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Introduction

The motivation to pursue the project and for its particular orientation is driven

by the large-scale genomic data available. Though abundant, it exhibits noise and

sparseness, thus sound inference techniques are needed to retrieve the underlying

information. Statistics has proved fundamental in many real-world applications,

including gene finding and phylogenetics [1]. With a plethora of biological data

becoming available, it constitutes an integral part of the inference tools in Bioin-

formatics and Computational Biology.

Algebraic statistics describes statistical models via sets of polynomial equations.

Therefore, through marrying these concepts with notions from algebraic geome-

try, it provides alternative tools for studying the statistical models. In particular,

many of them can be described as real algebraic varieties ([16]). The use of alge-

braic geometry for statistical inference has demonstrated to be an efficient tool

in phylogenetics (e.g. [3], [2], [4]).

We believe that algebraic models are capable of capturing the underlying net-

work structure, while sidestepping the issue of model overparametrization. In

this work we wish to focus on genomic data that exhibits certain interactions,

e.g. transcription binding sites, splicing regulators, regulatory pathways. We

think of our observations as random variables having certain underlying struc-

ture of interactions. Natural setting to study such models is provided by the

directed graphical models commonly known as Bayesian Newtorks (Belief Net-

works). Graphical models based on directed graphs proved to be fundamental

and efficient for representing joint probability distribution over many variables.
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This refers to the situations, where either each or certain subsets of variables are

conditionally independent of all but a few of the random variables considered.

As a consequence, they are a commonly used tool on a wealth of applications,

ranging from biomedical analyses to data mining and machine learning.

In Chapter 1, we introduce the notion of marginal and conditional independence.

Next, we describe the architecture of interactions under study, directed Markov

models. Details on their algebraic characterizations and an introductory study

for a small network are given in Chapter 2. Finally in Chapter 4, we talk about

hypotheses under study, future directions and possible applications to the real-

world data
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Chapter 1

Bayesian Networks

1.1 Conditional Independence

Let (Ω,Σ, P ) be a probability space, where Ω is a sample space, Σ is the corre-

sponding σ−algebra of subsets of Ω and P a probability measure.

Definition 1.1.1. A set of events {Xj | j ∈ J} ∈ Σ, are said to be (mutually)

independent if and only if for all subsets of indices I ⊆ J we have:

∀I⊂JP (
⋂

i∈I

Xi) =
∏

i∈I

P (Xi)

Definition 1.1.2. For two disjoint sets Xi, Y ∈ Σ such that P (Y ) > 0, condi-

tional probability of Xi given the values of Y is defined as follows:

P (Xi | Y ) =
P (Xi ∩ Y )

P (Y )

Note that for any set Y occurring with a non-zero probability, P (· | Y ) defines

another probabilistic measure in Σ as any two sets having the same intersection

with Y have also the same probability.

Definition 1.1.3. Pairwise disjoint subsets Xi ∈ Σ are said to be conditionally

independent given Y (P (Y ) > 0) if and only if:

P (
⋂

i∈I

Xi | Y ) =
∏

i∈I

P (Xi | Y )
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In particular, let XA,XB,XC be three pairwise disjoint subsets of Σ (e.g. XA =

{X1, X2}). XA is conditionally independent of XB given XC (we write XA⊥XB |

XC) if:

XA⊥XB | XC ⇐⇒ P (XA, XB | XC) = P (XA | XC)P (XB | XC).

Conditional independence takes its meaning under the joint probability distribu-

tion P , that is XA⊥XB | XC [P ], however, is commonly skipped for notational

convenience. Note that if XC = ∅, then we get the independence of XA and XB.

There are five basic conditional independence axioms:

1. symmetry XA ⊥ XB | XC =⇒ XB ⊥ XA | XC

2. decomposition XA ⊥ (XB ∪XD) | XC =⇒ XA ⊥ XD | XC

3. weak union XA ⊥ (XB ∪XD) | XC =⇒ XA ⊥ XB | (XC ∪XD)

4. contraction XA ⊥ XB | (XC ∪XD)∧XA ⊥ XD | XC =⇒ XA ⊥ (XB ∪XD) |

XC

5. for strictly positive distributions P > 0, the intersection axiom holds

XA ⊥ XB | (XC ∪XD)∧XA ⊥ XC | (XB ∪XD) =⇒ XA ⊥ (XB ∪XC) | XD

The above list of statements is not exhaustive. The existence of additional ones

derived independently or partially from the above axioms, proved useful in prac-

tical computations. More details can be found in [20], [12] or [15].

From here on, we restrict our focus to the case where X = {X1, . . . , Xn} is

a collection of discrete random variables. We assume each Xi takes values on a

finite domain, [di]. The joint distribution of X, P (X1, . . . , Xn), can be viewed as

a [d1] × . . .× [dn] multidimensional table.

Definition 1.1.4. A conditional independence (CI) model MCI is formally de-

fined through a family of probability distributions satisfying a number of condi-

tional independence restrictions:

MCI = {XA1 ⊥ XB1 | XC1 , . . . , XAn
⊥ XBn

| XCn
} (1.1.1)
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where ∀i Ai, Bi, Ci are disjoint subsets of X

The CI statements XAi
⊥ XBi

| XCi
reflect the dependencies between random

variables. In this work, we focus on the CI statements derived from directed

graphs. We investigate their description as algebraic models and in particular, as

instances of algebraic varieties.

1.2 Conditional independence of BN

A particular class of conditional independence models are graphical models. The

corresponding independence statements arise from the separating properties of

the graph underlying the model. We will focus on the special case of the so-called

directed graphical models, commonly referred to as Bayesian Networks (Belief

Networks). For the reasons of being one of the fundamental tools in a wealth

of applications, these models have been widely studied. Our introduction to the

concepts and notation draws upon the one of [12].

Definition 1.2.1. A directed acyclic graph G(V,E) (DAG) is a simple graph over

a finite set of nodes V (vertices), where all the edges E are oriented (arcs) and

there are no directed cycles.

The first component, V , corresponds to the random variables in X via a

1 − 1 correspondence. Random variables defined over the nodes in a DAG, X =

{X1, . . . , Xn}, have a joint distribution p(x1, . . . , xn) = p(X1 = x1, . . . , Xn = xn).

Here, xi represents a realization of a random variable Xi. The edges represent

the (conditional) dependencies between the elements in V .

Two nodes are connected, that is e(vi, vj) ∈ E, whenever there exists an edge

vi → vj for vi, vj ∈ V . We say that two nodes are neighbours or adjacent if

either e(vi, vj) or e(vj , vi). By definition there are no directed cycles, being a

7



sequence of nodes v1, . . . , vl, s.t. ∀k = 1, . . . l − 1 e(vk, vk+1) ∈ E and e(v1, vl) ∈

E. Acyclicity assures that following the arrows in the graph, it is impossible to

return to the initial point. A parental set of vi denoted by pa(vi) is a the set of such

nodes vj for which we have e(vj , vi) ∈ E. A path between two nodes, say vi and

vj , is a set of vertices {v1, . . . , vk} s.t. ∀l = 1, . . . , k − 1 we have e(vl, vl+1) ∈ E.

The set of ancestral nodes of vi (an(vi)) consists of all the nodes vj such that

there exists a path from vj to vi (j 6= i). The set of descendants of vi, nd(vi),

are those vj , for which exists a directed path from vi to vj . Lastly, the set of

nondescendants of vi is defined to be nd(vi) = V \ ((de(vi) ∪ pa(vi)).

Recursive factorization of a probability distribution according to a DAG is based

on assigning a probability measure to each node, p(Xi, pa(Xi)) such that
∑

ij∈[di]
p(Xi = ij | (i1 . . . in) |pa(Xi)) = 1 and

p(X) =
∏

Xi∈X

p(Xi | pa(Xi)). (1.2.1)

Note: for the sake of notation we denote by (i1 . . . in) |pa(Xi) the subset of indices

corresponding to the parents of Xi. Unless stated otherwise, their realization is

assumed fixed.

A probability distribution, p, factorizes over a DAG G if (1.2.1) holds. Alter-

natively, in line with the above interpretation that a particular variable is inde-

pendent of the remaining variables given its parents, we say that the probability

distribution p is Markov given G.

Definition 1.2.2. A Bayesian Network consists of an annotated directed acyclic

graph, G, and a family of conditional probability distribution, β, for which the

recursive factorization property, (1.2.1), holds.

From here onwards a Bayesian Network will be abbreviated as BN.

Note that β represents a set of parameters that quantify the network. The family

of these conditional distributions is usually assumed fixed and chosen beforehand,

thus the factorization depends solely on the underlying network structure. Specif-

ically, if a probability distribution β is Markov given G, we say that it belongs to

the model defined by G.

8



Figure 1.1: Illustration of the equivalence classes for a Bayesian Network on five
nodes with the conditional independence model MCI = {B ⊥ C | A,A ⊥ D |
(B,C), (A,B,C) ⊥ E | D}; Left: the graphs constituting an equivalence class
Right: the essential graph representing the three-element equivalence class defined
by MCI

As a simple example, consider BN in Figure 1.1 shows a few possible graph struc-

ture with four observed nodes. Usually in direct applications the vertices have a

clear interpretation associated to them. For instance, one may consider a biomed-

ical survey with binary outcomes described by the leftmost graph in Figure 1.1.

Let us consider the effects of age the patients (A = {0 = child, 1 = adult})

examined for two types of diseases (B,C = {0 = presence, 1 = absence} )

and being a smoker (D = {0 = no, 1 = yes}) on the general level of tiredness

(E = {0 = low, 1 = high}). The factorization of the joint probability function

takes the form: p(A,B,C,D) = p(A)p(B | A)p(C | A)p(D | B,C)p(E | D).

9



1.2.0.1 Conditional independence and factorization theorem

There exists a range of independence relationships, the so-called Markov proper-

ties, that can be associated to a G. We will focus on the two predominant notions

(e.g. [12] gives a detailed overview).

As a consequence of the factorization property (1.2.1), one can define:

Definition 1.2.3. The directed local Markov property with respect to a directed

acyclic graph, G, states that any node is independent of its nondescendants given

the values of its parents:

Xi ⊥ nd(Xi)) | pa(Xi) ∀Xi ∈ V (1.2.2)

Let us define a conditional independence model corresponding to (1.2.2) on

G as

Definition 1.2.4. [Local conditional independence model ]

Mlocal = {Xi ⊥ nd(Xi) | pa(Xi) ∀Xi ∈ V ∀Xi ∈ V } (1.2.3)

Another notion of independence is provided by the global Markov property.

It is based on the concept of d−separation according to G. A set XC d-separates

XA and XB if all the paths from XA to XB are blocked. We say that a path, π,

between two nodes is blocked by elements in XC if:

1. π contains a node in XC , which is not a collider (serial or diverging)

2. π contains a node that is a collider, but it does not belong to XC and neither

does any of its descendants.

Definition 1.2.5. [Directed global Markov property]

Let p belong to a model defined by G on X. Then XA ⊥ XB | XC whenever XA

and XB are d-separated by XC in G.
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The separation property defined by the global Markov independence statements

is often denoted by ⊥G.

Analogously to the local CI model, a global conditional independence model,

Mglobal, on G is defined through the sets of directed global CI statements:

Definition 1.2.6. [Global conditional independence model]

Mglobal = {XA ⊥G XB | XC} (1.2.4)

Note that its is not difficult to see that Mlocal ⊆ Mglobal. In general, the in-

clusion is strict (e.g. the equality holds when Gs are complete).

As we will see in later in the text, conditional independence statements cor-

respond to polynomial equations on the joint distribution. Therefore, Mlocal and

Mglobal will be interpreted as algebraic sets.

The following theorem proved in [12] (p.51) links the factorization property

(probability theory) and the probabilistic independence (graph theory). It states

that a family of distributions associated to a DAG can be described in two ways,

which are equivalent.

Theorem 1.2.7. [Factorization Theorem] Let X be a set of random variables

with a joint distribution p(X) and G a DAG over X. The following statements

are equivalent:

1. p(X) obeys the directed local Markov property

2. p(X) obeys the directed global Markov property

3. p(X) factors according to G

Thus for every DAG, G, we have that a joint probability distribution p obeys

the local Markov property with respect to G if and only if it obeys the global

Markov property for G.

11



1.2.0.2 Network inference

As BN are probabilistic models, one can ask a number of questions ranging from

the identification of the underlying structure of the graph to the parameter es-

timation. The latter, assumes the network to be known and asks about the

Markovian transition matrices assigned to the arcs. Yet, there is a number of

problematic issues including the choice of the probabilistic model β, optimal data

size, dealing with missing values, overparametrization. Likewise, the number of

possible graphs grows exponentially in the number of nodes. The Weissmtein’s

conjecture states that the number of DAGs with n labeled vertices is equal to

the number of equivalence classes of the n × n (0, 1)-matrices with positive real

eigenvalues (http://www.research.att.com/∼njas/sequences/A003087, [13]). If an

is the number of DAGs with n labeled vertices, then

Rn =
n

∑

k=1

(−1)k+1

(

n

k

)

2k(n−k)an−k,

where n ≥ 1, a0 = 1. Asymptotically an converges to n!2
(n

2)
Mpn as n → ∞ , where

p = 1.488(8) and M = 0.474(74). In order to give an idea about the exponen-

tial growth of the search space through possible graphs, a few first counts for

n = 1, . . . 5 nodes are (1, 3, 25, 543, 29281).

As the conditional independence statements vary depending on the model, one

should be able to distinguish between the models based on the structure of MCI

(1.1.1). However, network identification is potentially challenged by the one-

to-many correspondence between a statistical model represented and its asso-

ciated DAGs. Even most successful algorithms for such model selection (e.g.

PC-algorithm of [17]) assume (markovian) faithfulness, that is to say, that all the

conditional statements belonging to the model can be read of the graph (have a

perfect representation in the DAG).

However, it is known that as much as one can hope is to identify the network up

to an equivalence class (see [15] for details):

Definition 1.2.8. Two directed acyclic graphs, G and G′ are said to be Markov

equivalent if Mlocal (Mglobal) agree on G and G′

12



Definition 1.2.9. A skeleton of a DAG is the set of arcs joining its vertices with

the directions removed.

Theorem 1.2.10. G and G′ are equivalent if and only if

1. G and G′ have the same skeletons

2. G and G′ have the same unmarried parents (equivalently, the same V−structure,

being its sets of colliders)

The problem of graph equivalence can be eluded by the use of the so-called

Partially Directed Acyclic Graph (PDAG). PDAGs, which bridge the properties

of undirected and directed graphs, have received a great deal of attention thus

far in the algebraic research.

This section makes mention of one the future directions of this research project

concerning the translation of the PC-algorithm into the language of algebraic

statistics (see section 3.3).

13



Chapter 2

Algebraic statistics for bayesian

newtorks

2.1 Algebraic statistical models

This section brings together the ideas described earlier in the text. Bayesian

networks can be described in two ways: implicitly by a set of conditional in-

dependence statements associated with the graph-based model, or parametri-

cally through mapping the parameters onto the set of distributions ( see Theo-

rem 1.2.7). In the next sections we introduce both approaches from the algebraic

point of view and state the Hammersley-Clifford theorem, which proves their

equivalence. The focus of hereon will be placed on the algebraic description of

the graphical models.

In order to introduce the algebraic description, we let k be an algebraically closed

field and kn be the affine n-space over k. We call k[x1 . . . xn], a ring of polynomials

in the indeterminants x1, . . . , xn and coefficients in k.

Definition 2.1.1. An algebraic statistical model is a parametric statistical model,

where the probability distribution is a polynomial function in the parameters.

Namely, if X is a vector of discrete random variables with the cardinality of

the space space m, a polynomial function is used to map the set of parameters

14



into a set of distributions.

ψ : k
n 7→ k

m,

where ∀x = x1 . . . xn ∈ kn, ψ(x1 . . . xn) = (g1(x1 . . . xn), ..., gm(x1 . . . xn))

and g1, ..., gm ∈ k[x1 . . . xn]. The description through one or more polynomial

expressions arises from the factorization of the distribution according to the graph

as defined in (1.2.1).

Definition 2.1.2. An ideal I is a subset of k[x1 . . . xn] satisfying:

1. 0 ∈I

2. if f, g ∈ I, then f + g ∈ I,

3. if f ∈ I and h ∈ k[x1 . . . xn], then hf ∈ I.

We say that an ideal is generated by f1, . . . , fn is defined if:

(f1, . . . , fn) = {
n

∑

i=1

aifi | ai ∈ k[x1 . . . xn]}

Definition 2.1.3. An algebraic set V ⊂ kn is the set of common zeroes of a

collection of polynomials S ⊂ k[x1 . . . xn]:

V = V (S) = {x ∈ k
n | f(x) = 0 ∀f ∈ S}

Definition 2.1.4. Let X ∈ Rn. The ideal of X is defined as:

I(X) = {f ∈ k[x1 . . . xn] | f(x) = 0 ∀x ∈ X}

An algebraic set is a variety if and only if the polynomials defining it generate

a prime ideal in the polynomial ring. In other words, it is an irreducible algebraic

set.

As will be shown in Sections 2.1.1 and 2.1.2 that the independence models in

(1.2.2) and (1.2.4)) can by viewed as solutions to sets of polynomial equation. On

15



the other hand, they lie in the closure of the image of a certain polynomial map

(see Section 2.1.1). the DAG Hilbert’s basis theorem states that every ideal in

k[x1 . . . xn] is finitely generated, that is for every ideal I, there exists a finite set of

polynomials fi ∈ k[x1 . . . xn], s.t. I = (f1, . . . fs). In particular, any algebraic set

V (S) is an algebraic set for a finite collection of polynomials V (S) = V (< S >

) = V (f1, . . . , fs). Therefore, so as to answer whether a probability distribution

belongs to a model, it is always possible to choose a finite list of conditions to be

checked.

As mentioned earlier in the text, graphical models can be described alge-

braically in two ways: parametrically and implicitly. Both approaches are based

on the notion that those statistical models are the zero set of a list of polynomials.

The characterization of the generating set of such polynomial equations is not a

trivial task. However, as we will see, for a certain class of models the generators

of the independence ideals are binomials.

Let pi1,...,in be indeterminants denoting p(Xi = i1, . . . , Xn = in). We let R[P] to

be the ring of polynomial functions generated by these unknowns in Rn.

For an extensive introduction to the topic refer to [14] or [19] (for Markov fields).

We briefly introduce both settings in their general form and next illustrate the

ideas and motivation for this study by focusing on the specific case of the binary

BN with three nodes.

16



2.1.1 Parametrization

Recall that X = {X1, . . . , Xn} is a collection of n discrete random variables.

Let us denote by [di] the sample space for Xi. For notational convenience, let

|di| = #[di] and N = |d1|× |dn| be the cardinality of [di] and the product space of

X, respectively. The joint distribution pi = pi1...in = P (Xk = ik)
n
k=1, i = (ik)

n
k=1

defines a table of probabilities, p = (pi). Given the condition
∑N

i=1 pi = 1, it

becomes an element of the probability simplex:

△N−1 = {p ∈ R
N : ∀i pi ≥ 0,

N
∑

i=1

pi = 1} ⊂ R
N
≥0

As mentioned in the previous sections, independence models constitute a subclass

of the general log-linear models (also referred to as toric models) and thus have

a neat representation in the parameter space of integer tables. For more details

see e.g. [10]

We introduce q to be a set of model parameters:

qi
jk := qi

ij ,(i1...in)|pa(Xi)
=k = p(Xi = ij | pa(Xi) = k) (2.1.1)

Note that k denotes here the values of the parental nodes of Xi. Formally,

k ⊆ (i1 . . . in) : ∀s ∈ kXs ∈ pa(Xi). Let R[Q] a polynomial ring spanned by these

indeterminants and d be their cardinality, that is d = |q| = #[qi
jk].

Define a matrix A = (aij) ∈ Zd×N over non-negative integers with equal sums

of column entries, that is ∀j
∑

aij = const. We label the rows of A by the

elements of R[Q] and as a consequence, the columns are the elements of R[P] in

the monomial representation in ′ . Matrix A has an associated log-linear model

consisting of a set of probability tables p such that:

MA = {p ∈ (△N−1) : log p ∈ rowspan(A)}.

The above is equivalent to stating that log p ∈ image(AT ) if there exists 1 ≤ k ≤ d

such that pi = exp(AT qk), qk ∈ Rd. This in turn provides a representation of the

map from Rd to RN :

ψ : q = (qi)
d
i=1 7→ p = (pi)

N
i=1 (2.1.2)

17



In general terms, the parameters q′s are the so-called generators of the log-linear

model and index the rows of the associated matrix A. Note that the coordinates

of ψ are polynomials in model parameters. This clearly follows from (2.1.1) and

(1.2.1). Consequently we have:

ψ : pi1...in =
∏

Xi∈X

qi
ij ,(i1...,in|pa(Xi)

)

It follows from the definition of A that the monomials on the right-hand side of

the above equation have equal degrees.

The image of ψ becomes the toric variety of the log-linear model MA. Toric mod-

els have desirable properties from the algebraic standpoint, as their ideals are

generated by binomials. It follows that the primary components of the toric ideal

will also be generated by binomials. Indeed, it is a known result that varieties

obtained through a monomial parametrization are defined by the binomial equa-

tions [18]. However, not every BN with its conditional independence structure is

toric.

image(ψ) is not in general an algebraic set, however, we can consider its

closure, image(ψ) as the smaller algebraic set containing it. It can be thus checked

that:

I(image(ψ)) = I(image(ψ)) = ker(Ψ),

where Ψ is the ring homomorphism

Ψ : R[P] 7→ R[Q], pi1,...,in 7→
∏

Xi∈X

qi
ij ,(i1...in|pa(Xj))

The above holds independently of the base field. Hilbert-Nullstellensatz (see e.g.

[7]) establishes a 1 − 1 correspondence between the radical ideals and varieties.

This results suggests that oftentimes it is convenient to work over complex num-

bers field.
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2.1.2 Implicit description

In Section 1.1 we described the construction of the conditional independence

model, MCI (see Definition (1.1.1)), defined by the set of restrictions on the sub-

sets of random variables (XA, XB, XC) in X. As before, we assume that random

variables are discrete and Xi take values in [di]. In order to describe the indepen-

dence statements XA ⊥ XB | XC implicitly, we introduce a set of indeterminants

piaibic = P (XA = ia, XB = ib, XC = ic) in R[P]. Each of those expressions

is obtained by marginalization of the joint probability pi = pi1...in = P (X1 =

i1, . . . , Xn = in), ∀ik ∈ [dk]. The saturation of an indeterminant piaibic with re-

spect to the full space boils down to integrating out the remaining variables. Thus

the saturated statements take the form:

piaibic = p+ia+...ib+...ic+.

In the discrete case the statement XA⊥XB | XC boils down to rank-one

restrictions placed on the corresponding |dC| (recall |dC| = #[dC ]) matrices of

size [dA] × [dB]. This, in turn, is equivalent to the vanishing condition on all the

minors of the above matrices. Namely,

XA ⊥ XB | XC ↔ piaibicpjajbic − piajbicpjaibic∀ia, ja ∈ [dA], ib, jb ∈ [dB], ic ∈ [dC ]

(2.1.3)

Note that the number of such equations equals
(

|dA|)
2

)(

|dB|)
2

)

× |dC|).

The polynomials defined in (2.1.3) generate an ideal in R[P] that we will call

IA⊥B|C . In turn, a collection of such statements defines an ideal I, being a sum

of the ideals generated by each of them individually. As a consequence, we can

define an independence ideal of the model given in (1.1.1):

ICI = IA1⊥B1|C!
+ . . .+ IAn⊥Bn|Cn

(2.1.4)

The common zeroes of the polynomial equations in ICI is an algebraic set V (ICI).

Therefore, V (ICI) is a subset of those tables p = (pi)i in Rm, which are the

solution set of the polynomial equations defined by (2.1.4).
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One approach to study the properties of such models is via the primary de-

composition of ICI . If ICI is binomial, it is usually the case that the components

of the decompositions are interpretable in terms of the conditional independence

statements. It follows from (2.1.3) that when MCI consists of the saturated in-

dependence statements, That is to say, if for all XA ⊥ XB | XC we have that

XA∪XB∪XC = X, ICI will always be binomial. However, a straightforward inter-

pretation of the elements in such decomposition is not possible in more complex

cases.
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2.1.3 Comparative study

In the previous sections, we defined the conditional independence models, (1.2.2)

and (1.2.4), based on the notions of the local and global Markov properties as-

sociated to a G. The local independence ideal, Ilocal, is an independence ideal

as defined in (2.1.4) generated by the local markovian statements contained in

Mlocal. Similarly, Iglobal corresponds to the quadric (2.1.3) imposed by the global

Markov conditional restrictions as defined in (1.2.4).

Definition 2.1.5. The local/global independence variety is defined as

Vlocal = V (Ilocal), Vglobal = V (Iglobal)

There are usually more conditional independence statements in Iglobal than in

Ilocal. Formally we have:

Ilocal ⊆ Iglobal (2.1.5)

This implies the inverse relationship for the corresponding varieties:

Vlocal ⊇ Vglobal (2.1.6)

Let us recall the parametric formulation of the independence model from

section 2.1.1. The non-negative functions associated to the vertices of a DAG

form the domain of the parametric map as defined in (2.1.2). In reference to the

notation used previously, let us denote by q′ the parameters as in (2.1.1) restricted

to the probability simplex, that is to say:

q′ = {q :
∑

j

qi
jk = 1}

Recall that this is equivalent to
∑

ij∈[di]
p(Xi = ij | pa(Xi) = ik) = 1, where ik

is a particular realization of the parental set of states, pa(Xi). We denote by ψ′

the analog of the map (2.1.2):

ψ′ : q′ = (q′i)
d
i=1 −→ p = (pi)

N
i=1 (2.1.7)
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and by Ψ′ the corresponding ring homomorphism. As a consequence of the above

transformation, it can be easily checked that:

Ilocal ⊆ Iglobal ⊆ ker(Ψ′) (2.1.8)

The following theorem states that algebraic varieties of directed graphical

models given through explicit or parametric representation, coincide when re-

stricted to the probability simplex:

Theorem 2.1.6 (Hammersley-Clifford theorem).

V≥0(Ilocal+ < p− 1 >) = V≥0(Iglobal+ < p− 1 >) = image(ψ′
≥0) = ker(Ψ′))
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Chapter 3

Algebraic statistics for small

bayesian newtorks

3.1 BN with three nodes

1 2 3

Figure 3.1: M1 = {(X1, X2) ⊥ X3}.

1 2 3

Figure 3.2: M2 = {X1 ⊥ X3 | X2}

1 2 3

Figure 3.3: M3 = {X1 ⊥ X3}

1 2 3

Figure 3.4: M4 = {X1 ⊥ X3 | X2}

1 2 3

Figure 3.5: M5 = {X1 ⊥ X2 ⊥ X3}

1 2 3

Figure 3.6: M6 = ∅

Let G be a DAG on three binary nodes: X = {X1,X2,X3} and ∀i=1:3 [di] =

{0, 1}. We will use a computational algebra software SINGULAR [11] to study

the relationship between Ilocal, Iglobal and ker(Ψ) for binary Bayesian networks on

three nodes.
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1 2 3 4

Figure 3.7: M4
1 = {X1 ⊥ X2 ⊥ X3 ⊥ X4}

1 2 3 4

Figure 3.8: M4
2 = {(X1, X2) ⊥ X3 ⊥ X4}.

1 2 3 4

Figure 3.9: M4
3 = {(X1, X2) ⊥ (X3, X4)}

1 2 3 4

1 2 3 4

Figure 3.10: M4
4 = M4

5 = {X1 ⊥ X3 | X2, (X1, X2, X3) ⊥ X4}

3.1.1 Parametric representation

We give the parametrized models as introduced in Section 2.1.1. From (1.2.1)

we can factorize the joint distribution, p := P (X = x) = (pijk)ijk∈{0,1}, where

pi1i2i3 = p(X1 = i1, X2 = i2, X3 = i3), according to G. Denoting by qi
jk := p(Xi =

ij | pa(Xi) = k) the parameters of the model, we get:

pijk =
∏

k

q1
i1k

∏

k

q2
i2k

∏

k

q3
i3k.

Note that for a DAG, the indeterminants q correspond to the parameters placed

on the oriented edges.

For a BN on three binary nodes, a probability distribution takes values on the

N = 23 = 8 dimensional binary domain:

p = (p000, p001, p010, p011, p100, p101, p110, p111).
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It factorizes to G if it lies in the image of the map ψ as defined in (2.1.2). By the

same token, a distribution belongs to a model if it lies in the kernel of the ring

homomorphism Ψ : R[Q] 7→ R[P].

As a starting point we describe the definitions of the matrix A for the distinct

graphs. Note that in each of the cases A has N columns consisting of the unit

vectors (e1, e2, e3)
T , where ei is a unit vector in R|di|. Again, d = |q|.

Figure 3.1 The network corresponding can be described as pa(X1) = pa(X3) =

∅, pa(X2) = X1, d = 8

q = (q1
0., q

1
1., q

2
00, q

2
10, q

2
01, q

2
11, q

3
0., q

3
1.)

Matrix A is shown in Tab. 3.1.

Figure 3.2 pa(X1) = pa(X3) = {X2}, pa(X2) = ∅, d = 10

q = (q1
00, q

1
10, q

1
01, q

1
11, q

2
0., q

2
1., q

3
00, q

3
10, q

3
01, q

3
11)

The matrix of the transformation is depicted in Table 3.2.

Figure 3.3 pa(X1) = pa(X3) = ∅, pa(X2) = {X1, X3}, d = 12

q = (q1
0., q

1
1., q

2
0(00), q

2
0(01), q

2
1(10), q

2
0(11), q

2
1(00), q

2
1(01), q

2
1(10), q

2
1(11), q

3
0., q

3
1.)

Matrix A is shown in Tab. 3.3.

Figure 3.4 pa(X1) = ∅, pa(X2) = {X1}, pa(X3) = {X2}, d = 10

q = (q0
1., q

1
1., q

2
00, q

2
01, q

2
10, q

2
11, q

3
00, q

3
01, q

3
10, q

3
11)

See Table 3.4 for exact description.

Figure 3.5 Subsequently, let us consider the marginal independence model, where

the parent set is empty for every node. That is to say, pa(X1) = pa(X2) =

pa(X3) = ∅:

pijk = q1
i.q

2
j.q

3
k.

Matrix A takes the form shown in Tab. 3.5.

Figure 3.6 pa(X1) = ∅, pa(X2) = {X1}, pa(X3) = {X1, X2}, d = 14

t = (t1, . . . , t14) = (q1
0., q

1
1., q

2
00, q

2
10, q

2
01, q

2
11, q

3
0(00), q

3
0(01), q

3
0(10), q

3
0(11), q

3
1(00), q

3
1(01),

q3
1(10), q

3
1(11))

In this case, matrix A is depicted in Tab. 3.6
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As a final case, we shift to the fully connected graph. There are no non-

trivial conditional independence statements and the model is not identifi-

able.

3.1.2 Conditional independence statements

There are six isomorphic cases of the DAGs on three nodes (up to an order on

the nodes). We consider all five non-trivial and a complete graph examples (see

Figures 3.2− 3.6).

Note that networks 3.2 and 3.4 belong to the same equivalence class (see Sec-

tion 1.2.0.2).

We will give explicit formulas for Ilocal, which for such small networks coincides

with Iglobal. Recall that for binary random variables the generators of the inde-

pendence ideal, ICI (2.1.4), consist of certain 2 × 2 minors of the corresponding

joint probability matrices (2.1.3).

Note: in SINGULAR binary variables are coded as {1, 2}, which correspond

to our notation 0/1 notation. In addition, we label he model parameters by the

vectorized indices t = (t1, t2, . . . , td).

1 The independence ideal for model M1 is generated by the quadrics imposed

by the following conditional independence restrictions:

M1 = {X2 ⊥ X3 | X1, X1 ⊥ X3, X1,2 ⊥ X3}. The latter statement contains

the two preceding ones, thus we have that M1 = {X1,2 ⊥ X3}. Therefore,

the components of IM1 generated by two binomials derived from the rank

restrictions of the matrices:
(

p.00 p.01

p.10 p.11

)

where e.g. p.00 ∈ {p000, p100}, IM1
1

=< p000p011−p001p010, p100p111−p101p110 >

are contained in the ideal IM2
1

generated by the quadrics of

(

p0+0 p0+1

p1+0 p1+1,

)
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where e.g. p0+0 =
∑1

i=0 p0i0.

Namely,

IM1 = IM1
1
+ IM2

1
=< (p000 + p010)(p101 + p111)− (p100 + p110)(p001 + p011) > .

Singular code for the direct parametrization through a polynomial map f1

as defined by the toric model A =Tab 3.1:

ring p=0,(p(1..2)(1..2)(1..2)),dp;

ring t1=0,(t(1..8)),dp;

ideal t0=0;

map f1=p,t(1)*t(3)*t(7),t(1)*t(3)*t(8),t(1)*t(4)*t(7),

t(1)*t(4)*t(8),t(2)*t(5)*t(7),t(2)*t(5)*t(8),

t(2)*t(6)*t(7),t(2)*t(6)*t(8);

setring p;

ideal i1=preimage(t1,f1,t0);

leads to the following kernel of ring homomorphism Ψf1:

_[1]=p(2)(1)(2)*p(2)(2)(1)-p(2)(1)(1)*p(2)(2)(2)

_[2]=p(1)(2)(2)*p(2)(2)(1)-p(1)(2)(1)*p(2)(2)(2)

_[3]=p(1)(1)(2)*p(2)(2)(1)-p(1)(1)(1)*p(2)(2)(2)

_[4]=p(1)(2)(2)*p(2)(1)(1)-p(1)(2)(1)*p(2)(1)(2)

_[5]=p(1)(1)(2)*p(2)(1)(1)-p(1)(1)(1)*p(2)(1)(2)

_[6]=p(1)(1)(2)*p(1)(2)(1)-p(1)(1)(1)*p(1)(2)(2)

We next confirm that indeed the inclusion of (2.1.8) holds:

matrix m1[2][2]=p(1)(1..2)(1..2);

matrix m2[2][2]=p(2)(1..2)(1..2);

matrix m11[2][2]=p(1..2)(1)(1..2);

matrix m21[2][2]=p(1..2)(2)(1..2);

ideal IM1=minor(m1,2),minor(m2,2),minor(m11+m21,2);
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I[1]=-p(1)(1)(2)*p(1)(2)(1)+p(1)(1)(1)*p(1)(2)(2)

I[2]=-p(2)(1)(2)*p(2)(2)(1)+p(2)(1)(1)*p(2)(2)(2)

I[3]=-p(1)(1)(2)*p(2)(1)(1)-p(1)(2)(2)*p(2)(1)(1)

+ p(1)(1)(1)*p(2)(1)(2)+p(1)(2)(1)*p(2)(1)(2)

- p(1)(1)(2)*p(2)(2)(1)-p(1)(2)(2)*p(2)(2)(1)

+ p(1)(1)(1)*p(2)(2)(2)+p(1)(2)(1)*p(2)(2)(2)

reduce(IM1,std(i1));

_[1]=0

_[2]=0

_[3]=0

Namely, IM1 ⊆ ker(Ψf1).

2 The binomial independence ideal IM2 = IX1⊥X3|X2 corresponds to all the

2 × 2 minors of the following matrices:

where e.g. p0.0 ∈ {p000, p010}. We get:

IM2 =< p000p101 − p001p100, p010p111 − p011p110 >

setring p;

matrix m21[2][2]=p(1..2)(1)(1..2);

matrix m22[2][2]=p(1..2)(2)(1..2);

ideal IM2=minor(m21,2),minor(m22,2);

ring t2=0,(t(1..10)),dp;

ideal t0=0;

map f2 = p,t(1)*t(5)*t(7),t(1)*t(5)*t(9),t(2)*t(6)*t(8),

t(2)*t(6)*t(10),t(3)*t(5)*t(7),t(3)*t(5)*t(9),

t(4)*t(6)*t(8),t(4)*t(6)*t(10);

setring p;

ideal i2=preimage(t2,f2,t0);
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i2:=

_[1]=p(1)(2)(2)*p(2)(2)(1)-p(1)(2)(1)*p(2)(2)(2)

_[2]=p(1)(1)(2)*p(2)(1)(1)-p(1)(1)(1)*p(2)(1)(2)

As before, we check (2.1.8):

reduce(IM2,std(i2));

_[1]=0

_[2]=0

3 The marginal independence statement of A =Tab 3.3 in Figure 3.3, X1 ⊥

X2, equals the second term in IM1 . That is, IM3 is the ideal generated by

the quadrics:

IM3 =< (p000 + p010)(p101 + p111) − (p100 + p110)(p001 + p011) > .

setring p;

matrix m21[2][2]=p(1..2)(1)(1..2);

matrix m22[2][2]=p(1..2)(2)(1..2);

ideal IM3=minor(m21+m22,2);

ring t3=0,(t(1..12)),dp;

ideal t0=0;

map f3=p,t(1)*t(3)*t(11),t(1)*t(4)*t(12),t(1)*t(7)*t(11),

t(1)*t(8)*t(12),t(2)*t(5)*t(11),t(2)*t(6)*t(12),

t(2)*t(9)*t(11),t(2)*t(10)*t(12);

By restricting to: t1 + t2 = t3 + t7 = t4 + t8 = t5 + t9 = t6 + t10 = t11 + t12,

the preimage equals:

ideal k3=t(1)+t(2)-t(3)-t(7),t(3)+t(7)-t(4)-t(8),

t(4)+t(8)-t(5)-t(9),t(5)+t(9)-t(6)-t(10),

t(6)+t(10)-t(11)-t(12);
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setring p;

ideal i3=preimage(t3,f3,k3);

i3[1]=

p(1)(1)(2)*p(2)(1)(1)+p(1)(2)(2)*p(2)(1)(1)

-p(1)(1)(1)*p(2)(1)(2)-p(1)(2)(1)*p(2)(1)(2)

+p(1)(1)(2)*p(2)(2)(1)+p(1)(2)(2)*p(2)(2)(1)

-p(1)(1)(1)*p(2)(2)(2)-p(1)(2)(1)*p(2)(2)(2);

and the (2.1.8) holds:

reduce(IM3,std(i3));

_[1]=0

4 For CI model of A =Tab 3.4 depicted in Figure 3.4, it holds that IM4 and

IM2. What follows, IM4 is generated by the two binomials:

setring p;

matrix m21[2][2]=p(1..2)(1)(1..2);

matrix m22[2][2]=p(1..2)(2)(1..2);

ideal IM4=minor(m21,2),minor(m22,2);

IM4[1]=p(1)(2)(2)*p(2)(2)(1)-p(1)(2)(1)*p(2)(2)(2)

IM4[2]=p(1)(1)(2)*p(2)(1)(1)-p(1)(1)(1)*p(2)(1)(2)

Computing the kernel of Ψf4:

ring t4=0,(t(1..10)),dp;

ideal t0=0;

map f4 = p,t(1)*t(3)*t(7),t(1)*t(3)*t(9),t(1)*t(4)*t(8),

t(1)*t(4)*t(10),t(2)*t(5)*t(7),t(2)*t(5)*t(9),

t(2)*t(6)*t(8),t(2)*t(6)*t(10);

setring p;

ideal i4=preimage(t4,f4,t0);

i4[1]=p(1)(2)(2)*p(2)(2)(1)-p(1)(2)(1)*p(2)(2)(2)

i4[2]=p(1)(1)(2)*p(2)(1)(1)-p(1)(1)(1)*p(2)(1)(2)
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reduce(IM4,std(i4));

_[1]=0

_[2]=0

5 M5 of marginal independence of the three random variables is described by

A =Tab 3.5 and shown in Figure 3.5. Trivial SINGULAR calculations are

given by:

setring p;

matrix m51[2][2]=p(1)(1..2)(1..2);

matrix m52[2][2]=p(2)(1..2)(1..2);

matrix m53[2][2]=p(1..2)(1)(1..2);

matrix m54[2][2]=p(1..2)(2)(1..2);

matrix m55[2][2]=p(1..2)(1..2)(1);

matrix m56[2][2]=p(1..2)(1..2)(2);

ideal IM5=minor(m51+m52,2),minor(m53+m54,2),minor(m55+m56,2);

ring t5=0,(t(1..6)),dp;

ideal t0=0;

map f5=p,t(1)*t(3)*t(5),t(1)*t(3)*t(6),t(1)*t(4)*t(5),

t(1)*t(4)*t(6),t(2)*t(3)*t(5),t(2)*t(3)*t(6),

t(2)*t(4)*t(5),t(2)*t(4)*t(6);

setring p;

ideal i5 = preimage(t5,f5,t0);

_[1]=p(2)(1)(2)*p(2)(2)(1)-p(2)(1)(1)*p(2)(2)(2)

_[2]=p(1)(2)(2)*p(2)(2)(1)-p(1)(2)(1)*p(2)(2)(2)

_[3]=p(1)(1)(2)*p(2)(2)(1)-p(1)(1)(1)*p(2)(2)(2)

_[4]=p(1)(2)(2)*p(2)(1)(2)-p(1)(1)(2)*p(2)(2)(2)

_[5]=p(1)(2)(1)*p(2)(1)(2)-p(1)(1)(1)*p(2)(2)(2)

_[6]=p(1)(2)(2)*p(2)(1)(1)-p(1)(1)(1)*p(2)(2)(2)

_[7]=p(1)(2)(1)*p(2)(1)(1)-p(1)(1)(1)*p(2)(2)(1)

_[8]=p(1)(1)(2)*p(2)(1)(1)-p(1)(1)(1)*p(2)(1)(2)

_[9]=p(1)(1)(2)*p(1)(2)(1)-p(1)(1)(1)*p(1)(2)(2)
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and a confirming answer to (2.1.8).

reduce(IM5,std(i5));

_[1]=0

_[2]=0

_[3]=0

6 The final case of the complete graph of A = 3.6 (see Figure 3.6) generates

only trivial local independence statements:

M6 = {X1⊥{X2, X3}, X2⊥{X1, X3}, X3⊥{X1, X2}}

Thus, IM6 = ∅.

SINGULAR code for describing ker(Ψ) in this case is given below:

ring t6=0,(t(1..14)),dp;

ideal t0=0;

map f6=p,t(1)*t(3)*t(7),t(1)*t(3)*t(11),t(1)*t(4)*t(8),

t(1)*t(4)*t(12),t(2)*t(5)*t(9),t(2)*t(5)*t(13),

t(2)*t(7)*t(10),t(2)*t(7)*t(14);

setring p;

preimage(t6,f6,t0);

_[1]=0

3.2 BN with four nodes

Let us consider a few cases of the Bayesian Networks on four binary nodes:

X = {X1,X2,X3, X4} and ∀i = 1 : 4 [di] = {0, 1}. For the computational lim-

itations of the current parametric setting, we have to restrain the analyses to

the DAGs with at most 12 parameters (see (2.1.1)). Henceforth, we consider

4 distinct equivalent classes (up to a permutation) of BN, as depicted in Fig-

ures 3.7−3.1. In the last equivalence class we include two networks representing
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Table 3.1: M1

t p000 p001 p010 p011 p100 p101 p110 p111

t1 1 1 1 1 0 0 0 0
t2 0 0 0 0 1 1 1 1
t3 1 1 0 0 0 0 0 0
t4 0 0 1 1 0 0 0 0
t5 0 0 0 0 1 1 0 0
t6 0 0 0 0 0 0 1 1
t7 1 0 1 0 1 0 1 0
t8 0 1 0 1 0 1 0 1

Table 3.2: M2

t p000 p001 p010 p011 p100 p101 p110 p111

t1 1 1 0 0 0 0 0 0
t2 0 0 1 1 0 0 0 0
t3 0 0 0 0 1 1 0 0
t4 0 0 0 0 0 0 1 1
t5 1 1 0 0 1 1 0 0
t6 0 0 1 1 0 0 1 1
t7 1 0 0 0 1 0 0 0
t8 0 0 1 0 0 0 1 0
t9 0 1 0 0 0 1 0 0
t10 0 0 0 1 0 0 0 1

identical conditional independence modelas as in (1.1.1), defined nonetheless via

different polynomial maps, (2.1.2).

This is an initial study strongly tied to the future directions of the project.

Namely, as a further step, we wish to proved the Conjecture 3.3 (see Section 3.3).

For its initial character, we provide model descriptions and SINGULAR com-

mands. For comments and detailed descriptions and definitions, see Section 3.1.

The ring R[P] is generated by 16 indeterminants:

p = (p0000, p0001, p0010, p0011, p0100, p0101, p0110, p0111, p1000, p1001, p1010, p1011, p1100,
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Table 3.3: M3

t p000 p001 p010 p011 p100 p101 p110 p111

t1 1 1 1 1 0 0 0 0
t2 0 0 0 0 1 1 1 1
t3 1 0 0 0 0 0 0 0
t4 0 1 0 0 0 0 0 0
t5 0 0 0 0 1 0 0 0
t6 0 0 0 0 0 1 0 0
t7 0 0 1 0 0 0 0 0
t8 0 0 0 1 0 0 0 0
t9 0 0 0 0 0 0 1 0
t10 0 0 0 0 0 0 0 1
t11 1 0 1 0 1 0 1 0
t12 0 1 0 1 0 1 0 1

Table 3.4: M4

t p000 p001 p010 p011 p100 p101 p110 p111

t1 1 1 1 1 0 0 0 0
t2 0 0 0 0 1 1 1 1
t3 1 1 0 0 0 0 0 0
t4 0 0 1 1 0 0 0 0
t5 0 0 0 0 1 1 0 0
t6 0 0 0 0 0 0 1 1
t7 1 0 0 0 1 0 0 0
t8 0 0 1 0 0 0 1 0
t9 0 1 0 0 0 1 0 0
t10 0 0 0 1 0 0 0 1
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Table 3.5: M5 : model of marginal independence for three variable

t p000 p001 p010 p011 p100 p101 p110 p111

t1 1 1 1 1 0 0 0 0
t2 0 0 0 0 1 1 1 1
t3 1 1 0 0 1 1 0 0
t4 0 0 1 1 0 0 1 1
t5 1 0 1 0 1 0 1 0
t6 0 1 0 1 0 1 0 1

p1101, p1110, p1111). Again, it factorizes according to the graph G if it lies in the

image of the map ψ as defined in (2.1.2).

We use characteristic the 32003 for the base field in order to speed the computa-

tions and avoid running out of memory.

Table 3.6: M6 : complete BN on three nodes

t p000 p001 p010 p011 p100 p101 p110 p111

t1 1 1 1 1 0 0 0 0
t2 0 0 0 0 1 1 1 1
t3 1 1 0 0 0 0 0 0
t4 0 0 1 1 0 0 0 0
t5 0 0 0 0 1 1 0 0
t6 0 0 0 0 0 0 1 1
t7 1 0 0 0 0 0 0 0
t8 0 0 1 0 0 0 0 0
t9 0 0 0 0 1 0 0 0
t10 0 0 0 0 0 0 1 0
t11 0 1 0 0 0 0 0 0
t12 0 0 0 1 0 0 0 0
t13 0 0 0 0 0 1 0 0
t14 0 0 0 0 0 0 0 1
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Ad. Figure 3.7 pa(X1) = pa(X2) = pa(X3) = pa(X4) = ∅:

pijkl = q1
i.q

2
j.q

3
k.q

4
l.

ring p4=32003,(p(1..2)(1..2)(1..2)(1..2)),dp;

%%%% X1 independent X2

matrix pom1[2][2]=p(1..2)(1..2)(1)(1);

matrix pom2[2][2]=p(1..2)(1..2)(1)(2);

matrix pom3[2][2]=p(1..2)(1..2)(2)(1);

matrix pom4[2][2]=p(1..2)(1..2)(2)(2);

ideal M11=minor(pom1+pom2+pom3+pom4,2);

%%%% X2 ind X3

matrix pom1[2][2]=p(1)(1..2)(1..2)(1);

matrix pom2[2][2]=p(1)(1..2)(1..2)(2);

matrix pom3[2][2]=p(2)(1..2)(1..2)(1);

matrix pom4[2][2]=p(2)(1..2)(1..2)(2);

ideal M12=minor(pom1+pom2+pom3+pom4,2);

%%%% X3 ind X4

matrix pom1[2][2]=p(1)(1)(1..2)(1..2);

matrix pom2[2][2]=p(1)(2)(1..2)(1..2);

matrix pom3[2][2]=p(2)(1)(1..2)(1..2);

matrix pom4[2][2]=p(2)(2)(1..2)(1..2);

ideal M13=minor(pom1+pom2+pom3+pom4,2);

ideal I41=M11,M12,M13;

ring t41=32003,(t(1..8)),dp;

ideal t0=0;

map f41=p4,

t(1)*t(3)*t(5)*t(7),t(1)*t(3)*t(5)*t(8),t(1)*t(3)*t(6)*t(7),

t(1)*t(3)*t(6)*t(8),t(1)*t(4)*t(5)*t(7),t(1)*t(4)*t(5)*t(8),
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t(1)*t(4)*t(6)*t(7),t(1)*t(4)*t(6)*t(8),t(2)*t(3)*t(5)*t(7),

t(2)*t(3)*t(5)*t(8),t(2)*t(3)*t(6)*t(7),t(2)*t(3)*t(6)*t(8),

t(2)*t(4)*t(5)*t(7),t(2)*t(4)*t(5)*t(8),t(2)*t(4)*t(6)*t(7),

t(2)*t(4)*t(6)*t(8);

setring p4;

ideal k41=preimage(t41,f41,t0);

reduce(I41,std(k41));

_[1]=0

_[2]=0

_[3]=0

Ad. Figure 3.1 M4
2 = {(X1, X2) ⊥ X3 ⊥ X4}

pa(X1) = P (X3) = P (X4) = ∅, pa(X2) = X1, d = 10,

q = (q1
0., q

1
1., q

2
00, q

2
01, q

2
10, q

2
11, q

3
0., q

3
1., q

4
0., q

4
1.)

%%% (X1,X2) ind X3

matrix pom1[2][4]=p(1..2)(1..2)(1)(1),p(1..2)(1..2)(2)(1);

matrix pom2[2][4]=p(1..2)(1..2)(1)(2),p(1..2)(1..2)(2)(2);

ideal M21=minor(pom1+pom2,2);

%%%% X3 ind X4

ideal I42=M13,M21;

ring t42=32003,(t(1..10)),dp;

ideal t0=0;

map f42=p4,

t(1)*t(3)*t(7)*t(9),t(1)*t(3)*t(7)*t(10),t(1)*t(3)*t(8)*t(9),

t(1)*t(3)*t(8)*t(10),t(1)*t(4)*t(7)*t(9),t(1)*t(4)*t(7)*t(10),

t(1)*t(4)*t(8)*t(9),t(1)*t(4)*t(8)*t(10),t(2)*t(5)*t(7)*t(9),
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t(2)*t(5)*t(7)*t(10),t(2)*t(5)*t(8)*t(9),t(2)*t(5)*t(8)*t(10),

t(2)*t(6)*t(7)*t(9),t(2)*t(6)*t(7)*t(10),t(2)*t(6)*t(8)*t(9),

t(2)*t(6)*t(8)*t(10);

setring p4;

ideal k42=preimage(t42,f42,t0);

reduce(I42,std(k42));

_[1]=0

_[2]=0

_[3]=0

_[4]=0

_[5]=0

_[6]=0

_[7]=0

Ad. Figure 3.1 M4
3 = {(X1, X2) ⊥ (X3, X4)}

pa(X1) = Pa(X4) = ∅, pa(X2) = {X1}, pa(X3) = {X2}, d = 12

q = (q1
0., q

1
1., q

2
00, q

2
01, q

2
10, q

2
11, q

3
0., q

3
1., q

4
00, q

4
01, q

4
10, q

4
11)

matrix M43[4][4];

M43[1,1..4]=p(1..2)(1..2)(1)(1);

M43[2,1..4]=p(1..2)(1..2)(2)(1);

M43[3,1..4]=p(1..2)(1..2)(2)(1);

M43[4,1..4]=p(1..2)(1..2)(2)(2);

ideal I43=minor(M43,2);

ring t43=32003,(t(1..12)),dp;

ideal t0=0;

map f43=p4,

t(1)*t(3)*t(7)*t(9),t(1)*t(3)*t(7)*t(10),t(1)*t(3)*t(8)*t(11),

t(1)*t(3)*t(8)*t(12),t(1)*t(4)*t(7)*t(9),t(1)*t(4)*t(7)*t(10),
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t(1)*t(4)*t(8)*t(11),t(1)*t(4)*t(8)*t(12),t(2)*t(5)*t(7)*t(9),

t(2)*t(5)*t(7)*t(10),t(2)*t(5)*t(8)*t(11),t(2)*t(5)*t(8)*t(12),

t(2)*t(6)*t(7)*t(9),t(2)*t(6)*t(7)*t(10),t(2)*t(6)*t(8)*t(11),

t(2)*t(6)*t(8)*t(12);

setring p4;

ideal k43=preimage(t43,f43,t0);

reduce(I43,std(k43));

_[1]=0

...

_[30]=0

Fig. 3.1 M4
4 : pa(X1) = pa(X3) = {X2}, pa(X2) = ∅, d = 12

M4
5 : pa(X1) = pa(X3) = {X2}, pa(X2) = ∅, d = 12

M4
4 = M4

5 = {X1 ⊥ X3 | X2, (X1, X2, X3) ⊥ X4}

• M4
4 : q = (q1

00, q
1
01, q

1
01, q

1
11, q

2
0., q

2
1., q

3
00, q

3
01, q

3
10, q

3
11, q

4
0., q

4
1.)

%%% X1 independent X3 given X2

matrix pom1[2][2]=p(1..2)(1)(1..2)(1),p(1..2)(1)(1..2)(1);

matrix pom2[2][2]=p(1..2)(1)(1..2)(2),p(1..2)(1)(1..2)(2);

matrix m441=pom1+pom2;

matrix pom1[2][2]=p(1..2)(2)(1..2)(1),p(1..2)(2)(1..2)(1);

matrix pom2[2][2]=p(1..2)(2)(1..2)(2),p(1..2)(2)(1..2)(2);

matrix M442=pom1+pom2;

ideal M44=minor(M441,2),minor(M442,2);

%%% (X1,X2,X3) independent X4
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matrix M443[2][8]=p(1..2)(1..2)(1)(1),p(1..2)(1..2)(2)(1),

p(1..2)(1..2)(1)(2),p(1..2)(1..2)(2)(2);

ideal I44=minor(M443,2),M44;

ring t44 = 32003,(t(1..12)),dp;

ideal t0 = 0;

map f44 = p4,

t(1)*t(5)*t(7)*t(11),t(1)*t(5)*t(7)*t(12),

t(1)*t(5)*t(9)*t(11),t(1)*t(5)*t(9)*t(12),

t(2)*t(6)*t(8)*t(11),t(2)*t(6)*t(8)*t(12),

t(2)*t(6)*t(10)*t(11),t(2)*t(6)*t(10)*t(12),

t(3)*t(5)*t(7)*t(11),t(3)*t(5)*t(7)*t(12),

t(3)*t(5)*t(9)*t(11),t(3)*t(5)*t(9)*t(12),

t(4)*t(6)*t(8)*t(11),t(4)*t(6)*t(8)*t(12),

t(4)*t(6)*t(10)*t(11),t(4)*t(6)*t(10)*t(12);

setring p4;

ideal k44=preimage(t44,f44,t0);

reduce(I44,std(k44));

_[1]=0

...

_[30]=0

• M4
5 : q = (q1

0., q
1
1., q

2
00, q

2
01, q

2
01, q

2
11, q

3
00, q

3
01, q

3
10, q

3
11, q

4
0., q

4
1.)

ring p4=32003,(p(1..2)(1..2)(1..2)(1..2)),dp;

ring t45=32003,(t(1..12)),dp;

ideal t0=0;

map f45=p4,

t(1)*t(3)*t(7)*t(11),t(1)*t(3)*t(7)*t(12),

t(1)*t(3)*t(8)*t(11),t(1)*t(3)*t(8)*t(12),

t(1)*t(4)*t(9)*t(11),t(1)*t(4)*t(9)*t(12),
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t(1)*t(4)*t(10)*t(11),t(1)*t(4)*t(10)*t(12),

t(2)*t(5)*t(7)*t(11),t(2)*t(5)*t(7)*t(12),

t(2)*t(5)*t(8)*t(11),t(2)*t(5)*t(8)*t(12),

t(2)*t(6)*t(9)*t(11),t(2)*t(6)*t(9)*t(12),

t(2)*t(6)*t(10)*t(11),t(2)*t(6)*t(10)*t(12);

setring p4;

ideal k45 = preimage(t45,f45,t0);

reduce(I44,std(k45));

_[1]=0

...

_[30]=0

Note that in the examples presented in this section, the inclusion (2.1.8) holds

irrespective of the condition (2.1.7). That is to say, Ψ is defined as (2.1.2), which

confirms the posed hypothesis (see 3.3).

3.3 Future directions

• Validate the conjecture of [9]: is it true that Iglobal ≡ toric ideal ker(ψ) only

on the probability simplex

• We have seen that Ψ′(L) ⊆ V (Ilocal), where

Ψ′ : L ⊆ R
d 7→ R

N

L = {
∑

j q
i
jk = 1, ∀k : (i1 . . . in) |pa(Xi)= k, i = 1, . . . , n} and k is a realiza-

tion of the parental set of a random variable Xi.

However, in our computations in SINGULAR, in order to make the ideals

homogeneous, we have not restricted precisely to these spaces (see 3.1.2),

but to the projective version of them. Therefore we conjecture that:

Conjecture 1. Let H = {
∑

j q
i
jkm

= ql
jkl
, 1 ≤ m < l ≤ n, where ks ∈ [k] :=

{

(i1 . . . in) |pa(Xi)

}

is the set of realizations of pa(Xi)}. Now consider the
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map:

P : H ⊆ P
d−1 7→ P

N−1

[q] 7→ [Ψ(q)]

Then

PΨ(H) ⊆ V (Ilocal) ⊆ P
N−1.

In other words, the ring homomorphism Ψ : R[P] 7→ R[Q] satisfies Ilocal ⊆

JH = (
∑

j q
1
jk0

−
∑

j q
l
jkl
, where k0, kl ∈ [k], k0 6= kl)

• Despite a plethora of inference algorithms for Bayesian networks, their com-

mon drawbacks concern the limitations on the complexity of the allowed

model: number of random variables and/or parameters.

We will try to use the algebraic statistics approach to improve these al-

gorithms. For that we will investigate the local set of generators of the

ideal under study. If possible, we would like to provide a local complete

intersection of our varieties at the points that are statistically meaningful.

As this cannot be done by considering each particular Bayesian Network,

it is interesting to find a recursive procedure in order to establish the local

complete intersection of a BN on n nodes (BNn) with a BN on (n−1) nodes

(BNn−1).

The goal of the inference algorithm of BNs on n nodes is, assuming that

one has a distribution p corresponding to a certain BN on n nodes, infer the

underlying network structure that corresponds to p. In terms of algebraic

statistics this is equivalent to the following statement:

assuming that p ∈
⋃

BNn
image(ψ′

BN ), find the particular network BN0

such that p ∈ image(ψBN0) is defined inside
⋃

BNn
image(ψ′

BN ). The corre-

sponding idea in the algebraic setting boils down to providing the generators

(at least locally) of the ideal:
ker(Ψ)

BN0
T

BNn
ker(ΨBN )
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Chapter 4

Applications: case study of

splicing regulators

4.1 Motivation

Modern science becomes increasingly cross-disciplinary and primary attention is

given to developing methodologies of practical value. Our project was founded

as a cooperation between the Universitat Politècnica de Catalunya and Cen-

tre de Regulació Genòmica (Centre of Genomic Regulation) in Barcelona. It

is aimed to develop and ground mathematical methodologies that would prove

useful in practical applications. In particular, the scientific focus of the Bioin-

formatics and Genomics group lies in the discovery and annotation of novel hu-

man genes and is one of a cornerstone teams of the ENCODE Project http:

//genome.ucsc.edu/ENCODE/.

We have performed the data analyses on human splicing factors, which we now

hope to extend using algebraic models, as described in the previous sections.

In short, the biological hypothesis posed was that the conservation of sequences

across genomes is often an indication of functionality. In particular, the notion

of preservation influences the regulators involved in splicing. Detection of evolu-

tionary constrained sequences across multiple genome alignments is therefore a

widely used approach to identify functional regions in genomes, and a multitude
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of methods have been developed to quantify the degree of sequence constraint.

Motif-based analysis is of great interest in genomics. It is being increasingly

appreciated that the genomic sequence is intrinsically polysemic: the same DNA

sequence often carries multiple meanings, that is, it is involved in different func-

tions. The nucleotide sequence of the genome, therefore, is shaped by multiple

contrasting evolutionary forces acting at different levels. Within protein coding

regions, sequences may play a role in control of translation, translational efficiency,

transcript stability, etc. (see [5]) and may therefore be subjected to additional se-

lective forces not directly related to protein coding function. Methods have been

recently developed to detect non protein coding selective pressure within protein

coding regions (see [6]). Sequences involved in the definition of splice sites, and

in the regulation of alternative splicing, the so-called exonic splicing enhancers

(ESEs) and silencers (ESSs), may in this regard be particularly prevalent within

protein coding regions. Evidence exists that these sequences are under specific

selective pressure.

4.2 Data

We used reliable multiple nucleotide sequence alignments of coding exon sequences

across six vertebrate species to infer the rate of evolutionary change at base pair

resolution: five mammalian species, and used chicken, a bird, as a relative out-

group to infer the direction of the sequence changes. Within mammals, we used

two primate species (human and macaque), two rodent species (mouse and rat),

and an artyodactil (cow) as a relative outgroup. There exits the generally ac-

cepted tree topology relating these species.

Up to date the number of identified splicing-related regulatory subsequences com-

prises 78% of the total set of possible hexamers. Thus, given their ubiquitousness

defining a pertinent set of motifs acting in splicing is a nontrivial task. We

performed a crude pruning scheme on the set of 666 Hexamer Exonic Splicing

Enhancers (ESEs) from [8] and obtained a set of 32 trusted pentamers.
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In addition, we compiled a set of 886 “neutral” hexamers, that is of hexam-

ers that to our knowledge have not yet been implicated in splicing regulation, in

order to discriminate between the positive and negative sets.

Figure 4.1: A schema representing the data extraction step

We placed the sets of trusted regulatory pentamers (32 sequences), and neutral

hexamers (training, 531 sequences, and control, 355 sequences) on the human exon

sequences. Only exact matches were considered. We then extracted the columns

covered by these sequences from the orthologoues exon alignments. Alignment

columns containing gaps were discarded (and the 3nt−long boundaries on exon

edges). For the schema of the mapping procedure see Figure 4.2.

We scored the conservation of the trusted 32 pentamers using two approaches

and confirmed the intuitive claims as to their functionality. For instance, being

the enhancing factors, we would expect them to support weak splice sites for

recognition when splicing occurs. The manuscript containing the results is in its

final phase of preparation.

4.3 Further applications

Nevertheless, our scoring procedures did not allow for the study of individual

motifs. Also, we performed the analyses across distinct data sets in a pairwise
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fashion. Even so, this initial study, relieved more complex cross-effects and im-

plied the network-like structure of occurrences of the enhancers.

At the same time, we wish to avoid overparametrization, which is often the case

for sparse biological data.

As the next step of the project, we wish to improve our results by employing

the tools from algebraic statistics. We will consider the set of trusted ESEs

and investigate their presence or absence in the human exons (and across many

taxa). Thus created Bayesian network will have in principle 32 nodes with binary

outcomes {E1, . . . , E32}, where Ei ∈ {0 =present, 1 =absent}. We wish to inves-

tigate whether the occurrences of particular splicing factors is elevated in certain

genomic regions (positioned in the vicinity of the exon junctions), predominant

in certain type of data or co-regulated, that is accompanied by other functional

motifs.

Splicing has been shown to be driven by a complex machinery, thus the need

for precise and accurate inference methods. An alternative analysis will be per-

formed with the use of transcription factor binding sites motifs.
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