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Abstract

The main goal of this paper is to investigate how to estimate sampling design variances of model-
based and model-assisted small area estimators in a complex survey sampling setup. For this purpose
the Spanish Labour Force Survey is considered. Sample and aggregated data are taken from the
Canary Islands in the second trimester of 2003 in order to obtain some small area estimators of ILO
unemployment totals. Several problems arising from the application of standard small area estimation
procedures to the survey are described. It is shown that standard variance estimators based on
explicit formulas are not applicable in the strict sense, since the assumptions under which they are
derived do not hold. In addition two resampling techniques, bootstrap and jackknife, are considered.
These methods treat all the considered estimators in the same manner and therefore they can be
used as performance measures to compare them. From the analysis of the obtained results, some
recommendations are given.
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1 Introduction

Small area estimation is an increasingly important part of survey sample inference
with applications to social and economic statistics. Almost all the methodological
developments up to date in this context has been carried out under the assumption that
the assumed small area model is true, and that the appropriate measure of accuracy of
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the small area estimator is its repeated sampling variability under random realizations
of the population assuming the small area model holds. The fact that the assumed
model only approximates reality, and that the measures that capture sampling variability
relative to the actual population values are often of primary interest, is often ignored.
This paper attempts to redress this imbalance by focusing on the repeated sampling
properties of the most commonly used model-based methods of small area estimation.

The paper describes investigations on several issues arising from the application of
standard small area estimation techniques, as they have been typically developed to
be used under simple random sampling and they do not take into account problems
derived from data coming up from surveys with complex sampling design, non response,
reliability of population sizes, selection of auxiliary variables, consistency with the
officially published data at a higher level of aggregation, estimation of mean squared
error in a complex setup and many others. For this sake, some model-assisted and
model-based estimators are adapted to the Spanish Labour Force Survey (SLFS) in
order to estimate totals of unemployed people by sex and small areas in the Canary
Islands. The paper has thus an applied-oriented character, attempting to diminish the
gap between theory and practice.

The rest of the paper is organized as follows. Section 2 introduces some standard
small area estimators and the corresponding explicit formulas to estimate their variances
or mean squared errors. It also describes the auxiliary variables employed to
estimate totals of unemployed people in the SLFS. Section 3 discusses two resampling
approaches for estimating design-based variances. Section 4 describes technical details
of the SLFS, with special emphasis on the sampling design, the separated ratio
estimator of totals and the calibration of sampling weights. Section 5 proposes a
two-stage bootstrap and a delete-one-cluster jackknife method to estimate sampling
variances of small area estimators in the SLFS. These resampling methods produce
performance measures to compare estimators of totals. Section 6 gives a discussion
on the performance of the small area estimators and on the three methods to estimate
their variances. The paper has two appendices. Appendix A presents estimated totals of
unemployed people. Appendix B gives figures with estimated coefficients of variation
and presents dispersion graphs to illustrate the behaviour of the small area estimators
with respect to the basic estimator of the SLFS.

2 Estimators of small areas totals in complex surveys

Let Ω be a population with N units and let s ⊂ Ω be a sample of size n selected with
a given sampling design. Let πi = P(i ∈ s) and wi = 1/πi be the inclusion probability
of unit i ∈ Ω and its sampling weight. Let yi and xi be the target variable and the
vector of auxiliary variables defined for each i ∈ Ω. Let y and X be the vector and the
matrix containing the values of yi and xi for all units in the population. The three basic



M. Herrador, D. Morales, M. D. Esteban, A. Sánchez, L. Santamarı́a, Y. Marhuenda and A. Pérez 179

inferential frameworks in survey sampling are the design-based, the model-based and
the model-assisted approaches. In the design-based framework y and X are regarded as
constants and the only source of randomness is the selection of the sample. In the model-
based framework a model is assumed for y conditioned on X. In the model-assisted
framework, both probability sampling design and model have a role (see Särndal, et al.
1992, pp. 227, 238-239). The model is used to propose an estimator with the restriction
of being approximately unbiased in the sampling distribution.

We are interested in estimating the total Yd of a target variable y in a domain d of
size Nd. Let sd = Ωd ∩ s be the subsample of units in domain d. In this section we
introduce some standard small area estimators of Yd. We also give explicit formulas to
estimate the sampling variances of design-based and model-assisted estimators and to
estimate the mean squared errors of model-based estimators. As the main goal of this
paper is to investigate how to estimate the design-based variance of different types of
small area estimators, we consider four of them: a design-based, a model-assisted and
two model-based ones. At the end of this section we describe the auxiliary variables
employed in the SLFS setup.

2.1 Direct estimator

The direct estimator is the design-based estimator (10.3.6) appearing in Särndal et al.
(1992), p. 391, when Nd is known. Its expression is

Ŷdir
d = Nd

ˆ̄Ydir
d , where ˆ̄Ydir

d =
1

N̂d

∑
j ∈ sd

w jy j and N̂d =
∑
j ∈ sd

w j.

An explicit-formula estimator of its sampling variance is

var(Ŷdir
d ) =

(
Nd

N̂d

)2 ∑
j ∈ sd

w j(wj − 1)(y j − ˆ̄Ydir
d )2.

2.2 GREG estimator

GREG estimator is a model-assisted estimator. The one presented here is assisted by
a linear model. Consider p explanatory variables measured at N population units; i.e.
x j = (x j,1, . . . , x j,p), j = 1, .,N. Let

X̄d =
1

Nd

∑
j ∈Ωd

x j and ˆ̄Xdir
d =

1

N̂d

∑
j ∈ sd

w jx j
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be the domain means of the auxiliary variables and their direct estimators. Consider the
linear model y = Xβββ+ e, where X is an n× p matrix with rows x j, e ∼ N(0, σ2

eW−1) and
W = diag(w1, . . . ,wn). The weighted least square estimator of βββ is

βββ = (XtWX)−1XtWy =
(∑

j ∈ s

w jxt
jx j

)−1(∑
j ∈ s

w jxt
jy j

)
.

Observe that the set of p explanatory variables can include artifical variables. Here the
first variable is such that x j,1 = 1, j = 1, ..., n; i.e. we assume a linear model with
intercept term. In this way, estimation of βββ does not depend on the type of selected
small area in territories with hierarchical structure. In this paper the GREG estimator
of a total is a slight modification of the model-assisted estimator (2.4.8) appearing in
Särndal et al. (1992, p. 410). Its expression is

Ŷgreg
d = Nd

ˆ̄Ydir
d + Nd(X̄d − ˆ̄Xdir

d ) β̂ββ.

Observe that

Ŷgreg
d =

∑
j ∈ s

gd jw jy j and NdX̄d =
∑
j ∈ s

gd jw jx j

where

gd j =
Nd

N̂d

IΩd
( j) + Nd(X̄d − ˆ̄Xdir

d )
(∑

j ∈ s

w jxt
jx j

)−1xt
j,

and IΩd
is the indicator function of subset Ωd. An explicit-formula estimator of its

sampling variance is

var(Ŷgreg
d ) =

∑
j ∈ sd

w j(wj − 1)g2
d j(y j − x j β̂ββ)

2.

2.3 EBLUPA estimator

The EBLUPA estimator is a composite estimator based on the 2-level linear mixed
model (model A)

yd j = xd j βββ + ud + ν
−1/2
d j ed j,

where ud
iid∼ N(0, σ2

u) and ed j
iid∼ N(0, σ2

e) are independent. The model is fitted by
calculating maximum likelihood estimators of the regression and variance component
parameters with a Fisher-scoring algorithm (see e.g. Rao, 2003, ch. 5-6). The EBLUPA
estimator of a total is Ŷeblupa

d = Nd
ˆ̄Yeblupa

d , where
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ˆ̄Yeblupa
d = γ̂d( ˆ̄Ydir

d − ˆ̄Xdir
d β̂ββ) + X̄d β̂ββ, with γ̂d =

σ̂2
u

σ̂2
u + (σ̂2

e/νd)
, νd =

∑
j ∈ sd

νd j.

The EBLUPA estimator is in fact a pseudo-eblup estimator studied in work package 4 of
the EURAREA project (http://www.statistics.gov.uk/eurarea/) and related to
the ones proposed by Prasad and Rao (1999) and You and Rao (2002). Mean squared
error is estimated by using g1 − g4 explicit formulas given by Prasad and Rao (1990)
and later extended by Das, Jiang and Rao (2001) to more general linear mixed models.
Recent results are reviewed by Jiang and Lahiri (2006).

2.4 EBLUPB estimator

The EPLUPB estimator is a composite estimator based on the area-level model (model
B)

Ȳ = X̄d βββ + ud and ˆ̄Ydirect
d = Ȳd + εd,

where ud
iid∼ N(0, σ2

u) and εd
iid∼ N(0, σ2

d) are independent. This model was introduced by
Fay and Herriot (1979) to estimate average per capita income for small areas in USA.
The model is fitted by the same method as model A. Under model B, EBLUP estimator
of total is

ˆ̄Yeblupb
d = γ̂d

ˆ̄Ydir
d + (1 − γ̂d)X̄d β̂ββ, with γ̂d =

σ̂2
u

σ̂2
u + σ̂

2
d

.

Mean squared error is estimated by using g1 − g3 explicit formulas given by Prasad and
Rao (1990).

2.5 Auxiliary variables to estimate totals of unemployed people in the SLFS

To obtain models with high predictive properties, the selection of adequate explanatory
variables is very important. In the case of individual level models, auxiliary variables are
needed at both individual and domain level. At the individual level auxiliary variables
are obtained from the survey sample and, except for the cases of non-response, their
values are available. However it is much more difficult to evaluate auxiliary variables at
the domain level, because their values come from external sources which sometimes
are not available, have not sufficiently good quality or may even present definition
differences with their sample counterparts. Because of these reasons, the number of
available auxiliary variables for individual-level models describing unemployment is in
general very small. In the real data application of this paper the domains of interest
are small areas (provisional geographical divisions for statistical purposes) crossed with
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sex. There are 2 × 27 = 54 domains in the considered universe (Canary Islands). The
following auxiliary variables have been used to estimate totals of unemployed people in
the SLFS:

1. Auxiliary variables at aggregated and unit level are:

• GSAC: groups of sex (1-2), age (1-3) and employment claimant (1-2) with
12 values. Three age groups have been considered: 16-24, 25-54 and ≥ 55.
• CLUSTER: groups of province and population size of the municipality with

4 values.

2. An auxiliary variable aggregated at the domain level without sample counterpart
has been used. This variable, GSAU, has 12 categories representing the groups of
sex (1-2), age (1-3) and registered as unemployed in the administrative register of
employment claimants (1-2).

3. To estimate totals of unemployed people we use the following auxiliary variables:

• CLUSTER and GSAC for estimators GREG and EBLUPA.
• CLUSTER and GSAU for estimators EBLUPB.

3 Design-based variance estimation

The most commonly used methods for design-based variance estimation with complex
survey data are linearization and resampling methods. Krewski and Rao (1981)
showed the asymptotic consistency of the variance estimates for nonlinear functions
of design-unbiased mean estimators based on linearization or on some of the existing
resampling methods applied to multistage designs in which the primary sampling
units are selected with replacement. The linearization method requires theoretical
calculation and subsequent programming of derivatives, which can make it cumbersome
to implement. For this reason resampling methods are becoming each time more
popular. In this section we review, without being exhaustive, some resampling methods
that can be adapted to complex survey sampling designs.

3.1 Bootstrap with replacement

Efron (1979) proposed a bootstrap method that involves generation of independent
resamples, each drawn from the original with replacement. For each such resample
the statistic of interest is calculated and the obtained values form the basis of inference.
The properties of the bootstrap method have been extensively studied for the i.i.d. case.
In the framework of survey sampling Efron’s original bootstrap requires modifications
to handle issues like finiteness of population, without replacement sampling, complexity
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of survey designs, weighting schemes and nonlinearity of population parameters
and estimators. Under random sampling without replacement the finite population
correction factor (f.p.c.), f = n/N, plays an important role. If f is not negligible the
with bootstrap with replacement (BWR) method tends to overestimate the variance of
linear estimators. To overcome this difficulty McCarthy and Snowden (1985) suggested
to use a bootstrap sample size n′ = (1 − f )−1(n − 1). Rao and Wu (1988) proposed
a BWR method which rescales the bootstrap samples so as to recover the f.p.c. factor
in the usual simple random sampling without replacement (SRSWOR) variance formula
for the design unbiased estimators of the population mean. For interesting related papers
dealing with the impact of BRW methods in survey sampling, see Rust and Rao (1996),
Sitter (1992), Shao (2003) and Lahiri (2003).

All the mentioned references treat the problem of estimating parameters of the global
population. However, in the small area estimation (SAE) setup the application of the
BRW method has extra difficulties because the parameters of interest are from non-
designed domains with small expected sample sizes. Further in the SAE framework
is quite common to use nonlinear model-based estimators (like the EBLUP). For these
estimators, there exist a variety of methods to estimate their model-based mean squared
error, but not to estimate its design-based variance. For these reasons the bootstrap
proposals mentioned above need adaptation to be applied in a SAE setup with complex
survey data, so that the naive BWR method becomes a simpler and worthwhile approach
to be considered for complex sampling designs like the one of the SLFS. In this paper,
the naive BWR method involves the following basic steps:

1. Using a suitable probability sampling scheme, generate resamples from the
original sample.

2. From each resample calculate the estimator θ̂. Denote them by θ̂∗1, . . . , θ̂
∗
B.

3. Bootstrap estimator of variance is varB(θ̂) = (B − 1)−1 ∑B
b= 1(θ̂∗b − θ̂∗)2 with

θ̂∗ = B−1 ∑B
b= 1 θ̂

∗
b.

3.2 Jackknife

Quenouille (1949) introduced the jackknife method to estimate the bias of an estimator
by deleting one datum each time from the original data set and recalculating the
estimator based on the rest of the data. The jackknife has become a more valuable
tool since Tukey (1958) found that the jackknife can also be used to construct variance
estimators. The first theorem concerning the jackknife variance estimator was given by
Miller (1964). Since then jackknife theory has been widely developed (see e.g. Shao and
Tu, 1995), although not much work has been done on its adaptation to complex survey
designs. One exception is the paper by Rao and Tasui (2004) where jackknife variance
estimators are introduced under stratified multistage sampling. Rao and Tasui (2004)
consider a population stratified in L strata and from each stratum h, mh ≥ 2 clusters are
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selected, independently across the strata. They further assume that subsampling within
the sampled clusters is performed to ensure unbiased estimation of cluster totals, Yhi,
i = 1, . . . ,mh, h = 1, . . . , L. An unbiased estimator of the cluster total Y is given by

Ŷ =
∑

s

whik yhik,

where whik is the inverse of the first order inclusion probability of unit k in cluster i and
stratum h. To obtain the delete-one-cluster jackknife estimator of the variance of Ŷ the
jackknife weights, when the (g, j)-th cluster is deleted or equivalently in the jackknife
sample s∗(g, j), are w∗hik(g, j) = whikbhi(g, j) with bhi(g, j) = mg/(mg − 1) if h = g, i � j, and
bhi(g, j) = 1 if h � g. The variance of Ŷ can be approximated by

varJ(Ŷ) =
L∑

g= 1

mg − 1

mg

mg∑
j= 1

(Ŷ∗(g, j) − Ŷ)2, where Ŷ∗(g, j) =
∑
s(g, j)

w∗hik(g, j) yhik.

4 The Spanish Labour Force Survey

The SLFS is a good example of complex survey design where a lot of challenging
statistical issues takes place. The research in this paper is motivated by them. This
section summarizes the key points of its sampling design as well as some details
on how the collected survey data is handled in practice. Additional information can
be downloaded from web site of the Spanish Statistical Office (Instituto Nacional de
Estadı́stica-INE)

http://www.ine.es/en/docutrab/epa05 disenc/epa05 disenc en.pdf.

SLFS is a quarterly survey following a stratified two-stage random sampling design
with separate samples sp drawn from each province p. The Primary Sampling Units
(PSUs) are Census Sections (geographical areas with a maximum of 500 dwellings-
approximately 3000 people) and they are grouped in strata according to the size of
municipality. Within each stratum, PSUs are selected with probabilities proportional to
size according to the number of dwellings. In the second stage sampling, the Secondary
Sampling Units (SSUs) are dwellings and a random start systematic sampling is applied
to draw a fixed number (18 in most cases) of SSUs from each selected PSU. All people
aged 16 years old or more in the selected SSUs are interviewed. The probability that a
dwelling v belonging to PSU a of stratum h be selected in sp is

P(Dwehav) = P(PS Uha)P(Dwehav)|PS Uha) = mh
Vha

Vh

18
Vha
=

18mh

Vh
,
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where Vha and Vh are the totals of dwellings in PSU a of stratum h and in stratum
h respectively and mh is the number of sections allocated in stratum h. Because
all individuals in a selected dwelling are interviewed, the inclusion probabilities of
individuals and dwellings coincide. Therefore, the inclusion probability of individual
j in dwelling v and stratum h is

π j =
18mh

Vh
= πh.

This means that all individuals within a given stratum have the same selection
probability, i.e. this survey uses what is called a self-weighting design. Afterwards, at
stratum level, probabilities π j are modified to take non-response into account and their
inversions produce sampling weights w(1)

j adjusted by non-response. Consequently the
survey is still using a self-weighting design inside of each stratum. Up until year 2001
the INE used a ratio estimator, with Demographic Population Projections as auxiliary
variable, to estimate the total Yp of variables y in the province p, i.e.

Ŷ l f s,0
p =

∑
h⊂Ωp

Nh

N̂h

∑
v⊂ sh

∑
j ∈ v

w(1)
j y j with N̂h =

∑
v⊂ sh

∑
j ∈ v

w(1)
j = w(1)

j nh,

where N̂h is the projection of the population living in familiar dwellings in stratum h,
with reference to the half of the quarter and nh is the number of people living in the
dwellings in the sample, in stratum h, at the time of the interview. Alternatively,

Ŷ l f s,0
p =

∑
h⊂Ωp

∑
j ∈ sh

Nhw(1)
j

N̂h

y j =
∑
j ∈ sp

w(2)
j y j,

with the sample dependent weights

w(2)
j = w(2)

j (sp) =
Nhw(1)

j

N̂h

=
Nh

nh
if j ∈ sh.

Since the first quarter of 2002, reweighting (or calibration) techniques are applied to
estimators so as to adjust the survey estimates to some given information from external
sources. The reweighting technique (see Deville and Särndal (1992)) requires the
availability of K auxiliary variables appearing in the sample sp and whose populations
totals are known, i.e.

∑
j ∈Ωp

x jk = Xk, k = 1, . . . ,K.
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The target is to find a new estimator

Ŷ l f s
p =

∑
j ∈ sp

w jy j

with new weights wj satisfying the balance equations

∑
j ∈ sp

w jx jk = Xk, k = 1, . . . ,K,

and being as similar as possible to w(2)
j . The problem aims to find values wj minimizing

∑
j ∈ sp

w(2)
j G(wj/w

(2)
j ) restricted to

∑
j ∈ sp

w jx jk = Xk, k = 1, . . . ,K,

where G is a function of distance. In the second trimester of 2003 the SLFS weights
were calibrated so that their sum coincide with the population projections for individuals
aged 16 years and over per groups of sex and age in autonomous communities, and per
provinces. In order to obtain the practical solution for this problem, it was employed the
CALMAR (CALage sur MARges) software, programmed in SAS code by the INSEE
(Institut National de la Statistique et des Études Économiques) in France.

SLFS estimator of the total Yp of variable y in province p is Ŷ l f s
p . In this setup direct

estimators of the total and the mean (cf. Section 2.1) of domain d are

Ŷ l f s
d =

∑
j ∈ sp

wd jyd j and ˆ̄Yl f s
d =

Ŷ l f s
d

N̂d

, with N̂d =
∑
j ∈ sp

wd j.

For provinces, it holds Ŷ l f s
p =

∑
d ∈Ωp

Ŷ l f s
d ; i.e. there exists consistency between direct

estimates at domain and SLFS estimate at province level.
INE publishes estimates of unemployment totals at province level. If in the near

future these publications were extended to domain levels it should be necessary to force
consistency between both types of data. This is to say that the sum of the estimated
totals in all the domains within a province should coincide with the actual estimated
total by SLFS in the province. In order to fulfil this consistency criterion, in this
paper the following modification of all the considered small area estimators has been
implemented.

Let Ŷ l f s
d be the SLFS estimator of total Yp in province p. Assume that province p is

partitioned in Dp domains; i.e. Ωp = ∪Dp

d=1Ωpd withΩd1
∩Ωd2

= ∅ if d1 � d2. Let Ŷ1, . . . , ŶDp

be some given estimators of totals Y1, . . . ,YDp
. In general, the consistency property

Ŷ l f s
p =

Dp∑
d = 1

Ŷd
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Table 4.1: Consistency factors for the totals of unemployed men (left) and women (right) in the
SLFS 2003/02 of Canary Islands.

Province dir greg eblupa eblupb dir greg eblupa eblupb

1 0.948 0.944 0.952 0.949 0.937 0.875 0.865 0.932
2 1.005 0.963 0.947 0.981 0.995 0.868 0.879 0.998

is not satisfied. In such cases Ŷ1, . . . , ŶDp
can be transformed into consistent estimators

by the following calculation

Ŷc
d = λypŶp , where λ =

Ŷ l f s
p∑Dp

d = 1 Ŷd

are consistency factors. For consistent estimators, it holds

Ŷ l f s
p =

Dp∑
d = 1

Ŷc
d .

Table 4.1 presents the consistency factors of direct, GREG, EBLUPA and EBLUPB
estimators of totals of unemployed men (left) and women (right) in the SLFS 2003/02
of Canary Islands. One can observe that the deviations from the SLFS estimation at
province level are at most of 15% for the four small area estimators.

5 Resampling methods for design-based variance estimation in the
SLFS

In this section we describe a two-stage bootstrap method as well as a two-stage jackknife
method to estimate variances of small area estimators of totals in the SLFS.

5.1 A naive two-stage bootstrap method

Let θ be a parameter to be estimated with θ̂. Bootstrap (see e.g. Efron and Tibshirani,
1998) is a resampling method which is often used to estimate variances var(θ̂). To
implement the proposed two-stage bootstrap method, it is not necessary to construct
artificial populations since the procedure generates bootstrap samples directly from the
original SLFS sample as it is explained in next lines. Let s be an SLFS sample in a given
province. Let s = ∪H

h=1sh, where s1, . . . , sH are subsamples by strata. Let sh = ∪mh

a=1sha,
where sh1, . . . , shmh

are subsamples in the mh selected PSUs from the stratum h. Finally,
let sha = ∪mha

v=1shav, where sha1, . . . , shamha
are the subsamples in the mha visited dwellings

in PSU a and stratum h. Selection of bootstrap samples in stratum h, h = 1, . . . ,H, is
done in the following way:
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1. Select a simple random sample with replacement of mh PSUs from the set of mh

PSUs appearing in the original SLFS sample.

2. Within each selected PSU, draw a simple random sample with replacement of mha

dwellings from the set of mha dwellings appearing in the given PSU of the original
SLFS sample.

3. Select all the individuals aged 16 or more from the dwellings in the bootstrap
sample.

Variance estimation is done as follows:

A. By using the procedure described above, use sample s to draw B bootstrap samples
(B = 500 in this paper). For every bootstrap sample calculate θ̂∗b, b = 1, ., B,
in the same way as θ̂ was calculated. So, in each bootstrap sample, the weights
w∗(2)

j,b = Nh/n∗hb (where n∗hb is the number of individuals selected in bootstrap sample
b and stratum h) are adjusted by a calibration procedure to obtain calibration
weights w∗j in the same way as in SLFS sample. These calibration weights w∗j
are used to calculate θ̂∗b.

B. The observed distribution of θ̂∗1, . . . , θ̂B is expected to imitate the distribution of
estimator θ̂ in the SLFS sampling design.

C. The variance of θ̂ is approximated by

varB(θ̂) =
1

B − 1

B∑
b= 1

(θ̂∗b − θ̂∗)2, where θ̂∗ =
1
B

B∑
b= 1

θ̂∗b.

D. A bootstrap estimator of the sampling error (coefficient of variation) in % of θ̂ is

cvB(θ̂) =

√
varB(θ̂)

θ̂
100.

An important step when estimating variances through the bootstrap method is to take
into account the consistency property of estimators of totals at province level. The
consistency property was not required in the bootstrap samples. To estimate variances
of consistent estimators, estimated variances of non consistent estimators are multiplied
by the square of the consistency factor λ (cf. Section 4). However, for the coefficient of
variation this adjustment is not necessary. More concretely, if θ̂c = λθ̂ is the consistent
version of a total estimator θ̂, where λ is the consistency factor calculated in the original
SLFS sample, then bootstrap estimators of the variance and the coefficient of variation
of θ̂c are

varB(θ̂c) = λ2varB(θ̂) and cvB(θ̂c) = cvB(θ̂).
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5.2 A delete-one-cluster jackknife method

In order to apply the jackknife for variance estimation in SLFS samples, we use the
delete-one-cluster jackknife method (see e.g. Rao and Tausi, 2004). To obtain the
delete-one-cluster jackknife variance estimator of θ̂, we generate jackknife samples by
deleting a PSU each time. So within each province, there are as many jackknife samples
as PSUs are in the corresponding SLFS sample.

Consider the jackknife sample, s∗(g, j), obtained by excluding PSU j of stratum g.
The jackknife weight of individual k, PSU i and stratum h in the sample s∗(g, j) is

whik(g, j) = w(2)
hikbhi(g, j), where bhi(g, j) =

mg

mg−1 if h = g, i � j, bhi(g, j) = 1 if h = g, and
mg is the number of PSUs in the stratum g. Note that the case h = g and i = j does
not appear in the jackknife sample s∗(g, j). If H is the number of strata in the sample, the
variance estimation is done as follows:

A. By using the procedure described above, use sample s to draw jackknife samples
s∗(g, j), g = 1, . . . ,H, j = 1, . . . ,mg. For every jackknife sample calculate θ̂∗(g, j) in the
same way as θ̂ was calculated. So, in each jackknife sample, the weights whik(g, j)

are adjusted by a calibration procedure to obtain calibrated weights w∗hik(g, j) in the
same way as it was done with the SLFS sample. Theses calibrated weights w∗hik(g, j)

are used to calculate θ̂∗(g, j).

B. The observed distribution of {θ̂∗(g, j) : g = 1, . . . ,H, j = 1, . . . ,mg} is expected to
imitate the distribution of estimator θ̂ in the SLFS sampling design.

C. The variance of θ̂ can be approximated by

varJ(θ̂) =
H∑

g= 1

mg − 1

mg

mg∑
j= 1

(θ̂∗(g, j) − θ̂)2.

D. A jackknife estimator of the sampling error (coefficient of variation) in % of θ̂ is

cvJ(θ̂) =

√
varJ(θ̂)

θ̂
100.

6 Discussion

6.1 On the small area estimators

In this section a specific analysis of the behaviour of direct, GREG, EBLUPA and
EBLUPB estimators of unemployment totals (men and women), in the SLFS of Canary
Islands in the second trimester of 2003, is given. Conclusions are mainly based on data
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from Table A.1 and in figures presented in Appendix B. In Appendix B explicit-formula,
bootstrap and jackknife estimates of the variances or mean squared errors (MSE) of the
estimators of totals of unemployed men are plotted. In order to analyze the degree
of bias of the estimators of totals, in Figure B.5 they are plotted against the basically
unbiased-design SLFS estimator in dispersion graphs. Similar figures have been plotted
for the case of women. However, for the sake of brevity, they are not presented here. In
relation to the different estimators tested the main conclusions are:

1. The four considered estimators tend to give the same numerical results as LFS
estimator when sample size increases. See Table A.1.

2. To estimate totals of unemployed people, the four considered estimators are
acceptably unbiased with respect to LFS estimator (see Figure B.5). From the
figures in Appendix B we conclude that EBLUPA estimator is in general the one
with the lowest MSE.

6.2 On the estimation of variances or mean squared errors

In this section advantages and disadvantages of the three considered variance or mean
squared error (MSE) estimation procedures (explicit formula, bootstrap and jackknife)
are analyzed.

Explicit formulas to estimate the variance or MSE of estimators of totals are easy to
implement and require the same sample and auxiliary information than the one needed
for the given estimators of totals. These formulas can also be extended to more general
types of parameters (e.g. nonlinear) via Taylor linearization.

In the case of design-based or model-assisted estimators the formulas of variances
are derived with respect to the sampling distribution with some simplifications to avoid
double inclusion probabilities. What is estimated is thus a simplified version of the
variance. In addition, elevation factors are treated as if they were inverted inclusion
probabilities. Explicit formulas to estimate variances of design-based or model-assisted
small area estimators of totals may have the following sources of error:

• They estimate simplified formulas of the variance that do not take into account
second order inclusion probabilities.

• They assume that calibrated sampling weights are inverses of inclusion
probabilities, when they are in fact sample dependent and therefore random.

In the case of model-based estimators MSE formulas are derived with respect to
the model distribution. However, survey sampling statisticians are mainly interested in
MSE with respect to the sampling distribution. If the model fits the data well, both
types of MSE are usually close enough. In our application to real data, model-based and
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jackknife estimators of MSE produce quite close results because the models fit the data
acceptably well. Another issue is whether or not to use the sampling weights under the
model-based approach, and how to use them.

Explicit formulas to estimate MSEs of model-based small area estimators of totals
may have the following sources of error:

• They estimate the MSE with respect to the model distribution when we are
interested in the MSE with respect to the sampling distribution.

• They are derived for simple random sampling. Under complex sampling designs,
the use of sampling weights is still an unsolved problem.

As a summary we can say that explicit estimators of variances or MSEs are easy to
apply, but give unreliable estimates as they are based on assumptions that do not hold in
practice. Their use should have an orientate character.

The proposed two-stage bootstrap method generates resamples from the original
SLFS sample. The method does not require the generation of bootstrap populations.
The idea is that small area estimators in the original sample and in the bootstrap
samples have very similar distributions, so that variance of estimators in the original
sample could be estimated via Monte Carlo method by using the bootstrap samples. In
simple random sampling (nonparametric) the bootstrap method is easy to implement and
produce consistent (in an asymptotic sense) variance estimates. However in two-stage
sampling this is not at all straightforward and it is quite difficult to check asymptotic
properties with respect to PSUs or SSUs.

The bootstrap method needs to generate resamples in the same way that the original
sample was generated. Here it is necessary to reproduce all the steps followed with the
SLFS sample: extraction of the sample, calibration of weights, consistency of estimators
at province level, and so on. However the naı̈ve two-stage bootstrap method produce
resamples whose distributions are not close enough to the one of the original sample.
The key problem is that resamples are obtained with replacement and the original sample
was obtained without replacement. Further research is thus needed to adapt BWR
methods to the SLFS. By observing the obtained numerical results we conclude that
this method over-estimates the variances of the small area estimators. A positive aspect
of the bootstrap method is that variance estimates have a small loss of quality in domains
with low sample sizes.

To estimate variances of small area estimators of totals, the naı̈ve two-stage bootstrap
method may have the following sources of error:

• Distributions of small area estimators in the original sample and in the resamples
are not close enough.

• There exists a tendency to over-estimate variances.

• It is an excessively complex method, which needs a lot of delicate work.
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The delete-one-cluster jackknife method generates resamples taking one PSU at a
time out of the original sample and by recalibrating the sampling weights. It is a simple
and easy method to implement. Main problem of jackknife method is that it works
erratically in domains containing very few PSUs in the sample. For those domains this
method is unreliable and should not be used.

If we compare the numerical results obtained with the three methods to estimate
variances or MSEs, we obtain the following conclusions:

• In domains with large sample sizes, the three methods produce basically the same
results.

• The naı̈ve bootstrap method gives higher estimates of the variances than the
explicit-formula or jackknife methods, so it seems that our implementation is
positively biased.

• Assumptions required to deriving explicit formulas to estimate variances or MSEs
do not hold in practice, so their use should have an orientative character.

• The delete-one-cluster jackknife method avoids the theoretical problems of the
explicit-formula methods and the difficulty of implementation of the bootstrap
method. It works quite well in all the domains except in those with very few
sampled PSUs.
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Appendix A: Estimated totals of unemployed people in Canary Islands

Table A.1: Estimated totals of unemployed men (left) and women (right) in Canary Islands
with the SLFS 2003/02.

Area lfs dir greg ebluba eblupb lfs dir greg ebluba eblupb

1 550 546 1172 1411 1865 3168 3022 3107 1993 2823
2 141 105 206 270 72 187 128 255 297 0
3 526 435 473 236 196 119 85 110 177 141
4 0 0 94 131 100 229 240 180 133 207
5 1131 1183 1047 765 967 467 490 866 892 638
6 458 379 347 432 260 635 464 511 499 527
7 13544 14081 13332 13275 14264 15637 16382 14044 13912 16118
8 319 401 274 724 695 289 350 470 829 107
9 1239 1161 818 1217 1185 1263 968 1260 1630 920
10 369 319 467 395 275 328 276 415 378 345
11 2451 2049 2219 1620 1162 959 760 855 1213 1237
12 2295 2364 2575 2546 1980 1889 2005 3097 3218 2107
13 343 277 527 987 506 787 798 1053 1311 863
14 2548 2006 1638 1656 1833 1791 1414 1381 1589 1515
15 9261 9928 9489 9505 10389 11802 12120 11071 11140 11422
16 507 420 514 564 681 681 614 592 665 746
17 1848 1241 1147 1079 1328 2530 1650 1409 1342 1302
18 496 985 1760 2419 1289 1253 2171 2960 2933 2321
19 966 1809 1650 1158 1022 426 717 818 1194 998
20 5502 5339 4303 3458 3848 5054 4890 4576 3788 4575
21 162 155 184 166 164 334
22 210 251 223 295 226 472 569 321 335 163
23 837 670 981 1095 911 1528 1388 1284 1190 1350
24 311 300 327 310 308 187
25 194 108 103 191 206 203 108 138 176 310
26 1599 1276 1344 1183 1244 446 353 957 1116 1056
27 0 0 159 263 316 545 726 483 269 377
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Appendix B: Figures

Figure B.1: Direct-formula, bootstrap and jackknife estimates of coefficients of variation in % of direct
estimates of totals of unemployed men.

Figure B.2: Direct-formula, bootstrap and jackknife estimates of coefficients of variation in % of GREG
estimates of totals of unemployed men.
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Figure B.3: Direct-formula, bootstrap and jackknife estimates of coefficients of variation in % of EBLUPA
estimates of totals of unemployed men.

Figure B.4: Direct-formula, bootstrap and jackknife estimates of coefficients of variation in % of EBLUPB
estimates of totals of unemployed men.
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Figure B.5: Dispersion graphs of LFS versus direct, GREG, EBLUPA and EBLUPB estimates of totals of
unemployed men.
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