also checked patterns at the individual level 

(each individual separately) to verify if the sample pattern deviates heavily from them.  

The central limit theorem states that, given certain conditions, the mean of a sufficiently large 

number of independent random variables, each with finite mean and variance, will be 

approximately normally distributed. Although sample size is small (n = 20), I assumed that 

variables would tend to be normally distributed, including phenology variables as in figure 6. 

 

Figure 6. Empirical distribution of the date of initiation of the post-nuptial migration in the sample. 

The blue line is the pdf of a normal distribution with        and     s. 

 

 Following this assumption, I have used the mean in plots and analyses as an appropriate 

descriptor of the sample. 

Julian date

d
e
n

s
it

y

305 310 315 320 325 330 335 340

0
.0

0
0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

5
0
.0

6
0
.0

7



AĐtiǀitǇ aŶd ŵigratioŶ of CorǇ͛s “hearǁater                                                                                                         16 

 

Missing values 

 I omitted from analyses the cases with missing values. 

 

Factors influencing activity 

Atmospheric and sea ĐoŶditioŶs ŵaǇ haǀe a stroŶg effeĐt oŶ the aĐtiǀitǇ of CorǇ͛s 
Shearwater at small time scales: head winds or rain may force individuals to detour or to stop 

along their migratory journeys; overcast skies may reduce visibility, especially at night, making 

flight and food search difficult; rough seas may have similar effects on foraging. Despite their 

ŵore thaŶ likelǇ iŶflueŶĐe oŶ the ďirds͛ aĐtiǀitǇ, I disregarded iŵpleŵeŶtiŶg theŵ iŶ this studǇ 
because Mk 4 geolocators only provide two positions per day and their positional error is large 

(185 ± ϭϭϱ kŵͿ, ǁhile CorǇ͛s “hearǁaters ĐaŶ flǇ ϭ.ϬϬϬ kŵ iŶ oŶe siŶgle daǇ͛s ruŶ. To illustrate 

this let͛s iŵagiŶe that the center of a storm of 200 km of radius is placed right on the midnight 

location fix exactly at the fixation time; taking into account the maximum error of 300 km, the 

storm could actually be 100 km away from the real position of the bird, and therefore have no 

influence on its activity. On the other hand, a storm can fully intercept a full moonlit leaving 

the bird in a pitch-dark night, hence reducing the real night-Moon overlap. 

Here, I largely focused on the influence of Moon and photoperiod, which seemingly are the 

main factors that shape the activity patterns at a large scale. However, I also explored the 

influence of other predictors in the models, namely, annual phase and geographic position. 

I have built multiple regression models to assess the factors that may influence flight activity 

(assumed to be normally distributed), and Poisson regression for the landing activity (a 

counting variable). I avoided building models with many factors and multiple interactions. I 

selected the multiple regression model which maximizes the adjusted R2, and the Poisson 

regression model with minimum AIC. 

I explored nocturnal activity because of two reasons: to ascertain the factors that influence 

nocturnal migration and to ascertain if the landing activity is influenced by lunar phase too, as 

is been shown in other shearwaters (Yamamoto et al 2008). 

The annual phase is a categorical variable that I introduced in the models as four dummy 

variables (breeding, pre-nuptial migration, post-nuptial migration, winter). 

I built three groups of models: 1) for the whole time series, 2) for the post-nuptial migration 

period, and 3) for the pre-nuptial migration period. 

 

Periodicity 

 I analyzed autoregressive–moving-average ARMA (p, q) models using the residuals of 

the three best multiple regression models for the nocturnal flight activity: for the whole time 

series and the two migration periods. I built the eight possible models using low p 

autoregressive and q moving-average terms, concretely I gave them values = {0, 1, 2}. 

To select the best model I used the Box-Jenkins methodology (Box and Jenkins 1970). First, I 

checked for stationarity; next, I dismissed lags beyond 10% of the sample size used (the first 
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three lags for the migration periods). Then, I selected the model with lower AIC and with 

significant coefficients whose absolute values were larger than the standard errors. Finally, I 

built the autocorrelation function and the partial autocorrelation function diagrams from the 

residuals of these ARMA (1, 1) models in order to verify if there remained significant 

coefficients. 

ARMA models are useful to reveal the correlational structure in a time series. 

Spectral analysis provides an approach to identify the dominant and harmonic frequencies in a 

time series. I implemented this analysis to complement regression models and to reveal, if 

present, periodicities that can be directly linked to environmental cues. Thus, a dominant 

frequency= 0.034 would show a lunar month period (period= 1/freq), because the dataset 

contains daily data. To make a straightforward interpretation of the raw periodogram, I 

transformed the frequency of abscises into period. 

 

Factors influencing migration 

 I provide graphical evidence of the correlation between migratory phenology and 

some factors that may have influence over the former. 

A hatched vertical line on figures 8 to 12 indicates the opening date of the wind gates across 

the Intertropical Convergence Zone in 2002 (Felicísimo et al 2008). This line clearly shows that 

the end of the African summer monsoon sets the earliest likely date of the post-nuptial 

migration. 

I have generated contour plots with plot.surface() of package fields based on models built from 

thin plate spline regression and using nocturnal flight activity as dependent variable and 

overlap + phase as independent variables. 

I also fitted smooth spline regression lines to scatterplots of nocturnal activity versus latitude. 

A smoothing spline is a locally weighted average of the y's based on the relative locations of 

the x values and is an appropriate approach to reveal non-linear relations between variables. I 

generated these lines along with their standard errors applying function sreg() of package 

fields. This function fits a cubic spline to bivariate data using least-squares. 
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RESULTS AND DISCUSSION 

 

Circadian patterns 

CorǇ͛s “hearǁater is largelǇ a diurŶal speĐies as reǀealed by the activity record of 

loggers (figure 7). Its flight activity shows a bimodal daily pattern which peaks at crepuscular 

hours, whereas its landing activity shows a plateau during day time. 

 

Circannual patterns 

Total daily activity shows a moderate pattern throughout the year (figure 8): 

 Flight activity is highest in August, drops to its minimum in early November, suddenly peaks 

in late November, drops back to the minimum during the whole winter, rises back from mid 

February until reaching its maximum in April, and descends slowly until June from which it 

bounces back over. 

 Landing activity is more irregular and is not as complementary to flight activity as one would 

expect: peaks several times during the incubation period, drops to the annual minimum from 

then until the onset of the post-nuptial migration, plateaus during the whole winter season 

and drops back again with the onset of the pre-nuptial migration. 

Visual comparison between nocturnal and diurnal corrected flight activities shows that diurnal 

ones are always greater. Interestingly, both activities are moderately to highly parallel (figure 

9). When overlapping the photoperiod, we can also confirm a high parallelism: the absolute 

values of the slopes (obtained from a simple linear regression of the standardized values) are 

similar. The steep increase in slope of the photoperiod as the annual phases change is a 

consequence of the birds͛ ŵigratioŶs, not its cause (although migration could be triggered 

from a certain photoperiodic threshold, with the actual onset date fine-tuned by means of 

other environmental cues). 

Corrected landing activity shows a more complex pattern (figure 10), with diurnal landings 

moderately to strongly correlated to photoperiod (especially during the non-breeding season) 

and overall nocturnal landings poorly correlated. The linear correlation coefficients for the 

whole interval are: 

rnocturnal = -0.093, p < 0.001 ; rdiurnal = 0.380, p < 0.001 

Diurnal activity is apparently greater than nocturnal activity when we take the whole dataset. 

Both parametric and non-parametric tests assume that data are not correlated, therefore, the 

usual paired tests (Wilcoxon or t-test) cannot be used. A way around this problem is analyzing 

the time series of the difference between values of the original series (not done). 

These differences in the daily activity routine raise a logical question: Are night time and day 

time patterns different?  There are especially striking differences between them in the landing 

activity (figure 10). 
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Figure 7.  A) Hourly flight activity pattern for each annual phase. B) Hourly landing activity pattern for 

each annual phase. 

Values of total activity have been averaged over the whole sample. Dark gray rectangles indicate 

night time over the whole period, light gray rectangles night time that only happens partially during 

the whole period, white rectangles indicate day time. Lines show mean ± SD, (continuous and 

hatched, respectively). 
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Figure 8. Total daily flight versus landing activity. Grey rectangles show the two migration periods. The 

hatched vertical line indicates the end of the summer African monsoon (which starts in early June) 

after which the prevailing westerly winds drop to a minimum. Annual phases are abridged in capital 

at the bottom. 

 

 

Figure 9. Nocturnal versus diurnal corrected flight activity. The gold line shows the evolution of 

photoperiod throughout the year at the mean local position (range = 11.69 - 14.72 h). Notice that 

direct comparison is not possible because of the different scales. Caption of figure 8 provides an 

explanation of the remaining elements. 

The next logical question that rises is: Does the Moon exert an influence on the nocturnal 

activity? It does. Figure 11 shows a strong influence of Moon phase on the nocturnal flight 

activity in the post-nuptial migration. Surprisingly, Moon phase also seems to exert an 

influence on diurnal activity, as it suggests the overlap between several peaks. Figure 12 also 

shows a strong influence of Moon phase on the nocturnal landing activity in the pre-nuptial 

migration, and perhaps throughout the year, although with a certain lag. Diurnal landing 

activity seems much less influenced although there is a hint of peak overlaps between April 

and June.  
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Figure 10. Nocturnal versus diurnal corrected landing activity. The gold line shows the evolution of 

photoperiod throughout the year at the mean local position of the birds (range = 11.69 - 14.72 h). 

Notice that direct comparison is not possible because of the different scales. Caption of figure 8 

provides an explanation of the remaining elements. 

 

 

Figure 11. Diurnal and nocturnal corrected flight activity in relation to Moon phase. Caption of figure 8 

provides an explanation of the remaining elements. 

 

Activity patterns within the annual cycle 

CorǇ͛s Shearwater reduces its activity as day-length grows shorter, coinciding with the 

onset of brooding. Its flight activity peaks with migration, as expected. Winter is a phase in 

ǁhiĐh CorǇ͛s “hearǁater eŶgages priŶĐipallǇ iŶ foragiŶg, proďaďlǇ ďeĐause of ďoth a lack of 

competing tasks and a need to rebuild physical condition after the strenuous breeding efforts. 

Oǀerall, CorǇ͛s “hearǁater avoids photoperiods with longer night than day: it lives in a 

perpetual summer, as other shearwaters do (Shaffer et al 2006), probably to exploit oceans 

resources at their production peak. 

F
re

q
u
e
n
c
y
 o

fd
iu

rn
a
l l

a
n
d
in

g
s

D
e
p
lo

y
m

e
n
t

1
 J

u
l'0

7

1
 A

u
g
'0

7

1
 S

e
p
'0

7

1
 O

c
t'0

7

1
 N

o
v
'0

7

1
 D

e
c
'0

7

1
 J

a
n
'0

8

1
 F

e
b
'0

8

1
 M

a
r'
0
8

1
 A

p
r'
0
8

1
 M

a
y
'0

8

1
 J

u
n
'0

8

1
 J

u
l'0

8

15

20

25

4

6

8

10

12

14

F
re

q
u
e
n
c
y
 o

f 
n
o
c
tu

rn
a
l l

a
n
d
in

g
s

BREEDING PNM WINTERING PRM

D
e
p
lo

y
m

e
n
t

1
 J

u
l'0

7

1
 A

u
g
'0

7

1
 S

e
p
'0

7

1
 O

c
t'0

7

1
 N

o
v
'0

7

1
 D

e
c
'0

7

1
 J

a
n
'0

8

1
 F

e
b
'0

8

1
 M

a
r'
0
8

1
 A

p
r'
0
8

1
 M

a
y
'0

8

1
 J

u
n
'0

8

1
 J

u
l'0

8

1000

2000

3000

4000

N
o
c
tu

rn
a
l f

lig
h
t 
a
c
tiv

ity

Dates

2000

3000

4000

5000

6000

7000

D
iu

rn
a
l f

lig
h
t 
a
c
tiv

ity
 (

s
)

BREEDING PNM WINTERING PRM BREEDING



AĐtiǀitǇ aŶd ŵigratioŶ of CorǇ͛s “hearǁater                                                                                                         22 

 

 

Figure 12. Diurnal and nocturnal corrected landing activity in relation to Moon phase. Caption of 

figure 8 provides an explanation of the remaining elements. 

 

Factors influencing activity 

The multiple regression models that best fit the whole time series using the nocturnal 

flight activity as response variable are the ones that include annual phase as predictor (table 

2). 

Model significant predictors R
2
 adj (%) 

whole time series 

phase + photoperiod + latitude + longitude all 15.8 

phase * photoperiod + latitude + longitude all 16.1 

phase * photoperiod all 6.1 

phase + photoperiod  all 5.9 

AP all 20.7 

AP + phase*photoperiod all 23.9 

AP + phase + photoperiod all 23.5 

AP + phase + photoperiod + latitude + longitude all 24.0 

latitude + longitude all 12.7 

overlap + phase + photoperiod pha, pho  6.0 

post-nuptial migration 

overlap + phase all 25.4 

phase + photoperiod all 31.6 

overlap + phase + photoperiod all 38.2 

pre-nuptial migration 

overlap + phase all 39.2 

phase + photoperiod all 37.9 

overlap + phase + photoperiod all 40.3 

Table 2. Summary of the multiple regression models fitted to the whole time series and the two 

migration periods using the nocturnal flight activity as response variable. Shading indicates selected 

model. AP= annual phase (actually 4 dummy variables). 
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Poisson regression models that use nocturnal landing activity as response variable also point 

lunar phase as an important factor that shapes this activity (table 3). The models that best fit 

the whole time series are the ones that include lunar phase, annual phase and position as 

predictors. Phase and photoperiod are the best predictors for the migration periods. 

model significant predictors AIC 

whole time series 

phase + photoperiod + latitude + longitude pha, lat, long 45,052 

phase * photoperiod + latitude + longitude lat, long 45,046 

phase * photoperiod all 45,225 

phase + photoperiod  all 45,234 

AP winter 45,171 

AP + phase*photoperiod pho, winter 45,080 

AP + phase + photoperiod pha, winter 45,084 

AP + phase + latitude + longitude pha, lat, long, winter 45,037 

latitude + longitude all 45,112 

latitude + longitude + phase all  45,055 

post-nuptial migration 

overlap + phase all 4,384.1 

phase + photoperiod all 4,315.1 

overlap + phase + photoperiod all 4,280.9 

pre-nuptial migration 

overlap + phase all 2,893.9 

phase + photoperiod all 3,061.7 

overlap + phase + photoperiod all 2,879.2 

Table 3. Summary of the Poisson regression models fitted to the whole time series and the migration 

periods using nocturnal landing activity as response variable. Shading indicates selected model. AP= 

annual phase. 

The Moon has a strong influence on the nocturnal flight activity, especially during the 

migration period. Reasons behind this remain unexplored. The Moon does not seem to be 

useful as a navigation compass. On the other hand, intense moonlight may increase the 

efficiency of flight in birds that glide near the sea surface by increasing the input of visual 

information. 

Yamamoto et al (2008) showed the lunar influence on the landing activity of a congeneric, the 

Streaked Shearwater Calonectris leucomelas. My conservative approach to the estimation of 

the frequency of landings could explain the relatively weak influence of the lunar phase on this 

variable. According to Phalan et al (2007) there is a very high correlation (r= 0.94) between the 
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number of wet bouts and the number of landings in albatrosses. Although this relation could 

differ in shearwaters, future analyses should implement this approach. 

Output of the best models is included in the annexes. 

 

Periodicity 

 ARMA (1, 1) models are the ones that best fit the activity data (table 4). The whole 

time series is not stationary, as shown by the autocorrelation function (figure 13), and needs 

other techniques to be analyzed. 

series AR (SE) MA (SE) intercept (SE)  2
 AIC 

whole series 0.993 (0.002) -0.944 (0.006) 0.514 (415.2) 1.07e8 83,830 

post-nuptial 0.566 (0.077) -0.159 (0.090) -8.016 (255.3) 7.95e7 8,529 

pre-nuptial 0.997 (0.001) -0.944 (0.005) 4,276.9 (850.5) 1.16e8 5,402 

Table 4. Output of the best ARMA (1, 1) models. SE= standard error. 

 

Figure 13. Autocorrelation function and partial ACF for the whole time series based on the residuals of 

the best ARMA model based on its stead on the best multiple regression model obtained for the 

nocturnal flight activity. 

Time series for the nocturnal flight activity during the migration periods seem to be stationary 

and lack seasonality. Nocturnal flight activity during the migratory period has a significant 

coefficient of autocorrelation of order 1, and therefore the flight activity of one night is only 

correlated to the one of the previous night (figure 14). 

The estimated coefficients of the ARMA models, however, are very close to 1 suggesting that 

ARMA models do not adjust well. To overcome this problem, I fitted a differential filter of 

order 1 to the ARMA(1, 1) models for the migration periods. Now, the autoregressive 

coefficients are significant but not as close to 1 but moving-average coefficients still are (table 

5, figure 15). These results suggest that the analysis of these series still needs further work to 

be properly addressed. 
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series AR (SE) MA (SE)  2
 AIC 

post-nuptial 0.369 (0.077) -1.000 (0.014) 9.75e7 5,387 

pre-nuptial 0.435 (0.043) -0.994 (0.085) 8.04e7 8,517 

Table 5. Output of the ARIMA (1, 1, 1) models. SE= standard error. 

Circadian periods are easily revealed in the spectral density plots (figure 16). The 24 h signal is 

very prominent, although there is a strong signal for a period of 12 h especially for the flight 

activity that could be associated with the night/day transition or an internal clock. 

Circannual patterns are less evident and the separate analyses of nocturnal and diurnal flight 

and landing activities yield some strange periods. The most important periods are all divisors 

of 384, which is 13 times the length of a synodic lunar month (29.54 days). All periodograms 

obtained for the different types of activity considered show 384 and 128 among their three 

most important harmonics (table 6). 

  

 

Figure 14. Autocorrelation function and partial ACF for the segment of the time series that comprises 

A) the post-nuptial migration, and B) the pre-nuptial migration, based on the residuals of the best 

ARMA model based on its stead on the best multiple regression model obtained for the nocturnal 

flight activity. 
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These results are really striking, since instead of revealing periods that are harmonics of the 

solar Ǉear shoǁ diǀisors of the ͞luŶar Ǉear͟, which is the multiple of lunar months closest to 

oŶe solar Ǉear: ϭϯ. Thus, ϭϵϮ, ϭϮϴ, ϵϲ, ϳϲ, ϲϰ, ϱϰ.ϴ, Ϯϵ.ϱϰ aŶd ϭϲ diǀide the ͞luŶar Ǉear͟ ďǇ Ϯ, 
3, 4, 5, 6, 7, 13 and 24, respectively. A lunar month periodicity is only apparent in the 

periodogram of the nocturnal flight activity (figure 17). 

 

 
Figure 15. Partial ACF and ACF for the ARIMA (1, 1, 1) models based on the best ARMA (1, 1) models 

previously obtained. A) Post-nuptial migration; B) Pre-nuptial migration. 

 

periodogram periods 

nocturnal flight activity 192, 128, 384, 76, 29.54 

diurnal flight activity 128, 384, 96, 192, 54.8 

nocturnal landing activity 384, 192, 128, 96 

diurnal landing activity 384, 128, 96, 16, 64 

Table 6. Most important periods in descendant order for the daily activity periodograms. 
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Figure 16. Periodograms of hourly flight activity (left) and hourly landing activity (right). The two most 

prominent spikes correspond to the 24.00 and 12.00 h harmonics, respectively. 

 

 
Figure 17. Periodogram of nocturnal flight activity for the whole interval of study. The five most 

prominent spikes in descendent order are: 128, 192, 384, 96 and 29.54 days. 
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 Onset of migration may depend on multiple factors, such as lunar phase, photoperiod, 

location of the winter area or sex. Protandry, the earlier arrival of males at the breeding 

grounds is a pervasive phenomenon in bird migration (Alerstam 1982). The 10 males in the 
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see table 7). Differences are non-significant however (Wilcoxon test: W = 31, p = 0.16), but this 

lack of significance can be an artifact produced by low sample size. 

A mild protoginy, the earlier migration of females, happens in some species (Mills 2005). Males 

in the sample start the post-nuptial migration five days earlier than females (median values). 

Again, this difference is not significant (Wilcoxon test: W = 26.5, p = 0.08). 

Analogous comparisons of the onset of the pre-nuptial migration and of the arrival at winter 

areas yield similar results (p> 0.05), although closer to significance ought to the dispersion of 

the values. 

sex 

 

onset of post- 

nuptial migration 

arrival at 

winter areas 

onset of pre- 

nuptial migration 

arrival at 

breeding areas 

males (10) 16/11/07 ± 10d 06/12/07 ± 7d 19/02/08 ± 12d 07/03/08 ± 14d 

females (10) 21/11/07 ± 8d 10/12/07 ± 16d 18/02/08 ± 5d 16/03/08 ± 19d 

sample (20) 19/11/07 ± 9d 06/12/07 ± 6d 19/02/08 ±  9d 15/03/08 ± 16d 

r 0.25 0.52 0.37 -0.30 

Table 7. Median ± median absolute (days) deviation dates for the onset of each annual phase by sex 

(sample size within parenthesis). Bottom row: coefficients of correlation between each date and lunar 

phase (all p < 0.05). 

Duration of pre-nuptial migration is believed to be shorter than post-nuptial migration 

(Bauchinger and Klaassen 2005). The mean ± SD obtained for the sample indicates that this is 

also the Đase for CorǇ͛s “hearǁater ;Ϯϭ.ϮϬ ± 7.35 and 24.00 ± 8.28, respectively), although 

differences are non-significant again (Wilcoxon pair test: V = 73, p-value = 0.24). 

The effect of likely predictors of onset and arrival of migration, such as lunar phase, 

photoperiod, sex, colony of origin and geographic position could be tested using generalized 

linear models. Unfortunately, the sample size is way too small to build reliable model: there 

are only 10 males and 10 females. Nevertheless, correlation coefficients suggest a moderate 

influence of the Moon phase on the onset of each annual phase (table 7). 

A hidden factor on the Moon influence is night-Moon overlap. If moonlight helps increasing 

the efficiency of nocturnal flight, then it seems logic that the more hours of moonlight in the 

night the better for the flying bird. During the post-nuptial migration the flight activity of 

CorǇ͛s “hearǁater increases as both night-Moon overlap and lunar phase increase; however, 

flight activity increases with lunar phase but is nearly independent of night-Moon overlap 

during the pre-nuptial one (figure 18). Day-length grows longer (i.e. night-length grows 

shorter) during the post-nuptial migration (see figures 9 and 10), pushing the birds to increase 

their activity in nights with large night-Moon overlap, especially as the Moon waxes. Day-

length is approximately constant during the pre-nuptial migration, and therefore birds only 

increase their effort with waxing Moon. 

When we think of the factors that may influence migration phenology we have in mind 

invariant states (such as sex), and present or recently happened conditions. However, 

conditions lying ahead in time and/or space may have an even stronger influence. 
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In figures 8 to 12, I marked with a vertical hatched line the end of the African summer 

monsoon. During the monsoon, prevailing near-surface winds in the central Atlantic show a 

dominant westerly component, and form a low pressure belt from French Guiana to the 

Mauritania-Senegal coast at the so called Intertropical Convergence Zone (Felicísimo et al 

2008). This belt constitutes an aerial barrier because it would increase the energy required to 

CorǇ͛s “hearǁater iŶ order to Đross it. All the birds in the sample, as well as those included in 

the study by Felicísimo et al (2008) started the postnuptial migration after the end of the 

African summer monsoon. 

 

 

Figure 18. Contour plots showing the relationship of nocturnal flight activity with night-Moon overlap 

and with lunar phase in A) the postnuptial migration and B) the pre-nuptial migration. The plot has 

been built from the best multiple regression models and fixing phase and overlap. 
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On the other hand, spring arrivals may be predicted by the North Atlantic Oscillation, as 

showed Vähätalo et al (2004). As far as I know, this influence remains unexplored in seabirds. 

  

 

Figure 19. Spline lines (blue) fitted to the scatterplot of latitude versus A) accumulated nocturnal flight 

activity, and B) frequency of nocturnal landings. The top two plots show the standard error of the 

spline lines (hatched vertical segments). 

As implied by Felicísimo et al (2008), the equatorial zone is a geographic barrier that migratory 

seaďirds, iŶĐludiŶg CorǇ͛s “hearǁaters, ǁould trǇ to leaǀe ďehiŶd as sooŶ as possiďle. “ŵooth-

spline lines fitted to the relationship between latitude and activity indicate that the latter 
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increases around the equator, suggesting that the Intertropical Convergence Zone is a 

geographic barrier to migration, especially during the post-nuptial journey (figure 19). 

The latitude at which the maximum nocturnal flight activity is reached lies below the equator 

in the post-nuptial migration and above it in the pre-nuptial migration (figure 20). 

 

Figure 20. Derivatives of the spline fitted values for the migration periods.
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CONCLUSION 

 

The aĐtiǀitǇ of CorǇ͛s “hearǁater is priŵarilǇ shaped ďǇ the aŶŶual phase, ďut also ďǇ 
photoperiod and lunar phase, with the geographic location also playing an important role 

when considering the whole time series. The latter is not surprising as this species basically 

forages in specific oceanic areas (Navarro et al 2008). The lunar influence on the nocturnal 

flight activity is especially strong during the migration periods, particularly at the individual 

level (some birds have r> 0.8). The speĐies͛ aŶŶual aĐtiǀitǇ patterŶ shoǁs strikiŶg parallelisŵs 
between photoperiod and flight activity especially from the end of the incubation period until 

the onset of the winter period, and between photoperiod and diurnal landing activity from the 

onset of the postnuptial migration until the onset of the breeding period. 

One of the most interesting results of this work comes from the analysis of periodicity, since 

CorǇ͛s “hearǁater seeŵiŶglǇ folloǁs ĐirĐadiaŶ rhǇthŵs at a sŵall tiŵe sĐale ďut luŶar rhǇthŵs 
at larger sĐales, ĐoŶĐretelǇ a ĐirĐaŶŶual rhǇthŵ liŶked to the ͞luŶar calendar͟ ;ϭϯ sǇŶodiĐ luŶar 
months). 

Migration is the period of flight activity par excellence; however, factors that determine its 

phenology are not obvious. For example, most migratory passerines molt before leaving their 

breeding grounds (Jenni and Winkler 1994), but large birds cannot squeeze a complete molt 

episode ďetǁeeŶ ďreediŶg aŶd ŵigratioŶ ;‘ohǁer et al ϮϬϬϵͿ. CorǇ͛s “hearǁater is Ŷot aŶ 
exception (Ramos et al 2009). Large non passerine birds also have a very protracted 

reproduĐtiǀe period, ǁhiĐh iŶ CorǇ͛s “hearǁater lasts uŶtil “eptember or early October (Reyes-

González and González-Solís 2012). However, even individuals that failed to breed successfully 

during the season delayed their migration until October. The most likely factor that has fixed a 

time threshold for the initiation of the post-nuptial migration is the African summer monsoon. 

CorǇ͛s “hearǁater is a glidiŶg seaďird that uses surfaĐe ǁiŶds for aŶ optiŵal flǇiŶg ;GoŶzález-

Solís et al 2009), and avoids the blocking winds that would meet before the end of the 

monsoon. Since the eŶd of the ŵoŶsooŶ Đould ǀarǇ ďetǁeeŶ Ǉears, ďirds ŵaǇ leaǀe a ͞seĐuritǇ 
ŵargiŶ͟ to aǀoid getting trapped. Precisely, flight activity peaks while birds cross these 

latitudes, suggesting that this is an aerial barrier. 

Males and females tend to differ in their migration timing, with males tending to leave and 

arrive earlier. Proper analyses to reveal this and other likely factors that may influence 

migration timing await a larger sample size, however. Small sample size has also precluded 

reliable testing of the duration of the migratory journey, although differences between them 

go in the expected direction, with shorter pre-nuptial compared to post-nuptial durations. 

 

Future research 

Geolocators have widened the scope of the study of seabirds: migratory routes, winter 

areas, foraging behavior, exposure to commercial fishing lines, among many others (Burger 

and Shaffer 2008) have been ascertained. Further sophistication and miniaturization of bio-

loggers in general will allow going still much farther; by increasing battery duration, memory 

capacity and data resolution and type ornithologists will increase their knowledge on the 
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biology of seabirds while minimizing disturbance to the individuals. Indeed, new geolocator 

models record the activity at a finer time resolution, which will result in a more realistic 

estimation of the landing activity. 

The relevance of this work has been reduced by the small sample size. Future research will 

obviously have to overcome this limitation. 

Inaccuracy of annual phase dates has been another limitation of this work. Activity could be 

used to estimate the onset of migration. Onset of migration is accompanied by a sudden 

change of flight activity (figure 8, 9 and 11). Before application, it should be ascertained, 

however, if there is a preǀious iŶĐrease iŶ ͞ǀoid͟ aĐtiǀitǇ or )uguŶruhe, aŶd for hoǁ loŶg it 
anticipates migration on average. This can only be achieved if geographic position is 

sufficiently precise. 

Another improvement associated to precise data on geographic position is the implementation 

of weather data into the analyses. The combination of real-time and real-position 

environmental data will allow small time scale analyses and their influence on behavior. 

This work is a contribution to the still incipient study field of seabird activity, and many 

ecological questions related to this topic can be still addressed using the current geolocators: 

migration stopovers, prey-seabird correlations, carry over effects of migration on breeding 

success, comparison between colonies and years, variation in activity between individuals, 

learning process in immature birds, synchronization of processes such as egg laying, colony 

arrival and prelaying period. 
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MULTIPLE REGRESSION MODELS 

1) Whole series 

 

lm(formula = actn ~ fen + phase + photoperiod + lat + long, data = final) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-7329.3 -2703.9  -763.9  1612.0 12199.1  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) -3363.874   1031.884  -3.260  0.00112 **  

fenmpn        565.518    241.314   2.343  0.01915 *   

fenmpr       2823.701    229.396  12.309  < 2e-16 *** 

fenwin      -3270.786    244.512 -13.377  < 2e-16 *** 

phase          11.761      1.069  10.998  < 2e-16 *** 

photoperiod   526.506     77.242   6.816 1.06e-11 *** 

lat            10.569      4.152   2.545  0.01095 *   

long           19.481      4.375   4.453 8.68e-06 *** 

--- 

“igŶif. Đodes:  Ϭ ͚***͛ Ϭ.ϬϬϭ ͚**͛ Ϭ.Ϭϭ ͚*͛ Ϭ.Ϭϱ ͚.͛ Ϭ.ϭ ͚ ͛ ϭ  
 

Residual standard error: 3594 on 4396 degrees of freedom 

Multiple R-squared: 0.2409,     Adjusted R-squared: 0.2397  

F-statistic: 199.3 on 7 and 4396 DF,  p-value: < 2.2e-16  

 

2) Post-nuptial migration 

 

lm(formula = actn ~ overlap + phase + photoperiod, data = fmpn2) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-7995.2 -2129.3  -113.2  2035.8 10779.1  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) 20539.779   1936.711  10.605  < 2e-16 *** 

overlap       357.601     51.076   7.001 9.24e-12 *** 

phase          19.772      3.237   6.109 2.17e-09 *** 

photoperiod -1321.302    135.996  -9.716  < 2e-16 *** 

--- 

“igŶif. Đodes:  Ϭ ͚***͛ Ϭ.ϬϬϭ ͚**͛ Ϭ.Ϭϭ ͚*͛ Ϭ.Ϭϱ ͚.͛ Ϭ.ϭ ͚ ͛ ϭ  
 

Residual standard error: 3159 on 451 degrees of freedom 
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Multiple R-squared: 0.386,      Adjusted R-squared: 0.3819  

F-statistic: 94.49 on 3 and 451 DF,  p-value: < 2.2e-16 

 

3) Pre-nuptial migration 

 

lm(formula = actn ~ overlap + phase + photoperiod, data = fmpr2) 

 

Residuals: 

    Min      1Q  Median      3Q     Max  

-9453.9 -2227.5  -179.6  1890.3  9678.8  

 

Coefficients: 

             Estimate Std. Error t value Pr(>|t|)     

(Intercept) 13256.455   4910.327    2.70 0.007361 **  

overlap       214.637     62.036    3.46 0.000624 *** 

phase          56.721      4.318   13.13  < 2e-16 *** 

photoperiod  -944.746    387.201   -2.44 0.015308 *   

--- 

“igŶif. Đodes:  Ϭ ͚***͛ Ϭ.ϬϬϭ ͚**͛ Ϭ.Ϭϭ ͚*͛ Ϭ.Ϭϱ ͚.͛ Ϭ.ϭ ͚ ͛ ϭ  
 

Residual standard error: 3375 on 281 degrees of freedom 

Multiple R-squared: 0.4091,     Adjusted R-squared: 0.4028  

F-statistic: 64.84 on 3 and 281 DF,  p-value: < 2.2e-16 
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POISSON REGRESSION MODELS 

1) Whole series 

 

glm(formula = nmar ~ lat + long + phase, family = poisson, data = final) 

 

Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-6.0640  -1.8896  -0.3904   1.2299   8.5589   

 

Coefficients: 

              Estimate Std. Error z value Pr(>|z|)     

(Intercept)  2.888e+00  7.429e-03 388.696  < 2e-16 *** 

lat          1.706e-03  1.588e-04  10.745  < 2e-16 *** 

long         2.143e-03  2.459e-04   8.714  < 2e-16 *** 

phase       -5.397e-04  7.041e-05  -7.666 1.78e-14 *** 

--- 

“igŶif. Đodes:  Ϭ ͚***͛ Ϭ.ϬϬϭ ͚**͛ Ϭ.Ϭϭ ͚*͛ Ϭ.Ϭϱ ͚.͛ Ϭ.ϭ ͚ ͛ ϭ  
 

(Dispersion parameter for poisson family taken to be 1) 

 

    Null deviance: 25535  on 4403  degrees of freedom 

Residual deviance: 25075  on 4400  degrees of freedom 

AIC: 45055 

 

2) Post-nuptial migration 

 

glm(formula = nmar ~ overlap + phase + photoperiod, family = poisson,  

    data = fmpn2) 

 

Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-4.8029  -1.6587  -0.5442   0.9330   7.7505   

 

Coefficients: 

              Estimate Std. Error z value Pr(>|z|)     

(Intercept)  4.4829718  0.1401188  31.994  < 2e-16 *** 

overlap     -0.0234024  0.0038925  -6.012 1.83e-09 *** 

phase       -0.0007211  0.0002481  -2.906  0.00366 **  

photoperiod -0.1028961  0.0100010 -10.289  < 2e-16 *** 

--- 

“igŶif. Đodes:  Ϭ ͚***͛ Ϭ.ϬϬϭ ͚**͛ Ϭ.Ϭϭ ͚*͛ Ϭ.Ϭϱ ͚.͛ Ϭ.ϭ ͚ ͛ ϭ  
 

(Dispersion parameter for poisson family taken to be 1) 
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    Null deviance: 2362.1  on 454  degrees of freedom 

Residual deviance: 2194.1  on 451  degrees of freedom 

AIC: 4280.9 

 

3) Pre-nuptial migration 

glm(formula = nmar ~ overlap + phase + photoperiod, family = poisson,  

    data = fmpr2) 

 

Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-5.5287  -1.7838  -0.4188   1.1700   7.2770   

 

Coefficients: 

              Estimate Std. Error z value Pr(>|z|)     

(Intercept)  5.0266882  0.3465444  14.505  < 2e-16 *** 

overlap     -0.0579118  0.0043338 -13.363  < 2e-16 *** 

phase       -0.0047316  0.0002999 -15.776  < 2e-16 *** 

photoperiod -0.1129703  0.0277404  -4.072 4.65e-05 *** 

--- 

“igŶif. Đodes:  Ϭ ͚***͛ Ϭ.ϬϬϭ ͚**͛ Ϭ.Ϭϭ ͚*͛ Ϭ.Ϭϱ ͚.͛ Ϭ.ϭ ͚ ͛ ϭ  

 

(Dispersion parameter for poisson family taken to be 1) 

 

    Null deviance: 1897.7  on 284  degrees of freedom 

Residual deviance: 1566.6  on 281  degrees of freedom 

AIC: 2879.2 

 


