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ON THE FIXED-POINT SET OF AN AUTOMORPHISM

OF A GROUP

B. A. F. Wehrfritz

Abstract: Let φ be an automorphism of a group G. Under various finiteness or sol-

ubility hypotheses, for example under polycyclicity, the commutator subgroup [G,φ]

has finite index in G if the fixed-point set CG(φ) of φ in G is finite, but not conversely,
even for polycyclic groups G. Here we consider a stronger, yet natural, notion of what

it means for [G,φ] to have ‘finite index’ in G and show that in many situations, in-
cluding G polycyclic, it is equivalent to CG(φ) being finite.
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Endimioni and Moravec in [2] prove that if φ is an automorphism
of a polycyclic group G with its fixed-point set CG(φ) finite, then G
modulo [G,φ] = 〈g−1 · gφ : g ∈ G〉 is also finite (so [G,φ] is large),
but the converse is false, even if φ has order 2, CG(φ) = 〈1〉 and G is
polycyclic and metabelian. These and related results are extended in [9]
to, in particular, soluble groups of finite rank. Is there some stronger
notion of [G,φ] being large such that in these situations CG(φ) is finite
if and only is [G,φ] is large in this sense? We will see below that the
answer to this is yes.

Let φ be an automorphism of a group G and define the map γ if G
into itself by gγ = [g, φ] = g−1 · gφ. Then ker γ = {g ∈ G : gγ = 1}
is CG(φ) and assumptions on CG(φ) should give information about Gγ.
The problem is that γ is not usually a homomorphism and Gγ is not
usually a subgroup ofG. If S is any subset ofG say that S has finite index
in G if S contains a subgroup of G (normal if you wish) of finite index
in G. If Gγ has finite index in G then so does [G,φ], since [G,φ] = 〈Gγ〉.
We shall see that in suitable situations CG(φ) is finite if and only if
Gγ has finite index in G, and these situations include polycyclic groups
and soluble groups of finite rank.

We start by defining the classes of group we shall be mainly consid-
ering. A group G has finite Hirsch number if it has a series of finite
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length, each factor of which is either locally finite or infinite cyclic, the
number of infinite cycles here being an invariant of G, called the Hirsch
number of G. For any set π of primes a group G satisfies min-π (min-q
if π = {q}) if the set of π-subgroups of G satisfies the minimal condition
under inclusion.

An FAR group (that is, a finite-abelian-ranks group, also called an
S0-group) is a soluble group with finite Hirsch number satisfying min-q
for every prime q. See [5] and [6] for discussions and alternative defi-
nitions of this class of FAR groups. Note in particular that all soluble
groups of finite (Prüfer) rank and hence all polycyclic groups are FAR
groups.

Theorem 1. Let G be a finite extension of a soluble FAR group and
φ an automorphism of G such that φp = 1 for some prime p. Define
maps γ and ψ of G into itself by

gγ = g−1 · gφ and gψ = g · gφ · gφ2 · · · gφp−1.

The following are equivalent.

a) CG(φ) is finite.

b) Gγ has finite index in G.

c) kerψ has finite index in G.

Here kerψ = {g ∈ G : gψ = 1}. Again note that ψ is not usually
a homomorphism and kerψ is not usually a subgroup of G; also always
Gγψ = {1}, so kerψ ⊇ Gγ. The main part of the theorem is the
equivalence of a) and b). The equivalence of a) and c) just for polycyclic-
by-finite groups is almost immediate from Corollary C of [1]. Further
Theorem B of [1] implies that in Theorem 1 above CG(φ) being finite is
equivalent to ker(ψ2) having finite index in G.

Sometimes one can deduce that G/[G,φ] is periodic from the period-
icity of CG(φ), e.g. see Lemma 1 of [11]. If S is a subset of a group G,
say that G is periodic modulo S if for each g ∈ G there is a positive inte-
ger n with gn ∈ S. Note that this is weaker than requiring S to contain
a normal subgroup N of G with G/N periodic, even in the simplest of
cases. For example, let G denote the additive group of the integers Z
and S = {±ipi : i = 0, 1, 2, . . . }, where pi denotes the (i + 1)-th prime.
Trivially G is periodic modulo S, but if s ∈ S with s 6= 0 it is easy to see
that 2s /∈ S, so S contains no non-zero subgroup of G. Also say G has
finite exponent modulo S if for some integer e > 0, ge ∈ S for all g ∈ G.
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Theorem 2. Let G be a finite extension of a soluble FAR group and
φ an automorphism of G such that φp = 1 for some prime p. Define
maps γ and ψ of G into itself by

gγ = g−1 · gφ and gψ = g · gφ · gφ2 · · · gφp−1.

The following are equivalent.

a) CG(φ) is periodic.

b) There is a finitely generated nilpotent subgroup N of G contained
in Gγ such that G is periodic modulo N .

c) G is periodic modulo Gγ.

d) G is periodic modulo kerψ.

We can squeeze a little more out of this theorem.

Corollary. Let G be a group that has a local system consisting of finite
extensions of soluble FAR groups. Suppose φ is an automorphism of G
satisfying φp = 1 for some prime p. With γ and ψ as in Theorem 2, the
following are equivalent.

a) CG(φ) is periodic.

b) G is periodic modulo Gγ.

c) G is periodic modulo kerψ.

So, suppose in Theorem 2 (or its corollary) that G is a (torsion-free)-
by-finite FAR group. If CG(φ) is periodic, then CG(φ) is finite. Hence if
G is periodic modulo Gγ (resp. kerψ), then CG(φ) is finite by Theorem 2
and consequently by Theorem 1 the subset Gγ (resp. kerψ) has finite
index in G. Hence in particular if G is polycyclic-by- finite and G is
periodic modulo Gγ or kerψ, then G has a normal subgroup N with
kerψ ⊇ Gγ ⊇ N and G/N periodic (i.e. finite). This does not hold for
soluble FAR groups in general, indeed not even for minimax such groups.

Example 1. There is a metabelian minimax group G of rank 3 with
an automorphism φ of order 2 such that CG(φ) is periodic and yet Gγ
and kerψ do not contain normal subgroups N of G such that G/N is
periodic.

If φ has infinite order then we can no longer define ψ, but at least we
can say something about Gγ.

Theorem 3. Let G be a finite extension of a nilpotent FAR group and let
φ be an automorphism of G with γ defined as in the previous theorems.
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a) If CG(φ) is finite, then Gγ has finite index in G.

b) If φ has finite order, say φm = 1, with gψ = g · gφ · gφ2 · · · gφm−1
as usual, then the following are equivalent.

i) CG(φ) is finite.

ii) Gγ has finite index in G.

iii) kerψ has finite index in G.

Theorem 4. Let G be a finite extension of a soluble FAR group and φ
an automorphism of G with CG(φ) finite. Then with γ as above

(Gγ)[3] = {xγ · yγ · zγ : x, y, z ∈ G}

has finite index in G.

Theorem 4 strengthens Part ii) of the theorem of [9], which says that
G/[G,φ] is finite. Throughout this paper if φ is an automorphism of a
group G and m is a positive integer with φm = 1, we define maps γ
and ψ of G into itself by

gγ = [g, φ] = g−1 · gφ and gψ = g · gφ · gφ2 · · · gφm−1

for all g ∈ G. Notice that Gγψ = {1}, so always kerψ ⊇ Gγ. However
Gψγ need not be {1} in general. If m = p is prime we write p for m in
the definition of ψ. Also ker(ψr) ⊇ kerψ for every positive integer r.

Obviously the very much simpler case where the group G is abelian is
basic to our results. In this case γ and ψ are endomorphisms, so Gγ =
[G,φ] and kerψ are subgroups of G, ker γ = CG(φ) and G/CG(φ) ∼=
Gγ ≤ G. Thus if G is also finitely generated, then CG(φ) is finite if and
only if G/[G,φ] is finite. In general if φ has finite order then G has a
local system of φ-invariant, finitely generated subgroups and a simple
localization argument, together with a special case of Lemma 3 below
shows that CG(φ) is periodic if and only if G/[G,φ] is periodic.

For abelian groups in general we cannot replace periodic by finite
here and this already just for abelian groups shows the necessity for
some sort of rank restrictions at least in Theorem 1. If G is a free
abelian group of infinite rank and φ is inversion on G, then |φ| = 2,
CG(φ) = 〈1〉 and G/[G,φ] is an infinite elementary abelian 2-group.
(The above already shows that if G is a torsion-free abelian group with
G/[G,φ] periodic and |φ| finite, then CG(φ) = 〈1〉.) If G is a direct
product of infinitely many Prüfer 2-groups and again φ denotes inversion,
then |φ| = 2, G/[G,φ] = 〈1〉 and CG(φ) is an infinite elementary abelian
2-group. (If G is periodic abelian with CG(φ) = 〈1〉, then G = [G,φ],
e.g. by [3, 10.1.1].)
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Let A be the direct product of Prüfer q-groups Aq, one for each
prime q, and let φ denote the automorphism of A of infinite order that
for each q raises each element of Aq to its (1 + q)-th power. Then
Aqγ = (Aq)

q = Aq and so [A, φ] = Aγ = A. Also CA(φ) is the direct
product of cyclic groups of order q, one for each prime q, so CA(φ) is
infinite. Clearly A is an FAR group with rank 1 and Hirsch number 0.
Consequently the converses of Theorem 3a) and Theorem 4 are both
false.

However for special FAR groups it is possible to go further. Following
the terminology of [5], a soluble group G is an FATR group (called an
S1-group in [6]) if it is an FAR group and if the set of primes q, such
that G contains an element of order q, is finite. In Proposition 3 below
we prove that if φ is an automorphism of a finite extension of a soluble
FATR group G with Gγ of finite index in G, then CG(φ) is finite. Thus
in particular, if in Theorem 3 we replace the FAR assumption by FATR,
then CG(φ) is finite if and only if Gγ has finite index in G. Theorem 4,
of course, still leaves unanswered questions.

To prove Theorem 1 we need the following four lemmas. The first
three are very elementary, but Lemma 4 is the heart of the proofs of
Theorems 1 and 2 and, in parts, of Theorems 3 and 4. Lemma 1 is
immediate from [9, Lemma 2].

Lemma 1. Let φ be a fixed-point-free automorphism of the torsion-free
abelian group A of finite rank. Then A/Aγ is finite.

Lemma 2. Let N be a normal subgroup of a group G lying in the n-th
term ζn(G) of the upper central series of G for some 1 ≤ n < ∞. Set
Ni = N ∩ ζi(G) and suppose N1 has finite exponent e. Then (Ni+1)e ≤
Ni for each i and N has exponent dividing en. If N also satisfies the
minimal condition on subgroups, then N is finite.

Proof: Let x∈N2 and g∈G. Then [xe, g] = [x, g]e = 1. Thus xe ∈ ζ1(G),
so xe ∈ N1 and (N2)e ≤ N1. A simple induction yields that (Ni+1)e ≤ Ni
for each i and the remainder of the lemma follows easily.

Lemma 3. Let φ be an automorphism of finite order m of the group G.
If G is periodic modulo kerψ, then CG(φ) is periodic. If G has finite
exponent e modulo kerψ, then CG(φ) has finite exponent dividing em.

Proof: For if x ∈ CG(φ), then xn ∈ kerψ for some n ≥ 1 and then
1 = xnψ = xn · xnφ · · ·xnφm−1 = xmn. Hence CG(φ) is periodic. If
e is such that ge ∈ kerψ for all g ∈ G, then xem = 1 and CG(φ) has
exponent dividing em.
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Lemma 4. Let φ be an automorphism of finite order m of the nilpotent
group G with C = CG(φ) a finite π-group for some finite set π of primes.
If m is a π-number and if G has finite Hirsch number and satisfies min-q
for all q ∈ π (equivalently min-π here), then Gγ has finite index in G.

Proof: Note first (e.g. by [4, 3.13] and [8, Lemma 4]) that any image of a
group with finite Hirsch number and min-q for some prime q also satisfies
min-q. Assume by induction on the Hirsch number that the lemma is
valid for groups (if any) of smaller Hirsch number than that of G.

Consider first the case where the maximum normal locally finite sub-
group T of G is finite. If G has Hirsch number 0 then G = T is finite in
this case and the claim is vacuous. Suppose G has positive Hirsch num-
ber. Then G is (torsion-free)-by-finite (e.g. by [8, Lemmas 4 and 6]).
Also G is periodic and hence finite if its centre ζ1(G) is finite (e.g. by
Lemma 2), so G has an infinite, φ-invariant, torsion-free central sub-
group Z. Then CZ(φ) = C ∩Z = 〈1〉 and (Z : Zγ) is finite by Lemma 1.
Since Zγ is infinite and torsion-free, the Hirsch number of G/Zγ is less
than that of G. Further by Lemma 1c) of [10] the order of CG/Zγ(φ)
divides (Zγ : (Zγ)m)|C|, which is a finite π-number. By induction there
exists a normal subgroup N of G of finite index with Zγ ≤ N and N/Zγ
lying in

(G/Zγ)γ = Gγ · Zγ/Zγ = Gγ/Zγ,

since if g ∈ G and z ∈ Z, then g−1 · gφ · z−1 · zφ = (gz)−1(gz)φ ∈ Gγ by
the centrality of z. Therefore Gγ ⊇ N and Gγ has finite index in G.

Now we consider the case where Oπ(G) is finite. We further induct
on the least c such that Oπ′(G) ≤ ζc(G). Obviously c is bounded by the
class of G and the case c = 0 is covered by the case completed above.
Suppose c ≥ 1 and set Z = Oπ′(G) ∩ ζ1(G) = Oπ′(ζ1(G)). Then φ acts
fixed-point freely on Z, so Z = Zγ, e.g. by [3, 10.1.1]. Again CG/Z(φ) is
a finite π-group by [10, Lemma 1c)] since by hypothesis no prime divisor
of m lies in π′, so Zm = Z. Clearly

Oπ′(G/Z) = Oπ′(G)/Z ≤ ζc−1(G/Z).

By induction there is a normal subgroup N of G of finite index with
Z ≤ N and with N/Z contained in (G/Z)γ = Gγ/Z. Then Gγ ⊇ N and
Gγ has finite index in G.

We now consider the general case. By hypothesis Oπ(G) satisfies the
minimal condition on subgroups. Hence Oπ(G) is a Chernikov group and
as such has a characteristic subgroup D of finite index that is a direct
product of a finite number, say r, of Prüfer q-groups for the various
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primes q in π. Here we induct on r, the case r = 0 having been covered
above.

Assume r > 0. By Lemma 2 the subgroup Z = Oπ(G) ∩ ζ1(G) is
infinite. Then Z contains a characteristic (in G) divisible subgroup E
of finite index, Eφ = E ≤ D, E 6= 〈1〉 and D/E is a direct product
of less than r Prüfer groups. Clearly Em = E and then CG/E(φ) is
a finite π-group by [10, Lemma 1c)] again. By induction there is a
normal subgroup N of G of finite index with E ≤ N and N/E contained
in (G/E)γ. It follows that Gγ ⊇ N and that Gγ has finite index in G.
The proof of the lemma is complete.

Proposition 1. Let φ be an automorphism of the group G with φp = 1
for some prime p such that CG(φ) is a finite π-group for some set π of
primes. Suppose G has finite Hirsch number and satisfies min-q for all
primes q ∈ π. Then Gγ has finite index in G.

Proof: By Theorem D of [1] there is a φ-invariant nilpotent normal sub-
group M of G of finite index. If Op(G) 6= 〈1〉, then Op(G)∩CG(φ) 6= 〈1〉
and p ∈ π. Thus either way G satisfies min-p and we may assume that
p ∈ π. By Lemma 4 there is a subgroup N of M of finite index with
Mγ ⊇ N . Clearly N has finite index in G and Gγ ⊇ Mγ ⊇ N . The
proposition follows.

The Proof of Theorem 1: a) implies b) by Proposition 1 and b) implies
c) since kerψ ⊇ Gγ. Finally if c) holds then CG(φ) has finite exponent
by Lemma 3. In particular CG(φ) is a π-group for some finite set π
of primes. For each prime q by hypothesis every q-subgroup of G is
a Chernikov group and Chernikov groups of finite exponent are finite.
Therefore CG(φ) is finite.

Example 2. We cannot remove the min-q condition completely from
either Theorem 1 or Proposition 1.

Example 18 of [1] constructs a group G with the following properties.
G is nilpotent of class 2 and prime exponent q and has an automor-
phism φ of prime order p 6= q such that CG(φ) has order q and Nψ 6= {1}
for all subgroups N of G of finite index. Clearly then neither Gγ nor
kerψ has finite index in G. Trivially G has Hirsch number 0 and satisfies
min-r for all primes r 6= q. Thus we do need to restrict the r-subgroups
of G at least for those primes r involved in CG(φ). Moreover in this
construction the prime p (but not the prime q) can be chosen arbitrarily.

We now come to the proof of Theorem 2. We need some further
lemmas. Lemma 5 below is a special case of [8, Lemma 15].
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Lemma 5. Let φ be an automorphism of the group G with φp = 1 for
some prime p. Suppose A is an abelian φ-invariant normal p′-subgroup
of G and set C = CG(φ) and K/A = CG/A(φ). Then K = (A∩K)C. If
C is also periodic, then so is K.

Lemma 6. Let φ be an automorphism of the group G with φp = 1 for
some prime p. Suppose A is an abelian φ-invariant normal divisible
p-subgroup of G with finite rank r and set C = CG(φ) and K/A =
CG/A(φ). Then Kp·|GL(r,p)| ≤ AC. If C is also periodic, then so is K.

Proof: Let k ∈ K. Then kγ = ap for some a ∈ A. Also ap ≡ aψ
modulo Aγ, so ap = bγ · c for some b ∈ A and c = aψ ∈ C. Hence
kγ = bγ · c = b−1 · bφ · c and

(kb−1)γ = bk−1 ·kφ · b−1φ = b ·kγ · b−1φ = bb−1 · bφ · c · b−1φ = c ∈ A∩C.

The actions of k and φ on A commute, so k and kb−1 normalize A∩C.
Then φ stabilizes the series 〈kb−1〉(A∩C) ≥ A∩C ≥ 〈1〉 and φp = 1, so

cp = [kb−1, φ]p = [kb−1, φp] = 1.

Hence if B = {a ∈ A ∩ C : ap = 1}, then c ∈ B, φ stabilizes the
series 〈kb−1〉B ≥ B ≥ 〈1〉 and B is a finite elementary abelian p-group
of rank at most r normalized by kb−1. Thus (kb−1)s centralizes B for
s = |GL(r, p)| and consequently

[(kb−1)ps, φ] = [(kb−1)s, φ]p = 1.

Therefore (kb−1)ps ∈ C, kps ∈ AC, and Kps ≤ AC. Finally if C is
periodic, then so is AC and therefore so is K.

Lemma 7. Let G be a nilpotent group with finite Hirsch number. Then
G is periodic modulo one (and hence many) of its finitely generated sub-
groups.

Proof: The upper central factors ζi(G)/ζi−1(G) of G have finite torsion-
free rank. Thus for each i there is a finite subset Xi of ζi(G) such that
ζi(G)/〈Xi〉ζi−1(G) is periodic. Set X =

⋃
iXi, where i runs over the

positive integers at most the class of G, and N = 〈X〉. We prove by
induction on the class of G that G is periodic modulo N .

If G is abelian the claim is clear. We may assume by induction that G
is periodic modulo Nζ1(G). Then if g ∈ G there exists m ≥ 1 with gm ∈
Nζ1(G), say gm = yz, where y ∈ N and z ∈ ζ1(G). Now ζ1(G)/〈X1〉
is periodic, so there exists n ≥ 1 with zn ∈ 〈X1〉 ≤ N . Consequently
gmn = ynzn ∈ N . The lemma follows.
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Proposition 2. Let G be a soluble-by-finite countable group with finite
Hirsch number satisfying min-p for some prime p. Suppose G has an
automorphism φ with φp = 1. Then the following are equivalent.

a) C = CG(φ) is periodic.
b) There is a finitely generated nilpotent subgroup N of G contained

in Gγ such that G is periodic modulo N .
c) G is periodic modulo Gγ.
d) G is periodic modulo kerψ.

Proof: Suppose C is periodic. By [4, 3.17 and 3.13] there is a character-
istic series

〈1〉 = T0 ≤ T1 ≤ · · · ≤ Ts ≤ T ≤ T∞ ≤ G
of G, where each Ti/Ti−1 is an abelian p′-group, T/Ts is a divisible
abelian p-group of finite rank, T∞/T is finite and T∞ is the maximum pe-
riodic normal subgroup of G. Then Lemmas 5 and 6 yield that CG/T (φ)
is periodic.

Now G/T is (torsion-free)-by-finite ([8, Lemmas 4 and 6] again). Thus
CG/T (φ) is actually finite and therefore (see [1, Theorem D]) G has
a φ-invariant normal subgroup H of finite index with T ≤ H and
H/T nilpotent. Since we have assumed that G is countable, it follows
from Part b) of the Proposition of [11] that H has a nilpotent sub-
group K with H periodic modulo K (note we cannot in general choose
K normal in H). Since φ has finite order we may choose K to be
φ-invariant. Further K is periodic modulo some finitely generated sub-
group L of K by Lemma 7. Again we may choose L to be φ-invariant.
Since L is finitely generated and nilpotent, so CL(φ) is finite. Conse-
quently, e.g. by Theorem 1, there is a subgroup N of L of finite index
with Lγ ⊇ N . Clearly N is finitely generated and nilpotent, G is peri-
odic modulo N and Gγ ⊇ Lγ ⊇ N . Therefore a) implies b). Trivially
b) implies c), always c) implies d), and d) implies a) by Lemma 3. The
proof is complete.

The Proof of Theorem 2: Finite extensions of soluble FAR groups are
always countable and satisfy min-q for every prime q. Thus Theorem 2
follows from Proposition 2.

The Proof of the Corollary: Suppose CG(φ) is periodic. Since φ has fi-
nite order, so G is the union of its φ-invariant subgroups X that are finite
extensions of FAR groups. Then CX(φ) is periodic and so X is periodic
modulo Xγ by Theorem 2. Consequently if x ∈ X then some positive
power of x lies in Xγ and so in Gγ. Thus a) implies b), b) implies c),
and c) implies a) as in the previous cases.
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Lemma 8. Let φ be an automorphism of a group G and A and B abelian
φ-invariant normal subgroups of G with B ≤ Aγ. Set C = CG(φ) and
K/B = CG/B(φ). Then K = C(A ∩K). If C is finite and B has finite
index in A, then K/B is finite.

We will frequently apply Lemma 8 when A is central in G. In this
case we may always choose B = Aγ. If A is torsion-free of finite rank
and C is periodic, then A/Aγ is finite by Lemma 1 and we can choose
B of finite index in A.

Proof: Let k ∈ K. Then k−1 · kφ ∈ B ≤ Aγ, so k−1 · kφ = a−1 · aφ for
some a ∈ A, (ka−1)φ = ka−1, k ∈ CA and K = K ∩ CA = C(A ∩K).
If C and A/B are both finite, then clearly K/B is also finite.

The proof of the following lemma is nearly a repeat of the proof of
Lemma 4. As with Lemma 4 it suffices in Lemma 9 to assume that G
is nilpotent of finite Hirsch number and satisfies min-q for some finite
set π of primes q. However it is messy to specify π. Apart from the
prime divisors of |C| we also need certain primes that depend on the
way φ acts on the torsion-free abelian φ-invariant sections of G. It is
simpler to assume the FAR condition and hence to assume G satisfies
min-q for all primes: q.

Lemma 9. Let φ be an automorphism of the nilpotent FAR group G
with C = CG(φ) finite. Then Gγ has finite index in G.

Proof: Assume by induction on the Hirsch number that the lemma is
valid for groups (if any) of smaller Hirsch number than that of G. Let π
denote the set of prime divisors of the order of C.

Consider first the case where the maximum normal locally finite sub-
group T of G is finite. If G has Hirsch number 0 then G = T is finite in
this case and the claim is vacuous. Suppose G has positive Hirsch num-
ber. Then G is (torsion-free)-by-finite (e.g. by [8, Lemmas 4 and 6]).
Also G is periodic and hence finite if its centre ζ1(G) is finite (e.g. by
Lemma 2), so G has an infinite, φ-invariant, torsion-free central sub-
group Z. Then CZ(φ) = C ∩Z = 〈1〉 and (Z : Zγ) is finite by Lemma 1.
Since Zγ is infinite and torsion-free, the Hirsch number of G/Zγ is less
than that of G. Further CG/Zγ(φ) is finite by Lemma 8. By induction
there exists a normal subgroup N of G of finite index with Zγ ≤ N and
N/Zγ lying in

(G/Zγ)γ = Gγ · Zγ/Zγ = Gγ/Zγ,

since if g ∈ G and z ∈ Z, then g−1 · gφ · z−1 · zφ = (gz)−1(gz)φ ∈ Gγ by
the centrality of z. Therefore Gγ ⊇ N and Gγ has finite index in G.



Fixed-Point Set 149

Now we consider the case where Oπ(G) is finite. We further induct
on the least c such that Oπ′(G) ≤ ζc(G). Obviously c is bounded by the
class of G and the case c = 0 is covered by the case completed above.
Suppose c ≥ 1 and set Z = Oπ′(G) ∩ ζ1(G) = Oπ′(ζ1(G)). Then φ acts
fixed-point freely on Z, so Z = Zγ, e.g. by [3, 10.1.1]. Again CG/Z(φ)
is a finite π-group by Lemma 8. Clearly

Oπ′(G/Z) = Oπ′(G)/Z ≤ ζc−1(G/Z).

By induction there is a normal subgroup N of G of finite index with Z ≤
N and with N/Z contained in (G/Z)γ = Gγ/Zγ. Then Gγ ⊇ N and
Gγ has finite index in G.

We now consider the general case. By hypothesis Oπ(G) satisfies the
minimal condition on subgroups. Hence Oπ(G) is a Chernikov group and
as such has a characteristic subgroup D of finite index that is a direct
product of a finite number, say r, of Prüfer q-groups for the various
primes q in π. Here we induct on r, the case r = 0 having been covered
above.

Assume r > 0. By Lemma 2 the subgroup Z = Oπ(G) ∩ ζ1(G) is
infinite. Then Z contains a characteristic (in G) divisible subgroup E
of finite index, Eφ = E ≤ D, E 6= 〈1〉 and D/E is a direct product of
less than r Prüfer groups. Also Eγ is divisible and ker(γ|E) = CE(φ)
is finite, so E ∼= Eγ and E = Eγ. Hence CG/E(φ) is a finite π-group
by Lemma 8 again. By induction there is a normal subgroup N of G of
finite index with E ≤ N and N/E contained in (G/E)γ. It follows that
Gγ ⊇ N and that Gγ has finite index in G. The proof of the lemma is
complete.

The Proof of Theorem 3: a) By Fitting’s Lemma there is a φ-invariant
nilpotent normal subgroup M of G of finite index, which clearly must
also be an FAR group. Suppose CG(φ) is finite. Then by Lemma 9 there
is a subgroup N of M of finite index with Mγ ⊇ N . Clearly then N has
finite index in G and Gγ ⊇Mγ ⊇ N . Thus Gγ has finite index in G.

b) Now suppose φ has finite order m. If Gγ has finite index in G always
so does kerψ. If kerψ has finite index in G, then CG(φ) has finite
exponent by Lemma 3. But CG(φ) is a finite extension of a nilpotent
FAR group. Consequently CG(φ) is finite.

Lemma 10. Let φ be an automorphism of the periodic soluble FAR
group G. Then every orbit of φ in G is finite. If also CG(φ) = 〈1〉, then
G = Gγ.
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Proof: We induct on the derived length of G; if G = 〈1〉 everything is
vacuous. Suppose G′ satisfies the lemma and let x ∈ G. The abelian
group G/G′ satisfies min-q for every prime q and hence has only finitely
many elements of each order. Thus xφm ∈ xG′ for some positive inte-
ger m, say xφm = xy where y ∈ G′.

By induction yφn = y for some positive integer n. Also y · yφm ·
yφ2m · · · yφm(n−1) has finite order, r say. Then

xφmnr = xy · yφm · yφ2m · · · yφm(nr−1) = x(y · yφm · · · yφm(n−1))r = x.

Thus x〈φ〉 is finite and φ has finite orbits in G.
Suppose CG(φ) = 〈1〉. If x ∈ G, then X = 〈xφi : i = 1, 2, . . . 〉 is

finite and CX(φ) = 〈1〉. Hence X = Xγ by [3, 10.1.1]. Consequently
G = Gγ.

The Proof of Theorem 4: Note first that CS(φ) is finite for every φ-in-
variant section S of G by [9, Theorem ii)]. Let π denote the set of prime
divisors of the order of CG(φ). Denote the maximum periodic soluble
normal subgroup of G by T0 and set T = Oπ′(T0). Then T = Tγ by
Lemma 10.

Now T0/T is a Chernikov group by [4, 3.17 and 3.13] (of course here
π is finite). Hence in the notation of [5] the group G/T is a finite exten-
sion of a soluble FATR group and therefore its Fitting subgroup H/T
is nilpotent and G/H is abelian-by-finite, see [5, 5.2.2]. By Theorem 3
there is a subgroup M/T of H/T of finite index with (H/T )γ ⊇ M/T ;
that is, with Hγ ·Tγ = Hγ ·T ⊇M . Replacing M by M (H:M)T we may
assume that M is characteristic in G. Then G/M is finite-by-abelian-
by-finite and hence is nilpotent-by-finite. By Theorem 3 again there is
a subgroup N/M of G/M of finite index with (G/M)γ ⊇ N/M . Con-
sequently Gγ ·M ⊇ N and therefore (Gγ)[3] ⊇ Gγ ·Hγ · Tγ ⊇ N . The
proof is complete.

Proposition 3. Let φ be an automorphism of the finite extension G of
a soluble FATR group. If Gγ has finite index in G, then CG(φ) is finite.

Proof: Now G has a characteristic series 〈1〉 = G0 ≤ G1 ≤ G2 ≤ · · · ≤
Gn ≤ G, where each Gi/Gi−1 is either a torsion-free abelian group of
finite rank or is a divisible abelian q-group of finite rank for some prime q
and G/Gn is finite, cf. [8, Lemma 4]. We induct on n and assume that
G/G1 satisfies the proposition. To simplify notation set A = G1. Then
K/A = CG/A(φ) is finite.
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By hypothesis there is a subgroup N of G of finite index contained
in Gγ. Let T be a (necessarily finite) transversal of A to K and consider
a ∈ A ∩ N . Then a = gγ for some g in G. Necessarily g ∈ K. Hence
g = tb for some t ∈ T and b ∈ A. Now tγ ∈ Kγ, which lies in the abelian
group A, so

a = gγ = g−1 · gφ = b−1(t−1 · tφ)bφ = tγ · bγ.

Therefore
⋃
t∈T tγ · Aγ ⊇ A ∩ N . But T and (A : A ∩ N) are finite.

Consequently (A : Aγ) is finite.
If A is torsion-free of finite rank, then rankA = rankAγ and CA(φ) =

ker(γ|A) is torsion-free of rank 0. Thus in this case CA(φ) = 〈1〉. Suppose
A is a divisible abelian q-group of finite rank. Then A/Aγ is finite and
divisible. Hence A = Aγ and so CA(φ) = ker(γ|A) is finite. Either way
CA(φ) is finite. Trivially CG(φ) ≤ K and CA(φ) = A∩CG(φ). Therefore
CG(φ) has order at most |CA(φ)|(K : A), which is finite.

Theorem 3 and Proposition 3 immediately yield the following.

Corollary. Let φ be an automorphism of the finite extension G of a
nilpotent FATR group. The following are equivalent.

a) CG(φ) is finite.
b) Gγ has finite index in G.

The Proof of Example 1: For any prime p let C be a Prüfer p-group and
x the automorphism of C given by cx = c1+p for all c ∈ C. Then x has
infinite order. Let A = C1×C2 be the direct product of two copies of C
and y the automorphism of A that acts as x on C1 and as x−1 on C2.
The split extension G = 〈y〉A of A by 〈y〉 is metabelian, minimax and
of rank 3.

Now G has an automorphism φ of order 2 given by yφ = y−1 and
(c1d2)φ = d1c2 (here c, d ∈ C with ci and di denoting the corresponding
elements of Ci). Then φ acts fixed-point freely on G/A and therefore
CG(φ) ≤ A, which is periodic.

Always kerψ ⊇ Gγ. Suppose N is a normal subgroup of G with
G/N periodic and kerψ ⊇ N . Then yi ∈ N for some positive integer i
and hence c−11 yic1 ∈ N for every c ∈ C. But

c−11 yic1 = yic−11 [c−11 , yi]c1 = yi[c−1, xi]1.

For any i ≥ 1 we can pick c ∈ C such that [c−1, xi] 6= 1. Then for this c
we have

(c−11 yic1)ψ = (yi[c−1, xi]1) · y−i[c−1, xi]2) 6= 1.

Thus no such N exists.
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Remark. We know from Theorem 2 that in Example 1 there is some
non-normal subgroup N of G with Gγ ⊇ N and G periodic modulo N .
Such an N is very easy to find; in fact, it is elementary to check that
N = 〈y2〉 suffices.
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