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Chapter 1

Introduction

1.1 Motivation and Objectives

GNSS (Global Navigation Satellite System) has become more and more indispensable for many

applications in all sectors from navigation positioning and smartphone utilities, to cartography

and geodesy, modern agriculture or even in more critic situations such as hiking rescues. Some

of them require a high positioning accuracy under harsh environments in order to work properly

according to the requirements, but GNSS was first designed to work outdoors in open spaces.

Precision can be achieved using Differential GNSS but sometimes is not available when there

is need to use them under environments where the received signal is too weak or there is a high

noise component. This limitation can be due to the unavailability of having an extra receiver

which is the positioning reference of the user’s receiver. Besides, it has to be a data link between

both receivers in order to be aware of arranged errors, provided by the reference receiver.

Another option is to use HS-GNSS (High Sensitivity GNSS) which have some specific ac-

quisition blocks which help to find the signal amplitude by increasing the signal amplitude in

reception. These specific blocks despite of being of great help, have their complexity in terms

of computational load, due to large correlations, long integration times and large searching di-

mensions in order to find the signal peak. The possibility to improve the signal detection could

be crucial in some situations because it improves the robustness of the receiver and allows it to

extend its functionality to working scenarios where it was not originally designed to operate.

The main objectives of this project are:

• Use traditional second-order statistics with already known statistics to characterize signal

detection metrics.

• Use first-order absolute statistics as another option in signal detection. Using new ap-

1



1.2. Description 2

proximate closed-form expressions, characterize first-order absolute statistics to find the

corresponding detection metrics.

• Compare both first-order and second-order absolute statistics performances in terms of

receiver’s performance to determine when the proposed detector, based in first-order ab-

solute statistics, outperforms conventional receivers.

1.2 Description

This project can be fundamentally defined in three blocks.

The first one will define what is the process followed by conventional receivers in signal detec-

tion. Second-order statistics involving signal acquisition will be studied for the ideal searching

case as a platform for the real situation in parallel acquisition. Theoretical concepts such as Ex-

treme Value Theory and detection metrics will be first defined to be aware of them. At the end,

all these concepts will be used to describe the detection performance of conventional receivers.

The second one will be centered in the use of first-order absolute statistics instead of second-

order statistics. It will also be discussed its features in the ideal case of single time/frequency

search as a basis of the actual case found in practice in multicell search. To do so, first-order

absolute statistics will be studied and some closed-form expressions will be used to define these

statistics and its performance in detection metrics. Finally, detection performance based in these

new closed-form expressions will be compared with empirical evidences to make sure that it has

been used reliable approximations.

The third one will compare both first and second-order statistic performances by comparing

ROC (Receiver Operating Characteristic) curves. Both detectors will be compared working

under many environment situations and different parameters set. That will give a wide vision

of differences in performance and will allow classifying the best detector for each situation.

Finally, conclusions will be extracted in order to have a general idea about the performance

of first-order noncoherent detector and its performance against conventional detectors.



Chapter 2

Fundamentals of GNSS

2.1 Introduction to GNSS

Global Navigation Satellite Systems are commonly known as GNSS, and allow users to be

positioned from anywhere in the world with a great precision on the order of a few meters, or

even less, depending on the working conditions. The first developments in satellite navigation

systems were made by the US military, resulting in a system called Transit in the 1960s. It was

based on exploiting the Doppler effect, where 6 satellites were put in orbit. By monitoring the

frequency shift between transmitted and received one, it was possible to determine a particular

position with not quite complexity. However, the low number of active satellites did not provide

all-time-coverage. Because of the limitations of the Transit system, and due to technological

war with the URSS, the USA government decided to begin the biggest project until the date

in order to get the satellite navigation system leadership. A total of 24 satellites were put in

orbit by the end of august 1993 paving the way for which it is currently known as the Global

Positioning System (GPS), certainly the most popular of all GNSS systems.

Once a brief historical introduction has been made, we will introduce how modern GNSS

works. It is important to make clear that this project assumes GPS as the navigation system

chosen. The reason why, is because it has been the most used available navigation system in

recent years for all kind of products, and it is still the only fully-operational system with global

coverage.

2.2 GPS signal

The satellite signals which civilians are allowed to use are the C/A code (Coarse/Acquisition

code) and the data modulated on the L1 carrier. Almost all GNSS products work with these two

3



2.2. GPS signal 4

parameters. L1 carrier is fixed to 1575.42MHz, as that is the frequency synthesized by atomic

clocks on the satellite. Also BPSK modulation is transmitted, so that navigation bits are 1 or

−1. As all satellites are transmitting into the same bandwidth, some medium access control

(MAC) mechanism is needed to make them unique in some manner and avoid interference. That

is the reason why it is used Code Division Multiple Access (CDMA). That means that every

single satellite has a specific pseudorandom code, orthogonal with other satellite codes. These

codes will allow the receiver to identify the responsible satellite for the signal received. Every

code is a binary sequence of 1023 bits called chips and have duration of 977, 52ns everyone (Tc),

which implies a total duration of 1ms

Figure 2.1: GPS signal generation at the satellite

This signal is again modulated by a 50bps datastream (same to say 20ms per bit, Tb) con-

taining the ephemeris data and other important information needed in reception, shown in Fig.

2.1. The process of modulating a low data rate signal with a high chip rate pseurandom code is

known as is known as DSSS (direct sequence spread spectrum). The resulting signal s(t) has a

new bandwidth of

BW = BWd(t) ·
Tb

Tc
(2.1)

being Tb/Tc the Processing Gain.

Figure 2.2: d(t), c(t) and s(t) signal spectrums [Roi03]

An important feature of this procedure is that the total power spectrum in s(t) is quite low
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as it can be seen in Fig. 2.2. Some advantages of DSSS signaling are the following:

• Resistance to interferences (jamming, other satellite signals, multipath etc.).

• Being undetectable to undesired users, caused by reducing the total power transmitted.

• Accurate measures of propagation delay in reception (indispensable when calculating pseu-

dorange values).

These pseudorandom codes are the already mentioned C/A codes, which belong to the family

of Gold codes. In particular, Gold codes with a length of 1023 chips are adopted in GPS and

more details about this codes and their properties can be found in [Tsu05].

After all this signal processing is done, the signal is sent to the Earth’s surface. When arrives,

in 77ms approximately, it is processed by the receiver which can begin to find the pseudorange

values, needed to finally calculate the user’s position.

2.3 Basic GNSS receiver

When the satellite signal arrives at the antenna, it is first amplified by a low noise preamplifier

with the aim of making it perceivable to the rest of receiver blocks. Then, it is down-converted

to IF (intermediate frequency) by the radio frequency front end. Normally, this intermediate

frequency varies within the range of 2 to 20MHz. That process and all the operations that the

signal undergoes within the receiver, always adds some thermal noise to the signal. Once the

signal is in IF, a mixer removes the carrier frequency so it is down-converted into a base band

signal which is digitalized thank to an ADC, where the original binary code remains. After

that, it is introduced to the acquisition block where the desired signal is searched among the

other non-desired signals in order to give the first estimations of C/A code delay and Doppler

shift. Once this process has been taken, tracking block will be able to identify code delay and

Doppler shift frecuency more accuratelly, and will allow to rearrange these parameters following

any change during the positioning.

The acquisition process will be discussed in Section 3.1 since it has a close relationship with

the work done in this project. To read more about the other signal processing blocks, [D.K06]

would be a good reference.

2.3.1 Acquisition process

Once the processed signal goes out from the mixer, it finds the coherent correlator. The job of

the coherent correlator is to find the satellite signal among the disturbing noise. The processed
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Figure 2.3: Simplified diagram block of a GNSS receiver

signal after the mixer is

r(t) = A · s(t− τ)ejωd(t−τ) (2.2)

where A is the amplitude from the transmitted signal s(t), τ is the corresponding C/A code

delay, and ωd the Doppler frequency shift.

The correlator in Fig. 2.4 is in charge of multiplying the noisy signal r(t) with the code of

the satellite under analysis. After that, the multiplied values are integrated. For the case of

being aligned, this value turns out to be a large number compared with the situation when the

noisy signal does not contain satellite data or when it is not aligned. In that case, the resulting

integration will tend to 0 because the resulting multiplied signal tends to be again a noisy signal

with zero-mean.

Figure 2.4: Acquisition correlator

In multicell search (Section 2.3.2), once the acquisition matrix has been filled with the

corresponding correlation values, the maximum of them is picked up. This value has to be

compared with a threshold to determine whether the signal processed was from the satellite

(hypothesisH1) or just noise (hypothesisH0). More information about statistics involving taking

the maximum value, will be explained later on in Section 2.6. Regarding the two hypotheses, in
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order to be distinguished, H0 and H1 can be both defined as

H0 : x[n, i] = w[n, i] (2.3)

H1 : A · ejωd
n + w[n, i] (2.4)

The term ωd is due to the granularity of the search process undergone at the acquisition stage.

If Doppler bins were arbitrarily small, the error would tend to 0. This phase varies every time.

Sometimes it is need to sum many samples with varying phase. If the resulting phase overcomes

2π, the resulting signal turns out to have less amplitude than the expected (depicted in Fig.

2.5). This phase phenomenon is known as phase wrapping and it is schematically represented

in Fig. 2.5.

Figure 2.5: Phase wrapping

If the extreme value under H1 hypothesis surpasses the threshold, the next step is the

tracking block and recover the navigation bits. However, sometimes the value found after picking

the maximum cell from the acquisition matrix, despite being under hypothesis H1, does not

exceed the threshold, so the satellite signal is misdetected. In order to circumvent this issue,

more coherent integrations should be taken and sometimes it is needed to combine them with

noncoherent integrations. Both concepts are explained in Section 2.5.1.

2.3.2 Acquisition strategies

When finding satellite signal, after being processed by the mixer, there are two issues which

make it difficult; C/A code delay and Doppler frequency shift as a consequence of satellite’s

movement.

Assuming that these inconveniences do not exist, the only thing the receiver needs to do
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is to correlate the r(t) signal with the local code and make as many coherent integrations as

it is needed (Section 2.5). Once the result is obtained, the receiver just has to compare this

value with the threshold to decide whether it is under H0 or H1 situation. In this project, the

assumption of not having neither Doppler frequency shift nor C/A code delay uncertainty will

be treated as Single cell search. Despite it is an ideal situation and it cannot be found in any

real case, it will be studied in order to help to understand the complex case which is the found

in GNSS receivers.

Figure 2.6: Multi cell matrix acquisition [D.K06]

On the other side, the actual case found in practice deals with some issues which make

finding the satellite signal a challenging procedure. It will be called Multicell search, and it

will be also studied in the following chapters.

In order to find the corresponding C/A code delay and Doppler frequency shift, the search is

based in an acquisition bidimensional matrix depicted in Fig. 2.6. In the x axis, it is replicated

all 1023 C/A code phase. In the y axis, Doppler shift range, which should cover the majority

of possible values. The code phase is searched in increments of 1/2 chip, and every increment is

called code bin. On the other side, Doppler frequency shift is also divided in bins which typically

vary from 67Hz for strong signals, or 667Hz for poorer ones.

The first fix search begins considering non code delay and the mean Doppler frequency shift

as the starter point. Once it has been looked for all possible code delays, Doppler bin changes

at time until the satellite signal is found or the search finishes without desired results. In that

case, the estimated code should be changed for another candidate. If it is wanted to read more
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about the matrix acquisition, [Dig09] would be a good reference.

2.3.3 Acquisition issues

The received signal from GPS satellites is very weak because of the long way between their orbit

and the Earth’s surface (about 22000kms). This limitation affects the acquisition process made

by GNSS receivers. If the acquisition is made indoors, this handicap increases from 10 to 1000

times more.

Another limitation is the slow startup sequence where the acquisition time spends approx-

imately 1 minute long to the first fix. After this first scan, a position can be computed every

second. In order to be positioned, ephemeris data need to be recovered from satellites signal,

which will help to determine the satellite orbits and clocks.

An already listed acquisition issue was the term ejωd
n accompanying the amplitude after

the correlator. That was the time-varying phase introduced by the residual carrier frequency

error, as a result of the acquisition process, where phase derives from Doppler shift could not be

eliminated. This phase can be very harmful when correlation peaks are summed in order to have

a greater final amplitude, because this varying phase can cause a disminution of the resulting

signal. This effect, which is known as phase wrapping, is schematically depicted in Fig. 2.5.

These issues can be circumvented using HS-GNSS (High Sensitivity GNSS), as it will be

seen in Section 2.5. If it is not enough, A-GPS (Assisted GPS) may be needed. This project is

developed under the assumption of working with a HS-GNSS.

2.4 Working scenarios

As it has been seen, one of the varying handicaps while signal acquisition is the low power

received in reception. To cope with this issue, first of all, it has to be identified and classified.

The way to determine the quality of the received signal in front of the noise added, is similar to

the one used in other communication systems (SNR). This metric is called C/N0 (Carrier-to-

Noise ratio) and gives a similar information as SNR. The advantage of using C/N0 instead, is

that it does not have a relationship with the receiver’s bandwidth, so classifying the quality of

the signal this way, C/N0 can be used for all kind of receivers, having the same meaning to all.

It is need to distinguish from 4 possible situations depending on the C/N0 in reception:

• Outdoor scenario is within the C/N0 range which receivers usually work. This slot is

compressed between 45-35 dBhz. It is a LOS (Line Of sight) situation, which implies that

there are no obstacles between the transmitter and the receiver.
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• Soft indoor scenarios are compressed between 35 and 25dBhz. They are typical situ-

ations near buildings, under foliage, where there might not be a line of sight. Within in

this range, receivers lose accuracy and may stop working properly.

• Indoor scenarios from 25 to 10dBhz. In these situations, there might be attenuations

on the order of 3dB per meter when moving in from outside wall [Pet97]. Conventional

GNSS receivers cannot work here. Using HS-GNSS may be the solution as they use

a large coherent integration period combined with a particular number of non-coherent

integrations, so the total amplitude given by same C/N0, is greater than conventional

receivers. However, the message brought in the signal cannot be recovered, so Assisted

GNSS may be needed in order to find user’s position.

• Deep indoor are the toughest enviroments when the C/N0 ratio is below 10dBhz. Here, it

is hardly possible to be positioned. The majority of GNSS receivers do not even recognize

whether is there signal or not. Theorically it might be possible but the user could not

have a real time positioning because of the magnitude of the calculations needed. That is

the typical situation found when being inside a building or into a tunnel.

The work done in this project has been based in C/N0 values according to the pattern listed

before.

2.5 HS-GNSS receivers

HS-GNSS work with the same procedure as conventional GNSS receivers but they have some

specific acquisition blocks to guarantee proper final signal amplitude in order to detect the

majority of H1 situations.

The best acquisition process would be the situation where the incoming signal is correlated

by the 1ms long C/A code, obtaining a great peak of correlation. What it cannot be avoided

is the correlation of the noise added to the incoming signal with the local code. Despite of this

issue, if the resulting peak is greater than the noise’s amplitude, there would not be problems

to distinguish both situations, and make the comparison with the threshold more efficient.

To achieve this benign situation, GNSS receivers have coherent integrators which sum many

output correlation peaks to increase the total amplitude. At the same time, the disturbing noise

is also summed. However, this noise signal with zero-mean, does not increase.

Coherent integrations are not always enough to guarantee proper signal amplitude. The

maximum coherent integrations are limited to 20ms as it is the same of 20 correlation peaks.
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That is because after the 20ms, the navigation bit can change, so the correlation peak can turn

its amplitude to negative (if navigation bit is -1). That turns against the coherent integrations

because instead of summing peaks, they would be subtracting amplitude. Also phase derives

can reduce the accumulated amplitude as it is has been explained in section 2.3.3

2.5.1 Noncoherent integration

In order to circumvent these limitations, the result of coherent integration is put through a

nonlinear function and then is integrated, as it can be seen in Fig. 2.7. This nonlinear function,

typically consists on squaring the output value y(i), for the majority of receivers. As it is known,

when applying the absolute moment to a phasor, phase disappears but module remains. That

allows summing the coherent correlation peaks without neither phase problems nor navigation

changing bits.

Figure 2.7: Acquisition module in HS-GNSS

The process of applying a nonlinear function to y(i) and then integrate it, is called noncoher-

ent integration. This combination between coherent and noncoherent integrations is the method

used by HS-GNSS. With this technique, the possibility of having higher amplitude values when

comparing it with the threshold is achievable.

Always benefits have their limitations. The more noncoherent integrations taken, the more

acquisition time is spent. That could affect the first fix time, which could be elongated too much

if the receiver’s features are not enough to support the requirements.

As it has been said, second-order nonlinear functions are the most used. The main reason of

their use is because second-order statistics involving a random variable, as the resulting value

ξ, are well known as square-statistics. This statistics provide good detecting results, so that is

the reason why their operability has not been questioned yet.

Some recent studies, have shown that other nth order statistics may outperform the actual

system such as absolute moment instead of the second [LS08b].
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2.5.2 New acquisition proposals

As it has been said, within the acquisition process, the most critical part is when the receiver

has to find satellites the first time, the first fix. The majority of receivers, have their operational

threshold around C/N0 = 33− 35 dBhz and HS-GNSS are expected to work behind them (from

10−25 dBhz). Working in that range, they are forced to have long correlation periods which let

them find the satellite signal. Conventional GNSS receivers usually use second-order statistics

during the acquisiton process which have been found to be the optimal for Gaussian input

signals. The problem appears when noise has similar amplitude to the desired signal because

noise peaks can be mistaken for signal peaks.

To solve this problem, some crosscorrelation between input signals, reduces the total signal

noise and sensitivity increases, using second-order statistics. Some hybrid methods using both

differential correlation and squared envelopes have been developed and it has been seen that

outperform second-order integrations.

Although all these improvements, second-order statistics may not be the best nonlinear

function for all situations. Other nonlinear functions may overcome the performance offered by

second-order statistics. An alternative to cope with the noise-level problem is the use of the

metric based on the nonlinear function which becomes to be

ξα =

Ni−1∑

i=0

|y(i)|α . (2.5)

being α a constant between (0, 1]. The statistics involving this new metric are called FLOS

(fractional lower-order statistics). Some comparisions in [LS08b] have been made and FLOS

have been found to provide best performance, concretely α = 0.7 and α = 0.8 for PFA> 0.05,

but for lower values, α = 1 overcomes the other options.

Despite these FLOS would make the receiver perform better, statistics involving them are un-

known. That is why second-order statistics are still unbeaten in detection use.

Based in this assumption, this project is going to face the possibility to stablish some formulae

for new metric with α = 1 and compare the results obtained with the performance of second-

order noncoherent detectors. To read more about this study and look for some results, [LS08b]

might be consulted.

2.6 Extreme Value Theory

Returning to the acquisition process, and more specifically to multicell search, it has been seen

that every cell was filled with noise or signal plus noise (only in one cell, as it is the specific

Doppler shift-code delay combination where satellite signal stands). Once this matrix was filled,



2.6. Extreme Value Theory 13

it was taken the maximum value among all cells. Well, this trivial thing has a consequence

involving statistics.

Every value in each cell is a random variable (r.v.). That is because the noise added in recep-

tion, was a Gaussian random variable with zero-mean and σ2 = 1. Whether or not containing

satellite signal, every cell has a noise component that fix them as gaussian r.v.

The picked value remains as a random variable but its statisticals changes. The decision of

picking the maximum value from a set of random variables, follows a well-known statistic the-

ory. This theory is based on the extremal types theorem, also called the three types theorem,

stating that there are only three types of distributions that are needed to model the maximum

or minimum of the collection of random observations from the same distribution [Emb97, Chap.

3].

As it can be read in [Tur07], dealing with exponential decreasing tail distributions as Gaus-

sian, the CDF (Fn) of the limiting distribution has the double exponential form

Fn(x) = exp(− exp(−αn(x− un))) (2.6)

where x is the maximum output value from all matrix acquisition’s cells, which everyone comes

from the noncoherent correlator exit (ξ′) in Fig. 2.8.

Figure 2.8: Maximum output value from noncoherent correlators

Coefficients un and αn are defined by the equations

F (un) = 1− 1

n
(2.7)

and

αn = nf(un) (2.8)
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being F (x) and f(x) the CDF and PDF (probability density function) of the n independent

and identically distributed random variables which form the acquisition matrix (n tending to

infinity).

2.7 Fundamentals of Detection Theory

As it was first explained in acquisition process in (Section 2.3.1), when the maximum value is

picked, it has to be compared with the threshold. The resulting decision will consider if the

received signal was the expected one, and will only distinguish the two possible options (H1

and H0). At first sight, it could be thought that these two options are the only two possible

situations after the decision. Notwithstanding, there are more possible detection results which

are as follow.

• True Positives. Receiver considers being under H1 hypothesis. The value chosen is also

the satellite signal bin.

• True Negatives. Receiver considers being under H0 hypothesis. The value chosen is a

noise bin and it does not overcome the threshold.

• False Positives or False alarm. Receiver considers being under H1 hypothesis. The

value chosen is a noise bin but it is considered satellite signal by the receiver because it

exceeds the threshold.

• False Negatives or Misdetection. Receiver considers being under H0 hypothesis. The

value chosen is the satellite signal bin but it does not exceed the threshold, so it is mis-

considered H1 (typical found in indoor scenarios).

From these possibilites can be defined three more fundamental ideas in order to characterize the

acquisition process.

• Probability of Detection (Pd). Is defined as the probability of the receiver to suc-

cessfully detect the presence of satellite signal when it is searching under the hypothesis

H1. That would consider True Positives. It can be also statically defined as the right tail

integration of the signal plus noise distribution, from the threshold chosen.

• Probability of False Alarm (Pfa). Is defined as the probability of the receiver to

wrongly consider the presence of satellite signal when searching under hypothesis H0.

That would consider False Positives. It has also an statistical definition which is the right

tail integration of the noise distribution, from the threshold chosen.



2.7. Fundamentals of Detection Theory 15

• ROC curve, which stands for Receiver Operating Characteristics. It is a graph which

allows the user to depict the tradeoff between true positive rates and false alarm rates of

classifiers and it has been long used in detection theory [Ega75] . The ROC curve will be

calculated in order to determine receiver’s features and to let the reader compare different

performances depending on the detection technique under analysis.

Finally, the last definition must be done. The first goal of any detector, is to maximize the

probability of detection. That implies to set a threshold (γ). All the values which overcome

this threshold, are been considered under H1 situation. The better option would be not missing

any satellite signal values (Which is the same to say, none False Negatives). That means that

the threshold has to be set to 0, and implies Pd = 1. However, all False Positives would be also

picked and Pfa = 1. What is really wanted from a good detector, is to maximize the probability

of detection for a determined probability of false alarm. So the final commitment to set the

threshold’s value, is to fix the Pfa and maximize the Pd [Kay98].



Chapter 3

Traditional GNSS signal detection

based on second-order statistics

In this chapter, second-order absolute moment acquisition is going to be analysed for both

acquisition strategies. The single cell search will be the first one to be defined as it contains

basic statistical concepts which will be applied in multicell acquisition. Both strategies will be

placed in different working scenarios to have a wide vision of their implementation.

Once their statistics have been analysed, detection features such as Probability of Detection,

Probability of False Alarm and ROC curve will be given. Despite single cell search do not really

correspond to a real implementation, Pd, Pfa and ROC curve will be also shown in order to

compare them with the actual case found in practice. That is made to be aware how statistics

change when taking the maximum among a group of random variables.

3.1 Single cell analysis

Coming back to the GNSS block diagram in Fig. 2.7, the detection metric becomes

ξ =

Ni−1∑

i=0

|y(i)|2 . (3.1)

being y(i) the value after coherent correlation and Ni the number of noncoherent integrations

added.

The input signal y(i), was previously defined as a Gaussian random variable. It was made

of AWGN (Additive White Gaussian Noise) which has a distribution following a N (µ, σ2). In

base band, this noise can be broken down into in-phase and quadrature components

ω(n) = i(n) + jq(n) (3.2)

16
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Where i(n) is the in-phase gaussian component following a N (0, σ2), and q(n) the quadrature

Gaussian component which follows also a N (0, σ2). σ2, which is the noise power will be partic-

ularly assumed as 1 for the sake of simplicity. As C/N0 will be fixed, if one of their components

is also pre-determined, the other will be in tune with the C/N0 expression.

So, returning to the ξ definition, y(i) can be defined as

y(i) =







A · ejωdτi + ω(i) : H1

ω(i) : H0

(3.3)

For the H0 case, y(i) random variable will follow a N (0, σ2) and for the H1 situation, this r.v.

can be seen as a N (A, σ2), being A the value amplitude achieved after the coherent correlator.

It can be defined as

A =
√

C/N0linear · Tcoherent · 10−3 (3.4)

For H0 case, ξ can be defined as a central chi-squared i.i.d random variable with a probability

density function as it comes

f(x|H0) =







1

2
ν
2 Γ( ν

2
)
x

ν
2
−1 exp(1− 1

2x) x > 0

0 x < 0

(3.5)

With ν degrees of freedom, assume to be an integer defined as

ν = 2 ·Nintnoncoh (3.6)

It is important to remark why the number 2 appears in (3.6). When the input signal goes

through the noncoherent integrator, both noise components become a central chi-squared i.i.d

random variables. They are added together and that is why the sum of two chi-squared r.v.

become another chi-squared r.v with 2 degrees of freedom.

The function Γ(u) is the Gamma function appearing in (3.7), and is defined as

Γ(u) =

∫ ∞

0
tu−1 exp(−t)dt (3.7)

Under H1 hypothesis, ξ becomes a noncentral chi squared r.v. Its pdf turns out to be defined as

f(x|H1) =







1
2(

x
λ)

ν−2
4 exp[−1

2(x+ λ)]I ν
2
−1(

√
λx) x > 0

0 x < 0
(3.8)

With ν degrees of freedom. λ is called the noncentrality parameter and it is defined as

λ =

ν∑

i=1

µ2
i (3.9)
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Whereas Ir(u) is the modified first-order Bessel function.

Once the statistics have been defined, we are ready to compare both empirical and exact distri-

butions in order to be sure about the exact expression with all parameters well-adjusted.

The empirical results have been obtained by generating data with Matlab. All the samples

have been generated under the Gaussian distribution N (0, σ2) simulating the original input sam-

ples. The data under H1 had an amplitude added in order to represent signal plus noise values.

After that, the data was put through the acquisition blocks in order to have the resulting output

values which were able to be depicted in order to compare them with the exact expressions. It

has been very important to calibrate the empirical data generation, and also the way parameters

are processed. That is done to be sure that there are no parameter errors between the exact

formula and the empirical representation for posterior use.
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Figure 3.1: Empirical vs. exact PDF’s @ H0 with Ni={1,3,5} and C/N0=45dBhz

As it can be seen in Figs. 3.1 and 3.2, both empirical and exact distributions almost fit

perfectly.

Once the verification has been done for the PDF, it is also required to double-check the

tightness of the theoretical amb empirical cumulative distribution function (CDF). Figs. 3.3

and 3.4 show how both emprical and exact cdfs fit. Looking at these figures, it is important to

make sure that values near 0 and 1 respectively fit as much as possible. That is because when

calculating detection and false alarm probabilities, sometimes it is interesting to have one of

them near these extreme values, so accuracy is required.
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Figure 3.2: Empirical vs. exact PDF’s @ H1 with Ni={1,3,5} and C/N0 = 45dBhz
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Figure 3.3: Empirical vs. exact CDF’s @ H0 with Ni={2,4,6}

3.1.1 Detection metrics

Probability of detection was already defined in Section 2.7. So the right tail integration is from

a Noncentral Chi-squared pdf in Fig. 3.2. Pd graphical representation is in Fig. 3.5.

On the other side, probability of false alarm will be the right tail integration from a Central

Chi-Squared pdf depicted in Fig. 3.1.
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Figure 3.4: Empirical vs. exact CDF’s @ H1 with Ni={2,4,6} and C/N0 = 45dBhz

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

threshold

P
D

PD @ H1 for the sum of Noncentral Chi squared r.v.

 

 
Empirical
Exact

Figure 3.5: Empirical vs. exact PD’s @ H1 with Ni={2,4,6} and C/N0 = 30dBhz

Once the probability of detection and probability of false alarm have been defined and

compared, it is time to compare the ROC curve.

One important feature like the capability of a receiver to detect the satellite signal, can be easily

seen in ROC curves. The following figure in Fig. 3.7 is a clear example. The Acquisition process

made with less noncoherent integrations has smaller noncoherent output (ξ) value amplitude.

They can be easily misdetected or there is major probability to overcome the threshold (False
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Figure 3.6: Empirical vs. exact PFA’s @ H0 with Ni={2,4,6} and C/N0 = 30dBhz

Alarm). With the ROC curve, this characteristic is easy to see. The process made with less

noncoherent integrations, has not so sharper outside curvature than the ones which have more

noncoherent integrations. Consequently, they have higher Pd for same Pfa.
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Figure 3.7: Empirical vs. exact ROC curves with Ni={2,4,6} and C/N0 = 30dBhz

As it can be seen in Fig. 3.6, the more noncoherent integrations are there, the more H0

distribution tends to have a greater amplitude. That could be a kind of paradox because despite
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of having greater amplitude, there are more chances to avoid false alarm for the same detection

probability. That can be checked looking at Fig. 3.7. The explanation about that is very

simple. At the same time H0 distribution was shifted to the right, noncoherent integrations did

the same with H1 values, with the difference that H1 values were more enhanced than H0. This

noncoherent correlation property was already given in section 2.5.1.

3.2 Multicell analysis

Moving forward to the actual case found in practice, parallel acquisition is the process found in

GNSS receivers. When the maximum value from the acquisition matrix is picked up, statistics

involving it become present [Emb97].

Receiver will be under H0 hypothesis if all bins from the acquisition matrix are exclusively

noise. The opposite situation, hypothesis H1 will be present if at least one of the acquisition

matrix cells, has signal plus noise. So, when talking about detection, it has to be understood

that the satellite is present in one of the cells. Knowing the specific cell would imply another

specific study, not considered in this project.

The statistics of each cell have been introduced in Section 3.1, and they are the basis for the

statistics of the multicell detection strategy to be presented herein.

Being under H0 situation and having picked the extreme sample, the cumulative distribution

(CDF) can be found going through the EVT formulae mentioned in section 2.6. This expression

was

Fn(ξ
′) = exp(− exp(−αn(ξ

′ − un))) (3.10)

The parameters, needed in this situation are

F (un) = 1− 1

n
(3.11)

and

αn = nf(un) (3.12)

Where F (un) is the CDF of ξ′, evaluated in un, n is the number of cells composing the

acquisition matrix, and f(un) is the H0 pdf evaluated in un.

This pdf, turns out to be the one defined in (3.5). If the resulting CDF is graphically

represented, turns out to be Fig. 3.8.

As it can be seen, the more noncoherent integrations added, the greater amplitude of the output

noncoherent correlator is (also in multicell search).

The EVT better adjust between empirical and exact is found when the number of noise bins n
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Figure 3.8: Empirical vs. exact EVT CDF’s @ H0 with Ni={2,4,6} and C/N0 = 30dBhz

tend to infinity, because indeed, the EVT applies asymptotically. In Fig. 3.8 it has been used

500 noise cells. For a better fitting, more noise cells should be considered.

H1 situation has more complexity, so it will be detailed properly below.

3.2.1 Detection metrics

Once H0 hypothesis is defined, probability of false alarm comes alone and it is defined as

Pfa = 1− Fn(γ) (3.13)

being Fn(γ) the CDF corresponding to the maximum value among n samples from the acquisition

matrix calculated in (3.10). Pfa can be graphically depicted as Fig. 3.10.

In order to define probability of detection, H1 statistics must be found.

In multicell acquisition, the EVT cannot be directly applied if the receiver is under H1 hypothe-

sis. The EVT is exclusively referred to pick up the maximum value from identically distributed

random variables. This is not the case concerning H1 hypothesis. It was defined as the situation

were at least one of the acquisition matrix cells, had signal plus noise. The fact which implies

having a cell different distributed to the rest, makes the EVT inapplicable.

Despite there is no closed-form distribution, some mathematical derivations allow us to calculate

probability of detection directly without knowing the cumulative distribution. The mathemati-

cal expression for Pd is

Pd(γ) =

∫ ∞

γ
f(ξ′|H1)dz (3.14)



3.2. Multicell analysis 24

Pd(γ) =

∫ ∞

γ
fXsat(ξ

′)FMn−1(ξ
′)dξ′

︸ ︷︷ ︸

detection

+

∫ ∞

γ
fMn−1(ξ

′)FXsat(ξ
′)

︸ ︷︷ ︸

misdetection

(3.15)

where f(ξ′|H1) is the unknown distribution involving H1 hypothesis for the maximum value (ξ′).

fXsat(ξ
′) and FXsat(ξ

′) are the pdf (3.8) and cdf from the signal cell. FMn−1(ξ
′) and fMn−1(ξ

′) are

the cumulative distribution (3.10) and probability density function of that noise respectively. In

this case, EVT can be applied for the n-1 remaining noise cells, which are identically distributed.

They can be both expressed as

FMn−1(ξ
′) = exp(− exp(−αn−1(ξ

′ − un−1))) (3.16)

and

fMn−1(ξ
′) = αn ·exp(− exp(−ξ′ ·αn)·(exp(αn ·un)−αn ·exp(ξ′ ·αn)un+αn ·ξ′ exp(ξ′ ·αn))) (3.17)

where fMn−1(ξ
′) was calculated by deriving FMn−1(ξ

′) in Matlab.

It has to be remarked that with the expression in (3.15), it is possible to calculate the Pd by

isolating different distributed terms. Once they are separated, both parts can be identified

and calculated with already known statistics. When the cumulative probability of detection

is defined, it is possible to get its graphical respresentation in Fig. 3.9. As it can be seen,
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Figure 3.9: Empirical vs. exact PD’s @ H1 for Multicell search with Ni={2,4,6} and C/N0 =

30dBhz

error between exact and empirical expressions is provided for Ni = 2. This error magnitude is

quite acceptable considering the empirical issue of having limited samples. For an improvement,

more samples should be taken. However, (3.15) could be considered a good approximation for

probability of detection definition.
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After having defined these concepts, it is mandatory to give the ROC curve depicted in

Fig. 3.11. There are some aspects to pay attention to. The first one is the error between
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Figure 3.10: Empirical vs. exact PFA’s @ H0 for Multicell search with Ni={2,4,6} and C/N0

= 30dBhz
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Figure 3.11: Empirical vs. exact ROC curves with Ni=4, C/N0 = 30dBhz and Coherent inte-

grations = {1,5}

both empirical and exact ROC which is around 0.02 when is greater. That comes from the

accumulation of lower errors from distributions listed before. The second aspect to remark is
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the simulation made for Ni = 4 and Tcohint=1. It has been reproduced with same parameters

than Fig. 3.7 but has worse performance. That makes a lot of sense because in single cell

search the probability of false alarm can only be produced by 1 noise bin which overcomes the

threshold. However, in multiple search, this probability increases because there are a lot of noise

bins which could possibly overcome the threshold in H0.

Finally, denote that increasing the coherent integration time, also benefits performance of

the receiver, but has its issues.



Chapter 4

Improved signal detection based on

first absolute moment

This chapter will consider the possibility to use absolute statistics instead of second-order statis-

tics typically adopted in traditional GNSS receivers. To do so, it will discuss its performance

in the simplistic and ideal case of single cell search. Once the basic statistics are defined, the

practical situation of multiple cell search will be introduced.

4.1 Problem statement

A study made by a research group about delay tracking [Hur], observed an interesting result

while calculating MEE (multipath error envelope). They saw that using absolute value as the

nonlinear function in noncoherent acquisition tended to perform better (understood as lower

errors in MEE) than the typical squaring function. Although, the researches stated that statistics

describing absolute value applied in noncoherent correlators, were not available yet.

As it has been seen in Chapter 2, a HS-GNSS receiver uses noncoherent detection metrics,

in order to avoid phase wrapping and changing navigation bits. That is done to have longer

acquisition periods to increase the chances to detect the satellite signal. This nonlinear function

is typically considered squaring the incoming value. For the case of study in this chapter, this

nonlinear function is going to be the application of the absolute value to the coherent correlator

output value (y(i)). To do so, absolute statistics have to be defined, which is one of the goals of

this project.

27
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4.2 Featuring the test variable

first-order absolute moment acquisition is going to be analysed for both paths of acquisition,

single cell search and multicell search. Once their statistics are analysed, detection features as

probability of detection, probability of false alarm and ROC curve will be given. The use of

absolute moment while acquisition will be the main objective of this chapter.

4.3 Single cell analysis

Coming back to the GNSS block diagram in Fig. 2.7, the detection metric for the case under

study becomes

ξ =

Ni−1∑

i=0

|y(i)| . (4.1)

where y(i) was the output value from the coherent correlator and Ni the number of noncoherent

integrations added.

As it has been defined in Section 3.1, y(i) was a random variable following N (µ, σ2). The

output value (ξ) has to be analysed carefully. First, it is taken Ni = 1 which implies having only

noncoherently integrated 1 sample. The pdf which characterizes this sample under H0 situation

can be written as

f(x|H0) =







x
σ2 exp(− 1

2σ2x
2) x > 0

0 x < 0
(4.2)

More concretely, a single sample through absolute noncoherent detector under H0 hypothesis is

a Rayleigh random variable.

On the other hand, the same single sample but under H1 situation, has a pdf defined as

f(x|H1) =







x
σ2 exp[− 1

2σ2 (x
2 + α2)]I0(

αx
σ2 ) x > 0

0 x < 0
(4.3)

Now, the output value is known as a Rician random variable. The α2 parameter can be found

as

α2 = µ2
1 + µ2

2 = (
A√
2
)2 + (j

A√
2
)2 = A2 (4.4)

where µ1 and µ2 are the in-phase and quadrature component means from y(i) (See Section 3.1).

Once ξ distributions have been analysed for both hypothesis, we are ready to compare

both empirical and exact distributions in order to be sure about the exact expressions with all

parameters well-adjusted. It is very important to do so because considering a single sample is

the basis to the generic case, where Ni > 1.
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As it can be seen in Figs. 4.1 and 4.2, both empirical and exact distributions almost fit perfectly.
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Figure 4.1: Empirical vs. exact PDF’s @ H0 for first-order absolute moment acquisition with

Ni=1 and C/N0 = 35dBhz
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Figure 4.2: Empirical vs. exact PDF’s @ H1 for first-order absolute moment acquisition with

Ni=1 and C/N0 = 35dBhz

Once single sample case has been analysed, let’s face the situation where noncoherent inte-
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grator adds more than one coherent correlator output samples.

As these sections are centred in single cell search, all the results will be needed to further real

characterization. By their own, they are useless.

4.3.1 Analytical distribution for the sum of random variables

From [Pap91], can be found the following definition:

If two random variables are independent, then the density of their sum equals the convolution

of their densities.

fz(z) =

∫ ∞

x=−∞
fx(x)fy(z − x)dx = fx(z) ∗ fy(z) (4.5)

where fz(x) is the resulting distribution of summing fx(x) and fy(y) random variables.

Values integrated in noncoherent correlator are random variables because of the noise compo-

nent. This noise component is independent from other output samples from the correlator. That

is why convolution can be applied. Figs. 4.3 and 4.4 gives an idea of how reliable convolution

turns out to be for the sum of Rician/Rayleigh random variables.

0 2 4 6 8 10 12 14 16
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

amplitude

p
(x

)

PDF @ H0 for the sum of Rayleigh r.v.

 

 

0 2 4 6 8 10 12 14 16
−4

−2

0

2
x 10

−3

 

 
Error between the empirical and exact PDF for Ni=2

Empirical
Exact

Figure 4.3: Empirical vs. exact (convolution) PDF’s @ H0 with Ni={2,4} and C/N0 = 35dBhz

and error rate for Ni = 2

Looking at these figures, convolution method can be considered the solution about summing

Rician/Rayleigh random variables, as it is the exact way to calculate the resulting sum. However,

as it may be known, convolution process is quite complex so it is rather slow to obtain.
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Figure 4.4: Empirical vs. exact (convolution) PDF’s @ H1 with Ni={2,4} and C/N0 = 35dBhz

and error rate for Ni = 2

Depending on the number of noncoherent integrations, hundreds, and sometimes even thousands

of convolutions may be needed. That would be the case for harsh environments, so this option

is almost discarded because of its inoperability. That is why a closed-form expression would be

the solution to cope with this issue.

4.3.2 Approximated distribution for the sum of random variables

A recent study [LS08a] has developed a closed-form expression for the sum of i.i.d Rice/Rayleigh

random variables, based on the CLT (Central Limit Theorem) and series expansion. This

expression could be very useful in order to solve the lack of results in the field of signal detection

based on absolute moments.

For a large Ni, the statistical distribution for the sum of i.i.d random variables such as Rice

and Rayleigh, can be represented as Gaussian in virtue of the CLT. However, sometimes this

approximation is too loose when studying the tails of resultant distributions, which considerably

differ from the reality. In order to fit as much as possible to the target distribution, series

expansions are considered to reduce the error. This model, leads to probability density function

based on Hermite polynomials as follows

fξ(ξ) =
1√
2πσ

e
−(ξ−m)2

2σ2 [1 +
∞∑

k=3

CkHk(
ξ −m

σ
)] (4.6)

with {m,σ} the mean and variance of the detection metric ξ, Hk(x) the Hermite polynomials
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and Ck some coefficients related with the moments of ξ,

Hk(x) = (−1)kex
2/2 dk

dxk
e−x2/2 (4.7)

Ck =

∫ ∞

−∞
Hk(ξ)fξ(ξ)dξ (4.8)

The expression in (4.6) is called Gram-Charlier type-A series approximation. However, the

Gram-Charlier approximation is known to be affected by poor convergence properties [Ken77].

In particular, the terms of infinite series in (4.6) do not decrease with increasing the order k,

thus making the truncation of the series not so trivial. A proper arrangement of the error terms

in order to get a good approximation is known as Edgeworth series of expansion, which is based

on agruping the similar terms [Cra99]. For the case under study, we will consider the series

expansion with terms k = {3, 4, 6}.

First of all, coefficients Ck are defined as

C3 =
mξ,3 − 3mξ,1mξ,2 + 2m3

ξ,1

6σ3
(4.9)

C4 =
1

24

mξ,4 − 4mξ,1mξ,3 + 6m2
ξ,1mξ,2 − 3m4

ξ,1

σ4
− 3 (4.10)

C6 =
1

2
(C3)

2 (4.11)

with mξ,n = E[ξn] the n-th moment of the detection metric ξ, defined in [LS08a](14-17) .

Hermite polynomials for k = {3, 4, 6} turns out to be

H3 = x3 − 3x (4.12)

H4 = x4 − 6x2 + 3 (4.13)

H6 = x6 − 15x4 + 45x2 − 15 (4.14)

Once statistics have been defined, we are ready to compare both empirical and Edgeworth series

expansion distributions in order to be sure about the exact closed-form expression with all

parameters well-adjusted.

As it can be seen in Figs. 4.5 and 4.6, both empirical and exact distributions almost fit

perfectly. That is good news, as it seems to have been solved the problem of non having a

theoretical expression for the sum of Rice/Rayleigh random variables. That will allow calculating

performance metrics theoretically.

Once the verification has been done for the PDF, it is also required to double-check the tight-

ness of the Edgeworth series expansion and empirical cumulative distribution function (CDF).

As it is known, CDF can be defined as the integration of the PDF

F (x) =

∫ ∞

x
f(x)dx (4.15)
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Figure 4.5: Empirical vs. exact (Edgeworth Series Expansion) PDF’s @ H0 with Ni={2,4} and

C/N0 = 35dBhz and error rate for Ni = 2
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Figure 4.6: Empirical vs. exact (Edgeworth Series Expansion) PDF’s @ H1 with Ni={2,4} and

C/N0 = 35dBhz and error rate for Ni = 2

Normally, to calculate the CDF from a multi-parameter function such as chi-square distribution

is done analytically. There is no particular expression to define CDF. The closed-form expression

for the sum of Rice/Rayleigh random variables in (4.6) was put through Maple to check whether

it had a closed-form expression for the CDF too. Surprisingly, Maple gave an expression which
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becomes

Fξ(x) = −
√
2

4
√

(π)

(√
2π(erf(x

√
2

2 ))− 2C3e
(−x2/2) + 2C3x

2e(−x2/2) − 6C4xe
(−x2/2) + 2C4x

3e(−x2/2)

+30C6xe
(−x2/2) − 20C6x

3e(−x2/2) + 2C6x
5e(−x2/2)

)

+ 0.5

(4.16)
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Figure 4.7: Empirical vs. exact (Edgeworth Series Expansion) CDF’s @ H0 with Ni={2,4} and

C/N0 = 35dBhz and error rate for Ni = 2

Figs. 4.7 and 4.8 show how both empirical and exact cdfs closed-form expression fit. Look-

ing at these figures, the Edgeworth series expansion might be considered a tight approximation

although the left tail has a little deviation from the empirical target distribution. This deviation

can be due to the fact that Gram-Charlier approximation is known to be affected by poor con-

vergence properties. So the agrupation of k = {3, 4, 6} terms may be not enough to completely

make errors negligible. However, the fundamental regions which are the extremes (close to 0

and 1), the expression turns to perfectly fit again with the empirical distribution, as it can be

seen thank to depicted error.

In the ROC curve, precision needs to be very tight for very small Pfa and high Pd because it is

the zone with major interest to feature the receiver. Thus, the deviation denoted will not be of

great worry.
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Figure 4.8: Empirical vs. exact (Edgeworth Series Expansion) CDF’s @ H1 with Ni={2,4} and

C/N0 = 35dBhz and error rate for Ni = 2

4.3.3 Detection metrics

Detection metrics in absolute statistics turn to follow the same expressions as second-order

statistics in Section 3.1.1. Only some specific terms change.

Probability of detection was already defined in Section 2.7. So the right tail integration is

from the sum of Rician random variable distribution which was defined in (4.6). Pd graphical

representation becomes Fig. 4.9

Probability of false alarm is also the right tail integration, now from H0 distribution which

is the sum of Rayleigh pdfs defined by the Edgeworth series expansion in (4.6). Fig. 4.10 shows

the tightness between empirical and exact Pfa.

Another way to calculate both Pd and Pfa can be

Pd = 1− F(ξ|H1) (4.17)

Pfa = 1− F(ξ|H0) (4.18)

where Fξ is the CDF closed-form expression in (4.16) and ξ is the threshold.

Finally, the ROC curve needs to be calculated. The following figure depicted in Fig. 4.11

shows the capability of a receiver to detect satellite signal. For this case it is used a HS-GNSS

applying absolute value nonlinear function while acquisition process. Again, the process made

with less noncoherent integrations has not so sharper outside curvature than the process done

with more samples added. Thus, they have higher Pd for same Pfa.
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Figure 4.9: Empirical vs. exact (Edgeworth Series Expansion) PD’s @ H1 with Ni={2,4} and

C/N0 = 35dBhz and error rate for Ni = 2
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Figure 4.10: Empirical vs. exact (Edgeworth Series Expansion) PFA’s @ H0 with Ni={2,4} and

C/N0 = 35dBhz and error rate for Ni = 2

Looking at the resulting figure, the closed-form expression for the sum of i.i.d Rice/Rayleigh

random variables works almost perfectly for the case of single bin search. That is very important

because all these expressions will help to characterize the real situation where the maximum

output value from the acquisition matrix is picked up. The resulting error between both empirical
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Figure 4.11: Empirical vs. exact (Edgeworth Series Expansion) ROC curves with Ni={2,4} and

C/N0 = 35dBhz

and exact curves is due to the expression proposed is not the exact one, but it fits quite tight

thing that makes closed-form expressions reliable to use.

4.4 Multicell analysis

In order to be able to compare performances in Chapter 5, multicell analysis for absolute statis-

tics must be done. That would be the actual case found in practice. The procedure is the same

as the case for second-order statistics already described in Chapter 3.

Once the acquisition matrix is filled, the receiver picks the maximum value and compares it

with the threshold to determine whether is under H0 or H1 hypothesis. This sample, follows an

already known statistics which is under EVT.

Being under H0 situation and having the maximum value from the acquisition matrix (ξ′),

the cumulative distribution can be found going through the EVT formulae mentioned in Section

2.6. It was defined as

Fn(x) = exp(− exp(−αn(x− un))) (4.19)

where the coefficients un and αn were defined by the equations

F (un) = 1− 1

n
(4.20)

and

αn = nf(un) (4.21)



4.4. Multicell analysis 38

being F (un) is the CDF of (ξ), evaluated in un defined by the Edgeworth series expansion in

(4.16). n is the number of cells composing the acquisition matrix (500 in this case), and f(un)

is the H0 pdf evaluated in un and defined in (4.2).

If the resulting cumulative distribution (Fn(ξ
′)) is depicted, turns out to be Fig. 4.12
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Figure 4.12: Empirical vs. exact EVT CDF’s @ H0 with Ni = {2, 4}, C/N0 = 35dBhz and error

rate for Ni = 2

Using the Edgeworth series expansion also gives good results used in multicell search. In

Fig. 4.12 this reliability is evident by the tightness between empirical and exact CDF. For

better adjustment, more noise cells should be considered. As it was said in Section 3.2, the

better adjust is found when the number of noise bins n tend to infinity, because indeed, the

EVT applies asymptotically.

4.4.1 Performance metrics

Once H0 hypothesis is defined, probability of false alarm can be described as the right tail

integration of the probability density function, or as it is the same, the CDF given by the EVT

expression in (4.19).

Pfa = 1− Fn(ξ
′|H0) (4.22)

Graphical results obtained using absolute statistics are shown in Fig. 4.13.

In order to define probability of detection, H1 statistics must be found. As it was seen in
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Figure 4.13: Empirical vs. exact PFA’s @ H0 for Multicell search with Ni = {2, 4}, C/N0 =

35dBhz and error rate for Ni = {2, 4}

Section 3.2.1, the EVT cannot be directly applied if the receiver is under H1 hypothesis. The

problem was that the values from the acquisition matrix were not identically distributed random

variables. The cell containing signal plus noise is different distributed to the rest, making the

EVT inapplicable.

Despite of that, there was a mathematical expression which helped to calculate directly the Pd

that expression was

Pd(γ) =

∫ ∞

γ
fXsat(ξ

′)FMn−1(ξ
′)dξ′

︸ ︷︷ ︸

detection

+

∫ ∞

γ
fMn−1(ξ

′)FXsat(ξ
′)

︸ ︷︷ ︸

misdetection

(4.23)

where in this case, fXsat(ξ
′) and FXsat(ξ

′) are the pdf (4.6) and the cdf (4.16) from the signal

cell. FMn−1(ξ
′) and fMn−1(ξ

′) are the cdf (4.19) and pdf of the n− 1 remaining noise cells. This

pdf was found in (3.17).

Isolating terms by already known expressions, Pd can be calculated. When the cumulative

probability of detection is defined, it is possible to get its graphical representation in Fig. 4.14.

Looking at Figs. 4.13 and 4.14, both empirical and exact curves seem to have a little deviation

between them. Also it can be intuited that the more noncoherent integrations applied, the

smaller the error between graphs is

Finally, the desired feature which is ROC curve can be defined. This final metric is shown

in Fig. 4.15

From Fig. 4.15 it can be concluded that a receiver working under the conditions stablished
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Figure 4.14: Empirical vs. exact PD’s @ H1 for Multicell search with Ni = {2, 4}, C/N0 =

35dBhz and error rate for Ni = {2, 4}
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Figure 4.15: Empirical vs. exact (Edgeworth Series Expansion) ROC curves with Ni={2,4} and

C/N0 = 35dBhz

(C/N0 = 35dBhz) with a Tc = 1ms and Ni = {2, 4} has a poor performance. In order to have

an improvement, more Tc combined with noncoherent integrations should be considered. It can

be considered a good performance when PD≈ 0.9 for a given PFA≈ 10−6.



Chapter 5

Performance analysis

This final chapter will compare both first and second-order absolute statistic performances by

comparing ROC curves. Changing parameters as coherent integration time, noncoherent inte-

grations within indoor, soft indoor and outdoor scenarios will give a wide idea of the receiver’s

performance. As there is no possibility to have a look to all parameter combinations, a useful

graph will be given in order to decide which receiver performs best in every practical situations

by while providing a gain curve between both performances within the noncoherent integration

range.

Before beginning with the contents, an important clarification is needed to be done. All

closed-form expressions given in Chapters 2 and 3, which were a good approximation to reality,

have been used to extract the results beheld in Sections 5.1 and 5.2. Apart from already well-

known expressions, Edgeworth series have been used to characterize statistics for the sum of

Rician/Rayleigh i.i.d variables and the probability of detection in parallel acquisition from (3.15).

Indeed, they are made to be used to solve the lack of statistics in absolute value acquisition.

5.1 Single cell analysis

5.1.1 Indoor

For this first case, it has been chosen a C/N0 within indoor scenarios range, which is 17dBhz.

It will also be considered a coherent integration period of 5ms. For both detection techniques

considered in this study, the one based on second-order statistics and the one based on absolute

statistics, performances in terms of ROC curve is shown in Fig. 5.1

It can be observed that in order to have a good acquisition, for a 5ms coherent integration,

800 noncoherent integrations are needed. A zoom of Fig. 5.1 is shown in Fig. 5.2 in order to

41
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highlight the different behavior of both detection techniques under analysis. As it can be seen

the squared noncoherent detector outperforms the absolute one, approximately it has 2% more

chances to detect satellite signal for a given PFA of 0.02.
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Figure 5.1: Comparision between the ROC curve for the detector based on second-order moments

and the one based on absolute moments, with Ni={20,100,800} Tcoh = 5ms and C/N0 = 17dBhz
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Figure 5.2: Zoom in from Fig. 5.1

We are interested to determine whether this superior performance of the second-order based

detector remains for different values of noncoherent integrations. To this end, we have obtained
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the gain curve comparing both acquisitions for a coherent integration time given of 5ms and

varying Ni. The results are shown in Fig. 5.3.
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Figure 5.3: Gain curve between first and second-order absolute statistics for a Tcoh = 5ms

At first sight, increasing Ni tends to stabilize both performances, but the squared acquisition

seems to be better for for all values of Ni. For a good performance in this environment, it has

to be considered the region with Ni greater than 800, so the gain is not very significant.

A fundamental idea might be introduced while referring to gain the curve. The maximum dif-

ference achievable between the better and the worst performances is 3dB. The best performance

will be the one where both H0 and H1 distributions are enough separated to be sure whether the

output value from the noncoherent correlator is under H0 or H1 hypothesis, without missing.

On the other hand, the worst performances will be the one where both H0 and H1 distribu-

tions are overlapped. That happens when the output value from the noncoherent correlator has

a negligible amplitude under H1 which can almost be misconsidered as noise. Consequently, the

right tail from H0 distribution will be the same as the H1 distribution, so Pfa and Pd will be

the same for a given threshold value.

The difference between the best performance and the worst performance is calculated by the

difference between the area under the curve. The maximum difference is found when the best

performance double overcomes the worst performance. As it is known, 2 in linear becomes 3dB.

The following figure has been taken considering 10ms of coherent integration time. Perfor-

mances in terms of ROC curve are shown in Fig. 5.4. From its representation could be extracted

that in order to have a good performance, 300 noncoherent integrations are needed. It also can
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be denoted that increasing its Tcoh, fewer noncoherent integrations are needed for same perfor-

mance as Fig. 5.1. This criterion has to be established depending on the features of the scenario

because with same conditions, the study made with Tcoh = 1ms would be worse thinking about

the time spent while acquisition. It would demand major number of noncoherent integrations.
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Figure 5.4: Comparision between the ROC curve for the detector based on second-order moments

and the one based on absolute moments, with Ni={2,20,300} Tcoh = 10ms and C/N0 = 17dBhz
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Figure 5.5: Gain curve between first and second-order absolute statistics for a Tcoh = 10ms

Once the ROC curves have been analysed for the case of Tcoh = 5ms, the gain curve repre-
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senting the difference between performances whithin all noncoherent integration range becomes

Fig. 5.5. Looking at the graph, there is a little change. The difference between performances is

smaller than the case analysed in Fig. 5.3 and also tends to stabilize when looking at values of

Ni > 300 which give a good acquisition process.

Finally, in order to have a range of different performances within indoor scenario, 20ms of

Tcoh is analysed. Performancesin terms of ROC curve are shown in Fig. 5.6.
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Figure 5.6: Comparision between the ROC curve for the detector based on second-order moments

and the one based on absolute moments, with Ni={1,10,100} Tcoh = 20ms and C/N0 = 17dBhz

As it can be seen, the consequence of increasing coherent integration and reducing the

total number of noncoherent integrations to achieve a similar performance seems to have sense.

Despite there is a relationship between these parameters, it is not directly proportional.

The Gain curve turns out to be Fig. 5.7. As it has been intuited, the more the coherent

integration increases, the more the difference between performances decreases. This behaviour

will be observed again in following scenarios, confirming the trend.

5.1.2 Soft indoor

The soft indoor scenario is now under study. Settings which characterize this environment are

C/N0, fixed at 30dBhz and Tcoh = 1ms. With these first parameters set, the corresponding

performances in terms of ROC curve are depicted in Fig. 5.8.

It can be seen that for Ni = 80, receivers have a good performance. Henceforth, every time

C/N0 increases, fewer Ni will be needed for same Tcoh. To be able to determine whether first-
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Figure 5.7: Gain curve between first and second-order absolute statistics for a Tcoh = 20ms
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Figure 5.8: Comparision between the ROC curve for the detector based on second-order moments

and the one based on absolute moments, with Ni={1,20,80} Tcoh = 1ms and C/N0 = 30dBhz

order absolute statistics or second-order statistics perform better, gain curve is given in Fig. 5.9

for a coherent integration time given of 1ms and varying Ni.

Looking at the gain curve Fig. 5.9, the difference between performances is nearly the same of

previous case in Fig. 5.7, which tend to stabilize by increasing Ni.
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For both detection techniques in this study, the last soft indoor figure has been taken consid-

ering 10ms of coherent integration time. From its representation in Fig. 5.10 can be introduced

a novelty from now on. Noncoherent integrations turn out to be every time less needed. That is

because the amplitude from the noncoherent correlator output is greater, and only integrating

it coherently is enough to have an average detection (Pd = 0.7 for a given Pfa = 0.1).
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Figure 5.9: Gain curve between first and second-order absolute statistics for a Tcoh = 1ms

To determine the best performance in this particular case, gain curve depicted in Fig. 5.11

is given. For the first time, the gain curve shows a different behaviour which is that absolute

value barely outperforms squared one. Being aware of fitting errors between exact and empirical

distributions listed before, it could be considered that they both have the same performance.

Nonetheless, a change can be denoted respect previous results where squared value outperformed

the absolute one.

5.1.3 Outdoor

Finally, outdoor scenario is analysed under a fixed C/N0 of 40dBhz. For a Tcoh of 1ms ROC

curves become Fig. 5.12.

Taking a first look in it, it is easy to see that with a good signal amplitude, acquisition

complexity falls. With few acquisition iterations, receivers are able to determine whether is

there satellite signal or not, avoiding the majority of false alarm cases.

A zoom in is done in Fig. 5.12 to highlight the different behaviour of both detection tech-

niques under analysis. As it can be seen in Fig. 5.13, absolute module barely outperforms the
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Figure 5.10: Comparision between the ROC curve for the detector based on second-order mo-

ments and the one based on absolute moments, with Ni={1,2} Tcoh = 10ms and C/N0 =

30dBhz

1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3
x 10

−3 Absolute value gain against Second order absolute value

Ni

G
a

in
 (

d
B

)

Figure 5.11: Gain curve between first and second-order absolute statistics for a Tcoh = 10ms

squared one again. To this end, we have obtained the gain curve comparing both acquisitions

for a coherent integration time given of 1ms and varying Ni. The results are shown in Fig. 5.14.

Again, increasing Ni makes to stabilize the difference between performances.

From all results throughout this section, squared noncoherent detector turns out to perform
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Figure 5.12: Comparision between the ROC curve for the detector based on second-order mo-

ments and the one based on absolute moments, with Ni={1,2} Tcoh = 1ms and C/N0 = 40dBhz

0 0.01 0.02 0.03 0.04 0.05 0.06

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

PFA

P
D

ROC curve for single cell acquisition (Outdoor, Tcoh=1ms)

 

 

Squared Ni=1
Absolute Ni=1
Squared Ni=2
Squared Ni=2

Figure 5.13: Zoom in from Fig. 5.12

better than the absoulte one for the majority of environments and parameter set. Notwithstand-

ing, the differential gain between both performances turns to be nearly nule when noncoherently

integrating many samples.

When having fewer noncoherent integrations and more coherent integration time, absolute value

detector reduces its difference with squared detector and stabilizes it in more benign environ-
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ments (soft indoor - outdoor).
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Figure 5.14: Gain curve between first and second-order absolute statistics for a Tcoh = 1ms

5.2 Multicell analysis

5.2.1 Indoor

The parameter set in this first case are a C/N0 of 17dBhz and Tcoh = 5ms. For both detection

techniques considered in this study, performances in terms of ROC curve are shown in Fig. 5.15.

It can be seen that in order to have a good detection, Ni has to be the order of thousands.

An acquisition process under this situation, cannot be operable for the given Tcoh = 5ms.

Theoretically it is possible, but in the reality this process cannot be held because the time spent

while acquisition would be too much.

A zoom of Fig. 5.15 is shown in Fig. 5.16 in order to highlight the different behaviour of both

detection techniques. It can be extracted that squared detector outperforms absolute detector

quite sharply, despite it tends to stabilize for a large number of noncoherent integrations.

Gain figure in Fig. 5.17 is given to show evidences of performing differences. For a large number

of noncoherent integrations, both statistics tend to stabilize but square statistics still perform

better. As it can be seen, the difference between first and second-order absolute statistics still

is very significant.

To have more reliable results, Tcoh raises untill 20ms. 20ms is equivalent to the length of one

transmitted bit by the satellite. If this time is exceeded, problems such as changing navigation
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Figure 5.15: Comparision between the ROC curve for the detector based on second-order mo-

ments and the one based on absolute moments, with Ni={500,1500,3500} Tcoh = 5ms and C/N0

= 17dBhz
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Figure 5.16: Zoom in from Fig. 5.15

bit or phase wrapping (Section 2.3.3) become present. For this second indoor analysis 20ms of

coherent time is chosen. As can be observed in Fig. 5.18, performances taking Ni > 120 begin

to be acceptable, which implies a quite high Pd for a reasonable Pfa. second-order statistics

outperform the absolute statistics in all 3 examples shown in Fig. 5.18.
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Figure 5.17: Gain curve between first and second-order absolute statistics for a Tcoh = 5ms

To have an idea of the difference between statistics, Fig. 5.19 is given. Looking at Fig. 5.19,

squared noncoherent detector still performs better than the first-order one for all noncoherent

integrations range.
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Figure 5.18: Comparision between the ROC curve for the detector based on second-order mo-

ments and the one based on absolute moments, with Ni={5,120,250} Tcoh = 20ms and C/N0 =

17dBhz

As an exception, if synchronisation is accurate and there are no phase derives, it can be
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taken Tcoh = 40ms. Best performance seems to change looking at ROC curve in Fig. 5.20. If a

zoom in is done to the performance with Ni = 80, Fig. 5.21 shows that absolute noncoherent

detector achieves a better result.
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Figure 5.19: Gain curve between first and second-order absolute statistics for a Tcoh = 20ms
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Figure 5.20: Comparision between the ROC curve for the detector based on second-order mo-

ments and the one based on absolute moments, with Ni={1,35,80} Tcoh = 40ms and C/N0 =

17dBhz

To be sure about this intuition, Fig. 5.22 is given. Looking at gain curve, can be determined
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that the supposition was true for all noncoherent integration range. A coherent integration such

40ms long, apart from being better [Pan09] (if possible), seems to make first-order acquisition

outperform conventional receivers.

−0.005 0 0.005 0.01 0.015 0.02 0.025 0.03

0.88

0.9

0.92

0.94

0.96

0.98

PFA

P
D

ROC curve for parallel acquisition (Indoor, Tcoh=40ms)

 

 

Squared Ni=1
Absolute Ni=1
Squared Ni=35
Absolute Ni=35
Squared Ni=80
Absolute Ni=80

Figure 5.21: Zoom in from Fig. 5.20

0 10 20 30 40 50 60 70 80 90
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Absolute value gain against Second order absolute value

Ni

G
a

in
(d

B
)

Figure 5.22: Gain curve between first and second-order absolute statistics for a Tcoh = 40ms
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5.2.2 Soft indoor

In this case, C/N0 is fixed at 30dBhz. First comparision is made with Tcoh = 5ms. ROC curve

is depicted in Fig. 5.23) in order to see the performaces of both noncoherent detectors. With

this parameter combination, the first-order detector absolutely outperforms the squared one.

For high values of Pd and reasonably low for Pfa, this difference is noticible lower but absolute

noncoherent detector still performs better.
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Figure 5.23: Comparision between the ROC curve for the detector based on second-order mo-

ments and the one based on absolute moments, with Ni={1,9,21} Tcoh = 5ms and C/N0 =

30dBhz

We have obtained the gain curve comparing both performances within all noncoherent inte-

gration range, depicted in Fig. 5.24. The gain curve gives evidences of this first-order absolute

statistics best performance.

In order to reaffirm the outperformance of first-order detector in soft indoor environments, gain

curve fixing Tcoh = 20ms is analysed in Fig. 5.25.

As a result of observations made in this environment, first-order detector performs widely

better than the used for conventional receivers in soft indoor scenarios. The disminution of

noncoherent integrations, seems to benefy the absolute noncoherent detector.

5.2.3 Outdoor

Finally, outdoor environment is analysed in order to see whether new detector’s performance

still outperform the conventionals. As the amplitude is quite high (C/N0 = 40dBhz), few Tcoh
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Figure 5.24: Gain curve between first and second-order absolute statistics for a Tcoh = 5ms
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Figure 5.25: Gain curve between first and second-order absolute statistics for a Tcoh = 20ms

and Ni are enough to have very satisfying results.

The case under study is taken under a Tcoh = 1ms. Like the case of soft indoor scenario,

the absolute value has a greater probability of detection for the same probability of false alarm

in average detection, and smaller difference when having good detection as it can be seen in

Fig.5.26. There are occasions where this difference increases untill five percentual points for

first-order noncoherent detector.
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Again, we have obtained the gain curve if Fig. 5.27 comparing both acquisitions for the Tcoh

established and all Ni range.
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Figure 5.26: Comparision between the ROC curve for the detector based on second-order mo-

ments and the one based on absolute moments, with Ni={1,4,7} Tcoh = 1ms and C/N0 =

40dBhz
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Figure 5.27: Gain curve between first and second-order absolute statistics for a Tcoh = 1ms

To conclude this chapter, it has been seen that absolute value detector has a better per-

formance rather than the squared (conventional) detector for not very harsh environments or
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with the possibility to have a long coherent integration time for parallel acquisition thing which

makes these results very interesting. Nonetheless, for single cell search and poor scenarios,

squared noncoherent detector remains unbeaten. Table depicted in Fig. 5.28 helps to have a

summary of all situations studied in this Chapter 5 and the best performing statistics in each

case.

Figure 5.28: Summarizing table



Chapter 6

Conclusions

To conclude this project, the results found in previous chapters are going to be presented.

First of all, it has been seen that characterizing the detection process using first-order absolute

statistics is possible. The first option to solve the sum of Rice/Rayleigh random variables was the

convolution. This method was the exact way to calculate the resulting distribution. However,

for the case of GPS detection it was inoperable because of the large acquisition time spent due

to the high number of noncoherent integrations needed.

The second option was a closed-form expression based on the CLT and Edgeworth series (4.6)

which turned out to be a great approximation for the sum of Rice/Rayleigh random variables.

A little deviation was found in the left tail from the closed-form distribution while comparing it

with the target empirical distribution. Notwithstanding, this expression could be considered a

reliable way to define the sum of Rice/Rayleigh random variables. In order to reduce this little

deviation, an specific study could be taken in order to make this difference negligible.

Once first and second-order noncoherent detectors were defined as well as their detection

metrics, performances in terms of ROC curve were shown. From all comparisons, it was found

that second-order noncoherent detectors perform best in the ideal case of single cell search

and for indoor cases in parallel acquisition. However, graphical evidences have shown that the

proposed first-order detector turns out to perform better in outdoor scenarios but especially in

soft indoor scenarios.

From these results, it can be intuited an interesting behaviour thinking in terms of detec-

tion performance. The more coherent integrations are applied combined with few noncoherent

integrations, the better the first-order noncoherent detector performs. This behaviour can be

observed in indoor scenario. Although second-order statistics perform better, if it were possible

to coherently integrate 40ms, first-order detector would outperform the second-order detector.

That explains why first-order detector performs best in soft indoor scenarios. In these situations,

coherent integrations still are very important and noncoherent integrations turn to decrease.
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This combination of 10 − 20ms of coherent integration and few noncoherent integrations is the

one which most benefices the first-order noncoherent detector.

Besides, an study made by some researchers in [Pan09] have found that the more coherent

integrations are taken, the more benefits the receiver has in some aspects as reducing indoor

positioning problems like multipath, cross-correlation false locks, and the squaring loss. However,

extending the total integration time has a price which would imply knowing the signal in order

to circumvent changing navigation bits, and other issues like phase wrapping should be solved.

Having characterized first-order noncoherent detectors, a new path of investigation could

be upgrading the coherent correlator to solve the limitation number of coherent integrations in

order to have better results. However, first-order noncoherent detector might not be the best.

Other fractional lower-order statistics could be studied and defined in order to use them in

detection theory.
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Resum: 
 
Aquest projecte es centra principalment en el detector no coherent d’un GPS. Per tal de 
caracteritzar el procés de detecció d’un receptor, es necessita conèixer l’estadística implicada. 
Pel cas dels detectors no coherents convencionals, l’estadística de segon ordre intervé 
plenament. Les prestacions que ens dóna l’estadística de segon ordre, plasmada en la ROC, són 
prou bons tot i que en diferents situacions poden no ser els millors. Aquest projecte intenta 
reproduir el procés de detecció mitjançant l’estadística de primer ordre com a alternativa a la ja 
coneguda i implementada estadística de segon ordre. Per tal d’aconseguir-ho, s’usen 
expressions basades en el Teorema Central del Límit i de les sèries Edgeworth com a bones 
aproximacions. Finalment, tant l’estadística convencional com l’estadística proposada són 
comparades, en termes de la ROC, per tal de determinar quin detector no coherent ofereix millor 
prestacions en cada situació. 
 

 
Resumen: 
 
Este proyecto se centra básicamente en el receptor no coherente de un GPS. Con tal de 
caracterizar el proceso de detección de un receptor, es necesario conocer la estadística 
implicada. En el caso de los detectores no coherentes convencionales, la estadística de segundo 
orden interviene plenamente. Los resultados que nos da esta estadística, plasmada en la curva 
ROC, son bastante satisfactorios aunque en distintos escenarios pueden no ser los mejores. 
Este proyecto intenta reproducir el proceso de detección mediante la estadística de primer orden 
como alternativa a la ya conocida e implementada estadística de segundo orden. Con tal de 
conseguirlo, se van a usar expresiones basadas en el Teorema Central del Límite y de las series 
Edgeworth como aproximaciones fiables. Finalmente, tanto la estadística propuesta como la 
estadística convencional son comparadas, en términos de la curva ROC, con tal de determinar 
cual detector no coherente ofrece mejores prestaciones en cada situación.  
 

 
Summary: 
 
This project focuses in GPS noncoherent detectors. In order characterize detection metrics from 
a receiver, statistics are demanded to be known. For the case of conventional noncoherent 
detectors, second-order statistics play an important role. The detection performance in terms of 
ROC curve gives satisfying results. However, using second-order statistics does not give the best 
performance in different environmental situations. This project tries to characterize detection 
metrics using first-order statistics as an alternative to conventional second-order statistics. To do 
so, some closed-form expressions based in the Central Limit Theorem and the Edgeworth series 
will be used as a good approximation. Finally, they are both compared to determine the best 
noncoherent detector for each situation. 

 
 



 


