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The Brachistochrone:
Historical Gateway to the Calculus

of Variations
Douglas S. Shafer

In 1696 Johann Bernoulli [1667–1748] posed the following challenge prob-
lem to the scientific world: suppose two points A and B lie in a vertical plane,
A higher than B but not directly above B. A wire that is bent in the shape
of a curve γ joins A and B. See Figure 1. A bead slides along the wire
from A to B. There is no force on the bead except the force of gravity; in
particular, there is no friction. Find the shape of γ that minimizes the time
required for the bead to fall from A to B.

At a first reading it is easy to miss the point of the problem; after all, eve-
ryone knows that the shortest path from A to B is the straight line segment
that joins them. But consider the problem carefully: we are asked not to
minimize the length of the path γ, but the amount of time taken to traverse it.
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Figure 1: Decomposition of the gravitational force.
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2 The Brachistochrone Problem

From Figure 1 we see that at any point C on γ the gravitational force vector
F decomposes into a component Ftan tangent to γ at C and a component
Fperp perpendicular to γ at C. The component Fperp does nothing to move
the bead along the wire, only the component Ftan has any effect. The vector
F is the same at each point C of γ (F ≡ mg, where m is the mass of the
bead and g is the acceleration of gravity), but Fperp and Ftan depend on the
steepness of the curve γ at C: the steeper the curve, the larger Ftan is, and
the faster the bead moves. It is therefore plausible that if the straight line
segment γ1 joining A and B is bent downward somewhat to form the curve
γ2 shown in Figure 2,

B

γ1

A

γ2

Figure 2: Two curves joining A and B.

then the extra speed that the bead develops just as it is released along γ2

will more than make up for the extra distance that it must travel, and it
will arrive at B in less time than it takes along path γ1. Whatever its shape
may be, the curve γ that solves the problem posed by Bernoulli is called the
brachistochrone, from the Greek words brachistos (“shortest”) and chronos
(“time”).

Of course Bernoulli had a solution to the problem in hand when he posed
it, else he would not have publicly challenged others to work on it! The
challenge was taken up by Johann Bernoulli’s older brother Jakob Bernoulli
[1654–1705], and by Gottfried Leibniz [1646–1716], Guillaume de L’Hôpital
[1661–1704], and Isaac Newton [1642–1727], each of whom published a solu-
tion (their answers all agreed, although their methods of derivation were far
from identical). The brachistochrone problem is historically important be-
cause it focused interest of scientists on problems of this type, stimulating the
development of ideas and techniques that led to the branch of mathematics
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Figure 3: The curve γ as the graph of a function f .

now known as the Calculus of Variations.
Let us begin our own study of the problem by deriving a formula relating

the choice of the curve γ to the time required for a bead to fall from A to
B (which we will call the “transit time”) under the influence of gravity, and
use it to compute the transit time for several simple shapes of the curve γ.

It is apparent that if we place the origin of a Cartesian coordinate system
(x, y) at A with the x-axis horizontal, as in Figure 3, then any relevant curve
γ will be the graph of a function f(x) that satisfies f(x) ≤ 0. Let t be
the time variable, with t = 0 corresponding to the moment that the bead
is released from point A. Let s = s(t) denote the distance along γ that the
bead has travelled at time t and v = v(t) the velocity of the bead along γ at
time t; that is, v is the instantaneous rate of change in s with respect to t.
Then from calculus, assuming that f is differentiable,

s(t) =

∫ x(t)

0

√
1 + f ′(u)2 du

and v(t) = s′(t), hence by the Fundamental Theorem of Calculus and the
Chain Rule

v(t) =
√

1 + f ′(x(t))2 x′(t). (1)
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Trigonometria esfèrica i hiperbòlica
Joan Girbau

L’objectiu d’aquestes notes és establir de forma curta i elegant les fórmules
fonamentals de la trigonometria esfèrica i de la trigonometria hiperbòlica.
La redacció consta, doncs, de dues seccions independents, una dedicada a la
trigonometria esfèrica i l’altra, a la hiperbòlica. La primera està adreçada a
estudiants de primer curs de qualsevol carrera tècnica. La segona requereix
del lector coneixements rudimentaris de varietats de Riemann.

1 Trigonometria esfèrica

Aquells lectors que ja sàpiguen què és un triangle esfèric i com es mesuren els
seus costats i els seus angles poden saltar-se les subseccions 1.1 i 1.2 i passar
directament a la subsecció 1.3.

1.1 Arc de circumferència determinat per dos punts

A cada dos punts A i B de la circumferència unitat, no diametralment opo-
sats, els hi associarem un únic arc de circumferència, de longitud menor que
π, (vegeu la figura 1) tal com explicarem a continuació.
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figura 1



4 The Brachistochrone Problem

Because of our assumption that there is no friction the total energy at
any time t must be the same as the total energy at time zero, which we may

take to be zero. Since kinetic energy is
1

2
mg2 and the potential energy is

mgh, where h is the height above the x-axis, we have (recall that f(x) ≤ 0)

Galileo Galilei1

1

2
mv2 + mgf(x) ≡ 0

so that
v =

√
−2 gf(x) , (2)

a formula known to Galileo Galilei [1564–1642], who
had considered the same problem much earlier. Com-
bining (1) and (2) yields the differential equation√

−2 gf(x) =
√

1 + f ′(x)2
dx

dt
.

We can solve this equation by separating the variables
and integrating. If T is the transit time then

T =

∫ T

0

dt =
1√
2 g

∫ b1

0

√
1 + f ′(x)2

−f(x)
dx. (3)

Note that the integral is improper, since f(0) = 0; moreover if f(x) has a
vertical tangent at x = 0 then f ′(0) will not exist.

To experiment with this formula a little, let’s suppose that B is the point

with coordinates (1,−1) and normalize the acceleration of gravity to g =
1

2
.

Then the straight line segment joining A and B lies in the line y = f(x) = −x
and we can compute (3) easily:

straight line : T =

∫ 1

0

√
2

x
dx = 2

√
2

.
= 2.828427

If γ is the circular arc with a vertical tangent at A then

f(x) = −
√

1− (x− 1)2

and integrating (3) numerically we obtain

circular arc : T =

∫ 1

0

1
4
√

(2x− x2)3
dx

.
= 2.622058

1Portrait by Justus Sustermans painted in 1636 (from “The MacTutor History of Math-
ematics archive” http://www-groups.dcs.st-and.ac.uk/∼history/)

http://www-groups.dcs.st-and.ac.uk/~history/
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This is an improvement of about 7%, and shows that the shortest path does
not yield the shortest time. If γ is the arc of the parabola with a vertical
tangent at A then f(x) = −

√
x and integrating (3) numerically we obtain

parabolic arc : T =
1

2

∫ 1

0

√
1 + 4x
4
√

x3
dx

.
= 2.587229

which is slightly better than the circular arc. But is it the best result possible?
That is, is this parabolic arc the brachistochrone for points A : (0, 0) and
B : (1,−1)?

To move beyond simply trying one choice of f after another let us note the
similarity between the brachistochrone problem and optimization problems
of elementary calculus, and try to exploit it. In our situation, for A : (0, 0)
and B : (b1, b2) fixed, we have a collection F of “candidate” functions, namely
all those that are differentiable and whose graphs pass through both A and
B. To each element f of F we associate a number T according to formula
(3). Thus there is defined a mapping J from the set F of relevant functions
to the set R of real numbers. Such a mapping from a set of functions to a set
of numbers is called a “functional.” The Brachistochrone Problem can thus
be stated:

Brachistochrone Problem

Find the function f̂ that minimizes the functional

T = J [f ] =
1√
2g

∫ b1

0

√
1 + f ′(x)2

−f(x)
dx (4)

subject to the conditions f(0) = 0 and f(b1) = b2 < 0.

We stated earlier that the importance of the brachistochrone problem is
that it directed attention to the systematic study of problems of a certain
type. These are problems in which a fixed rule (a functional J) assigns a
numerical value J [f ] to each function f in a particular set F of functions,
subject to constraints such as the endpoint conditions in the brachistochrone
problem, and the goal is to find the element f̂ of F that either maximizes
or minimizes J [f ]. Another specific example of this type of problem is this:
given two points A : (a1, a2) and B : (b1, b2) in the upper half-plane find the
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π, (vegeu la figura 1) tal com explicarem a continuació.
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6 The Brachistochrone Problem

A : (a1, a2)

y

x

B : (b1, b2)

γ : y = f(x)

Figure 4: A soap bubble.

curve γ joining A and B so that the area S of the surface of revolution that
is swept out as γ is revolved about the x-axis is minimized. See Figure 4,
and think of soap bubbles. Certainly the optimal curve γ is the graph of a
function f . Assuming that f is differentiable the set F is the set of functions
whose graphs pass through both A and B, and by the calculus formula for
the area of a surface of revolution the functional is now

S = J [f ] =

∫ b1

a1

2πx
√

1 + f ′(x)2 dx.

(By a shift of the coordinate axes we may safely assume that x ≥ 0.)

For either the soap bubble problem or the brachistochrone problem the
analogous calculus problem is: given a fixed set of numbers N and a fixed
function j(x) find the number x̂ that maximizes or minimizes j(x). For the
calculus problem the value of the derivative j′ is zero at the extremum x̂,
j′(x̂) = 0. To extend this idea to functionals we recall that the derivative
j′(x̂) can be viewed as the unique number such that for all sufficiently small
non-zero numbers h the remainder

R(x̂, h) =
(
j(x̂ + h)− j(x̂)

)
− j′(x̂)h (5)
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has the property that

lim
h→0

|R(x̂, h)|
|h|

= 0. (6)

As a possible analogue of (5) for a general functional J [f ] consider the ex-
pression

R(f̂ , h) =
(
J [f̂ + h]− J [f̂ ]

)
− J ′[f̂ ]h. (7)

Can we make good sense of this equation? The object h must now be a
function. For it to be “non-zero” means that it is not the zero function (not
identically zero), and a reasonable definition of its size is

‖h‖ = max{|h(x)| : x ∈ [a1, b1]}.

But what are we to make of the last term in (7)? Every other term on the
right-hand side of (7) is a number, so the rightmost term must also be a
number. Recalling that the rightmost term in (5) can be viewed as a linear
operation on the number h, the rightmost term in (7) actually should be an
operation on the function h that produces a number; that is, it should be
a functional, and by way of analogy it should be linear. Thus the correct
analogue of (5) should be written not as in (7), but as

Rf̂ [h] =
(
J [f̂ + h]− J [f̂ ]

)
−Df̂J [h] (8)

where Df̂J [h] is a functional, and moreover is a functional that is linear: for
any admissible functions h1 and h2 and any real numbers c1 and c2

Df̂J [c1h1 + c2h2] = c1Df̂J [h1] + c2Df̂J [h2]. (9)

The analogue of (6) is the condition that

lim
‖h‖→0

|Rf̂ [h]|
‖h‖

= 0. (10)

In summary, given a functional J , its “differential” or “first variation” at a
function f̂ is the linear functional Df̂J [h] such that if Rf̂ [h] is the functional
defined by (8) then the limit (10) holds. This definition was actually formu-
lated by Joseph Lagrange [1736–1813] in 1755. In direct analogy with the
corresponding theorem of calculus the following fact is true for any functional
J and function f̂ for which Df̂J exists.
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de la Universitat Autònoma de Barcelona
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8 The Brachistochrone Problem

Theorem. If f̂ minimizes or maximizes J then Df̂J is the zero functional:
for every admissible function h, Df̂J [h] = 0.

Thus our strategy for solving the brachistochrone problem is to compute
the first variation Df̂J for the functional of (4) and then find a function f̂
for which it evaluates to zero. Throughout we will imitate the calculus of
functions. In particular we will not compute any limits, but recall from the
calculus of functions Taylor’s Theorem, by which we write

f(x + h) = f(x) + f ′(x)h + · · · .

One point of view of some 17th century mathematicians was that if one could
find such a series expansion of f(x+h), by whatever means, then the second
term on the right must be the derivative. This will be our strategy for finding
Df̂J .

The functional that appears in (4) is a particular case of the more general
form

J [f ] =

∫ b

a

I(x, f(x), f ′(x)) dx, (11)

where I is a function I(x, y, z) of three variables evaluated at x, f(x), and
f ′(x). Indeed for the functional (4)

I(x, y, z) =

√
1 + z2

√
2 g

√
−y

(12)

in which the variable x does not explicitly appear, a fact that will be impor-
tant later. Taylor’s Theorem for functions of several variables, when applied
to the function I in the integrand of (11) yields, for (x0, y0, z0) in the domain
of I and for small increments u, v, and w,

I(x0 + u, y0 + v, z0 + w)

= I(x0, y0, z0) + Ix(x0, y0, z0)u + Iy(x0, y0, z0)v + Iz(x0, y0, z0)w + · · ·

where the subscripts indicate partial differentiation. Thus for a functional J
as in (11) and functions f and h

J [f + h]− J [f ] =

∫ b

a

I(x, f(x) + h(x), f ′(x) + h′(x))− I(x, f(x), f ′(x)) dx

=

∫ b

a

Iy(x, f(x), f ′(x))h(x) + Iz(x, f(x), f ′(x))h′(x) dx + · · · .

(13)
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Remember that in the brachistochrone problem the set F of functions to
which the functional J in (4) could be applied consisted of differentiable
functions whose graphs passed through A and B. Since f̂ + h is admissible
its graph must contain both A and B, which forces h(0) = h(b1) = 0. The
same sort of phenomenon is true in general, meaning that for the functional
J of (11) to apply to both f and f +h as in (13) it must be true that h(a) =
h(b) = 0. More simply put, perhaps, h is a “variation” in f (whence the name
“Calculus of Variations”), and there can be no change at the endpoints A
and B if endpoint conditions are to be satisfied. Thus integration by parts∫

udv = uv −
∫

vdu when applied to the second term in the final integral in
(13) with u = Iz(x, f(x), f ′(x)) and dv = h′(x)dx yields∫ b

a

Iz(x, f(x), f ′(x))h′(x) dx = −
∫ b

a

d

dx
(Iz(x, f(x), f ′(x)))h(x) dx.

Thus (13) becomes

J [f+h]−J [f ] =

∫ b

a

(
Iy(x, f(x), f ′(x))− d

dx

(
Iz(x, f(x), f ′(x))

))
h(x) dx+· · ·

and we conclude that the first variation of J at f , DfJ [h], must be the
first term on the right, which by inspection is a linear functional (satisfies
equation (9). It is zero for every admissible function h(x) if and only if f = f̂
satisfies

d

dx

(
Iz(x, f(x), f ′(x))

)
= Iy(x, f(x), f ′(x)). (14)

This is the Euler equation, named for Leonhard Euler [1707–1783] who de-
rived it in 1744.

The solution f̂ of the brachistochrone problem is

Leonhard Euler2

the function f = f̂ that satisfies (14) when I is the
function given by (12). This is the point at which
being a genius comes in handy! For mathematicians
of the caliber of those who solved the brachistochrone
problem in the 17th century recognized that for any
problem in which x does not explicitly appear in I, as
is the case for the brachistochrone problem, it is useful
to differentiate the expression f ′(x)Iz(x, f(x), f ′(x))−
I(x, f(x), f ′(x)) with respect to x, rather than try to work with (14) directly.

2Stamp issued by Switzerland on the 300th anniversary of his birth (from “Images of
Mathematicians on Postage Stamps” http://jeff560.tripod.com/)
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Joan Girbau

L’objectiu d’aquestes notes és establir de forma curta i elegant les fórmules
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10 The Brachistochrone Problem

We compute:

d

dx

(
f ′(x)Iz(x, f(x), f ′(x))− I(x, f(x), f ′(x))

)
= f ′′(x)Iz(x, f(x), f ′(x)) + f ′(x)

d

dx

(
Iz(x, f(x), f ′(x))

)
− 0− Iy(x, f(x), f ′(x))f ′(x)− Iz(x, f(x), f ′(x))f ′′(x)

= f ′(x)
[ d

dx

(
Iz(x, f(x), f ′(x))

)
− Iy(x, f(x), f ′(x))

]
.

Thus a non-constant function f solves (14) if and only if

f ′(x)Iz(x, f(x), f ′(x))− I(x, f(x), f ′(x)) ≡ constant. (15)

Reverting to the notation y = f(x) and z = f ′(x), for the brachistochrone
problem I is given by (12) and (15) reads

z
z

√
2 g

√
−y(1 + z2)

−
√

1 + z2

√
2 g

√
−y

≡ constant

which by straightforward algebraic manipulations reduces to

y(1 + z2) ≡ constant.

That is, the solution to the brachistochrone problem is the solution y = f(x)
of the ordinary differential equation

y
(
1 +

(
dy

dx

)2 )
= C (16)

that satisfies the two boundary conditions f(0) = 0 and f(b1) = b2. Equation
(16) can be integrated explicitly by separation of variables to obtain the
relationship

x = a arccos(1− 1

a
y)−

√
2 ay − y2

where a =
1

2
C. It is much more enlightening to derive parametric equations

for the curve γ, however. To do so we recall that in Figure 3,
dy

dx
= tan θ.

Using the relation 1 + tan2 θ = sec2 θ and writing the constant C in (16) as
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−2R (we will want R > 0 and, as Figure 3 shows, y ≤ 0) we transform (16)
into y sec2 θ = −2R or

y = −2R cos2 θ = −R(1 + cos(2θ)). (17)

Then

dx

dθ
=

dx

dy

dy

dθ
= cot(θ) (2R sin(2θ)) =

cos θ

sin θ
(4R sin θ cos θ) = 2R(1 + cos(2θ)).

This equation can be integrated to yield x = 2Rθ + R sin(2θ) + S. Setting
u = 2θ and recalling (17) we obtain parametric equations

x = R(u + sin u) + S

y = −R(1 + cos u)
(18)

for γ. If u0 is the value of u such that (x(u0), y(u0)) = (0, 0) then because R
must be non-zero the second equation in (18) forces cos(u0) = −1; we choose
u0 = −π, hence by the first equation in (18) S = πR. By taking the quotient
of the two equations in (18) we find that any value u1 > u0 of u for which

(x(u1), y(u1)) = (b1, b2) must satisfy q0(u1) = −b1

b2

> 0 where

q0(u) =
u + sin u + π

1 + cos u

on (−π, π). It is a calculus exercise to verify that q0(u) is monotone increasing
on (−π, π), that lim

u→−π+
q0(u) = 0, and that lim

u→π−
q0(u) = +∞, so that for

every −b1

b2

∈ R+ there exists a unique value u1 of u in (−π, π) such that

q0(u1) = −b1

b2

. It readily follows that choosing R =
−b2

1 + cos u1

according to

the second equation in (18) with u = u1 and y = b2 yields (x(u1), y(u1)) =
(b1, b2). If we make the change of variable u = θ − π everywhere then (18)
(with S = πR) becomes

x = R(θ − sin θ)

y = −R(1− cos θ).
(19)

Thus we have:
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Trigonometria esfèrica i hiperbòlica
Joan Girbau

L’objectiu d’aquestes notes és establir de forma curta i elegant les fórmules
fonamentals de la trigonometria esfèrica i de la trigonometria hiperbòlica.
La redacció consta, doncs, de dues seccions independents, una dedicada a la
trigonometria esfèrica i l’altra, a la hiperbòlica. La primera està adreçada a
estudiants de primer curs de qualsevol carrera tècnica. La segona requereix
del lector coneixements rudimentaris de varietats de Riemann.

1 Trigonometria esfèrica

Aquells lectors que ja sàpiguen què és un triangle esfèric i com es mesuren els
seus costats i els seus angles poden saltar-se les subseccions 1.1 i 1.2 i passar
directament a la subsecció 1.3.

1.1 Arc de circumferència determinat per dos punts

A cada dos punts A i B de la circumferència unitat, no diametralment opo-
sats, els hi associarem un únic arc de circumferència, de longitud menor que
π, (vegeu la figura 1) tal com explicarem a continuació.

A
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O

figura 1
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x
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Figure 5: The cycloid.3

Brachistochrone Problem: Solution

The brachistochrone joining A : (0, 0) and B : (b1, b2) is the curve γ with
parametric equations (19) for 0 ≤ θ ≤ θ1, where θ1 is the unique solution of

q(θ) =
θ − sin θ

1− cos θ
= −b1

b2

(20)

in (0, 2π) and

R =
−b2

1− cos θ1

. (21)

The parametric equations (19) (for θ ∈ R and R > 0) describe a cycloid,
the path in the plane traced out by a point P on the circumference of a circle
of radius R in the lower half-plane as the circle rolls along the x-axis; see
Figure 5. The parameter θ is the angle (in radians) through which the circle
has turned from its initial position tangent to the x-axis at the origin. Note
that γ always has a vertical tangent at A: the bead begins with a “freefall.”

Let us compute the time required for a bead to fall from A : (0, 0) to
B : (1,−1) along the brachistochrone and compare it to the transit times
for the straight line segment and the parabolic arc treated earlier, when

the acceleration of gravity is normalized to g =
1

2
. Either by making a

substitution x = α(v), y = β(v) in (3) or else deriving (3) all over again
in the situation that γ is represented by the parametric equations (x, y) =
(α(v), β(v)), v0 ≤ v ≤ v1, rather than as the graph of a function y = f(x),
we obtain

T =
1√
2g

∫ v1

v0

√
α′(v)2 + β′(v)2√

−β(v)
dv. (22)

3Click on the figure to see a circle generating a cycloid.

http://mat.uab.cat/~matmat/Figs2007/AnimCycloid.html
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Figure 6: An upward curving brachistochrone.

For the parametric equations (19) the integrand in (22) reduces to
√

2R so

that T =
√

2R θ1, where θ1 is the unique solution of
θ − sin θ

1− cos θ
= 1 in the

interval (0, 2π) and R is given by (21). Using Newton’s Method or some
other approximation technique we obtain θ1

.
= 2.4120111439135253425 and

R
.
= 0.57291703753175033696 so that ultimately we have

brachistochrone : T
.
= 2.581905.

This is about a 9% improvement over the straight line segment and a
2

10
of

1% improvement over the parabolic arc.
For any fixed R the lowest point on the cycloid determined by (19) cor-

responds to θ = π. Since q(π) =
π − sin π

1− cos π
=

π

2
and q(θ) is increasing, this

means that if −b1

b2

>
π

2
then the terminal value θ1 of θ for the brachistochrone

joining A : (0, 0) and B : (b1, b2) is between π and 2π. Geometrically this
means that the brachistochrone descends to a level lower than that of B and
turns upward to meet B, as shown in Figure 6. This is true for all points

B : (b1, b2) for which b2 > − 2

π
b1.

We close with the comment that the brachistochrone possesses the re-
markable property that it is a tautochrone: if V is the lowest point on the
cycloid, then beads that are simultaneously released at rest from any points
A, M , N on the curve as indicated in Figure 7 will all arrive at point V
at precisely the same moment. This fact was known to Christiaan Huygens
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Figure 7: The tautochrone.

[1629–1695], who used it in the design of a pendulum clock.
Some readers may have noticed that we have shown only that our solution

is a relative optimum for the brachistochrone problem, not that it is a global
optimum. In fact, we haven’t actually shown that a global optimum even
exists. A completely different approach to the brachistochrone problem which
surmounts this difficulty, still using only elementary calculus, can be found
in D. C. Benson, An elementary solution of the brachistochrone problem,
American Mathematical Monthly 76 (1969) 890–894.
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