
DISSERTATION FOR THE DEGREE

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE (SPECIALITY IN MICROELECTRONICS)

PARALLEL POST-PROCESSING SOLUTION FOR

GNSS-R INSTRUMENT

Ph.D Dissertation by

Guo Yi
E-mail: guo@ieec.uab.es

CO-ADVISOR: Prof. Carles Ferrer

DEPARTMENT OF MICROELECTRONIC AND ELECTRONIC SYSTEM

UNIVERSITAT AUTÒNOMA DE BARCELONA (IEEC-UAB)

CO-ADVISOR: Prof. Antonio Rius

INSTITUT DE CIÈNCIES DE L’ESPAI (ICE-CSIC)
INSTITUT D‘ESTUDIS ESPACIALS DE CATALUNYA (IEEC)

Bellaterra, December, 2011

Department of Microelectronic and Electronic System
Universitat Autònoma de Barcelona (UAB)





UNIVERSITAT AUTÒNOMA DE BARCELONA (UAB)
Department of Microelectronic and Electronic System

PARALLEL POST-PROCESSING SOLUTION FOR GNSS-R
INSTRUMENT

Dissertation presented to obtain the degree of Doctor of Philosophy in Computer
Science (Speciality in Microelectronics)

Author: GUO YI

Directors: PROF. CARLES FERRER AND PROF. ANTONIO RIUS

Prof. Carles Ferrer i Ramis, Professor from the Universitat Autònoma de
Barcelona, Prof. Antonio Rius Jordán, Professor from Institut de ciències de l’espai
(ICE-CSIC) and Institut d‘Estudis Espacials de Catalunya (IEEC)

CERTIFY:

that the dissertation “Parallel Post-processing Solution for GNSS-R
Instrument“, presented by Ms. Guo Yi to obtain the degree of Doctor of Philosophy
in Electrical Engineering, has been done under their direction at the Universitat
Autònoma de Barcelona.

Barcelona, December, 2011

Prof. Carles Ferrer Prof. Antonio Rius





Preface

L-band signals transmitted by the Global Navigation Satellites Systems (GNSS)
from its reflection off the Earth’s surface allow for the inference of some of its
geophysical properties. This concept is named GNSS-Reflectometry (GNSS-R), or
PAassive Reflectometry and Interferometry System (PARIS).

The collected signals are processed by specialized GNSS-R receivers. This
dissertation focusses on system design, which is primarily able to post-process the
received GNSS-R data, with the purpose of reducing the sustained data throughput
of the instrument, which is in the order of several Mbytes/sec. This amount of data
poses very stringent requirements on GNSS-R designers .

In our study, we have taken as an example of GNSS-R receiver design, the
GPS Open-Loop Differential Real Time Receiver (GOLD-RTR), which was designed,
developed and built at the ICE (IEEC-CSIC). The problem that we faced could be
stated thus: we have a system which produces 12.8 Mb/s in a sustained manner,
and we need to reduce this rate by three orders of magnitude by applying suitable
integration algorithms, to be discussed later.

The work towards my PhD has focused on one broad subject and applied this to
the actual hardware design platform in order to study and address it. The subject was
parallelism provision for the GNSS-R post-processing system, with special focus on
the integration algorithms. The subject of parallelism provision is considered a multi-
layer problem, the most discussed issues are related to the task-level and memory-
level design.

The Symmetric Multi-Leon3 On Linux (SMLOL) platform, was developed to address
the timing issues for the GNSS-R application. This subject was the parallelism
provision for the task-level system, with special focus on the conventional Symmetric
MultiProcessing (SMP) scheme.

As a multi-task problem, we used to assess the computational load, system
performance and infer the system bottlenecks. However the unbalanced workload
in the hardware design (among processors, cache, memory and bus) can not be
fundamentally resolved through software methodology.

The Heterogeneous Transmission and Parallel Computing Platform (HTPCP) was
later developed in order to balance the transmission and computing workload. This
subject was the parallelism provision for the memory-level system. According to

i



the simulations results arrived at by MPARM emulator, we built and optimized the
memory hierarchy system, in order to remove the bus busy ratio and memory access
time between cache and main memory.

Moreover, dealing with the bus congestion issue, we implemented two types of
element: Transmission Elements (TEs) and Processing Elements (PEs), as well as
several interface designs: Massage Passing Interface (MPI) and Fast Simplex Link
(FSL) in HTPCP.

The intended solution was to design, build and test a system with capacity to
reduce the data flow three orders of magnitude by performing autonomous post-
processing algorithms.



Prefacio

Las señales de banda trasmitidas por los sistemas de navegación global por satélite
(GNSS, Global Navigation Satellites Systems) permiten averiguar algunas de las
propiedades geofı́sicas de la Tierra al reflejarse en su superficie. Este concepto se
llama reflectometrı́a GNSS (GNSS-R) o sistema de interferometrı́a y reflectometrı́a
pasivo (PARIS, Passive Reflectometry and Interferometry System).

Una serie de receptores GNSS-R especializados se encargan de procesar las señales
recogidas. Esta tesis se centra en el diseño de dichos receptores, que permite
principalmente procesar a posteriori los datos GNSS-R obtenidos, con el objetivo de
reducir la tasa de transferencia de datos sostenida (sustained data throughput) del
dispositivo, que es de alrededor de varios MB/s. Dicha cantidad de datos afecta
enormemente al diseño de receptores GNSS-R.

En nuestro trabajo, hemos tomado como ejemplo de diseño de receptores GNSS-
R el receptor GOLD-RTR (GPS Open-Loop Differential Real Time Receiver), diseñado,
desarrollado y construido en el ICE (IEEC-CSIC). El problema al que nos enfrentamos
es el siguiente: disponemos de un sistema que produce 12.8 Mb/s de forma sostenida
y necesitamos reducir su magnitud tres veces mediante la aplicación de algoritmos
de integración adecuados, que discutimos más adelante.

Las investigaciones realizadas durante mi doctorado, centradas en un tema muy
amplio, las he aplicado al estudio y tratamiento de la plataforma de diseño del
hardware correspondiente. El tema desarrollado fue el uso del paralelismo para
el sistema de post-procesamiento GNSS-R, con especial atención a los algoritmos
de integración. El tema del paralelismo se considera un aspecto problemático de
múltiples dimensiones, siendo las más tratadas la del diseño de tareas y de memoria.

Se desarrolló una plataforma SMLOL (Symmetric Multi-Leon3 On Linux) para tratar
los problemas de sincronización de la aplicación GNSS-R. Aquı́ se trató el uso
del paralelismo para el sistema de tareas, con especial atención al esquema SMP
(Symmetric MultiProcessing) convencional.

Como problema multitarea, evaluamos la carga computacional y el rendimiento del
sistema y comprobamos las congestiones del sistema. Sin embargo, el desequilibrio
en la carga de trabajo del diseño del hardware(en procesadores, memoria caché,
memoria principal y buses) no se puede solucionar fundamentalmente mediante una
metodologı́a aplicada al software.

iii



Posteriormente se desarrolló la plataforma HTPCP (Heterogeneous Transmission
and Parallel Computing Platform) para equilibrar la carga de trabajo de transmisión y
computacional. En este caso, se trató el uso del paralelismo con relación a la memoria
del sistema. Según los resultados de simulación obtenidos con el emulador MPARM,
construimos y optimizamos el sistema de jerarquı́a de memoria, para eliminar la tasa
de ocupación del bus y el tiempo de acceso a la memoria entre la memoria caché y la
memoria principal.

Asimismo, en relación con el problema de congestión en el bus, implementamos
dos tipos de elementos: elementos de transmisión (TEs) y elementos de procesamiento
(PEs), ası́ como varios diseños de interfaces: interfaz MPI (Massage Passing Interface)
e interfaz FSL (Fast Simplex Link) en HTPCP.

La solución deseada era diseñar, construir y probar un sistema con capacidad
para reducir tres veces la magnitud del flujo de información mediante algoritmos de
post-procesamiento autónomos.



To my parents and Lei,
To my son,

”Life is like a box of chocolate,you never know what you are gonna get.”
Movie Forrest Gump





Acknowledgments

The work presented in this thesis could not have been done without the aids and
supports of many people. Therefore I have a great honor to express my sincere
gratitude to all.

I would first like to thank my supervisors Carles Ferrer and Antonio Rius for
everything, of which I would like to highlight all the support and help they provided
me throughout the entire Ph.D. as well as encouragement in every endeavor. They
were a big motivating force behind this herculean task I finished in last couple of
years. Second, I would like to thank the David Atienza for all the support during my
stage in EPFL, and as well as for all the collaborative work.

On a personal note, I must thank all my friends in Barcelona but special thanks
goes to Lena Kanellou, L. Andrés Cardona for their helps and encouragement. I would
also like to acknowledge my debt to Serni Ribó, without his help and patient, I can
not go through the system debugging phase alone. I also want to thank Josep Sanz
and Fran Fabra, without their wisdom, I can not fix the problem of ethernet and the
endianess, and finally get the optimized result. Last but not least, I would like to
thank Estel Cardellach for all the support documents she has given to me.

Finally, I am indebted to my husband Jiang Lei and my parents for their
unconditional support and continuous encouragement throughout my work.

Guo Yi
Barcelona, November 18, 2011

vii





List of Publications

This dissertation is based on the following Fourteen papers, referred to in the text by
letters (A-N).

A. L. A. Cardona, J. Agrawal, Y. Guo, J. Oliver, C. Ferrer; “Performance-Area
Improvement by Partial Reconfiguration for an Aerospace Remote Sensing
Application“, in Proceedings of International Conference on ReConFigurable
Computing and FPGAs, Cancun, Mexico, November, 2011.

B. Y. Guo, S. Ribó, J. Sanz, A. Rius, C. Ferrer; “HTPCP: Real-Time Post-Processing
Solution for GNSS-R Instrument”, in Proceedings of 3rd Int.Colloquium on
Scientific and Fundamental Aspects of the Galileo Programme, Copenhagen,
Denmark, August. 2011.

C. Y. Guo, A. Rius , S. Ribó, C. Ferrer; “Heterogeneous Transmission and Parallel
Computing Platform (HTPCP) for Remote Sensing Applications”, in Proceedings
of SPIE, Microtechnologies, Prague, Czech Republic, April. 2011.

D. L. A. Cardona, Y. Guo, C. Ferrer; “Partial reconfiguration of a peripheral in an
FPGA-based SoC to analyse performance-area behaviour “, in Proceedings of
SPIE, Microtechnologies, Prague, Czech Republic, April. 2011.

E. Y. Guo, A. Rius , S. Ribó, C. Ferrer; “On-board real-time parallel processing for
GNSS-R Instrument GOLD-RTR“, in GNSSR-10 Workshop , Barcelona, Spain,
October 21-22. 2010.

F. Y. Guo, D. Atienza, A. Rius, S. Ribó, C. Ferrer; “HTPCP:GNSS-R multi-channel
correlation waveforms post-processing solution for GOLD-RTR Instrument“, in
Proceedings of NASA/ESA Conf. on Adaptive Hardware and Systems (AHS-2010),
Anaheim, CA, USA, pp. 157- 163, Jun. 2010.

G. Y. Guo, D. Atienza, A. Rius, S. Ribó, C. Ferrer; “GNSS-R multi-channel
correlation waveforms post-processing solution for GOLD-RTR Instrument“ in
PHD FORUM of Design, Automation & Test in Europe (DATE-2010), Dresden,
German March 15-18, 2010.

H. Y. Guo, E. Kanellou, L. A. Cardona, A. Rius, and C. Ferrer; “Parallel workload
analysis in SMP platform: a new modelling approach to infer the hardware
efficiency for remote sensing application “ in Proceedings of SPIE, VLSI Circuits

ix



and Systems IV, Dresden, German vol. 7363, DOI: 10.1117/12.821549. May
2009.

I. A. Garcia-Quinchı́a, Y. Guo, E. Martı́n, C. Ferrer; “A System-On-Chip (SOC)
Platform to Integrated Inertial Navigation Systems & GPS “ in Proceedings of
international Symposium on Industrial Electronics (ISIE 2009), Seúl-Corea July
5-8, 2009.

J. C. Ferrer, Y. Guo, X. Wang, E. Kanellou; “Fault Tolerant NoCs architectures for
aerospace applications“ in Forum on specification and Design Languages (FDL-
2007): Workshop on System Design in Avionics & Space Industry, Barcelona,
Spain 18-20 of September 2007.

K. Y. Guo, C. Ferrer; “IMS/GPS integration with a novel real-time system platform
for inertial data estimation“ in IEEE International Conference on the Computer as
a Tool (EUROCON-2007), Warsaw,Poland pp. 2503-2583,ISBN: 1-4244-0813-X
September 9-12, 2007.

L. Y. Guo, X. Fitó, C. Ferrer; “A novel real-time system platform development
applied to an integrated inertial navigation system“ in Proceedings of the 15th
IEEE Mediterranean Conference on Control and Automation (MED- 2007), Athens,
Greece Paper T11-002,ISBN:978-960-254-664-2 June 27-29, 2007.

M. X. Fitó, E. Kanellou, Y. Guo, C. Ferrer; “Designing an inertial measuring system
using system-on-chip and sensor microsystems integration“ in Proceedings of the
IEEE International Sysposium on Industrial Electronics Conference (ISIE 2006),
Montreal, Quebec, Canada pp.3285-3263, ISBN: 1-4244-0497-5 July 9-13,
2006.

N. X. Fitó, F. Lleixa, Y. Guo, C. Ferrer; “Microsystems and System-on-Chip
Integration applied to Inertial Measuring System Development“ in Proceedings
of the 9th IEEE International Workshop on Advanced Motion Control (AMC-2006),
Istanbul, Turkey pp. 488-493, vol. 1 & 2, ISBN: 0-7803-9511-1 March 27-29,
2006.



Contents

Preface i

Prefacio iii

Acknowledgments vii

List of Publications ix

Abbreviations xxiii

I Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Document Structure and Context . . . . . . . . . . . . . . . . . . . . . . . 3

II State of the art 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 GNSS-R Post-Processing Relevant Design . . . . . . . . . . . . . . . . . . 9

2.2.1 GNSS-R Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 GOLD-RTR Instrument . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Examples of GNSS-R Post-Processing Applications . . . . . . . . . 13

2.2.3.1 Altimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.3.2 Ocean Wind and Roughness . . . . . . . . . . . . . . . . . 16

2.2.3.3 Ocean Permittivity . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3.4 Land and Hydrological Applications . . . . . . . . . . . . . 18

xi



2.2.3.5 Ice and Snow Applications . . . . . . . . . . . . . . . . . . 19

2.3 Parallel System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Parallel System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.3 Parallel Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.4 Parallel Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.5 Parallel Programming Model . . . . . . . . . . . . . . . . . . . . . . 29

III Parallel System Design Based on SMLOL 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 SMLOL Platform Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2.1 Board Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.2 Setup Demonstration Platform . . . . . . . . . . . . . . . . . . . . . 45

3.2.3 SMLOL Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Hardware Design in Lower Layer . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.1 Configurable Processors and Development Tools . . . . . . . . . . 48

3.3.1.1 Processors Comparison . . . . . . . . . . . . . . . . . . . . 48

3.3.1.2 Development Tools . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.1.3 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . 52

3.3.2 Endianess Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.3 Memory Hierarchy Design . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Software and OS Design in Higher Layer . . . . . . . . . . . . . . . . . . . 55

3.4.1 Parallel Workload Analysis and Mathematical Modeling . . . . . . 56

3.4.2 The Post-Processing Code - Coherent/Incoherent . . . . . . . . . . 58

3.4.3 Linux Embedded OS Analysis and Design . . . . . . . . . . . . . . 63

3.4.3.1 Compiler Requirement . . . . . . . . . . . . . . . . . . . . . 63

3.4.3.2 Linux Kernel Analysis . . . . . . . . . . . . . . . . . . . . . 64

3.4.3.3 CPU Configuration . . . . . . . . . . . . . . . . . . . . . . . 67

3.4.3.4 Ethernet Configuration . . . . . . . . . . . . . . . . . . . . 67

3.4.4 Multi-task Application and Timing Performance . . . . . . . . . . . 70



3.5 MPARM Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.5.1 Tackle on the Bottleneck of SMLOL . . . . . . . . . . . . . . . . . . 76

3.5.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

IV Parallel System Design Based on HTPCP 85

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 HTPCP Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3 HTPCP Hardware Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.1 Transmission Elements . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3.1.1 Operation Flow of TEs . . . . . . . . . . . . . . . . . . . . . 91

4.3.1.2 Transmission Protocol and Frame . . . . . . . . . . . . . . 92

4.3.1.3 TE/TE Interface Design - Massage Passing Interface (MPI) 93

4.3.2 Processing Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3.2.1 Memory Hierarchy Design . . . . . . . . . . . . . . . . . . 95

4.3.2.2 PE/TE Interface Design - FSL & GPIO . . . . . . . . . . . 98

4.3.3 Design Flow of HTPCP . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3.3.1 LEON3 System . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.3.2 Microblaze System . . . . . . . . . . . . . . . . . . . . . . . 106

4.3.3.3 LEON3 System and MB System Integration . . . . . . . . 115

4.4 Seven Software Routines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.4.1 MPI Transmission between TEs . . . . . . . . . . . . . . . . . . . . 120

4.4.2 FSL Transmissions between PE and TE Design . . . . . . . . . . . 121

4.4.3 GPIO Connection between PE and TE . . . . . . . . . . . . . . . . . 123

4.4.4 Multi-processor Interrupt Controller between PEs . . . . . . . . . 127

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

V GNSS-R Post-Processing Application and Implementation 133

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.2 Experiment Constrains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135



5.2.1 Hardware Design Constrains . . . . . . . . . . . . . . . . . . . . . . 136

5.2.2 GOLD-RTR Output Waveforms . . . . . . . . . . . . . . . . . . . . . 138

5.2.3 Control PC Output Integrated Waveforms . . . . . . . . . . . . . . 139

5.3 Post-Processing Algorithms and Timing Parameters . . . . . . . . . . . . 140

5.3.1 Data Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.3.2 Coherent Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.3.3 Incoherent Integration . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.3.4 The Coherence Time τcoh and the Coherence Integration Time Tcoh 144

5.3.5 Incoherence Integration Time Tincoh . . . . . . . . . . . . . . . . . . 147

5.4 Demonstration Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.4.1 The Black Box - HTPCP . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.4.2 MicroBlaze Processors . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.4.3 LEON3 Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.5 Campaign on Real Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.6 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

VI Overall Conclusions 161

A Input Waveform Format 165

B Output Waveform Format 167

C Solution 1: Four LEON3 processors share one software routine. 169

D Solution 2: Four LEON3 cores work with four hardware routines. 171

E Solution 3: Four LEON3 processors execute four software routines in
parallel. 173

F Commands from Control PC to HTPCP 175

G Commands from GOLD-RTR to HTPCP 177

H Block Diagram of HTPCP in EDK 179



I The Execution Time “printf“ in GRMON 181





List of Figures

2.1 GNSS-R scenario: GNSS signals reflected on the ocean surface are used
to gather their properties like roughness or level. (Adapted from Nogués-
Correig et al.[2]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 GNSS-R TX signal model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 The composition of all the DM-slices generates the Delay-Doppler Map
(DDM). (Adapted from Cardellach et al. [5]) . . . . . . . . . . . . . . . . . 12

2.4 Block diagram of GOLD-RTR instrument.(Adapted from Nogués-Correig
et al.[2]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Canonical five-stage pipeline in a RISC machine. (IF = Instruction Fetch,
ID = Instruction Decode, EX = EXecute, MEM = Memory Access, WB =
Write Back) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 A five-stage pipelined superscalar processor, capable of issuing two
instructions per cycle. It can have two instructions in each stage of
the pipeline, for a total of up to 10 instructions being simultaneously
executed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.7 Task-level parallelism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.8 Multiprocessing systems: a) The multiprocessor with local cache
or Memory Management Unit (MMU), but shared memory by long
interconnects; b) The multi-core processors with local cache or MMU,
but private or shared L2 memory by short interconnects. . . . . . . . . . 27

2.9 Sequential algorithm vs parallel algorithm. . . . . . . . . . . . . . . . . . 28

2.10Thread, process and OS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.11A view from Berkeley: seven critical questions for 21st Century parallel
computing. (Adapted from Krste Asanovic et al. [88]) . . . . . . . . . . . . 30

3.1 GR-CPCI-2ETH-SRAM-8M board installed on GR-CPCI-XC4V board. . . 44

3.2 SMLOL work schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 SMLOL architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Linux on SMP design flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xvii



3.5 Microblaze architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 PowerPC 405 architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 LEON3 architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.8 Dhrystone benchmark results on three types of processors. (Adapted
from [SANDIA REPORT ]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.9 Little endian v.s. big endian. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.10Byte rotate each input variable and assign to the result variable. . . . . 54

3.11Memory hierachy design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.12Multi-task application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.13Coherent process input: Every 1s, get 1000 waveforms, 64 lag each,
for each correlation channel, total 64000 complex values for each each
correlation channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.14Incoherent process output: Every 1s, get 64 integrated complex values
for each correlation channel. . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.15Design flow of Post-processing code. . . . . . . . . . . . . . . . . . . . . . 61

3.16Software design versus hardware design. . . . . . . . . . . . . . . . . . . 62

3.17The file system of the SNAPGEAR Linux . . . . . . . . . . . . . . . . . . . 64

3.18Linux kernel initializes the process and incurs the latency . . . . . . . . 65

3.19SRMMU virtual address and physical address mapping. . . . . . . . . . . 66

3.20“CPU info“ description on SMLOL platform with 2/3/4 cores. . . . . . . . 67

3.21Ethernet configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.22FTP and UDP protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.23FTP transmission time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.24The scheduling of three parallel tasks execute in SMLOL with 2 cores. . 70

3.25Execution time (s) of parallel application on SMLOL @ 60MHz. . . . . . . 71

3.26System throughput v.s. parallel applications at multi-core platforms. . . 73

3.27Execution time v.s. parallel applications at multi-core platforms. . . . . 74

3.28Standard deviation of the execution time with 2 core, 3 core and 6 core
platforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.29MPARM scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.30MB and LEON3 dual-core architecture. . . . . . . . . . . . . . . . . . . . 78

4.1 HTPCP block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



4.2 Work schematic of GNSS-R application. . . . . . . . . . . . . . . . . . . . 89

4.3 Transmission diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4 Operation flow of transmission elements (TE0 and TE1). . . . . . . . . . 91

4.5 TCP/UDP package frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.6 Transmission result in the wireshark. . . . . . . . . . . . . . . . . . . . . 92

4.7 MPI transmission in HTPCP. . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.8 MPI sequence control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.9 The data path in PE design. . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.10Memory hierarchy design in HTPCP. . . . . . . . . . . . . . . . . . . . . . 95

4.11The Finite State Machine (FSM) design. . . . . . . . . . . . . . . . . . . . 99

4.12 Integrated a customized IP into MicroBlaze via the FSL interface. . . . . 100

4.13The sequence chart of HTPCP. . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.14HTPCP design flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.15 IP cores design in LEON3 system. . . . . . . . . . . . . . . . . . . . . . . . 102

4.16Two FSL links in leon3mp.vhd. . . . . . . . . . . . . . . . . . . . . . . . . 103

4.17FSM design with two FSL links. . . . . . . . . . . . . . . . . . . . . . . . . 104

4.18 IP cores design of Ahbdpram0 and Ahbdpram. . . . . . . . . . . . . . . . 104

4.19Ahb ipif designs of Ahbdpram0 and Ahbdpram. . . . . . . . . . . . . . . . 105

4.20 IP cores design of grgpio0 and grgpio1. . . . . . . . . . . . . . . . . . . . . 105

4.21Compile LEON3 system by Synplify Pro. . . . . . . . . . . . . . . . . . . . 106

4.22MPI design with one bram block and two bram controllers. . . . . . . . . 109

4.23Xps ethernetlite and xps gpio block diagram. . . . . . . . . . . . . . . . . 111

4.24FSL detailed connections between LEON3 system and MB system. . . . 115

4.25Create templates for a new peripheral. . . . . . . . . . . . . . . . . . . . . 116

4.26File structure of IP cores in LEON3 system. . . . . . . . . . . . . . . . . . 117

4.27FSL connections between Microblaze 0 and leon3mp core 0 in Xilinx XPS
Project. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.28GRMON initialization at 0xa0000000 and 0xa0100000. . . . . . . . . . . 119

4.29Routine 1 and Routine 2 diagram. . . . . . . . . . . . . . . . . . . . . . . . 120

4.30Routine 3 and Routine 4 diagram. . . . . . . . . . . . . . . . . . . . . . . . 121

4.31Routine 3 results in GRMON and Hypertrm. . . . . . . . . . . . . . . . . . 122



4.32Routine 4 results in GRMON and Hypertrm. . . . . . . . . . . . . . . . . . 123

4.33Two software tests for Routine 4. . . . . . . . . . . . . . . . . . . . . . . . 124

4.34Routine 5 and Routine 6 diagram. . . . . . . . . . . . . . . . . . . . . . . . 125

4.35Routine 5 results in GRMON and Hypertrm. . . . . . . . . . . . . . . . . . 126

4.36Routine 6 results in Hypertrm and GRMON. . . . . . . . . . . . . . . . . . 126

4.37Routine 7 diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.38Multiprocessor status register. . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.39Detect the CPU ID in C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.40Routine 7 results in GRMON. . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.1 GOLD-RTR instrument. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.2 The main window of the Control PC. . . . . . . . . . . . . . . . . . . . . . 137

5.3 The complete system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.4 The structure of the waveforms packet (160 bytes). . . . . . . . . . . . . . 139

5.5 The graphical representation of the GOLD-RTR output waveforms. . . . 140

5.6 The structure of the integrated waveforms packets (300 Bytes). . . . . . 141

5.7 Four cases occur with the sum of these two sets waveforms during the
transit time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.8 Coherence time τcoh and coherence integration time Tcoh. . . . . . . . . . 145

5.9 Coherence time using the Van Citter-Zernike theorem . . . . . . . . . . . 146

5.10HTPCP demonstration diagram. . . . . . . . . . . . . . . . . . . . . . . . . 148

5.11The map of the experiment campaign CO10.(Adapted from Cardellach et
al. [3]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152



List of Tables

2.I List of the GNSS-R techniques identified in the literatures. . . . . . . . . 14

2.II Flynn’s taxonomy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.III Comparison of OPENMP and POSIX. . . . . . . . . . . . . . . . . . . . . . 30

3.I Three types of FPGAs comparison. . . . . . . . . . . . . . . . . . . . . . . 45

3.II Hardware parameters in SMLOL design. . . . . . . . . . . . . . . . . . . . 55

3.III Timing affections in parallel system. . . . . . . . . . . . . . . . . . . . . . 57

3.IV The impact on compiler optimization levels. . . . . . . . . . . . . . . . . . 64

3.V The impact on the cache migration cost. . . . . . . . . . . . . . . . . . . . 66

3.VI Three types of execution time (s). . . . . . . . . . . . . . . . . . . . . . . . 72

3.VIIThe speedup parameter for multi-processors. . . . . . . . . . . . . . . . . 72

3.VIIISimulation results by MPARM. . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.I Solution1: memory hierarchy design summary. . . . . . . . . . . . . . . . 96

4.II Solution2: memory hierarchy design summary. . . . . . . . . . . . . . . . 97

4.III Solution3: memory hierarchy design summary. . . . . . . . . . . . . . . . 98

4.IV The optimized memory hierarchy design summery. . . . . . . . . . . . . . 98

4.V The cables and design tools are needed for the software routines. . . . . 118

4.VI The executable files location, the initial address, and the initial
components of LEON3 system in seven SW routines. . . . . . . . . . . . . 118

4.VIITest results of Routine 1 and 2. . . . . . . . . . . . . . . . . . . . . . . . . 121

4.VIIITest results of Routine 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.IX Test results of Routine 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.I Case study to illustrate the τcoh and Tcoh. . . . . . . . . . . . . . . . . . . . 145

5.II The amount of data comparison between original system and complete
system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

xxi



5.III The ten execution results for experiment one. . . . . . . . . . . . . . . . . 153

5.IV The minimum lost ratio of experiment one. . . . . . . . . . . . . . . . . . 153

5.V The maximum lost ratio of experiment one. . . . . . . . . . . . . . . . . . 154

5.VI The averages lost ratio of experiment one. . . . . . . . . . . . . . . . . . . 154

5.VIIThe results of experiment two. . . . . . . . . . . . . . . . . . . . . . . . . . 154



Abbreviations

ALU Arithmetic Logic Unit
AMBA Advanced Microcontroller Bus Architecture
API Application Programming Interface
ASIC Application Specific Integrated Circuit
BBD Black Box Definition
BRAM Block RAM
CC-WAV Cross-Correlation WAVeform
CPU Central Processing Unit
Dcache Data Cache
DCM Digital Clock Manager
DCR Device Control Register
DDM Doppler Delay Map
DM Delay Map
DPRAM Dual-Port RAM
DRAM Dynamic Random Access Memory
DSP Digital Signal Processing
DSU Debug Support Unit
EDAC Error Detection and Correction
EDK Embedded Development Kit
ESA European Space Agency
FIFO First In First Out
FPGAs Field Programmable Gate Arrays
FPU Floating Point Unit
FSL Fast Simplex Link
FSM Finite State Machine
FTP File Transfer Protocol
GDB GNU DeBugger
GNSS Global Navigation Satellite System
GNSS-R Global Navigation Satellite System - Reflectometry
GOLD-RTR GPS Open-Loop Differential Real-Time Receiver
GPS Global Positioning System
GUI Graphical User Interface
HDL Hardware Description Language
HTPCP Heterogeneous Transmission and Parallel Computing Platform
HW HardWare
ICACHE Instruction Cache



ILP Instruction-Level Parallelism
IP Internet Protocol
IPC Inter-Process Communication
JTAG Joint Test Action Group
LMB Local Memory Bus
LUT LookUp Table
MB MicroBlaze
MHS Microprocessor Hardware Specification
MII Media Independent Interface
MMPs Massively Multi-Processing
MMU Memory Management Unit
MPD Microprocessor Peripheral Definition
MPI Massage Passing Interface
MPs Multi-Processors
MPSOC Multi-Processors System-On-Chip
MSS Microprocessor Software Specification
NOC Network on Chip
NUMA Non-Uniform Memory Access time
OPB On-chip Peripheral Bus
OS Operation System
PAO Peripheral Analyze Order
PARIS Passive Reflectometry and Interferometry System
PC Personal Computer
PDF Probability Density Function
PEs Processing Elements
PLB Processor Local Bus
PM Processing Module
POPI POlarimetric Phase Interferometry
POSIX Portable Operating System Interface of Unix
PPC PowerPC
PPS Pulse-Per-Second
PUs Processor Units
RAM Random Access Memory
RF Radio Frequency
RISC Reduced Instruction Set Computer
RMII Reduced Media Independent Interface
ROM Read-Only Memory
SCI Single Correlation Integration
SDRAM Synchronous Dynamic Random Access Memory
SDK Software Development Kit
SEU Single Event Upset
SMLOL Symmetric Multi Leon3 On Linux
SMP Symmetric Multi-Processing
SNAPGEAR SnapGear’s embedded Linux distribution
SOC System-On-Chip
SOW Second Of Week



SRAM Static Random Access Memory
SRMMU SPARC Reference MMU
SW SoftWare
TCP Transmission Control Protocol
TEs Transmission Elements
TLP Thread-Level Parallelism
UART Universal Asynchronous Receiver/Transmitter
UDP User Datagram Protocol
UMA Uniform Memory Access
UP Uni-Processor
UTP Unshielded Twisted Pair
XCL Xilinx Cache Link
XMP Xilinx Microprocessor Project
XPS Xilinx Platform Studio





Part I

Introduction

1





Introduction

The European Space Agency (ESA) proposed a method for extracting altimeter
information from GPS signals reflected off the surface of the sea, called the Passive
Reflectometry and Interferometry System (PARIS) in 1993 [1] or the GNSS-R scenario.
There is a list of potential applications that has increased considerably since then,
including the remote sensing of the state of the sea (surface roughness and its
salinity), soil moisture levels, sea-ice characterization, and snow structures [2] which
we review in Chapter 2. Because of the mostly non-coherent nature of the reflected
signals, they cannot usually be tracked by standard GNSS receivers such as GPS,
GLONASS, the future GALILEO and COMPASS. In order to conduct experimental
work, a new instrument was designed by ICE (IEEC-CSIC) to compute and store
the cross-correlation waveform (CC-WAV) in real time. This device is called the GPS
Open-Loop Differential Real-Time Receiver (GOLD-RTR) [3]. Since 2005, this GNSS-R
hardware receiver has been used in more than 42 campaign flights and in over 250
days of continuous ground-based observations.

In order to meet the portable and timing requirements for airborne missions, using
FPGA as a post-processing platform will be a new approach. FPGA is well suited
to form a parallel architecture since it incorporates several soft-cores. Taking into
account time-to-market issues and rapid prototype developments, a shared memory
Symmetric Multiprocessing (SMP) mounted with embedded OS appears as the first
option to explore as we review in Chapter 3. However, the bus-based SMP has limited
scalability due to bus congestion and shared memory issues [4]. A new approach
is necessary to analysis the parallelism system from the workload perspective,
particularly to provide a new emulation framework for addressing situations where is
a bottleneck in different layers of Multi-Processing System-On-Chip (MPSOC) design.

The importance of post-processing the recorded waveforms of GOLD-RTR is that
it provides diversity to the post-processing algorithm, and thereby reduces the
load for the instrument downlink. A novel parallel platform HTPCP is designed
to permit leverage of the processing capability and transmission load and this is
reviewed in Chapter 4. Moreover, with regard to the post-processing algorithm,
Coherent/Incoherent integration is introduced in Chapter 5, combined with the
real campaign data to verify the correctness of the HTPCP design in GNSS-R post-
processing systems.

1



Dissertation Summary

1.1 Motivation

The aim of this PhD is to design a post-processing development board, where
we can carry out a series of post-processing algorithms for the collected Cross-
Correlation WAVforms (CC-WAVs) of the GOLD-RTR. With the development of SMP
and NOC architecture, an on-board parallel processing system becomes possible.
With sophisticated design tools, FPGA provides the perfect platform for interaction
between software programs and hardware designs. For this reason we consider
taking advantage of SMP especially in terms of its computing power, and of NOC
especially in terms of its transmission power, and so minimize the shortcomings of
each architecture, in order to develop a novel real-time post-processing system which
can meet the actual bandwidth requirements of the GNSS-R application. In this way
we hope to achieve a long term effective campaign and post-processing the CC-WAV
in real time during that campaign.

The first challenge in this work is to achieve the system real-time processing
features in the multi-processor hardware architecture design. This work will try to
address the conflict between the intensive computational load and the transmission
load in the SMP design.

The second challenge is the co-design process of the hardware and software. We
attempt to find the system design bottlenecks by testing and analyzing the workload
model at different levels. The chosen methodology for addressing this problem is the
use of memory hierarchy designs and bus designs in order to leverage the workload
between the computation and transmission systems. Basically the redesign of these
two parts can solve the issues of bus congestion and memory allocation. Moreover,
we provide a timing controller to monitor the timing of the input and output data.

Last but not least, in order to study the GNSS-R scenario, an incentive for working
the post-processing algorithms for GNSS-R instrument is considered as a scientific
experiment for the geophysical exploitation. One example, the Coherent/Incoherent
Integration algorithm, has been studied as part of this PhD. This concept has
been tested and proven for the future measurements of altimetry experiments, sea
roughness caused by wind, soil moisture and sea ice etc..

1.2 Objectives

The main objectives of this PhD are summarized as follows:

• Identify the timing constraints of the post-processing design of GOLD-RTR,
emphasizing the basic scientific demonstration of a parallel system.

• Test and simulate the post-processing algorithm on SMP platforms, in order to
find out the system bottlenecks in the architecture design.

2



Document Structure and Context

• Develop the post-processing algorithms to realize a fine-grained parallelism
application on the target board, i.e., HTPCP. Fill the gap between the processing
time and the storage of the CC-WAV for GNSS-R applications.

• Develop a novel architecture, HTPCP, which has been proposed as a promising
technique for GNSS-R post-processing systems, which could meet the real-
time requirement and the diversity requirement of processing the scientific
demonstrations.

• Verify the HTPCP with the real campaign experiment, in order to demonstrate
the correctness of the system design.

The fundamental platform for the development of this thesis is the research project
of National Space Plan (CICYT ESP2005-03310), the project entitled ”ASAP: Altimetric
and Scatterometric Applications of the PARIS Concept”, which was developed by ICE
(IEEC-CSIC) and INTA. The platform will be used for future campaigns of the GOLD-
RTR Instrument.

1.3 Document Structure and Context

This document reflects the line of my PhD research towards obtaining the doctorate.
At the beginning of my doctorate course, the subject was decided by implementing
the post-processing algorithm of GNSS-R application by FPGA. With the gradual
deepening of the study, my research subjects constantly expanded from a general
signal processing problem to a concrete multi-core processing, and finally reached
a parallel system design. This document is not only the result of this project,
but rather an experimental platform. It covers the HTPCP hardware design, post-
processing algorithm design, laboratory readiness tests, and the aircraft campaign
result experiments.

The rest of the thesis is organized as follows.

• Chapter II discusses the state of the art, focussing on setting out the latest
situation in two fields: GNSS-Reflectometry (GNSS-R) technique and Parallel
system development.

• Chapter III describes the parallel system based on the SMP scheme, namely
the Symmetric Multi-LEON3 On Linux (SMLOL) platform, which is designed
and analyzed to implement the post-processing algorithm over a task-level
parallelism system. The in-depth analysis of timing performance is based on the
MPARM emulator, in order to discover the bottleneck of the SMLOL platform.
It provides a framework for applying the post-processing algorithm as well as
testing its performance in a realistic scenario.

• Chapter IV focusses on the novel parallel platform, called HTPCP, which is
presented in order to carry out the real time post-processing for GNSS-R

3



Dissertation Summary

applications. Moreover, two problems are proposed and solved, 1) Parallelize
the inherent serial output of the GOLD-RTR instrument and 2) Post-process the
multi-channel (I and Q) correlators in parallel. The seven laboratory readiness
tests demonstrate the correctness of the IP cores design in HTPCP.

• Chapter V presents two experiment results based on the real campaign
environment in order to demonstrate the correct operation of the entire system
(GOLD-RTR + HTPCP + Control PC). Moreover a detailed description of the post-
processing algorithm - coherent/incoherent integration is introduced, to deal
with the data reduction and the data mass storage issues.

• Chapter VI concludes the thesis.

4



Bibliography

[1] M. Martı́n-Neria, “A passive reflectometry and interferometry system (paris):application to ocean
altimetry,” ESA Journal, vol. 17, no. 4, pp. 331–355, 1993.

[2] E. Cardellach, F. Fabra, O. Nogués-Correig, S. Oliveras, S. Ribó, and A. Rius, “Gnss-r ground-
based and airborne campaigns for ocean, land, ice and snow techniques: application to the gold-rtr
datasets,” RADIO SCIENCE, 2011.

[3] O. Nogués-Correig, E. Cardellach-Galı́, J. Sanz-Camderrós, and A. Rius, “A gps-reflections receiver
that computes doppler-delay maps in real time,” IEEE Transactions on Geoscience and Remote
sensing, vol. 45, no. 1, pp. 156–174, 2007.

[4] Y. Guo, L. Kanellou, A. C. Luis, A. Rius, and C. Ferrer, “Parallel workload analysis in smp platform:
a new modelling approach to infer the hw efficiency for remote sensing application,” in Proceedings
of of SPIE–VLSI Circuits and Systems IV (SPIE’09). Dresden, Germany: SPIE, May 2009.

5





Part II

State of the art

7





State of the art

2.1 Introduction

This dissertation is based on the previous knowledge in two fields: GNSS-
Reflectometry (GNSS-R) and parallel system design. This Chapter reviews the state
of the art of both fields: a) the GNSS-R technique and b) the parallel system
development. Here we cover the theoretical basis and technology development related
with our project. The first category is described as the GNSS-R post-processing
relevant design, it focuses on the implementation of the GNSS-R instrument and
its performance for geophysical exploration. The second category is described as
the parallel system design based on the basic principles of the parallel system
design, and it focuses on the exploration of the parallel system, the definition of
parallelism, parallel architecture, parallel algorithm and parallel programming model,
in order to argue that they represent an important and distinct category of computer
architectures.

2.2 GNSS-R Post-Processing Relevant Design

In this Section, we summarize the basic principles of the GNSS-R technique. We
mainly focus on the GNSS-R scenario, GOLD-RTR instrument and GNSS-R post-
process applications. It is organized as following:

• The GNSS-R Scenario, define the GPS transmission signal structure, frequency
carriers, carrier modulation, cross-correlation function, and the physical
significance of the reflected signal.

• The GOLD-RTR Instrument, briefly introduce the composition of the
instrument and the work principle of GOLD-RTR.

• The GNSS-R Post-Process Applications, devoted on the description of the basic
aspects involved in the technique of using GNSS signals reflected off the ocean
surface to infer its physical properties.

9



Chapter II

2.2.1 GNSS-R Scenario

In 1993, the European Space Agency (ESA) proposed a method for extracting altimeter
information from GPS signals after their reflection off the sea surface. This concept
is created by the Passive Reflectometry and Interferometry System (PARIS) as passive
multistatic radar to monitor mesoscale ocean altimetry [1]. This theoretical notion
has turned into one of the most recent applications for the Global Navigation Satellite
System (GNSS), which is the used of reflections for oceanographic remote sensing
purposes. So far it mainly extends to the use of GPS signals combined with airborne
receivers to form a type of bistatic radar. The idea is to capture both the GPS signals
coming directly from the transmitting satellites and the ones that have been reflected
off the ocean surface as shown in Fig.2.1. The delay between them can be used
to determine aircraft altitude, and extract the ocean scattered signal information
about wave height, wind speed and wind direction. These techniques allow further
processing of the real-time computed 1-ms waveforms in a flight campaign over the
ocean, ice, or ground, which can be used to obtain geophysical parameters such as
sea level and tides, sea surface mean-square slopes, ice roughness and thickness,
soil moisture and biomass, or future applications.

Figure 2.1: GNSS-R scenario: GNSS signals reflected on the ocean surface are used to gather
their properties like roughness or level. (Adapted from Nogués-Correig et al.[2])

As shown in Fig.2.2, satellite transmissions occur using two different frequency
carries, L1 = 1575.42 MHz and L2 = 1227.60 MHz, both obtained by multiplication
of the fundamental frequency (10.23 MHz) with the factor 154 and 120, respectively.
These frequencies are suitable for satellite transmissions because in this range both
rain effects and galactic noise are minimized. The low Signal-to-Noise (SNR) L-band
(L1 = 1575.42 MHz, λ = 0.1905 meter wavelength) electromagnetic field is transmitted
by satellite orbiting at ∼ 20000 km altitude. The signals are transmitted at Right-
Hand Circular Polarization (RHCP) continuously. A detailed description of the GPS
can be found in Spilker et al. [3] or Misra and Enge et al. [4].

10



GNSS-R Post-Processing Relevant Design

L1 Carrier 1575.42 MHz 

C/A Code 1.023MHz 

P Code 10.23MHz 

NAV Data 50Hz 

 L1  Signal 

 Module 2 
Sum 

Mixer 

L2 Carrier 1227.6 MHz 

 L2  Signal 

Figure 2.2: GNSS-R TX signal model.

The carriers modulate two types of codes, called C/A code (Coarse/Acquisition)
and P code (Precise). The former is used for civil applications within the Standard
Positioning Service (SPS). The latter allows access to the Precise Positioning Services
(PPS), available for military purpose. These codes modulate the signal by introducing
180o phase-shifts. One of the codes is the navigation code, used to help real-time
positioning. The other codes are designed to isolate the signal transmitted by one
particular GPS space vehicle from the others received simultaneously which build
up a Code Division Multiple Access (CDMA) scheme that spreads the band-width of
the data signal and drops down its power spectral density. Each satellite accesses
the transmission medium using its own pseudorandom sequence, and it can be
distinguished and identified from the rest because it assigned sequences exhibits
good cross-correlation properties with those of the other satellites.

These cross-correlation functions are also called waveforms, or delay maps (DM).
A detailed description of cross-correlation functions can be found in Cardellach et al.
[5], where we acquire the Fig.2.3 to describe the correlation function. As shown, it is
an ideal triangle in amplitude units in direct propagation conditions (no reflection).
The half-width of the triangle is the chip-length, which means the time interval for
potential phase-shifts. For the C/A code, this is ∼ 300 meter. The delay of the
signal is measured by either displacements of the peak of this triangle function (group
delay), or more precisely by tracking the changes in the phase of the carrier. The
ionospheric and lower atmospheric conditions, together with multi-path environment
introduce some additional delays. When the signal reflected off the Earth surface is
collected, (1) the polarization is mostly swapped, from RHCP to Left-Hand Circular
Polarization (LHCP). This effect depends on the dielectric properties of the surface

11



Chapter II

Figure 2.3: The composition of all the DM-slices generates the Delay-Doppler Map (DDM).
(Adapted from Cardellach et al. [5])

as well as geometry of the reflection; (2) the correlation function is distorted, since
the diffuse scattering, the antenna collects signals reflected at the specular point
as well as at other points within the surface, which add contributions to the cross-
correlation function at longer delays than the specular one. The waveform is not a
triangle function any more as shown in Fig.2.3, but the trailing edge decays at lower
slope than the leading edge. Moreover, in certain dynamic conditions, the Doppler
frequency suffered by the off-specular reflections differs significantly from the Doppler
frequency at the specular point. These signals are then filtered out by the cross-
correlations and coherent integration process. In those cases to retrieve the complete
glistening zone, a set of cross-correlations must be performed at slightly different
frequencies around the specular one, generating a Delay-Doppler Map (DDM). All
these waveforms can be provided as a set of complex number (C-DM, C-DDM) given
in amplitude-units, or non-coherently integrated in time to reduce the noise, given in
power-units (P-DM, P-DDM).

2.2.2 GOLD-RTR Instrument

The GOLD-RTR instrument [GOLD-RTR] is designed by the ICE (IEEC-CSIC). A
detailed description of the GOLD-RTR can be found in [2]. Here we briefly
introduce the composition of the instrument and the work principle of GOLD-RTR.
As shown in Fig.2.4, the GOLD-RTR includes two parts: the RF front-end and the
signal-processing back-end. The front-end is composed of three I and Q direct
downconversion chains with their corresponding three antenna inputs. The local
oscillator synthesizer that feeds them coherently with a common-tone down-shifted
300 KHz from L1 carrier. The system reference oscillator operates at 40 MHz,
therefore, the data sample frequency is 40MHz. The back-end is composed of a one-
bit A/D conversion stage that converts the three I and Q Base-Band pairs to digital
and six comparators performing the sign extraction. After sampling, the bus of six

12



GNSS-R Post-Processing Relevant Design

Figure 2.4: Block diagram of GOLD-RTR instrument.(Adapted from Nogués-Correig et al.[2])

base-band 1-bit signals is split into ten equal copies, which are input to the ten
correlation channels. Each correlation channel contains 64 single-lag correlators in
order to provide 64-lag waveforms at 50 ns spacing. The instrument has a set of 640
single-lag IQ correlators, grouped into ten 64-lag independent correlation channels
that work simultaneously. The real-time signal processor computes the waveforms.
A commercial GPS receiver card (Novatel) computes the navigation solution from
antenna input 1. The GOLD-RTR communicates with Control PC through a full-
duplex Ethernet link at 100 Mbps, using a standard Unshielded Twisted Pair (UTP)
cable ended with RJ-45 connectors. An important issue is that the two down-looking
antenna used to collect GPS reflected signals, and the up-looking antennas used to
collect the GPS direct signals. The geometrical projection of such a baseline into the
scattering direction enters, straightforward, as a relative phase between both LH and
RH signals.

An important issue is that there is flexibility in the loaded signal models in order
to force offset-values in delay or frequency, for both direct and reflected signals. All
these features make it possible to assign different satellites to different channels,
or to assign the same satellite to all the channels, but with slight differences in the
frequency model to produce a Doppler/delay map (DDM), or DDM of two polarizations
of a satellite signal, or other possible combinations.

2.2.3 Examples of GNSS-R Post-Processing Applications

Nowadays, there are many applications of the GNSS-R post-processing. These
applications are applied to the different experiments, and the results put forward
in the campaigns. Cardellach et al. [5] has concretely described and classified the
GNSS-R applications. The GNSS-R applications tend to be classified according to the
observed surface: (a) Ocean; (b) Land; and (c) Ice and Snow. Another classification

13



Chapter II

Table 2.I: List of the GNSS-R techniques identified in the literatures.
Technique: Bibliography:

GROUP-ALTIMETRY

Peak-Delay Martı́n-Neira et al. [6] (2001)

Retracking Lowe et al.[7] (2002); Ruffini et al. [8] (2004)
Peak-Derivative Hajj and Zuffada et al. [9] (2003); Rius et al. [10] (2010)

PHASE-ALTIMETRY

Interferometric-beats Cardellach et al. [11] (2004); Helm et al. [12] (2004)

5-Parameter DM Fit Treuhaft et al.[13](2001)
Separate Up/Down Channels Fabra et al. [14] (2011); Semmling et al. [15] (2011)

OCEAN ROUGHNESS

DM-fit Garrison et al. [16] (2002); Cardellach et al. [17] (2003); Komjathy et al. [18] (2004)

Multiple-satellite DM-fit Komjathy et al. [18] (2004)

DDM-fit Germain et al.[19](2004)
Trailing-edge Zavorotny and Voronovich [20] (2000a), Garrison et al. [16] (2002)

Delay and Doppler spread Elfouhaily et al.[21](2002)

Scatterometric-delay Nogués-Correig et al.[2](2007), Rius et al. [10](2010)
DDM Area/Volume Marchan-Hernandez et al.[22](2008); Valencia et al.[23](2009)

Discrete-PDF Cardellach and Rius et al.[24] (2008)
Coherence-time Soulat et al.[25](2004); Valencia et al.[26] (2010)

OCEAN PERMITTIVITY

Polarimetric-ratio
POPI Cardellach et al.[27](2006)

LAND

Soil-moisture cross-polar Masters et al.[28](2004); Manandhar et al.[29](2006); Katzberg et al.[30] (2005);
Cardellach et al. [31](2009)

Soil-moisture polarimetric-ratio Zavorotny and Voronovich el at.[32](2000b),Zavorotny et al.[33](2003)
Object-identification Lei-Chung et al.[34](2009)

SEA-ICE

Permittivity by peak-power Komjathy et al.[35](2000); Belmonte et al.[36](2007)

1st-year thickness VH-phase Zavorotny and Zuffada et al.[37](2002)

Permittivity polarimetric ratio
Permittivity POPI Cardellach et al.[27](2006), Cardellach et al [31](2009)

Sea-Ice roughness Belmonte et al.[36](2007)

SNOW

Volumetric-scattering Wiehl et al.[38]

regards the final product: (i) altimetry; (ii) roughness; (iii) permittivity parameters
(such as temperature, salinity, or humidity), which determine the reflectivity level
of the surface materials. Still, the observables used in the technique might also
characterize the classification: (1) integrated power observables solely; or (2) high
sampling complex correlation functions (amplitude and phase). Finally, we might
need to distinguish between applications that require polarimetric or non-polarimetric
observables. The data obtained in the experimental campaigns cover all the cases.
Therefore, we focus on the applications that can be tested with the released data
set, that is: applications of both integrated and complex-field observables, under
categories (a) to (c), (i) to (iii), either polarimetric or not. Table 2.I summarizes the
GNSS-R techniques and the reference literatures for each method.

2.2.3.1 Altimetry

The altimetric techniques can in principle be applied to reflections off any surface,
but their performance will depend on the signal-to-noise ratio of the scattering.
Therefore, GNSS-R altimetry has only been conducted on strongly reflecting
surfaces/geometries, such as waters and smooth ice, or land at near-surface receiver
altitudes [39].

14



GNSS-R Post-Processing Relevant Design

The altimetry aims to resolve the vertical distance between the receiver and the
surface, and/or the vertical location of the specular point (with respect a reference
ellipsoid/geoid). The observables to deal with are the distances between transmitter,
receiver and/or surface. They can be given in the space-domain (called ranges) or
in the time-domain (called delays). They are related to each other by the speed of
light, and from here on we will call them range or delays indistinctly. Because the
GNSS-R observations are bi-static, the way to relate the ranges with the surface level
will depend on the geometry (incidence angle), as well as other systematic effects
(atmospheric, instrumental, antennas set up, etc). Here we focus on the observable,
that is, the altimetric range. The altimetric range is the distance traveled by the
reflected signal with respect to the one traveled by the direct radio-link. When the
range is measured through the delay of the code (delay of the correlation function),
it tends to be called group-delay or pseudo-range. When the carrier-phase can be
tracked, variations in the range can be monitored with much better precision, since
an entire cycle corresponds to λ ∼20 cm change (∼0.5 mm/carrier-phase degree).
This latter approach is called carrier-phase altimetry.

• Group-Delay Altimetry Observables

In a smooth-surface reflection event, the distance between the path traveled
by the reflected signal and the path traveled by the direct link would simply
correspond to the range between the peaks of the two correlation functions.
Nevertheless, and since most reflections occur off rough surfaces, this approach
cannot generally be used. Rius et al. [40] shows that variations in the delay of
the reflected peak mostly account for changes in the surface roughness.

A few techniques have been used to identify the specular point delay in the
waveform:

Peak-Delay: the altimetric range is taken as the peak-to-peak delay. This peak
delay can be directly extracted by combining some fields provided in the
data.

Re-tracking: which consists on fitting a theoretical model to the data. The
best-fit model indicates the delay where the specular point lies.

Peak-Derivative: identifies the maximum of the derivative of the leading edge
as the specular point delay. The peak-derivative delay can be directly
extracted by combining some fields provided in the data.

• Phase-Delay Altimetry Observables

The phase at which the direct and reflected signals (φd and φr respectively) reach
the receiver depends on the range between the transmitter and the direct and the
reflected antenna phase centers respectively (rd and rr), through the terms φd ∝
k · rd and φr ∝ k · rr, where k states for the carrier’s wavenumber. The reflected-
phase, given with respect to the direct one, thus becomes φr−d ∝ k · (rr − rd),
where (rr − rd) is the altimetric range, rr−d. The phase-delay altimetry approach
aims to measure the altimetric range by means of carrier-phase observations

15



Chapter II

φr−d. When the signals reflect off rough surfaces, the received phase φr becomes
too noisy (non-coherent) and the technique cannot be applied.

In general, it can be used in very smooth surfaces (some ice surfaces [41]); from
very low altitudes (a few meter); and over very slant geometries (a few degrees
elevation). Some of the released data sets are suitable for phase-altimetry,
following the techniques below:

Interference beats: When the altitude is low enough, or the observation at
grazing angles, the delay between the reflected and direct signals is short
and their correlation functions overlap, producing interference-beats. These
beats are oscillations of the amplitude and phase of the total field (sum
of the two signals), and they occur at the frequency (1/λ)d(rr − rd)/dt.
[11] obtained phase-delay altimetry by analyzing the interferences found
in radio-occultation data from the CHAMP Low-Earth Orbiter. Similarly,
[12] used an equivalent approach to perform phase-delay altimetry off of an
Alpine lake.

5-parameters: A more robust fit is performed in [13], where the whole complex
RHCP (direct+reflected) waveform is used to extract five parameters , among
them the altimetric range.

Separate channels: When the delay between the two radio-links is longer,
and their correlation functions do not or just weakly overlap, [14; 15] used
separate up/down channels to measure the relative phase φr−d, obtaining
sea-ice phase-altimetry which clearly reproduced the tidal signatures.

2.2.3.2 Ocean Wind and Roughness

As the GNSS link reflects off the sea surface, its roughness might scatter the signal
in a wide range of output directions. As a result, the reflection is not specular
(mirror-like), but it spreads in a scattering pattern: contribution from sea surface
patches (facets) that have different orientation deviate the signals, and introduce
further delays (longer ray-path distances than the nominal transmitter-specular-
receiver radio-link). This changes the properties of the received signal and thus
those of its correlation function. In general, the reflected waveforms present lower
amplitudes when roughness increases, and the shape is also distorted: the leading
edge (before peak) elongates, the peak gets further delayed, and the trailing edge
(after peak) persists longer, with slower decay rate. Information about the surface
roughness can be obtained from the analysis of these distortions.

The L-band navigation signals, of ∼0.2 meter electromagnetic carrier wavelength
are not sensitive to sea surface roughness of spatial scales much smaller than
the electromagnetic wavelength (such as wind instantaneously induced ripple).
As a consequence, the GNSS-R ocean scattering observations can inform about
intermediate roughness scales, which do not necessarily relate to the wind conditions.
One of the open questions is a better understanding and modelling of this roughness
term e.g.[42], and researchers are encouraged to use this data set for these

16



GNSS-R Post-Processing Relevant Design

investigations. Two L-band radiometers have recently been and will be soon launched:
SMOS and Aquarius respectively, which shall provide sea surface salinity and soil
moisture measurements. Because of them, it is nowadays essential to understand
and properly model the L-band roughness, and the bi-static scattering of L-band
signals off the Ocean. The reason is that these issues are required for the proper
modeling of the L-band emissivity, and the separation between the effects of the
permittivity of the surface (salinity and temperature) and the roughness corrections.

The approaches to untangle roughness information that have been identified in the
literature as suitable for being applied to this data set are codified and summarized
in Table 2.I. Brief explanations are given below:

DM-fit: After re-normalising and re-aligning the delay-waveform, the best fit against
a theoretical model gives the best estimate for the geophysical and instrumental-
correction parameters [e.g. 16]. Depending on the model used for the fit, the
geophysical parameters can be 10-meter altitude wind speed, or sea surface
slopes’ variance (mean square slopes–MSS). Note that the provided data sets,
the time-delay alignment between the data and the model, re-alignment, is given
by the variable MaxDerDelay, which identifies the specular-point.

Multiple-satellite DM-fit: extends the DM-fit inversion to several simultaneous
satellite reflection observations, which resolves the anisotropy (wind direction
or directional roughness [18]).

DDM-fit: The fit is performed on a delay-Doppler waveform [19]. In this way,
anisotropic information can be obtained from a single satellite observation.

Trailing-edge: As suggested from theoretical models in [20], [16] implements in real
data a technique in which the fit is performed on the slope of the trailing edge,
given in dB.

Delay and Doppler spread: [21] developed a stochastic theory that results in two
algorithms to relate the sea roughness conditions with the Doppler spread and
the delay spread of the reflected signals.

Scatterometric-delay: For a given geometry, the delay between the range of the
specular point and the range of the peak of the reflected delay-waveform is nearly
linear with MSS. This fact is used to retrieve MSS [2]. The scatterometric-delay
can be directly obtained in our data set by combining some of the provided fields.

DDM Area/Volume: Simulation work in [22] indicates that the volume and the
area of the delay-Doppler maps are related to the changes in the brightness
temperature of the ocean induced by the roughness. The hypotesis has been
experimentally confirmed in [23].

Discrete-PDF: When the bi-static radar equation for GNSS signals is re-organised in
a series of terms, each depending on the surface’s slope s, the system is linear
with respect to the Probability Density Function (PDF) of the slopes. Discrete
values of the PDF(s) are therefore obtained. This retrieval does not require an

17



Chapter II

analytical model for the PDF (no particular statistics assumed). In particular,
when the technique is applied on delay-Doppler-maps, is it possible to obtain
the directional roughness, together with other non-Gaussian features of the PDF
(such as up/down-wind separation [24]).

Coherence-time: Finally, when the specular component of the scattering is
significant (very low altitude observations, very slant geometries, or relatively
calm waters), the coherence-time of the interferometric complex field depends on
the sea state. It is then possible to develop the algorithms to retrieve significant
wave height [25; 26].

2.2.3.3 Ocean Permittivity

Polarimetric measurements are sensitive to the permittivity of the reflecting surface.
For the Ocean surface, the permittivity at the L-band of the electromagnetic spectrum
is essentially given by the salinity and the temperature [43].

Polarimetric ratio: the ratio between the co-polar (RHCP) and the cross-polar
(LHCP) Fresnel reflection coefficients differs up to 10% between different salinity
conditions. The direct inversion of the polarimetric ratio is neverthless an open
question, since it will not only depend on the Fresnel coefficients, but on a more
complex scattering process, for which the co-polar term is not properly modelled
yet.

POlarimetric Phase Interferometry (POPI): Similarly, the difference between the
phase of the complex co- and cross-polarized components of the reflected
fields (RHCP and LHCP respectively) depends on the permittivity of the surface
[27]. This is simply the phase of the polarimetric interferometric field,
complex-conjugate multiplication between the co- and the cross-polar complex
components. The long coherence time, of the order of minutes, of the
polarimetric interferometric field, increases significantly the precision of the
POPI measurement, which requires a theoretical sensitivity of a few degrees-
phase. Phase wind-up [44] affects twice the POPI phase, and it must be
corrected.

The data taken up today with the GOLD-RTR cannot provide absolute POPI values,
because of instrumental issues, but they can provide POPI-variations. The GOLD-RTR
has recently been modified to allow absolute POPI measurements, and the data taken
during 2010 (27 flights) and later campaigns, to be posted in the server, will be ready
for absolute POPI.

2.2.3.4 Land and Hydrological Applications

Several techniques to extract soil moisture information contents can be found in the
literature. They are mostly sensitive to the 1-2 cm upper layer [30]:

18



GNSS-R Post-Processing Relevant Design

Soil-moisture cross-polar: uses the LHCP SNR as the observable, from which the
surface reflectivity is extracted. It can be normalized by the direct power level or
even calibrated with observations over smooth water bodies [e.g. 28].

Soil-moisture polarimetric-ratio: Another method assumes that the received signal
power is proportional to the product of two factors: a polarization sensitive
factor dependent on the soil dielectric properties and a polarization insensitive
factor that depends on the surface roughness. Therefore, the ratio of the two
orthogonal polarizations excludes the roughness term and retains the dielectric
effects [32; 33]. The same references note that real data did not support this
hypothesis. Some of the assumptions might be too crude, and better modelling
is required.

Object-identification: approach suggested in [34], based on a combination of
computing the GNSS-R derived total reflectivity together with the carrier-phase
positioning of both up- and down-looking antennas.

2.2.3.5 Ice and Snow Applications

For altimetric measurement over ice, the techniques intended to characterize several
other aspects of the ice/snow, such as its permittivity (brine/temperature); texture;
or sub-structure:

Permittivity by peak-power: obtains the effective dielectric constant empirically,
as a function of the peak-power [e.g. 35].

Vertical and the horizontal polarizations: [37] suggested to infer the 1st-year
thickness from the phase difference between the vertical and the horizontal
polarized components.

Polarimetric Ratio: Similarly to polarimetric ratio, the ratio between the amplitudes
of both polarizations relates to variations in the permittivity of the sea-
ice (temperature and brine), especially at relatively low elevation angles of
observation, around the Brewster angle. There is no algorithm in the literature,
but the evolution of the polarimetric ratio captured during ∼200 days, including
the freezing and melting process of the sea-ice in Disko Bay, Greenland.

Permittivity POPI: As in POPI, the technique uses the phase difference between the
co- and cross-polar circular polarized components.

Sea-ice roughness: [36] obtained the sea-ice roughness by fitting the waveform
shape.

Volumetric-scattering: [38] suggested a volumetric-scattering approach to model
reflections produced in the sub-surface firn layers of dry snow.

The PARIS or GNSS-R techniques were suggested in early 90ies, whereas most
theoretical and experimental research about their potential applications emerged

19



Chapter II

some years later. In this section, the ICE/CSIC-IEEC designed and manufactured
a dedicated GNSS-R hardware receiver, the GOLD-RTR, with which more than
forty air-borne flights and eight months ground-based campaigns were conducted
over Ocean, Land, Sea-Ice and Dry-Snow. Several aspects of the GNSS-R require
further investigation, and new applications or approaches might be envisaged. For
these reasons, the GNSS-R data collected since 2005 with the GOLD-RTR are made
available to the research community. With the aim of encouraging new users and
new research, the paper sought to review in an understandably manner the GNSS-
R applications, techniques and algorithms that could be potentially applied to these
data sets, together with the data structure, and the suitable models to deal with them.

2.3 Parallel System Design

In this Section, we summarize the basic principles of the parallel computing, including
the parallel system design, the parallelism definition, the parallel architecture, the
parallel algorithm and the parallel programming model. It is organized as the
following:

• The Parallel System, explores the main issues in the parallel system design.

• The Parallelism, describes that four types of parallelism should support in
parallel system: Bit-Level Parallelism (BLP), Instruction-Level Parallelism (ILP),
Data-Level Parallelism (DLP), Task-Level Parallelism (TLP).

• The Parallel Architecture, roughly classifies the parallel architecture into
multi-processing system and multi-core system, and indicates two models for
communication and memory architecture in parallel systems: Heterogeneous
architecture and homogeneous architecture.

• The Parallel Algorithm, devotes to the description of Flynn’s taxonomy, in order
to decompose a given problem in many different ways and orders.

• The Parallel Programming Model, presents the three types of parallel
programming models: shared address space, message passing, and data parallel
programming. Moreover, presents the synchronization issue in the parallel
programming design.

2.3.1 Parallel System

Parallel computing is a form of computation in which many calculations are carried
out simultaneously, thus, large problems can be divided into smaller ones, which are
then solved concurrently. Note that parallel system cannot be addressed as only a
multi-processor design or double the number of cores on a chip design. The target
should be easy to write programs that execute efficiently on highly parallel computing
systems. Due to the gap of software and hardware design, we need to provide

20



Parallel System Design

convenient functionalities to higher levels and permit an efficient implementation at
lower levels.

Over last years, several embedded solutions for parallel processing are ready
available: SMP [45], ASymmetric Multi-Processing (ASMP), Network-On-Chip (NoC)
[46–48], Graphics Processing Unit (GPU)[49]. Indeed, higher timing performance is
achieved, but the following issues have emerged with these new embedded solutions:

1. The Taxonomy of Multiprocessors

We argue that MPSoCs from two important branches in the taxonomy of
multiprocessors: the homogeneous model pioneered by the Lucent Daytona
(i.e.ARM MPCore [50]; Intel IXP2855 (cluster) [Intel IXP2855 Network Processor];
Freescale MC8126; Samdbridge Sandblaster processor [51][52] and the
heterogeneous model pioneered by the Nokia C5, NXP Nexperia and TI OMPA
(i.e. Seiko-Epson inkjet printer “Realoid“ SoC; Infineon music processor;
IBM Cell processor [53] multiprocessors. In 2002, Hammond et al. [54]
proposed a Chip MultiProcessor (CMP) architecture before the appearance of
the Lucent Daytona. Their proposed machine included eight CPU cores, each
with its own first-level cache (L1) and a shared second-level (L2) cache. They
used architectural simulation methods to compare their CMP architecture to
simultaneous multithreading and superscalar. They found that the CMP
provided higher performance on most of their benchmarks and argued that
the relative simplicity of CMP hardware made it more attractive for VLSI
implementation. In 2005, the Intel Core Duo processor [55] combines two
enhanced Pentium M cores on a single die. The processors are relatively separate
but share an L2 cache as well as power management logic. The AMD Opteron
dual-core processor provides separate L2 caches for its processors but a common
system request interface connects the processors to the memory controller and
HyperTransport. Also the Niagra SPARC processor has eight symmetrical four-
way multithreaded cores as another multi-core architecture.

2. Instruction Sets:

Instruction sets that are designed for a particular application which are
used in many embedded systems. Processor configuration is usually of two
type: Coarse-grained structural configuration and Fine-grained instruction
extensions. Coarse-grained structural includes the presence or absence of a
variety of interfaces (bus, local memory, direct first-in first-out interfaces or
accelerating block) to associated objects. Fine-grained instruction adds extra
instructions directly into the datapath of the processor that are decoded in the
standard way, and may even be recognized by the compiler automatically or
least as manually invoked intrinsics. The architectural optimization is often in
conjunction with configurable processor or coprocessors, which is supported by
the CPU tools. The related CPU design tools are MIMOLA system [56], ASIP
Meister [57], LISA [58], XPRES tool [59] etc.

3. Interconnections:

21



Chapter II

Most interconnect choices are based on conventional bus concepts. Thus,
the two best known SoC buses are ARM AMBA (ARM processor and LEON3
processor) and IBM CoreConnect (PowerPC and IBM POWER processors). It
has long been predicted that the current bus-based architectures will run out of
performance and desirable to achieve the required on-chip communications and
bandwidth, as SoCs grow in complexity with more and more processing blocks.
[60].

4. Alternative Architectures:

The search of alternative architectures has led to the concept of NoC and GPU.
For a good survey, see the book edited by De Micheli and Benini [61]. The
key idea behind a NoC design is to use a hierarchical network with routers to
allow packets to flow more efficiently between originators and targets, in order to
provide additional communications resources so that multiple communications
channels can be simultaneously operating. Sonics Silicon Backplane was the
first commercial NoC [62], which offers TDMA-style interconnection network.
Today, several other vendors provide NoCs, including Arteris [63] and Silistix
[64] etc.. Shuai et al. [49] also proves that GPU could accelerate the routing
processing by one order of magnitude.

5. Inter-Processor Communication:

Inter-Process Communication (IPC) is a set of methods for the exchange of data
among multiple threads in one or more processes. Processes may be running on
one or more computers connected by a network. IPC methods are divided into
methods for message passing, synchronization, shared L2 memory (Intel core
2 Duo, Xbox 360’s custom PowerPC), and remote procedure calls. Regarding
inter-processor communication in a multi-core design, Chin et al. [65] applies
the Message Passing Interface (MPI) and Open Multi-Processing techniques for
parallel computation implementation. This parallel method could put the mutli-
cores microprocessors to be efficiently used in GNSS signal acquisition and
tracking processes.

6. Harware/Software Co-design:

Hardware/Software
codesign was developed in the early 1990s. Hardware/Software cosynthesis can
be used to explore the design space of heterogeneous multiprocessors. Cosyma
[66], Vulcan [67], and system of Kalavade and Lee [68] were early influential
cosynthesis systems, with each taking a very different approach to solve all the
complex interactions due to the many degrees of freedom in hardware/software
codesigns. Cosyma’s heuristic moved operations from software to hardware;
Vulcan started with all operations in hardware and moved some to softwares;
Kalavade and Lee used iterative performance improvement and cost reduction
steps. Cost estimation is one very important problem in cosynthesis, because
area, performance, and power must be estimated both accurately and quickly.

7. Software Methods:

22



Parallel System Design

Software methods can be used to find and eliminate such conflicts but only
at noticeable cost [69]. A variety of algorithms and methodologies have been
developed to optimize the memory system by the behavior of software [70].
De Greef et al. [71] developed an influential methodology for memory system
optimization in multimedia systems. A great work at the IMEC, such as that
by Franssen el al. [72], De Greed et al. [71], and Masselos et al. [73],
developed algorithms for data transfer and storage management. Panda el al.
[74] developed algorithms that place data in memory to reduce cache conflicts
and place arrays accessed by inner loops. Kandemir et al. [75] combined data
and loop transformations to optimize the behavior of a program in cache.

8. Memory Allocation:

Furthermore, access to any memory location in a block may be sufficient to
disrupt real-time access to a few specialized locations in that block. However, if
that memory block is addressable only by certain processors, then programmers
can much more easily determine what tasks are accessing the locations to
ensure proper real-time responses, here commonly concern about L2 cache
design [76] [77], manage the cache hierarchy [78] or compress the main memory
[79]. Also scratch pad memories have been proposed as alternatives to address-
mapped caches. A scratch pad memory occupies the same level of the memory
hierarchy as a cache does, but its contents are determined by software, giving
more control of access times to the program. Panda et al. [80] developed
algorithms to allocate variables to the scratchpad. They defined a series
of metrics, including variable and interference access counts, to analyze the
behavior of arrays that have intersecting lifetime.

2.3.2 Parallelism

The promise of parallelism has fascinated researchers for at least three decades.
Across many technologies, bandwidth improves by at least the square of the
improvement in latency. Therefore, increasing parallelism is the primary method
of improving processor performance. In general, the programming models should
support a wide range of parallelism: Bit-Level Parallelism (BLP), Instruction-Level
Parallelism (ILP), Data-Level Parallelism (DLP), Task-Level Parallelism (TLP), whereas
the uni-processor only relies on available ILP for high performance, which is limited.

1. Bit-Level Parallelism (BLP)

Historically, 4-bit microprocessors were replaced by 8-bit, then 16-bit, this trend
generally came to an end with the introduction of 32-bit processors, which
has been a standard in general-purpose computing for two decades. Not until
recently, with the advent of x86-64 architectures, 64-bit processors become
common. Thus increasing the word size of the processor can reduce the number
of instructions per cycle. For example, an 8-bit processor must add two 16-
bit integers, the processor must first add the 8 lower-order bits from each

23



Chapter II

integer by the standard addition instruction, then add the 8 higher-order bits
by an add-with-carry instruction, and then add the carry bit from the lower
order addition. Thus, an 8-bit processor requires two instructions to complete
this single operation, where a 16-bit processor would be able to complete the
operation with a single instruction.

2. Instruction-Level Parallelism (ILP)

Figure 2.5: Canonical five-stage pipeline in a RISC machine. (IF = Instruction Fetch, ID
= Instruction Decode, EX = EXecute, MEM = Memory Access, WB = Write
Back)

Figure 2.6: A five-stage pipelined superscalar processor, capable of issuing two
instructions per cycle. It can have two instructions in each stage of the
pipeline, for a total of up to 10 instructions being simultaneously executed.

Modern processors have multi-stage pipelines of instruction. Each stage
corresponds to a different action of processor. A processor with an N-stage
pipeline can have up to N different instructions performing at different stages.
The canonical example of five stages pipelined processor is a RISC processor
with the stages of fetch, decode, execute, memory access, and write back shown
in Fig.2.5. In addition to multi-stage pipeline, some processors can execute
more than one instruction during a clock cycle by simultaneously dispatching

24



Parallel System Design

multiple instructions to redundant functional units on the processor. These are
known as superscalar processors shown in Fig.2.6. However the complexity of
the dispatcher and the associated dependency checking logic limit the amount
of ILP.

3. Data-Level Parallelism (DLP)

Data parallelism is parallelism inherent in program loops (e.g. BogoMIPS),
which focuses on distributing the data across different computing nodes to be
processed in parallel. As the size of a problem getting bigger, we could use
BogoMips to present the performance of CPUs as well as the data parallelism.
BogoMips is an unscientific measurement of CPU speed made by the Linux
kernel when it boots, to calibrate an internal busy-loop.

Conventional programs are written by assuming the sequential execution
model, under this model instructions execute one after the other automatically.
However, parallel execution of multiple instructions may induce the dependency
problems. Executing multiple instructions without considering related
dependencies may cause the wrong results, namely hazards. For example,
consider the following pseudo-code that computes the first few Fibonacci
numbers. This loop cannot be parallelized because c depends on itself, a and b,
which are computed in each loop iteration. Since each iteration depends on the
result of the previous one, they cannot be performed in parallel.

1 a :=1; b :=0; c :=1;
2

3 do :
4 c := a + b;
5 b := a ;
6 a := c ;
7

8 while{c<10}

4. Task-Level Parallelism (TLP)

Applications are often classified according to how often their subtasks need
to synchronize or communicate with each other. An application exhibits fine-
grained parallelism if its subtasks must communicate many times per second;
it exhibits coarse-grained parallelism if they do not communicate many times
per second. The ratio between computation and communication is known
as granularity. Large number of small tasks (short computation cycles) are
executed between long communication cycles defined by fine-grain parallelism
(Computation < Communication). Typified by small number of large tasks (long
computation cycles) are executed between short communication cycles defined
by coarse-grain parallelism (Computation > Communication).

For example, in the reconfigurable computing, granularity refers to the data
path width, 1-bit wide PEs like the Configurable Logic Blocks (CLBs) in an FPGA
called fine-grained computing; 32-bit wide resources, like microprocessor CPUs
or data-stream-driven Data-Path Units (DPUs) called coarse-grained computing.

25



Chapter II

Program:
...
If CPU = a then
do task A
else if CPU = b then
do task B
End if;
...
End program

Program:

do task A

End program

Program:

do task B

End program

CPU
”a”

CPU”b”

Figure 2.7: Task-level parallelism.

Nollet et al. [81] introduces how the fine-grain configuration hierarchy improves
the task assignment performance in multimedia applications.

Task parallelism focuses on distributing execution processes (threads) across
different parallel computing nodes. Contrasts with data parallelism, where
the same operation is performed on the same or different sets of data. Task
parallelism is a form of parallelization of computer code across multiple
processors in parallel computing environments. For example, the program is
to do the net total task (A+B) as shown in Fig.2.7. If we write the code as launch
it on a 2-processor system, then both CPUs (a,b) could execute separate code
blocks simultaneously performing different tasks simultaneously.

2.3.3 Parallel Architecture

The parallel architecture can be roughly classified into multi-core and multi-processor
architecture, which has multiple Processing Elements (PEs) within a single machineor
clusters. And these PEs are the most efficient in Million Instructions Per Second
(MIPS). Our view focuses on the evolutionary approach to parallel hardware and
software work on two to ten processors system. The parallel architecture can be
seen as the extension of the conventional computer architecture to address issues of
communication and cooperation among PEs.

Multiprocessing systems are less complex than multi-core systems, because they
are essential single chip CPUs connected together. CPUs have their own caches or

26



Parallel System Design

Cache/
MMU

Cache/
MMU

P1 Pn

Interconnection Network

Mem Mem

M M
chh chh Cache/

MMU
Cache/
MMU

P1 Pn

Interconnection Network

M M
chhhhh chhhhh… …

Share or Private L2 Mem

(a) (b)

Figure 2.8: Multiprocessing systems: a) The multiprocessor with local cache or Memory
Management Unit (MMU), but shared memory by long interconnects; b) The
multi-core processors with local cache or MMU, but private or shared L2 memory
by short interconnects.

Memory Management Units (MMUs), but shared the main memory. Typically it is
named SMP. It is easy to built up the higher the Operation System (OS) level and SW
programming. Fig.2.8-a shows that the multiprocessor system has local cache and
MMU with long-interconnects. Its communication occurs through a shared address
space via loads and stores. The challenge of SMP is that the shared resource and
scheduling issues may reduce the system gain.

Multi-core systems are a family of processors that contain numbers of multiple
CPUs on a single chip, such as 2, 4, and 8. Fig.2.8-b shows that the multi-core
processors with private L1 caches or MMUs but with short interconnects of memories.
Its communication occurs by explicitly passing messages among the processors:
message-passing multiprocessors, shared L2 caches, or shared memory inter-core
communication methods. The challenge with multi-core processors is in the area of
software development. The speed-up performance is directly related to how parallel
the source code of an application was written through multi-threading.

There are two models of the communication and memory architecture in parallel
systems: heterogeneous architecture and homogeneous architecture. The important
motivation of design new parallel architectures is the real-time performance.
Heterogeneous architectures, although they are harder to program, it can provide
improved real-time behavior by reducing conflicts among processing elements and
tasks [82]. For example, considering a shared memory multiprocessor in which
all CPUs have access to all parts of memory. The hardware cannot directly limits
accesses to a particular memory location, therefore, noncritical accesses from on
processor may conflict with critical accesses from another [83]. In [84], the authors
indicate that the memory architecture dictates most of the data traffic flow in a
design, which in turn influences the design of the communication architecture. The

27



Chapter II

main challenge will be the data migration and recomputation technique design [85],
instruction cache locking issue [86] etc.. Different applications have different data
flows that suggest multiple different types of architectures, especially for scientific
computing [87]. The homogeneous architectural style is generally used for data-
parallel systems, in which the same algorithm is applied to several independent data
streams, i.e. wireless base stations.

2.3.4 Parallel Algorithm

Figure 2.9: Sequential algorithm vs parallel algorithm.

The parallel algorithm can execute an application at a time on many different
PEs, and then collect the result back together. Designing the parallel algorithm,
a given problem may be decomposed in many different ways and orders. Typical
forms of sequential algorithms is shown in Fig.2.9-a: The sequential algorithm takes
in 3 iterators and other input parameters, traverses the iterators sequentially and
produces an output. A typical parallel algorithm is shown in Fig.2.9-b: Strategy
objects are used to convert the sequential iterators to per-thread parallel iterators
which are used in the partial algorithms by each thread. The results computed by
each of the threads in the partial algorithms are composed to produce the final output.

Michael J. Flynn [Flynn] created one of the earliest classification systems for
parallel algorithms, known as Flynn’s taxonomy. Flynn classified the parallel
algorithms by whether they were operating by a single set or multiple sets of
instructions, whether or not those instructions were using a single or multiple sets of
data as shown in Table 2.II.

28



Parallel System Design

Table 2.II: Flynn’s taxonomy.

Data \ Instruction Single Instruction Multiple Instruction

Single Data SISD MISD

Multiple Data SIMD MIMD

2.3.5 Parallel Programming Model

Link to last save area

Save area of system
call (iaa, ipsw, base,  

bound, r0-r31)
Stack fram for call to

Switch Process

Link to last save area

Save area created by
SwitchProcess(iaa, 
ipsw, base,  bound, 

r0-r31)

Pd[i]. lastsa

User thread

Lightweight
process

Implementation of 
lightweight processes

Figure 2.10: Thread, process and OS.

The parallel programming model is used to abstract HW/SW interfaces during the
high level specification of the application software. The software is adapted to the
existing multiprocessor platforms by a low level hardware layer that implements the
programming model [82]. There are three types of parallel programming models:

• Shared address space: communicate via memory, e.g. load, store, atomic swap.

• Message passing: send and receive messages, e.g., send, receive library calls.

• Data Parallel: several agents operate on several data sets simultaneously.

Synchronization among the different subtasks is typically one of the greatest
barriers in the parallel programming design. As shown in Fig. 2.10, in two multi-
threading design, we separate resource holding and dispatch ability into separate
concepts: process and thread. The process has several threads inside a single
process, and several threads can be executed in the same code at the same time.
OS is responsible for ensuring synchronization of the data that needs to be modified

29



Chapter II

Table 2.III: Comparison of OPENMP and POSIX.

Application Programming

Interface(API) OPENMP POSIX(Pthreads)

Hybird System SMP SMP

Compiler Omni-1.6 (omcc -g) gcc -pthread

Parallelism Language Openmp Pthread

Algorithm Fork-Join Model Worst-case memory-to-cpu bandwidth

by multiple threads or processes. However, synchronization delay occurs in any
application programs, if the OS blocks on one of them, then they are all blocked.
This inspire us using parallel programming to analysis the system synchronization
delay. Programming model is made up of the languages and libraries. Based on the
different Application Programming Interface (API), nowadays, there are two popular
multi-threading technologies: OPENMP [openmp] and POSIX [pthread], the basic
characteristics of OPENMP and POSIX technologies as shown in Table 2.III.

There are many other critical issues in the frame of parallel computing research.
As shown in Fig.2.11, the programming model is a bridge between a system
developer‘s natural model of an application and an implementation of that application
on available hardware. However, based on our GNSS-R applications, we need to
answer the following questions in the parallel system design.

Applications
1. What are the 

applications?
• GNSS-R Post-

processing
2. What are the 

common 
kernels of the 
applications

• Linux Kernel

Hardware
3. What are the 
hardware building 
block
• SMP Scheme
• Processor optimum
•Memory Hierarchy
• Interconnection 
Networks 
4. How to connect 
them 
• BUS or crossbar

Programming Models
5. How to decrible applicaitons
and kernels
• Task-level Parallelism
6. How to measure success?
• Workload Analysis

Evaluation
7. How to measure success?
• Speedup ratio 

Figure 2.11: A view from Berkeley: seven critical questions for 21st Century parallel
computing. (Adapted from Krste Asanovic et al. [88])

What is the workload analysis for parallel computing in the left tower? If the
programming models, compilers and OS can help span the gap between applications

30



Parallel System Design

and right tower? We will follow our research line to investigate each issues in the
following Chapters.

31





Bibliography

[1] M. Martı́n-Neria, “A passive reflectometry and interferometry system (paris):application to ocean
altimetry,” ESA Journal, vol. 17, no. 4, pp. 331–355, 1993.

[2] O. Nogués-Correig, E. Cardellach-Galı́, J. Sanz-Camderrós, and A. Rius, “A gps-reflections receiver
that computes doppler-delay maps in real time,” IEEE Transactions on Geoscience and Remote
sensing, vol. 45, no. 1, pp. 156–174, 2007.

[3] Spilker, Parkinson, Axelrad, and Enge, Global Positioning System: Theory and Applications, ser.
V-164. Inst. Aeronaut. Astronaut., Washington, DC., 1996, vol. II.

[4] P. Misra and P. Enge, Global Positioning System: Signals, Measurements, and Performance. Ganga-
Jamuna Press, Lincoln, Massachussets, 2006.

[5] E. Cardellach, F. Fabra, O. Nogués-Correig, S. Oliveras, S. Ribó, and A. Rius, “Gnss-r ground-
based and airborne campaigns for ocean, land, ice and snow techniques: application to the gold-rtr
datasets,” RADIO SCIENCE, 2011.

[6] M. Martı́n-Neira, M. Caparrini, J. Font-Rosselló, S. Lannelongue, and C. S. Vallmitjana, “The paris
concept: an experimental demonstrationof sea surface altimetry using gps reflected signals,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 39, no. 1, pp. 142–149, 2001.

[7] S. T. Lowe, C. Zuffada, Y. Chao, P. Kroger, L. E. Young, and J. L. LaBrecque, “5-cm-precision aircraft
ocean altimetry using gps reflections,” GEOPHYSICAL RESEARCH LETTERS, vol. 29, no. 10, May
2002.

[8] G. Ruffini, F. Soulat, M. Caparrini, O. Germain, and M. Martı́n-Neira, “The eddy experiment:
Accurate gnss-r ocean altimetry from low altitude aircraft,” GEOPHYSICAL RESEARCH LETTERS,
vol. 31, no. p.L12306, 2004.

[9] G. A. Hajj and C. Zuffada, “Theoretical description of a bistatic system for ocean altimetry using
the gps signal,” Radio Science, vol. 38, no. 5, p. 1089, 2002.

[10] A. Rius, E. Cardellach, and M. Martin-Neira, “Altimetric analysis of the sea-surface gps-reflected
signals,” IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no. 4, pp. 2119 – 2127,
2010.

[11] E. Cardellach, C. O. Ao, M. de la Torre Juárez, and G. A. Hajj, “Carrier phase delay altimetry
with gps-reflection/occultation interferometry from low earth orbiters,” GEOPHYSICAL RESEARCH
LETTERS, vol. 31, no. 4, p. L10402, 2004.

[12] A. Helm, G. Beyerle, and M. Nitschke, “Detection of coherent reflections with gps bipath
interferometry,” Canadian Journal of Remote Sensing (2004), no. 2000, p. 11, 2004.

[13] R. N. Treuhaft, S. T. Lowe, C. Zuffada, and Y. Chao, “2-cm gps altimetry over crater lake,”
GEOPHYSICAL RESEARCH LETTERS, vol. 28, no. 23, pp. 4343 – 4346, 2001.

33



Chapter II

[14] F. Fabra, E. Cardellach, A. Rius, S. Ribó, S. Oliveras, O. Nogués-Correig, M. Belmonte,
M. Semmling, and S. D’Addio, “Phase altimetry with dual polarization gnss-r over sea ice,” IEEE
Trans. Geosc. Remote Sensing (submitted), 2011.

[15] A. M. Semmling, G. Beyerle, R. Stosius, G. Dick, J. Wickert, F. Fabra, E. Cardellach, S. Ribó,
A. Rius, A. Helm, S. B. Yudanov, and S. d’Addio, “Detection of arctic ocean tides using
interferometric gnss-r signals,” GEOPHYSICAL RESEARCH LETTERS, vol. 38, no. 4, p. L04103,
2011.

[16] J. Garrison, A. Komjathy, V. Zavorotny, and S. Katzberg, “Wind speed measurement using forward
scattered gps signals,” IEEE Transactions on Geoscience and Remote Sensing, vol. 40, no. 1, pp. 50
– 65, 2002.

[17] E. Cardellach, G. Ruffini, D. Pino, A. Rius, and A. Komjathy, “Mediterranean balloon experiment:
ocean wind speed sensing from the stratosphere, using gps reflections,” Remote Sensing of
Environment, vol. 88, no. 3, pp. 351 – 362, 2003.

[18] A. Komjathy, M. Armatys, D. Masters, P. Axelrad, V.U.Zavorotny, and S. Katzberg, “Retrieval of
ocean surface wind speed and wind direction using reflected GPS signals,” Journal of Atmospheric
and Oceanic Technology, vol. 21, no. 3, pp. 515 – 526, 2004.

[19] G. Ruffini, F. Soulat, M. Caparrini, O. Germain, and M. Martin-Neira, “The gnss-r eddy experiment
i: Altimetry from low altitude aircraft,” GEOPHYSICAL RESEARCH LETTERS, vol. 31, no. 4, p.
L12306, 2004.

[20] V. Zavorotny and A. Voronovich, “Scattering of gps signals from the ocean with wind remote sensing
application,” IEEE Transactions on Geoscience and remote sensing, vol. 38, no. 2, pp. 951 – 964,
2000.

[21] T. Elfouhaily, D. Thompson, and L. Linstrom, “Delay-doppler analysis of bistatically reflected
signals from the ocean surface: theory and application,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 40, no. 3, pp. 560 – 573, 2002.

[22] J. Marchan-Hernandez, N. Rodriguez-Alvarez, A. Camps, X. Bosch-Lluis, I. Ramos-Perez, and
E. Valencia, “Correction of the sea state impact in the l-band brightness temperature by means
of delay-doppler maps of global navigation satellite signals reflected over the sea surface,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 46, no. 10, pp. 2914 – 2923, 2008.

[23] E. Valencia, J. Marchan-Hernandez, A. Camps, N. Rodriguez-Alvarez, J. Tarongi, M. Piles, I. Ramos-
Perez, X. Bosch-Lluis, M. Vall-llossera, and P.Ferre, “Experimental relationship between the sea
brightness temperature changes and the gnss-r delay-doppler maps: Preliminary results of the
albatross field experiments,” IEEE Proc. IGARSS, pp. 741–744, 2009.

[24] E. Cardellach and A. Rius, “A new technique to sense non-gaussian features of the sea surface
from l-band bi-static gnss reflections,” Journal of Remote Sensing of Environment, vol. 112, no. 6,
pp. 2927–2937, June 2008.

[25] F. Soulat, M. Caparrini, O. Germain, P. Lopez-Dekker, M. Taani, and G. Ruffini, “Sea state
monitoring using coastal gnss-r,” GEOPHYSICAL RESEARCH LETTERS, vol. 31, no. 4, p. L21303,
2004.

[26] E. Valencia, A. Camps, J. Marchan-Hernandez, N. Rodriguez-Alvarez, I. Ramos-Perez, and
X. Bosch-Lluis, “Experimental determination of the sea correlation time using gnss-r coherent
data,” IEEE Geoscience and Remote Sensing Letters, vol. 7, no. 4, pp. 675 – 679, 2010.

[27] E. Cardellach, S. Ribó, and A. Rius, “Technical note on polarimetric phase interferometry (popi),”
physics/0606099, 2006.

[28] D. Masters, P. Axelrad, and S. Katzberg, “Initial results of land-reflected gps bistatic radar
measurements in smex02,” Journal of Remote Sensing of Environment, vol. 92, no. 4, pp. 507–520,
2004.

34



BIBLIOGRAPHY

[29] D. Manandhar, R. Shibasaki, and H. Torimoto, “Prototype software-based receiver for remote
sensing using reflected gps signals,” in Proc. ION GNSS 19th International Technical Meeting of
the Satellite Division, pp. 643 – 652.

[30] S. J. Katzberg, O. Torres, M. S. Grant, and D. Masters, “Utilizing calibrated gps reflected signals to
estimate soil reflectivity and dielectric constant: Results from smex02,” Journal of Remote Sensing
of Environment, vol. 100, no. 1, pp. 17 – 28, 2006.

[31] E. Cardellach, F. Fabra, O. Nogués-Correig, S. Oliveras, S.Ribó, and A. Rius, “From greenland
to antarctica: Csic/ieec results on sea-ice, dry-snow, soil-moisture and ocean gnss reflections,”
in Proceedings of 2nd International Colloquium - Scientific and Fundamental Aspects of the Galileo
Programme.

[32] V. Zavorotny and A. Voronovich, “Bistatic GPS signal reflections at various polarizations from rough
land surface with moisture content,” in Proc. IEEE IGARSS, vol. 7, pp. 2852–2854.

[33] V. Zavorotny, D. Masters, A. Gasiewski, B. Bartram, S. Katzberg, P. Axelrad, and R. Zamora,
“Seasonal polarimetric measurements of soil moisture using tower-based GPS bistatic radar,” in
Proceedings of Geoscience and Remote Sensing Symposium 2003, 2003, pp. 515 – 526.

[34] L. Chung, Jyh-Ching, Ching-Lang, Chia-Chyang, Ping-Ya, and Ching-Liang, “Stream soil moisture
estimation by reflected GPS signals with ground truth measurements,” IEEE Transactions on
Instrumentation and Measurements, vol. 58, no. 3, pp. 730 – 737, 2009.

[35] A. Komjathy, J. Maslanik, V. Zavorotny, P. Axelrad, and S. Katzberg, “Sea ice remote sensing using
surface reflected gps signals,” in Proceedings of Geoscience and Remote Sensing Symposium, vol. 7,
pp. 2855 – 2857.

[36] M. Rivas, J. Maslanik, and P. Axelrad, “Bistatic scattering of gps signals off arctic sea ice,” IEEE
Transaction of Geoscience and Remote Sensing, vol. 48, no. 3, pp. 1548 – 1553, 2010.

[37] A. Komjathy, M. Armatys, D. Masters, P. Axelrad, V.U.Zavorotny, and S. Katzberg, “A novel
technique for characterizing the thickness of first-year sea ice with the gps reflected signal,” JPL
TRS 1992.

[38] M. Wiehl, R. Légrésy, and R. Dietrich, “Potential of reflected GNSS signals for ice sheet remote
sensing,” Progress in electromagnetics research, vol. 40, pp. 177–205.

[39] N. Rodriguez-Alvarez, A. Camps, M. Vall-llossera, X. Bosch-Lluis, A. Monerris, I. Ramos-Perez,
E. Valencia, J. Marchan-Hernandez, J. Martinez-Fernandez, G. Baroncini-Turricchia, C. Pérez-
Gutiérrez, and N. N. Sánchez, “Land geophysical parameters retrieval using the interference pattern
gnss-r technique,” IEEE Trans. Geosc. Remote Sensing, vol. 49, no. 1, pp. 71 – 84, 2010.

[40] A. Rius, J. M. Aparicio, E. Cardellach, M. Martı́n-Neira, and B. Chapron, “Sea surface state
measured using GPS reflected signals,” Geophys. Res. Lett., vol. 29, no. 4, p. 2122, 2002.

[41] S. Gleason, “Remote sensing of ocean, ice and land surfaces using bistatically scattered gnss
signals from low earth orbit,” Ph.D. thesis, University of Surrey.

[42] S. Delwart, C. Bouzinac, P. Wursteisen, M. Berger, M. Drinkwater, M. Martı́n-Neira, and Y. Kerr,
“SMOS validation and the CoSMOS campaigns,” IEEE Trans. Geosc. Remote Sensing, vol. 46, no. 3,
pp. 695–704, 2008.

[43] S. Blanch and A. Aguasca, “Sea water dielectric permittivity model from measurements at l band,”
IEEE, 2004.

[44] J. Wu, S. Wu, G. Hajj, W. Bertiger, and S. Lichten, “Effects of antenna orientation on GPS carrier
phase,” Manuscripta Geodaetica, vol. 18, no. 2, pp. 91–98, 1993.

35



Chapter II

[45] H. Shen and F. Petrot, “Novel task migration framework on configurable heterogeneous mpsoc
platforms,” in Proceedings of the Asia and South Pacific Design Automation Conference, Pacifico
Yokohama, Yokohama, Japan, Jan. 2009, pp. 733–738.

[46] S. E. Lee, J. H. Bahn, Y. S. Yang, and N. Bagherzadeh, “A generic network interface architecture
for a networked processor array (nepa),” ARCS 2008, vol. 4934, pp. 247 – 260, 2008.

[47] A. Kumar, A. Hansson, J. Huisken, and H. Corporaal, “An fpga design flow for reconfigurable
network-based multi-processor systems on chip,” in Design, Automation Test in Europe Conference
(DATE07), Nice, France, 2007, pp. 1 – 6.

[48] P. Zhou, B. Zhao, Y. Du, Y. Xu, Y. Zhang, J. Yang, and L. Zhao, “Frequent value compression
in packet-based noc architectures,” in Proceedings of Asia and South Pacific Design Automation
Conference (ASP-DAC 2009), Yolohama, Japan, Jan. 2009, pp. 13 – 18.

[49] S. Mu, X. Zhang, N. Zhang, J. Lu, Y. S. Deng, and S. Zhang, “Ip routing processing with graphic
processors,” in Proceedings of Design, Automation Test in Europe Conference Exhibition (DATE10).
Dresden, Germany: IEEE, 2010, pp. 93–98.

[50] J. Goodacre and A. Sloss, “Parallelism and the arm instruction set architecture,” IEEE Journal of
Computer, vol. 38, no. 7, pp. 42 – 50, July 2005.

[51] J. Glossner, D. Iancu, J. Lu, E. Hokenek, and M. Moudgill, “A software-defined communications
baseband design,” IEEE Journal of Communications Magazine, vol. 41, no. 1, pp. 120 – 129, Jan.
2003.

[52] J. Glossner, M. Moudgill, D. Iancu, G. Nacer, S. Jinturkar, S. Stanley, M. Samori, T. Raja, and
M. Schulte, “The sandbridge convergence platform,” 2005.

[53] M. Kistler, M. Perrone, and F. Petrini, “Cell multiprocessor communication network: Built for
speed,” IEEE Journal of Micro, vol. 26, no. 3, pp. 10 – 24, June 2006.

[54] L. Hammond, B. A. Nayfeh, and K. Olukotun, “A single-chip multiprocessor,” IEEE Journal of
Computer, vol. 30, no. 9, pp. 79 – 85, Aug. 2002.

[55] S. Gochman, A. Mendelson, A. Naveh, and E. Rotem, “Introduction to intel core duo processor
architecture,” Intel Technol.J., vol. 10, no. 2, pp. 89 – 97, May 2006.

[56] P. Marwedel, “The mimola design system: Tools for the design of digital processors,” in Proceedings
of Design Automation, 1984, 1984, pp. 587 – 594.

[57] S. Kobayashi, K. Mita, Y. Takeuchi, and M. Imai, “Rapid prototyping of jpeg encoder using the asip
development system: Peas-iii,” in Proceedings of Multimedia and Expo 2003, 2003, pp. 149–152.

[58] A. Hoffmann, T. Kogel, A. Nohl, G. Braun, O. Schliebusch, O. Wahlen, A. Wieferink, and H. Meyr, “A
novel methodology for the design of application-specific instruction-set processors (asips) using a
machine description language,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 20, no. 11, pp. 1338 – 1354, Nov. 2001.

[59] D. Goodwin and D. Petkov, “Automatic generation of application specific processors,” in Proceedings
of compilers, architecture and synthesis for embedded systems (CASES03), 2003, pp. 137 – 147.

[60] W. Dally and B. Towles, “Route packets, not wires: on-chip interconnection networks,” in
Proceedings of Design Automation Conference, 2001, pp. 684 – 690.

[61] G. D. Micheli and L. Benini, Networks on chips: technology and tools, San Francisco, CA: Morgan
Kaufmann, July 20 2006.

[62] D. Wingard, “Micronetwork-based integration for socs,” in Proceedings of Design Automation
Conference, 2001, pp. 673 – 678.

36



BIBLIOGRAPHY

[63] A. Fanet, “Noc: The arch key of ip integration methofology,” in Proceedings of MPSoC Symp, 2005.

[64] B. Bailey, G. Martin, and A. Piziali, “Esl design and verification: A prescription for electronic system
level methodology,” San Francisco, CA: Morgan Kaufmann, 2007.

[65] C. C. Sun and S. S. Jan, “Gnss signal acquisition and tracking using a parallel approach,” in
Proceedings of Position, Location and Navigation Symposium, 2008 IEEE ION. Monterey, CA, USA:
IEEE, 2008, pp. 1332–1340.

[66] R. Ernst, J. Henkel, and T. Benner, “Hardware-software cosynthesis for microcontrollers,” IEEE
Transactions on Design & Test of Computers, vol. 10, no. 4, pp. 64 – 75, Dec. 1993.

[67] R. Gupta and G. D. Micheli, “Hardware-software cosynthesis for digital systems,” IEEE Transactions
on Design & Test of Computers, vol. 10, no. 3, pp. 29 – 41, Sept. 2002.

[68] A. Kalavade and E. Lee, “The extended partitioning problem: hardware/software mapping and
implementation-bin selection,” in Proceedings of Rapid System Prototyping, June 1995, pp. 12 – 18.

[69] T. C. Srimat and R. Anand, “Best-effort computing: Re-thinking parallel software and hardware,”
in Proceedings of Design Automation Conference (DAC2010), Anaheim, CA, USA, 2010, pp. 865 –
870.

[70] W. Wolf and M. Kandemir, “Memory system optimization of embedded software,” Proceedings of
IEEE, vol. 91, no. 1, pp. 165 – 182, Jan. 2003.

[71] E. D. Greef, F. Catthoor, and H. D. Man, “Memory organization for video algorithms on
programmable signal processors,” in Proceedings of Computer Design: VLSI in Computers and
Processors (ICCD), Oct. 1995, pp. 552 – 558.

[72] F. Franssen, I. Nachtergaele, H. Samsom, F. Catthoor, and H. D. Man, “Control flow optimization
for fast system simulation and storage minimization,” in Proceedings of European Design and Test
Conference, 1994, pp. 20 – 24.

[73] K. Masselos, F. Catthoor, C. Goutis, and H. D. Man, “A performance oriented use methodology
of power optimizing code transformations for multimedia applicatins realized on programmable
multimedia processors,” in Proceedings of Signal Processing Systems, Aug. 1999, pp. 261 – 271.

[74] P. Panda, N. Dutt, and A. Nicolau, “Memory organization for improved data cache performance in
embedded processors,” in Proceedings of System Synthesis, Nov. 1996, pp. 90 – 96.

[75] M. Kandemir, J. Ramanujam, and A. Choudhary, “Improving cache locality by a combination of
loop and data transformations,” IEEE Transactions on Computers, vol. 48, no. 2, pp. 159 – 167,
Feb. 1999.

[76] J. Shin, B. Petrick, M. Singh, and A. Leon, “Design and implementation of an embedded 512kb
level-2 cache subsystem,” IEEE Journal of Solid-State Circuits, vol. 40, no. 9, pp. 1815 – 1820,
2005.

[77] A. Asaduzzaman, F. N. Sibai, and M. Rani, “Impact of level-2 cache sharing on the performance and
power requirements of homogeneous multicore embedded systems,” Journal of Microprocessors &
Microsystems, vol. 33, no. 5, pp. 388 – 397, 2009.

[78] E. Speight, H. Shafi, L. Zhang, and R. Rajamony, “Adaptive mechanisms and policies for managing
cache hierarchies in chip multiprocessors,” in International Symposium on Computer Architecture
(ISCA ‘05), Madison, Wisconsin, USA, 2005, pp. 346 – 357.

[79] B. Abali, X. Shen, H. Franke, D. Poff, and T. Smith, “Hardware compressed main memory: operating
system support and performance evaluation,” IEEE Transactions on Computers, vol. 50, no. 11, pp.
1219 – 1226, 2001.

37



Chapter II

[80] P.R.Panda, N.D.Dutt, and A. Nicolau, “On-chip vs. off-chip memory: The data partitioning problem
in embedded processor-based systems,” ACM Transactions on Design Automatic Embedded System,
vol. 5, no. 3, pp. 682 – 704, July 2000.

[81] V. Nollet, P. Avasare, H. Eeckhaut, D. Verkest, and H. Corporaal, “Run-time management of
a mpsoc containing fpga fabric tiles,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 16, no. 1, pp. 24 – 33, 2008.

[82] K. Lobna, B. Aimen, G. Marius, F. Anne-Marie, P. Fréderic, and J. Ahmed-Amine, “Parallel
programming of multi-processor soc: a hw-sw interface perspective,” International Journal of
Parallel Programming, vol. 36, no. 1, pp. 68 – 92, 2008.

[83] Y. Chenjie and P. Peter, “Off-chip memory bandwidth minimization through cache partitioning for
multi-core platforms,” in Proceedings of Design Automation Conference (DAC2010), Anaheim, CA,
USA, 2010, pp. 132 – 137.

[84] S. Pasricha and N. D. Dutt, “A framework for cosynthesis of memory and communication
architectures for mpsoc,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 26, no. 3, pp. 408 – 420, 2007.

[85] H. Jingtong, X. C. Jason, T. Wei-Che, H. Yi, Q. Meikang, and H. M. S. Edwin, “Reducing write
activities on non-volatile memories in embedded cmps via data migration and recomputation,” in
Proceedings of Design Automation Conference (DAC2010), Anaheim, CA, USA, 2010, pp. 350 – 355.

[86] Y. Liang and T. Mitra, “Instruction cache locking using temporal reuse profile,” in Proceedings of
Design Automation Conference (DAC2010), Anaheim, CA, USA, 2010, pp. 344 – 349.

[87] F. Song, S. Moore, and J. Dongarra, “L2 cache modeling for scientific applications on chip multi-
processors,” in Proceedings of Parallel Processing (ICPP 2007), XiAn, China, 2007, pp. 51 – 59.

[88] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A. Patterson, W. L.
Plishker, J. Shalf, S. W. Williams, and K. A. Yelick, “The landscape of parallel computing research:
A view from berkeley,” EECS Department, University of California, Berkeley, Technical Report No.
UCB/EECS-2006-183, December 18 2006.

38



Web Reference

[GOLD-RTR] http://www.ice.csic.es/research/gold rtr mining/gold rtr.php

[Intel IXP2855 Network Processor] http://www.intel.com, Intel Corp.,Santa Clara, CA, 2005

[Flynn] http://en.wikipedia.org/wiki/Flynn’s taxonomy

[openmp] https://computing.llnl.gov/tutorials/openMP/

[pthread] https://computing.llnl.gov/tutorials/pthreads/

39





Part III

Parallel System Design Based on
SMLOL

41





Parallel System Design Based on
SMLOL

3.1 Introduction

In this Chapter, we provides a framework for applying the post-processing algorithms
and testing the timing performance over a realistic scenario. In parallel system design,
it is clear that the SMP scheme is our first choice, regarding the time to market issue.
In order to evaluate the post-processing algorithm of GNSS-R application, we create a
task-level parallelism system based on SMP scheme, named Symmetric Multi LEON3
On Linux (SMLOL). The work is mainly focus on the SW/OS design, instead of HW
design. Meanwhile, a set of the simulations are conducted by MPARM in order to
tackle on the system bottleneck in SMLOL. With the analysis of the simulation result,
we can design a novel platform named HTPCP in the next Chapter, in order to get
the optimized result of GNSS-R application. The following Sections are organized as
follows:

• Overview the SMLOL platform, such as the potential of the GR-CPCI-XC4V
development board; setup the demonstration platform; the architecture of the
SMLOL platform.

• Description to the hardware design in lower layer of SMLOL platform.

• Introduction to the software and OS design in higher layer of the SMLOL
platform.

• Illustrative numerical simulation results for the virtual platform by MPARM.

• Main conclusions.

3.2 SMLOL Platform Overview

As it mentioned before, an important effort has been put on the task-level parallel
system design, in particular, based on multi-core system mounted with embedded OS.

43



Chapter III

In this Section, we provide a framework for applying the post-processing algorithms
and testing the performance over a realistic scenario.

Before the system design, we need to understand the potential of the design board;
how to setup the SMLOL demonstration platform; and what is the the blueprints of
the SMLOL architecture.

3.2.1 Board Review

Figure 3.1: GR-CPCI-2ETH-SRAM-8M board installed on GR-CPCI-XC4V board.

The GR-CPCI-XC4V board [GR-CPCI-XC4V LEON Compact-PCI development board]
has been developed as a co-operation between Aeroflex Gaisler and Pender electronic
design as shown in Fig.3.1. In order to support the early development and fast
prototyping of LEON3 designs, the board incorporates with the following components:
the Xilinx Virtex-4 FPGA (XC4VLX2001513); on-board configuration proms (6 x
XC18V04); 16 MB FLASH prom (4MB x 32); 1 standard SO-DIMM socket for up
to 256 MB SDRAM; ethernet PHY 10/100 Mbit transeiver; 33/66 MHz 32/64-
bit CPCI interface (3V); standard RS-232 UART port for DSU or slave; 120-pins
memory and custom I/O expansion connectors (AMP-177-984-5; JTAG and slave-
serial FPGA programming capability; CPCI system controller (clock distribution and
PCI arbitration); 1 Mbyte static ram (256K x 32) adapter etc.. It supports LEON3 core
frequencies up to 100 MHz.

The GR-CPCI-2ETH-SRAM-8M is a custom mezzanine board which is developed
for the GR-CPCI-XC4V FPGA development board as shown in Fig.3.1. This mezzanine
board provides two Ethernet PHY with RJ45 connectors and 8MB of 10ns SRAM
memory. The board implements 2 banks of SRAM memory, each bank is 4MB
(512kword x 32 bits) in size, giving a total of 8MB of SRAM memory. The SRAM
devices are Cypress CY7C1061 types with 10ns access time. The memory is in fact 40
bits wide in order allow Error Detection and Correction (EDAC) checks bits to be used
for the SRAM memory. The Ethernet PHY interface chips on the mezzanine board
are National Semiconductor DP83848 devices which are capable of being used either
with a Media Independent Interface (MII) configuration or with an Reduced Media
Independent Interface (RMII).

Table 3.I lists the features of three types of FPGA: XC5VLX110T, XC4VLX200,
XC2VP30. From the comparison of LUTs, we find out that XC4VLX200 is 2.5 times

44



SMLOL Platform Overview

Table 3.I: Three types of FPGAs comparison.

Development Board Maxima Freq. FPGA Features Slices 4 Input LUTs IOB DSP BRAM DCM BSCANs

Virtex-5 100MHz XC5VLX110T 17280 69120 680 64 DSP48e 5328 Kb 12 2

GR-CPCI-XC4V 100MHz XC4VLX200 89088 178176 960 96 DSP48s 6048Kb 12 4

Virtex-II Pro 100MHz XC2VP30 13696 27392 644 136 MULT18 × 18s 2448Kb 8 1

bigger than XC5VLX110T, and 6.5 times bigger than XC2VP30. Thus we can infer
that the XC4VLX200 FPGA is adapted up to 12 LEON3 cores.

3.2.2 Setup Demonstration Platform

SUSE 
LINUX OS 

GRMON 
JTAG 
 
FTPD 
Server 
 
Terminal 
Emulator 
 

LEON3 

DSU 

LEON3 

DSU 

LEON3 

DSU 

LEON3 

DSU 

JTAG 
DEBIG 
LINK 

Ethernet 
MAC 

AHB 
Controller 

AHB/APB 
Bridge 

Memory 
Controller 

I/O timers uart 

I/O 
FLASH 
PROM 

SDRAM WDOG 

AMBA APB 

AMBA AHB 

DSU DSU

G 
DEBIG 
LINK

Ethern
MAC

LEON3

DSU

LEON3

DSU JTAG
DEBI

l
or

I/Otimers uart

AMBA APB

Parport0 

COM1 

Eth0 

0x00000000 0x40000000 

AMBA APBMB

CONTROL PC 

GR-CPCI-XC4V 

Figure 3.2: SMLOL work schematic.

The aim of this demonstration is to transmit and execute the input waveforms
from a Control PC to the Xilinx GR-CPCI-XC4V board, then send the result back
to the Control PC by ethernet as shown in Fig.3.2. The Control PC emulates
the function of GOLD-RTR. The GR-CPCI-XC4V board setups the SMLOL platform.
The demonstration platform includes 8MB prom @0x00000000 which contains the
bitstream programming file of LEON3MP (leon3mp.bit), and 512MB external SDRAM
@0x400000000 which contains the RAM image file (image.dsu) of Linux kernel. The
image file (image.dsu) is downloaded at the address 0x40000000 by GRMON. Thus
LEON3 processors will start operation from this address, and the Linux boot sequence
is displayed on the Hyper terminal. There are five steps to realize this demonstration
platform:

45



Chapter III

• Configure the GRLIB and LEON3 system.

• Generate the bitstream file for the Hardware layer and download it on board.

• Create the FTP client in the Linux image, and install the ftp server on the Control
PC to store the input data.

• Configure the custom application from the busy box.

• Build and download the Linux kernel image and load it into the SDRAM on the
board.

3.2.3 SMLOL Architecture

The SMLOL architecture is restricted to homogeneous processors with a global shared
memory. The SMLOL architecture includes two parts of design: HW design in the
lower layer; SW and OS design in the upper layer. The HW design is including
the choosing of processors, endianess design, memory hierarchy design, AMBA bus
and Ethernet interface design. The SW and OS design is including the Linux kernel
design, file system, C library, compiler and processes of each application.

Figure 3.3: SMLOL architecture.

46



Hardware Design in Lower Layer

As shown in Fig.3.3, the system is integrated with multi-LEON3 processors with
their own caches and MMU, but shared the main memory. Taking into account time-
to-market consideration and rapid prototype development, a shared memory system
appears as the first option to explore, since a general OS can run on the entire system
by a uniform memory. Note that a common bus-based SMP organization has the
scalability limitation due to the bus congestion and the cache coherency issues,
therefore, the bus-based SMP platform limits the number of processors to 8 or 16
cores.

It is easy to build up the higher OS level and SW programming. The system/user
applications are compiled by the cross-compiler (sparc-linux-g++) and installed in
the romfs of SNAPGEAR 2.6 kernel. Task level parallel computing is supported in
SMLOL, the OS scheduler leverage the processes to each processor, and access to
the independent data file on the shared memory. SMLOL has the potential to avoid
the data dependency and supply workload fairness principle on each processor. The
SNAPGEAR embedded Linux OS [Linux for LEON processors] can take advantage of
increased number of processors in a SMP system, where each processor can do the
inter-processor communication in the shared memory.

3.3 Hardware Design in Lower Layer

MPSoC Architecture 
SMP 

Multi-core 

FPGA BASED HARDWARE 
VIRTEX II Pro 

MPSOC based on LEON3 

Linux Kernel 

System 
Applications 

User 
Applications 

MPSoC

Memory 
Hierarchy 

Architecture

Cross 
Compiler 

Parallel Programming 
Multi-task 

Multi-thread 
Scheduler 

Figure 3.4: Linux on SMP design flow.

The aim of this work is to build-up a system platform which can obtain the
real-time geophysical parameters by processing the consecutive 1 ms CC-WAV of
GOLD-RTR instrument, and also adapt the in-flight campaign environment over the
space. In order to adapt the parallel processing design, our first exploration is the
investigation of the platform as shown in Fig.3.4. It is like building a Personal
Computer (PC), it retains the processors, memory, bus and other peripherals.
However, conduct as a FPGA, we need to design all these components from the
system level to the layout level by synthesis and place & route processes. Thereby, we

47



Chapter III

can achieve the bitstream file and load it into the PROM of the FPGA, make it work
whenever the FPGA is power on.

The following sections are focused on the hardware design on SMLOL platform.
The first deals with the the configurable processors comparison and their development
tools. Then it describes the endianess design. Finally, it describes the memory
hierarchy design.

3.3.1 Configurable Processors and Development Tools

In this Section, we will conduct an evaluation of three reconfigurable FPGA based
processors - two soft cores - MicroBlaze (MB) and non-fault-tolerant LEON3, and one
hard core (PowerPC 405). These three processors are the most popular architectures
in the FPGA design. They are all 32-bit processors and support for radiation effects
testing and mitigation. To enable the flexibility of these reconfigurable processors,
we need to incorporate the development tools to build the processors on FPGA,
and evaluate their performance metrics by benchmarks. A standard performance
benchmark, Dhrystone, is developed for the fixed-point operation processors.

The following subsections will compare the configurations of each processor and
briefly introduce the development tools of each processors. Finally combined with the
benchmark results, it illustrates the performance metrics of each processor.

3.3.1.1 Processors Comparison

Figure 3.5: Microblaze architecture.

As shown in Fig.3.5, the Microblaze processor [MicroBlaze processor] is a 32-
bit Harvard Reduced Instruction Set Computer (RISC) architecture optimized for
implementation in Xilinx FPGAs with separate 32-bit instruction and data buses.
It can runs at a full speed to execute programs and access data from both on-chip

48



Hardware Design in Lower Layer

and external memory at the same time. The architecture of Microblaze is a single-
issue, 3-stage pipeline with 32 general-purpose registers, an Arithmetic Logic Unit
(ALU), a shift unit, and two levels of interrupt. The design can then be configured
with more advanced features to tailor to the exact needs of the target embedded
application such as: barrel shifter, divider, multiplier, single precision floating-point
unit (FPU), instruction and data caches, exception handling, debug logic and others.
It works with 1.19 Dhrystone MIPS (DMIPS)/MHz performance. The processor has
up to four interfaces for memory accesses: Local Memory Bus (LMB), IBM’s on-chip
Peripheral Bus (OPB) or Processor Local Bus (PLB), and Xilinx CacheLink (XCL).
The LMB provides single-cycle access to on-chip dual-port block RAM (BRAM). The
OPB/PLB interface provides a connection to both on-chip and off-chip peripherals
and memory. The difference between PLB and OPB is that the PLB connects with
high-bandwidth master and slave device, and the OPB decouples lower bandwidth
devices from the PLB. The XCL interface is intended for use with specialized external
memory controllers. Microblaze also supports up to 8 Fast Simplex Link (FSL) ports,
each with one master and one slave FSL interface. The FSL is a simple point-to-
point interface that connects user developed custom hardware accelerators to the
Microblaze processor pipeline to accelerate time-critical algorithms.

Figure 3.6: PowerPC 405 architecture.

As shown in Fig.3.6, the IBM PowerPC 405 core [IBM PowerPC 405 core] is a 32-bit
RISC processor and a key element of IBM’s power architecture licensing portfolio. This
licensable embedded core integrates a scalar 5-stage pipeline, separate instruction
and data caches, a JTAG port, trace FIFO, multiple timers and a MMU. It works with
1.52 DMIPS/MHz performance. The core is available as a hard macro in the IBM
premium process technologies including 130nm, and also as a fully synthesizable

49



Chapter III

core that can be fabricated at multiple foundries. The 405 core can be integrated
with peripheral and application-specific macro cores using the CoreConnect bus
architecture to develop system-on-a-chip solutions. A typical SOC implementation
based on the PowerPC 405 CPU and CoreConnect, uses a three level bus structure for
system level communication, configuration and control functions. High bandwidth
memory and system interfaces are tied to the 405 Core via the PLB. Less demanding
peripherals share the OPB and communicate to the PLB through the OPB bridge.
On-chip configuration and control registers implemented in various IP cores and at
chip-top in an SOC are connected to the CPU by the Device Control Register (DCR)
bus. This three level bus architecture provides common interfaces for the IP cores
and enables quick turnaround custom solutions for high volume applications.

Figure 3.7: LEON3 architecture.

The LEON3 is open-source VHDL models of a 32-bit processing core that is fully
compliant with the standard IEEE-1754 SPARC V8 architecture. It was originally
developed by Jiri Gaisler at ESA for critical space applications. The core comes
with SPARC V8 compliant integer units complete with hardware multiply, divide and
MAC units. LEON3 has a pipeline depth of 7 stages. It features a Harvard memory
architecture, and a configurable set-associative cache sub-system. The number of
registers in their register files is configurable within the SPARC V8 standard (2 to
32 registers). LEON3 also provides an interface to one of several available FPU
cores as well as custom co-processors. They also include support for an optional
debug unit, timers, watchdogs, UARTs and interrupt controllers. The processor is

50



Hardware Design in Lower Layer

fully synthesizable and up to 16 cores can be implemented in ASymmetric Multi-
Processing (ASMP) or Symmetric Multi-Processing (SMP) configurations. A typical
configuration with four processors is capable of delivering up to 1.7 DMIPS/MHz of
performance. The LEON3 multiprocessor core is available in full source code under
the GNU GPL license for evaluation, research and educational purposes. A low cost
license is available for commercial applications. As shown in Fig.3.7, there are two
on-chip buses are provided: AMBA AHB and APB. The APB bus is used to access on
chip registers in the peripheral functions, while the AHB bus is used for high-speed
data transfers. The full AHB/APB standard is implemented and the AHB/APB bus
controllers can be customized through the TARGET package.

3.3.1.2 Development Tools

Both PPC405 and MB processor-based systems are defined by the Xilinx Platform
Studio (XPS) tools that are included in the Xilinx Embedded Development Kit (EDK).
XPS contains a “base system builder“ wizard that can be used to define a basic system.
If the system that contains the hardware and software definitions differs from the
basic configuration, it will require the manual editing of the Microprocessor Hardware
Specification (MHS) file and Microprocessor Software Specification (MSS) file. The
Xilinx EDK is used exclusively to synthesize the PPC405 and MB processor system.
The XPS graphical user interface is used to generate the HDL files and libraries that
define the PPC405 and MB systems. XPS will put together all of the IP based upon
connections described in the MHS file. The Synplify FPGA synthesis tool as the third-
party tool is supported on all the platforms. The software development tool Xilinx
EDK is exclusively for the software development of the PPC405 and MB processors.
It is based on GNU compiler tools and two different debugging environments. An
Eclipse-based Software Development Kit (SDK) is a Xilinx microprocessor debugger
interface.

The LEON3 processor is configured by a script-based graphical tool “xconfig“. This
tool allows the user to customize all configurable aspects of the LEON3 processor. The
main design steps of LEON3/GRLIB can refer to the GRLIB User’s Manual [grlib]. For
the basic configuration of LEON3, we can manually editing the config.vhd file under
the GRLIB package. There are three important files in the directory of the design:

• local makefile: used to generate tool-specific project scripts, e.g. *.qsf

• config.vhd: Configurable VHDL file for the LEON3 design

• leon3mp.vhd: top module VHDL file for the LEON3 design, including
instantiation of cores connected to AHB/APB, and available ports for the FPGA
pin assignment.

The GRLIB package of LEON3 and IPs can be downloaded from the Gaisler‘s
website. The Synplify FPGA synthesis tool and Xilinx ISE as the third-party tool
is supported on all the platforms. The top level design needs to be synthesized by

51



Chapter III

Synplify v 8.6.2., thus generate the netlist file leon3.edf. Then the netlist file needs to
be placed & routed by Xilinx ISE v 10.1i, thus generate the bitstream file leon3mp.bit,
thereby the design can be download into the GR-CPCI-XC4V board by Xilinx Manage
Configuration Project (iMPACT). The FPGA (XC4VLX2001513) can fit up to twelve
LEON3 processors.

The software development tool for LEON3 is accomplished by an Eclipse IDE plug-
in (GRTools) or the command line tools. The cross-compiler for LEON3 processors is
Bare C Compiler (BCC), which is based upon the GNU compiler tools and the Newlib
standalone C-library. The debug monitor is GRMON [GRMON User‘s Manual], which
supports two operating models: command-line mode and GNU debugger (GDB) mode.
These two operation models allow GRMON to accept commands manually through a
terminal window or act as a GDB gateway. The GRMON debugging interface allows
easy control for operations such as setting breakpoints, inspecting the stack etc..
With the ”info sys” command, we can check the detailed information of each attached
core in real-time. Also we can debug the elf application with Debug Support Unit
(DSU) + GRMON tool.

3.3.1.3 Performance Metrics

Figure 3.8: Dhrystone benchmark results on three types of processors. (Adapted from
[SANDIA REPORT ])

Dhrystone v2.1 is developed for three types of processor (PPC405, MicroBlaze

52



Hardware Design in Lower Layer

v6.00, LEON3) and executed on the GR-CPCI-XC4V development board with Virtex-
4 FPGA. The main objective of this Dhrystone benchmark is to compare the timing
performance of the processors, and analysis how the designs of processor impact on
the FPGA resource utilization. As shown in Fig.3.8, the benchmark results of the
processor show that the LEON3 is more efficient than either the MB or PPC405, since
it cannot operate at the higher frequencies, it is not suitable for computationally
intensive algorithms. However, the PowerPC and MB have wider operating ranges
and better suited for more computationally intensive applications. Moreover, the
fault-tolerant version (LEON3FT) has been designed for operation in the harsh space
environment, and includes functionality to detect and correct Single-Event Upset
(SEU) errors in all on-chip RAM memories.

Therefore, in this work, we choose LEON3 to handle the post-processing task.
Regarding to the dedicated FIFO-style connection of MB, called FSL which is
supporting for the coprocessors design in register level, we propose the MB to sustain
the data distribution task.

3.3.2 Endianess Design

Register 32 bit access

Memory  (little Endian)
32 bit access

Li
tt

le
 E

nd
ia

n

A

B

C

D

Li
tt

le
 E

nd
ia

nnn

a+3

a+2

a

Bi
g 

En
di

an

A B C D

Bi
g 

En
di

an

D

C

B

A

D

C

B

A

D
a

B

C
a+2

A

B
a+3

a+2

A
a+3

Memory  (Big Endian)
32 bit access

aa+1a+2a+3

a

a+1

a+2 a+3a+1

a+3

a+2

a

a+1

Figure 3.9: Little endian v.s. big endian.

Endianness is a problem when a binary file is created on a big-endian computer
(FPGA with LEON3 processor) that can not be read on the little-endian computer
(PC with Intel processor). Integers are usually significance with increasing memory
addresses known as little-endian; it‘s opposite, the most-significant byte first that is
called big-endian as shown in Fig.3.9. LEON3 (SPARC) is conforms to the big-endian
byte ordering. This means that the most significant byte of a word has lowest address.
Since our PC with Intel processor is little-endian format as well as the GOLD-RTR
instrument, the input waveform from PC or GOLD-RTR instrument needs to change
the byte order from little-endian to big-endian, in order to adapt the order format of
LEON3 processor on our design board.

53



Chapter III

In this work, we need to swap the bytes by an ad-hoc code. Note that the required
byte swap depends on the length of the variables stored in the file (Appendix A),
therefore a general utility to convert endian in binary files does not exist. The
conversion should follow the input waveform format, firstly get the same size of the
input and result variables, and then byte rotate each input variable and assign it to
the result variable as shown in Fig.3.10. It is the same in both directions (little to big
and big to little) .

Part1 Part2 Part3 Part4 
& 
0x000000FF & 

0x0000FF00 & 
0x00FF0000 & 

0xFF000000 

Input variable 

<<24 <<8 >>8 >>24 

Part4 Part3 Part2 Part1 

Result variable 

Figure 3.10: Byte rotate each input variable and assign to the result variable.

3.3.3 Memory Hierarchy Design

The memory hierarchy design of SMLOL is shown in Fig.3.11. The most critical
components (Cache, MMU and S/DRAM) determine the success of an SMP
architecture. Caches are made of much faster on-chip memory and integrated with
the CPU additionally improves system throughput. However, the private caches
may lead to cache-coherence and cache-migration problems. Since we choose the
linux-2.6.21.1 kernel as the OS mounted on LEON3 platform, it requires the MMU
inside the system. The MMU for LEON3 is compliant to the SPARC Reference
MMU (SRMMU), it has 32-bit virtual address and 36-bit physical address, the most
important character is its fixed 4KB page size. That means if the size of Dcache is
bigger than 4KB, it will induce a big migration cost. The main memory is made of
external off-chip SDRAM memory, it may lead to the scalability issues since all cores
share the same memory and increased the memory latency.

There are two ways to optimize the memory performance of SMP: (1) constructing
a suitable memory hierarchy (2) optimizing the size of it. Since the memory hierarchy
will dominate the performance of SMP, we firstly pay attention to optimizing the size
of it. Unlike a general-purpose processor, the memory hierarchy of LEON3 can be
configured by the scripts.

In the synthesis report of Synplify Pro, we found out that the critical path of SMLOL

54



Software and OS Design in Higher Layer

Registers Registers

Dcache Icache Dcache Icache

Instr. Operands

Cache Replacement

Bus Snooping

giste

e

giste

e

Main Memory (SRAM)

Paged Memory  System (DRAM)

C

M

t

AM)

Pages

Register (B)
< 10 ns

Cache (KB)
10 – 100 ns

Main Memory (MB)
200 – 500 ns

Disk (GB)
10 ms

Prog./Compiler
1 - 8 B

Cache Control
8 - 128 B

OS schedule
512B - 4KB

User/operator
MB

AMBA Interface AMBA Interface

Figure 3.11: Memory hierachy design.

system is 26 ns with the slack component Dcache. This is caused by the cache
coherency issues. As the number of processors increases, the performance benefit
from caches is partially offseted by the long latencies incurred when one processor
references data owned by another processor‘s cache [1]. The pipeline will be stalled
because the required data is not yet available due to memory latency. In order to
avoid this issue, we optimized our system with the parameters as shown in Table 3.II.

Table 3.II: Hardware parameters in SMLOL design.

System freq (MHz) 100

No. of LEON3 4

Size of Icache (KB) 64

Size of Dcache (KB) 32

Cache Replacement LRU

Write Policy Write Through

Size of MMU (KB) 4

Size of PROM (MB) 8

Size of SDRAM (MB) 512

3.4 Software and OS Design in Higher Layer

After building the hardware layer design of SMLOL platform, we turn into the software
and OS designs. If we want to mount the embedded Linux successfully on the SMP-
based hardware platform, we need to pay attention to the workload analysis and

55



Chapter III

the Linux kernel configuration. Combined with the workload analysis and the post-
processing algorithm, we can evaluate the feasibility of the SMLOL platform. The
SMLOL design is quite generic in the sense that they should not be restricted to this
specific case of study. This research is divided into four parts:

• Analysis the parallel workload of the GNSS-R postprocessing application.

• Description to the post-processing code - Coherent/Incoherent.

• Generation to the embedded Linux OS for SMLOL architecture. The design
is focus on the configuration of the compiler, Linux kernel analysis, CPU
configuration, and ethernet configuration.

• Evaluation to the timing performance of the multi-task applications in SMLOL
platform. There are three important parameters that to be considered: speedup
ratio, system throughput and standard deviation of execution time.

3.4.1 Parallel Workload Analysis and Mathematical Modeling

Figure 3.12: Multi-task application.

The parallel workload concentrates on modeling and implementing GNSS-R post-
processing algorithm on SMLOL. This application is implemented in the task-level
parallelism. The parallel workload is presented by a mathematical model. The
design space is resort to full system OS to test the computing and communication
reliability. The challenge in modeling workloads is the gap between the software
level and hardware level. To simplify the timing affection and maximize the system
efficiency, we denote on the mathematical model of the parallel workload based on
the characteristic of GNSS-R applications. The reasons of implementing on the SMP
platform are shown below:

56



Software and OS Design in Higher Layer

• More than one program can run at the same time on an SMP system, it can
get better throughput than a uni-processor, since different programs can run on
different cores simultaneously.

• SMP architecture supports multiprocessing, in order to avoid the processors
remaining idle.

• The OS scheduler can leverage the processes on each core. Therefore, it has the
potential to avoid the data dependency and supply workload fairness principle
on each core. And the processor utilization could reach its maximum potential.

Table 3.III: Timing affections in parallel system.

Layers Components Time affection

Application Layer Task-level parallelism Parallel Workload Rate(Na/Np)

Prog. /Compiler Scheduler

Memory Hierarchy Cache /Memory Memory Access Time

Layer Memory/ Bus Bus Busy Ratio

As shown in Fig.3.12, the multi-task parallel application is composed by the user
program (App), Number of parallel applications (Na), objective stream data (Wav),
Number of processors (Np) and some system programs i.e. the kernel command,
drivers etc.. As shown in Table 3.III, we classify two major layers in the parallel
system: Application Layer and Memory Hierarchy Layer. At the Application Layer,
the parallel workload rate and the scheduler determine the execution time, since
each task can be moved easily with the support of OS. At the Memory Hierarchy
Layer, memory access time and bus busy ratio will be the key point to avoid
the data dependency and supply workload fairness principle on each processor,
since they determine the communication between processor and memory, also the
communication between the memory and bus.

Let‘s recall the system throughput that described in Chapter II. The GOLD-RTR
schedules the coherent integration time of 1 ms over ten correlation channels, with
64 lags each, work simultaneously and continuously. The input raw data is 10 000
waveforms per second, each waveform being 64 lags long. The size of waveform is
fix to 160 B during each time slot (1 ms). Each waveform contains the parameters of
Coordinated Universal Time (UTC), therefore real time parallel processing will become
the reality. The calculation of aggregate system throughput would be 12.8Mbps:

Tin =
10channel × 160B

1millisecond
= 1.6KB/m sec = 12.8Mbps. (3.1)

Now we propose a mathematical model to analysis the timing performance of
parallel system. This method can help us effectively evaluate the system throughput
and balance the parallel workload. The target architecture is composed by several
timing models:

57



Chapter III

1. Inherently sequential computations: σ(np),

2. Potentially parallel computations: ϕ(np),

3. Communication operations: κ(np, p),

4. Size of parallel workload: ρ(np).

The speedup expression following the Amdahl’s law is shown below:

ψ(np, p) ≤ σ(np) + ϕ(np)

σ(np) + ϕ(np)/p+ κ(np, p)
, (3.2)

Efficiency is a fraction of speedup ratio presents as the following:

ε(np, p) ≤ σ(np) + ϕ(np)
pσ(np) + ϕ(np) + pκ(np, p)

, (3.3)

Follow the analysis, we could minimize the κ(np, p) in the Memory Hierarchy
Layer by leverage the ρ(np) into small units, and convert the σ(np) into ϕ(np) in the
Application Layer. It reveals that there is a parallel workload rate p to express the
speedup ratio and efficiency. Based on the characteristic of GNSS-R post-processing
application, we could get the relation between the size of parallel workload ρ(np),
parallel workload rate p and the number of processors np. Assume that the ρ(np) is
a constant value, the parallel system will take ϕ(np) time to process the size of the
parallel workload ρ(np), therefore, the total processing time T is expressed below:

T = ρ(np) × p× ϕ(np), (3.4)

3.4.2 The Post-Processing Code - Coherent/Incoherent

The main focus of this Section is a brief explanation of the algorithm in the
post-processing code. The post-processing algorithm - Coherent/Incoherent is
implemented by C language and compiled by O2 optimization level. In Chapter V,
we will detail on the post-processing algorithm and its physical meaning.

Firstly we need to understand the coherent and incoherent process in the GNSS-
R application. It is possible to integrate coherently over longer or shorter periods of
time and then accumulate the correlation powers in a similar manner. Varying the
coherent integration interval to arrive at an optimal value will be investigated as part
of our ongoing research.

As the GOLD-RTR schedules consecutive time slots of 1ms, and generates ten
correlation channels‘ CC-WAV. Fig.3.13 shows the collected complex values of one
correlation channel during 1s. In order to exhibit interference of one identical

58



Software and OS Design in Higher Layer

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 10  20  30  40  50  60

Wa
ve

fo
rm

 (
a.

u.
)

l ags

Power vs.  l ag

Figure 3.13: Coherent process input: Every 1s, get 1000 waveforms, 64 lag each, for
each correlation channel, total 64000 complex values for each each correlation
channel.

waveform (reflected and directly), our approach is to integrate the reflected CC-
WAV for each channel by adding coherently the different time slot (64 lags) for 1
s, and compares the integration result with the corresponding direct one. It could
dramatically reduce the load of the link between satellite and ground. The idea of this
algorithm for each correlation channel has two main steps:

1) By integrating coherently the complex value C = I + iQ, we can achieve the
variable Ccoh during the intervals dtcoh:

Ccoh(lagk, Channelj, tcoh) =
∑

τ

C(lagk, Channelj, τ), (3.5)

where the sum applies to all τ within the interval [tcoh − dtcoh/2 , tcoh + dtcoh/2], if this
interval do not contain a possible navigation bit transition. In our application dtcoh

will take one of the values (1 ms, 2 ms, 4 ms, 10 ms, 20 ms).

Ccoh(lagk, Channelj, 1ms) =
1.5ms∑

τ=0.5ms

C(lagk, Channelj , τ), (3.6)

59



Chapter III

Ccoh(lagk, Channelj , 2ms) =
3ms∑

τ=1ms

C(lagk, Channelj, τ), (3.7)

Ccoh(lagk, Channelj , 4ms) =
6ms∑

τ=2ms

C(lagk, Channelj, τ), (3.8)

Ccoh(lagk, Channelj , 10ms) =
15ms∑

τ=5ms

C(lagk, Channelj , τ), (3.9)

Ccoh(lagk, Channelj, 20ms) =
30ms∑

τ=10ms

C(lagk, Channelj, τ). (3.10)

2) By integrating incoherently the complex value Ccoh, we can achieve the variable
Cincoh during intervals dtincoh :

Cincoh(lagk, Channelj , tincoh) =

1.5s∑
τ=0.5s

|Ccoh(lagk, Channelj , τ )|2, (3.11)

where the sum applies to all τ within the interval [tincoh − dtincoh/2 , tincoh + dtincoh/2].
In our application, dtincoh=1s.

Time slot(lag) /
T(ms) 999 

0 1 2 3 4
/

0
////

00

63 

1111 22222 33333 4444

Coherence (1ms)

Incoherence (1s)

Correlation Channel 1

CoherenceCCoherCo rener ncenc (((1ms)))))(

Incoherence (1s)

s)

Figure 3.14: Incoherent process output: Every 1s, get 64 integrated complex values for each
correlation channel.

The role of coherent process is to integrate the complex value for each time slot
and each channel. The role of incoherent process is mainly to achieve the amplitude

60



Software and OS Design in Higher Layer

of each integration value. For instance, if the coherent integration time is 1 ms,
therefore, every 1 ms, we can always receive one waveform for each channel, which
has a header of 32 bytes and 128 bytes of complex-valued samples. The 64 complex
signal pairs [I

∑
(k), Q

∑
(k)] are presented for the complex value of each time slot, they

accumulated over 1 s for each channel. And every 1s, the integrated complex value go
through the incoherent process, we can get 64 amplitude of the integrated complex
value for each time slot, they calculated separately for each channel as shown in
Fig.3.14. The incoherent function for each channel is shown in the following:

C = I + iQ, (3.12)

Ccoh(k, j) =
Nw−1∑
j=0

Ik(j)+i
Nw−1∑
j=0

Qk(j), (3.13)

|Ccoh(k, j)| =
Nw−1∑
j=0

√
Ik(j)2 +Qk(j)2, (3.14)

|Ccoh(k, j)|2 =
Nw−1∑
j=0

[Ik(j)2 +Qk(j)2], (3.15)

Cincoh(k, j) =
Nw−1∑
j=0

[Ik(j)2 +Qk(j)2]
/
Nw

, (3.16)

where k represents the lag index (0 to 63), j represents a waveform index (0 to
999), and Nw represents number of waveform for each lag (Nw=1000). The Cincoh(k, j)
correspond to the amplitude of the complex signal pairs for each time slot.

 righ corr number 
and valid satus

RESET
WAVEFORM

move the 
pointer up 0xa0

in DPRAM

OUTPUT

no

yes

Single Correlator 
Integration

 righ weeksow and 
NumberWaveform

yesno

Store the 
complex data

Figure 3.15: Design flow of Post-processing code.

Fig.3.15 depicts the design flow of the post-processing code. After resetting the
system and initialing the structure of the output waveform, the first waveform is read
at the entry address pointer. Then, the system decides if the received waveform has
the right correlator number and the valid status. Otherwise, the system moves the
pointer up to the stack of DPRAM and checks the next waveform. If the correlator

61



Chapter III

number and status are valid, the system stores the waveform (complex data), and
then decides if this waveform has the right second of week (SOW) and a valid waveform
number. In this case, the stored complex data is included in the integration function
and the pointer is moved back to the stack of DPRAM in order to decide the next
waveform. If the waveform doesn’t have the right SOW or the valid waveform number,
the system generates the output result and resets the waveform structure to restart.
The equation of the post-processing function is shown below, eventually, we can
always get 64 values of WaveformOutput.data[i] every 1 second. Each value respects
to the integrated output of each time slot.

WaveformOutput.data[i] =
NumberWaveform∑

j=0

√
Ii(j)2 +Qi(j)2)

/
NumberWaveform (3.17)

Figure 3.16: Software design versus hardware design.

In general, this application can be realized either as the software algorithm (e.g.,
C or C++) or as the structural hardware (e.g., VHDL). As shown in Fig.3.16, based
on the lists of the cycles per instruction of LEON3 processor in the GRLIB IP Cores
Manual [grip], we estimate the software routine needs 4383 clock cycles to calculate
this simple post-processing application. However, based on the simulation of the
structural hardware (VHDL) for the same algorithm, the hardware routine only takes
3535 clock cycles to compute the same result. It is more efficient to realize the pipeline
computation in the function level by the hardware method. However, in order to
realize the flexibility of the algorithm, we choose the software method to realize the
post-processing algorithm. Dealing with this strict timing-driven application, we need
to strengthen the real-time control by the hardware-assisted.

62



Software and OS Design in Higher Layer

3.4.3 Linux Embedded OS Analysis and Design

From the OS perspective, there are two major classes of OS architectures for the
multiprocessor system, SMP kernels and master-slave kernels [2]. SMP kernels are
the most widely used OS architecture. All processors run a single copy of SMP kernel
that exists on shared memory. Since all processors share the code and data of the
SMP kernel, cache migration and synchronization are the key issues for the SMP
Linux kernel design. In our case, we choose the open source of SNAPGEAR Linux
kernel (Linux 2.6.21.1) as the Linux embedded OS on the board, since it supports for
the LEON3 processor and the SMP architecture. The main design steps of SNAPGEAR
Linux kernel can refer to the Snapgear for LEON manual [Snapgear for LEON manual].

The process of booting the Linux OS is quite similar as the BIOS process: 1)
compile our Linux kernel by a proper compiler (sparc-linux-gcc); 2) built the Linux
kernel with the system/user applications and file system; 3) generate the ROM image
(image.flashbz) or the RAM image (image.dsu) and load it into the FPGA. The Linux
kernel will initialize the components on the board as soon as we load the image file
into the FPGA. Then we can control and operate all the devices on the board, also
execute the applications in the file system.

3.4.3.1 Compiler Requirement

There are three cross-compilers suitable for LEON3 processor with the SPARC
V8 instruction architecture: Bare-C Cross-Compiler (BCC); RTEMS Cross-Compiler
(RCC); GLibC-Linux Cross-Compiler (Glibc-Linux).

Firstly we use BCC (sparc-elf-gcc) to get the elf executable file for LEON3 by the
instruction below. By this way, we can trace and profile the application on board.
The instruction of CPU0 begins with 0x40000000 and CPU1 begins with 0x40000800
that is shown in the disassembly window of GRMON. However, it does not support for
the multi-threaded application, and can not be used in the OS.

sparc-elf-gcc -mv8 -msoft-float -g -O2 WavIntegration.c -o WavIntegraion.o -lm

Secondly we use RCC (sparc-rtems-gcc) to get the elf executable file which includes
Board-Support Package (BSP) for LEON2, LEON3 and ERC32, and target it into the
RTEMS on the hardware by the instruction below. RCC realizes the program on
board without porting to the embedded Linux OS. The RTEMS executables file is in elf
format and has three main segments: text, data and bss. The text segment is default
at address 0x40000000 for LEON2/3, which is followed immediately by the data and
bss segments. The stack starts at top-of-ram and extends downwards. BSPs provide
interface between RTEMS and target hardware through initialization code, which are
specific to target processor and a number of drivers. Console and timer drivers are
supported for all three types of processor. However it is not support multi-threaded
application (e.g. POSIX).

63



Chapter III

sparc-rtems-gcc -mv8 -msoft-float -g -O2 WavIntegration.c -o WavIntegraion.o -lm

App

Wav

Figure 3.17: The file system of the SNAPGEAR Linux

Finally, we decide to use Glibc-Linux cross-compiler (sparc-linux-gcc) to get the
elf executable file, and port it into the file system of the SNAPGEAR Linux Kernel
(image.dsu) as shown in Fig.3.17. The waveforms is transmitted into the file system
by ethernet. And the instruction of the compilation is shown below. The reason is
that it supports for the multi-threaded application (POSIX). Also we can use the file
system to process the waveforms.

sparc-linux-gcc -mv8 -msoft-float -g -O2 WavIntegration.c -o WavIntegraion.o -lm

Table 3.IV: The impact on compiler optimization levels.

Compiler Optimization Executable Time(s) Size of Executable file(B)

O1 11.921 106777

O2 11.378 105998

O3 11.346 197618

However, the different optimize flags may induce the different performances as
shown in Table 3.IV. For instance, the same application which is compiled by
the same compiler with the different optimization flags may induce the different
executable time and size of executable file. Compared to the results, the level 2
optimization generates the best tradeoff between timing and area.

3.4.3.2 Linux Kernel Analysis

The Linux kernel design concentrates on implementing the parallel application on the
embedded OS. In order to avoid the unnecessary scheduling effort, we choose the
multi-task application which is composed by a user executable program, a binary
input data and system drivers i.e. the kernel command, drivers etc.. With proper

64



Software and OS Design in Higher Layer

OS support, the host platform can easily move tasks between processors, in order to
balance the workload efficiency.

The SNAPGEAR embedded Linux OS utilizes the 2.6 kernel which supports
the multithreading applications for SMP systems. Every 200 milliseconds, the
scheduler performs the load balancing in order to redistribute the task and maintain
a balance across the processors. To understand how SMP is initialized for a
given architecture, check out the smp.c or smpboot.c files within the kernel at
./linux/arch/<arch>/kernel/.

The kernel maintains a pair of run queues for each processor (the expired one
and the active one). Each run queue supports 140 priorities, with the top 100
used for real-time tasks, and the bottom 40 for user tasks. Tasks are given time
slices for execution, they move from the active run queue to the expired run queue.
This provides fair access for all tasks to each core, and lock only on one task
per core. There are two issues should be noticed during the Linux kernel design,
synchronization issue and cache migration issue.

• Synchronization Issue

Boot 
Loader

Start 
Kernel

Rest
Init

Kernel
Init

Init
post

Init
process1

System
Call

process1

Scheduler

process2

Head.od

Start

Rest Init
p

System 
Initial

System 
Operation

Exception Preemption

Figure 3.18: Linux kernel initializes the process and incurs the latency

SMP kernel is affected by the need for synchronization and locking of the
resources. As shown in Fig. 3.18, while a process or a thread is waiting to obtain
a lock, some of its cache lines maybe replaced, thus the thread is scheduled
again, it may experience higher memory latency. In paper [1], the authors
presented the problem that as the number of CPUs increase, the performance
benefit from caches is partially offsets by the long latencies incurred when one
CPU references data owned by another CPU‘s cache.

To keep the dcache synchronized with an external memory, cache snooping
should be enabled. The dcache monitors write accesses on the bus to cacheable
locations. If another master writes to a cacheable location which is currently
cached in the dcache, the corresponding cache line is marked as invalid. In the
multi-set configuration, the i/dcache controllers can be configured with a lock
bit in the cache tag. Setting the lock bit prevents the cache line to be replaced

65



Chapter III

by the replacement algorithm.

• Cache Migration Issue

Table 3.V: The impact on the cache migration cost.

Bogo MIPS Icache Size (KB) Dcache Size (KB) Migration Cost μs

31.84 2*8 2*8 40000

31.84 2*8 2*4 10000

64.81 2*4 2*4 10000

The migration cost is a parameter related with the cache configuration. The
numbers specified in Table 3.V are measured in μs. It sets up an intra-core
migration cost of 10 ms, 20 ms and 30 ms etc.. The BOGO MIPS is an
unscientific measurement of CPU speed. It is made by the Linux kernel when it
boots, in order to calibrate an internal busy loop. From the testing result (Table
3.V), we find out that the size of dcache determines the migration cost, and the
size of icache determines the BOGO MIPS. In order to minimize the performance
penalty due to the cache line migration, we need to decrease the size of dcache
and icache to 2Set ∗ 4KB.

31 11          
0

Virtual Address Index 1 Index 2      Index 3       Offset

31         23            17             11             0
Context
Table
Register

Context
Register

root ptr

PTP
PTP

PTE

Context Table

L1 Table

L2 Table

L3 Table

Physical Address PPN Offset

Figure 3.19: SRMMU virtual address and physical address mapping.

The reason of the large migration cost is that the SRMMU has 32-bit virtual
address and 36-bit physical address and the fixed size of the page (4KB) as we
mentioned before, also data snoopy protocols are the most appropriate solution
for small to medium-scale shared bus multiprocessors. If MMU is disabled,
the dcache is operated as normal with physical address mapping. If MMU and
dcache snooping are enabled, the dcache tags store the virtual address, however,
the physical tags store in a separate RAM that is used for snooping, which could
lead to cache-migration issues when boots the Linux kernel on board as shown
in Fig.3.19. Therefore, the size of the dcache has to be smaller or equal to 4 KB
per set, refer to MMU page size.

66



Software and OS Design in Higher Layer

3.4.3.3 CPU Configuration

Figure 3.20: “CPU info“ description on SMLOL platform with 2/3/4 cores.

To implement the embedded Linux kernel on the SMLOL hardware, the kernel
must be properly configured. The CONFIG SMP option must be enabled during the
kernel configuration to make the kernel SMP aware. We can identify the number
and the type of processors by the proc filesystem in the Linux kernel. Thus, we can
retrieve the cpuinfo under the directory /proc of Linux file system by the command
cat below.

cat /proc/cpuinfo

Fig.3.20 presents the content of the cpuinfo file with 2/3/4 cores platform. We
prove that the LINUX 2.6 kernel has been successfully installed on the SMLOL
hardware, and the BOGO MIPS of each core is the same.

3.4.3.4 Ethernet Configuration

As shown in Fig.3.21, the demonstration platform needs an Ethernet cable to transfer
waveform data from the CONTROL PC to the GR-CPCI-XC4V board. The IP address
of the FTP server (installed on Control PC) is (192.168.0.1), netmask (255.0.0.0) and
route (127.0.0.1). And the IP address of the FTP client (installed on GR-CPCI-XC4V
board) is (192.168.0.80), netmask (255.0.0.0) and route (127.0.0.1). After configuring
the CPU and designing the user application, the next step is to configure the Ethernet
in the Linux kernel.

The first step is to create the FTP client in the Linux kernel, and install the ftp
server on the Control PC to store the input waveform. To create the FTP client in
the Linux kernel, we need to configure the Linux kernel by the networking service

67



Chapter III

GR-CPCI-XC4VControl PC

System 
App

User
App

Linux Kernel

LEON3 & IP 
Cores

FPGA Virtex 4

WavIntegration.exe 
(software)
Image.dsu
(Linux Kernel)

Leon3mp.bit
(Hardware)

Figure 3.21: Ethernet configuration.

(TCP/IP), which is enabled for the FTP application. Then we configure the driver
of the ethernet device (LAN91c111), set the base address of the ethernet MAC to
0x20000300 to avoid conflicts with other cores, and set the MAC address with the
original MAC address of the chip. Since the ethernet chip is connected to the GPIO
port of the LEON3 system, the IRQ signal of GPIO is set to 0x5, in order to determine
the priority of the interrupt. For the details of the configuration, you can refer to the
Snapgear for LEON manual.

The SMLOL platform is composed by the Snapgear embedded Linux kernel,
external SDRAM and GRETH, which is installed on GR-CPCI-XC4V board. GRETH
provides an interface between AMBA/AHB bus and Ethernet Media Access (MAC)
interface. It is supported by IEEE standard 802.3 Local Area Network (LAN) protocols
with 10/100Mbit speed in both full-duplex and half-duplex. Two data rates are
currently defined for the operation over the twisted-pair cables. The MAC controller
with AMBA AHB host interface receive and transmit the data autonomously by DMA
transfer, without the CPU involvement.

As shown in Fig.3.22, File Transfer Protocol (FTP) provides a method for copying
files over a network from one computer to another. User Datagram Protocol (UDP) is
connectionless protocol, since you don’t know if the transmitted data or message will
get the destination or get lost on the way. There may be corruption while transferring

68



Software and OS Design in Higher Layer

Figure 3.22: FTP and UDP protocol.

a message. FTP uses Transmission Control Protocol (TCP) protocol because the file
transfer has to be correct. UDP is good for the high speed, but not everything will
get to the destination. The main point is to guarantee the communication path that
remove its receive data faster than they arrive in the buffer. Therefore, in our case,
we choose FTP as the transmission protocol.

a)  ASCII Transmission b) Binary Transmission

IP of Control PC
FTP Server on Control PC

Transmission Mode in Binary

Received
Input Waveform

Transmission Mode in ASCII

Processor Name

Get the file from the FTP Server

Transmission Speed 

Transmission Speed 

Figure 3.23: FTP transmission time.

After saving all the configuration of the Linux Kernel, we can build the image and
load it into the SDRAM on the board. The image file (image.dsu) is downloaded at
the address 0x40000000 by GRMON. Then the LEON3 processor will start operation
from this address, we can check the boot sequence on the Hyper terminal. We can
enter the commands of the Linux by the Hyper terminal after displaying the Linux
booting sequence; connect and login to the FTP server; and get the file (IN.WAV ) from
the FTP server (Control PC) to the FTP client (GR-CPCI-XC4V board). As shown in
Fig.3.23, the input waveform file (IN.WAV, 209.7152MB) transmits from the ftp server

69



Chapter III

(Control PC) to ftp client (GR-CPCI-XC4V board). The speed can reach up to 150KB/s
by ASCII transmission and 2.2MB/s by binary transmission. It is quicker to transmit
the waveforms in binary mode.

3.4.4 Multi-task Application and Timing Performance

Figure 3.24: The scheduling of three parallel tasks execute in SMLOL with 2 cores.

In the task-level parallelism design, if two applications run in parallel on a two
cores platform, it can enhance the execution time as a factor of 2. As shown in
Fig.3.24, If we got three tasks work in parallel on a two cores platform, only two tasks
could work at the same time, which takes 18 s. Another one will be executed in
sequence, which takes 12 s. The speedup ratio turns to be 1.8. It illustrates that two
cores working together could produce the cache locking issue as we demonstrated in
the Subsection 3.4.3.2. This process is managed by the scheduler in Linux kernel,
therefore, we can not identify which core is running and which one is idle.

In order to get the timing performance of this multi-task application, we need to
understand how to implement this post-processing algorithm on the Linux kernel of
SMLOL platform. In the Linux kernel design, we need to compile the post-processing
applications (WavIntegration1, WavIntegration2 etc.) into the Linux image file, and
configure the custom application from the busy box. Busy box is a single binary but
a collection of many standard UNIX tools. It is very suitable for the embedded Linux
application. In BusyBox, the init (inittab) option is selected, as the first script to be
executed by the Linux kernel. The initial scripts of Linux kernel on SMLOL system is
shown below:

1

2 mount −t sysfs none /sys −− mount the f i l e system
3

4 mount −t devpts devpts /dev/pts −− mount the device
5

6 hostname leon3 −− define the host name

70



Software and OS Design in Higher Layer

7

8 −− configure ethernet
9

10 /sbin/ i f con f i g lo up 127.0.0.1 netmask 255.0.0.0
11

12 /sbin/ i f con f i g eth0 up 192.168.0.80
13

14 route add 127.0.0.1 dev lo
15

16 route add default dev eth0
17

18 ls −l −− assign the input data
19

20 cp C07B0005 sparc .WAV 1.wav
21

22 cp C07B0005 sparc .WAV 2.wav
23

24

25 ls −l −− execute the user application
26

27 (echo 1)>foo1 . txt
28

29 ( time WavIntegration1 )2>>foo1 . txt
30

31 echo 1
32

33 (echo 2)>>foo1 . txt
34

35 ( time WavIntegration1 & time WavIntegration2 )2>>foo1 . txt
36

37 echo 2

There are three issues that need to be declared: 1) The IP address (192.168.0.80)
defined in the Ethernet Configuration is the IP of the GR-CPCI-XC4V board, which is
different with the one of Control PC. 2) The input data is simply created by duplicating
the waveform file (C07B0005 sparc.WAV). In reality, we get the input data by the
FTP transmission from the Control PC to GR-CPCI-XC4V board (details refer to the
next subsection). 3) We execute the post-processing applications (WavIntegration1,
WavIntegration2 etc.) in parallel by ”&” command, and “printf“ the execution time
into the foo1.txt file.

Figure 3.25: Execution time (s) of parallel application on SMLOL @ 60MHz.

The parallel applications (Na) run with different numbers of cores (Np) on SMLOL.
The execution times of each parallel application is shown in Fig.3.25. Note that the
captured execution time has three types of parameters as shown in Table.3.VI, in our

71



Chapter III

Table 3.VI: Three types of execution time (s).

real Elapsed real (wall clock) time used by the process.

user Total number of CPU-seconds that the process used directly in user mode.

sys Total number of CPU-seconds used by the system on behalf of the process in kernel mode.

case, we choose the real time as the measurement results. From the above results,
we can extract three important parameters: speedup ratio, system throughput and
the standard deviation of execution time.

• Speedup Ratio

Amdahl’s law is used in parallel computing to predict the maximum speedup
by the multiple processors platform. The speedup of a program is limited by
the time of the sequential fraction of the program. Amdahl’s law states that
the potential program speedup is defined by the parallel fraction which can be
parallelized:

Speedup =
1

1 − P
, (3.18)

Therefore, if a small portion of the program which cannot be parallelized, it will
limit the overall performance. However any large mathematical or engineering
problem will typically consist of several parallelizable parts and several non-
parallelizable parts. This relationship can be given by the formula:

Speedup =
1

P
N +S

, (3.19)

where:

P is defined by the parallel fraction of code which can be parallelized.

N is defined by the number of processors.

S is defined by the serial fraction of code which can not be parallelized.

Table 3.VII: The speedup parameter for multi-processors.

N 1 2 3 4 5 6

speedupratio 1 1.78x 2.23x 2.58x 2.71x 2.7x

P 0 0.876 0.826 0.817 0.789 0.756

S 1 0.124 0.174 0.183 0.211 0.244

The Speedup ratio is calculated by the ratio of the execution time on multi-core
platform and the execution time on the single-core platform. Table 3.VII shows
the extracted average speedup ratio, which is tested on the different number of
processors N in the platform. The 2 cores platform attains 1.78x mean speedup

72



Software and OS Design in Higher Layer

ratio over a single core baseline. However the 6 core platform can only attains
2.7x mean speedup ratio over a single core baseline. Through the Equation 3.19,
we can calculate the parallelizable parts P and the non-parallelizable parts S of
the programs in the multi-task application.

• Maximum System Throughput

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of Application (Na)

Th
ro

ug
hp

ut
 [K

bp
s]

1xLeon3
2xLeon3
3xLeon3
4xLeon3
5xLeon3
6xLeon3

Figure 3.26: System throughput v.s. parallel applications at multi-core platforms.

In the multi-task application, the number of parallel applications Na and the
number of processors Np will determine the maximal system throughput. As
shown in Fig. 3.26, with the increasing of the parallel applications, the system
throughput varies in the different multi-core platforms. It clearly shows that the
maximum system throughput always appears at the point that when Na is equal
or a multiple to Np. It means that the processors have the maximum utilization
ratio at these points. When the Na is less than Np, the system throughput has
an upward trend, when the Na is greater than Np, the lines began to fluctuate,
and this volatility is increasing with the value of Np. That means as the number
of cores increase, the performance benefit from additions cores is offsets by the
other components. Therefore, adding more cores to an SMP system does not
increase throughput since workloads cannot always take advantage efficiently of
multi-core.

• The Standard Deviation of Execution Time

As shown in Fig.3.27, with the increasing number of the parallel applications,
the execution time is increasing linearly. With the increasing of the number of
cores, the real value of the execution time gets more and more difference than
the ideal one. That means the six core platform should get the speedup ratio as 6
under ideal circumstances. However, in reality, it is far away from we expected.

Fig.3.28 shows that there is an evidently lag of execution time as the increasing
of Np. We use σ to represent the standard deviation of the execution time, it

73



Chapter III

2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

140

160

180

200

220

Number of Application (Na)

Ti
m

e 
[s

]

1xLeon3 idea value
1xLeon3 real value
2xLeon3 idea value
2xLeon3 real value
3xLeon3 idea value
3xLeon3 real value
4xLeon3 idea value
4xLeon3 real value
5xLeon3 idea value
5xLeon3 real value
6xLeon3 idea value
6xLeon3 real value

Figure 3.27: Execution time v.s. parallel applications at multi-core platforms.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

5

10

15

20

25

30

Number of Application (Na)

S
ta

nd
ar

d 
D

ev
ia

tio
n 

(δ
)

6 core platform
3 core platform
2 core platform

Figure 3.28: Standard deviation of the execution time with 2 core, 3 core and 6 core
platforms.

presents how much variation of the execution time from the average time. The
equation is shown below:

σ =

√√√√ 1
N

N∑
i=1

(xi − μ)2 (3.20)

where the standard deviation σ is the squre root of the average value of (x− μ)2,
x is the execution time measured on the multi-core platform of a finite data set
x1, x2, ..., xn. μ is the mean value of the execution time x.

74



MPARM Simulation

A low standard deviation (<1) indicates that the data points tend to be very close
to the mean, whereas high standard deviation indicates that the data are spread
out over a large range of values. The value of the standard deviation is 7.802s
for 2 core platform, and 9.025s for 3 core platforms, even 19.105s for 6 core
platforms compared to the non-parallel platform. The increasing of the lag is
dramatic.

3.5 MPARM Simulation

Figure 3.29: MPARM scheme.

In the Multi-task Application design, we found out that the standard deviation
of the execution time and speedup ratio can’t reach our timing requirement as a
factor of 3. In this Section, we provide an emulation platform, MPARM. It allows the
simulation of innovative memory hierarchy architectures, also help us optimize the
system performance (i.e. cache-memory gap, bus busy ratio, memory access time)
and tackle on the bottleneck over the SMLOL.

We implement a series of simulations based on the MPARM and uClinux simulator
[MPARM ]. MPARM is a multi-processor cycle-accurate architectural simulator, used
to analysis the system-level design tradeoffs in the usage of different processors,
interconnects, memory hierarchies and other devices. The output of MPARM includes
accurate profiling of system performance, execution traces, signal waveforms, and
power estimation. The MPARM platform includes HW/SW components as shown
in Fig.3.29. Currently, a port of the RTEMS OS runs on MPARM, and a uClinux
port is well underway. Based on uClinux OS (2.0 non-mmu) and different memory
hierarchies, we can get the optimized timing parameters through the simulations.

75



Chapter III

3.5.1 Tackle on the Bottleneck of SMLOL

As we known, the SMLOL platform is a bus-based SMP architecture. It integrates
multi-LEON3 processors with their own caches and MMUs, but shared the main
memory. It is easy to build up the higher OS level and SW programming. The
processors are connected through a shared AMBA bus. The bus guarantees that
a memory operation on the L2 cache or the main memory must be completed before
the next bus transaction taking place. There is a private SRMMU for each LEON3
processor [Linux for LEON processors], which maintains the processor access to the
shared memory. We put the post-processing applications into the uClinux and
simulate with different type of architectures at 200MHz system frequency. Through
simulation, we can optimize the memory hierarchy and get the HW parameters, i.e.
bus busy ratio, bus access time, cache hit and miss ratio, computing clock cycle,
memory latency etc.. Also we can accurately measure the overall execution time of
the post-processing application. The simulations are carried out under the following
assumptions:

• Cache memory gap: the gap between the cycle time of processors and data
exchange time of cache-memory has continuously increased in SMLOL, due to
the overhead involved in the shared resource.

• Memory bus gap: the gap between the low memory operation time on the
external memory and the time consumption of the bus transaction. According
to the parallel workload analysis [8][9], applying the L2 memory in the memory
hierarchy can get rid of the bus busy ratio and memory access time.

3.5.2 Simulation Results

Table 3.VIII: Simulation results by MPARM.
Number of Platform P1 P2 P3 P4 P5 P6 P7 P8 P9

Number of cores 1 1 1 4 1 1 1 1 1

D-cache 4k*4 4k*4 4k*4 4k*4 4k*4 4k*4 4k*4 4k*4 4k*4

I-cache 8k*2 8k*2 8k*2 8k*2 8k*2 8k*2 8k*1 8k*2 8k*4

D-cache miss (%) 1.10 2.42 1.10 1.10 2.29 2.29 2.29 1.74 2.29

I-cache miss (%) 1.92 0.91 1.92 1.92 0.95 0.95 1.49 0.91 0.95

L2 memory 2MB NON 2MB 2MB NON NON NON NON NON

L3 memory 1MB 1MB 1MB 1MB 1MB 1MB 1MB 1MB 1MB

Overall time(s) 0.407 0.133 0.207 0.24 0.066 0.134 0.143 0.133 0.134

MP ratio 13 13 13 13 2 13 13 13 13

bus access 76128 4482493 38064 159377 4490505 4490562 4645920 4454921 4490562

bus busy(%) 4.34 61.8 2.17 8.50 22.5 61.9 63.9 61.4 61.9

• Simulation 1: L2 cache effects bus busy ratio

As shown in Table.3.VIII, Platform One (P1) and Platform Two (P2) are based on
1 core MPARM with uClinux OS at 200 MHz system frequency. Both of them

76



MPARM Simulation

have 4-set Dcache (4KB/set) and 2-set Icache (8KB/set), and 1MB L3 private
memory, and the ratio between the memory delay and the processor delay are
13. Based on uClinux OS, both of the platforms are processing 80KB input data
by the same post-processing application. The difference is that P1 has 2MB L2
memory, but P2 does not have.

The objective of this simulation is to analyze how L2 cache effects bus busy
ratio. In this regard, P1 with L2 memory can imply a lower bus utilization but
with a higher execution time. However, P2 is experienced the contrary effect. As
we described before, the L3 memory is a private memory, the gap between the
memory-bus is partially offset by the L2 cache, therefore, the L2 memory can get
rid of the burden of bus transmission dramatically. However, adding L2 memory
in the platform can effect the processing speed of L1 Icache slightly, due to the
longer routine.

• Simulation 2: 1 core v.s. 4 core effects bus access time

As shown in Table.3.VIII, Platform Three (P3) and Platform Four (P4) are based
on 1 core MPARM and 4 core MPARM separately. Both platforms are operating
with uClinux OS at 200 MHz system frequency. Both of them have 4-set Dcache
(4KB/set) and 2-set Icache (8KB/set), and 1MB L3 private memory. The ratio
between the memory delay and the processor delay are both 13. The difference
is that P3 is processing 40KB input data, but P4 is processing 160KB input data
by the same post-processing application based on uClinux OS. The idea is that
each core will process the same quantity of the input data.

The objective of this simulation is to compare how the additional cores affect the
bus access time. In this regard, the P4 with 4 cores will experience more than
four times the bus access time with respect to P3. However, the overall execution
time is almost the same. Therefore, the multi-core solution can be an efficient
solution to enhance the timing features of the system. We only need to consider
the capacity of the bus utilization.

• Simulation 3: The ratio of memory delay/processor delay effects the bus busy
ratio

As shown in Table.3.VIII, Platform Five (P5) and Platform Six (P6) are based on 1
core MPARM with uClinux OS at 200 MHz system frequency. Both of them have
4-set Dcache (4KB/set) and 2-set Icache (8KB/set), and 1MB L3 private memory.
Based on uClinux OS, both of the platforms are processing 80KB input data by
the same post-processing application. The difference is that the ratio between
the memory delay and the processor delay (M/P) in P5 is 2, but the P6 is 13. The
idea is that P5 will use the fast L3 memory than P6.

The objective of this simulation is to compare how the memory access time
affects the bus bus ratio. In this regard, the bus of P6 will be four times busier
than P5 since it has a slow L3 memory. Therefore, choosing an on-chip L3
memory can reduce the bus busy ratio compare to the off-chip L3 memory.

• Simulation 4: Cache association effects Icache miss rate

77



Chapter III

As shown in Table.3.VIII, Platform Seven (P7), Platform Eight (P8) and Platform
Nine (P9) are based on 1 core MPARM with uClinux OS at 200 MHz system
frequency. Both of them have 4-set Dcache (4KB/set) and 1MB L3 private
memory. The ratios between the memory delay and the processor delay are 13.
Based on uClinux OS, all of the platforms are processing 80KB input data by the
same post-processing application. The difference is that the Icache associations
(8KB/set) of P7, P8, P9 are 1-set (direct map), 2-set, 4-set separately.

The objective of this simulation is to compare how the Icache association affects
the Icache miss rate. With the increasing sets of the Icache from P7-P9, the P8
can attain the minimal Icache miss. Indeed, Icache miss ratio is an important
factor in the overall execution time. Therefore, 2-set Icache association can
attain higher timing performance.

Figure 3.30: MB and LEON3 dual-core architecture.

After a series simulations of MPARM and uClinux, we can conclude that the
bottleneck of the timing requirement in SMLOL is the bus busy ratio and the external
memory access time. It also exist the risk of the confliction between transmission
and processing. Therefore, memory allocation issues will also need to be considered.
Fig.3.30 gives the preliminary idea about how to use two buses and L2 memory
to solve the memory allocation issue, in order to get rid of the confliction between
transmissions and processing, memory access time and the bus busy ratio.

3.6 Summary

In this Chapter, we have proposed the hardware design, software and OS design
of the SMLOL platform. We have introduced the SMLOL architecture the hardware
parameters. Then combined with the workload analysis of the GNSS-R post-
processing application, we present the embedded Linux OS and SW design. Two

78



Summary

issues had been discussed: synchronization issue and cache migration issue. A
multi-task application is implemented on SMLOL, in order to get the transmission
time and the computing time. Finally, we introduced a virtual platform, MPARM,
aims at optimizing the system performance and tackle on the bottleneck of the SMLOL
platform.

This Chapter proposed a preliminary idea to speculate the software/hardware
efficiency. And afford on the simulation of different levels design (processor, memory,
bus) reveal that how the pipeline stall affect the system throughput in parallel system.
Comparison to the affection of different components, memory hierarchy design could
be the hotpot for solving the timing degrading in parallel system.

In parallel system, speedup ratio refers to how much a parallel algorithm is faster
than a corresponding sequential algorithm. Ignore the relative cost of the system,
we compared the execution time with the increasing parallel application based on
multi-task application. We found out that the standard deviation and speedup ratio
can’t reach our timing requirement. In order to solve the synchronization issue and
cache migration issue in the system level, we need to speculate it in the hardware
level by changing the memory hierarchy and communication system. Therefore, in
the next Chapter, we will introduce a novel architecture, HTPCP, in order to realize
the post-processing algorithm in real-time.

79





Bibliography

[1] J. Black, D. Wright, and E. Salgueiro, “Improving the performance of oltp workloads on smp
computer systems by limiting modified cache lines,” in Proceedings of IEEE International Workshop
on Workload Characterization (WWC’03). IEEE, 2003, pp. 21–29.

[2] J. Kim and M. Ryu, “Aprix: A master-slave operating system architecture for multiprocessor
embedded systems,” in Proceedings of 12th IEEE International Workshop on Future Trends of
Distributed Computing Systems. Kunming, China: IEEE, 2008, pp. 233–237.

81





Web Reference

[Linux for LEON processors] http://www.gaisler.com

[grlib] https://www.gaisler.com/products/grlib/grlib.pdf

[grip] http://www.gaisler.com/products/grlib/grip.pdf

[sourceForge] http://sourceforge.net/

[GRMON User‘s Manual] https://www.gaisler.com/doc/grmon.pdf

[Snapgear Linux for LEON ] https://www.gaisler.com/products/linux.html

[GR-CPCI-XC4V LEON Compact-PCI development board] http://www.gaisler.com

[MPARM ] http://www-micrel.deis.unibo.it/sitonew/research/mparm.html

[MicroBlaze processor] http://www.xilinx.com/tools/microblaze.htm

[IBM PowerPC 405 core] www.xilinx.com/support/documentation/user guides/ug018.pdf

[Snapgear for LEON manual] ftp://gaisler.com/gaisler.com/linux/linux-2.6/snapgear

[SANDIA REPORT ] http://prod.sandia.gov/techlib/access-control.cgi/2008/086015.pdf

83





Part IV

Parallel System Design Based on
HTPCP

85





Parallel System Design Based on
HTPCP

4.1 Introduction

In this Chapter, we focus on the design of the novel parallel platform, Heterogeneous
Transmission and Parallel Computing Platform (HTPCP). This platform is presented to
realize the post-processing algorithm for GNSS-R application. Moreover, two problems
are proposed and solved, 1) Parallelize the inherent serial output of the GOLD-RTR
instrument by Transmission Elements (TEs) and 2) Post-processing the multi-channel
(I and Q) correlators in parallel by Processing Elements (PEs). In order to guarantee
the real-time characters and minimize the memory requirement in space level, we
operate the same post-processing algorithm as mentioned in Chapter III.

This Chapter is organized as follow:

• Description of the HTPCP architecture.

• Survey on hardware design of HTPCP, including the TEs/PEs design and the
design flow of HTPCP.

• Introduction to the seven software routines, and verify the correctness of IP core
designs in HTPCP.

• Main conclusions.

4.2 HTPCP Architecture

In this Section, we discuss the functional block diagram of HTPCP. HTPCP includes
two types of elements: Transmission Elements (TEs) and Processing Elements (PEs)
presented in Fig.4.1. The TE is applied to parallelize the inherent serial output
of GOLD-RTR. The PE is used to realize the post-processing algorithm for each
correlation channel, and hence, to reduce the amount of waveforms prior to downlink
through the satellite. The real-time geophysical parameters transmit from the GOLD-
RTR to HTPCP by ethernet interface, and distribute to 2 TEs and 4 PEs in HTPCP.

87



Chapter IV

To laptop:
- Integration Results
- Status
From laptop:
- Commands

To GOLD-RTR:
- Commands
From GOLD-RTR:
- Waveforms
- Status

TC
P/

U
D

P 

TC
P/

U
D

P 
TU0 

PU 

TU1 
PU 

PU 

PU 

FSL FSL 

FSL FSL 

FSL 

FSL 

FSL 

FSL 

GPIO GPIO 

GPIO GPIO 

GPIO GPIO 

GPIO GPIO 

MPI 

Figure 4.1: HTPCP block diagram.

Each PE processes the consecutive 1 ms waveforms for each channel. Meanwhile
each TE accomplishes two tasks: data storage and data distribution. Considered
about the different function, each element features its private memory and bus, which
are accessible from the local processor. The memory hierarchy of TEs and PEs are
distinctly, the size of private memory is variant with the size of bandwidth, and the
software framework can be applied to different stacking approach.

The interconnections between TE and PE are done via Fast Simplex Link
(FSL), which is composed by a non-latency register-to-memory single direction
communication path. The interconnections between TE and TE are done via a
Massage Passing Interface (MPI) to realize the transmission between GOLD-RTR and
Control PC. The MPI is capable of receiving commands coming from remote processor
and passing them to the other remote processor transparently, in order to synchronize
the package transmissions with the local traffic. The block diagram of the HTPCP is
shown in Appendix H.

All these features make it possible to leverage the workload between the
communication and computing, and flexibly assign the other applications in the PE in
future, for instance, to calculate the sea surface mean-square slopes, ice roughness
and thickness, soil moisture and biomass etc..

88



HTPCP Hardware Design

4.3 HTPCP Hardware Design

RF
Front-End

Signal 
Processing
Back-End

Parallelize Serial Output of GLOD-
RTR (Transmission Elements)

Post-Process parallel correlation 
channels (Processing Elements)

PC

F

RHCP

LHCP

ck-E

gna

HTPCP

JTAG

ETH0

ETH1ETH1

Figure 4.2: Work schematic of GNSS-R application.

The parallel system becomes increasingly important in high performance
computing, but the success of this paradigm heavily relies on the efficiency and
widespread diffusion of parallel software. However the unbalanced workload in the
hardware design can not be fundamentally resolved through software methodologies.
This reminds us to design an optimized memory subsystem in the hardware domain,
in order to balance the transmission and computing workload.

Fig.4.2 depicts the work schematic of HTPCP. The GOLD-RTR instrument is
composed by two physical devices: a rack that contains the front- and back-end
electronics of GOLD-RTR and a Control PC which provides control and monitoring
functions of the rack electronics as well as disk storage to record waveforms. As an
intermediate, HTPCP board communicates with GOLD-RTR and Control PC through
two full-duplex ethernet links at 10/100 Mbps. HTPCP is composed by GR-CPCI-
XC4V LEON compact-PCI development board plus its extension board GR-CPCI-
2ETH-SRAM-8M. The Xilinx Virtex-4 LX200 FPGA on this board is well suited and
configurable for LEON3 core implementations.

The hardware design of HTPCP is composed by two elements: the design of
Transmission Elements (TEs) and the design of Processing Elements (PEs). As two key
components, the first one is based on the MicroBlaze (MB) system, mainly responsible
for the data transmission; while the second one is based on the LEON3 system, mainly
in charge of the parallel processing task. In order to guarantee real-time parallel

89



Chapter IV

processing performance, we focus on the integration of two processor systems (LEON3
and Microblaze) in Subsection 4.3.3.

4.3.1 Transmission Elements

PROC_
RESET0

INTC0

ETH_MAC
0

MII_GPIO
0

UART0

PROC_
RESET1

INTC1

ETH_MAC
1

MII_GPIO
1

UART1

MB0

MB1

DPRAM

BRAM_
CTRL0

BRAM_
CTRL1

BC

O

I_LMB D_LMB

I_LMB D_LMBC

O

PRAM

CTRL0

RAM

DCACHE

ICACHE

LEO
N

3_0

plb1

plb2

DPRAM0
(Input Data)

DPRAM1
(Output 

Data)

DCACHE

ICACHE

LEO
N

3_n

UART2
(loopback)

PROM

SRAM
(elf 

application)

MCTRL

Amba
ahb

a)

)

D

…
e
t
h
0

e
t
h
1

t

E
h

GOLD-RTR

CONTROL
-PC

t
h
t
h

B

B

Et

Transmission Elements Processing Elements

SFSL0

MFSL0

SFSL1

MFSL1

p
TE0

TE1

PE0

PE1

Figure 4.3: Transmission diagram.

By taking into account of the characteristic of the parallel system, the time spent
on actual data processing is mostly predictable but the communication and data
transfer times are rather dynamic by the nature. The key roles of TEs are to solve the
following two functions:

• Forward transparently the control commands and monitoring packets between
the Control PC and the GOLD-RTR rack back and forth.

• Distribute the received waveforms to each PE based on the number of corrector;
collect the results from each PE and send them to the control PC.

The transmission diagram is shown in Fig.4.3, where two blocks of TEs (TE0
and TE1) are considered based on two Microblaze systems. On one side, they are
connecting with two instruments as the transmission controller; on the other side,
they are connecting with many PEs as the data distribution controller. To better
understand their work principle, we focus on the three issues as follows:

90



HTPCP Hardware Design

• The operation flow of TE0 and TE1 to illustrate the time sequence of the
commands and waveforms transmission.

• Description to the UDP transmission protocol and the package frame.

• The TE/TE interface design - Massage Passing Interface (MPI).

4.3.1.1 Operation Flow of TEs

clkm

TE0

TE1

Figure 4.4: Operation flow of transmission elements (TE0 and TE1).

Fig.4.4 provides a graphical interpretation to the operation flow of TE0 and TE1
as an mediator to transmit the commands and waveforms between GOLD-RTR and
Control PC.

• GOLD-RTR sends command signal (COM1) to TE0;

• TE0 transmits the COM1 to TE1, and TE1 forwards it to the Control PC
transparently;

• Until the Control PC receives COM1, it will reply to TE1 a response command
signal (COM1’);

• TE1 transmits the COM1’ to TE0, and TE0 forwards it to the GOLD-RTR
transparently;

• Then, the GOLD-RTR sends the waveform packets to TE0 continuously (5
waveforms per packet).

• TE0 distributes these waveforms to each PE corresponding to the channel
number;

• PEs process the waveforms and generate the results.

• TE1 collects the results of PEs and send them to the control PC every 1 s.

The throughput of TE0 degrades from 12.8 Mbps to 1.28 Mbps after distributing
the waveforms. The function of post-processing algorithm is trigged by the entry
address pointer, and generate the result by the end address pointer. The throughput
of TE1 is 5.248 Kbps.

91



Chapter IV

4.3.1.2 Transmission Protocol and Frame

UDP for data transfer is used for bulk transfer, it only provides application
multiplexing (via port numbers) and integrity verification (via checksum) of the header
and payload. The transmission protocol fulfils by TCP/UDP protocol. Depending on
the type of information, the length of the payload can be changed 1 B (minimum) to
1500 B (maximum) as shown in Fig.4.5. The first byte of the payload indicates the
type of information contained in the packet. Appendix F shows the possible values of
the first Byte, and their meanings transmitted from control PC to HTPCP. Appendix
G shows the possible values of the first Byte, and their meaning transmitted from
GOLD-RTR to HTPCP.

Byte Index 42 843

Variable length from 0 to 1500 bytes
F

ir
st

 B
yt

e

TCP/UDP 
header

Data 800 bytes= 5 * 160B

1542

Here fixed in 801 bytes

Figure 4.5: TCP/UDP package frame.

Each TCP/UDP packet contains 5 waveforms (as payload), and the transmission
takes around 45 us. Each waveform contains the number of correlation channels,
which could be selected by TE0 to distribute to each PE. We can observe the
transmission time and the package frame by Wireshark software as shown in Fig.4.6.
In this case, we receive a UDP packet sent from the GOLD-RTR to the control PC. The
IP address of the GOLD-RTR is 10.0.0.2 with MAC address (06:05:04:03:02:01), and
the IP address of the Control PC is 10.0.0.51 with MAC address (00:1f:16:20:d4:ca).
The frame size is fixed with 1070B. From the first byte of the payload (‘O‘ alphabet), we
learn that this command packet is sent by GOLD-RTR to check the communication
is OK with control PC.

Figure 4.6: Transmission result in the wireshark.

92



HTPCP Hardware Design

4.3.1.3 TE/TE Interface Design - Massage Passing Interface (MPI)

cc-wav 0 Result 0

.elf

cc wav 0 Resullllllllllllllllllllllllllllllllllllllllllllllllttt 0

LEON3
G

O
LD

-R
TR

PC

MB0

cc-wav 0

cc-wav 1

......

cc-wav 9
Command 

(1B)
MB1

RECV_DPRAM

TRAN_DPRAM RECV_DPRAM

TRAN_DPRAM

Command 
(1B)

cc-wav 0

cc-wav 1

……

cc-wav 9
Command 

(1B)

Command 
(1B)

Command 
(1B)

Command 
(1B)

AM

Result 9

Result 0

Result 1

……

MPI

ET
H

0

ET
H

1

BUF0

BUF1

TE0 TE1ETH0 ETH1

PEs

Figure 4.7: MPI transmission in HTPCP.

The interconnections between TE0 and TE1 are done via a MPI, which is
capable of receiving and passing commands and waveforms to the remote processor
transparently, and bear the conflicts of the local traffic. The MPI is consist by a Dual-
Port BRAM (DPRAM) and two BRAM controllers, which are connected and controlled
by two MicroBlaze Processors (MB0 and MB1) respectively. The DPRAM includes two
buffers (BUF0 and BUF1), and each BRAM controller is capable to send and receive
data or commands in these two buffer as shown in Fig.4.7. The key points is aware of
the conflicts of the transmission by the sequence control of MPI. As shown in Fig.4.8,
the four simple functions of two processors can control the transmission without
conflictions.

BUF1

BUF0

Write_to_buffer1
(buffer, length)

MB0

Send_frame
(buffer, length

Write_to_buffer0
(buffer, length)

Send_frame
(buffer, length

MB1

Figure 4.8: MPI sequence control.

93



Chapter IV

4.3.2 Processing Elements

The parallel architectures have the potential to satisfy the timing requirement.
However, in most cases, adding more cores does not increase the throughput since
workloads cannot always take benefit from multiple cores. Thus we divide the
workload into several PEs and TEs, and reallocate the memory resource for each
element to exploit the maximize efficiency of parallel computing.

Correlator_ 0

Correlator_ 1

Correlator _9

1.6MB/s

…
…

…
…

Select
Correlator_0

RECV_DPRAM
of  ETH0

MB0

160KB/s

PLB_0 FSL_S
cc-wav_0 result _0

Result_0

Result _1

Result _9

…
…

…
…

FSL_M

.elf
656B/s

TRAN_DPRAM
of ETH1

Select
Result _0

MB1
PLB_1

LEON3 (PE0)

DPRAM_0 DPRAM_1

Figure 4.9: The data path in PE design.

The data path in PE is shown in Fig.4.9, where the ten channel waveforms transmit
from GOLD-RTR to the RECV DPRAM of ETH0. The first channel waveform is selected
by MB0 and transferred to the LEON3 system by FSL S link. There are two pointers
of the elf executable file that point to the physical address of DPRAM 0 and DPRAM 1
respectively. The function of the elf executable file is trigged by the entry address
pointer, and generate the result by the end address pointer. The input waveform
format ccwav 0 is shown in Appendix A, each waveform has 32 B header and 128
B input data. The output waveform format result 0 is shown in Appendix B, each
waveform has 656 B output data. The DPRAM 0 and DPRAM 1 work as the safe
threshold to restrict the bandwidth of input and output data. The throughput of
input waveform degrades from 1.6MB/s to 160KB/s, after selecting the channel by
MB0. The throughput of the output waveform is only 656B/s for each PE. Therefore,
the size of DPRAM 0 is set to 16KB to store the CC-WAV for each correlation channel
during 1 ms. And the size of DPRAM 1 is set to 16KB to store the result for ten
correlation channel during 1 s. To better understand the PE work principle, we focus
on the two issues as follows:

• How to solve the memory allocation issue and minimize system latency by the
memory hierarchy design.

• How to design the PE and TE interface by FSL & Gpio.

94



HTPCP Hardware Design

4.3.2.1 Memory Hierarchy Design

Cacheable
Shared

Memory

Grgpio1

Micro
Blaze0

Micro
Blaze1

Dcache
GPIO

1

ETH
MAC

1

MB1
(elf APP)

MB0
(elf APP)

ETH
MAC

0

GPIO
0

Icache

Mctrl1

Dcache

Icache

Mctrl0

PE

n
n

TE 0

TE 1

Grgpio0

Non-
Cacheable

Shared
Memory

LEON3

Cacheable
Shared

Memory

i/d cache

SRAM
External
Memory

(LEON3 elf
APP)

LEON3

i/d cache

LEON3

i/d cache

LEON3

i/d cache

FSL

FSL

Figure 4.10: Memory hierarchy design in HTPCP.

The previous analysis has an interpretation in terms of the system bandwidth
and the timing requirement of GNSS-R application. Since each waveform owns the
universal timing parameter (i.e. WeekSow, millisecond) in the header, it is either
to process the relevant waveform, or to dump the waveform. In order to process
the waveform for each correlation channel, the memory allocation issue and system
latency have to be studied. The memory hierarchy design is a design challenge to
minimize system latencies and solve the memory allocation issue.

Fig.4.10 shows the memory hierarchy design in HTPCP. It can be observed that
four types of memory design.

• I/dcache of LEON3 processor can achieve a fast computation as Level 1 memory
design.

• Cacheable shared memory of LEON3 processor is composed by a Dual-Port RAM
(DPRAM), the size of DPRAM is depend on the bandwidth of PEs. It employs as
the level 2 memory design, the novelty lies in the multi-ports read and write by
two types of processor. That means the MB0 processor can write the waveforms
into DPRAM, meanwhile, the LEON3 processors can read out the waveforms.

• Another level 2 memory design that was implemented is the Non-cacheable
shared memory. It is composed by one DPRAM and two BRAM controllers as it
was previously mentioned in MPI design. It aims at non-latency communication

95



Chapter IV

between TE0 and TE1. The size of the DPRAM is variant with the bandwidth of
TEs.

• The Level 3 memory represents on-chip Block RAM (BRAM) or off-chip Static
RAM (SRAM) of LEON3 processors, which keeps the elf executable file.

As for the GNSS-R application, it can be implemented in a software routine (the
elf executable file of LEON3) or a hardware routine (CORR component). Based on
the different approaches (software routine or hardware routine) of implementing the
application, we propose three solutions for the memory hierarchy design of PE, with
the consideration of various factors, i.e. elf allocations, input waveform allocation and
output data allocation etc..

• Solution 1: Four LEON3 processors share one software routine.

In the first solution, four LEON3 processors work together with their private
i/dcache, but share with two DPRAMs and the same ahb bus as shown in
Appendix.C. There is one software routine compiled to elf executable file
and allocated into the SRAM0, in order to control the tasks of each LEON3
processors.

Table 4.I summaries the memory allocation and size employed for this memory
hierarchy design. Four LEON3 processors work together with their private Level
1 memory (i/dcache) with the capacity of 2 set* 4 KB/2 set *16 KB. The input
data (CC-WAV) fits into the Level 2 memory (DPRAM 0) with the capacity of 1 KB.
And the output data (result) fits into another Level 2 memory (DPRAM 1) with
the capacity of 1 KB. The elf executable file fits into the L3 memory (SRAM0) with
the capacity of 8MB.

The advantage of this approach is to use the SRAM to fit for the software
routine, in order to save the on-chip resources (RAMB16). The disadvantage
is that the four LEON3 cores are sharing one elf file, which is executed in
sequence. Therefore, it will reduce the processing efficiency by each processor.
The processing of each processor is controlled by a multi-processor interruptor,
and each processor can only access a section of the Level 2 memory. Meanwhile,
we need two GPIO links to control the arrival time of CC-WAV and result in Level
2 memory, in order to calculate the precise processing time.

Table 4.I: Solution1: memory hierarchy design summary.

Memory hierarchy Component Size of Memory (set/KB) Contents of Memory No.LUT No.RAMB16 NO.DPRAM

Level 1 dcache/icache 2*4/2*16 data and instruction 4370 36 920

Level 2 DPRAM 0/DPRAM 1 1/1 CC-WAV/results

Level 3 SRAM 8000 elf executable file

• Solution 2: Four LEON3 processors with four hardware routines.

In the second solution, four LEON3 processors work together with their private
i/dcache, DPRAM and bus as shown in Appendix.D. There are four hardware

96



HTPCP Hardware Design

routines (CORR) created by VHDL and connected with each DPRAM and FSL
link, in order to fulfill the post-processing application as a co-processor.

Table 4.II summaries the memory allocation and size employed for this memory
hierarchy design. Four LEON3 processors work together with their private Level
1 memory (i/dcache) with the capacity of 2 set* 4 KB/2 set *16 KB. The input
data (CC-WAV) fits into each Level 2 memory (DPRAM 0) with the capacity of 1
KB, which is sent directly to CORR component and generate the result by CORR.
The other end of CORR is connected with FSL link, which can transmit the result
to the MB system.

The advantage of this approach is that the post-processing application will
be processed in real-time without manual intervention. We can monitor the
processing by each clock cycle with a hardware timer. We don’t need the L3
memory to fit for the elf application, or another DPRAM to store the results.
Therefore, it save a lot of on-chip resources (RAMB16), since it only use one
DPRAM and no external memory. Also we don’t need the GPIO links to control
the processing time. The disadvantage of this approach is that we cannot replace
the algorithm flexibly as the software routine.

Table 4.II: Solution2: memory hierarchy design summary.

Memory hierarchy Component Size of Memory (KB) Contents of Memory No.LUT No.RAMB16 NO.DPRAM

Level 1 dcache/icache 2*4/2*16 data and instruction 5370 12 0

Level 2 DPRAM 1 CC-WAV

• Solution 3: Four LEON3 processors execute four software routines in parallel.

In the third solution, four LEON3 processors work together with their private
i/dcache, two private DPRAMs, private bus and a private BRAM as shown in
Appendix.E. There are four software routine compiled to elf executable file and
allocated into each BRAM, in order to control each LEON3 processors separately.

Table 4.III summaries the memory allocation and size employed for this memory
hierarchy design. Four LEON3 processors work together with their private Level
1 memory (i/dcache) with the capacity of 2 set* 4 KB/2 set *16 KB. The input
data (CC-WAV) fits into the Level 2 memory (DPRAM 0) with the capacity of 1 KB.
And the output data (result) fits into another Level 2 memory (DPRAM 1) with
the capacity of 1 KB. The elf executable file fits into its own on-chip L3 memory
(BRAM0) with the capacity of 128KB.

The advantage of this approach is that it can realize the parallel processing with
four different elf executable file on each processor. The disadvantage of this
approach is that the elf applications cannot be larger than 128 KB, since it
spends a lot of on-chip resources (RAMB16, LUT, Dual-port RAM etc.). In the
actual design, the smallest size of elf application can be compiled as 155 KB,
which is larger than the 128 KB. Also we need two GPIO links to control the
arrival time of CC-WAV and result to the level 2 memory, in order to grantee the
precise processing time.

97



Chapter IV

Table 4.III: Solution3: memory hierarchy design summary.

Memory hierarchy Component Size of Memory (KB) Contents of Memory No.LUT No.RAMB16 NO.DPRAM

Level 1 d/iCACHE 2*4/2*16 data and instruction 2370 56 0

Level 2 DPRAM 0/DPRAM 1 1/1 CC-WAV/result

Level 3 Bram 0 128 elf executable file

Through the analysis of these three solutions, solution one seems to be the most
practical approach, and solution two and three can be used to improve the system
performance in future. Table.4.IV depicts the final memory hierarchy design of PE
(LEON3 system) and TE (MB system). This approach can get rid of the confliction of
transmission and processing by dividing the whole system into TEs and PEs. Also
it can accurately measure the processing time by each LEON3, and measure the
transmission time by the MBs. There are two different interfaces that connect with
MB system and LEON3 system: FSL and gpio, which will be described in the next
Subsection.

Table 4.IV: The optimized memory hierarchy design summery.

LEON3 
System 

LEON3 Frequency 100 MHz 
Input  Throughput  160 KB/s 
L1 Memory:  Icache 2 * 8 KB; LRU 
L1 Memory:  Dcache 2 * 8 KB; LRU 
L2 Memory:  DPRAM0 1 KB 
L2 Memory:  DPRAM1 1 KB 
L3 Memory:  SRAM0 8 MB 

Microblaze  
System 

Microblaze Frequency 100 MHz 
L1 Memory: Icache  128 KB 
L1 Memory: Dcache 128  KB 
L2 Memory: BRAM 128 KB 
Input  Throughput 1.6 MB/ s 
Output Throughput 656 B / s 
Input/Output Ratio 2545 :  1 

 Overall execution time 
(for  1 second input sample) 

In the level of us (10-6) 

4.3.2.2 PE/TE Interface Design - FSL & GPIO

The interface design between PEs and TEs are fulfilled by two FSL links and two
gpios links. The novelty of the HTPCP architecture is the introduction of the control
mechanisms for integrating the two processor systems. The control mechanisms is
able to provide the stream data transmission guarantees the synchronization of the
transmission and processing.

The control mechanisms can be designed as a Finite State Machine (FSM), as
presented in Fig.4.11. The FSL interface includes two FSL links: FSL S slave link and
FSL M master link. Each link connects with one DPRAM (ahbdpram 0, ahbdpram 1)
separately. The FSM controls the read and write sequences of each FSL link. The
functions of three states: idle, read input and write output can be viewed as follows:

• The idle state, the FSM will reset the two DPRAMs and two gpios.

98



HTPCP Hardware Design

• The read input state, the FSM will read the stream data (FSL S data) from MB to
ahbdpram 0 by the FSL S link. While the ahbdpram 0 receives the first input data,
the elf application will send a signal to GPIO 0 (gpioo) and write the calculated
results to the ahbdpram 1.

• The write output state, the FSM will write the result (FSL M data) from ahbdpram1

to the FSL M master link. While the MB receives the results, it will send a signal
to GPIO 1 (gpioi) that indicates the FSM to reset the system to the idle state.

The FSM can control the read and write operations of the FSL links without the
delay. The execution time of the elf application can be monitored by two gpios as the
data arriving of PEs and TEs.

Userlogic_1
(ahbdpram1 1KB)

Userlogic_0
(ahbdpram0 1KB)

Fsl_s_data

enabledp0
writedp0
addressdp0Fsl_m_data

Ahbso(7) Ahbso(5)

0xa0100000 0xa0000000

IDLE

READ_INPUTWRITE_OUTPUT

ELF

Fsl_s_exsits = 1
=>FSL_S_Read

Fsl_m_full = 0
=>not FSL_M_Write

Fsl_Rst ='0' clkm

enabledp1
w

ritedp1

gpioo(1 downto 0)gpioi(1 downto 0)

flag

cleandp1

cleandp0

Figure 4.11: The Finite State Machine (FSM) design.

The integration of a customized IP core within the execution unit is very restrictive
due to the nature of RISC processor architectures. The restriction is the customized
instruction itself. If the critical path of the whole system is through the user IP,
the whole soft processor will decrease in performance (processor frequency), since
the user IP is included within the soft processor architecture itself. If the RISC
architecture doesn’t allow the designer to stall the pipeline, the processor can’t run
at a higher frequency than the critical path would allow. The bigger the customized
IP is, the more the designer must be careful not to decrease the whole processor
performance.

Fig.4.12 shows the basic idea of connecting the customized user IP with the MB
system via the FSL interface. In our application, this IP core refers to a LEON3-based
system. Xilinx provides the MB processor up to 16 dedicated 32-bit FSL interfaces,
which is a very powerful, easy and flexible way to integrate a customized user IP
into a MB-based system. The FSL channels are uni-directional, point-to-point data
streaming interfaces. It is possible to provide the customized IP core with many more

99



Chapter IV

inputs/outputs from another processor or external logic, and the big advantage is not
necessary to change or extend the MB core or the RISC architecture itself.

During the synthesis of the LEON3 systme design by Synplify Pro v8.6.2, we
found out that the critical path does not go through the DPRAM and FSM. It means
that these two components will not affect the system processing time or the system
frequency. From this point onward, if the PE takes 100 clock cycles to calculate
the result by the elf executable file, the FSM will read and write data from DPRAMs
continuously by the FSL S link and the FSL M link without interruptions. Meanwhile
the TEs can execute their own applications, and don’t have to wait for the FSL to
be available. Therefore, the pipeline of RISC processor cannot be stalled and the
processor frequency of TEs and PEs will not be decreased in the HW design.

Instruction- 
Fetch 

Interface

32x32 Register

Instruction- 
Decode

SUB
ADD
MOV
USW

customized 
user-IP

ALU

Critical Path

MicroBlaze

1 Instruction- 
Fetch

2 Decode 3 Execute 4 Writeback

FSL - Interface

Figure 4.12: Integrated a customized IP into MicroBlaze via the FSL interface.

In the PE and TE interface design, it is easy to verify the data transmission in two
DPRAMs by hardware design. However, the biggest challenge is to measure the overall
execution time of the elf executable file, since it is a software routine and the value
is not constant. Fig.4.13 represents the sequence chart of HTPCP, where the time
between two red lines displays the overall execution time of the elf executable file, in
addition to this part is controlled by FSM and gpios. One approach to providing the
precise the execution time of software routine is to add a timer function in software
routine, and ”printf” the time consumption by UART. However, the ”printf” function
costs a large percentage of the total execution time. At present, we can only roughly
estimate the overall execution time of elf executable file is in the level of “us“ (10−6)
apply to one sample waveform (1mec). Appendix I shows the captured the time
consumption by UART. In the future, we can connect a hardware timer to the register
file of LEON3, thus get more accurate measurement of the elf execution time.

100



HTPCP Hardware Design

Gpio0
(Data arrive from 

TE to PE)

Gpio1
(Data arrive from

PE to TE)

Figure 4.13: The sequence chart of HTPCP.

4.3.3 Design Flow of HTPCP

The main focus of this study is the integration of two processor systems. The focus
is on the design method of LEON3 system and Microblaze system, and a methodology
to integrate the two system. The design has been created by Xilinx Embedded
Development Kit (EDK) tools, and layout for the GR-CPCI-XC4V board.

The block diagram of HTPCP is presented in Fig.4.14. It includes two MB
processors with their own buses (mb plb 0 and mb plb 1). Several peripherals are
connected with the each MB bus (xps gpio, xps ethernetlite, xps timer etc.). The
LEON3 system contains four LEON3 processors, which is connected with the same
AHB bus, Several peripherals are connected with the AHB bus (i.e. GR-GPIO, DPRAM,
MP IRQ Controller, etc.). Note that each MB has one FSL link and one GPIO link
connecting with LEON3 system, this will be the key parts to successfully integrate
two processor systems.

There are three steps to finalize the configuration of the HTPCP system:

• Configure the LEON3 system, generate the netlist (.edf) of LEON3MP.

• Create the MB system by editing the MHS and MSS files.

• Integrate the LEON3 system as an IP core into the MB system.

101



Chapter IV

ahb

mb_plb_0 mb_plb_1

Figure 4.14: HTPCP design flow.

LEON3MP

FSM & FSL

Userlogic0 grgpio0

ahb
DPRAM0

ahb
DPRAM1

ahb
grgpio0

ahb
grgpio1

Userlogic1 grgpio1

ahbahb

gic1

ahbahb

TOP LEVEL VHDL

USER INTERFACE
- IPIF to AHB

FSL INTERFACE
- To MB SYSTEM

MY IP CORE

Userlogic0l i Userlog gpio grggpiog

Figure 4.15: IP cores design in LEON3 system.

4.3.3.1 LEON3 System

The IP cores design in LEON3 system is shown in Fig.4.15. It is observed that the
LEON3MP block is highlighted as the top-level design in the system. The design
focus on the configuration of the top-level VHDL file (leon3mp.vhd, config.vhd). The
leon3mp.vhd includes the instantiations of IP cores and available I/O ports in LEON3
system. In particular, it is focus on adding the IP cores into the top-level module.
In the second level design, we need to add the FSL links into the LEON3MP top-
level module, and write a FSM to control the read/write operations of the two FSL

102



HTPCP Hardware Design

links. This design is to prepare the integration between LEON3 system and Microblaze
system. In the following level design, four IP cores and their interfaces have been
added into the LEON3MP. Note that the userlogic 1 and userlogic 2 designs are
connecting with the two FSL links. And the grgpio0 and grgpio1 designs has to
external the input and output pins to connect with MB system.

The methodology of adding the IP cores into the LEON3MP top-level module is
described in further detail in the following points:

1. The VHDL code presents in Fig.4.16 shows the two FSL interfaces (master link
and slave link) and their I/O ports adding into the leon3mp.vhd file. There
are two pairs of FSL Slave/Master links has been added into the top-level
module, but only one link of each pair (FSL0 S and FSL1 M) has been used to
connect with MB0 and MB1 separately. The reason is to avoid the interference
between two Microblaze processors, each MB are connecting to a pair of FSL
Slave/Master links independently. As it was mentioned before in Section 4.3.2.2,
the FSM has been added in the LEON3MP top-level module, where fsl S data pad
and fsl M data pad have been created in the top-level module, that is aim
at connecting the two FSL links with the inputs of IP cores (userlogic 1 and
userlogic 2) as shown in Fig.4.17.

Only use this 
as FSL_Slave Link

Only use this 
as FSL_Master Link

Figure 4.16: Two FSL links in leon3mp.vhd.

103



Chapter IV

Assign FSL_SLAVE_DATA to DPRAM0

Assign FSL_MASTER_DATA to DPRAM1

Add co-processing function here

Figure 4.17: FSM design with two FSL links.

2. Fig.4.18 presents the VHDL code of the ahbdpram0 and ahbdpram. These are
two different DPRAM, one (ahbdpram) is to connect with FSL0 S link, in order
to store the CC-WAV of each correlation channel. The other (ahbdpram0) is
to connect with FSL1 M link, in order to store the calculated results of each
correlation channels. Their interface designs (IPIF to AHB) in leon3mp.vhd file
are shown in Fig.4.19, and their I/Os are connecting to the corresponding I/Os
pins of the FSL links.

Figure 4.18: IP cores design of Ahbdpram0 and Ahbdpram.

104



HTPCP Hardware Design

Figure 4.19: Ahb ipif designs of Ahbdpram0 and Ahbdpram.

3. Fig.4.20 presents the interface designs (IPIF to AHB) of grgpio0 and grgpio1
in leon3mp.vhd file. The external input pin (gpio1) are connecting with the
input pin (grgpio1.din) of grgpio1 component; the external output pin (gpio0)
are connecting with the output pin (grgpio0.dout) of grgpio0 component. We
can observe that the external input pin (gpio1) and output pin (gpio0) pins of the
LEON3MP top module are prepared to connect with the xps gpio0 in MB0 system
and xps gpio1 in MB1 system. As it was mentioned before in Section 4.3.2.2,
these two GPIO links is used to guarantee the data arrive between LEON3 system
and Microblaze system.

Figure 4.20: IP cores design of grgpio0 and grgpio1.

4. Finally, a compilation of the LEON3 system has been done by Synplify Pro
as shown in Fig.4.21, where includes the the top-level files (leon3mp.vhd,
config.vhd) and the IP cores (userlogic.vhd, grgpio.vhd etc.). The netlist
(leon3.edf ) file has been generated prepared for the final integration with MB
system.

105



Chapter IV

Figure 4.21: Compile LEON3 system by Synplify Pro.

4.3.3.2 Microblaze System

Microblaze has the ability to use its dedicated FSL bus to integrate a customized IP
core. However, the integration of two processor systems by FSL is an unprecedented
experiment. The focus of the MB systems design is addressed in this Section, where
we can understand how to create MB systems of HTPCP by editing the MHS and MSS.

In the Xilinx EDK tools, all the IP cores will be integrated in the Xilinx
Microprocessor Project (XMP) with the project file (system.xmp). In our design, we
use two Microblaze processors (microblaze 0 and microblaze 1) work as a dual-core
platform based on the GR-CPCI-XC4V development board. The“Target device“ is
xc4vlx200ff1513-11 FPGA. The main design steps can refer to the EDK Concepts,
Tools, and Techniques Manual [Xilinx EDK]. Here we mainly focus on the design
considerations of each component in MB system of HTPCP.

Our fancy processors (microblaze 0 and microblaze 1) are not going to be much
used unless we connect them to the following IP cores:

• microblaze v7.10d- MicroBlaze architecture includes big-endian bit-reversed
format, 32-bit general purpose registers, virtual-memory management, cache
software support, and FSL interfaces. In our design, the two MicroBlazes
(microblaze 0 and microblaze 1) operate as the function of TE0 and TE1.

• fsl v20 v2.11a- The LogiCORE IP FSL V20 bus is a uni-directional point-to-
point communication channel bus, used to perform fast communication between

106



HTPCP Hardware Design

two processor systems (LEON3 system and MBs system). The FSL interface is
available on each MB processor, but add manually in the LEON3 system. The
interfaces are used to transfer stream data to and from the register file on MB
processor to LEON3 system. In our design, the FSL Slave link (i fsl v20 0) is
connected to the MB0, and the FSL Master link (i fsl v20 1) is connected to the
MB1.

• lmb v10 v1.00a - The LMB is a fast, local bus for connecting MB instruction
and data ports to high-speed peripherals, primarily on-chip block RAM (BRAM).
Here we combine two lmb v10 modules to each MB to play the roles of Dcache
and Icache. Therefore, four lmb v10 modules are created to combine with two
MBs.

• lmb bram if cntrl v2.10a - The LMB BRAM interface controller connects to an
lmb v10 bus. Version 2.10a of the LMB BRAM controller is required for use with
MicroBlaze v6.00a and later, to correctly handle the address mask computation.
In our design, four LMB BRAM controllers are created to control each lmb v10
module.

• plb v46 v1.03a - The Processor Local Bus (PLB) is part of the IBM CoreConnect
bus architecture specification, it is the high-speed data interface to the MB core.

107



Chapter IV

All of the peripherals and system memory will communicate with the processor
by this bus. In order to reduce the transmission load, each MB posses its own
bus and peripherals. mb plb 0 is the bus of MB0, and mb plb 1 is the bus of
MB1.

• bram block v.1.00a - There are three BRAMs in our design. Two BRAMs (bram1
and bram2) are created, with the size of 128KB each. The function of these two
BRAM are to store the elf executable file of each MB. Since bram1 connects
with lmb bram if cntlr 0 and bram2 connects with lmb bram if cntlr 1, they will
not require additional xps bram controllers to control the memory. Moreover,
another BRAM (bram block 0) is created, with the size of 128 KB. The function

108



HTPCP Hardware Design

of this BRAM is to fulfil the MPI interconnection between MB0 and MB1.

• xps bram if cntrl v1.00a- This module will be the interface to control the BRAM
(bram block 0) for MPI design. As it was mentioned before, the BRAM works
as the shared memory between MB0 system and MB1 system. But the two
xps bram controllers are connected to each port of BRAM with PLB 0 and PLB 1
as shown in Fig.4.22. In our design, two xps bram controller modules are
created to realize the MPI design.

Bram_block_0

PO
RT A

PO
RT B

xps_bram_i
f_cntlr_0

xps_bram_i
f_cntlr_1

O
RT 

_i

O
RT x

PLB0 PLB1

x _i

Figure 4.22: MPI design with one bram block and two bram controllers.

109



Chapter IV

• xps ethernetlite v2.00a - The Ethernet Lite MAC supports the IEEE Std. 802.3
Media Independent Interface (MII) to industry standard Physical Layer devices.
It communicates with a processor via a PLB interface with the speed of 10 Mbps
and 100 Mbps. Taking into account the connection between the HTPCP, GOLD-
RTR and Contorl PC. At least, two Ethernet Lite MACs (Ethernet MAC 0 and
Ethernet MAC 1) are necessary to connect with MB0 and MB1 separately. Each
Ethernet MAC is controlled by one bus, and communicate transparently via MPI.

• xps gpio v1.00a & v1.00b - The XPS GPIO is a 32-bit peripheral that attaches
to the PLB. Two xps gpios (v1.00a) are created as MII MDC MDIO GPIO 0 and
MII MDC MDIO GPIO 1, which connect to the PHY serial management bus of
each xps ethernetlite as shown in Fig.4.23. Moreover, two modified xps gpios
(v1.00b) are created as xps gpio 0 and xps gpio 0, which connect to the two I/O
pins (gpio0 and gpio1) of LEON3 system respectively. Note that xps gpio 0 is
modified as input direction of MB0 system, and the xps gpio 1 is modified as
output direction of MB1 system, corresponding to the PORT gpio0 and gpio1 in
leon3mp v2 1 0.mpd. There are four xps gpios created in our design.

• xps intc v1.00a - The XPS INTerrupt Controller (XPS INTC) concentrates
multiple interrupt inputs from peripheral devices to a single interrupt output
to the system processor. The registers for checking, enabling and acknowledging
interrupts are accessed through a slave interface for the PLB bus. The number
of interrupts can be tailored to the target system. In our design, two XPS INTC
(xps intc 0 and xps intc 1) modules are created for each MB.

• xps timer v1.00a - The XPS timer/counter is a 32-bit timer module that

110



HTPCP Hardware Design

XPS_GPIO

PLB_0

XPS_
ETHERNETLITE

Marvell 88E 1111 
Ethernet PHY

E

MB0

Figure 4.23: Xps ethernetlite and xps gpio block diagram.

attaches to the PLB bus. In our design, two xps timer modules (xps timer 0

111



Chapter IV

and xps timer 1) are created for each MB.

• xps uartlite v1.00a- The XPS Universal Asynchronous Receiver Transmitter
(UART) Lite Interface connects to the PLB bus. It provides the controller interface
for asynchronous serial data transfer. In our design, two uartlite components
(RS232 Uart 0 and RS232 Uart 1) are created as the stdin/stdout interface
of each MB. Combined with the Hypertrm, we can check the results of elf
executable file for each MB. Since only one physical RS232 interface exists on
the GR-CPCI-XC4V board, it is necessary to create an uart selector to choose the
display of each UART.

• uart selector v1.00a - This module allows to ”multiplex” two UART Lite Interface

112



HTPCP Hardware Design

(RS232 Uart 0 and RS232 Uart 1) through one physical port. An input signal
will decide which input (A or B) is active. It can be selected by a push button on
the board.

• proc sys reset v2.00a- This is a reset control block which is very useful. It has
a port for an external reset input, which will perform resets to the internal MB
components, the processor bus structures, and the peripherals in a very specific
order. It also has internal reset ports which connect to the processor itself. In
our design, one reset control block is created to control all the system (MB0,
MB1 and LEON3 system), aims to synchronize the three systems.

• clock generator v2.01a - The clock generator module provides clocks according
to the clock requirements. In our design, the clock generator module generates
100 MHz to all the processor systems (MB0, MB1, LEON3s), aims to synchronize
all the cores.

• leon3mp 0 v2.00a - The leon3mp module has four LEON3 processors work
together with their private i/dcache, but share the bus, L2 memory (DPRAM 0
and DPRAM 1) and L3 memory (SRAM0) inside as it is mentioned in Section
4.3.2. The elf executable file (software routine) fits into the SRAM0 with the
capacity of 8MB. The input data (CC-WAV) fits into the DPRAM 0 with the

113



Chapter IV

capacity of 1 KB. And the output data (result) fits into the DPRAM 1 with the
capacity of 1 KB. In addition, there are two grgpios and one uart connecting
to the AHB bus. This IP core is created by the netlist file (leon3mp.edf) and
integrated into the XPS project.

After overview the MHS design of MB systems, the next step is simply to run the
options of ”Hardware → Generate Netlist” and ”Hardware → Generate Bitstream”.

114



HTPCP Hardware Design

Afterwards, we operate the option of ”Device Configuration → Download bitstream”
on the target board.

4.3.3.3 LEON3 System and MB System Integration

MicroBlaze0
R0
R1
R0

R30
R31

…
..

FSL -interface
FSL

MicroBlaze1

R0
R1
R0

R30
R31

…
..

FSL -interface
FSL

LEON3MP.vhd

FSL0_S_Data[0:31]

FSL0_S_Read

FSL0_S_Exists

FSL1_M_Data[0:31]

FSL1_M_Write

nter

FSL1_M_Data[0:31]

FSL1_M_Full

Userlogic_1.vhd

Userlogic_2.vhd

dataindatain

fsl_dataout

FSM

Sy
s_

cl
k

Sy
s_

re
se

t

ogic

_ _

FSL0_S_Exists_ _

FSL 
i

FSL1 M D t [0 31]

FSL1_M_Full

fsl dataout

FS

FSL1_M_Write

ad
dr

es
s

w
ri

te
dp

Fs
l_

w
ri

te
Sys_clk

Sys_reset

y _

y _

Sys_clk

Sys_reset

y _

y _

Figure 4.24: FSL detailed connections between LEON3 system and MB system.

Fig.4.24 presents the detailed connections between the LEON3 system and
MB system, where MB0 is the Master of the Userlogic 1 in LEON3 system, and
the Userlogic 2 combined with FSM is the Master of MB1. The integration of
LEON3 system and MB system works as co-processor system, which can save the
timing overhead on the bus transactions. In order to integrate the LEON3 netlist
(leon3mp.edf ) as an IP core into the XPS project, there are three steps design as
follows:

1. Integrated leon3mp v2.00a as an IP core into the XPS project (system.xmp):

We can invoke the Create and Import Peripheral wizard from XPS to integrate the
LEON3 netlist (leon3mp.edf ) into the XPS project. By selecting the “Hardware
→ Create or Import Peripheral“, click ”Next” to select ”Create templates for a new
peripheral” option in Select flow as shown in Fig.4.25. Then we give the Name
“leon3mp“ which is the same name as the top-level VHDL design entity (the
version is 2.00a), and choose the bus as FSL for this peripheral. We assign the
numbers of 32-bit input and 32-bit output are both “1“. Finally, it will automatic
“generate ISE and XST project files“ to help us implement the peripheral by
XST flow under the directory of your project path/pcores and “generate template
driver files“ to help us implement software interface under the directory of
your project path/drivers.

115



Chapter IV

Figure 4.25: Create templates for a new peripheral.

Afterwards, we can copy all the VHDL codes of the LEON3 top-level and IP cores
design in hdl folder in the directory of /pcores/leon3mp v2 00 a/vhd, and create the
Microprocessor Peripheral Definition (MPD) file, Peripheral Analyze Order (PAO)
file and Black Box Definition (BBD) file in the data folder in the same directory.
The MPD file defines the interface of the peripheral. The PAO file contains a
list of HDL files that are needed for synthesis, and defines the analyze order
for compilation. The BBD file manages the file locations of optimized hardware
netlists for the black-box sections of our IP core design.

Finally we copy the leon3mp.edf file created by Synplify Pro in the netlist folder.
The file structure in the XPS project should look like in Fig.4.26. Then repeat the
last step again by selecting ”Import existing peripheral” in order to regenerate the
leon3mp v2.00a again. When we generate it successfully, the leon3mp v2.00a IP
core will appear in the XPS project as shown in Fig.4.27.

2. Integration in SW: The next step is to test the LEON3 IP core by the
software. The C program is very simple, just writes some data to the
LEON3 core and reads it back by MBs. For writing into the LEON3
system by FSL, the predefined functions can be found in a dedicated
directory (your project path/drivers/leon3mp v2 00 a). And the non-blocking write
and read commands are defined in the mb interface.h file in the directory
(your project path/drivers/microblaze 0/include). For the reference design, we will
introduce in details in the next Section.

3. Verification in HW: The verification of the hardware can be done by GRMON. The

116



Seven Software Routines

Figure 4.26: File structure of IP cores in LEON3 system.

Figure 4.27: FSL connections between Microblaze 0 and leon3mp core 0 in Xilinx XPS
Project.

aim is to verify the data transfer between the LEON3 system and the MB system.
For the reference design, we will introduce in details in Section 4.4.

4.4 Seven Software Routines

In the HTPCP system design, the integration between two processors system should
be validated by the software routines, in particular the interface designs (MPI, FSL,
GPIO, Multi-processor Interrupt). The cables and design tools that needed for the
software routines are presented in Table 4.V.

117



Chapter IV

Table 4.V: The cables and design tools are needed for the software routines.

Cables

2 crossover Ethernet Cables Eth0 to GOLD-RTR/ Eth1 to Control PC Routine 1-2

1 Xilinx USB JTAG cable Download and debug the program files Routine 1-7

1 RS232 USB cable Serial communications (HyperTerminal) Routine 1-7

Design Tools

XPS 10.1 Hardware Design Routine 1-7

SDK 10.1 Software Design Routine 1-7

GRMON Debug and monitor the LEON3 processors by DSU Routine 3-7

Download and execute the applications

Access to all the memory of LEON3

The following SW routines are located under the applications tab in the left panel
of Xilinx EDK, and complied by Xilinx SDK or LEON3 sparc-elf-gcc compiler:

• Routine1: GOLD-RTR → ETH0 → MB0 → BUF1 → MB1 → ETH1 → CONTROL
PC.

• Routine2: CONTROL PC → ETH1 → MB1 → BUF0 → MB0 → ETH0 → GOLD-
RTR.

• Routine3: MB0 → FSL Slave link → DPRAM 0 (LEON3).

• Routine4: DPRAM 1 (LEON3) → FSL Master link → MB1.

• Routine5: GR GPIO0 (LEON3) → XPS GPIO0 (MB0).

• Routine6: XPS GPIO1 (MB1) → GR GPIO1 (LEON3).

• Routine7: Four LEON3 processors controlled by MP IRQ Controller.

Routine 1 and 2 are used to test the MPI transmission in TEs design, Routine 3
and 4 are used to test the two FSL links transmission between PE and TE design,
Routine 5 and 6 are used to test the two gpio connections between PE and TE design.
Routine 7 is used to test the multi-processor interrupt controller in PE design.

Table 4.VI: The executable files location, the initial address, and the initial components of
LEON3 system in seven SW routines.

Routines MB0 Bram MB1 Bram LEON3 Sram Initial Addresses (LEON3) Initial Components (LEON3)

1 Routine 1.elf

2 Routine 2.elf

3 Routine 3.elf 0xa0000000 DPRAM 0

4 Routine 4.elf TEST4.EXE 0xa0100000 DPRAM 1

5 Routine 5.elf TEST5.EXE 0x80000900 GR GPIO0

6 Routine 6.elf TEST6.EXE 0x80000800 GR GPIO1

7 IRQMP.EXE 0x80000200 MP IRQ CTRL

These Routines will be compiled into six ELF files (Routine n.elf ) under the
directories of their SDK projects, and stored in the BRAMs of MB0 and MB1

118



Seven Software Routines

separately. The EDK supports two processors to work simultaneously, so that we
can obtain the results of two routines by the UART0 of MB0 and the UART1 of MB1.
Since there is only one UART port on the design board, a UART selector is designed
to select which UART will display on the hyper-terminal by the push button S1. In
addition, four ELF files for LEON3 system (TEST4.EXE, TEST5.EXE, TEST6.EXE and
IRQMP.EXE) are compiled by space-elf-gcc, that can be used to execute the following
tasks of LEON3 processors:

• TEST4.EXE: write the packet to DPRAM 1.

• TEST5.EXE: read the data from GRGPIO0.

• TEST6.EXE: write the data to GRGPIO1.

• IRQMP.EXE: control the task flow of each LEON3.

Start address: 0xa0000000
Length:  0x100

a) Initial the GRMON

a) Initial the result window at 0xa000000

Figure 4.28: GRMON initialization at 0xa0000000 and 0xa0100000.

Fig.4.28 shows the method to display the contents of memory, register file of
LEON3 components by GRMON. The initialization of GRMON is configured by the
non-breakpoint (-nb), multi-processing mode (-mp) and UART loopback options. Then
we set the initial addresses of the memory window at 0xa0000000 (DPRAM 0) and
0xa0100000 (DPRAM 1). The LEON3 system will display in the GRMON by the same
bitstream file on board, which means that the integration of MB system and LEON3
system is successful. By the same way, we can display the contents of GRGPIO0
and GRGPIO1 by setting the initial addresses of the memory window at 0x80000900
(GRGPIO0) and at 0x80000800 (GRGPIO1); Or display the contents of the register
file of MP interrupt controller by setting the initial address of memory window at
0x80000200 (MP interrupt controller).

119



Chapter IV

4.4.1 MPI Transmission between TEs

UART0 ETH0

MB0
+Mctr0

ETH1 UART1

MB1
+Mctr1

PLB0 PLB1BUF1

BUF0

B

0

Routine1: 
Routine2: 

Baud Rate: 9600Baud Rate: 9600

BRAM

Figure 4.29: Routine 1 and Routine 2 diagram.

Routine 1 and Routine 2 aim at validating the lossless communication between
two Ethernet devices via the MPI interface as shown in Fig.4.29.

• Routine 1 is controlled by MB0 that guarantee the packets transmission from
GOLD-RTR to Control PC:

– Initialize the memory (BRAM). (init memory subroutine)

– Initialize the network. (init network subroutine)

– The main program enters a finite loop to send the ten packets (0,1,2...9) to
BUF1. (write to buffer1 subroutine)

– MB0 receives the packages from BUF0. (read from buffer0 subroutine)

• Routine 2 is controlled by MB1 that guarantee the packets transmission from
Control PC to GOLD-RTR:

– Initialize the memory (BRAM). (init memory subroutine)

– Initialize the network. (init network subroutine)

– The main program enters a finite loop to send the ten packets (10,11,12...19)
to BUF0. (write to buffer0 subroutine)

– MB1 receives the packages from BUF1. (read from buffer1 subroutine)

While the Routine 1 and 2 are working simultaneously, the packets transmission
between two Ethernet devices transparently. The results in Table 4.VII present that
the two Ethernet devices can achieve no package loss transmission.

120



Seven Software Routines

Table 4.VII: Test results of Routine 1 and 2.

Routine 1 MB0 write to BUF1 0 1 2 3 4 5 6 7 8 9 0

Routine 2 MB1 read from BUF1 0 1 2 3 4 5 6 7 8 9

Routine 2 MB1 write to BUF0 10 11 12 13 14 15 16 17 18 19 10

Routine 1 MB0 read from BUF0 10 11 12 13 14 15 16 17 18 19

4.4.2 FSL Transmissions between PE and TE Design

Routine 3 and 4 aim at validating the data transmission between LEON3MP system
and MB system via two FSL links as shown in Fig.4.30.

MB0

UART0 FS
L_

Sl
av

e

FS
L_

M
as

te
r

MB1

UART1

M

DPRAM
0

DPRAM
1

LEON3MP LEON3MP LEON3MP LEON3MP
MP IRQ

CTRL

0xa0000000 0xa0100000

Baud Rate: 9600Baud Rate: 9600

Routine3: 
Routine4: 

Figure 4.30: Routine 3 and Routine 4 diagram.

• Routine 3 is controlled by MB0 that guarantee the data transmission from the
FSL Slave link to the DPRAM 0 (LEON3):

– Write the data from MB0 to DPRAM 0 (0xa0000000) by FSL Slave link
(i fsl v20 0).

microblaze nbwrite datafsl(i+0xAAAAAAAA,0);

∗ The first command indicates the data structure written to the FSL Slave

link (i fsl v20 0).

121



Chapter IV

∗ The second command indicates the number of the FSL links, in our case
is 0.

– Check if the written data is correct in DPRAM 0 (0xa0000000) by GRMON.

• Routine 4 is controlled by the MB1 that guarantee the data transmission from
DPRAM 1 (LEON3MP)to the FSL Master link.

– Compile the C code (TEST5.c) by space-elf-gcc compiler, and generate the
elf executable file (TEST5.EXE).

– Load and run the elf executable file (TEST5.EXE) by GRMON, which is used
to write the data from LEON3s to DPRAM 1 (0xa0100000).

– Read the data from FSL Masterlink (i fsl v20 1).

microblaze nbread datafsl(data back, 1);

∗ The first command is the variable which stores the data structure that
read from the FSL Master link (i fsl v20 1).

∗ The second command indicates the number of FSL link, in our case is
1.

– Check if the read data is correct by UART1.

The results in Fig.4.31-a show that the received data in DPRAM 0 (0xa0000000) by
the GRMON, which is transmitted from the FSL Slave link to the DPRAM 0 (LEON3).
The results in Fig.4.31-b shown that the data which is written from MB0 to FSL Slave

link by Routine3.elf. The two results are coherent, which can provide the validation
of FSL Slave link transmission between two processor systems in Routine 3.

a) Routine 3 result in GRMON (LEON3) b) Routine 3 result in HyperTrm (MB0)

Figure 4.31: Routine 3 results in GRMON and Hypertrm.

The only difference is the format of displaying as shown in Table 4.VIII. GRMON
displays in hex-decimal format, and Hypertrm displays in integer format. Note that
the Microblaze is 32 bits processor, the same as the FSL Slave link transmission,
therefore, this system can only handle 32-bit data transfer.

The results in Fig.4.32-a show that the written data in DPRAM 1 (0xa0100000)
by the elf executable file (TEST5.EXE), which is captured by GRMON. The results

122



Seven Software Routines

Table 4.VIII: Test results of Routine 3.

Result in DPRAM 0 (HEX) aaaaaaaa aaaaaaab aaaaaaac aaaaaaad aaaaaaae

Result in MB0 (DEC) −1431655766 −1431655765 −1431655764 −1431655763 −1431655762

Result in MB0 (HEX) ffffffffaaaaaaaa ffffffffaaaaaaab ffffffffaaaaaaac ffffffffaaaaaaad ffffffffaaaaaaae

Table 4.IX: Test results of Routine 4.

Optimization level O0 O1 O2

Test 1 (write 2,3,4,5,6) 0x2 0x2 0x3 0x4 0x2 0x2 0x3 0x4 0x2 0x2 0x3 0x4

0x5 0x6 0x6 0x4 0x5 0x6 0x4 0x6 0x5

Test 2 (write 15,16,17,18,19) 0xf 0x10 0x11 0x12 0x13 0xf 0xf 0x10 0x10 0x11 0xf 0xf 0x10 0x10 0x11

0x11 0x12 0x12 0x13 0x13 0x11 0x12 0x12 0x13 0x13

a) Routine 4 result in GRMON 
(LEON3)

b) Routine 4 result in Hypertrm
(MB1)

c) LSD test in oscilloscope

Figure 4.32: Routine 4 results in GRMON and Hypertrm.

in Fig.4.32-b show that the transferred data from FSL Master Link to MB1. Note
that the two results are not coherent, initially, we infer that the reason is the
synchronization issue of the two processor system.

Fig.4.32-c presents the the Least Significant Digital (LSD) tested by oscilloscope,
the LSD result (01010) is coherent with the result 010, 011, 100, 101, 110 triggered
by a trigger signal. Therefore, we conclude that the problem is not the hardware
factor but the software factor. Two tests in Fig.4.33 can explore the software factor
by choosing the compiler optimization levels (-O0) and the loop format in C code. The
results in Table 4.IX show that the Test 2 compiled by O0 can obtain the correct
results in Routine 4.

4.4.3 GPIO Connection between PE and TE

Routine 5 and 6 aim at validating the communication between the GPIOs back and
forth in LEON3MP system and MB system as shown in Fig.4.34.

123



Chapter IV

Test  1 Test  2 

Figure 4.33: Two software tests for Routine 4.

• Routine 5 is controlled by MB0 that guarantee the data transmission back and
forth from the GR GPIO0 (LEON3) to XPS GPIO0 (MB0):

– Compile the C code (TEST4.c) by space-elf-gcc compiler, and generate the
elf executable file (TEST4.EXE).

∗ Initial the registers of GR GPIO0.

vo la t i l e unsigned int ∗data =( int ∗ ) 0x80000900 ;
//<gpio register ’ s base address>;
v o l a t i l e unsigned int ∗output = ( int ∗ ) 0x80000904 ;
//<gpio register ’ s base address + 0x4>;
v o l a t i l e unsigned int ∗direction =( int ∗ ) 0x80000908 ;
//<gpio register ’ s base address + 0x8>;

∗ Assign the value to output data registers.

/∗ Assign the value to output data registers ∗/
∗output = 0x12345678 ;

/∗ Enable al l outputs ∗/
∗direction = 1;

– Load and run the elf executable file (TEST4.EXE) by GRMON, which is used
to write the data from LEON3s to GR GPIO0 (0x80000900).

– Check if the read data is correct by UART0.

gpio check = XGpio DiscreteRead(&GpioOutput0 , 1) ;

124



Seven Software Routines

MB0

XPS-
GPIO0PIO

UART0

MB1

XPS-
GPIO1PIO

UART1

GR-
GPIO0

GR-
GPIO1

XPS

1

LEON3MP LEON3MP LEON3MP LEON3MP
MP IRQ

CTRL

0x80000900 0x80000800

Routine5: 
Routine6: 

Baud Rate: 9600Baud Rate: 9600

Figure 4.34: Routine 5 and Routine 6 diagram.

∗ The first command is the address of XPS GPIO0.

∗ The second command indicates the channel of the XPS GPIO0. In our
case, we use channel 1, since XPS GPIO0 is single channel.

• Routine 6 is controlled by MB1 that guarantee the data transmission back and
forth from the XPS GPIO1 (MB1) to GR GPIO1 (LEON3):

– Write the data from the XPS GPIO1 (MB1) to GR GPIO1 (LEON3).

XGpio SetDataDirection(&GpioOutput1 , 1 , 0x0 ) ;
XGpio DiscreteWrite (&GpioOutput1 , 1 , data ) ;
data++;

∗ The first command indicates the data direction is output.

∗ The second command indicates the address of XPS GPIO1, the channel
of XPS GPIO1, and the data structure of the transmitted data.

∗ The third command indicates the transmitted data.

– Check if the read data in GR GPIO1 (0x80000800) is correct by the elf
executable file (TEST6.EXE) in GRMON. Compile the C code (TEST6.c) by
space-elf-gcc compiler, and generate the elf executable file (TEST6.EXE).

vo la t i l e unsigned int ∗p =( int ∗ ) 0x80000800 ;
//<gpio register ’ s base address>;
v o l a t i l e unsigned int ∗direction =( int ∗ ) 0x80000808 ;
//<gpio register ’ s base address + 0x8>;

125



Chapter IV

/∗ Enable al l outputs ∗/
∗direction = 0;
while ( 1 )
{

print f ( ” I received : %d” , ∗p ) ;
}
ex i t ( 0 ) ;

a) Routine 5 result in GRMON b) Routine 5 result in Hypertrm

Figure 4.35: Routine 5 results in GRMON and Hypertrm.

Fig.4.35-a present the written data (0x12345678) by the elf executable file
(TEST4.EXE) to GR GPIO0 (0x80000900) in GRMON. The results in Fig.4.35-b show
that the captured data from GR GPIO0 (LEON3) to XPS GPIO0 (MB0) by UART0.
The two results are coherent, which can provide the validation of the GPIO connection
from GR GPIO0 (LEON3) to XPS GPIO0 (MB0) works correctly in Routine 5.

a) Routine 6 results in Hypertrm b) Routine 6 results in GRMON 

Figure 4.36: Routine 6 results in Hypertrm and GRMON.

126



Seven Software Routines

Fig.4.36-a shows the increasing data written by MB1 to XPS GPIO1. The
results in Fig.4.36-b present the captured data at GRGPIO1 (0x80000800) in GRMON
(constantly update). Also we can capture the data by the elf executable file
(TEST6.EXE). The two results are coherent, which can provide the validation of the
GPIO connection from GRGPIO1 (LEON3) to XPSGPIO1 (MB1) works correctly in
Routine 6.

4.4.4 Multi-processor Interrupt Controller between PEs

Routine 7 aim at validating the control flow of the multi-processor interrupt controller
with two LEON3 processors as shown in Fig.4.37.

MP IRQ
CTRL

LEON3MP
_0

LEON3MP
_1

LEON3MP
_2

LEON3MP
_3TR _0 _1 _2 _3

ON3EON3MP LEON3MPON3MPMP IRQ EON3MP LEON3MPON3MPIRQ LEOLEOLEO LEOLEOLEO LELELE

Interrupt Level

Interrupt Acknology

0x80000200

Figure 4.37: Routine 7 diagram.

The processor status can be monitored through the Multiprocessor Status Register
presented in Fig.4.38. The STATUS field in this register indicates if a processor is
halted (1) or running (0). A halted processor can be reset and restarted by writing a
1 to its status field. After reset, all processors except processor 0 are halted. When
the system is properly initialized, processor 0 can start the remaining processors
by writing to their STATUS bits. As shown in Fig.4.39, we can always use these
statements to detect the CPU ID, and write the function for each processor.

Figure 4.38: Multiprocessor status register.

Fig.4.40-a presents that the system has two processors. Note that the NCPU
indicates the number of CPUs is 2. And both of them are running. However, in
Fig.4.40-b, we halt both processors by the following code. These two results can
provide the validation of multi-LEON3 works in parallel in Routine 7.

127



Chapter IV

Figure 4.39: Detect the CPU ID in C.

vo la t i l e int ∗ CPU STAT = ( vo la t i l e int ∗ ) 0x80000210 ;

s ta t ic void cpu 0 ( void ) ;//Task for cpu 0

stat ic void cpu 1 ( void ) ;//Task for cpu 1

catch interrupt ( irqhandler (0 ) , 0) ;
pr int f ( ”\n\n Irqhandler is 0x%x .\ r\n” , irqhandler (0 ) ) ;
catch interrupt ( irqhandler (1 ) , 1) ;
pr int f ( ”\n\n Irqhandler is 0x%x .\ r\n” , irqhandler (1 ) ) ;

a) Routine 7 result in GRMON (Before elf app) b) Routine 7 result in GRMON (After elf app)

Figure 4.40: Routine 7 results in GRMON.

4.5 Summary

In this Chapter, a novel parallel platform, named as HTPCP, is presented to realize the
realtime post-processing for GNSS-R application. Moreover, two problems of HTPCP
are proposed and solved, 1) Parallelize the inherent serial output of the GOLD-RTR
instrument by TEs and 2) Post-processing the multi-channel (I and Q) correlators
in parallel by PEs. We focus on the hardware design of HTPCP, exploit the designs
of TEs and PEs and their interfaces (FSL, GPIOs, MPI). Finally the integration of two
processor systems are implemented in the XPS project. In order to guarantee the real-
time characters and minimize the memory requirement in space level, we operate the

128



Summary

post-processing algorithm on HTPCP and verify the functions of the interface designs
and IP cores by seven SW routines.

129





Web Reference

[Xilinx EDK] http://www.xilinx.com/support/documentation/sw manuals/edk ctt.pdf

131





Part V

GNSS-R Post-Processing
Application and Implementation

133





GNSS-R Post-Processing
Experiment Results

5.1 Introduction

The HTPCP platform emphasizes on the three characteristics of the post-processing
design: SW design flexibility, real-time controllability and parallel processing. The
first characteristic interprets that the post-processing algorithm can be changed
during the campaign, aims at retrieving the coherence between the test model and the
received signal. The second characteristic stresses that the processing time for each
waveform can be measured by each clock cycle. The third characteristic indicates
that the multi-channel waveforms can be processed in parallel, to achieve the non-
dataloss communications and parallel processing performance. In this Chapter, two
experiments are presented based on the real campaign data. The results provide an
important insight to the operations of the complete system (GOLD-RTR + HTPCP +
control PC). The following Sections are organized as follows:

• Description to the experiment constrains, related with the hardware design and
the structure of the waveforms.

• Introduction to the post-processing algorithm with three logic steps: data
reduction, coherent integration and incoherent integration. Meanwhile, it is
possible to straightforwardly extract the related timing parameters.

• Introduction to the demonstration architecture.

• Introduction to the campaign on real data.

• Illustrative numerical results for the two experiments.

• Main conclusions.

5.2 Experiment Constrains

The GNSS signals reflected off the Earth‘s surface not only carry information about
the navigation, but also represent the constitution of the reflecting area (ocean, land,

135



Chapter V

ice and snow etc.). It is an alternative purpose of the GNSS signals. Essentially,
the relative delay between the direct and the reflected signals can provide more
information i.e. altimetry, roughness, permittivity parameters (temperature, salinity
or humidity) etc..

The experiment constrains of the GNSS-R [GNSS-R] post-processing application
is presented in this Section. The case study focus on the the functions and the
purposes of the GOLD-RTR instrument, GR-CPCI-XC4V board and the control PC,
where obtained results are a direct outcome of this project. The output waveforms of
GOLD-RTR and the output integrated waveforms of the Control PC are addressed in
the following subsections, aims at providing the input/output waveform structures of
the post-processing algorithm.

5.2.1 Hardware Design Constrains

The hardware design of the entire system (GOLD-RTR instrument + HTPCP + control
PC) is used to support the two experiments.

1. GOLD-RTR is an instrument which is capable to correlate the GPS signals that
provided by an antennas and report the results as waveforms shown in Fig.5.1.
The results of GOLD-RTR are sent by an ethernet network link and received by
a control PC.

Figure 5.1: GOLD-RTR instrument.

Internally, the GOLD-RTR contains an Altera development board that uses an

136



Experiment Constrains

FPGA implementing the follow hardware:

• Correlators: contain an array of 10 correlators of 64 items (each item
contains 2 bytes).

• C/A code generators: contain an array of 10 C/A code generators.

• The first NIOS processor is to manage the Novatel GPS receiver, aims at
programming the correlators and the C/A code generators.

• The other NIOS processor, is to retrieve the UDP/IP packets and manage
the system configuration that allow to program the correlators, PRNs and
timestamps by the Control PC.

2. The control PC will execute an post-processing algorithm which is capable to
integrated and store all the waveforms. Fig.5.2 presents the main window of the
control PC used by the operators.

Figure 5.2: The main window of the Control PC.

3. The idea of this experiment is to allow the operators interconnect the GR-CPCI-
XC4V board (plus GR-CPCI-2ETH-SRAM-8M extension board) with the GOLD-

137



Chapter V

RTR and the Control PC as shown in Fig.5.3. It can achieve the following two
tasks:

• Configure the ethernet devices on the GR-CPCI-XC4V board (plus GR-CPCI-
2ETH-SRAM-8M extension board), in order to bypass the communication
between the two original devices (GOLD-RTR and the control PC).

• Reduce the amount of output data of GOLD-RTR by the post-processing
algorithm, in order to allow the storage of all integrated waveforms (results)
generated by the experiment during the continuous time.

Figure 5.3: The complete system.

5.2.2 GOLD-RTR Output Waveforms

The GOLD-RTR output waveforms carry the information that we required for the post-
processing design in GR-CPCI-XC4V board. The waveforms are the correlation results
between the signal received by the antenna (converted to digital signal by an 1bit ADC)
and the predicted C/A code. The GOLD-RTR uses the GPS information provided by
the GPS receiver (Novatel) and some mathematical calculations to do the C/A code
prediction. Fig.5.4 shows the structure of the waveforms packet. Each waveform
contains 160 bytes, which are separated for 32 bytes of header information and 128
bytes of the waveform contents:

• The header contains the doppler, PRN, elevation, azimuth, timestamps and
others information of the processed satellite.

• The contents of the waveforms contain 64 complex numbers (1 bytes for the real
part and 1 byte for the imaginary part).

138



Experiment Constrains

Figure 5.4: The structure of the waveforms packet (160 bytes).

Fig.5.5 presents the graphical representation of the GOLD-RTR output waveforms.

5.2.3 Control PC Output Integrated Waveforms

The waveforms which are intercepted by the GR-CPCI-XC4V development board,
must be processed by the LEON3 processors and should not be retransmitted to
the control PC. The integrated waveforms are obtained via coherent integration
of NUM COHERENT waveforms and incoherent integration of NUM UNCOHERENT
waveforms. The coherent/incoherent algorithm we will describe in the Section 5.3.
As soon as the LEON3 processors finish the integration of the waveforms, the GR-
CPCI-XC4V board must send the results to the control PC by the integrated waveform
structure as shown in Fig.5.6.

The integrated waveforms are a stream of concatenated logs of 300 bytes, each of
them associated to one integrated waveform. There are 44 bytes used for the header

139



Chapter V

Figure 5.5: The graphical representation of the GOLD-RTR output waveforms.

and the remaining 256 bytes used for the 64 values of the integrated waveform (4
bytes each).

5.3 Post-Processing Algorithms and Timing Parameters

This section outlines the post-processing algorithm to be implemented in the HTPCP
board. This section is written by Toni Rius, mainly introduces the three logical steps
implemented by the post-processing algorithm: data reduction, coherent integration
and incoherent integration. And how to extract the timing parameters: 1) Coherence
time; 2) Coherence Integration Time; 3) Incoherence Integration Time.

140



Post-Processing Algorithms and Timing Parameters

Figure 5.6: The structure of the integrated waveforms packets (300 Bytes).

5.3.1 Data Reduction

Let’s use an example to fix the idea of the data reduction. The output data of GOLD-
RTR during T seconds can be presented as a set of complex numbers:

ωlag,msec,channel. (5.1)

where lag is the correlator lag number [0 : 63]; msec is the tag corresponding to

141



Chapter V

the clock tick after the first epoch [0 : 1000 · T − 1]; channel is the tag corresponding to
channel number [0 : 9].

The first value of msec corresponds to a 1-Pulse-Per-Second (PPS) mark. Therefore
the msec value could be associated unambiguously to the instrument clock.
Consequently, the size of the array ωlag,msec,channel is 64, 0000 · T . We can define the
coherent intervals in msec (divided by 0.001) as shown below:

N =
T

0.001
, (5.2)

There are another two parameters (Ncoh and Nincoh) are used to control the coherent
integration time Tcoh and the incoherent integration time Tinc. We assume that
Tinc � Tcoh and Tinc � 1 second, where T , Tcoh and Tinc are defined in second. The
definitions of coherent integration intervals Ncoh and incoherent integration interval
Nincoh are shown below:

Ncoh =
T

Tcoh
, (5.3)

Nincoh =
T

Tinc
, (5.4)

For each correlation channel, assume that T = 60 sec, Tcoh = 0.002 sec and Tinc =
0.100 sec, the integration algorithm should reduce the 1-msec complex waveforms
from N = 60, 000 to Ncoh = 30, 000 by coherently integration, and reduce the integrated
waveforms from Ncoh = 30, 000 to Nincoh = 600 by incoherently integration. Therefore
the compression factor is 0.01.

5.3.2 Coherent Integration

In general, the post-processing algorithm can be applied with different functions,
depending on the purpose of remote sensing. It is expected that our deployed system
can reduce the amount of data by coherent/incoherent integration functions.

In addition to the 1-msec complex waveforms, the GOLD-RTR also generate
two flags for each correlation channel b1msec,channel and b2msec,channel. Flag b1msec,channel

indicates if the observed satellite for this correlation channel occur a possible
transition of the navigation bit during a certain msecs. The flag is set to false, if there
is a possible transition, thus the complex waveform is considered to be non-valid.
Otherwise the flag is set to true, and the complex waveform will be integrated in the
coherent integration summations. The other flag b2msec,channel indicates the correctness
of the valid 1-msec waveform that is generated by the GOLD-RTR. The flag is set to
true, if the valid 1-msec waveform has been generated by the GOLD-RTR without
errors. Otherwise the flag is set to false, in which case the corresponding waveform
is ignored in the coherent integration summations.

Based on the values of the flag b1msec,channel, there are four possible cases:

142



Post-Processing Algorithms and Timing Parameters

1. No navigation bit transition within the second.

2. A navigation bit transition in the first millisecond.

3. A navigation bit transition in the last millisecond.

4. A navigation bit transition not in the first or in the last millisecond.

The first three cases are treated equally. Assume that we want to
process 1 second’s waveforms, and do the coherent integration every 10 msecs
(0,1,2,3,4,5,6,7,8,9). There is only one navigation bit could happen during this
period, since the receiver knows the position of the satellite with a small error
(<300km/1msec). If the navigation bit dose not happen, or it happens in msec 0
or in msec 9, we can just ignore such msec, and do the coherent integration with the
rest of msecs. The integrated power of these waveforms can be computed after the
coherent integration time as shown below:

Ωlag,i,channel = |
∑

ωlag,k,channel|2, (5.5)

where the summation includes all the valid complex waveforms with time stamps
k, within the coherent integration time interval [(i− 1) · Tcoh : i · Tcoh − 0.001].

In the fourth case, the navigation bit could happens at any other msecs, then we
need to decide if the navigation bit has changed or not. We assume that the navigation
bit happens at the position n, the valid waveforms are obtained in such interval can
be divided in two subsets:

• 0,1,2,3... n-1;

• n+1 .... 9.

The navigation bit could have two values: +1 or -1. Therefore, the sum of these two
sets waveforms could have the positive sign or the negative sign as shown in Fig.5.7.
At the transition time, they could have the same value or the different value of the
summation as shown below:

1. if navigation bit is equal to +1,

Ω+
lag,i,channel = |∑ωlag,k,channel +

∑
ωlag,l,channel|2,

2. if navigation bit is equal to -1,

Ω−
lag,i,channel = |∑ωlag,k,channel −

∑
ωlag,l,channel|2.

With these two separate sets, the integrated power of the waveforms can be
computed as the following two cases:

143



Chapter V

sum1 sum2 sum1 sum2

sum1 sum2 sum1 sum2

Figure 5.7: Four cases occur with the sum of these two sets waveforms during the transit
time.

If Ω+
lag,i,channel > Ω−

lag,i,channel,

we set

Ωlag,i,channel = Ω+
lag,i,channel.

Otherwise, we set

Ωlag,i,channel = Ω−
lag,i,channel.

5.3.3 Incoherent Integration

With the incoherent correlation interval j = 0, . . . , Nincoh − 1 that has been addressed
in the previous section, we can estimate the average power of the coherent integration
waveforms in the interval j as shown below:

¯
Θlag,j,channel =

1
Nval,j

∑
Ωlag,i,channel, (5.6)

where the summation extends to the Nval,j valid values of Ωlag,i,channel within the
incoherent integration interval [(j − 1) · Ti : j · Tj − Tcoh].

5.3.4 The Coherence Time τcoh and the Coherence Integration Time Tcoh

The coherence time τcoh is determined by the campaign surrounding. The coherence
integration time Tcoh is determined by the campaign instrument.

144



Post-Processing Algorithms and Timing Parameters

Here we use two cases study to illustrate their differences as shown in Table 5.I.
In case one, we use Nikon camera to take photos with different objectives in the
same time duration (1 s). Since the objectives are different, we use different speeds
of shutter to get the clear images. In case two, we use GOLD-RTR to capture the
reflected signals from various surfaces. Based on the different types of surface, we
can take 1 ms, 2 ms or 5 ms as coherent integration time in order to get the useful
information. Based on the different ranges of the surface, we can take the same time
duration (10 ms) as the coherent time, in order to obtain the information of a certain
range of the reflection plane.

Table 5.I: Case study to illustrate the τcoh and Tcoh.

Instrument NIKON Camera GOLD-RTR

Coherent integration time 1/1000s 1/500s 1/200s 1ms 2ms 5ms

Objective football game person city view fluctuated Sea lake creek

Coherent time 1 s 1 s 1 s 10 ms 10 ms 10 ms.

Vp

D

Height

Figure 5.8: Coherence time τcoh and coherence integration time Tcoh.

From these two case study, we learn that the coherence time τcoh is defined as
the time interval in which the signal could be tracked. In the GNSS-R application,
this coherent time is very large for the direct signal. However, for the reflected signal
in a random surface (i.e. the sea surface), this coherent time mainly depend on the
following two factors:

145



Chapter V

• the temporal scale of the sea surface variability, and

• the velocity of the receiver parallel to the sea surface.

As shown in Fig.5.8, if the sea surface is changing fast, the coherence integration
time Tcoh will be short, because the phase of the reflected signal will be unpredictable
at short scales. Similarly, if the receiver Vp moves very fast, the collected data will
be reflected at different patches of the sea surface with the random phase variations.
Consequently, we need to integrate the signal (i.e: as complex numbers) coherently
during a short coherent integration interval Tcoh on the order of the coherence time
τcoh. There are two relevant questions that related to the processing strategy (see [1]):

• How large should be the coherent integration time Tcoh of a complex waveform?

• Which sampling rate should be used to independently measure the complex
waveforms?

Figure 5.9: Define the coherent time by the Van Citter-Zernike theorem.

The answer of both questions is in terms of a single parameter: the coherence
time τcoh. Before defining the concept precisely, we present a recipe based on the van
Citter-Zernike theorem, to compute an order of the magnitude of τcoh (see [2]).

τcoh =
λL1

2vp

√
Rr

2cτcosθ
(5.7)

146



Demonstration Architecture

where vp is the perpendicular velocity, Rr is the height of the receiver, c is the speed
of light, τ is the correlator delay and θ is the incidence angle.

This equation explains the main sources of the variability of τcoh. In particular, it
introduces its dependency on the the correlator delay τ , and the incidence angle θ.
Using such recipe, we have plotted the coherence integration time τcoh as a function
of the aircraft height as shown in Fig.5.9. Assuming a horizontal velocity vp = 75m/s,
at the correlator delay τ = 30m, and at an incidence angle θ = 0. We can see
that the airplane is flying at heights around 3000 meters during the coherence time
τcoh = 10ms.

5.3.5 Incoherence Integration Time Tincoh

After each coherent integration time Tcoh, we compute the power of waveforms. To
reduce the noise-like contributions to the power waveforms, we integrated the further
during an incoherence integration time Tincoh. Assume that the number of waveforms
N need to be integrated incoherently, there is a function of the track resolution ΔL
and the coherence time τcoh trough the approximate equation:

N = ΔL/(vp · Tcoh) (5.8)

Where we assume that the coherence time τcoh is equal to the coherent integration
interval Tcoh, and the horizontal velocity of the spacecraft is vp. The incoherence
integration time Tincoh needed to collect these N independent power waveforms as
shown below:

Tincoh = N · Tcoh (5.9)

5.4 Demonstration Architecture

The original idea is that the GOLD-RTR sends data to the Control PC directly.
However, with the increasing complexity of the calculation and the storage issue of
the received data, we design a black box named HTPCP as the intermediary to solve
the processing and transmission issues. As shown in Fig.5.10, this demonstration
aims at displaying the following tasks by two MicroBlaze and four LEON3 processors:

• ETH0 captures all network traffic and bypass it to ETH1 using the BRAM
memory.

• ETH1 sends data to the Control PC.

• MicroBlaze0 bypasses the waveform packets to 4 LEON3 processors using
RAM0 memory, meanwhile LEON3 processors send a synchronization signal to
MicroBlaze0 via GPIO0.

147



Chapter V

Figure 5.10: HTPCP demonstration diagram.

• Four LEON3 processors send the calculated results to MicroBlaze1 using RAM1
memory, meanwhile MicroBlaze1 processor send a synchronization signal to
LEON3 processors via GPIO1.

In the following subsections, we firstly introduce the overall design concept of
HTPCP as a black box, and then briefly introduce the tasks of each processor.

5.4.1 The Black Box - HTPCP

The main objective of this system is to detect the waveform packets and do the post-
processing calculations to reduce the huge amount of data. There are mainly two
operations: packets transmission and packets processing.

The system can actuate as a black box, which can capture all traffics between
GOLD-RTR and Control PC as a sniffer, and bypass the packets to the real destination
transparently. The reality ethernet transmission exists the packets of ICMP or ARP
protocols [ARP protocol], which must be transmitted from the Control PC to the GOLD-
RTR and viceversa. This requirement forces us to implement a bypass to route all the
received packets from the ETH1 to the ETH0 respectively. The trick is to configure
the MAC addresses [MAC address] by the values of the real devices (GOLD-RTR and
Control PC), and bypass all the ICMP, ARP and other control packets. The packets

148



Demonstration Architecture

transmission is controlled by two Microblaze processors. Therefore, the system works
transparently without modifying the software routines in the actual devices. With this
declaration, we design the following software routines for packets transmission:

• The software routine must configure the Ethernet devices (ETH0 and ETH1) to
emulate the actual devices (Control PC and GOLD-RTR):

– The ETH0 must be configured with the MAC address of the Control PC.

– The ETH1 must be configured with the MAC address of the GOLD-RTR.

• When the Ethernet devices are configured, we can begin the operational mode:
bypass all packets and intercept the detected streams.

– If the packet is not a waveform packet, it must be sent to the real
destination.

– If the packet is a waveform packet, it must be stored to the RAM0, and it
will not be sent to the Control PC.

Table 5.II: The amount of data comparison between original system and complete system.

GOLD-RTR + Control PC GOLD-RTR + Black box + Control PC

160 B 1 correlator millisecond 300 B 1 correlator 100 millisecond

1600B 10 correlator 1 millisecond 3000 B 10 correlator 100 millisecond

1600000B = ˜1.53 MB 10 correlator each second 30000 B = ˜29.29 KB 10 correlator each second

5760000000 B = = ˜5.36 GB 10 correlator each hour 108000000 B = ˜102.99 MB 10 correlator each hour

138240000000 B = ˜128.75 GB 10 correlator each day 2592000000 bytes = ˜2.41 GB 10 correlator each day

The packets processing is controlled by four LEON3 processors that allow more
calculations complexity and reduce the amount of data. Assume that all the
corerlators are working together, the original system (GOLD-RTR + Control PC) can
generates 128.75 GB data per day as shown in Table5.II. However, the demonstration
system (GOLD-RTR + Black box + Control PC) can reduce the amount of data by
the integration time (Coherent integration time * Incoherent integration time). The
reduction ratio of the data can be calculated directly by:

• Reduction Ratio = (Total amount data / Integration time) * (300 / 160)

• Reduction Ratio = (Total amount data/ (Coherent integration time * Incoherent
integration time)) * 1.875

For example, if we use the coherent integration time of 10 msec and the incoherent
integration time of 10 msec, therefore, the integration time of each correlator is 100
msec. The system will generate 2.41 GB data per day. The reduction ratio is shown
below:

• Reduction Ratio = Total amount * 0.01875

149



Chapter V

• 1.875% of needed space

• 98.125% of reduced data

As we know, the maximum values of integration time is 1 second (1000 msec).
Therefore, if we use the coherent integration time of 20 msec and the incoherent
integration time of 50 msec, we can get the maximum integration time of each
correlator is 1000 msec. The reduction ratio is shown below:

• Total amount * 0.001875

• 0.1875% of needed space

• 99.8125% of reduced data

5.4.2 MicroBlaze Processors

The system implements two MicroBlaze processors (MicroBlaze0 and MicroBlaze1)
that control the communication between the ETH0 and ETH1, and other components
in the system.

• The MicroBlaze0 has the follow two tasks:

1. Receive the packets from GOLD-RTR by the ETH0 device:

– If the received packet contains waveforms, then write them to the RAM0.

– If the received packet dose not contains waveforms, then writes them to
the BRAM memory.

2. Read packets from the BRAM and sends them to GOLD-RTR by ETH0.

– If the MAC address is not set, configure the ETH0 MAC address by the
first packet sent to the GOLD-RTR.

• The MicroBlaze1 has the follow three tasks:

1. Receive the packets from the Control PC by the ETH1 device, and writes
them to the BRAM.

2. Read the packets from the BRAM and sends them to the Control PC by the
ETH1.

– If the MAC address is not set, configures the ETH1 MAC address by the
first packet sent to the Control PC.

3. Read the integrated waveforms from the RAM1 and sends them to the
Control PC by the ETH1.

150



Campaign on Real Data

5.4.3 LEON3 Processors

The HTPCP implements four LEON3 processors that calculate the complex waveforms
for each correlators in the system. In our experiment, we only use four LEON3
processors to calculate the waveforms of four correlators. In the future, we can add
up to 10 LEON3 processors to calculate the waveforms of ten correlators. The LEON3
processors have the follow eight tasks:

1. Initialize the processor ID using interrupts

2. Initialize the memory structures

3. Receive data from the RAM0

4. Send synchronism to the MicroBlaze0 using the GPIO0

5. Integrate the waveforms until the integration finish

6. Write the integrated waveforms to RAM1

7. Wait the synchronism from the MicroBlaze1 using the GPIO1

8. Restart the memory structures

The main problem of programming these four LEON3 processors is that all
processors execute the same C code. It needs an identifier to know which portion
of the memory is used to read and write. This problem was fixed by an initialization
function of an interrupt controller that allow us to identify each processor with an
unique ID.

5.5 Campaign on Real Data

This experiment has been applied to the waveforms that is obtained from real GPS
signals reflected on the sea surface. This campaign was supported by ESA contract
ECN 20069/06/NL/EL and the Spanish National Space Plan ESP2005-03310. O.
Nogués- Correig, S. Rib´ó, J. Torrobella, J. Sanz (ICE-IEEC/CSIC) made the operation
of the GOLD-RTR instrument possible. The campaign is taken during ESA airborne
campaigns to support the L-band radiometric mission, SMOS, and in collaboration
with the Helsinki University of Technology (TKK), the Technical University of Denmark
(TUD), and the French Institute for the Exploitation of the Sea, (IFREMER). A detailed
description of the campaign can be found in Cardellach et al. [3].

The waveforms are collected with the GOLD-RTR instrument [4], that is designed
and manufactured by the IEEC. The instrument provides complex waveforms every
millisecond. This dedicated hardware receiver contains 640 complex correlators
organized into 10 channels of 64-lags each, computing 1 complex Delay Map (DM)
per channel simultaneously. The system can be programmed to correlate signals

151



Chapter V

from 10 different satellites at each correlation channel to obtain DMs in different
geometries. Or it can be programmed to process the same signal in different channels
under different frequency shifts, thus obtaining the Delay-Doppler Map (DDM).

Figure 5.11: The map of the experiment campaign CO10.(Adapted from Cardellach et al. [3])

The GOLD-RTR equipment was mounted on the Skyvan aircraft and crossed 100
km of the Norwegian Coast (longitude between 3◦ and 5◦, latitude between 57.5◦ and
58.5◦, see Fig.5.11) at an altitude of 3000 m and speed of 75 m/s, during 12 flights
in April 2006. The figure was generated using Generic Mapping Tools version 4 by
Wessel and Smith (1998).

The experiments presented in this study have been performed on the waveforms
integration for 1 s, aims at obtaining the incoherent sum of 100 waveforms, each
coherently integrated for 10 ms. To do the experiment, the follow components are
needed:

• Computer that runs the GOLD-RTR simulator.

• Computer that runs the GOLD-RTR controller and receiver.

• Experiment data provided from a real experiment campaign (CO10).

• The GR-CPCI-XC4V development board with its mezzanine board GR-CPCI-
2ETH-SRAM-8M that runs all 3 programs (MicroBlaze0, MicroBlaze1 and
LEON3).

• Xilinx parallel JTAG programming cable IV that is used to load the programming
files (leon3mp.bit) into the PROM/SDRAM of the GR-CPCI-XC4V development
board. Also it supports to debug with the GRMON.

• Two Ethernet patch cables with the RJ45 micron connectors is to realize the LAN
connection between GOLD-RTR and HTPCP, also the LAN connection between
HTPCP and Control PC, in order to realize the high speed data transmission.

152



Experiment Results

• RS232 to RS232 cable is to realize the command line communication between
PC and FPGA board, The windows Hyper terminal is used to see the commands
by UART.

5.6 Experiment Results

To demonstrate the correct operation of the entire system (GOLD-RTR + HTPCP +
Control PC), we conduct the following two experiments:

1. Using the original system to verify the system accuracy. (GOLD-RTR emulator +
the Control PC)

The first experiment allows us to check the accuracy of the system by sending,
receiving and storing all the waveforms. It determines the accuracy of the test
environment and the quality percent of the waveforms that we have obtained
from the GOLD-RTR emulator and the receiver computer. To do this, we run
100 complete experiments on the GOLD-RTR emulator with the input data of
the campaign CO10, and send all output data directly to the Control PC (without
the development board). Table 5.III shows the results of the 10 executions,
Table5.IV shows the minimum lost ratio, Table5.V shows the maximum lost
ratio, Table5.VII shows the averages lost ratio.

Table 5.III: The ten execution results for experiment one.

ID Files Size Waveforms Seconds Lost wav. Lost size Ratio Lost ratio

0000 49 10199172800 63744830 6449 397560 63609600 99.38% 0.62%

0001 49 10199661440 63747884 6449 394506 63120960 99.38% 0.62%

0002 49 10196793440 63729959 6449 412431 65988960 99.36% 0.64%

0003 49 10181816480 63636353 6449 506037 80965920 99.21% 0.79%

0004 49 10179097280 63619358 6449 523032 83685120 99.18% 0.82%

0005 49 10201467200 63759170 6449 383220 61315200 99.4% 0.6%

0006 49 10196092320 63725577 6449 416813 66690080 99.35% 0.65%

0007 49 10153285760 63458036 6449 684354 109496640 98.93% 1.07%

0008 49 10201892000 63761825 6449 380565 60890400 99.41% 0.59%

0009 48 10059387520 62871172 6449 1271218 203394880 98.02% 1.98%

Table 5.IV: The minimum lost ratio of experiment one.

ID Files Size Waveforms Seconds Lost wav. Lost size Ratio Lost ratio

0008 49 10201892000 63761825 6449 380565 60890400 99.41% 0.59%

With the first experiment, we conclude that the test environment is very
acceptable, because the most important parameter (lost ratio) is between 0.59%
and 1.98% and the average is 0.84%. This deviation is produced by the storage
of the amount of data produced by the GOLD-RTR (12.21 Mbits/second). The

153



Chapter V

Table 5.V: The maximum lost ratio of experiment one.

ID Files Size Waveforms Seconds Lost wav. Lost size Ratio Lost ratio

0009 48 10059387520 62871172 6449 1271218 203394880 98.02% 1.98%

Table 5.VI: The averages lost ratio of experiment one.

Files Size Waveforms Seconds Lost wav. Lost size Ratio Lost ratio

48.9 10176866624 63605416.4 6449 536973.6 85915776 99.16% 0.84%

expected result of the first experiment is that the Control PC lost some waveforms
caused by the huge amount of data.

2. Using the complete system to verify the system improvement. (GOLD-RTR
emulator + HTPCP + Control PC).

The second experiment is to use the complete system to verify the system
improvement. This experiment allows us to integrate the waveforms that is
generated by the GOLD-RTR in Campaign CO10, for more information see
[3]. In order to reduce the high amount of data, we use 10 ms as coherent
integration time and 10 ms as incoherent integration time to implement the
coherent/incoherent integration algorithm on HTPCP board. After several tests,
we can capture the same results in the control PC as shown below:

Table 5.VII: The results of experiment two.

Captured files 49

Captured size 10262782400 bytes

Captured waveforms 64142390

Captured seconds 6449 (1h 47’ 29”)

Lost waveforms 347610

Lost size 55617600 bytes

Capture ratio ˜99.46%

Lost ratio ˜.54%

This execution result is as expected, the HTPCP produces the same amount of
data 234Kbits/second without the dataloss. The results of the this experiment
demonstrated that the control PC captures 100% of the integrated waveforms
and the complete system runs as expected.

5.7 Summary

In this Chapter, firstly we present the experiment constrains of the GNSS-R post-
processing application and introduce the functions of the GOLD-RTR instrument, GR-
CPCI-XC4V board and the control PC and the structure of the generated waveforms.

Secondly, we introduce the three logical steps to implement the post-processing

154



Summary

algorithm, data reduction, coherent integration and incoherent integration. We have
introduced the calculation of the ratio of data reduction, which can be determined by
the waveforms formats (normal waveform format / integrated waveform format, 300
bytes / 160 bytes) and the integration time (Coherent integration time * Incoherent
integration time).

Thanks to the feature of HTPCP design, it allow us to interconnect the development
board between GOLD-RTR and the Control PC without any additional changes,
the HTPCP operates as a black box ready to work. Regarding to the processors
implemented in HTPCP: MicroBlaze and LEON3, we have demonstrated that they
can work correctly. They communicate by the shared memory and GPIO devices to
send and receive messages by predefining the data structures. These data structures
define the synchronization method which we have used to communicate all different
elements that compound the entire system. The concurrence performance can be
performed by the multiple LEON3 processors that they can access to the same shared
memory zone by different semaphores.

To demonstrate the correct operation of the entire system (GOLD-RTR + HTPCP
+ Control PC), we conduct two experiments. In the first example experiment, the
original system loses data all times caused by the saturation of the receiver computer
(0.84% as AVG). In the second experiment, we demonstrates how HTPCP can reduce
the data and maintain the integrity of the results through a transparent operational
mechanism. Thanks to the coherent and incoherent integration algorithms, the
waveforms can be used with the same accuracy as the original system for more
scientific purposes.

As the conclusion, we must say that the most important work is the data
structures and semaphore definition, due to the different processors platform
(MicroBlaze and LEON3). Since all the system need to use these data structures
and semaphores to do the tasks, and it is necessary to have a correct definition
in the software layer in order to accomplish and guarantee the final objectives of
the development: transmit the waveform and reduce the science data by the post-
processing algorithm. We can see that the use of the complete system allows the data
reduction and solves the problem caused by the data mass storage.

155





Bibliography

[1] H. You, J. Garrison, G. Heckler, and Smaljlovic, “The autocorrelation of waveforms generated from
ocean-scattered gps signals,” IEEE Geosci. Remote. Sens. Lett., vol. 3, pp. 76 – 80, 2006.

[2] C. Zuffada, T. Elfouhaily, and S. Lowe, “Sensitivity analysis of wind vector measurements from ocean
reflected gps signals,” Remote Sens. Environm., vol. 88, no. 3, pp. 341 – 350, 2003.

[3] E. Cardellach and A. Rius, “A new technique to sense non-gaussian features of the sea surface from
l-band bi-static gnss reflecitons,” Journal of Remote Sensing of Environment, vol. 112, no. 6, pp.
2927–2937, 2008.

[4] O. Nogués-Correig, E. Cardellach-Galı́, J. Sanz-Camderrós, and A. Rius, “A gps-reflections receiver
that computes doppler-delay maps in real time,” IEEE Transactions on Geoscience and Remote
sensing, vol. 45, no. 1, pp. 156–174, 2007.

157





Web Reference

[GNSS-R] http://www.ice.csic.es/research/gold rtr mining/gnssr.php

[Sniffer] http://en.wikipedia.org/wiki/Packet analyzer

[Experiments] http://www.ice.csic.es/research/gold rtr mining/campaigns.php

[MAC address] http://en.wikipedia.org/wiki/Mac address

[IP address] http://en.wikipedia.org/wiki/IP address

[IP protocol] http://en.wikipedia.org/wiki/Internet Protocol

[UDP protocol] http://en.wikipedia.org/wiki/User Datagram Protocol

[ICMP protocol] http://en.wikipedia.org/wiki/Internet Control Message Protocol

[ARP protocol] http://en.wikipedia.org/wiki/Address Resolution Protocol

159





Part VI

Overall Conclusions

161





Overall Conclusions

First of all, the work presented in this document clearly shows that the goal of the
GNSS-R post-processing system is to efficiently compute the collect waveforms by
GOLD-RTR. All the relevant details have been explained for the real-time computation
over ten independent correlation channels. Moreover, the method for reaching this
goal is probably as important if not more than the result itself. The relevance of this
method is due to its novelty in combining the computation power of SMP and the
transmission power of NOC, to create a novel HTPCP architecture in order to realize
the various post-processing algorithms in real-time.

The initial approach was focused on the conventional multi-task parallel
system design (SMP), during an in-depth study into the parallel workload and its
mathematical modeling. However it goes beyond this to study the broader scope
of different levels design (the configurable processors and their development tools,
memory hierarchy design etc.), it reveals how the pipeline stall affects the system
throughput. The final and most important step was to obtain a detailed simulation
result by MPARM emulator that would make this framework an implementable
approach in real systems. Comparison of the values of the lag to the affection of
different components in the subsystem, memory subsystem and the separate bus
design could be the keypoint for this timing degrading in the parallel system. Ignoring
the relative cost of the system, we compared the execution time with the increasing
parallel application. We found that the standard deviation and speedup ratio can
not reach our timing requirement. In order to solve the synchronization and cache
migration issues at the system level, we need to speculate at the hardware level by
changing the memory hierarchy and communication system in the hardware design.

In the end, an HTPCP architecture was obtained that employs a post-processing
system as the fundamental platform for implementing various post-processing
algorithms. Furthermore, two problems of HTPCP are proposed and resolved, 1)
the parallelization of the inherent serial output of the GOLD-RTR instrument by
Transmission Elements (TEs) and 2) the post-processing of the multi-channel (I and
Q) correlators in parallel by Processing Elements (PEs). We focus on the hardware
design of HTPCP, exploit the designs of TEs and the design of PEs. In order to
guarantee real-time transmission, various interface designs (MPI and FSL) have been
studied, in order to integrate two processor systems (LEON3 and Microblaze). The
theoretical algorithm was initially developed for a generic post-processing algorithm,
in order to characters and minimize the memory requirement in terms of space.

163



Chapter VI

We operate the same post-processing algorithm on the HTPCP board and verify the
correctness of each IP core designs in the HW design by seven SW routines.

Finally, a case study for the post-processing algorithm shows the ratio of data
reduction, which can be determined by the waveforms formats (normal waveform
format / integrated waveform format, 300 bytes / 160 bytes) and the integration time
(Coherent integration time * Incoherent integration time). The compression factor is
0.01.

A feature of the HTPCP design allows us to interconnect the development board
with the GOLD-RTR and the control computer without any additional changes; the
HTPCP operating as a black box which is ready to work. Regarding the processors
which we have used in HTPCP, MicroBlaze and LEON3, we have demonstrated that
they can work correctly. They communicate by the shared memory and GPIO devices
and send and receive messages by predefining the data structures. These structures
define the synchronization method which we have used to communicate all different
elements that form the entire system. Using the multiple LEON3 processors, the
concurrence performance can access the same shared memory zone by different
semaphores.

To demonstrate the correct operation of the entire system (GOLD-RTR + HTPCP
+ Control PC), we conduct two experiments. In the first, the original system loses
data at all times due to the saturation of the receiver computer (0.84% as AVG). The
second experiment demonstrates how HTPCP can reduce the data and maintain the
integrity of the results through a transparent operational mechanism. Thanks to the
coherent and incoherent integration algorithms, the waveforms can be used with the
same accuracy as the original system for more scientific purposes.

As a conclusion, we must say that the most important thing is the data structures
and semaphore definition, due to the different processor platforms (MicroBlaze and
LEON3). Since the whole system needs to use these data structures and semaphores
to carry out tasks, it is necessary to have a correct definition in the software
layer in order to accomplish and guarantee the final objectives of the development:
transmit the waveform and reduce the scientific data by means of the post-processing
algorithm. We can see that the use of the complete system allows for data reduction
and solves the problem caused by data mass storage.

164



Appendix A

Input Waveform Format

Waveform Input Names Address Format Size(B) Value(Hex) Value(DEC)

WeekSow *p + 0 Int 4 15a86524 363357476

millisecond *p + 4 Short 2 0000 0

status NumberCorrelator *p + 6 Char 1 01 1

link updw *p + 7 Char 1 50 80

prn *p + 8 Char 1 13 19

max pos *p + 9 Char 1 17 23

amplitude *p + 10 Char 1 08 8

phase *p + 11 Char 1 2E 46

range model *p + 12 Int 4 00001635 5685

Doppler avion *p + 16 int 4 00013414 78868

sampling freq int *p + 20 Int 4 02625a00 40000000

sampling freq frac *p + 24 Short 2 0000 0

d freq *p + 26 Short 2 0000 0

d tao *p + 28 Short 2 b4 180

sin elevation *p + 30 Short 2 Fffff7b2 4294965170

data[128] *p + 32 Char 1 .. ..

165





Appendix B

Output Waveform Format

Waveform Output Names Address Format Size(B) Value(Hex) Value(DEC)

WeekSow *w +365+ 0 Int 4 15a86524 363357476

millisecond *w +365+ 4 Short 2 01f4 500

NumberCorrelator *w+365 + 6 Char 1 01 1

link updw *w +365+ 7 Char 1 50 80

prn *w +365+ 8 Char 1 13 19

num coherent *w +365+ 9 Int 4 01 1

num uncoherent *w+365 + 13 Int 4 000003e8 1000

range model *w+365 + 17 Int 4 00001635 5685

doppler avion *w+365 + 21 Int 4 00013414 78868

sampling freq int *w+365 + 25 Int 4 02625a00 40000000

d freq *w+365 + 29 Short 2 0000 0

d tao *w+365 + 31 Short 2 00B4 180

Complete *w+365 + 33 Char 1 0000 0

Polarization *w+365 + 34 Char 1 58 88

data[64] *w+365 + 35 Float 4 .. random

167





Appendix C

Solution 1: Four LEON3 processors
share one software routine.

169



Chapter VI

FSMFi
fo

 

w
rit

ed
p

FS
L_

Sl
av

e_
lin

k

ahb

LEON3_0

dcache icache

Local Link I/F (up to 8 pairs FSL)

r
0

r
1

r
3
1

Register
File

32*32 bit...CU

IB

pc

Icac
he

IMB LMB
Instruction bus controller

Dca
che

D
ata bus controller

LS

BS

DIV

AL
U

MU
L

I-LMB
D-

LMB

PLB0 PERIPHERALS

Micro
Blaze0

LEON3_1

dcache icache

DPRAM0

Fi
fo

 

FSL_M
aster_link

Local Link I/F (up to 8 pairs FSL)

r
0

r
1

r
3
1

Register
File

32*32 bit...CU

IB

pc

Icac
he

lmb LMB

Instruction bus controller

Dca
che

D
ata bus controller

LS

BS

DIV

AL
U

MU
L

I-LMB D-LMB

PLB1 PERIPHERALS

Micro
Blaze1

Sram0 8MB
 (rtems, elf, linux app)

LEON3_2

dcache icache

LEON3_3

dcache icache

gpioo0 gpioo1

ETH
MAC0

ETH 
MAC1MCTRL0 MCTRL0BRAM

DPRAM1

w
rit

ed
p

XPS_
GPIO_0

XPS_
GPIO_1

GR-GPIO0 GR-GPIO1

170



Appendix D

Solution 2: Four LEON3 cores
work with four hardware routines.

171



Chapter VI

FSMFi
fo

 

Fi
fo

 

FS
L_

Sl
av

e_
lin

k FSL_M
aster_link

ahb

LEON3_0

dcache icache

Local Link I/F (up to 8 pairs FSL)

r
0

r
1

r
3
1

Register
File

32*32 bit...CU

IB

pc

Icac
he

IMB LMB

Instruction bus controller

Dca
che

D
ata bus controller

LS

BS

DIV

AL
U

MU
L

I-LMB
D-

LMB

Micro
Blaze0

FSMFi
fo

 

Fi
fo

 

FS
L_

Sl
av

e_
lin

k FSL_M
aster_link

ahb

LEON3_1

dcache icache

FSMFi
fo

 

Fi
fo

 

FS
L_

Sl
av

e_
lin

k FSL_M
aster_link

ahb

LEON3_2

dcache icache

FSMFi
fo

 

Fi
fo

 

FS
L_

Sl
av

e_
lin

k FSL_M
aster_link

ahb

LEON3_3

dcache icache

Local Link I/F (up to 8 pairs FSL)

r
0

r
1

r
3
1

Register
File

32*32 bit...CU

IB

pc

Icac
he

lmb LMB

Instruction bus controller

Dca
che

D
ata bus controller

LS

BS

DIV

AL
U

MU
L

I-LMB D-LMB

Micro
Blaze1

DPRAM

PLB0 PERIPHERALS PLB1 PERIPHERALS

ETH 
MAC0

ETH
MAC1

MCTRL0 MCTRL0BRAM

CORR DPRAM CORR DPRAM CORR DPRAM CORR

172



Appendix E

Solution 3: Four LEON3 processors
execute four software routines in
parallel.

173



Chapter VI

FSMFi
fo

 

Fi
fo

 

FS
L_

Sl
av

e_
lin

k FSL_M
aster_link

ahb

Local Link I/F (up to 8 pairs FSL)

r
0

r
1

r
3
1

Register
File

32*32 bit...CU

IB

pc

Icach
e

IMB LMB

Instruction bus controller

Dca
che

D
ata bus controller

LS

BS

DIV

ALU

MUL

I-LMB D-LMB

MicroBl
aze0

FSMFi
fo

 

Fi
fo

 

FS
L_

Sl
av

e_
lin

k FSL_M
aster_link

ahb

FSMFi
fo

 

Fi
fo

 

FS
L_

Sl
av

e_
lin

k FSL_M
aster_link

ahb

FSMFi
fo

 

Fi
fo

 

FS
L_

Sl
av

e_
lin

k FSL_M
aster_link

ahb

Local Link I/F (up to 8 pairs FSL)

r
0

r
1

r
3
1

Register
File

32*32 bit...CU

IB

pc

Icach
e

lmb LMB

Instruction bus controller

Dca
che

D
ata bus controller

LS

BS

DIV

ALU

MUL

I-LMB D-LMB

MicroBl
aze1

DPRAM0

PLB0 PERIPHERALS PLB1 PERIPHERALS

ETH
MAC0

ETH
MAC1

MCTRL0 MCTRL0BRAM

DPRAM1 DPRAM0 DPRAM1 DPRAM0 DPRAM1 DPRAM0 DPRAM1

GPIO0 GPIO1

LEON3_0

dcache icache

GR-
GPIO0

GR-
GPIO1

gpioo0
gpioo1

Bram0
(elf app)

LEON3_0

dcache icache

GR-
GPIO0

GR-
GPIO1

Bram0
(elf app)

LEON3_0

dcache icache

GR-
GPIO0

GR-
GPIO1

Bram0
(elf app)

LEON3_0

dcache icache

GR-
GPIO0

GR-
GPIO1

Bram0
(elf app)

174



Appendix F

Commands from Control PC to
HTPCP

Data Lengths Description

‘O‘ 1 Check communication (It is capital letter ‘O‘, not number zero.)

‘Q‘ 1 Quit

‘B‘ 1 Start

‘E‘ 1 Stop acquiring

‘C‘+ data <1500 Configuration/Control Data

175





Appendix G

Commands from GOLD-RTR to
HTPCP

Data Lengths Description

‘H‘ 1 Check communication

‘A‘+ bytes 14 Reserved

‘F‘+data(64) 66 Flags

‘Q‘ 1 Close application

‘O‘ 1 Check communication OK

‘W‘ + data(800) 802 5 Waveforms in 5 blocs of 160 Bytes

’R’ + data(1240) 1242 RINEX

177





Appendix H

Block Diagram of HTPCP in EDK

179



Chapter VI

180



Appendix I

The Execution Time “printf“ in
GRMON

181



Chapter VI

0xa0100000

a
a
a

a
a

a
a
a
a

182


	Preface
	Prefacio
	Acknowledgments
	List of Publications
	Abbreviations
	I Introduction
	Motivation
	Objectives
	Document Structure and Context


	II State of the art
	Introduction
	GNSS-R Post-Processing Relevant Design
	GNSS-R Scenario
	GOLD-RTR Instrument
	Examples of GNSS-R Post-Processing Applications
	Altimetry
	Ocean Wind and Roughness
	Ocean Permittivity
	Land and Hydrological Applications
	Ice and Snow Applications


	Parallel System Design
	Parallel System
	Parallelism
	Parallel Architecture
	Parallel Algorithm
	Parallel Programming Model



	III Parallel System Design Based on SMLOL
	Introduction
	SMLOL Platform Overview
	Board Review
	Setup Demonstration Platform
	SMLOL Architecture

	Hardware Design in Lower Layer
	Configurable Processors and Development Tools
	Processors Comparison
	Development Tools
	Performance Metrics

	Endianess Design
	Memory Hierarchy Design

	Software and OS Design in Higher Layer
	Parallel Workload Analysis and Mathematical Modeling
	The Post-Processing Code - Coherent/Incoherent
	Linux Embedded OS Analysis and Design
	Compiler Requirement
	Linux Kernel Analysis
	CPU Configuration
	Ethernet Configuration

	Multi-task Application and Timing Performance

	MPARM Simulation
	Tackle on the Bottleneck of SMLOL
	Simulation Results

	Summary


	IV Parallel System Design Based on HTPCP
	Introduction
	HTPCP Architecture
	HTPCP Hardware Design
	Transmission Elements
	Operation Flow of TEs
	Transmission Protocol and Frame
	TE/TE Interface Design - Massage Passing Interface (MPI)

	Processing Elements
	Memory Hierarchy Design
	PE/TE Interface Design - FSL & GPIO

	Design Flow of HTPCP
	LEON3 System
	Microblaze System
	LEON3 System and MB System Integration


	Seven Software Routines
	MPI Transmission between TEs
	FSL Transmissions between PE and TE Design
	GPIO Connection between PE and TE
	Multi-processor Interrupt Controller between PEs

	Summary


	V GNSS-R Post-Processing Application and Implementation
	Introduction
	Experiment Constrains
	Hardware Design Constrains
	GOLD-RTR Output Waveforms
	Control PC Output Integrated Waveforms

	Post-Processing Algorithms and Timing Parameters
	Data Reduction
	Coherent Integration
	Incoherent Integration
	The Coherence Time coh and the Coherence Integration Time Tcoh
	Incoherence Integration Time Tincoh

	Demonstration Architecture
	The Black Box - HTPCP
	MicroBlaze Processors
	LEON3 Processors

	Campaign on Real Data
	Experiment Results
	Summary


	VI Overall Conclusions
	Input Waveform Format
	Output Waveform Format
	Solution 1: Four LEON3 processors share one software routine.
	Solution 2: Four LEON3 cores work with four hardware routines.
	Solution 3: Four LEON3 processors execute four software routines in parallel.
	Commands from Control PC to HTPCP
	Commands from GOLD-RTR to HTPCP
	Block Diagram of HTPCP in EDK
	The Execution Time ``printf`` in GRMON


