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fin de carrera y que después se convirtió en el doctorado. Aun recuerdo cuando me lo
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Abstract

This Thesis is mainly divided in two parts. The first one presents a study of motion
segmentation problems. Based on this study, a novel algorithm for mobile-object
segmentation from a static background scene is also presented. This approach is
demonstrated robust and accurate under most of the common problems in motion
segmentation. The second one tackles the problem of shadows in depth. Firstly, a
bottom-up approach based on a chromatic shadow detector is presented to deal with
umbra shadows. Secondly, a top-down approach based on a tracking system has been
developed in order to enhance the chromatic shadow detection.

In our first contribution, a case analysis of motion segmentation problems is pre-
sented by taking into account the problems associated with different cues, namely
colour, edge and intensity. Our second contribution is a hybrid architecture which
handles the main problems observed in such a case analysis, by fusing (i) the knowl-
edge from these three cues and (ii) a temporal difference algorithm. On the one hand,
we enhance the colour and edge models to solve both global/local illumination changes
(shadows and highlights) and camouflage in intensity. In addition, local information is
exploited to cope with a very challenging problem such as the camouflage in chroma.
On the other hand, the intensity cue is also applied when colour and edge cues are not
available, such as when beyond the dynamic range. Additionally, temporal difference
is included to segment motion when these three cues are not available, such as that
background not visible during the training period. Lastly, the approach is enhanced
for allowing ghost detection. As a result, our approach obtains very accurate and ro-
bust motion segmentation in both indoor and outdoor scenarios, as quantitatively and
qualitatively demonstrated in the experimental results, by comparing our approach
with most best-known state-of-the-art approaches.

Motion Segmentation has to deal with shadows to avoid distortions when detecting
moving objects. Most segmentation approaches dealing with shadow detection are
typically restricted to penumbra shadows. Therefore, such techniques cannot cope
well with umbra shadows. Consequently, umbra shadows are usually detected as part
of moving objects.

Firstly, a bottom-up approach for detection and removal of chromatic moving
shadows in surveillance scenarios is proposed. Secondly, a top-down approach based
on kalman filters to detect and track shadows has been developed in order to enhance
the chromatic shadow detection. In the Bottom-up part, the shadow detection ap-
proach applies a novel technique based on gradient and colour models for separating
chromatic moving shadows from moving objects.
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Well-known colour and gradient models are extended and improved into an in-
variant colour cone model and an invariant gradient model, respectively, to perform
automatic segmentation while detecting potential shadows. Hereafter, the regions cor-
responding to potential shadows are grouped by considering ”a bluish effect” and an
edge partitioning. Lastly, (i) temporal similarities between local gradient structures
and (ii) spatial similarities between chrominance angle and brightness distortions are
analysed for all potential shadow regions in order to finally identify umbra shadows.

In the top-down process, after detection of objects and shadows both are tracked
using Kalman filters, in order to enhance the chromatic shadow detection, when it
fails to detect a shadow. Firstly, this implies a data association between the blobs
(foreground and shadow) and Kalman filters. Secondly, an event analysis of the dif-
ferent data association cases is performed, and occlusion handling is managed by a
Probabilistic Appearance Model (PAM). Based on this association, temporal con-
sistency is looked for the association between foregrounds and shadows and their
respective Kalman Filters. From this association several cases are studied, as a result
lost chromatic shadows are correctly detected. Finally, the tracking results are used
as feedback to improve the shadow and object detection.

Unlike other approaches, our method does not make any a-priori assumptions
about camera location, surface geometries, surface textures, shapes and types of
shadows, objects, and background. Experimental results show the performance and
accuracy of our approach in different shadowed materials and illumination conditions.



Resum

Aquesta tesis esta dividida en dos parts principalment. A la primera, es presenta un
estudi dels problemes que es poden trobar en la segmentació per moviment, basant-se
en aquest estudi es presenta un algoritme genèric el qual es capaç de solucionar d’una
forma acurada la majoria dels problemes que es poden trobar en aquest tipus de seg-
mentació. En la segona part, es tracta el tema de les ombres en profunditat. Primer,
es presenta un algoritme bottom-up basat en un detector de ombres cromàtiques el
qual es capaç no només de solucionar les ombres que es troben a la penombra, sinó
també les ombres que podem trobar a l’umbra. Segon, es presenta un sistema top-
down basat en un sistema de tracking per tal de trackejar les ombres i d’aquesta
manera millorar la detecció de les ombres cromàtiques.

En la nostra primera contribució, presentem un anàlisis del possibles problemes
que trobem en la segmentació per moviment quan utilitzem el color, els gradients,
o la intensitat. La nostra segona aportació es una arquitectura hibrida la qual pot
solucionar els principals problemes observats en l’anàlisi, mitjançant la fusió de (i) la
informació obtinguda per aquestes tres cues, i (ii) un algoritme de diferencia temporal.
Per un costat, em aconseguit millorat els models de color i de gradients per que
puguin solucionar tant el problemes amb els canvis de il.luminació global y local
(com les ombres no cromàtiques) i els camuflatges en intensitat. A més a més, la
informació local es explotada per tal de solucionar el problema dels camuflatges en
croma. Per una altra banda, la intensitat es aplicada quan el color i els gradients
no estan disponibles degut a problemes en la obtenció d’aquests (es troben fora del
rang dinàmic). Addicionalment, la diferencia temporal es inclosa en la segmentació
per moviment en el moment en que cap de les cues estudiades no estan disponibles,
com per exemple quan el fons de la imatge no es visible en el peŕıode de entrenament.
Per últim en aquesta primera part, el nostre algoritme també es capaç de solucionar
el problema de les segmentacions fantasma. Com a resultat, el nostre algoritme
obté una segmentació robusta i acurada tant en escenaris d’interior com d’exterior,
tal i com s’ha demostrat tant quantitativament com qualitativament en els resultats
experimentals, mitjançant la comparació del nostre algoritme amb els més coneguts
algoritmes de l’estat de l’art.

La segmentació en moviment té que tenir en compte el problema de les ombres
per tal de evitar distorsions quan intentem segmentar els objectes en moviment. Però
molts dels algoritmes que son capaços de detectar les ombres solament son capaços
de detectar les ombres a la penombra. En conseqüència, aquestes tècniques no son
capaces de detectar les ombres a l’umbra les quals son normalment detectades com
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part dels objectes en moviment.
En aquesta tesis presentem primer una innovadora tècnica que es basa en els

models de gradients i de color per tal de separar aquestes ombres cromàtiques dels
objectes en moviment. Primerament, constrüım tant un model de color en forma de
con, com també un model de gradient els quals son invariant a les cromaticitats per
tal d’aconseguir fer una segmentació automàtica a la vegada que totes les possibles
ombres son detectades. En un segon pas, les regions que poden ser ombres son agru-
pades considerant ”l’efecte blau” i les particions obtingudes mitjançant els gradients.
Finalment, analitzem (i) les similituds temporals entre els les estructures locals dels
gradients i (ii) les similituds espacials entre els angles cromàtics i les distorsions de la
lluminositat de totes les ombres potencials per tal d’identificar les ombres a la umbra.

Segon, en el procés top-down després de la detecció dels objectes i les ombres els
dos son seguits usant un filtre de Kalman, per d’aquesta manera millorar la detecció
de les ombres cromàtiques. Primerament, l’algoritme fa una associació entre els blobs
(foreground i ombres) i els filtres de Kalman. Segon, es realitza un anàlisis dels
possibles casos entre las associacions obtingudes anteriorment, i a més a més es tracten
les oclusions mitjançant un Model Probabiĺıstic d’Aparença. Basant-se en aquesta
associació es busca la consistència temporal entre els foregrounds, les ombres, i els seus
respectius filtres de Kalman. A partir d’aquesta nova associació son estudiats diferents
casos, com a resultat les ombres cromàtiques que s’havien perdut son detectades.
Finalment, els resultats son utilitzats com a feedback per millorar la detecció de la
ombra i del objecte.

Pel contrari que altres algoritmes el nostre mètode no fa cap assumpció a priori
sobre la localització de la càmera, les geometries o les textures de les superf́ıcies,
les formes o els possibles tipus de ombres, objectes o de fons de la imatge. Els
resultats experimentals mostren la performance i la precisió del nostre algoritme en la
detecció de les ombres cromàtiques en diferents materials i amb diferents condicions
de il.luminació.
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Chapter 1

Introduction

Human beings have been trying to emulate the perception of the motion within Com-
puter Science during the last three decades. Hence, important research efforts in
computer vision have been focused on developing theories, methods and systems ap-
plied to the description of human movements in image sequences. The ultimate aim
of it is to interpret people behaviour.

The evaluation of human motion in image sequences involves different tasks, such
as acquisition, detection (motion segmentation and target classification), tracking,
action recognition, behaviour reasoning and natural language modelling. However,
the basis for high-level interpretation of observed patterns of human motion still
relies on when and where motion is being detected in the image. Therefore, motion
segmentation constitutes the basic and the most critical step towards more complex
tasks such as Human Sequence Evaluation (HSE) [16]. HSE defines an extensive
Cognitive Vision System (CVS) which transforms acquired image values into semantic
descriptions of human behaviour and synthetic visual representations. A sketch of this
system can be seen in Fig. 1.1. Motion segmentation is located in the Image Signal
Level (ISL in the figure), where the sequence of image data is processed by segmenting
potential targets, see appendix B for more information.

In this work, the focus is placed on one of the main HSE tasks: motion segmen-
tation. Nevertheless, What is motion segmentation? This refers to the extraction
process of moving objects from a video sequence. During these three decades, dif-
ferent techniques have been used for motion segmentation such as background sub-
traction, temporal differencing and optical flow. Even though many algorithms have
been proposed in the literature [15, 69, 46, 45], the problem of identifying moving
objects in a complex environment is still far from being completely solved. The in-
formation obtained from this step is the base for a wide range of applications such
as smart surveillance systems, control applications, advanced user interfaces, motion
based diagnosis, identification applications among others [15]. Nevertheless, motion
segmentation is still an open and significant problem due to dynamic environmental
conditions such as illumination changes, shadows, waving tree branches in the wind,
etc. And difficulties with physical changes in the scene. However, in this thesis the
problem is tackled without setting any kind of restrictions on the nature of the scene.

1
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Figure 1.1: Overall architecture for Human Sequence Evaluation (HSE) [17].

1.1 Potential Applications

Human motion analysis has attracted great interests from computer vision researchers
due to its promising application in many areas such as virtual reality, smart surveil-
lance systems, advanced user interfaces, motion analysis, model-based coding, among
others. Motion Segmentation is a significant issue in a human motion analysis system
since the subsequent processes are greatly dependent on it.

Smart Surveillance Systems

Video surveillance is an important application domain. The video data is currently
used only as a forensic tool, such as banks and supermarkets where the video data is
usually recorded in tapes or stored in video archives. However, the video data can be
used in real time.

A smart surveillance is needed in order to generate useful and helpful information,
for instance to alert security officers when a burglary is in progress, or a suspicious
behaviour such as wandering around and repeatedly looking into the cars in a parking
lot, to avoiding false alarms such as animals wandering around, wind blowing, etc.
Moreover, face and gait recognition is used with the purpose of access control.

Other smart surveillance applications besides security applications are measure
traffic flow, monitor pedestrian congestion in public spaces, compile consumer de-
mographics in shopping malls, etc. A smart surveillance system can bring a lot of
benefits but it have to be balanced regarding privacy.
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Potential applications
“Smart” surveillance systems Access control

Parking lots
Supermarkets, department stores
Vending machines, ATMs
Traffic
Prevent terrorist attacks
Statistical studies

Virtual reality Interactive virtual worlds
Games
Virtual studios
Character animation
Teleconferencing
(e.g., film, advertising, home-use)

Advanced user interfaces Social interfaces
Sign-language translation
Gesture driven control
Signalling in high-noise environments
(e.g airports,factories)

Motion analysis Content-based indexing of sports video footage
Personalised training in golf, tennis, etc.
Choreography of dance and ballet
Clinical studies of orthopaedic patients

Model-based coding Very low bit-rate video compression

Table 1.1

Potential applications

Other kind of application which has currently more significance due to the terrorist
attacks, and the growing fear among population and governments, is to detect packets
or suspected objects which are abandoned in places like airports, or undergrounds in
order to avoid the terrorist attacks.

Virtual Reality

Another different kind of application domain is virtual reality. The main application
is the interaction between the virtual and the real world. One of the most important
objectives is to represent humans in the physical space in a virtual space. Tools like
internet can be used as a medium to interact among virtual worlds. The interaction
inside this virtual worlds can be improved between the participants with the used of
cues such as gestures, head pose, and facial expressions.

Other application in virtual reality domain is related to the computer games. The
realism of virtual humans and simulated actions in computer games are achieved
thanks to the knowledge obtained of the acquisition of human body model, the re-
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trieval of body pose, the human behaviour analysis, etc. Other applications are virtual
studios, motion capture for character animations (synthetic actors), teleconferencing,
etc.

Advanced User Interface

Vision is a useful complement of speech recognition and natural language under-
standing for a natural and intelligent dialogue between human and machine. This
can create more useful and friendly interfaces, which allow interaction between ma-
chine and users in a more personable way. More detailed cues can be obtained by
gestures, body poses, and facial expressions. That can be helpfully in speech recog-
nition problems such as environmental noise and distance. Therefore, these systems
can work independently without be affected by the surrounding environment. Vision
can also improve other applications such as sign-language translation, gesture driven
controls, signalling in high-noise environment such as factories or airports, or can be
helpful for problems with phoneme disambiguation, or helping lip reading.

Motion Analysis

Motion analysis can be useful for the evaluation and training of athletic performance.
It lies personalised training systems for various sports; these systems would observe
the skills of the pupils and make suggestions for improvement. The gait analysis
also aims at providing medical diagnosis and treatment support. The human gait
can also be used as a new biometric feature for personal identification. Using the
motion analysis can interpret video data sequences automatically using content-based
indexing helping human efforts in sorting and retrieving images or video in a huge
database. Video-based human-motion analysis is also useful for choreography of dance
and ballet, and furthermore, for orthopaedic clinical studies.

Model-based Coding

Model-based image coding can use a low bit-rate video compression for more effective
image storage and transmission. For instance, by encoding only the motion part of
the scene and by avoiding sending the background part in videophone calling much
money can be saved.

1.2 Segmentation Difficulties

Detection of regions that correspond to moving objects such as vehicles and people in
natural scenes is a significant and difficult problem. Efficient segmentation simplifies
the processing on subsequent steps on analysis [17]. Nevertheless, fast and reliable
motion segmentation is an open and difficult problem due to dynamic changes in
naturals scenes, such as illumination changes, weather conditions, camouflage, among
others. Or due to the algorithm employed to perform the segmentation. Some of
them cannot be solved at this level and need to use a posterior HSE level.
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Depending on the Scene Depending on the Algorithm
Global Illumination Changes (Gradual and Sudden) Ghosts (Hole objects)
Local Illumination Changes (Shadows and Highlights) Sleeping Objects
Weather Conditions Incorporated Objects
Background in Motion (i.e. Waving trees, Flowing water) Sleeping Person
Camouflage Bootstrapping

Foreground Aperture

Table 1.2

Segmentation difficulties

1.2.1 Due to Scene Conditions

Motion segmentation difficulties due to the scene are (i) global and (ii) local illumina-
tion changes, (iii) weather conditions, (iv) background in motion, and (v) camouflage.
Some examples are shown in Fig 1.2.

• Global illumination changes: Lighting conditions in the scene can classified
Background pixels erroneously as foreground. These changes can be gradual or
sudden depending on the velocity of the illumination change. Normally, gradual
illumination changes are when the illumination of the scene changes gradually
with the time of the day. Then, the appearance of the background will be very
different at different moments of the day. For instance, it can occurs due to a
natural phenomenon such as at dawn, when the day gets lighter, or at dusk,
when the day get darker. Sudden illumination occur when the illumination
changes suddenly. This problem can appear in both indoor and outdoor scenes,
e.g. for an indoor scene when a light is turned on/off, and for an outdoor scene
when the sun is covered by clouds. In Fig. 1.2.(a) can be seen an example of
gradual illumination change.

• Local illumination changes –Shadows and Highlights–: Foreground objects can
project shadows, which is an area where direct light from a light source cannot
reach due to obstruction by the foreground object. Shadows can be different
from the background model in chrominance and intensity, and similar to the
foreground objects in the scene. Shadows can be a big problem if the fore-
ground objects are not correctly segmented from their shadows. Then, errors
are propagated through the next levels such as classification, tracking, ... For
instance, a person could be classified as an animal due to his shadow. Or differ-
ent objects can be considered only one object because the shadows are joined
them together. An example of shadow can be seen in the Fig. 1.2.(b). Highlight
are the opposite to a shadow because they do the scene lighter. An highlight
example can be seen in Fig. 1.2.(c).

• Weather conditions: Specific climatic conditions such as rain, snow, etc, can
prevent from getting a clearly background. Therefore, it can be sometimes
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(a) (b)

(c) (d)

(e) (f)

Figure 1.2: Example of some motion segmentation difficulties, as mentioned in the
text. (a) Gradual illumination changes. (b) Shadows. (c) Highlights. (d) Wheather
conditions. (e) Background in motion. (f) Camouflage.
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detected as foreground. Some of this weather phenomenon also present changes
in the illumination, such as when the clouds cover the sun. In the Fig. 1.2.(d)
can be seen how the background can change due to weather conditions.

• Background in motion: Sometimes the background presents movement such as
the waving tree branches and bushes blowing in the wind, or the water of a
river. Therefore, these cases are wrongly segmented as foreground because they
exhibits motion and belongs to the background. Usually appears in outdoor
scenes. An example of background in motion is the fire such as it can be seen
in the Fig. 1.2.(e).

• Camouflage: Pixel features of the background model can be considered similar
as the foreground pixel ones. Therefore, the foreground object will not be
segmented. This problem happens both indoor and outdoor scenes. For instance
a woman with a green coat cannot be correctly distinguished from a grass field.
In the Fig. 1.2.(f) can be seen an example of camouflage.

1.2.2 Due to Algorithm limitations

Depending on the algorithm employed some of the next difficulties can be found:
(i) ghosts, (ii) sleeping objects, (iii) incorporated objects, (iv) sleeping person, (v)
bootstrapping and (vi) foreground aperture. Some of these problems cannot be solved
at this level and need to be handled at posterior HSE level. The first four difficulties
are very similar. After the four explanations, an example shows the relation among
them.

• Ghosts: If an object which belongs initially to the background begins to move,
or it is moved, then the object and the place which the object held in the
background are both segmented as foreground pixels. Therefore, the place of
the initial background object will be erroneously segmented as foreground. For
instance, a car which is parked in a parking lot starts to move. Then, the
moving car is correctly segmented, however the initial place where the car was
is wrongly detected as foreground indefinitely.

• Incorporated Objects: It happens when an object which does not exhibits motion
is not added into the background. Therefore, it is segmented as foreground
indefinitely thereby impeding other foreground segmentations. For instance
when a car parks in a parking lot.

• Sleeping objects: When a foreground object which is in motion stop his motion
and it is immediately added to the foreground. The problem is that this object
has to be longer detected as foreground. A method which has this problem
seriously is frame difference, because any object which does not have motion
throughout two frames (or more depending on the method used) would be not
segmented as foreground. The approaches with this problem does not have the
two problems above mentioned.

• Sleeping person: This difficulty is related to the last two difficulties, since if the
object is an interest object like a person, then this object have not to be part
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of the background. This difficulty cannot be solved at the segmentation level
because at this level the interesting and uninteresting objects cannot be distin-
guished. Next, different examples are explained to understand the difference
between these difficulties.

For instance, consider a car which stops in a traffic light. This car must keep on
being detected within the scene as foreground, because it will continue his way
when the traffic light turns on. In case that the car is not detected as foreground
then sleeping objects difficulty appears. Instead of stop in a traffic light, the car
parks in a parking lot. Then, it must not be detected indefinitely as foreground.
Therefore, incorporated objects difficulty will appear if the car is detected in-
definitely as foreground. The main difference between these difficulties is the
time which objects are without motion. Nevertheless, if it is an agent instead
of a car, the agent must not be detected as a part of the background, neither
when he stops in a traffic light, nor when he stops because he is talking with
another agent. The last case shows how it is impossible in this level distinguish
between the interesting object (agent) and the object which is not interesting
(the car).

• Bootstrapping: Some approaches need to be initialised using a training period
without any foreground object. Nevertheless, a training period without any
foreground object is not possible in some circumstances. For instance, in a
crowed street the people walking during the training period can be incorporated
into the background model, thereby building it wrongly. Normally, this difficulty
only appears in approaches which uses background models.

• Foreground aperture: It happens when the interior pixels of a moving object
cannot be segmented as foreground pixels because of the similarity between
them. When it happens the border of the homogeneous object is normally
segmented, however the interior pixels are not segmented as foreground pixels.
This difficulty can appear in methods without background model or when the
foreground homogeneous object in motion belongs to the background model.

1.3 Approaches and Contributions

This Thesis is mainly divided in two parts. The first one, firstly presents a study of
motion segmentation problems. Based on this study, a novel algorithm for mobile-
object segmentation from a static background scene is also presented. This approach
is demonstrated robust and accurate under most of the common problems in motion
segmentation. The second one tackles the problem of shadows in depth. Firstly a
bottom-up approach based on a chromatic shadow detector is presented to deal with
umbra shadows. Secondly, a top-down approach based on a tracking system has been
developed in order to enhance the chromatic shadow detection. A sketch of the system
is shown in Fig. 1.3

• In the first part of this Thesis, our first contribution is a novel theoretical case
analysis of motion segmentation problems, where the performance of each cue
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Figure 1.3: Motion segmentation architecture. FG represents the foreground, SH
the shadows, and KF the Kalman filters.
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used in the literature for segmentation (intensity, colour, and edges) is exhaus-
tively evaluated, showing the advantages of every cue and when a cue can be
or cannot be applied. To the best of our acknowledge, current state-of-the-art
considers chromatic spaces only, and they do not address most of the problems
identified in our case analysis.

• Our second contribution is a new architecture which handles the main problems
observed in such a case analysis. The new hybrid approach fuses (i) the knowl-
edge from these three cues and (ii) a temporal difference algorithm because each
cue solves a particular problem identified in the case analysis. With this hybrid
approach, we enhance the colour and edge models to solve both global/local
illumination changes (shadows and highlights) and camouflage in intensity. Cue
models employed in the hybrid approach have been improved over existing ones,
furthermore their combination is a step forward the current state-of-the-art.

• The colour model is also changed into a new chromatic cone model instead to
use the chromatic cylinder model employed in many motion segmentation ap-
proaches [25, 22, 33] . It uses chrominance angle distortion instead of chromatic
distortion. For the same chromaticity line the chromatic distortion used in the
above mentioned papers depends on the brightness distortion, while the chromi-
nance angle distortion is invariant to the brightness. The invariant chromatic
cone model is more robust towards chromatic shadows because these shadows
(umbra shadows) modifies both the brightness and the chromaticity.

• A newly invariant gradient model is employed in order to identify the different
gradients of the scene. As argued in [41, 53], the gradient model has to be
invariant towards global and local illuminations changes, such as shadows. The
gradient model presented in this Thesis uses a newly combination of gradient
magnitudes and gradient directions which is invariant to illumination changes.

• Local information is exploited to cope with a very challenging problem such
as the camouflage in chroma. Thus, in order to solve the problem the region
enclosed for the colour and edge cues are combined with the illumination masks
provided by the colour model. On the other hand, the intensity cue is used when
pixels are beyond the dynamic range. Since, they are saturated or do not have
enough chrominance, and colour and edge cues are not available. Additionally,
temporal difference is also included to segment motion when these three cues are
not available, such as that background not visible during the training period.

• Ghost are coped by the approach combining the segmentation obtained using all
models with the segmentation obtained using edge cue and temporal difference
algorithm. Furthermore, the system is able to cope with the bootstrapping
problem by means of a motion filter which is iterated until convergence. The
filter is used to remove moving pixels during a training set.

• As a result, our hybrid motion segmentation approach obtains very accurate and
robust motion segmentation in both indoor and outdoor scenarios, as quantita-
tively and qualitatively demonstrated in the experimental results, by comparing
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our approach with most best-known state-of-the-art approaches. The hybrid ap-
proach is based on a collaborative architecture, in which each model is devoted
to specific tasks. These are performed by a particular algorithm, but they can be
substituted by enhanced ones without modifying the architecture itself. Hence,
this structured framework combines in a principal way the main advantage of
each cue. In this way, by taking advantage of several cues, the system is allowed
to benefit from all the cues capabilities, thereby simultaneously coping not only
with ghosts, global and local illumination, and dark and light camouflage; but
also, handling saturation, and lack of colour.

Nonetheless, motion segmentation has to deal with shadows to avoid distortions
when detecting moving objects. Most segmentation approaches dealing with shadow
detection are typically restricted to penumbra shadows such as the hybrid approach
presented. Therefore, such techniques cannot cope well with umbra shadows. Conse-
quently, umbra shadows are usually detected as part of moving objects.

• In this second part, we present two main novelties: (i) a bottom-up approach for
detection and removal of chromatic moving shadows in surveillance scenarios.
(ii) a top-down approach based on kalman filters to detect and track shadows.

• In the Bottom-up part the shadow detection approach apply a novel technique
based on gradient and colour models for separating chromatic moving shadows
from moving objects. Firstly, both a chromatic invariant colour cone model and
an invariant gradient model are built to perform automatic segmentation while
detecting potential shadows. Hereafter, the regions corresponding to potential
shadows are grouped by considering ”a bluish effect” and an edge partitioning.
Lastly, (i) temporal similarities between local gradient structures and (ii) spatial
similarities between chrominance angle and brightness distortions are analysed
for all potential shadow regions, in order to finally identify umbra shadows. The
resulting shadow detection can (1) detect and remove chromatic moving shadows
(umbra shadows) and (2) penumbra shadows, while several other methods are
restricted to the latter.

• However, in some cases the separation between a foreground object and a shadow
region can fail. Occasionally, a part of the foreground object or the shadow
is not accurately segmented due to segmentation problems, e.g. camouflage.
Therefore, the shadow detection can miss-classify a shadow as being a part of
a foreground object. In order to solve this problem a top-down approach has
been developed. After detection of the objects and shadows both are tracked
using Kalman filters, in order to enhance the chromatic shadow detection, when
it fails to detect a shadow.

• In the Top-down part, firstly a data association between the blobs (FG and
SH blobs) and the Kalman filters is performed. Secondly, an event analysis is
carried out, in order to detect the different cases: object match, new object,
lost object, object splitting and object merging. Taking this information into
account, the Kalman filters are managed. Furthermore, occlusion handling is
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managed based on a Probabilistic Based Model (PAM). Thus, based on this as-
sociation temporal consistency is evaluated in the association between FGs and
SHs and their respective Kalman Filters over time. Consequently, a number of
cases are studied: FG and SH match, new shadow and lost shadow. Finally, the
tracking results are feedback to the chromatic shadow detector to improve the
object and shadow detection. Thus, chromatic shadows are correctly detected
in cases with the mentioned segmentation problems.

• Thus, thanks to the data association between FG and SH we have achieved:
(i) enhance the chromatic shadow detection by detecting shadows which were
not possible to detect before. (ii) improve the segmentation for high level pro-
cesses, such as detection and tracking, by avoiding shadows. (iii) a more robust
tracking, since (1) the PAM and the KF tracker are more robust and correctly
updated, and (2) erroneous created KFs are deleted.

• Qualitative and quantitative results of tests for both outdoor and indoor se-
quences from well-known databases validate the presented approach. Overall,
our approach gives a more robust and accurate shadow detection and fore-
ground segmentation compared to the state-of-the-art methods. Unlike other
approaches, our method does not make any a-priori assumptions about camera
location, surface geometries, surface textures, shapes and types of shadows, ob-
jects, and background. Experimental results show the performance and accuracy
of our approach in different shadowed materials and illumination conditions.

Summarizing, in the first part of this thesis, firstly a case analysis of motion seg-
mentation problems is presented by taking into account the problems associated with
different cues, namely colour, edge and intensity. Secondly, a new hybrid approach
which fuses colour, edge, intensity cues and temporal differencing to handle non-
physical changes (such as global or local illumination changes), and physical changes
(such as bootstrapping and ghosts) is developed [27, 25]. This architecture can cope
with illumination changes, problems with the sensor dynamic range, and also with
two of the three possible camouflages: camouflage in intensity and chroma. Fur-
thermore, it can also solve the bootstrapping problem, can cope with ghosts, and can
obtain a segmentation even when the background models are not available. In the sec-
ond part, firstly a bottom-up approach for detection chromatic shadows is presented.
Then, the contribution of this bottom-up process is threefold: (i) We combine an
invariant colour cone model and an invariant gradient model to improve foreground
segmentation and detection of potential shadows. (ii) We extend the shadow de-
tection to cope with chromatic moving cast shadows by grouping potential shadow
regions and considering ”a bluish effect”, edge partitioning, spatial similarities be-
tween local gradient structures, and temporal similarities between chrominance angle
and brightness distortions. (iii) Unlike other approaches, our method does not make
any assumptions about camera location, surface geometries, surface textures, shapes
and types of shadows, objects, and background. Secondly, a top-down approach is
presented in order to enhance chromatic shadow detection. A kalman filter is used in
order to track the foreground objects and the shadows. Consequently, thanks to the
data association between FG and SH we have achieved: (i) enhance the chromatic
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shadow detection by detecting shadows which were not possible to detect before. (ii)
improve the segmentation for high level processes, such as detection and tracking, by
avoiding shadows. (iii) a more robust tracking, since (1) the PAM and the KF tracker
are more robust and correctly updated, and (2) erroneous created KFs are deleted.

1.4 Document Outline

The remaining of the document is structured as follows. Next chapter presents a
comprehensive state of the art related to motion segmentation. The different algo-
rithms presented in the state of the art are analysed based on (i) the type of cues or
structure employed; (ii) the method used to obtain the foreground region; and (iii)
the procedure used to update the model.

In the Chapter 3, firstly a case analysis of anomalies derived from the different
cues used for motion segmentation is presented. This leads to our approach to tackle
segmentation. Section 3.2 explains the proposed hybrid approach, and describes how
intensity, colour, edge and temporal difference are used to solve the aforementioned
problems, such as camouflage in chroma, and ghosts by fusing the four cues. The
experimental results for the motion segmentation approach are described in section
3.3, where our approach performance is widely analysed using indoor and outdoor
sequences from several popular databases, and compared with several well-known
motion segmentation approaches. Lastly, the final section concludes the main contri-
butions of the chapter and discusses future work.

Next, Chapter 4 presents a bottom-up and top-down approaches for chromatic
shadow detection. Firstly, the related methodology in the field of shadow detection
is discussed in section 4.1, along with our contributions to this subject. In section
4.2, the theoretical concept of our approach is outlined. The bottom-up algorithm for
foreground segmentation, along with the detection and removal of chromatic moving
shadows are described in section 4.3. The top-down process used to enhance the
shadow detection based on kalman filters to track the shadows is described in section
4.4. Finally, we present experimental results in section 4.5 and a brief discussion in
section 4.6.

Finally, Chapter 5 presents a general discussion about the approaches and results
obtained in this Thesis. For each topic related to the presented contributions we point
out the remaining open issues and future directions of research.
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Chapter 2

State of the Art

Detecting regions that correspond to moving objects such as vehicles and people in
natural scenes is a significant and difficult problem which provides a focus of attention
and simplifies the processing on subsequent analysis steps. Fast and reliable motion
segmentation is an open and difficult problem due to dynamic changes in natural
scenes such as global and local illumination changes, camouflages, repetitive moving
objects —for instance waving flags, or moving leaves of a tree— or due to physical
changes in the scene, among others.

2.1 Motion Segmentation

Frequently used techniques for motion segmentation are background subtraction,
frame differencing, a combination of both, or optical flow. Even though many algo-
rithms have been proposed in the literature [15, 69, 46, 45], the problem of identifying
moving objects in complex environment is still far from being completely solved.

2.1.1 Background Subtraction

Background subtraction is the most commonly used technique for motion segmenta-
tion in static scenes [42, 50, 32]. It attempts to detect moving regions in an image by
differencing the current image and a reference background image in a pixel-by-pixel
manner. The background model is created by averaging images over time in an ini-
tialization period. Therefore, pixels are classified as foreground where the difference
is above a threshold whose calculation depends on the approach. Then, numerous
approaches update over time the background model with new images to adapt it to
dynamic scene changes. After this, some approaches employ a morphological post-
processing operations such as erosion, dilation and closing, and also employ connected
components over the foreground pixel map to reduce the effects of noise and to de-
tected potential targets.

There are a large number of different algorithms within this basic scheme of back-
ground subtraction. Nonetheless, they differ in (i) the type of cues or structure em-
ployed to build the background model; (ii) the method used to obtain the foreground

15
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(a) Sample frame (b) Segmentation

Figure 2.1: Sample frame based on [20] by Heikkila et al.

region; and (iii) the procedure used to update the model.
A simple version of the background subtraction scheme is employed by Heikkila

and Silven [20], who classify a pixel value in the current image as foreground if it is
over a predefined threshold compared with the background model:

|It −Bt| > τ (2.1)

where Bt is the reference background at time t, It the current frame, and τ is a
predefined threshold. Their approach updates the background model in order to
guarantee reliable motion detection using a first order recursive filter as follows:

Bt+1 = (1− α)Bt + αIt (2.2)

where α denotes the adaptation rate that weights the current model versus the new
observation. This approach performs well at obtaining the foreground moving pixels
even when they stop moving. However, methods using similar schemes are extremely
sensitive to changes of dynamic scenes such as gradual illumination changes, or phys-
ical changes such as ghosts. A sample frame is shown in Fig. 2.1.

In order to overcome these difficulties statistical approaches can be applied [69].
These approaches model either each pixel or group of pixels statistically. This allows
building adaptive background models while providing robustness to the above-stated
background conditions. Usually, model statistics are continuously updated in order
to provide an adaptive approach. In order to classify if a pixel is foreground or
background, authors compare current pixel values with the statistics of background
model. These approaches are more efficient in front of noise, illumination changes,
shadows, etc.

Haritaoglu et al. in W 4 [19] use a model of background subtraction built from
order statistics of background values during a training period. The background scene
is modelled by representing each pixel by three values: its minimum and maximum
intensity values, and the maximum intensity difference between consecutive frames
observed during this training period. Furthermore, W 4 uses a filter to exclude fore-
ground objects during training period, such as moving people, based on median value
of the pixels. Pixels are classified as foreground if the difference between the cur-
rent value and the minimum and maximum values are greater than the values of
the maximal interframe difference. Background model pixels are updated using the
pixel − based and object − based updating conditions. The first condition updates
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(a) Sketch Approach

(b) Sample frame (c) Segmentation

Figure 2.2: Sketch and sample frame based on [19] by Haritaoglu et al.

the background model periodically to adapt it to illumination changes in the scene,
whereas the second one updates the background model to adapt it to physical changes,
when new objects are deposited or removed in the background scene. Later, Neigh-
bour pixels are grouped and blobs are classified using heuristics. Poses are identified
by means of projection histograms. KFs and textural temporal templates are used
to track detected targets. Therefore, the approach is able to detect and track people,
isolated or in groups, in outdoor scenes, and considering several poses. However, this
approach is rather sensitive to shadows and lighting changes, since the only cue used
is the pixel intensity. A sketch of the algorithm and a sample frame is shown in Fig.
2.2.

In order to solve possible illumination changes and learn gradual changes in time,
Wren et al. in Pfinder [72] proposed the modelling of the colour of each pixel with
a single Gaussian, using YUV space. Each scene pixel is modelled using a Gaussian
colour distribution. Thus, outliers are assumed to be foreground pixels, and are there-
fore segmented. Visible pixels are updated using a single adaptive filter. Segmented
pixels are grouped into blobs and each blob is modelled using spatial and colour com-
ponents. Blobs are associated with body parts using a log likelihood measure and
tracked by means of of Kalman Filters (KF). However, a single Gaussian model can-
not handle multiple backgrounds, such as waving trees, and the tracker just attempt
to detect and track one person, in upright posture, in indoor scenes. A sample frame
is shown in Fig. 2.3.
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(a) Sample frame (b) Segmentation

Figure 2.3: Sample frame based on [72] by Wren et al.

(a) Sample frame (b) Segmentation

Figure 2.4: Sample frame based on [65] by Stauffer and Grimson.

Handling Background in motion

In general the above mentioned approaches obtain a good segmentation and have
been used in real-time surveillance applications for long time. However they do not
cope the problem of background in motion. Any approach that relies on motion to
perform segmentation is liable to consider as foreground any moving background pixel,
considering pixels such as the branch of a tree as a foreground. The next described
approaches try to get an accurate segmentation putting special effort to solve this
problem.

Stauffer and Grimson [65, 64] address the multiple backgrounds problem by using
a Mixture of Gaussians to build a background colour model for every pixel. Pixels
from the current frame are checked against the background model by comparing them
with every Gaussian in the model until a matching Gaussian is found. If so, the mean
and variance of the matched Gaussian is updated, otherwise a new Gaussian with the
mean equal to the current pixel colour and some initial variance is introduced into
the mixture. Moreover, the least probable Gaussian distribution is replaced if none
of values match with it. Therefore, long-term still foregrounds are included. However
the number of Gaussians employed has to be predefined. A sample frame is shown in
Fig. 2.4. An improvement of the MoG can be found in Zivkovic et al. [77, 78], where
the parameters of a MoG model are constantly updated, while also simultaneously
selecting the appropriate number of components for each pixel.

Toyama et al. [66] in Wallflower use a three-component system to handle many
canonical anomalies for background maintenance. Their work processes the images at
various spatial scales: pixel, region, and frame levels. The pixel-level component per-
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Figure 2.5: Sample frames based on [66] by Toyama et al.

(a) Sample frame (b) Segmentation

Figure 2.6: Sample frame based on [10] by Elgammal et al.

forms a Wiener filtering to make probabilistic predictions of the expected background;
the region-level component fills in homogeneous regions of foreground objects; and
the frame-level component detects sudden, global changes in the image and swaps in
better approximations of the background. Reasonably good foreground detection is
achieved in some cases, like in a scene with moving objects or with strong illumination
changes (such as those caused by turning on/off the light switch). However, it fails
when tackling small motion background or local illumination problems. A sample
frames are shown in Fig. 2.5.

Elgammal et al. [10] use a non-parametric Kernel Density Estimation (KDE) to
model the background. The model keeps a sample of intensity values for each pixel
in the image and uses this sample to estimate the probability of any newly observed
intensity value. The background model is updated continuously in order to adapt
background changes. In addition to colour-based information, their system incorpo-
rates region-based scene information to match, not only with the corresponding pixel
in the background model, but also to nearby pixel locations. This approach can han-
dle the problem with small background motion such as tree branches. A sample frame
is shown in Fig. 2.6. Mittal et al. [44] use adaptive KDE for managing background
in motion. The optical flow is also used in such a work for detection of moving objects
in conjunction with a normalized colour representation. In this way, the approach is
able to manage complex background, but computational costs are severe.
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Figure 2.7: Sample frames based on [6] by Chen et al. Segmentation in red colour.

(a) Sample frame (b) Segmentation

Figure 2.8: Sample frame based on [36] by Li et al.

Although small background motion is solved using the above mentioned motion
segmentation approaches. More sophisticate approaches has been employed in order
to solve more complicate dynamic backgrounds, thereby avoiding motion such as the
fountain water flow, the sea waves or strong camera jitter.

Chen et al. [6] combine pixel-based and block-based approaches to model complex
background. For block-based background modelling uses contrast histograms using
grey or colour images; however they have problems with camouflages and shadows.
A sample frames are shown in Fig. 2.7.

Li et al. [36] and Sheikh et al. [60] use Bayesian networks to cope with dy-
namic backgrounds. Li et al. uses a Bayesian framework that incorporates spectral,
spatial, and temporal features to characterize the background appearance. It uses
colour, gradient, and temporal information based on a Bayes rules to detect fore-
ground and background pixels. A sample frame is shown in Fig. 2.8. Sheik et al.
first use non-parametric density estimation methods over a joint domain range rep-
resentation to model the background as a single distribution; therefore multi-modal
spatial uncertainties can be handled. Secondly, they use temporal information with
the background difference. Finally, they proposes a MAP-MRF (maximum a poste-
riori - Markov Random Field) for object detection enforcing spatial context in the
process. As a result, the algorithms can cope with dynamic backgrounds accurately.
A sample frame is shown in Fig. 2.9.

Zhong et al. [76] in his approach firstly model the dynamic textures using an
first-order linear model called Autoregressive Moving Average Model (ARMA). Lat-
terly, a Kalman filter algorithm is used in estimating the intrinsic appearance of the
dynamic texture. The foreground object regions are then obtained by thresholding
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(a) Sample frame (b) Segmentation

Figure 2.9: Sample frame based on [60] by Sheikh et al.

(a) Sample frame (b) Segmentation

Figure 2.10: Sample frame based on [76] by Zhong et al.

the weighting function used in the robust Kalman filter. A sample frame is shown in
Fig. 2.10. It works well for periodical changes in a scene but it is difficult to predict
background changes with varying frequency in the natural scene.

The use of layers for image decomposition based on the neighbouring pixels is
presented in [49] to avoid dynamic backgrounds. A different type of approach is
used by Maddalena et al. [37] who use neural networks to overcome this problem.
Mahadevan et al. [38] uses the information of the salience points and the neighbour
pixels to cope the problem.

Handling Local and global illumination

The motion detection approaches described above obtain an accurate segmentation
in indoor and outdoor scenarios in general and specially coping background in motion
problem. Nevertheless, large number of them are susceptible to both local, such as
shadows and highlights, and global illumination changes, like at dawn or dusk, or
when the sun becomes covered by clouds. Most aforementioned methods fail under
these circumstances. A sample frame is shown in Fig. 2.11.

There are numerous different approaches to solve global and local illuminations
problems [51]. Nonetheless, they differ in the type of the cue and method employed.

Horprasert et al. [22] present a statistical background colour model which use
colour chrominance and brightness distortion in RGB space. Using these distortions,
this approach classifies the current pixel as original background, shaded background
or shadow, highlighted background or moving foreground pixel. A sample frame is
shown in Fig. 2.12. An improvement of this work is presented by Kim et al. [33] who
build a cylinder to detect foreground objects in RGB space. They also quantized the
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(a) Sample frame (b) Segmentation (c) Segmentation

Figure 2.11: Sample frame of background in motion and illumination change prob-
lems. a) Original frame, b) Segmentation based on [64] by Stauffer and Grimson. c)
Segmentation based on [60] by Sheikh et al, the background in motion is solved but
shadow problem is not coped.

(a) Sample frame (b) Segmentation

Figure 2.12: Sample frame based on [22] by Horprasert et al. Shadows in red colour.

background values for each pixel into codebooks, which represent a compressed form
of background model for a long image sequences. Therefore, it can also coped part
of the background in motion problem. Furthermore, the use of a layered background
model can adapt it to physical changes in the scene. Nevertheless, anomalies in the
dynamic range prevent to obtain an accurate segmentation. A sample frame is shown
in Fig. 2.13.

In order to avoid shadows, other spaces are used such as Cucchiara et al. [8]. They
use the HSV space colour model to avoid local illumination problems. In [7], a more
complex model is used which is able to detect shadows and ghosts using HSV space.
The approach classifies the pixels as moving visual object, uncovered background,
background, ghost, or shadow. A sample frame is shown in Fig. 2.14.

So colour is a suitable cue to handle problems with local and global illumination
changes. Nevertheless, there are a lot of problems when colour is used, such as the
change of illuminant. Two main approaches are employed in order to deal with this
problem: colour invariant normalisations and colour constancy methods.

The first one, uses the invariant descriptors of the image to normalise the pixel
values from the image to achieve the invariance. Therefore, images are transformed
to such invariant colour spaces; however the structure of the colours in the image is
sometimes lost. Different colour normalisation methods are chrominance coordinates,
normalised chromatic coordinates, non-iterative comprehensive colour normalisation,
L1L2L3 normalisation and m1m2m3 normalisation. Nevertheless, when the image is
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(a) Sample frame (b) Segmentation

Figure 2.13: Sample frame based on [33] by Kim et al.

(a) Sample frame (b) Segmentation

Figure 2.14: Sample frame based on [7] by Cucchiara et al. Fg. segmentation in
black and shadows in white.

transformed into this invariant colour space some intensity information is normally
removed, which is needed to perform accurate motion segmentation. Furthermore,
the normalisation approaches cannot normally cope with all the cases in only one
normalisation. Nonetheless, the methods which are explained above sometimes are
performed in motion segmentation. Vanrell et al. [67] is a good example which present
a motion segmentation approach which uses a comprehensive colour normalisation
based on background information to cope with illumination changes.

The second one, colour constancy methods, tries to recover the scene illuminant,
in order to remove it from the images. Different colour constancy methods are based
on the white estimation, the recovery of illuminant, gamut methods, Bayesian method
and methods of neural nets. Nevertheless, the best colour constancy approaches need
calibrated images and are high-time consuming.

Based on colour constancy methods, some approaches use the intrinsic images to
remove shadows and to cope with the illuminant problem. Intrinsic image decompo-
sition separates one image into two images: one which records variation in reflectance
(reflectance image) and another which represents the variation in the illumination
across the image (illumination image).

Given that shadows can cause changes in both intensity and colour illumination,
Finlayson et al. [14] try to compute an invariant image which depends only on re-
flectance. Hence, the approach searches for a function of image chromaticity, which
is invariant to the changes in illuminant colour and intensity. First, the approach
find a 1D grey-scale image representation which is illuminant invariant at each im-
age pixel and free of shadows. However, the colour information from the image is
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(a) Sample frame (b) Recovered shadow-free image

Figure 2.15: Sample frame based on [14] by Finlayson et al.

(a) Sample frame (b) Reflectance Image (c) Illumination Image

Figure 2.16: Sample frame based on [71] by Weiss et al.

also lost in this 1D representation. Then, they extend the 1D representation to an
equivalent 2D chrominance representation which is also locally illuminant invariant
and, therefore, shadow free. Finally, the approach recovers a full-colour 3D image
representation which is the same as the original image but with shadows removed.
Nonetheless, part of the colour information is lost when removing the effect of the
scene illumination at each pixel in the image, thereby increasing camouflage problem.
A sample frame is shown in Fig. 2.15 Other approaches such as Nadimi et al. [47] use
a multistage approach, where the bluish effect from the illuminant scene is used plus
a spatio-temporal ratio test and a dichromatic reflection model in order to remove
shadows.

Weiss [71] tries also to extract the intrinsic images. Nevertheless, his approach
uses edge cues instead of colour cues to obtain the reflectance image. This process
requires several frames from a sequence to determine the reflectance edges of the
scene. A reflectance edge is an edge which persists throughout the sequence. Given
reflectance edges, the approach re-integrates the information to derive a reflectance
image. However, the reflectance image also contains scene illuminations because this
approach requires prominent changes in the scene, specifically the position of the
shadows. A sample frame is shown in Fig. 2.16

There are other approaches which use different techniques such as the normalised
cross correlation to eliminate local illuminations (e.g. shadows). However, these
techniques are not usually employed because of their problems with camouflage.

The edge cues are also used in some approaches for motion segmentation. Jabri et
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(a) Sample frame (b) Segmentation

Figure 2.17: Sample frame based on [29] by Jabri et al.

(a) Sample frame (b) Segmentation

Figure 2.18: Sample frame based on [43] by Mckenna et al.

al. [29] use a statistical background modelling and subtraction approach which com-
bine colour (RGB space) and edge information. The background model is computed in
two distinct parts: the colour model and the edge model. On the one hand, a colour
model is represented by two images, the mean and the standard deviation images.
On the other hand, an edge model is built by applying the Sobel edge operator to
each colour channel, thereby yielding horizontal and vertical difference images. The
background model is continuously updated. Background subtraction is performed by
subtracting the colour and edge channels separately using confidence maps, and then
combining the results to obtain the foreground pixels. A sample frame is shown in
Fig. 2.17

McKenna et al. [43] also use colour and edge information to model the background.
The background model combines pixel RGB and chrominance values with local im-
age gradients. The motion segmentation consists of three separate background models
which are combined to obtain the foreground pixels. The first model is built using
the mean and variance for every channel (in RGB) to perform a typical background
subtraction, thereby adapting these parameters for each new frame. A foreground
mask is obtained comparing the current pixel with the model (mean and variance pa-
rameters). The second background model is computed using the mean and variance
from the chrominance values for every pixel to handle the shadows. However, the
use of chrominance information increases the problems with camouflage, for instance
a dark green coat is not distinguishable in front of grass. To handle this kind of
problem, the approach has a third background model which uses gradient informa-
tion. Gradients are estimated using the sobel masks in the horizontal and vertical
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(a) Sample frame (b) Segmentation

Figure 2.19: Sample frame based on [30] by Javed et al.

(a) Sample frame (b) Segmentation

Figure 2.20: Sample frame based on [21] by Heikkilä et al.

directions. Therefore, the background model is represented using the gradient means
and the magnitude variance for every pixel. The foreground is detected comparing
the current pixel with the edge model parameters. Therefore, a pixel is considered
foreground if either chrominance or gradient information supports that classification.
However, hard-edge shadows are still segmented as foreground and the foreground
region segmented contain holes. To handle problem with holes, the approach use the
foreground mask obtained with the first model to fill them. A sample frame is shown
in Fig. 2.18

Javed et al. [30] present a method that uses multiple cues, based on colour and
gradient information. The approach tries to handle different difficulties, such as boot-
strapping (initialization with moving objects), repositioning of static background ob-
jects, ghost and quick illumination changes using three distinct levels: pixel, region
and frame level. At the pixel level, two statistical models of gradients and colour
based on mixture of Gaussians are separately used to classify each pixel as back-
ground or foreground. At the region level, foreground pixels obtained from the colour
model are grouped into regions, and the gradient model is then used to eliminate
regions corresponding to highlights or ghosts. Pixel-based models are updated based
on decisions made at the region level. Lastly, the frame level ignores the colour based
subtraction results if more than 50 percent of the results are considered foreground,
thereby using only gradient subtraction results to handle detect global illumination
changes. Nevertheless, ghosts are not eliminated if the background contains a high
number of edges, while shadows are not eliminated either. A sample frame is shown
in Fig. 2.19
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Figure 2.21: Sample frame based on [30] by Javed et al. Shadows in white colour.

Other approaches use textures to avoid global and local illumination problems.
Heikkilä et al. [21] use textures to model the background. The texture features are
extracted by using a modified Local Binary Pattern operator (LBP) trying to cope
with some of the motion segmentation problems such as background in motion and
global illumination changes. A sample frame is shown in Fig. 2.20. Leone et al. [35]
use texture descriptors based on the coefficients of a Gabor functions decomposition
and photometric properties in order to solve shadows. A sample frame is shown in Fig.
2.21 However, these methods are noise-dependent, the noise in the scene can do that
the textures fails. An improvement of this approach is carried by Yao et al. [74], where
the textures obtained using the LBP are combined with a colour model based on the
RGB space. Another approach which uses textures is proposed by Amato et al. [1],
which uses chromacity information plus textural information in order to avoid local
and global illumination changes. However, texture based approaches usually suffer of
serious failures with camouflages and local illuminations (e.g shadows). Furthermore,
the selection of the size of patches is an intrinsic problem of the textural approaches
because it is dependent of the scene and the objects in the scene.

2.1.2 Temporal Differencing

Approaches based on temporal difference attempt to extract moving regions by mak-
ing use of a pixel-by-pixel difference between consecutive frames in a video sequence
[69]. This kind of method is very adaptive to dynamic scene changes. Neverthe-
less, it generally fails to extract the entire relevant pixels of moving objects, thereby
causing foreground aperture problem. This method also cannot cope with sleeping
objects problem. Approaches based on this method normally incorporate additional
techniques in order to detect these stopped objects. A typical temporal differencing
scheme consists of comparing the current frame with the last frame. Therefore, the
pixels are considered foreground if the difference is over a threshold: Basic Schema
Temporal difference

|It − It−1| > τ (2.3)

The segmentation results depend only on the threshold method used for binarization.
To improve typical temporal difference scheme, some approaches use a three-frame
differencing. Furthermore, to overcome typical temporal differencing defects, some
approaches use hybrid algorithms which combine a three-frame differencing with an
adaptive background subtraction model.
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(a) Sample frame (b) Segmentation

Figure 2.22: Sample frame based on [62] by Spagnolo et al.

Shen [61] is an example of hybrid algorithm which uses RGB, HSI colour spaces,
fuzzy information and temporal difference techniques to achieve motion segmentation.
The segmentation is executed in two steps. In the first step, a fuzzy classification is
carried out by considering the mobility of pixels which is generated by combining the
results from separately thresholded difference images of each RGB channel. In the
second step, falsely detected pixels from the first step are eliminated by using the
previous segmentation result and the motion information obtained from successive
frames. Finally, the HSI colour space is used to eliminate shadows. Spagnolo et al.
[62] also use temporal information to get an accurate segmentation. The approach
combines the use of radiometric similarity between regions to compare pixels, both
in the temporal image analysis and in the background subtraction. A sample frame
is shown in Fig. 2.22

2.1.3 Optical Flow

Lastly, motion segmentation based on optical flow uses characteristics of flow vectors
of moving objects over time to detect change regions in an image sequence. These
methods can segment moving objects in video sequences even from a moving cam-
era. However, most of these methods are computationally highly expensive and very
sensitive to noise. Moreover, most of them cannot be executed in real-time without
specialized hardware [69]. The approach from Mittal et al. [44] above mentioned in
the background subtraction approaches use a hybrid approach which combine optical
flow in conjunction with a normalized colour representation in order to get the motion
segmentation. A sample frame is shown in Fig. 2.23

Another approach which also uses MAP-MRF is presented by Bugeau et al. [5].
Firstly, the camera motion is computed and the images rectified. Secondly, the ap-
proach restrict momentarily the analysis to a subgrid of “moving” pixels (i.e. not
belonging to camera motion) defining a descriptor to characterize them. The descrip-
tor is formed by three different groups of features: the first group is composed of the
coordinates of the point, the second group contains its motion, and the last one con-
tains discriminant photometric features. Thirdly, the pixels selected are merged into
clusters consistent for both colour and motion using a Mean Shift algorithm with auto-
matic multidimensional bandwidth selection. Finally, from the clusters, the complete
pixel-wise segmentation of moving objects is found using a MAP-MRF framework.
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(a) Sample frame (b) Segmentation

Figure 2.23: Sample frame based on [44] by Mittal et al.

Figure 2.24: Sample frames based on [5] by Bugeau et al. Segmentation in red
colour.

The use of spatial, dynamic and photometric features allows the extraction of moving
foreground objects even in presence of illumination changes and fast variations in the
background. However, as the approach only work on a subgrid of pixels, and because
it do not model the background, it is not able to get an accurate segmentation of the
moving object. A sample frames are shown in Fig. 2.24.

2.1.4 Discussion

Once the advantages and drawbacks of existing approaches have been detailed, we
can identify the main contributions of our motion segmentation approach w.r.t. the
state of the art:

A novel theoretical case analysis of motion segmentation problems is presented,
where the performance of each cue used in the literature for segmentation (intensity,
colour, and edges) is exhaustively evaluated, showing the advantages of every cue and
when a cue can be or cannot be applied. To the best of our acknowledge, current
state-of-the-art considers chromatic spaces only, and they do not address most of the
problems identified in our case analysis.

Our hybrid algorithm uses intensity, colour, edges cues and temporal difference,
because each cue solves a particular problem identified in the case analysis. Cue
models have been improved over existing ones, furthermore their combination is a
step forward the current state-of-the-art.

The Chromatic invariant cone model achieves better segmentation results than
the commonly used cylinder model [22, 33]. The invariant gradient model combines
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magnitudes and orientations for edge segmentation while avoiding false edges due to
intense global illumination changes [43, 29].

Using chromaticity only, the assessment of whether a foreground region is a
shadow, a change of global illumination or a dark camouflage is not possible [22, 33].
Approaches using HSV [8, 61] also exhibit this problem.

Other techniques are not be able to work with shadows, highlights and global
illumination changes [65, 19, 72]. We cope with those problems without a significant
increase of computational cost. Other approaches fuse colour and edges cues without
addressing shadow removal [29, 30].

Using the combination of cues, we are able to solve the ghost problem on-the-fly,
instead of requiring a predefined time period or not cope the problem [22, 33, 10, 66,
43, 29].

Finally, the resulting shadow detection can (1) detect and remove chromatic mov-
ing shadows (umbra shadows) and (2) penumbra shadows, while several other methods
are restricted to the latter.



Chapter 3

Enhancing Motion-based
Segmentation

Detection of regions that correspond to moving objects such as vehicles and people in
natural scenes is a significant and difficult problem. But efficient segmentation sim-
plifies the processing on subsequent steps of analysis [17]. The information obtained
from this step is the basis for a wide range of applications such as smart surveillance
systems, control applications, advanced user interfaces, and motion basis diagnosis,
among others [15]. Nevertheless, fast and reliable motion segmentation is an open
and difficult problem due to dynamic changes in natural scenes such as global and
local illumination changes (i.e. shadows and highlights), camouflages, repetitive mov-
ing objects (waving flags, moving tree leaves) or due to physical changes such as
bootstrapping, and ghosts, among others [66]. Frequently used techniques for motion
segmentation are background subtraction, frame differencing, a combination of both,
or optical flow [15, 69, 46, 45, 52]. Even though many algorithms have been proposed
in the literature, the problem of identifying moving objects in complex environment
is still far from being completely solved.

In this chapter, a novel approach which overcomes most known techniques used
for motion segmentation is proposed. The main advantages of the our approach are:
(i) The novel theoretical case analysis, most employed cues in the literature for mo-
tion segmentation are exhaustively analysed in order to find their advantages and
drawbacks. (ii) A new architecture, based on such an analysis, so that a new hybrid
approach which fuses colour, edge, intensity cues and temporal difference has been
developed [27, 25]. (iii) The proposed method can handle non-physical changes (such
as global or local illumination changes and camouflages), physical changes (such as
bootstrapping and ghosts), and sensor dynamic range problems. (iv) Models are also
improved: a chromatic invariant cone model enhances colour segmentation; an invari-
ant gradient model combining magnitude and orientation improves edge segmentation
avoiding false edges (due to intense global illumination changes). Furthermore, (v)
our approach is able to detect dark camouflages, which is distinguished from shadows
and changes of global illumination. Our technique can also (vi) detect ghost prob-
lems on-the-fly without increasing the computational cost. Real-time processing can

31
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be achieved because the method can be parallelizable, due to the pixel-wise nature of
the approach.

The contribution in this chapter is organized as follows. The next chapter presents
a case analysis of anomalies derived from the different cues used for motion segmen-
tation. This leads to our approach to tackle segmentation. Section 3.2 explains the
proposed algorithm, and describes how intensity, colour, edge and temporal differ-
ence are used to solve the aforementioned problems, such as camouflage in chroma,
and ghosts by fusing the four cues. The experimental results are described in section
3.3, where our approach performance is widely analysed using indoor and outdoor
sequences from several popular databases, and compared with several well-known
motion segmentation approaches. Lastly, final section concludes this contribution
and discusses future work.

3.1 A Case Analysis of motion segmentation prob-
lems

Colour Information obtained from a recording camera is based on the sensor response
sc —for Lambertain or perfect matte surfaces— and depends on three components:
the illuminant spectral power distribution L (λ), the object reflectance distribution
R (λ), and the sensor sensitivity Sc (λ), following the equation:

sc =
∫
λ
L (λ)R (λ)Sc (λ) dλ,

where λ denotes the wavelength, and c ∈ {R,G,B} the colour channel, see Fig. 3.1.
Therefore, changes in the illumination —in both brightness and chrominance compo-
nents— modify the sensor response, see Fig. 3.2. The object reflectance may con-
siderably depend on the both the incident-light angle and the viewing angle. It also
may present strong specular components with no information about the object colour.
Finally, it depends on the sensor sensitivity, see Fig. 3.3.

In addition, the sensor dynamic range must be taken into account. This is de-
fined as the ratio between the maximum possible signal versus the noise signal in
dark. Thus, very low or very high brightness distort the observed response. Conse-
quently, these effects should be considered as a source of potential errors during both
background modelling and image segmentation.

Very dark pixels are beyond the sensor dynamic range, since they do not have
enough brightness for reliably compute their chrominance. A similar problem appears
with very light pixels, which have at least one channel component saturated.

A series of experiments with a Macbeth board were designed to explore these
phenomena, see Fig. 3.4. Experiments show as a wrong background model may
be built depending on the illumination conditions during the training step of the
background model (red line in Fig. 3.4). A Macbeth board was first illuminated with
a constant light source. Then, the diaphragm was modified in a series of time steps,
thereby changing the received luminance. The background was modelled during 50
frames. Then, 650 more frames were acquired while changing the aperture.

Fig. 3.5 shows a case analysis of the potential segmentation problems using the
combination of three background models: colour, edges and intensity, and the pixel
value within the sensor dynamic range.
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Figure 3.1: Sensor response. The sensor response depends on the illuminant wave-
length, and on the object reflectance, apart from the sensor sensitivity. (Figure
modified from CS410 notes, Draper, 2006).

Figure 3.2: Illuminant Spectral Power Distribution. The illuminant SPD may vary,
thereby affecting the observed colour. (Figure modified from CS320 notes, Jepson,
2005).

Edges from very dark pixels with not enough brightness can be hidden since they
are beyond sensor dynamic range. And a similar problem appears with very light
pixels. Consequently, cases beyond sensor dynamic range should be addressed using
an intensity model, because both colour and edge models are not suitable, thereby
classifying the pixels as foreground (case FgI) or background (case BgI) depending
on their intensity.

There could be pixels whose Bg. colour model can be computed, although the
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Figure 3.3: Sensor sensitivity. Different sensors present a different response to the
same stimulus. (Figure from http://astrosurf.com/build/70v10d/eval htm).

current image pixels are beyond the sensor dynamic range. Here, neither chrominance
nor edge cues can be used. In such a case, the brightness component of the colour
model can be used as a suitable cue, thereby classifying them as dark/light foreground
(case DF/LF) or background (case BB).

Changes in illumination, despite of being local or global, sudden or gradual (such
as shadows or highlights) are all supposed to entail just variations in the observed
brightness, but not in the chrominance. Thus, a pixel can be considered as foreground
using colour and edge models in the following situations: (i) a pixel is considered
foreground using the colour model when it differs in chrominance with the model
(case FgC); (ii) using the edge model when it shows a gradient change respect to the
model (case FgE). Otherwise the pixel is classified as background (cases BgE, shadow
(S) or highlight (H)).

Foreground pixels whose lower and higher brightness cannot be distinguished from
shadows and highlights, are considered dark/light camouflage (DC/LC, respectively).

Hence, fusing the three models may overcome some of the segmentation problems
such as changes in illumination conditions, camouflage in intensity and camouflage in
chroma, as long as the illuminant has a plain spectral power distribution.

However, there are other anomalies that cannot be disambiguated with the colour,
edges and intensity cues, which are not taken into account in this thesis. Firstly, fore-
ground pixels with the same chrominance, brightness, and gradient as the background
model can not be segmented, so such pixels are considered camouflaged (CaC, CaB,
and CaE respectively). Secondly, intense shadows and highlights (IS/IH) can be clas-
sified as DF or LF, and shadows and highlights (S/H) over zones beyond the sensor
dynamic range can be considered as foreground (FgI). Thirdly, edges of sharp shadows
and highlights (SS, SH) can be segmented (FgE). Finally, local and global changes
in the illuminant chrominance (CI), as well as gleaming surfaces (GS) may cause
false-positive segmentations. So there is still a lot of ground to cover.
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(a)

(b)

Figure 3.4: Experiments on a Macbeth board to test the sensor dynamic range.
Background pixels are drawn in green. The red line denotes the modelled chromi-
nance line, whereas the blue one corresponds to the correct one. (a) This corresponds
to a blue checker which is not observed with enough light during the modelling pro-
cess. (b) In this case, the chrominance of a yellow checker is modelled while some
of the channels are saturated. Consequently, there are noticeable deviations between
the inferred and correct chrominance in both cases.
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3.2 Multicue Image Segmentation

The segmentation task is next presented following a statistical background-subtraction
approach based on the case analysis presented before. Our approach addresses the
analysed cases by combining three background models and a temporal difference al-
gorithm.

Firstly, background models are built and automatic threshold selection for them
are computed. Next, image segmentation using these models is presented and fi-
nally, an approach to combine the models to obtain an accurate segmentation solving
camouflage in chroma and ghosts is showed.

3.2.1 Background Modelling

The approach combines three background models and a temporal difference algorithm.
A sketch of the Background-Modelling Module is shown in Fig 3.6. A Background
Colour Model (BCM) will consist of a chromatic invariant cone representation which
separates both chrominance and brightness component; a Background Edge Model
(BEM) will make use of magnitudes and invariant gradient orientations; a Background
Intensity Model (BIM) will compute the mean and standard deviation for each pixel
intensity; and a Temporal Differencing (TD) algorithm will evaluate the changes
between three consecutive frames.

The background is modelled on a pixel-wise basis [65, 19, 43], which provides the
necessary representation accuracy. Training is carried out by using a window of T

frames. A motion filter
∣∣∣Ica,t − Ĩca

∣∣∣ < max (κmσc
a, ε) is used to remove moving pixels

during a training set of T frames, where Ica,t and Ĩca are the current image value
and median value of pixel ′a′ for each channel c ∈ {R,G,B} respectively, σc

a is the
correspondent standard deviation, κm sets the confidence region, and ε is a small
positive quantity. This process is iterated until convergence. Then, just those pixels
with a representative number of valid values in the T frames are taken into account
for background modelling.

Pixel values of colour, edge and intensity obtained from motion filter are used to
build the background models. On the one hand, pixels whose RGB values are beyond
the dynamic range of the sensor are used to build BCM and BEM. On the other
hand, pixels values beyond the sensor dynamic range are used to build BIM. Those
pixels considered in motion are not valid to build any background model and will be
evaluated using a temporal difference algorithm.

Background Colour Model (BCM)

The BCM is computed according to the chromatic-invariant cone representation
shown in Fig. 3.7: first, the RGB mean μa =

(
μR
a , μ

G
a , μ

B
a

)
and standard devia-

tion σa =
(
σR
a , σ

G
a , σ

B
a

)
of every image pixel a during the time period t = [1 : T1] are

computed.
Once each RGB component is normalised by their respective standard deviation

σc
a, two distortion measures are established during the training period: the brightness

distortion, αa,t, and the chrominance angle distortion, βa,t. The brightness distortion
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Figure 3.6: Background modelling approach. See text for details.

Figure 3.7: Colour-model representation. μa represents the expected RGB colour
value for a pixel a, while Ia is the current pixel value. The line 0μa shows the
expected chromatic line —all colours along this line have the same chrominance, but
different brightness. αa and βa give the current brightness and chrominance angle
distortion, respectively.

can be computed by minimising the distance between the current pixel value Ia,t and
the chromatic line 0μa. The angle between 0μa and 0Ia is, in fact, the chromatic
angle distortion. Thus, the brightness and the chromatic angle distortions are given
by:
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αa,t =

IR
a,tμ

R
a

(σR
a )2

+
IG
a,tμ

G
a

(σG
a )2

+
IB
a,tμ

B
a

(σB
a )2(

μR
a

σR
a

)2

+
(

μG
a

σG
a

)2

+
(

μB
a

σB
a

)2 , (3.1)

βa,t = arcsin

√ ∑
c=R,G,B

(
Ica,t − αa,tμ

c
a

σc
a

)2

√ ∑
c=R,G,B

(
Ica,t
σc
a

)2
. (3.2)

Finally, the Root Mean Square over time of both distortions for each pixel is
computed: ᾱa and β̄a, respectively:

ᾱa = RMS (αa,t − 1) =

√√√√ 1

T1

T1∑
t=0

(αa,t − 1)
2
, (3.3)

β̄a = RMS (βa,t) =

√√√√ 1

T1

T1∑
t=0

(βa,t)
2
, (3.4)

where 1 is subtracted to αa,t, so that the brightness distortion is now distributed
around zero: positive values mean brighter pixels, whereas negative ones mean darker
pixels, with regard to the learnt values. These values are used as normalising factors
so that a single threshold can be set for the whole image. This 4-tuple BCM =<
μa,σa, ᾱa, β̄a > constitutes the pixel colour background model.

Background Edge Model (BEM)

The BEM is built as follows: first the Sobel edge operator is applied to each colour
channel in horizontal and vertical directions. This yields both horizontal Gc

x,a,t =
Sx ∗ Ica,t and vertical Gc

y,a,t = Sy ∗ Ica,t gradient image for each frame during the
training period t = [1 : T ], where c ∈ {R,G,B} denotes the colour channel.

Then, each background pixel gradient is modelled using the gradient mean μGx,a =
(μR

Gx,a, μ
G
Gx,a, μ

B
Gx,a) and μGy,a = (μR

Gy,a, μ
G
Gy,a, μ

B
Gy,a), and gradient standard devi-

ation σGx,a = (σR
Gx,a, σ

G
Gx,a, σ

B
Gx,a) and σGy,a = (σR

Gy,a, σ
G
Gy,a, σ

B
Gy,a) computed from

all the training frames for each channel.
Then, the magnitudes of the gradient mean μG and standard deviation σG are

computed in order to build the background edge model. The orientation of the gradi-
ent (μθ and σθ) is also computed to avoid false edges created by illumination changes.
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μc
G,a =

√
(μc

Gx,a)
2 + (μc

Gy,a)
2; σc

G,a =
√

(σc
Gx,a)

2 + (σc
Gy,a)

2, (3.5)

μc
θ,a = arctan

(
μc
Gy,a

μc
Gx,a

)
; σc

θ,a = arctan
(

σc
Gy,a

σc
Gx,a

)
, (3.6)

where c ∈ {R,G,B} denotes the colour channel. Thus, BEM =< μc
G,a, σ

c
G,a, μ

c
θ,a, σ

c
θ,a >.

Background Intensity Model (BIM)

Finally, the BIM consist on a 2-tuple given by the mean pixel intensity, μI
a and its

standard deviation σI
a. It is computed for those non-in-motion pixels which have a rep-

resentative number of values beyond sensor dynamic range. So, BIM =< μI
a, σ

I
a >.

3.2.2 Automatic Threshold Selection

The thresholds employed for the segmentation task are automatically computed for
each model, as shown next.

Background Colour Model (BCM)

The BCM is completed by an automatic threshold computation for a given detection
rate when a new frame is acquired. First, the normalised distortions are calculated
for each pixel:

ᾰa,t =
αa,t

ᾱa
; β̆a,t =

βa,t

β̄a
. (3.7)

This process is repeated during a temporal window of T2 frames in order to avoid
errors due to an insufficient number of samples. Subsequently, the histograms of
both accumulated measures ᾰa,t and β̆a,t are computed taking into account all pixel
distortions during the temporal window. Detection rates are used to set lower and
higher brightness distortion thresholds, τα1, τα2, and a chrominance threshold, τβ ,
which can be over one to give a confidence region, since the motion filter has eliminated
the outliers and restrict the confidence region for background pixels.

Two thresholds τD = κDτα1 and τL = κLτα2 are set for both dark and light
foreground cases, where the current pixel is beyond the sensor dynamic range. Usually
κD = κL = κ is a factor that specifies the confidence region. Summarizing, the BCM
thresholds are BCMτ =< τα1, τα2, τβ , τD, τL >.

Background Edge Model (BEM)

The BEM uses three thresholds for edge pixel segmentation. A minimum magnitude
gradient threshold (τe) is learnt to know when an edge can be compared using its
oriented gradient. An oriented gradient threshold (τθ) and maximum magnitude
gradient threshold (τG) are learnt for pixel segmentation according to BEM. The



3.2. Multicue Image Segmentation 41

thresholds are computed as τ ce,a = max(κeσ
c
G,a, ε), τ cθ,a = max(κθσ

c
θ,a, σ

c
θ,a), and

τ cG,a = max(κGσ
c
G,a, σ

c
G,a), where κe,κθ, and κG are the factors that set the confidence

region, and κe << κG; and σc
θ,a and σc

G,a are the average standard deviation
computed over the entire image to set a minimum positive quantity. Summarizing,
BEMτ =< τ ce,a, τ

c
θ,a, τ

c
G,a >.

Background Intensity Model (BIM)

The threshold used for pixel segmentation according to BIM is computed as τ Ia =
max

(
κIσI

a, ε
)
, where κI is the factor that sets the confidence region, and ε is a small

positive quantity. So, BIMτ =< τ Ia >.

Temporal Differencing (TD)

Finally, the threshold for temporal differencing segmentation is automatically com-
puted for a given detection rate. A standard deviation is calculated during the three
first frames to evaluate. The histogram of accumulated measures is computed, tak-
ing into account all pixel standard deviation during the three frames. Detection rate
is used to set threshold τr, avoiding outliers. The threshold is finally computed as
τT = max (κT τr, ε), where κT is the factor that sets the confidence region, and ε is a
small positive quantity. Thus, TDτ =< τT >.

3.2.3 Image Segmentation

The segmentation task is done in two steps. The first step is used to obtain the
foreground regions for every model, and the second step is used to fuse the results
achieved in the first step to cope the camouflage in chroma.

Input images can now be segmented by classifying the pixels according to com-
puted background model and the current sensor response. A sketch of the Image-
Segmentation Module is shown in Fig 3.8.

Thus, in the first step four general cases are considered, and a different model is
applied in each one:

• BCM and BEM are applied to those pixels whose current values are inside the
sensor dynamic range, and for which BCM and BEM could be built;

• the brightness component of BCM is applied to segment those pixels whose
current values are beyond this range and have BCM;

• BIM is applied to those pixels which do not have enough values within the
dynamic sensor range during the modelling process.

• and, TD is applied to those pixels whose background was not visible during the
training period and there is no background model available.

As a result, a first step segmentation map Ma,t is computed at each time. Thus,
pixels under the first condition are classified using BCM as background (BgC), high-
light (H), shadow (S), or foreground (FgC); and using BEM as background (BgE),
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foreground (FgE). Those pixels under the second condition are classified as back-
ground (BB), or dark foreground (DF) and light foreground (LF); those under the
third one as background (BgI) or foreground (FgI); and those under the last one as
background (BgTD) or foreground (FgTD). The whole process is summarized accord-
ing to the following equation:

Ma,t = (3.8)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

BgC : ∃BCM ∧ τm < Ica,t < τn ∧ τα1 < ᾰa,t < τα2 ∧ β̆a,t < τβ
S : ∃BCM ∧ τm < Ica,t < τn ∧ ᾰa,t < τα1 ∧ β̆a,t < τβ
H : ∃BCM ∧ τm < Ica,t < τn ∧ ᾰa,t > τα2 ∧ β̆a,t < τβ

FgC : ∃BCM ∧ τm < Ica,t < τn ∧ β̆a,t > τβ
BgE : ∃BEM ∧ τm < Ica,t < τn ∧ ¬(Fθ ∨ FG)
FgE : ∃BEM ∧ τm < Ica,t < τn ∧ Fθ ∨ FG

BB : ∃BCM ∧ Ica,t < τm ∨ τn < Ica,t ∧ τD < ᾰa,t < τL
DF : ∃BCM ∧ Ica,t < τm ∧ ᾰa,t < τD
LF : ∃BCM ∧ Ica,t > τn ∧ ᾰa,t > τL
BgI : ∃BIM ∧ Ica,t < τm ∨ τn < Ica,t ∧ ∣∣IIa,t − μI

∣∣ < τ Ia
FgI : ∃BIM ∧ Ica,t < τm ∨ τn < Ica,t ∧ ∣∣IIa,t − μI

∣∣ > τ Ia
BgTD : �BM ∧ − ∧ σa,t < τT
FgTD : �BM ∧ − ∧ σa,t > τT

where the sensor dynamic range is determined by τm, τn; β̆a,t and ᾰa,t are the nor-
malised distortions for the current test image; and σa,t is the standard deviation for
the current and last two images.

Edge segmentation is achieved based on the following premises:

• Illumination changes modify the gradient magnitude but not the gradient ori-
entation.

• Gradient orientation is not feasible where there are no edges.

• An edge can appear in a place where there were no edges before.

Assuming the first two premises, the oriented gradients will be compared instead
of the gradient magnitudes for those pixels which have a minimum magnitude, in
order to avoid the false edges due to illumination changes:

Fθ =
(
(τ ce,a < V c

G,a,t) ∧ (τ ce,a < μc
G,a)

) ∧ (τ cθ,a < |V c
θ,a,t − μc

θ,a|), (3.9)

For those pixels satisfying the third premise, their gradient magnitudes are com-
pared instead of their orientation magnitudes:

FG =
(¬ (

(τ ce,a < V c
G,a,t) ∧ (τ ce,a < μc

G,a)
)) ∧ (τ cG,a < |V c

G,a,t − μc
G,a|), (3.10)

where the V c
θ,a,t and V c

G,a,t are the gradient orientation and magnitude for every
pixel in the current image, respectively.
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3.2.4 Camouflage in Chroma (case DC/LC)

Despite edge segmentation is less sensitive to global illumination changes than colour
and intensity cue, problems like noise, foreground aperture and camouflage prevents
accurate segmentation of foreground objects. Therefore, handle dark and light cam-
ouflage problems by using only edges is not feasible. Then, the brightness component
of the colour model should be used to solve the foreground aperture difficulty by filling
the foreground object.

Thus, in the second step, the region enclosed by the foreground pixels segmented
in the first step are combined with the thresholded shadows and highlights in order
to solve the foreground camouflage in chroma and avoid global and local illumination
problems, thereby segmenting foreground pixels as dark (DC) and light camouflage
(LC):

DC = Region(FgC ∨DF ∨ LF ∨ FgI ∨ FgE) ∧ kDIS,

LC = Region(FgC ∨DF ∨ LF ∨ FgI ∨ FgE) ∧ kLIH, (3.11)

where kDI = kLI is a factor that specifies the confidence region.
In this second step, shadows (S) and highlights (H) are also modified due to

DC/LC. Furthermore, to avoid noise generated from the edge cues, the foreground
edges obtained for the BEM are filtering using the region created to cope with DC/LC
problem.

An example of image segmentation where camouflage in chroma is solved can be
seen in Fig. 3.9, where the agent near the crosswalk has the jeans dark camouflaged
with the road. The whole process is summarised in Algorithm 1.

3.2.5 Ghost Detection

Segmented input regions are evaluated to assess whether they contain a ghost or a
foreground region based on two premises:

• A ghost corresponds to an object which was represented in the background
model. Therefore, the detected region must belong to the background model.

• A ghost cannot be in motion. Therefore, the detected region does not exhibit
any motion.

Firstly, the boundary and the area from the detected region are compared with
the foreground edges and the region enclosed by these edges. Thus, the foreground
segmentation is compared with the foreground edges obtained from the edge cue to
know the probability that a detected region belongs to the background model or to
the current image. Then, the boundary and the area from the detected region are
also compared with the foreground obtained from the temporal difference algorithm,
to know the probability that the detected region is in motion. Finally, a region is
considered a ghost based on the probabilities obtained in the first step. A region is
detected as a ghost if:
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Algorithm 1 Image Segmentation.

• if BCM and BEM exists for the current pixel (’a’), then:

– if the current pixel (Ica,t) is within the sensor dynamic range (τm < Ica,t <
τn), then:

∗ if it has a different chrominance (β̆a,t > τβ) or different gradient (Fθ ∨
FG), then foreground (FgC, FgE),

∗ else if it has lower brightness (ᾰa,t < τα1) and is outside the enclosed
foreground region (/∈ Region(Fg)), then shadow (S),

∗ else if it has lower brightness and is inside the enclosed foreground
region (∈ Region(Fg)), then dark camouflage (DC),

∗ else if it has higher brightness (ᾰa,t > τα2) and is outside the enclosed
foreground region (/∈ Region(Fg)), then highlight (H),

∗ else if it has higher brightness and is inside the enclosed foreground
region (∈ Region(Fg)), then light camouflage (LC),

∗ otherwise, original background (BgC, BgE).

– else

∗ if it has lower brightness (ᾰa,t < τD), then dark foreground (DF),

∗ else if it has higher brightness (ᾰa,t > τL), then light foreground
(LF),

∗ otherwise, original background (BB).

• else if BIM exists, then:

– if it has lower or higher intensity (
∣∣IIa,t − μI

∣∣ > τ Ia ), then foreground (FgI),

– otherwise, original background (BgI).

• otherwise, no background was visible during the training period and temporal-
differencing algorithm is applied

– if it has different intensity over three frames (σa,t > τT ), then foreground
(FgTD),

– otherwise, original background (BgTD).

GDb =
∏

s∈{B,A}

⎛⎝
∑

a∈Rb

(Rs
b&FgEis)

|Rs
b |

+ kd <

∑
a∈Rb

(Rs
b&FgEbs)

|Rs
b |

⎞⎠
&

∏
s∈{B,A}

⎛⎝
∑

a∈Rb

(Rs
b&FgTDs)

|Rs
b |

< Γm

⎞⎠ (3.12)
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where the first equation line denotes the first premise and the second equation line
the second one; a is the pixel position; Rb is the evaluated region and b is the num-
ber of region; s ∈ {B,A} represents whether the boundary (B) or the area (A) is
evaluated; FgEi represents the foreground edges of the current image, and FgEb of
the background model; |Rs

b | denotes the number of pixels of region b; Km denotes
a confidence region between the probability of belonging to the current image or to
the background model; FgTD represents the foregrounds obtained from the temporal
difference; and τm is a threshold to detect if a region is in motion.

A sketch of the ghost detection approach can be seen in Fig. 3.10, where the
images show how the ghost detection works in a real sequence, images are from the
Hermes Outdoor Cam1 sequence.

3.3 Experimental Results and Comparison Evalua-
tion

Our approach has been tested with several indoor and outdoor sequences under uncon-
trolled environments, where multiple segmentation problems like the ones mentioned
in the introduction appear. These sequences are taken from both well-known public
databases, and own ones. Successful segmentation results have been achieved for all
of these sequences.

In order to evaluate the performance of the proposed approach in a quantitative
way, ground-truth segmentation masks have been generated by manual segmentation.
The sequences segmented are Hermes Outdoor Cam1 from the HERMES database1

(1612 frames @15 fps, 1392 x 1040 PX), CVC Zebra1 sequence from CVC database2

(1343 frames @20 fps, 720 x 576 PX), CVC Machine sequence from CVC database
(797 frames @29 fps, 640 x 480 PX), OneLeaveShopReenter1cor from the CAVIAR
database3 (389 frames @ 25 fps, 384 x 288 PX) used in PETS 2004, and Hall Monitor
from the NEMESIS database4 (300 frames, 352x240 PX). Furthermore, approaches
from other authors [19, 65, 22, 33, 78, 70, 24] have been used for performance com-
parison.

Two well-known and most employed quantitative expressions have been utilized
to evaluate the segmentation performance, Detection Rate (DR) (also called True
Positive Rate) and False Alarm Rate (FAR) [51, 32]:

DR =
TP

TP + FN
; FAR =

FP

TP + FP
, (3.13)

where DR is the ratio between the number of correctly detected pixels to the
total number of pixels in the ground truth data, and FAR is the ratio between the
number of misclassified pixels to the total number of detected pixels. TP, FP and FN
correspond to the true positive, false positive, and false negative pixels comparing the
segmentation results with the ground truth data.

1http://www.hermes-project.eu
2http://iselab.cvc.uab.es
3http://homepages.inf.ed.ac.uk/rbf/CAVIAR
4http://www.ics.forth.gr/cvrl/demos/NEMESIS/hall monitor.mpg
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Figure 3.11: Detection Rate and False Alarm Rate results. First sequence is from
HERMES Database, second and third sequences are from CVC Database, and fourth
sequence is from CAVIAR Database. Our approach has been compared with differ-
ent approaches [19, 65, 22, 78, 33] using a ground-truth manually segmented. Our
algorithm obtains the best detection rate, maintaining the lowest false alarm rate in
all the sequences evaluated.

Fig. 3.11 shows the results of the segmentation process using the DR and the
FAR. Results show that our algorithm obtains the best DR with the lowest FAR in
all the evaluated sequences. The Figs. 3.12, 3.13, 3.14, 3.15, 3.16, 3.17 and 3.18 show
why our approach obtains the best results.

Fig. 3.12 shows the results to compare our approach with other approaches [19, 65,
22, 33, 78] on the Hermes Outdoor Cam1 sequence. The first graph of Fig. 3.12 shows
the number of false negative pixels segmented using the different approaches, and the
second one shows the number of false positive pixels. Frames from 790 up to 1040
correspond to a gradual illumination change. Also, two cars appear into the scene and
several persons are crossing the road through a crosswalk. Therefore, multiple motion
segmentation difficulties appears in this sequence: (i) global illumination changes —
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Figure 3.12: False negatives (first graph) and false positives (second graph) com-
puted from comparing W 4 [19] (colour cyan), Stauffer and Grimson approach [65]
(colour red), Horprasert et al. approach [22] (colour yellow), Codebook [33] (colour
magenta), Zivkovic et al. approach [78] using a shadow detector [51] (colour brown)
and our approach (colour blue), based on the ground truth from the HERMES
database. Our approach obtains the best results. See text for details.

the scene get darker for an instant—, (ii) local illumination changes —shadows from
agents and vehicles—, (iii) camouflage —trousers of agent three when he appears
in the scene—, (iv) dark and light camouflage problems —dark camouflage of the
trousers of the agent three when he is crossing the crosswalk and light camouflage of
the white car with the grey road—, and (v) ghost problem —a car parked begins to
move—.

In the aforementioned sequence, W 4 (cyan line) segments the illumination change
as foreground, and also any shadows of cars and agents. The Stauffer and Grimson
algorithm (red line) cannot always cope with the illumination change and also classifies
the shadows as foreground. The Horprasert et al. approach (yellow line) cannot tackle
the light camouflage (white car with grey road). Codebook (magenta line) is not able
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to differentiate between the illumination change and camouflage in chroma, and the
Zivkovic et al. approach (brown line) segments the illumination changes and all the
shadows like the Stauffer and Grimson approach. However, the version analysed in
this thesis included a shadow detection [51] which has also problems to distinguish
between illumination changes and camouflage in chroma. As it can be seen our
approach is robust to these problems and obtains the best segmentation among the
approaches compared. A significant frame (number 864), shown in Fig. 3.13, has
been selected for qualitative comparison.

Frames from 1340 up to 1460 (last 100 frames showed) in Fig. 3.12 correspond
to a car parked which begins to move, therefore the problem of ghost appears. Our
approach is the only one among the evaluated approaches that can cope with this
problem as soon as it occurs as can be seen in the false positive graph. A significant
frame (number 1411) can be seen in Fig. 3.14.

Figs. 3.13, 3.14, 3.15, 3.16, and 3.17 shows significant frames comparing our ap-
proach with the other approaches [19, 65, 22, 33, 78]. First row shows the original
image, second row is the ground truth, from third up to eighth rows are the seg-
mentation results: third row from W 4 approach [19], fourth row from Stauffer and
Grimson approach [65], fifth row from Horprasert et al. approach [22], sixth row
from Codebook approach [33], seventh row from Zivkovic et al. approach [78] using
a shadow detector [51], and eighth row from own approach. In this figure can be
seen why our approach performs better than other approaches. Our approach obtains
more number of TP along with less number of FP and FN pixels, showing that our
algorithm can tackle global and local illumination problems, problems beyond the
dynamic range, chroma and intensity camouflage problem, bootstrapping problems,
and ghost problem.

In the CVC Zebra1 sequence, four people are involved during the scene. Further,
several vehicles cross the scene in a front plane, and people walk beside various street
lamps and trees. W 4 segments the shadows as foreground and have problems with the
updating process. Stauffer and Grimson approach has problems with shadows and
gradual illumination changes. Horprasert et al. cannot solve the light camouflage
problem (white shirt with the grey road) and cannot cope with saturation problem of
the sky with gradual illumination changes. Codebook cannot also cope with the light
camouflage problem and the saturation problem simultaneously. Zivkovic et al. ap-
proach has also problems with the illumination changes and camouflages, furthermore
the updating system has the sleeping person problem [66] (fg. pixels are segmented
as bg. because the updating system incorporate the fg. motionless objects to the bg.
model). Our algorithm is robust to these problems. Fig. 3.15 presents one frame
where the light camouflage problem described above is observed (white shirt with the
grey road).

In the CVC Machine sequence an agent enters the scene and interacts with a
vending machine, see Fig. 3.16. This scene presents strong illumination changes,
and big saturation with the wall. Dark and light camouflages are also present in
the scene (agent in front of wall). Our algorithm can satisfactorily manage strong
illumination changes, saturation problems, and dark and light camouflage avoiding
sleeping person anomaly. Zivkovic et al. can manage the strong illumination change
using the updating system, but it increases considerably the sleeping person anomaly.
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Figure 3.13: Foreground segmentation comparative using HERMES database. First
image and second image are an Original image and the ground truth from HERMES
Outdoor sequence, light camouflage problem. From third image up to eight image
are the segmentation results using the W 4 approach [19], the Stauffer and Grimson
approach [65], Horprasert et al. approach [22], the Codebook approach [33], the
Zivkovic et al. approach [78] using a shadow detector [51], and our approach, respec-
tively. Segmentation results are coloured in yellow for TP pixels, blue for FN pixels,
and red for FP pixels. Our algorithm obtains more number of TP along with less
number of FP and FN. Light camouflage problem, white car with grey road, and soft
illumination change.
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Figure 3.14: Foreground segmentation comparative using HERMES database. First
image and second image are an Original image and the ground truth from HERMES
Outdoor sequence, ghost problem. From third image up to eight image are the
segmentation results using the W 4 approach [19], the Stauffer and Grimson approach
[65], Horprasert et al. approach [22], the Codebook approach [33], the Zivkovic
et al. approach [78] using a shadow detector [51], and our approach, respectively.
Segmentation results are coloured in yellow for TP pixels, blue for FN pixels, and
red for FP pixels. Our algorithm obtains more number of TP along with less number
of FP and FN. Ghost problem.
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Figure 3.15: Foreground segmentation comparative using CVC database. First
image and second image are an Original image and the ground truth from CVC
Zebra1 sequence. From third image up to eight image are the segmentation results
using the W 4 approach [19], the Stauffer and Grimson approach [65], Horprasert et
al. approach [22], the Codebook approach [33], the Zivkovic et al. approach [78]
using a shadow detector [51], and our approach, respectively. Segmentation results
are coloured in yellow for TP pixels, blue for FN pixels, and red for FP pixels. Our
algorithm obtains more number of TP along with less number of FP and FN. Light
Camouflage due to white shirt with grey road, and sky saturation.
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Figure 3.16: Foreground segmentation comparative using CVC database. First
image and second image are an Original image and the ground truth from CVC
Machine sequence. From third image up to eight image are the segmentation results
using the W 4 approach [19], the Stauffer and Grimson approach [65], Horprasert et
al. approach [22], the Codebook approach [33], the Zivkovic et al. approach [78]
using a shadow detector [51], and our approach, respectively. Segmentation results
are coloured in yellow for TP pixels, blue for FN pixels, and red for FP pixels. Our
algorithm obtains more number of TP along with less number of FP and FN. Strong
illumination and saturation problem.
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Figure 3.17: Foreground segmentation comparative using CAVIAR database. First
image and second image are an Original image and the ground truth from One-
LeaveShopReenter1cor sequence. From third image up to eight image are the seg-
mentation results using the W 4 approach [19], the Stauffer and Grimson approach
[65], Horprasert et al. approach [22], the Codebook approach [33], the Zivkovic et
al. approach [78] using a shadow detector [51], and our approach, respectively. Seg-
mentation results are coloured in yellow for TP pixels, blue for FN pixels, and red
for FP pixels. Our algorithm obtains more number of TP along with less number of
FP and FN. Strong clutter and different illuminants in the same scene.
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Figure 3.18: First row shows the original frames from the Hall Monitor sequence
of the NEMESIS dataset, second row shows the detection results of Wang et al. [70],
and third row shows the detection results from Huang et al. [24]. These images have
been obtained directly from [24]. Fourth row shows the segmentation results of our
proposed approach without applying any morphological operation.

In the sequenceOneLeaveShopReenter1cor, two agents are correctly segmented, see
Fig. 3.17. The colour distribution of the background is very similar to the agents thus
including strong clutter. Furthermore, several oriented lighting sources with different
illuminant are present, dramatically affecting the agent appearance depending on its
position and orientation (bluish effect at right of the corridor, and reddish one at
left). A significant frame of this sequence can be seen in the Fig. 3.17, where dark
camouflage and shadows are correctly solved using our approach.

Fig. 3.18 shows frames from Hall Monitor sequence (first row) comparing Wang et
al. approach [70] (second row), and Huang et al. approach [24] (third row) with our
approach (fourth row). The sequence shows challenging aspects due to noise, shadows,
and camouflage. Wang et al. can not manage correctly noise and camouflage. Huang
et al. is able to manage problems with noise, but shadows are not correctly removed,
and their approach segments regions corresponding to background as foreground, such
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as the region around the legs. Instead, our approach can cope with these issues thus
enhancing segmentation.

By using a combination of cues, each of them is used in a very restrictive way
without compromising the detection rate. Nevertheless, false positive rate is cut
down. Other databases were tested but the available ground truth is not valid for pixel
segmentation comparison, since ground truth describes the position of the bounding
box where the foreground object was detected, instead of its manually segmented
contour.

In order to show the accuracy of our approach it has been tested in a high num-
ber of databases, whose most of them are well-know databases from internet. The
Figs. 3.24,3.25,3.19,3.35,3.36,3.26,3.33,3.27,3.28,3.29, 3.30, 3.31, 3.32, 3.34, 3.21 show
selected frames with the results of our approach in well-knwon datasets. The figures
depicted that our approach is able to work in all kind of scenes under uncontrolled
environments. Independently on the scene type (indoor, outdoor), the camera res-
olution (high, low) or localization, the surface geometry or textures, the quality of
the images (blurred images), the size, the shape, the type or the appearance of the
objects or the background.

Datasets employed: PETS 20015, ATON6, VS-PETS7, CAVIAR8, NEMESIS9,
HERMES10, ATON11, PETS 200612, CVC13, ETHZ14, UMIACS15, MODLAB 16,
VSSN0617, VISOR18, LSVN19.

Fig. 3.19 shows some significant detection results from the above analysed HER-
MES Outdoor Cam1 sequence. Several agents and cars are correctly detected despite
dark and light camouflage, ghost problems, and a soft illumination change.

A crosswalk sequence is analysed in Zebra1 (CVC database, 1344 frames @ 25fps,
720x576 pixels). Four people are involved during the scene. Further, several vehicles
cross the scene in a front plane, and people walk besides various streetlamps and
trees, resulting in multiple, and partial camouflage of the agents.

Significant processed frames are shown in Fig. 3.20 depicting the detection results
using our final approach. In this figure, it can be seen as the four agents are correctly
detected, despite local illumination and camouflage problems. Thus, part of the agents
are sometimes not detected due to the camouflage problem. Furthermore, some pixels
belonging to the trees are detected because the background in motion problem is not
being tackled in this work.

5ftp://ftp.pets.rdg.ac.uk/pub/PETS2001
6http://cvrr.ucsd.edu/aton/
7ftp://ftp.pets.rdg.ac.uk/pub/VS-PETS/
8http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/
9http://www.ics.forth.gr/cvrl/demos/NEMESIS/hall monitor.mpg

10http://www.hermes-project.eu
11http://cvrr.ucsd.edu/aton/shadow/
12http://pets2006.net/
13http://iselab.cvc.uab.es/
14http://www.vision.ee.ethz.ch/datasets/
15http://www.umiacs.umd.edu/users/
16http://www.na.icar.cnr.it/ maddalena.l/MODLab/MODseq.html
17http://imagelab.ing.unimore.it/vssn06/
18http://www.openvisor.org/video categories.asp
19http://vision.gel.ulaval.ca/ CastShadows/
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(a) (b)

(c) (d)

(e) (f)

Figure 3.19: Foreground detection results from HERMES Outdoor Cam1 sequence
using our final approach. Several agents and cars are involved in the scene and they
are correctly detected despite dark and light camouflage, ghost problems, and a soft
illumination change.

In the Fig. 3.21 some significant frames are shown. The agent in the sequence is
accurately detected despite the strong illumination change, the saturation in the left
part of the scene, and the reflected shadow over the floor.

In the sequence OneLeaveShopReenter1cor (CAVIAR dataset2, 389 frames @ 25
fps, 384 x 288 pixels), two agents are segmented simultaneously, in spite of motion
segmentation problems such as camouflage, local illumination problems, among oth-
ers. The background colour distribution is so similar to agent one that it constitutes



60 ENHANCING MOTION-BASED SEGMENTATION

(a) (b)

(c) (d)

(e) (f)

Figure 3.20: Foreground detection results from Zebra1 sequence using our final
approach. The four agents are correctly detected. However, the camouflage problem
sometimes appear. Furthermore, some tree pixels are erroneously detected because
background in motion (waving tree) is not tackled in our approach.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.21: Foreground detection results from CVC Machine sequence using our
final approach. The agent is accurately detected despite the strong illumination
change, the saturation in the left part of the scene, and the reflected shadow over the
floor.
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a strong source of clutter. Furthermore, several oriented lighting sources with differ-
ent illuminant are present, dramatically affecting the agent appearance depending on
its position and orientation (notice the bluish effect on the floor on the right of the
corridor, and the reddish one on the floor on the left of the corridor).

Significant processed frames are depicted in Fig. 3.22 showing the detection results
using our approach fusing colour, intensity and edge cues. In this figure, it can be
seen how the two agents are correctly segmented, thereby handling problems with
shadows, dark and light camouflages, etc. Nevertheless, some parts of the agent one
are not accurately segmented due to camouflage problem in intensity and chroma, see
Fig. 3.22.(a). Furthermore, some shadows are segmented due to the problem with
the floor reflectance and the different illuminants in the scene, see Fig. 3.22.(c).

The sequence DATASET1 TESTING CAMERA1 (PETS 2001 database, 2688
frames @ 29.97 fps, 768 x 576 pixels) presents a high variety of agents entering and
leaving the scene: three isolated people, two groups of people, one isolated person,
three cars and a person who exits from a parked car.

Some significant processed frames are depicted in Fig. 3.23, showing the detection
results using our final approach in the sequence DATASET1 TESTING CAMERA1
from the PETS2001 database. In this figure, it can be seen how the agents and
cars are correctly detected despite all motion segmentation problems which can be
found in this sequence. Nevertheless, some part of the car shadows are erroneously
detected because intense local illumination, such as intense shadow, causes edges
segmentation. Moreover, some part of the roof and a part of the window is sometimes
detected because of BCM problems, when handling the global illumination changes.
Furthermore, the window and the parked green car are indefinitely detected because
this approach does not have updating process, and it cannot cope with incorporated
objects problem. An updating process is required in order to detect the motionless
green car and incorporate it to the background.

Fig. 3.24 depicts significant processed frames, showing the detection results using
our final approach in the VS PETS sequence. In this figure, it can be seen how
football players and the ball are correctly detected despite the players are always in
the scene. Advertisements from the upper part of the frames are also detected because
they are changing along the sequence. Furthermore, our algorithm is able to detect
all the mobile objects without taking into account the size.

Significant processed frames are depicted in Fig. 3.25, showing the detection
results using our final approach in the Intelligentroom indoor sequence from the ATON
database. In this figure, it can be seen how the agent is correctly detected despite the
low quality of the image, which presents a strong noise, blurred image and shadows.

Fig. 3.26 depicts significant processed frames, showing the detection results using
our final approach in CienciesCNM3 sequence from CVC database. In this figure, it
can be seen how the agents are accurately in spite of the saturated sky, and the agents
are partially occluded by the background.

Fig. 3.27 depicts significant processed frames, showing the detection results us-
ing our final approach in the Central pedX1 sequence from the ETHZ database. In
this figure, it can be seen how multiple agents, cars, bikes and motorbikes are de-
tected despite the very low quality of the image, which presents a strong noise, and
a blurred image. However, the camouflage problem sometimes appear due to the low
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(a) (b)

(c) (d)

(e) (f)

Figure 3.22: Foreground detection results from CAVIAR database using our final
approach fusing colour, intensity and edge cues. The two agents are correctly detected
despite the sequence exhibits a different illumination due to several different lighting
sources. However, some shadows are segmented due to the problem with the floor
reflectance and change of the illuminant. Furthermore, some parts of the agent one
are not accurately segmented due to camouflage problem in intensity and chroma.
Image notation: each red ellipse represents each detected object and magenta lines
denote their contour.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.23: Foreground detection results from PETS 2001 database using our
final approach. All the agents and vehicles are correctly detected. Nevertheless,
some vehicle shadows are detected due to intense local illumination, and some part
of the roof and a part of window is sometimes detected due to BCM problems with
the global illumination changes. Furthermore, the window and the parked green car
are indefinitely detected because this approach does not have updating process.

quality of the image. Furthermore, some tree pixels are erroneously detected because
background in motion (waving tree) is not tackled in our approach.

Significant processed frames are shown in Fig. 3.28 depicting the detection results
using our final approach in the Laboratory sequence from the ATON database. In
this figure, it can be seen how the two agents are correctly detected despite the big
problems with the camouflage and the shadows presented. The agents appears in
the scene walking and running at different speeds. The detection is achieved thereby
showing that our approach is invariable to the frame rate. However, the camouflage
problem sometimes appear in some part of the agents. An updating process is re-
quired in order to incorporate the filling cabinet opened along the sequence into the
background.

Fig. 3.29 depicts significant processed frames, showing the detection results using
our final approach in the Rats BlackWhiteboxr sequence. In this figure, it can be
seen how the rat is detected despite the problems with the camouflage and shadows
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(a) (b)

(c) (d)

(e) (f)

Figure 3.24: Foreground detection results from VS PETS sequence using our final
approach. The players and the fotball are correctly detected despite the players are
always in the scene, hence our approach can detect all the foreground objects without
taking into account the size. Advertisements from the upper part of the frames are
also detected because they are changing along the sequence.



66 ENHANCING MOTION-BASED SEGMENTATION

(a) (b)

(c) (d)

(e) (f)

Figure 3.25: Foreground detection results from ATON Intelligentroom sequence
using our final approach. The agent is accuratelly detected despite the blurred and
noisy image, and the shadows in the sequence.

presented. Notice that in spite of colour images the sequence does not have chromi-
nance and all the detection achieved is using the dark and light camouflage process.
However, the camouflage problem sometimes appear in some part of the rats due to
the lack of change in intensity and chroma.

Fig. 3.30 depicts some significant frames, showing the detection results using
our final approach in the Campus sequence from ATON database. In this figure, it
can be seen how the agents and the cars are detected despite the problems with the
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(a) (b)

(c) (d)

(e) (f)

Figure 3.26: Foreground detection results from CVC CienciesCNM3 sequence using
our final approach. Several agents are involved in the scene and they are accurately
detected in spite of the saturated sky, and the agents are partially occluded by the
background.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.27: Foreground detection results from ETHZ Central pedX1 sequence us-
ing our final approach. Multiple agents, cars, bikes and motorbikes are detected de-
spite the very low quality of the image, which presents a strong noise, and a blurred
image. However, the camouflage problem sometimes appear due to the image low
quality. Furthermore, some tree pixels are erroneously detected because background
in motion (waving tree) is not tackled in our approach.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.28: Foreground detection results from ATON Laboratory sequence using
our final approach. the two agents are correctly detected despite the big problems
with the camouflage and the shadows presented. The agents appears in the scene
walking and running at different speeds. The detection is achieved thereby showing
that our approach is invariable to the frame rate. However, the camouflage problem
sometimes appear in some part of the agents.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.29: Foreground detection results from Rats BlackWhiteboxr sequence us-
ing our final approach. The rat is detected despite the problems with the camouflage
and shadows presented. Notice that in spite of colour images the sequence does not
have chromiance and all the detection achieved is using the dark and light camouflage
process. However, the camouflage problem sometimes appear in some part of the rats
due to the lack of change in intensity and chroma.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.30: Foreground detection results from ATON Campus sequence using our
final approach. the agents and the cars are detected despite the problems with the
low quality of the sequence, the blurred image and the strong shadows presented.
However, the camouflage problem sometimes appear in some part of the car because
the camouflage mask can not be correctly build.
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low quality of the sequence, the blurred and noisy image and the strong shadows
presented. However, the camouflage problem sometimes appear in some part of the
car because the camouflage mask can not be correctly build.

Significant processed frames are depicted in Fig. 3.31, showing the detection re-
sults using our final approach in the Ismael sequence from UMIACS. In this figure, it
can be seen how the agent is correctly detected despite the low quality of the image,
and the big agent cluttered and occluded with background objects. However, some-
times the dark/light camouflage mask can not be correctly build due to camouflage
in intensity and chroma at the same time. In this figure can be observed that our
approach can obtain an accurate segmentation without taking into account the size
of the foreground object.

Fig. 3.32 depicts some significant frames, showing the detection results using our
final approach in the Msa sequence from MODLAB database. In this figure, it can
be seen how the agent and the bag are correctly detected despite the problems with
the reflected shadows in the floor and in the column. The bag is indefinitely detected
because our approach does not have updating process, since this problem is not tackle
in this approach.

Significant processed frames are depicted in Fig. 3.33, showing the detection
results using our final approach in the indoor sequence S3 T7 A Cam4 from the
PETS2006 database. The scene presents multiple problems, saturation over the floor
due to the different sources of illumination. Furthermore, multiple agents are in the
scene with different colour appearance, therefore camouflage in intensity, in chroma
and both are observed in the scene. The agents also exhibits strong shadows which
are reflected over the floor. In this figure, it can be seen how all the multiple agents
presented in the scene are correctly detected, thereby handling problems with strong
shadows, saturations, dark and light camouflages, etc. Nevertheless, sometimes some
parts of the agents one are not accurately segmented due to camouflage problem, see
Fig. 3.33.(c). Furthermore, some shadows are segmented due to the problem with
the floor reflectance and change in chroma, see Fig. 3.33.(i).

Significant processed frames are shown in Fig. 3.34 depicting the detection results
using our final approach in the Camera1 070605 sequence from VISOR database,
which is employed as main corpus in the VIDIVIDEO European project and in the
VSNN06 conference. In this figure, it can be seen how the multiple agents are correctly
detected despite the big camouflage between one of the agents with the floor and the
columns, and the problems with the saturations and the soft shadows. The approach
show an accurate detection independent on the number of the agents in the scene. In
(e) one agent is reflected in the rear window and both are detected.

Fig. 3.35 depicts significant processed frames, showing the detection results using
our final approach in a synthetic sequence from HERMES database. This sequence is
a synthetic copy of the HERMES Outdoor Cam1 showed in the Fig. 3.19. In the Fig.
3.35, it can be seen how the agents and cars are correctly detected thereby showing
that our approach is also able to work with synthetic images. The frames showed in
the Fig. 3.35 are the same frames that are presented in the Fig. 3.19, both figures
show similar results.

Significant processed frames are depicted in Fig. 3.36, showing the detection
results using our final approach in a augmented reality sequence from HERMES
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(a) (b)

(c) (d)

(e) (f)

Figure 3.31: Foreground detection results from UMIACS Ismail sequence using our
final approach. The agent is correctly detected despite the low quality of the im-
age, and the big agent cluttered and occluded with background objects. However,
sometimes the dark/light camouflage mask can not be correctly build due to cam-
ouflage in intensity and chroma at the same time. Our approach obtains a accurate
segmentation without taking into account the size of the foreground object.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.32: Foreground detection results from MODLAB Msa sequence using our
final approach. the agent and the bag are correctly detected despite the problems
with the reflected shadows in the floor and in the column. The bag is indefinitely
detected because it is not included in the background, since this problem is not tackle
in this approach.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.33: Foreground detection results from PETS 2006 sequence
S3 T7 A Cam4 using our final approach. All the agents presented in the scene are
correctly detected despite the escene presents multiple problems, saturations, strong
and reflected shadows over the floor, and there is several agents which presents
different colour apparence allowing all camouflage problems. However, sometime
some parts of the agent one are not accurately segmented due to camouflage
problem, see (c). Furthermore, some shadows are segmented due to the problem
with the floor reflectance and the change in chroma, see (i).

database. In this sequence the HERMES Outdoor Cam1 sequence, Fig. 3.19, is
virtually augmented with agents and cars. In the Fig. 3.36, it can be seen how the
agents and cars from the augmented reality are correctly detected, thereby showing
that our approach is also able to detect the real one, but also the virtual ones.

Summarazing all the sequences analysed 3.24, 3.25, 3.19, 3.35, 3.36, 3.26, 3.33,
3.27, 3.28, 3.29, 3.30, 3.31, 3.32, 3.34, 3.21, shows a good detection despite all the
problems described in the case analysis.

In spite of the good results achieved in all the database tested, there are some
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(a) (b)

(c) (d)

(e) (f)

Figure 3.34: Foreground detection results from VSSN06 Camera1 070605 sequence
using our final approach. The multiple agents in the scene are correctly detected
despite the different agents colour appearence and big camouflage that exhibits some
agents with the floor and the columns, and the problems with the saturation in the
left part of the scene. The approach shows accuratelly segmentation independenty
of the number of the agents in the scene.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.35: Foreground detection results from Synthetic HERMES Outdoor se-
quence using our final approach. The cars and the agents are detected thereby
showing that our approach is also able to work with synthetic images.

problems not solved yet. Some of them are problems not tackled in this thesis such as
the background in motion, see figure 3.37, or when there is a camouflage in intensity
and chromaticity at the same time. However, such as it can be seen in the figures
3.37, 3.38, 3.39, and 3.40 the shadow problem is also not solved. The main problem
is that the approach is able to cope with achromatic shadow, however it fails when
the chroma of the shadow change such as it is explained in the case analysis section
3.1.

Significant processed frames are depicted in Fig. 3.37, showing the detection
results using our final approach in the Outdoor Cam1 sequence from CVC database.
This sequence contains most of the problems commented in the case analysis, heavily
background in motion due to waving tree, chromatic shadows, saturations and all
types of camouflages. Our approach achieves the detection of the agents, however the
shadows are also detected because of the change in chroma. Furthermore, some tree
pixels are erroneously detected because background in motion (waving tree) is not
tackled in our approach.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.36: Foreground detection results from HERMES Outdoor Augmented Re-
ality sequence using our final approach. In this sequences has been incorporated
virtual cars and agents. Our approach is able to detect the real one, but also the
virtual ones.
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(a) (b)
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(e) (f)

Figure 3.37: Foreground detection results from CVC Outdoor Cam1 sequence us-
ing our final approach. This sequence contains heavily background in motion due
to waving tree, chromatic shadows, saturations and all types of camouflages. Our
approach achieves the detection of the agents, however the shadows are also detected
because of the change in chroma. Furthermore, some tree pixels are erroneously
detected because background in motion (waving tree) is not tackled in our approach.

Fig. 3.38 shows significant processed frames depicting the detection results using
our final approach in the HallwayI sequence from LVSN database. This sequence
contains moving cast shadows from the agents in the floor and also in the walls which
have a change in the chroma. Our approach is able to detect all the agents in the
sequence, however most of the shadows are also detected due to this change in the
chroma.

Significant processed frames are depicted in Fig. 3.39, showing the detection
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(a) (b)

(c) (d)

(e) (f)

Figure 3.38: Foreground detection results from LVSN HallwayI sequence using our
final approach. This sequence contains moving cast shadows from the agents in the
floor and also in the walls which have a change in the chroma. Our approach is
able to detect all the agents in the sequence, however most of the shadows are also
detected due to this change in the chroma.
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(c) (d)

(e) (f)

Figure 3.39: Foreground detection results from LVSN HighwayIII sequence using
our final approach. This sequence contains a highway with high density of vehicles.
Our approach is able to detect all the vehicles and motorbikes in spite of all of them
exhibits different colour appearance and moves fast compared with the frame rate of
the image, however the shadows are also detected because the shadows have a change
in his chromaticity. Our approach is independently in the size or the velocity of the
foreground objects.
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results using our final approach in the HighwayIII sequence from LVSN database.
This sequence contains a highway with high density of vehicles. Our approach is able
to detect all the vehicles and motorbikes spite of all of them exhibits different colour
appearance and moves fast compared with the frame rate of the image, however the
shadows are also detected because of the change in chroma. The figure shows that
our approach is independently in the size or the velocity of the foreground objects.

Fig. 3.40 shows significant processed frames depicting the detection results using
our final approach for the HERMES ETSEdoor day21sequence from the HERMES
database.. This very long sequence contains strong moving cast shadows from the
agents which have a change in the chroma. Our approach is able to detect all the
agents in the sequence, however the chromatic shadows are also detected due to this
change in the chroma.

The depicted frames from all the selected database shows that our approach is
able to work in all type of scenes under uncontrolled environments.

Ultimately, some remarks on real-time requirements are here discussed. Significant
speed improvements of the previously presented technique can be achieved because of
the pixel-based nature of the approach, so the algorithm can be parallelizable. The
current system is implemented as a Matlab prototype, without a careful code opti-
misation. Subsequent implementations of bottleneck modules in C++ have yielded
speed improvements over 10-100 times the computation time of specific, most time-
consuming functions. This would allow the system to process previously described
sequences near real time.

3.4 Discussion

A case analysis of motion segmentation has been presented by taking into account the
problems associated with the use of different cues such as colour, edge and intensity.
This has allowed us to define when to use each model. Then, based on this case
analysis, different motion segmentation problems have been solved.

The approach presented in this chapter combines colour, intensity and edge cues,
and a temporal differencing technique in a collaborative architecture, in which each
model is devoted to a specific task. The background model of each cue has been
improved with respect to the current state of the art. A chromatic invariant cone
model is used as colour model, and an invariant gradient orientation combined with
their magnitudes is used as edge model, which is able to avoid false edges due to intense
global illumination changes. These are performed by a particular algorithm, but they
can be substituted by enhanced ones without modifying the architecture itself. Hence,
this structured framework combines in a principal way the main advantage of each
cue. In this way, by taking advantage of several cues, the system is allowed to benefit
from all the cues’ capabilities.

The proposed hybrid approach can cope with different colour problems as (i) dark
and light foreground. Furthermore, it solves problems with (ii) the dynamic range
(problems associated with saturation and lack of colour problems) using intensity
cues. The approach also tackles (iii) camouflage in intensity and (iv) camouflage in
chroma, (v) avoiding global and local (shadows and highlights) illumination problem.
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Figure 3.40: Foreground detection results from HERMES ETSEdoor day21 I4 se-
quence using our final approach. This sequence contains moving cast shadows which
have a change in the chroma. Our approach is able to detect all the agents in the
sequence, however the agent shadows are also detected due to this change in the
chroma.
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Therefore, it can simultaneously differentiate these camouflages from the illumination
changes. In addition, the approach can cope (vi) with bootstrapping and (vii) ghosts
problems. But also, it can (viii) reduce the false positives using each cue indepen-
dently. Therefore, our hybrid approach reduces the number of false negatives and
false positives, and increases the detection rate.

Experiments on complex indoor and outdoor scenarios have yielded robust and
accurate results, thereby demonstrating the ability of our system to deal with uncon-
strained and dynamic scenes. Therefore, our approach can work in indoor, outdoor
scenes, with high or low resolution, with noise and blurred images, and no need
calibrated images. Furthermore, it is also independent on the illumination and the
illuminant on the scene. Moreover, size, appearance, number, and velocity of the
objects is not important for our motion segmentation approach. This is because it
does not make any a-priori assumptions about camera location, surface geometries,
surface textures, shape and types of the objects or the background.

Some remarks have to be considered, although it is not needed any calibration for
the camera, and no matter where is situated, or the quality of the images from it. In
order to use our motion segmentation approach the camera have to be fixed. Since,
for modelling the background a static background is needed.

Our approach copes with the non-physical changes in the scene such as local
and global illumination problems. Nonetheless, it does not cope with the physical
changes in the scene such as when objects are deposited or removed from the scene.
Then, in the future work, an updating process should be embedded to the approach
in order to incorporate objects to the background model. Furthermore, the use of
a pixel-updating process can help to reduce the false positive pixels obtained by
using the intensity mask due to drastic illumination changes. In addition, detected
motionless objects should be part of a multilayer background model. Furthermore,
colour invariant normalisations or colour constancy techniques can be used to improve
the colour model. The edge model can be enhanced avoiding false edges due to
local intense illumination changes. Further, edge linking or B-spline techniques can
be used to avoid the partial loss of foreground borders due to camouflage, thereby
improving the edge mask. Lastly, the discrimination between the agents and the local
environments can be enhanced by using of new cues such as texture information or
high-level information such as tracking.



Chapter 4

Detection and Removal of
Chromatic Moving Shadows

A fundamental problem for all automatic video surveillance systems is to detect ob-
jects of interest in a given scene. A commonly used technique for segmentation of
moving objects is background subtraction [45], as stated in the previous chapters of
this thesis. This involves detection of moving regions (i.e., the foreground) in an image
by differencing the current image and a reference background image in a pixel-by-pixel
manner. Usually, the background image is represented by a statistical background
model, which is initialised over some time period.

An important challenge for foreground segmentation is the impact of shadows.
Shadows can be divided into two categories: static shadows and dynamic (or moving)
shadows. Static shadows occur due to static background objects (e.g., trees, buildings,
parked cars, etc.) blocking the illumination from a light source. Static shadows can
be incorporated into the background model, while dynamic shadows have shown to
be more problematic. Dynamic shadows are due to moving objects (e.g., people,
vehicles, etc.). The impact of dynamic shadows can be crucial for the foreground
segmentation, and cause objects to merge, distort their size and shape, or occlude
other objects. This results in a reduction of computer vision algorithms’ applicability
for e.g, scene monitoring, object recognition, target tracking and counting.

Dynamic shadows can take any size and shape, and can be both umbra (dark
shadow) and penumbra (soft shadow) shadows. Penumbra shadows exhibit low val-
ues of intensity but similar chromaticity values w.r.t. the background, while umbra
shadows can exhibit different chromaticity than the background, and their inten-
sity values can be similar to those of any new object appearing in a scene. When the
chromaticity of umbra shadows differs from the chromaticity of the global background
illumination, we define this as chromatic shadow. Consequently, umbra shadows are
significantly more difficult to detect, and therefore usually detected as part of moving
objects.

When a shadow has successfully been detected it is usually removed instantly,
since it is the object which is of interest for further processing and not the shadow.
As a result, the information the shadow brings is lost. An interesting idea is to use this
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information to improve other aspects of object and shadow detection and tracking.
Concretely, if a detected shadow is tracked over time instead of being discarded, it
could be used to improve the shadow detection and possible the object detection and
tracking as well.

In this chapter, firstly a bottom up approach for detection and removal of chro-
matic moving shadows in surveillance scenarios is proposed. Secondly, a top-down
approach based on a tracking system has been developed in order to enhance the
chromatic shadow detection. In the bottom-up part, we present a novel technique
based on gradient and colour models for separating chromatic moving shadows from
detected moving objects. Firstly, both a chromatic invariant colour cone model and an
invariant gradient model are built to perform automatic segmentation while detecting
potential shadows. In a second step, regions corresponding to potential shadows are
grouped by considering ”a bluish effect” and an edge partitioning. Lastly, (i) tempo-
ral similarities between local gradient structures and (ii) spatial similarities between
chrominance angle and brightness distortions are analysed for all potential shadow
regions in order to finally identify umbra shadows.

In the top-down part, after detection of objects and shadows both are tracked
using Kalman filters in order to enhance the chromatic shadow detection. Firstly,
this implies a data association between the blobs (foreground and shadows), and
Kalman filters. Secondly, an event analysis of the different data association cases are
performed, and occlusion handling is managed by a Probabilistic Appearance Model
(PAM). Based on this association, temporal consistency is searched in the association
between foreground (FG) and shadow (SH) and their respective Kalman Filters, and
several FG-SH association cases are studied. As a result, lost chromatic shadows are
correctly detected. Finally, the tracking results are used as feedback to improve the
shadow and object detection.

The remainder of the chapter is organised as follows. The related methodology
in the field of shadow detection and object tracking will be discussed in section 4.1,
along with our contributions to this subject. In section 4.2, the theoretical concept
of our approach is outlined. The algorithm for foreground segmentation, along with
the detection and removal of chromatic moving shadows are described in section 4.3.
The top-down process used to enhance the shadow detection is described in section
4.4. Finally, we present experimental results in section 4.5 and concluding remarks in
section 4.6.

4.1 Related Methodology

Shadow detection is an extensive field of research within computer vision. Even
though many algorithms have been proposed in the literature, the problem of detec-
tion and removal of shadows in complex environment is still far from being completely
solved.

A common direction is to assume that shadows decrease the luminance of an
image, while the chrominance stays relatively unchanged [7, 33]. However, this is
not the case in many scenarios, e.g., in outdoor scenes. Other approaches applies
geometrical information. Onoguchi [48] uses two cameras to eliminate the shadows of
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pedestrians based on object height. However, objects and shadows must be visible to
both cameras. Ivanov et al. [28] use a disparity model, which is invariant to arbitrarily
rapid changes in illumination, for modelling background. However, to overcome rapid
changes in illumination, at least three cameras are required. in [57], Salvador et al.
use the fact that a shadow darkens the surfaces, on which it is cast, to identify an
initial set of shadowed pixels. This set is then pruned by using colour invariance
and geometric properties of shadows. It should be noted that most of the approaches
which applies geometrical information normally requires shadows to be on a flat plane.

Another popular approach is to exploit colour differences between shadow and
background in different colour spaces. In [8], Cucchiara et al. use the hypothesis that
shadows reduce surface brightness and saturation while maintaining hue properties
in the HSV colour space. While Schreer et al. [58] adopt the YUV colour space. In
[22, 33], Horprasert et al. and Kim et al. build a model in the RGB colour space to
express normalised luminance variation and chromaticity distortions. However, these
methods require all illumination sources to be white, and assume shadow and non-
shadow have similar chrominance. A number of approaches use textures to obtain a
segmentation without shadows, such as Heikkila et al. [21] which uses Local Binary
Patterns. However, it fails to detect umbra shadows.

To overcome some of these prior mentioned shortcomings, some authors use colour
constancy methods, combine different techniques or use multi-stage approaches. In
addition to scene brightness properties, [63] uses edge width information to differen-
tiate penumbra regions from the background. In [14], Finlayson et al. use shadow
edges along with illuminant invariant images to recover full colour shadow-free images.
Nonetheless, a part of the colour information is lost in removing the effect of the scene
illumination at each pixel in the image. Weiss [71] uses the reflectance edges of the
scene to obtain an intrinsic image without shadows. However, this approach requires
significant changes in the scene, and as a result the reflectance image also contains
the scene illumination. Martel et al. [41] introduce a nonparametric framework based
on the physical properties of light sources and surfaces, and applies spatial gradient
information to reinforce the learning of model parameters. Finally, [47] applies a
multi-stage approach for outdoor scenes, which is based on a spatio-temporal albedo
test and dichromatic reflection model. A comparative and evaluation study of shadow
detection techniques can be found in [51].

For chromatic shadow detection we also apply a multi-stage approach inspired by
[47] but we use colour and gradient information, together with known shadow prop-
erties. The contribution of our approach for chromatic shadow detection is threefold:
(i) We combine an invariant colour cone model and an invariant gradient model to
improve foreground segmentation and detection of potential shadows. (ii) We extend
the shadow detection to cope with chromatic moving cast shadows by grouping po-
tential shadow regions and considering ”a bluish effect”, edge partitioning, temporal
similarities between local gradient, and spatial similarities between chrominance angle
and brightness distortions. (iii) Unlike other approaches, our method does not make
any assumptions about camera location, surface geometries, surface textures, shapes
and types of shadows, objects and background.

In order to enhance the shadow detection a top-down architecture is presented in
a second step, where Kalman filters are used for tracking. Shadows can be lost for
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Figure 4.1: Flowchart for the shadow detection and tracking system.

a number of frames of a video sequence, and in these cases the use of Kalman filters
to track the shadows can improve the shadow detection. Tracking is an extensive
field of research within computer vision. In general tracking can be divided into four
main approaches: point [68], kernel [43], silhouette [39] and body model tracking [34].
Body model tracking is computationally expensive and different models are required
for different objects. Silhouette tracking suffers from initialization difficulties [23].
Furthermore, compared to point tracking, kernel tracking appears to be more robust,
because point tracking has problems with occlusions, missdetection, entries and exits
of objects. According to [75] colour is the most popular feature in kernel tracking.
Many kernel tracking algorithms use a primitive geometric shape combined with ap-
pearance probability densities or appearance templates based on colour features, e.g.
[59, 54, 73, 9, 56].

In order to enhance the chromatic shadow detection, a kernel tracking approach
is therefore applied, which uses colour and edge information as features, along with
shape and appearance descriptions for object representation. A high level scheme for
the shadow detection and tracking approach can be seen in Fig. 4.1.

4.2 Analysis of Shadow Properties

Colour information ρ at a given pixel a obtained from a recording camera supposing
Lambertian surfaces depends on four components: the Spectral Power Distribution
(SPD) of the illuminant denoted E(λ), the surface reflectanceR(λ), the sensor spectral
sensitivity Q(λ) evaluated at each pixel a and a shading factor σ.

ρa = σ

∫
E(λ)R(λ)Qa(λ)dλ (4.1)

The surface reflectance R(λ) depends on the material. Hence, every material have
different response to the same illumination change.

4.2.1 Applying the bluish effect

In outdoor scenes, the environment is illuminated by two light sources: a point light
source (the sun) and a diffuse source (the sky) with different SPD E(λ). Besides
a reduction in the intensity, an outdoor cast shadow will result in a change of the
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Figure 4.2: A sketch of the four main cases (c1-1 to c4-1) and two anormlies (c2-1
and c2-2) that can occur when performing foreground segmentation with the influ-
ence of shadows, and taking the temporal local gradients into account. The ellipses
represent detection of potential chromatic shadows. They are grouped by considering
an intensity reduction, ”the bluish effect”, and an edge partition.

chrominance. The illumination of the sky has higher power components in the lower
wavelenghts λ (450 - 495 nm) of the visible spectrum, and it is therefore assumed
bluish as argued in [47]. When the direct illumination of the sun is blocked and an
region is only illuminated by the diffuse ambient light of the sky, materials appears to
be more bluish. This ”bluish effect” and the chrominance distortion can be exploited
for shadow detection and grouping of potential shadow pixels.

4.2.2 Applying temporal local gradient information

By applying gradient information we can obtain knowledge about object boundaries,
and thereby improve the foreground segmentation. Additionally, the gradient can also
provide textural information of both the background and foreground image. Although
shadows will result in a reduction in the intensity of the illumination, and the texture
of a given object or the background will have lower gradient magnitude, the structure
will still appear the same. Hence, the gradient orientation will be unchanged. This
knowledge can be applied to identify shadows.

4.2.3 Shadow scenaria and solutions

When performing foreground segmentation with the influence of shadows, and taking
the temporal local gradients into account, four main cases can occur as illustrated
in figure 4.2. The ellipses represent detection of potential chromatic shadows. They
are grouped by considering an intensity reduction, ”the bluish effect”, and an edge
partition. The entire shadow detection process will be explained in depth in section
4.3.

Case 1: Local gradient structures are present in the background model and in the
current image, and they are similar. By examining similarities between the local
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gradients, and the fact that there is no foreground object in the current image,
potential shadows can be detected and identified as shadow regions (case 1-1).
However, if a foreground object is present, it can be miss-classified as shadow
if the gradients of the background and the foreground object are similar (case
1-2).

Case 2: There is no available background model nor local gradients in the current
image. Since, the change in illumination of all the potential shadow regions has
to be similar, temporal and spatial similarities between chrominance angle and
brightness distortions within the potential regions are analysed to detect chro-
matic shadows (case 2-1). However, a foreground object can be miss-classified
as shadow if the foreground object has no gradients. Furthermore, the chromi-
nance angle distortion can also be similar among the pixels in the region of the
object (case 2-2).

Case 3: Local gradient structure is present in the background model but not in the
current image. By examining similarities between temporal gradients, potential
shadow can be detected as foreground object if there are background gradients
and a new foreground object in the current image.

Case 4: Local gradient structure is present in the current image but not in the back-
ground model. Then there must be a new foreground object in the current
image. In this case, the gradients in the current image are employed to detect
shadow regions. Hence, there is no need to analyse the potential region further.

The described characteristics are not sufficient to address these anomalies in case
1-2 and case 2-2. Therefore, we take further precautions and apply some additional
steps, which will be explained in section 4.3. Furthermore, it should be noted that
these additional steps also improves the shadow detection in some of the four main
cases.

4.3 Chromatic Shadow Detection

The approach, depicted in Fig. 4.3, is a multi-stage approach. The first three stages
remove the pixels which cannot be shadow pixels. The fourth step divide the regions
of potential shadows. Chromatic shadow detection is realised in stage 5 and 6 based
on gradients and chrominance angles, respectively. The last step avoid foreground
regions detected erroneously as chromatic shadows.

4.3.1 Moving foreground segmentation

The moving foreground segmentation is obtained from the previous chapter. Where
an improved hybrid approach which fuses colour and gradient information is used.
Note that the this approach can cope with several motion segmentation anomalies,
among them it can cope with penumbra shadows because it is based on a chromatic
colour model [22]. It also provides the highest detection rate in comparison to other
motion segmentation approaches, such as it is stated in the experimental results from
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the previous chapter. In order to get more accurate segmentation the approach use
an invariant chromatic cone model and invariant gradient model which are perfect for
our purposes in the next stages.

The chromatic cylinder model employed in many motion segmentation approaches
[25, 22, 33] is changed into a new chromatic cone model. It uses chrominance angle dis-
tortion instead of chromatic distortion. For the same chromaticity line the chromatic
distortion used in the above mentioned papers depends on the brightness distortion,
while the chrominance angle distortion is invariant to the brightness, as it can be seen
in Fig. 3.7 (the chromatic distortion δ increases proportional to the brightness distor-
tion α, while the chrominance angle distortion β is equal). The invariant chromatic
cone model is more robust towards chromatic shadows because these shadows (umbra
shadows) modifies both the brightness and the chromaticity.

As argued in [41, 53], the gradient model has to be invariant towards global and
local illuminations changes, such as shadows. The new invariant gradient model
presented in the previous chapter uses a new combination of gradient magnitudes and
gradient directions which is invariant to illumination changes. Hence, it can be used
in order to identify the different local gradient structures of the scene.

The use of the invariant models provides a high detection rate in comparison to
other motion segmentation approaches. After the initial detection, moving foreground
objects, chromatic shadows and some isolated pixels are contained in a binary mask
named M1. Furthermore, the mask obtained using the gradient model is divided into
two masks, which are used for the next steps. The Edneg mask corresponds to the
foreground pixels belonging to the background model. While the Edpos mask corre-
sponds to the foreground pixels belonging to the current image. A third mask is also
created called Edcom, which contains the common edges detected in the background
model and in the current image.

4.3.2 Shadow intensity reduction

In this step the M1 mask from step 1 is reduced in order to avoid pixels which cannot
be shadows. A foreground pixel cannot be a shadowed pixel if it has a higher intensity
than the background model. Then, a new mask for this step is created according the
next equation:

M2a,t = (IRa,t < μR) ∧ (IGa,t < μG) ∧
(IBa,t < μB) (4.2)

where a corresponds to the pixel location in the M1 mask.

4.3.3 The bluish effect

The effect of illuminants which are different than white lights provokes chromaticity
changes because the changes in the intensity are different for every channel. In outdoor
sequences the main illuminants are the sky and the sun (any of them white illuminant).
The sky is the only source of illumination on shadowed regions, and the sky is assumed
to be bluish as argued in [47]. Therefore, the intensity changes in the red and green
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channels are bigger than in the blue channel. This knowledge can be used to reduce
the shadow region detected in the previous step (M2 ):

M2a,t = (IRa,t − μR) > (IBa,t − μB) ∧
(IGa,t − μG) > (IBa,t − μB) (4.3)

where a corresponds to the pixel location in the M2 mask. Obviously, the bluish
effect cannot be applied in indoor sequences.

4.3.4 Potential chromatic shadow regions

It is supposed that shadow regions have the same intensity change for each channel,
since the illuminant is similar for all the shadowed region. However, different surfaces
have different reflectance characteristics. Hence, the change in intensity depends
on the surfaces material for the given shadow pixels. However, edges can show the
changes between continuous pixels. Therefore, using the foreground edges detected in
the current image, mask Edpos, the potential shadow regions can be separated from
the moving foreground objects.

M3a,t = M2a,t ∧ (¬Edposa,t) (4.4)

A minimum area morphology is applied in order to avoid smaller regions which do
not contain enough information for the subsequent steps of the shadow analysis.

4.3.5 Chromatic shadow gradient detection

In this step the temporal gradients of the regions detected in the previous mask M3
are analysed, in order to identify in which case of the theoretical shadow analysis
(see section 4.2) each of the regions complies with. A region will be considered as a
shadow if it complies with case 1. Negative foreground edges (Edneg mask) inside of
the region are compared to the common foreground edges (Edcom mask), in order to
prove if the region is a shadow and avoid the anomaly case 1-2. Furthermore, it also
test if the negative edges are noise (larger regions have a higher probability to contain
negative edges from noise):

Txb =( ∑

a∈Rb

(Rb∧Edneg)

|Rb∧Edtot| · kn <

∑

a∈Rb

(Rb∧Edneg)

|Rb∧Edtot|

)

∧
( ∑

a∈Rb

(Rb∧Edneg)

|Rb| < ks

) (4.5)

where a is the pixel position; Rb is the evaluated region and b is the number of the
region; |Rb| denotes the number of pixels of region b; |Rb∧Edtot| denotes the number
of pixels representing the edges detected in the background model and the current
image; kn corresponds to a confidence region, which is equal to the probability of the
region belongs to a shadow or a foreground object; and ks is used to measure if the
negative edges corresponds to noise. Again larger regions have a higher probability
to contain negative edges from noise.
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4.3.6 Chromatic shadow angle and brightness detection

In this step the temporal and spatial similarities of the chrominance angle and bright-
ness distortion for all pixels belonging to regions, which have so far not been classified
as shadow, are analysed. A region will be considered as a shadow if it complies with
case 2. The only regions analysed in this section will be those that does not have
gradients, neither in the background model nor in the current image. If the pixels
do not have gradient, nor similar chrominance angle distortion and do not have a
significant brightness distortion, then the region will be classified as shadow.

ABdb =( ∑

a∈Rb

(Rb∧Edtot)

|Rb| < kt

)
∧
( ∑

a∈Rb

(Rb∧ᾰ)

|Rb| < ka

)

∧
( ∑

a∈Rb

(Rb∧β̆)

|Rb| < kb

) (4.6)

where ᾰ and β̆ are the chrominance angle and brightness normalised distortions cal-
culated for each pixel in the region number b (Rb), respectively; kt is a confidence
region to avoid noise gradients; ka and kb is a minimum threshold used to determine
if the angle and brightness distortion are similar among the pixels of the evaluated
region.

4.3.7 Chromatic shadow edge removal

Pixels from the potential shadow regions, which were neglected in section 4.3.4 because
they were part of the Edpos mask, have to be included again in the regions destected
as shadow.

4.3.8 Shadow position verification

A moving cast shadow is always caused by a moving foreground object. Therefore,
in this section it is tested if a detected shadow has an associated foreground object,
in order to avoid the anomaly in case 2-2. Only shadows detected in the chromi-
nance angle and brightness distortion analysis (section 4.3.6) will be tested. During
a training period T2, the chrominance angles between the detected shadows and the
foreground objects are calculated. After, the most probable chrominance angle ob-
tained in the training period is used to discard detected shadows, which do not have
any foreground object in the direction of the chrominance angle.

4.4 Top-down shadow detection

When a shadow has successfully been detected it is usually removed instantly, since
it is the object which is of interest for further processing and not the shadow. As a
result, the shadow information is lost. An interesting idea is to use this information
a posteriori in order to improve the shadow detection when it fails (e.g., due to
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camouflage problems). Concretely, if a detected shadow is tracked over time instead
of being discarded, it could be used to improve the shadow detection.

In this section a top-down approach is used in order to enhance the chromatic
shadow detection using a Kalman filter based tracking. Fig. 4.4 shows an overview
of the top-down shadow detection enhancement process, and the algorithm is listed
in Algorithm 2.

Firstly, the tracking module tracks objects and shadows through the scene. As in-
put, the tracking module receives a binary mask from the object and shadow detection
described in the previous section, as illustrated in Fig. 4.4. In the following subsec-
tions the tracking is explained with special attention on data association, the event
analysis and occlusion handling (sections 4.4.1, 4.4.2 and 4.4.3, respectively). The
output of the tracking is a list of tracks for each object and shadow and their mutual
association, which is used as feedback to improve the object and shadow detection.
Secondly, this association between objects and shadows is described and updated for
the Kalman Filters (KF), sec. 4.4.4. Thirdly, temporal consistency is investigated
for the association between FG and SH blobs and their assigned KF, in order to find
the possible lost shadows, sec. 4.4.5. Once the chromatic shadows are detected then
they are recovered in the original image, sec. 4.4.6. Finally, the KF and the PAM
are updated taking into account the information from the new data association, and
used for tracking in the next frames, sec. 4.4.7. An overview of the entire process can
be seen in the Fig. 4.4.

4.4.1 Tracking using Kalman Filters

The detected foreground objects and shadows are tracked using first order Kalman
filters. The tracking and data association are based on a number of estimated param-
eters for the detected objects:

• Centroid of an ellipse fitting.

• Major and minor axis length of the ellipse.

• Probabilistic Appearance Model (PAM).

Each track is therefore associated with these parameters, and a Kalman filter
is used to predict the object’s location using a first order motion model. Refer to
appendix A for further deatils on the Kalman filter. Therefore, the target state is
defined by xt = (posxt, posyt, velxt, velyt, majt,mint, θ), which establishes a state
vector for every observation, and adds the target speed and the size change rate at
time t. Where posxt and posyt define the position (centroid of the ellipse), velxt and
velyt the velocity, and majt and mint the major and minor axis, respectively, and θ
the orientation.

4.4.2 Data Association between blobs and KF

When performing data association five situations can occur, as shown in fig. 4.5. A
new object means that a new track is created. A lost object means that a track is
destroyed if the object does not reappear within a certain number of frames (Tdead).
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Algorithm 2 Top-down shadow detection approach

For each blob from the chromatic shadow detection:

• New Kalman Filter (KF) for each new blob, and delete KF for the KF not use in a
period of time (Tdead).

• KF Prediction: Time update KF.

• Data Association between blobs (FG and SH blobs) and KFs.

– Probabilistic Appearance Model (PAM) for each KF.

– Build weights for the association: two correspondence matrix based on:

∗ Euclidean distance based on position (x,y) and size (major and minor axes of an
ellipse).

∗ Matching of PAM and blob.

– Case detection, see Fig. 4.5 and Algorithm 3:

∗ Five possible cases: object match, new object, lost object, object splitting, and
object merging.

– Association between the blobs (FG and SH blobs) and the KFs.

– Manage the KFs: updating, creating and deleting the KFs.

• Update KF-info: the association information between the blobs and the KFs.

• Temporal consistency in the data Association between FG and SH and their assigned
KFs.

– Case detection, see Fig. 4.10:

∗ Three possible cases: FG and SH match, new shadow (FG-SH splitting),
and lost shadow (FG-SH merging).

– Lost Shadow case:

∗ Possible shadow regions from the original FG blob.

∗ Build weights for the association: two correspondence matrix based on:

· Euclidean distance based on position (x,y) and size (major and minor
axes of an ellipse).

· Matching of blobs.

∗ Association between KF predictions of FG and SH and the regions extracted
from the original FG blob.

• Feedback (top-down) from the tracking to the shadow detection:

– Classify the original image using the data association and the new FG and SH
blob information.

– Update blob information for the original image.

• Manage the KFs: updating and deleting the KF:

– Update the KF info related to the new associations between new FG and SH
blobs and their correspondent KFs.

– Delete and create new KF if it is needed.

• KF Prediction of the new KF created: Time update KF.

• KF Correction: Measurement update.
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Figure 4.5: The five possible data association situations between objects (blobs) and
Kalman Filters (KFs). A circle illustrates a track and a square illustrates a detected
object. An arrow indicates association between a track and a detected object.

The object match situation is a one-to-one match, meaning that the track is updated
using the detected object assigned to it. Object splitting means that more than
one detected object match a track. This is resolved by selecting the object with
the highest probability of the matches and creating new KFs for the other objects.
Object merging means that a single detected object matches two or more tracks,
this is caused by inter-object occlusion, and is handled using probabilistic appearance
models as described in section 4.4.3.

Data Association Algorithm

The foreground blobs extracted as described in the previous chapter 3, and classified
as foreground or shadow in section 4.3, are associated with a list of possible Kalman
filters using Algorithm 3, which is based on the stable marriage algorithm [18].

If the object is identical to the track, then the position and shape of the new blob
and the KF have to be similar. Additionally, the colour appearance also has to be sim-
ilar. In order to test it, the object must have the shortest Euclidean distance between
all possible blobs and all possible KFs. Hence, the Euclidean distance is calculated for
every blob and KF combinations, in order to compare the position (centroid x,y) and
the size (major and minor axis length). The maximum match probability between
the PAMs is also computed for the blobs and the KFs, see Algorithm 3.

In order to determine if the object under evaluation is a new object, the best
match between the new blob and the KF is compared with a maximum Euclidean
distance and a minimum probability for the PAM. When the KF is lost then only the
distance can be compared, since the PAM is centred in the object. To know if the
blob (FG or SH) corresponds to a previous KF, or if it is a new object, the condition
set by equation 4.7 has to be fulfilled:

if ((dist(newobj,KF) < τmaxD) ∨ (distPAM(newobj,KF) > τminP ))

∨ ((dist(newobj,KF) < 2 ∗ τmaxD) ∧ (KF.Tdead �= 0))

(4.7)
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Where dist is the corresponding weighted distance matrix between the blobs and the
KFs, and distPAM is the corresponding match probability of the PAM. τminP is the
minimum match probability and τmaxD is the maximum Euclidean distance between
the new object and the KF.

If a ”newblob” is more similar to a KF than the ”oldblob”, it has the shortest
distance between the centroids and the major and minor axes, respectively, and also
the best matching PAM, in comparison to the ”oldblob”. Hence, the ”newblob” and
the ”oldblob” will be compared with the KF using the following equations:

if (dist(newblob,KF) < dist(oldblob,KF))

∧ (distPAM(newblob,KF) > distPAM(oldblob,KF))

(4.8)

Where the first statement determines if the new blob has the shortest distance between
the centroids and the axes, respectively, and the second statement determines if the
new blob has the highest PAM match probability.

4.4.3 Occlusion Handling using Probabilistic Appearance Model

Probabilistic appearance models inspired by [59] are applied to resolve inter-object
occlusion. Each track has its own probabilistic appearance model, which consists
of an RGB colour model with an associated probability mask. An example of a
probabilistic appearance model is illustrated in figure 4.6. The colour model, which
is denoted MRGB(x), shows the appearance of each pixel of an object. Pc(x) denotes
the probability mask and represents the probability of the object being observed at
that pixel. The use of probabilistic appearance models can be viewed as weighted
template matching, where the template is MRGB(x) and the weights are given by
Pc(x). The coordinates of x are expressed using the coordinate system of the model,
which is normalized to the object centroid.

Depending on the data association between a track and the detected objects, one
of three possible approached is applied as shown in figure 4.7. For each new track,
a new probabilistic appearance model is created. In the object match situation, a
track refinement step is applied before updating the model by finding the best fit in
a small neighbourhood, e.g. 5× 5 pixels. Track refinement increases the accuracy of
the model; especially the colour model becomes sharper. When updating, the model
usually stabilizes after less than 10 frames. Detail on building the model can be found
in [59]. In the object merging situation probabilistic appearance models of the tracks
are used to assign pixels of the detected object between the tracks using the flow in
the bottom line of figure 4.7.

The foundation of the probabilistic appearance model is the ability to estimate
the probability that a given pixel x of a detected object belongs to the model Mj of
track j. This is denoted by P (Mj |I (x)). I is the colour input image and is assumed
to be normalized to the centroid of the detected object. The probability is calculated
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Algorithm 3 Data Association between blob and KF

- while the list of blobs is not empty, then:

• Evaluate the current blob (newblob).

• if there is a KF associated to this blob, then:

– if the best KF for this blob is not used, then:

∗ if the conditions 4.7 to match KF with the newblob are valid, then:

· Match KF-newblob, KF Tstable.

∗ else, KF is invalid, then:

· new KF.

· Match newKF-newblob.

– else KF is used, then:

∗ Get the blob associated to this KF (oldblob).

∗ if the newblob is more similar and has a better PAM match than the
oldblob, conditions 4.8, then:

· Match KF-newblob, KF Tstable.

· Free KF-oldblob and add oldblob to the list of blobs.

∗ else, then:

· Check next best KF for this object.

• else, no KF is associated for this blob, then:

– new KF.

– Match newKF-newblob.

- for KF not associated, then:

• Lost KF, KF Tdead.

using Bayes’ rule:

P (Mj |I (x)) ∝ PRGB,j (I (x) |Mj) · Pc,j (x) (4.9)

The a priori probability is given by the probability mask of model Mj , Pc,j (x).
PRGB,j (I (x) |Mj) is the color appearance likelihood, and this is approximated using
a Gaussian color distribution:

PRGB,j (I (x) |Mj) =
1

(2π)
3/2 |Σ|1/2

· (4.10)

exp

(
−1

2
(I (x)−MRGB,j (x))

T
Σ−1 (I (x)−MRGB,j (x))

)
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Figure 4.6: An example of a probabilistic appearance model, where the input Image,
the shadow detection Image, the probability mask Pc and the color model MRGB for
the detected agent and shadow are shown.

Object match
Track 

Refinement
Update 
model

Find best-fit
Initial 

assignment
Reassign-

ment
Depth 

estimation

Connected 
component 

analysis

Update 
model

Create new 
model

New 
object

Data 
association

Object
merging

Figure 4.7: Flow related to the use of probabilistic appearance model.

The colour model for track j, MRGB,j , represents the mean colour for each pixel.
To reduce the complexity, the covariance matrix Σ can be assumed to be a diagonal
matrix with identical variance σ in each colour channel. Given these assumptions,
Equation 4.4.3 reduces to:

PRGB,j (I (x) |Mj) =
(
2πσ2

)−3/2 · exp
(
−‖I (x)−MRGB (x)‖2

2σ2

)
(4.11)

where σ is selected empirically. The algorithm in 4 explains the procedure for seg-
menting objects under occlusion using probabilistic appearance models. An example
is given in figure 4.8.
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(a) Before occlusion (b) During occlusion (c) Final result

(d) Initial assignment (e) Reassignment (f) Conn. Comp Analysis

Figure 4.8: Example of occlusion handling using probabilistic appearance models.
(d), (e) and (f) show the intermediate steps for resolving the occlusion in (b).

Algorithm 4 Occlusion Handling

1. The centroids are predicted for each track using a first order kalman filter, as
described in appendix A

2. Tracks are fitted to the foreground pixels, to find the best-fit location. If depth
order is available the foremost pixels are fitted first, and the pixels where this
track’s probability mask has non-zero probability are not used for fitting the
tracks with greater depth.

3. Pixels with non-zero probability belonging to more than one track are identified
as disputed pixels. Each disputed pixel is assigned to the track with the highest
probability based on Equation 4.9. See Fig. 4.8.(d).

4. Tracks are ordered so that tracks assigned fewer disputed pixels are given greater
depth, and all disputed pixels are reassigned to the foremost track that overlaps
the pixels. See Fig. 4.8.(e).

5. Connected component analysis is performed to clean up the segmentation, as
seen in Fig. 4.8.(f).
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Figure 4.9: An example of data association between FG and SH and the assigned
KFs. First image represents the FG detection provided in chapter 3. Second image
shows the shadow detection presented in sec. 4.4.2, and how the analysed FG is
divided into FG and SH blobs. These blobs are associated because both come from
the same FG object. In the third image the tracking system has assigned one KF to
each blob, then the data association info between the FG and the SH blobs is added
to the KF info for each blob.

4.4.4 Update FG-SH association in KF info

After the blobs (belonging to a FG or a SH) has been assigned to the KF, as described
in sec. 4.4.2, the association between which shadow belongs to which FG and vice
versa is saved in the KF info for use in the next frames. This info will be used
to identify the possible cases in the association between FG and SH. An example
showing the data association between the blobs and the Kalman Filters, and how the
data association between FG and SH is later saved in the KF info, can be seen in Fig.
4.9.

The first image of Fig. 4.9 represents the FG detection provided in chapter 3.
The second image shows the shadow detection presented in sec. 4.4.2, and how the
FG segmentation is further analysed and divided into FG and SH blobs. These blobs
are associated because both come from the same FG object. In the third image the
tracking system has assigned one KF to each blob, and the data association info
between the FG and the SH blobs is added to the KF info for each blob.

4.4.5 Temporal consistency in the Data Association

The information related to the association between FG and SH saved in the KF has
to be analysed in order to check the possible cases, e.g., if a shadow has been lost.
In Fig. 4.4 it can be seen how the approach works in the case of the detection of a
lost shadow. The images showed in the figure are explained further in the following
subsections.

Cases

When performing temporal consistency in the data association between the FG and
SH with their respective KF, three situations can occur:
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Figure 4.10: The three posible data association situations between FG and SH
and their KFs. A rounded rectangle illustrates an original FG blob before shadow
detection, a circle illustrates a FG and a square illustrates a SH from the shadow
detection. A double red arrow indicates an association between FG and SH And a
black arrow indicates an association between FG and SH in the next frame.

• FG and SH match:
The association created at time t-1 continues at time t, which is the ideal case.

• New shadow: object splitting in FG/SH.
A new association between the FG and SH is created at time t.

This can be a problem if the shadow is erroneously detected because it can also
be falsely detected as lost shadow in the next frame. If it is a new shadow, it
is not Tstable, and it is not detected as shadow over a time period (Tdead),
it will not be considered as lost shadow in the next frame, and later it will be
discarded as shadow. Problems exist when objects move quickly combined with
low frame rate, since in one frame the shadow is correctly detected, in the next
frame it is not detected, and in the following frames it is lost.

• Lost shadow: object merging with shadow.
The association between the FG and SH at time t-1 has been lost at time t
because the shadow is lost. See Fig. 4.4for an example of this case.

The three possible cases are illustrated in the Fig. 4.10. It is possible that a
new shadows appears or a shadow is lost without a splitting or merging in the FG
object. However, these cases are not of interest because they do not have any data
association, and they will be tracked in an usual manner by the Kalman filters.

Lost Shadow: object merging with shadow

A shadow is considered lost when the blob (the KF that is associated with this blob)
fulfil a set of conditions: it was classified as SH at time t-1 (the previous frame), and
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it had a FG associated, the FG also had this SH associated. At time t (the current
frame), this FG has no shadow associated and the SH has also lost the association
with this FG, then this shadow is considered lost.

The shadow region can be recovered by evaluating the FG blob (which contains
the FG and the shadow), the blob prediction for the FG KF, and the blob prediction
for the lost SH KF.

Possible regions from FG object

The FG blob which belongs to the FG KF associated in the previous frame with
the shadow considered lost, is analysed in order to find the possible shadow region.
Therefore, the mask of the positives edges (ed pos mask) plus morphological opera-
tors are applied for the FG blob to divide it into FGs and possible shadow regions.
Multiple regions can be found but theoretically only one is the shadow. This happens
because the positive edges are used to divide the image, and these edges come from
the current image. Such as explained in sec. 4.2, one of the characteristics of shadows
is that they can only have negative edges, e.i., the edges from the background image.
Therefore, theoretically several FG regions can be found but only one SH region. In
Fig. 4.4 it can be seen how the original FG blob detected, as described in section 4.3,
is subdivided into the possible chromatic shadow regions (image Chr.Sh.Regions in
the figure; the regions in the image are shown in different colours) using the ed pos
mask. These blobs from the possible regions will later be associated with the predic-
tions of the Kalman Filters in order to detect the chromatic shadow.

Correspondence matrix between the new blobs and the KF predictions

The weights for the blob prediction for the FG KF and the SH KF are calculated
w.r.t. all the possible regions found in the previous step. Therefore, two correspon-
dence matrix are calculated, where one contains the euclidean distance between the
new blobs and the FG and SH KF predictions, and the other the overlapping (match-
ing) between the new blobs and the FG and SH KF predictions. These weights are
used to associate the SH and FG KF predictions with the blobs.

Association between FG and SH KF predictions and the blobs

The best match (shortest distance and best overlap) between the SH KF predic-
tions and the blob will be considered as the shadow region, while the other blobs will
be considered as FG blobs, since only one region can be shadow. Hence, the other
blobs have to be FGs.

In this way, by using the tracking information, the original FG blob can be seg-
mented into FG and SH regions, thereby detecting additional chromatic shadows,
which are not detected in the previous section 4.3. This information is used as a
feedback from the tracking to the shadow detection step.

In Fig. 4.4 it is shown how the blobs extracted from the possible regions are
associated with the prediction of the Kalman Filters in order to detect the chromatic
shadow.
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4.4.6 Feedback from tracking to the original image

Once the chromatic shadows are detected, the original image (original FG blob) is
divided into only one blob for the FGs and only one blob for the SHs. Hence, the FG
blob will be associated with the FG KF and the SH blob will be associated with the
lost SH KF.

However, the association can result in multiple FG blobs. In order to get only one
blob for the FG without splitting the original FG blob into multiple blobs, we only
have to use the positive edges calculated in the previous frame to divide the shadow
blob in the original blob image.

Once the original blob is divided into two blobs, one corresponding to a FG and
the other to a shadow, the original image has to be updated so the chromatic shadows,
which were not detected before, are now marked as detected.

In Fig. 4.4 it is shown how the detected chromatic shadow is correctly updated
according to the original blob, after the feedback from the association between the
tracks and the possible regions from the original FG blob.

4.4.7 Manage and Update KF info and PAM

The info related to the new association between the new FG and SH blob and their
respective KFs have to be updated. The KFs also have to be updated with the new
associated blobs, and the PAMs have to be updated considering the new blobs.

It is possible that a new KF was erroneously created because one object together
with its shadow can be considered as a new object. Therefore, the new KFs created
in the data association between the blobs and the KFs have to be checked. If there
is a KF which was created but not used, since it was assigned to the blob currently
considered as lost shadow, then it is deleted.

Consequently, thanks to the data association between FG and SH we have achieved:
(i) enhancing the chromatic shadow detection by detecting shadows which were not
possible to detect before. (ii) Improving the segmentation for high processes, such as
detection and tracking, by avoiding shadows. (iii) A more robust tracking, since (1)
erroneously created KFs are deleted and (2) the PAM and the KF tracker are more
robust and correctly updated. In Fig. 4.4 an example is given, where the output of
the tracking process is shown with and without the Top-down approach (see the last
two figures called Tracker End). The figure of the Top-down approach shows how
the system is correctly detecting the chromatic shadow, therefore the FG KF and SH
KF are also correctly updated. On the other hand, in the image from the tracker
without taking into account the association between the FG and the SH and their
assigned KFs, it can be seen how the FG and SH KF are lost but also a new false KF
is created.

4.5 Experimental Results

The results presented in this section are all from tests conducted on datasets selected
from well-known databases. Our approach is tested on sequences of outdoor and
indoor scenarios, and compared to other statistical approaches when results are avail-
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Figure 4.11: An original image from the Outdoor Cam1 sequence, and foreground
results after shadow removal using the Huerta et al. approach [25], the Zivkovic et
al. approach [78] using a shadow detector [51], and our approach, respectively (read
row-wise).

able. The chosen test sequences are relatively long and umbra and penumbra shadows
are cast by multiple foreground objects. The sequences analysed are Outdoor Cam1
(800 frames, 607x387 PX), HigwayIII (2227 frames, 320x240 PX), HallwayI1 (1800
frames, 320x240 PX), and HERMES ETSEdoor day21 I4 (6500 frames, 640x480 PX).

Figure 4.11, 4.12, and 4.13 show the results when comparing our shadow detector
with other approaches from the state-of-the-art [25, 33, 78, 51, 41]. As it can be seen
in these figures our approach outperforms the other analysed methods. However, in a
few cases the gradient masks cannot be accurately build due to camouflage and noise
problems. Thus, the separation of a foreground object and a shadow region can fail.
Occasionally, when the anomaly in case 2-2 (see sec. 4.2.3) occurs and a part of the
foreground object or the shadow is not segmented due to segmentation problems, the
shadow position can miss-classify the shadow as a foreground object. The top-down
approach can solve part of this problems, as it can be seen in figure 4.19 and 4.18.

To evaluate our approach in a quantitative way, it has been compared with the
approaches [40, 41] using the most employed quantitative expressions utilized to eval-
uate the shadow detection performance: the Shadow Detection Rate (SR) and the
Shadow Discriminate Rate (DR). Refer to [51] for the exact equations. The results
in the table 4.1 shows that our method outperforms both the parametric approach
based on Gaussian mixtures GMSM [40] and the nonparametric physical model [41].
Note that the results for the GMSM [40] and the physical model [41] on the Hallway
sequence have been obtained directly from [41].

It should be noted that our approach needs a reasonable resolution to work cor-

1http://vision.gel.ulaval.ca/ CastShadows/
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Figure 4.12: An original image from the HallwayI sequence, and foreground results
after shadow removal using the Huerta et al. approach [25], the Kim et al. approach
[33], the Zivkovic et al. approach [78] using a shadow detector [51], the Martel et al.
approach [41], and our approach, respectively (read row-wise).

Method HallwayI

SR SD
GMSM 0.605 0.870
Physical model 0.724 0.867
Our approach 0.807 0.907

Table 4.1

SR and SD results for our approach and two of the most successful methods:

Gaussian Mixture Shadow Models (GMSM) [40] and a physical model of light

and surfaces [41].
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Figure 4.13: An original image from the HighwayIII sequence, and foreground
results after shadow removal using the Huerta et al. approach [25], the Kim et al.
approach [33], the Zivkovic et al. approach [78] using a shadow detector [51], the
Martel et al. approach [41], and our approach, respectively (read row-wise).
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rectly. Futhermore, shadow regions need to have a minimum area for analysis or there
might not be enough information for a proper shadow detection and classification.

A number of processed frames of significance are depicted in Fig. 4.14, showing
the shadow detection results using our final approach for the Outdoor Cam1 sequence
from the CVC database. This sequence contains most of the problems commented in
the case analysis, heavy background motion due to waving trees, chromatic shadows,
saturations and all types of camouflages. The approach described in the previous
chapter achieved the detection of the agents, however the shadows were also detected
as parts of the agents because of their change in chroma. However, in the figure it
can be observed that our shadow detector can detect the chromatic shadows in this
sequence.

Fig. 4.15 shows processed frames of significance, depicting the shadow detection
results using our final approach for the HallwayI sequence from the LVSN database.
This sequence contains moving cast shadows of the agents on the floor and the walls,
which have a change in the chroma. Our last approach was able to detect all the
agents in the sequence, however most of the shadows were also detected as parts of
the objects, due to this change in the chroma. As it can be seen in the figure, our
shadow detector detects most of the shadows. However, the smaller of them are not
detected, since our approach need a minimum area to process the applied statistics.

Another set of processed frames are depicted in Fig. 4.16, showing the shadow
detection results using our final approach for the HighwayIII sequence from the LVSN
database. The shadow detector can cope with the chromatic shadows of the vehicles
such as it can be seen in the figure. However, the detection can sometimes fail because
the regions are not well defined. This happens when a part of a vehicle is considered
as a shadow. Due to camouflage problems, it fails to divide the vehicle region from
the shadow region, see Fig. 4.16.(c). The shadow detection can also fail when a region
does not have any local gradient structure, and all the pixels in this region exhibit
similar chromaticity and brightness. For example the front car in Fig. 4.16.(f).

Fig. 4.17 shows processed frames of significance, depicting the shadow detection
results using our final approach for the HERMES ETSEdoor day21sequence from
the HERMES database. This outdoor surveillance sequence is a long sequence with
several agents walking through the scene. The shadow detector can cope with the
chromatic shadows of the agents, as it can be seen in the figure. However, the detection
can sometimes fail. This can happen when regions are not well defined. For instance,
in depicted case it happens when the shadow is not correctly split up from the agent
due to camouflage problems, see Fig. 4.17.(e).

The top-down process assists the chromatic shadow detector when it fails to detect
shadows, as shown in figure 4.16.(c) and 4.17.(e). The tracking system is able to track
the shadows and use this information as feedback to the chromatic shadow detector.
Hence, the miss-detected shadows can be recovered and correctly detected. Figures
4.18 and 4.19 show the results of the top-down approach. The figures are an example
of shadow recovery using our top-down approach for the HERMES ETSEdoor day21
sequence and the LVSN HighwayIII sequence.

Fig.4.19.(a) shows the fg. detection results obtained in the previous chapter. In
Fig.4.19.(b) the chromatic shadow detection results of our detector are shown. Note
that the shadows are not correctly detected. Fig.4.19.(c) shows the output of the
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(a) (b)

(c) (d)

(e) (f)

Figure 4.14: Chromatic Shadow detection results for the CVC Outdoor Cam1 se-
quence using our shadow detector. The sequence contains several shadows that ex-
hibit a change in their chroma. They are detected using our approach, thereby show-
ing that it is able to tackle these shadow problems. Previous segmenation results are
coloured in cyan, and the shadow detection results are coloured in blue.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.15: Chromatic Shadow detection results for the LVSN HallwayI sequence
using our shadow detector. Our shadow detector is able to detect the chromatic
shadows cast by the agents on the floor and the walls. Previous segmenation results
are coloured in cyan, and the shadow detection results are coloured in blue.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.16: Chromatic Shadow detection results for the LVSN HighwayIII se-
quence using our shadow detector. Our shadow detector is able to accurately detect
most of the larger chromatic shadows of the vehicles. However, it can fail due to
camouflage problems dividing the shadow regions, see (c). Previous segmenation re-
sults are coloured in cyan, and the shadow detection results are coloured in blue. See
the main body text for further details.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.17: Chromatic Shadow detection results for the HER-
MES ETSEdoor day21 sequence using our shadow detector. All the shadows
in te sequence exhibit a change in their chroma. Our shadow detector is able to
accurately detect most of them. However, it can fail sometimes, such as it can be
seen in (b) and (e). In (b) a part of the leg is erroneous detected as shadow, and in
(e) the shadow is not detected due to camouflage problems. Previous segmenation
results are coloured in cyan, and the shadow detection results are coloured in blue.
See the main body text for further details.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.18: An example of shadow recovery using our top-down approach for
the LVSN HighwayIII sequence. Image (a) is the fg. detection image. (b) is the
chromatic shadow detection results of our detector. Note that the shadow is not
correctly detected. (c) is the output of the tracker without applying our top-down
approach. The KF representing the shadow is lost and therefore the KF will be falsely
updated. (d) shows results of our top-down approach: the output of the tracker, after
the chromatic shadow is recovered, using our top-down process. In this image the
shadow is accurately detected, the FG KF and the SH KF are correctly updated, and
none of them are lost. The a posteriori state of the tracker is depicted with a red
ellipse. Image (e) shows the final chromatic shadow detection results in the original
image. See the main body text for further details.



116 DETECTION AND REMOVAL OF CHROMATIC MOVING SHADOWS

(a) (b)

(c) (d)

(e)

Figure 4.19: En example of shadow recovery using our top-down approach for the
HERMES ETSEdoor day21 I4 sequence. Image (a) is the fg. detection image. (b)
is the chromatic shadow detection results of our detector. Note that the shadow is
not correctly detected. (c) is the output of the tracker without using the top-down
approach. The shown image is after 10 frames without a detected shadow, therefore
the KF associated to the shadow is lost (Tdead) and falsely updated. (d) shows results
of our top-down approach: the output of the tracker, after the chromatic shadow
is recovered, using our top-down process. In this image the shadow is accurately
detected, the FG KF and the SH KF are also correctly updated, and non of them
are lost. The a posteriori state of the tracker is depicted with a red ellipse. Image
(e) shows the final chromatic shadow detection results in the original image. See the
main body text for further details.
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tracker without applying our top-down approach, while Fig.4.19.(d) shows the results
of our top-down approach. Finally, Fig.4.19.(e) shows how the chromatic shadow has
been accurately detected after the feedback from the tracker to the chromatic shadow
detector. The input image shown in this figure is captured without a detected shadow
for 10 frames. Hence, this example illustrates how the tracker’s KF assigned to the
shadow is completely lost without the top-down approach (Fig.4.19.(c)), while the
other tracker’s KF is tracking the combined fg. and sh. blob (a Red ellipse depicts
the a posteriori state of the KF). In some cases the tracker will create a new KF,
since the combined fg. and sh. blob is so different that the system thinks it is a new
object. In contrast, Fig. 4.19.(d) shows the output of the tracker using our top-down
process. In this image the shadow is accurately detected, and the KFs are correctly
updated. This is illustrated by the red ellipses in the image.

Fig. 4.18 shows similar results in comparison to Fig. 4.18 but using the LVSN -
HighwayIII Sequence. Our top-down approach achieves to detect the chromatic shad-
ows, as it can seen in figure 4.18.(d) and 4.18.(e). However, this scenario is very
difficult to track, since the fg. blobs move very fast compared to the frame rate of
the sequence. Additionally, the appearance of the objects changes very quickly. In
this case the tracks are sometimes lost, and therefore it is not possible to run the
top-down process throughout all of the sequence.

Fig. 4.20 shows a number of processed frames of significance, depicting the results
using our top-down approach. In the figure it can be seen how our approach is able to
track the objects and the shadows, and when the chromatic shadow is lost, the system
is able to recover it. In this way the feedback from the tracking to the segmentation
process is assisting the chromatic shadow detector, and thereby achieves to detect
shadows which were miss-detected before. Thus, by updating the KFs in order to get
an accurate a posterior state for the image, the segmentation process take advantage
of the recovered information about objects and shadows through the feedback from
the tracking. This is shown in the second and third column of Fig. 4.20, where
the tracking results using our top-down approach (third column) achieves a correct
tracking compared to the falsified tracking results, when it is not applied (second
column).

4.6 Discussion

In this chapter, we have presented two main novelties: (i) a bottom-up approach for
detection and removal of chromatic moving shadows in surveillance scenarios [26], and
(ii) a top-down approach based on Kalman filters to detect and track shadows.

In the Bottom-up part the shadow detection approach apply a novel technique
based on gradient and colour models for separating chromatic moving shadows from
moving objects.

Firstly, we extend and improve well-known colour and gradient models into an
invariant colour cone model and an invariant gradient model, respectively, to perform
automatic segmentation while detecting potential shadows. Hereafter, the regions
corresponding to potential shadows are grouped by considering ”a bluish effect” and
an edge partitioning. Lastly, (i) temporal similarities between local gradient structures
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Figure 4.20: Additional chromatic Shadows detection results using our top-down
approach for the HERMES ETSEdoor day21 I4 sequence. First column shows the
chromatic shadow detection results. Note that the shadows are not correctly detected.
Second column shows the output of the tracker without the association between the
FG-SH, where the tracks for the shadows are lost. Third column shows the tracker
output using our top-down approach. The chromatic shadows are detected and the
tracker are correctly updated for the FG and the SH. The a posteriori state of the
tracker is depicted with a red ellipse. The last column shows how the chromatic
shadow is recoverd and correctly detected in the original image.

and (ii) spatial similarities between chrominance angle and brightness distortions are
analysed for all potential shadow regions, in order to finally identify umbra shadows.

The resulting shadow detection can (1) detect and remove chromatic moving shad-
ows (umbra shadows) and (2) penumbra shadows, while several other methods are
restricted to the latter.

However, in some cases the separation between a foreground object and a shadow
region can fail. Occasionally, a part of the foreground object or the shadow is not
accurately segmented due to segmentation problems, e.g. camouflage. Therefore, the
shadow detection can miss-classify a shadow as being a part of a foreground object.

In order to solve this problem a top-down approach has been developed, as outlined
in this chapter. After detection of the objects and shadows both are tracked using
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Kalman filters, in order to enhance the chromatic shadow detection, when it fails to
detect a shadow. Firstly, a data association between the blobs (FG and SH blobs)
and the Kalman filters is performed. Secondly, an event analysis is carried out in
order to detect the different cases: object match, new object, lost object, object
splitting and object merging. Taking this information into account, the Kalman filters
are managed. Furthermore, occlusion handling is managed based on a Probabilistic
Based Model (PAM). Temporal consistency is evaluated in the association between
FGs and SHs and their respective Kalman Filters over time. Consequently, a number
of cases are studied: FG and SH match, new shadow and lost shadow. Finally, the
tracking results are feedback to the chromatic shadow detector to improve the object
and shadow detection. Thus, chromatic shadows are correctly detected in cases with
the mentioned segmentation problems.

Consequently, thanks to the data association between FG and SH we have achieved:
(i) enhancement of the chromatic shadow detection by detecting shadows which were
not possible to detect before. (ii) improvement the segmentation for high level pro-
cesses, such as detection and tracking, by avoiding shadows. (iii) a more robust track-
ing, since (1) the PAM and the KF tracker are more robust and correctly updated,
and (2) erroneous created KFs are deleted.

Qualitative and quantitative results of tests for both outdoor and indoor sequences
from well-known databases validate the presented approach. Overall, our approach
gives a more robust and accurate shadow detection and foreground segmentation
compared to the state-of-the-art methods.

Unlike other approaches, our method does not make any a-priori assumptions
about camera location, surface geometries, surface textures, shapes and types of
shadows, objects, and background. Experimental results show the performance and
accuracy of our approach in different shadowed materials and illumination conditions.

However, some remarks have to be said with respect to the bottom-up part (chro-
matic shadow detector) and the top-down part (shadow tracking). The chromatic
shadow detector needs a reasonable resolution to work correctly, and noisy and blurred
images intensify the camouflage problems. Furthermore, shadow regions need to have
a minimum area for analysis, or there might not be enough information for a proper
shadow detection and classification. The ”bluish effect” gives very good results for
some outdoor sequences. However, sometimes it does not work as defined theoreti-
cally, since it is affected by external factors, such as the sensibility of the camera and
image compression. For the tracking process, targets are assumed to move with a
reasonable velocity compared to the frame rate. Since, objects which move quickly
and change their appearance suddenly are difficult to track.

In future work, edge-linking or B-spline techniques can be used to avoid the partial
loss of foreground borders due to camouflage, and thereby improve the edge model.
Thus, avoiding shadows miss-classified as foreground objects, when shadows and ob-
jects are not split correctly.

Another interesting aspect is applying the direction of penumbra to umbra for a
cast shadow to discriminate between foregrounds and shadows, when the image re-
gion does not have gradient nor similar temporal and spatial chrominance angle and
brightness distortions. Additionally, fg. detection could be improved using a combi-
nation of a physical colour model and a camera model. Furthermore, a probabilistic
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scheme based on the feedback from the tracking shadows could be taking into account
in the shadow detection process.

In spite of the main subject of this thesis is motion segmentation and shadow
detection, for future work the tracking system has to be improved, in order to be able
to test the approach on more complex scenario, such as crowded scenes or situations
with multiple grouping and splitting processes. The proposed tracking system per-
forms well for basic scene situations. However, for more complex scenario the tracks
are sometimes lost, and the tracker information becomes corrupted. Thus, in future
work a high level tracker is needed, which can manage the low level trackers in a
top-down architecture.

Furthermore, detection of gradient changes can be applied in the occlusion han-
dling to improve the splitting process of occluded objects. Moreover, the target rep-
resentation can be refined by including structure components and shape cues. E.g.,
body-part histograms and salient points could enhance agent tracking during long-
term partial occlusions, while SIFT descriptors could provide new ways of target
discrimination.

On the other hand, more complex cases of the temporal consistency of the data
association between FG and SH with their respectively assigned Kalman Filter have
to be studied. E.g., a possible shadow without any associated FG, because it has been
split up before or the positive edge mask (ed pos mask) has divided it erroneously.
In order to solve these cases a high level event analysis has to be applied.

In order to solve the problem with fast moving objects relatively to the frame
rate, with sudden changes in their appearance, in future work the momentum can
be applied for the tracker information. In this way the tracker could improve the
accuracy through the historical map of the previous trackers.

Finally, high-level information from the Human Sequence Evaluation structure,
see appendix B for more information, can be applied to enhance the detection process
in subsequent frames.



Chapter 5

Concluding Remarks

This Thesis is mainly divided in two parts. In the first one, a study of motion
segmentation problems is firstly presented. Based on this study, a novel algorithm
for mobile-object segmentation from a static background scene is developed. This
approach is demonstrated robust and accurate under most of the common problems
in motion segmentation. The second one tackles the problem of shadows in depth.
Firstly, a bottom-up approach based on a chromatic shadow detector is presented to
deal with umbra shadows. Secondly, a top-down approach based on a tracking system
has been developed in order to enhance the chromatic shadow detection.

5.1 Discussion and contributions

In the first part, a case analysis of motion segmentation has been presented by taking
into account the problems associated with the use of different cues such as colour, edge
and intensity. This has allowed us to define when to use each model. Then, based on
this case analysis, different motion segmentation problems have been solved.

The approach presented in this first part of the Thesis combines colour, intensity
and edge cues, and a temporal differencing technique in a collaborative architecture,
in which each model is devoted to a specific task. The background model of each cue
has been improved with respect to the current state of the art. A chromatic invariant
cone model is used as colour model, and an invariant gradient orientation combined
with their magnitudes is used as edge model, which can avoid false edges due to intense
global illumination changes. These are performed by a particular algorithm, but they
can be substituted by enhanced ones without modifying the architecture itself. Hence,
this structured framework combines in a principal way the main advantage of each
cue. In this way, by taking advantage of several cues, the system is allowed to benefit
from all the cues’ capabilities.

The proposed hybrid approach can cope with different colour problems as (i) dark
and light foreground. Furthermore, it solves problems with (ii) the dynamic range
(problems associated with saturation and lack of colour problems) using intensity
cues. The approach also tackles (iii) camouflage in intensity and (iv) camouflage
in chroma, (v) avoiding the global and local (shadows and highlights) illumination
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problems. Therefore, it can simultaneously differentiate these camouflages from the
illumination changes. In addition, the approach can cope (vi) with bootstrapping and
(vii) ghosts problems. But also, it can (viii) reduce the false positives using each cue
independently. Therefore, our hybrid approach reduces the number of false negatives
and false positives, and increases the detection rate.

Experiments on complex indoor and outdoor scenarios have yielded robust and
accurate results, thereby demonstrating the ability of our system to deal with uncon-
strained and dynamic scenes. Therefore, our approach can work in indoor, outdoor
scenes, with high or low resolution, with noise and blurred images, and no need
calibrated images. Furthermore, it is also independent on the illumination and the
illuminant on the scene. Moreover, size, appearance, number, and velocity of the
objects are not important for our motion segmentation approach. This is because it
does not make any a-priori assumptions about camera location, surface geometries,
surface textures, shape and types of the objects or the background.

Some remarks have to be considered, although it is not needed any calibration
for the camera, and no matter where it is situated, or the quality of the images from
it. In order to use our motion segmentation approach the camera has to be a static
camera.

In the second part of the Thesis, we have presented two main novelties: (i)
a bottom-up approach for detection and removal of chromatic moving shadows in
surveillance scenarios, and (ii) a top-down approach based on Kalman filters to de-
tect and track shadows.

In the Bottom-up part, the shadow detection approach applies a novel technique
based on gradient and colour models for separating chromatic moving shadows from
moving objects.

Firstly, we extend and improve well-known colour and gradient models into an
invariant colour cone model and an invariant gradient model, respectively, to perform
automatic segmentation while detecting potential shadows. Hereafter, the regions
corresponding to potential shadows are grouped by considering ”a bluish effect” and
an edge partitioning. Lastly, (i) temporal similarities between local gradient structures
and (ii) spatial similarities between chrominance angle and brightness distortions are
analysed for all potential shadow regions, in order to finally identify umbra shadows.

The resulting shadow detection can (1) detect and remove chromatic moving shad-
ows (umbra shadows) and (2) penumbra shadows, while several other methods are
restricted to the latter.

However, in some cases the separation between a foreground object and a shadow
region can fail. Occasionally, a part of the foreground object or the shadow is not
accurately segmented due to segmentation problems, e.g. camouflage. Therefore, the
shadow detection can miss-classify a shadow as being a part of a foreground object.

In order to solve this problem a top-down approach has been developed, as outlined
in this chapter. After detection of the objects and shadows both are tracked using
Kalman filters, in order to enhance the chromatic shadow detection, when it fails to
detect a shadow. Firstly, a data association between the blobs (FG and SH blobs)
and the Kalman filters is performed. Secondly, an event analysis is carried out in
order to detect the different cases: object match, new object, lost object, object
splitting and object merging. Taking this information into account, the Kalman filters
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are managed. Furthermore, occlusion handling is managed based on a Probabilistic
Based Model (PAM). Temporal consistency is evaluated in the association between
FGs and SHs and their respective Kalman Filters over time. Consequently, a number
of cases are studied: FG and SH match, new shadow and lost shadow. Finally, the
tracking results are feedback to the chromatic shadow detector to improve the object
and shadow detection. Thus, chromatic shadows are correctly detected in cases with
the mentioned segmentation problems.

Consequently, thanks to the data association between FG and SH we have achieved:
(i) enhancement of the chromatic shadow detection by detecting shadows, which were
not possible to detect before. (ii) improvement of the segmentation for high level
processes, such as detection and tracking, by avoiding shadows. (iii) a more robust
tracking, since (1) the PAM and the KF tracker are more robust and correctly up-
dated, and (2) erroneous created KFs are deleted.

Qualitative and quantitative results of tests for both outdoor and indoor sequences
from well-known databases validate the presented approach. Overall, our approach
gives a more robust and accurate shadow detection and foreground segmentation in
comparison to the state-of-the-art methods.

Unlike other approaches, our method does not make any a-priori assumptions
about camera location, surface geometries, surface textures, shapes and types of
shadows, objects, and background. Experimental results show the performance and
accuracy of our approach in different shadowed materials and illumination conditions.

Nevertheless, some remarks have to be said with respect to the bottom-up part
(chromatic shadow detector) and the top-down part (shadow tracking). The chro-
matic shadow detector needs a reasonable resolution to work correctly, and noisy and
blurred images intensify the camouflage problems. Furthermore, shadow regions need
to have a minimum area for analysis, or there might not be enough information for
a proper shadow detection and classification. The ”bluish effect” gives very good
results for some outdoor sequences. However, sometimes it does not work as defined
theoretically, since it is affected by external factors, such as the sensibility of the cam-
era and image compression. For the tracking process, targets are assumed to move
with a reasonable velocity in comparison to the frame rate. Since, objects which move
quickly and change their appearance suddenly are difficult to track.

5.2 Aplications

The work presented in this Thesis has been already used for higher levels on the
Human Sequence Evaluation (HSE), see appendix B and [16] for more information
about HSE, and applications giving satisfactory results.

The approach has been used in the behaviour analysis field. The motion segmen-
tation is the first procedure to be applied in a cognitive vision system (CVS) devoted
to analyse behaviour in image sequences. The correct separation of the moving ob-
jects from the background allows a better interpretation of their motion at higher
level procedures [2].

It has also been used in the Augmented Reality field. The segmentation has
been tested on several application domains: in [3], a combination of real-time human
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agents and behaviour-based virtual agents allowed to generate augmented image se-
quences where real and virtual agents show a certain level of interaction. For this
application, a good segmentation is crucial in order to get a good estimation of real
agent’s silhouette and therefore perform a realistic image composition. Additionally,
these augmented image sequences can be later used to measure the performance of
segmentation and tracking algorithms [4], since the number of virtual agents can be
incremented gradually, thus increasing the segmentation complexity of the resulting
sequence.”

The segmentation also has been applied to a series of applications, including: (i)
interpretation and indexing of video events and behaviours [11], (ii) generation of
multilingual NL descriptions of videos [12], and (iii) authoring tools for component-
performance evaluation [13].

5.3 Open Issues and Future work

Our motion segmentation approach copes with the non-physical changes in the scene
such as local and global illumination problems. Nonetheless, it does not cope with
the physical changes in the scene such as when objects are deposited or removed from
the scene. Then, in the future work, an updating process should be embedded to the
approach in order to incorporate objects to the background model. Furthermore, the
use of a pixel-updating process can help to reduce the false positive pixels obtained
by using the intensity mask due to drastic illumination changes. In addition, detected
motionless objects should be part of a multilayer background model. Moreover, colour
invariant normalisations or colour constancy techniques can be used to improve the
colour model. The edge model can be enhanced avoiding false edges due to local
intense illumination changes. The discrimination between the agents and the local
environments can be enhanced by using of new cues such as texture information.

In future work, edge-linking or B-spline techniques can be used to avoid the partial
loss of foreground borders due to camouflage, and thereby improve the edge model.
Thus, avoiding shadows miss-classified as foreground objects, when shadows and ob-
jects are not split correctly.

Another interesting aspect is applying the direction of penumbra to umbra for a
cast shadow to discriminate between foregrounds and shadows, when the image re-
gion does not have gradient nor similar temporal and spatial chrominance angle and
brightness distortions. Additionally, fg. detection could be improved using a combi-
nation of a physics colour model and a camera model. Furthermore, a probabilistic
scheme based on the feedback from the tracking shadows could be taking into account
in the shadow detection process.

In spite of the main subject of this thesis is motion segmentation and shadow
detection, for future work the tracking system has to be improved, in order to be
able to test the approach on a more complex scenario, such as crowded scenes or
situations with multiple grouping and splitting processes. The proposed tracking
system performs well for basic scene situations. However, for more complex scenario
the tracks are sometimes lost, and the tracker information becomes corrupted. Thus,
in future work a high level tracker is needed, which can manage the low level trackers
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in a top-down architecture.
Furthermore, detection of gradient changes can be applied in the occlusion han-

dling to improve the splitting process of occluded objects. Moreover, the target rep-
resentation can be refined by including structure components and shape cues. E.g.,
body-part histograms and salient points could enhance agent tracking during long-
term partial occlusions, while SIFT descriptors could provide new ways of target
discrimination.

On the other hand, more complex cases of the temporal consistency of the data
association between FG and SH with their respectively assigned Kalman Filter have
to be studied. E.g., a possible shadow without any associated FG, because it has been
split up before or the positive edge mask (ed pos mask) has divided it erroneously.
In order to solve these cases a high level event analysis has to be applied.

In order to solve the problem with fast moving objects relatively to the frame
rate, with sudden changes in their appearance, in future work the momentum can
be applied for the tracker information. In this way, the tracker could improve the
accuracy through the historical map of the previous trackers.

Finally, high-level information from the Human Sequence Evaluation structure,
see appendix B for more information, can be applied to enhance the detection process
in subsequent frames.
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Appendix A

Kalman Filter

The Kalman filter [31] is a stochastic state estimator developed by Rudolph E. Kalman
in 1960. It implements a recursive algorithm which works in a prediction-correction
way, estimating the system state from noisy measures. The estimator is optimal in
the sense that it minimises the steady-state error covariance:

P = lim
t→∞E

[
(x− x̂) (x− x̂)

T
]
. (A.1)

However, strong assumptions are required: the transition model must be linear
Gaussian, and the sensor model must be Gaussian. Nevertheless, albeit these condi-
tions rarely exist, the filter still works reasonably well for many applications, and it
has been widely used.

It works as follows. The process is assumed to be governed by a linear stochastic
difference equation:

xt = Axt−1 + ωt, (A.2)

where

• xt ∈ Rn is the system state, n the state-space dimension, and t a discrete time
index,

• A is a n x n matrix describing the linear transition model,

• ωt ∼ N (0,Q) is the process noise, and Q the noise covariance. Hereby, zero-
mean white additive Gaussian noise is assumed to represent modelling uncer-
tainties and disturbances.

The measure process is assumed to be governed by the next equation:

zt = Cxt + νt, (A.3)

where,
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Figure A.1: Diagram block of a Kalman state estimator. See text for details.

• zt ∈ Rm is the measure vector, and m the measure-space dimension,

• C is a m x n matrix relating the state to measure,

• νt ∼ N (0,R) is the sensor noise, and R the noise covariance. Hereby, zero-
mean white additive Gaussian noise is assumed to represent measurement noise.

It is also assumed that both process and measurement noise are uncorrelated:

Cov
(
νtω

T
t

)
= 0. (A.4)

The initial state is unknown, but it is assumed that it follows a normal law:

x0 ∼ N (μ0,P0) , (A.5)

where

• x0 is the system initial state,

• μ0 is the initial distribution mean,

• P0 is the initial distribution covariance.

Independence of process noises ωt,νt and initial state x0 is assumed.
The filter works in two steps which are recursively performed —a block diagram

is shown in Fig. A.1. In the first one, a prediction is made: the expectation and
covariance are propagated according to the the dynamic model, thereby obtaining
the temporal prior:

x̂−t = E [Axt−1 + ωt]

= Ax̂t−1, (A.6)

and the prior covariance matrix:
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P−t = E
[
(xt − E [xt]) (xt − E [xt])

T
]

= E
[
(A (xt−1 − E [xt−1]) +wt) (A (xt−1 − E [xt−1]) + ωt)

T
]

= APt−1A
T +Q. (A.7)

After obtaining the new measurement zt, the second step is carried out, and values
are updated according to the observation likelihood:

x̂t = x̂−t +Ktyt, (A.8)

Pt = I−KtCP−t , (A.9)

where:

yt = zt −Cx̂−t , (A.10)

is called the innovation or the residual,

St = CP−t C
T +R, (A.11)

is called the innovation covariance, and

Kt = P−t C
TS−1

t , (A.12)

is known as the Kalman gain.
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Appendix B

A Framework to Human-Sequence
Evaluation

Accomplishing Human Sequence Evaluation (HSE) [16] involves not only human mo-
tion analysis, but also behaviour understanding. Therefore, the proposed framework
must include the different required system functionalities while making use of cog-
nitive processes. It should not be restricted to Image Processing and Analysis, or
Pattern Recognition techniques, but it should also comprehend topics related to Arti-
ficial Intelligence, Computational Linguistics, Computer Animation, and Automatic
Control. For instance, Computer Animation techniques are taken into account in
order to provide graphical information and simulations about the situation which is
taking place, as well as predictions about potential future ones; Automatic Control
can come into scene to allow machine responses to recognised behaviours, and to
operate PTZ cameras.

In this section, the HSE framework presented in [17] is reviewed. HSE defines
a complete Cognitive Vision System which transforms image values into semantic
descriptions of human behaviour by performing multiple bottom-up and top-down
processes. Thus, its aim goes far beyond detecting, tracking and identifying the ac-
tions being performed. Its goal is to apply cognition methodologies to understand
human behaviour, thereby being able to provide Natural Language (NL) descriptions
of what is taking place within the scene, and generating synthetic visual representa-
tions of the scene and agents.

Mainly, the implementation of HSE involves three cooperating tasks: (i) the acqui-
sition of a dynamic description of the observed human motion; (ii) the transformation
of these quantitative parameters into logic predicates; and (iii) the communication of
the obtained results to an human user. The third task can be achieved by means
of NL text generation —by applying syntax rules to those instantiated conceptual
primitives— and by the synthetisation of virtual environments from this conceptual
information.

Therefore, multiple issues are demanded in order to accomplish HSE. At the very
least, these include (i) active video camera control, (ii) target segmentation, (iii)
robust and accurate multiple-target tracking, (iv) target classification, (v) posture and
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action recognition, (vi) facial expression analysis, (vii) behaviour understanding, and
(viii) communication of those inferred conceptual interpretations to human operators.
Thus, the computational knowledge of the three different channels of human motion,
namely the motion of agents —trajectories, bodies— postures and actions, and faces
—expressions and emotions, is linked together in the same discourse domain.

Unfortunately, adversities common to other Computer Vision areas could cause
system failures, for instance due to acquisition conditions, uncontrolled illumination,
shadows, cluttered backgrounds —-possibly in motion—- etc. In addition, dealing
with people entails numerous special difficulties such as posture changes, huge ap-
pearance variability, or unforeseeable motion changes. Moreover, conceptual inter-
pretations of motion may include uncertainty due to the inaccuracy of the semantic
terms used to explain human behaviour.

Due to this complexity, a HSE system is here presented as a highly modularised
and hierarchically organised framework, see Fig. B.1. Thus, multiple co-operating
modules are defined through the different levels. They work following both top-down
and bottom-up approaches, thereby defining the interactions of different Computer
Vision algorithms with other components, such as human behaviour modelling and
NL text generation. This is done while taking into account the uncertainty gener-
ated during motion naming, i.e. the textual explanation of perceived motion. HSE
requires intermediate models of human motion to associate geometric knowledge with
conceptual statements. Thus, each level exploits the a-priori knowledge provided by
models and context.

Levels are defined according to main functionalities. Thus, each level performs
some general task such as providing a machine interface −Active Sensor Level (ASL),
User Interaction Level (UIL)− processing and analysing the image sequence −Image
Signal Level (ISL), Picture Domain Level (PDL), Scene Domain Level (SDL)− and
describing and reasoning over the obtained quantitative results −Conceptual Integra-
tion Level (CIL), Behaviour Interpretation Level (BIL).

The whole structure is highly interconnected, and each level receives inputs from
higher and lower ones, providing the system with redundancy. The inter-level com-
munication can be seen in three different ways: first of all, a data stream is provided
to the higher levels by lower ones including all the results obtained in the bottom-up
process; secondly, higher levels feed back the lower ones in a top-down process; at
the same time, higher levels can act on the lower ones by tuning the parameters,
and selecting different operation modes, models or approaches depending on what is
known about the current scene, and what goals are pursued.

Visual sensors provide information to the system about the real world at the ASL.
Pieces of reality are captured by the cameras according to the kind of sensor used and
the visual field. Thus, this level includes hardware devices, such as the camera itself
and the acquisition cards, and models to deal with these devices. Further, being the
sensors active, the system is allowed to modify the camera parameters depending on
the task and scene conditions. At the ISL, the sequence of image data is processed
by segmenting potential targets. The resulting foreground regions are the basis for
the following level, the PDL. Possible segmentation errors generated at the ISL are
handled here by means of representation, classification, and tracking techniques. At
the SDL, the 3D configuration of the scene is used to compute the parameters of each
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Figure B.1: Human-Sequence Evaluation framework from [55].
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agent within its 3D environment.
Results obtained at either the PDL or the SDL are forwarded to the CIL to

instantiate semantic predicates for a given agent and time step. These qualitative
descriptions are used to generate interpretations of its motion, as well as conceptual
relationships of the agent and its environment. Instantiated predicates are fed forward
to the BIL, where the expected temporal evolution of descriptions is a-priori modelled
in order to generate coherent spatio-temporal interpretations.

The UIL attempts to provide a Natural-Language description of what is actually
happening within the scene. The quantitative information generated at lower lev-
els is associated with qualitative semantic terms such as verbs, nouns, adverbs and
adjectives, and it is used to generate natural sentences by means of syntactical, mor-
phological, and orthographic rules. Finally, an interactive, Graphical User Interface
(GUI) allows a single human operator to monitor a significant area of interest. Thus,
the GUI automatically places virtual agents representing people and vehicles into a
synthetic view of the environment. This approach has the benefit that visualisation of
scene events is no longer tied to the original resolution and viewpoint of a single video
sensor. Through this interface, the user can act on individual sensor units, modify
the system parameters, select one particular approach, and ask for situation descrip-
tions, behaviour explanations, and synthetic simulations. An audio-based interactive
environment can also be here considered to enhance the user interaction.
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� Daniel Rowe, Ivan Huerta, Jordi Gonzàlez, Juan J. Villanueva. Robust Multiple-
People Tracking Using Colour-Based Particle Filters. In 3rd Iberian Conference
on Pattern Recognition and Image Analysis (ibPRIA’2007). Girona, Spain,
June, 2007
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corporation of Motionless Foreground Objects for Adaptive Background Seg-
mentation. In 4th International Workshop on Articulated Motion and De-
formable Objects (AMDO-e’2006). Andratx, Mallorca, Spain, July, 2006

� Iván Huerta, Ariel Amato, Marco Pedersoli, Jordi González. Motion Segmenta-
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video sequences combining behavioral animation and multi-object tracking.
CAVW, 20(4):473–489, 2009.
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