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Assessing influence in survival data with a cure
fraction and covariates

Edwin M. M. Ortega', Vicente G. Cancho? and Victor Hugo Lachos?
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Abstract

Diagnostic methods have been an important tool in regression analysis to detect anomalies, such as
departures from error assumptions and the presence of outliers and influential observations with the
fitted models. Assuming censored data, we considered a classical analysis and Bayesian analysis
assuming no informative priors for the parameters of the model with a cure fraction. A Bayesian
approach was considered by using Markov Chain Monte Carlo Methods with Metropolis-Hasting
algorithms steps to obtain the posterior summaries of interest. Some influence methods, such as
the local influence, total local influence of an individual, local influence on predictions and generalized
leverage were derived, analyzed and discussed in survival data with a cure fraction and covariates.
The relevance of the approach was illustrated with a real data set, where it is shown that, by removing
the most influential observations, the decision about which model best fits the data is changed.
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1 Introduction

Models for survival analysis typically assume that every subject in a population is
susceptible to the event under study and will eventually experience it if follow-up is
sufficiently long. However, there are situations where a fraction of individuals are
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not expected to experience the event of interest, that is, those individuals are cured or
insusceptible. For example, researchers may be interested in analyzing the recurrence
of a disease. Many individuals may never experience a recurrence; therefore, a cured
fraction of the population exists. Cure rate models have been utilized to estimate the
cured fraction.

Cure rate models are survival models which allow for a fraction of cured individuals.
These models extend the understanding of time-to-event data by allowing for the
formulation of more accurate and informative conclusions. These conclusions are
otherwise unobtainable from an analysis which fails to account for a cured or
insusceptible fraction of the population. If a cured component is not present, the analysis
reduces to standard approaches of survival analysis.

Cure rate models have been used for modeling time-to-event data for various types
of cancers, including breast cancer, non-Hodgkins lymphoma, leukemia, prostate cancer
and melanoma. Perhaps the most popular type of cure rate models is the mixture model
introduced by Berkson and Gage (1958). In this model, the population is divided into
two subpopulations so that an individual either is cured with probability p or has a
proper survival function S (#), with probability 1 — p. This gives an improper population
survivor function G(¢) in the form of mixture, that is,

GO =p+A-pS@®), S(=) =0, G(co)=p, (1

A common choice of the S(7) in (1) is exponential and the Weibull distribution.
With those choices, we have respectively an exponential model with a cured fraction
and a Weibull model with a cured fraction. This mixture model has been studied by
several authors, including Farrell (1982), Goldman (1984), Greenhouse (1998) and Sy
and Taylor (2000). The book by Maller and Zhou (1996) provides a wide range of
applications of the long-term survivor mixture model. We considered a classical analysis
for model Weibull with a cured fraction and covariates. The inferential part was carried
out using the asymptotic distribution of the maximum likelihood estimators, which in
situations when the sample is small, may present difficult results to be justified. As an
alternative for classical analysis, we explored the use of techniques of the Markov Chain
Monte Carlo (MCMC) method to develop a Bayesian inference for the Weibull model
with a cure fraction.

The development of influence diagnostics is an important step in the analysis of
a data set as it provides us with an indication of bad model fitting or of influential
observations. However, there are no applications of influence diagnostics to survival
data with a cured fraction and covariates. Cook (1986) proposed a diagnostic approach
named local influence to assess the effect of small perturbations in the model and/or
data on the parameter estimates. Several authors have applied the local influence
methodology in more general regression models than the normal regression model
(see, for example, Paula 1993, Galea et al., 2000 and Dias, et al., 2003). Also, some
authors have investigated the assessment of local influence in survival analysis models:
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for instance, Pettit and Bin Daud (1989) investigate local influence in proportional
hazard regression models; Escobar and Meeker (1992) adapt local influence methods
to regression analysis with censoring, Ortega et al. (2003) considered the problem of
assessing local influence in generalized log-gamma regression models with censored
observations, Ortega et al. (2006) derived curvature calculations under various
perturbation schemes in exponentiated-Weibull regression models with censored data
and Fachini et al. (2007) adapt local influence methods to polyhazard models under the
presence of covariates.

In this article, we present diagnostic methods based on local influence and residual
analysis in survival data with a cure fraction and covariates, where the covariates
are modeled through p via a binomial regression model. In section 2, we present
the Weibull model with a cured fraction and covariates and discuss the process of
estimation for the parameters in the model. Section 3 deals with a Bayesian analysis
using MCMC methodology under informative priors. In Section 4, 5 and 6, we
discuss the local influence method, local influence on predictions and generalized
leverage. Likelihood displacement is used to evaluate the influence of observations on
the maximum likelihood estimators. Section 7 presents the results of an analysis with a
real data set and residual analysis.

2 The Weibull model with a cure fraction and covariates

Let a binary random variable Y;, i = 1,...,n indicate that the ith individual in a
population is at risk or not with respect to a certain type of failure, that is, ¥; = 1
indicates that the ith individual will eventually experience a failure event (uncured) and
Y; = 0 indicates that the individual will never experience such event (cured). For an
individual with covariate vector X;, the proportion of uncured p can be specified to be a
logistic link of x such that the conditional distribution of Y is given by

1
Pr(Yi: 1|Xi)=7721_pi
1 +exp(x; B)
where B = (81,8, ....8,)" is a vector p-dimensional parameter. Note that the cure
probability varies from individual to individual so that the probability that individual i
exp(x;B)

is cured is modeled by p; =

0O and 1.

Letting 7; be the ith time of occurrence of the failure event and considering that 7;"s
are independent and identically distributed with the Weibull distribution, the density
function is given by

Tr o B’ The logistic link keeps each p; strictly between

(ta, A|Y = 1) = ar® lexp{d — 1%}, (2)
p
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where @ > 0 is a shape parameter and 4 € R is a scale parameter. Thus, the
contribution of an individual that failed at #; to the likelihood function is given by
(1 = p)at?'exp{d — 1¢"}, and the contribution of an individual that is at risk at time
is p; + (1 — ppexp{—12e'}.

Given a sample #,. .., t,, where we observed #; = min(7};, C;) where T is the lifetime
for the ith individual and C; is the censoring time for the ith individual. In this case the
log-likelihood function corresponding to the parameter vector @ = (a, 4,87)" is given by

I6) o rlog(@)+rd+ Y log(l = p)+(a—1) ) log(t) -

ieF ieF
expld} )t + > log| p; + (1 = pexp{~te'}] (3)
ieF ieC

where r is the number of uncensored observations (failures), F' denotes the set of
uncensored observations, C denotes the set of censored observations. Maximum
likelihood estimates for parameter vector € can be obtained by maximizing the
likelihood function, while Bayesian estimation is discussed. In this paper, software Ox
(MAXBFGS subroutine) (see Doornik, 1996) was used to compute maximum likelihood
estimates (MLE). Covariance estimates for maximum likelihood estimators 0 can also
be obtained by using the Hessian matrix. Confidence intervals and hypothesis testing
can be conducted by using the large sample distribution of MLE, which is a normal
distribution with the covariance matrix as the inverse of Fisher information as long as
regularity conditions are satisfied. More specifically, the asymptotic covariance matrix

.. . ;
is given by I"'(9) with I(8) = —E[L.(8)] such that I.(8) = { 30152 }

Since it is not possible to compute the Fisher information matrix I(8) due to the
censored observations (censoring is random and noninformative), the matrix of second
derivatives of the log likelihood, —1.(0), evaluated at MLE 6 = 5, which is consistent,
can be used. Then

Laa Loz/l Lozﬁ’
L(B) = . L AN L AB
Ly

with the submatrices in appendix A.

3 A Bayesian analysis using MCMC

In this section, we consider a Bayesian approach to the MCMC methodology for
approximating the posterior distribution for quantities of interest in survival data with a
cure fraction and covariates. As seen in the previous section, likelihood based inference
in small samples can be somewhat misleading. Thus, Bayesian inference may play an
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important role in such cases. Since the derivation of exact posterior densities is not
feasible for the Weibull model with a cure fraction and covariates, we make use of the
MCMC methodology to obtain approximation for such densities. We consider the joint
prior density for 8 = (a, 4,87)" of the form

p

(@) = | | (66115 73))) 6|, )Tt [, b), @)

i=1

where ¢(-|u,0?) denotes the probability density function of the Normal distribution
with mean yu and variance o and I'(- | a, b) denoting the Gamma distribution with shape
parameter a > 0 and scale b > 0. Here all the hyperparameters are specified.

Combining likelihood function L(0) « exp{l(#)} and prior to specification (4), the
joint posterior distribution for @ is given by

e 1 & B
7T(0|D)0CTQ lar+alexp{ ba——+ rd — EZ_Z_ (5)
j=1 ﬁ
Y+ Y logl=p)+ Y log[p, + (1 = pyexp t”e’l}]}
ieF ieF ieC
where 7 is the number of uncensored observations, T = [[#,i = 1,2,...,n and D

denotes the observed data. ~

To implement the MCMC methodology, we consider Gibbs within the Metropolis-
Hasting sampler, which requires the derivation of the complete set of conditional
posterior distributions.  After some algebraic manipulations, it follows that the
conditional posterior densities are given by

n(@|B,A,D) o« T 'a*'exp {—ba/ — ¢t Z 1+ Z log

ieF ieC

pit(1— pf)exp{—r;’ei}]}

(/l _/1/1)2 1 a a A
n(dla,B,D) o« exp Ry +rd—e Z 1+ Z log[pi + (1 = ppexp{-tie }]
A

ieF ieC

1 )4
a(Bla,A,D) {—Ez(ﬁ’ Hy,) + > log(l = p)+

j=1 B ielF

Z log

ieC

pit(1— pi)exp{—rf’eﬂ}]}

Since the conditional posteriors do not present standard forms, the use of the Metropolis-
Hasting sampler is required.
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4 Influence diagnostics
4.1 Local influence

Let /(@) denote the log-likelihood function from the postulated model, where
0 = (a,4,B7)7, and let w be an n X 1 vector of perturbations restricted to some open
subset Q c R”". The perturbations are made in the log-likelihood function. We will
assume, in particular, the case-weights perturbation scheme such that the log-likelihood
function takes the form

101w) = Y wilog|(1 - pati™ expld - ffe'}] + > wilog[p: + (1 - ppexpl—re'}],

ieF ieC

where 0 < w; < 1 and wy = (1,1,...,1)" is the vector of no perturbation. Note that
1@ |wy) = (). To assess the influence of the perturbations in the maximum likelihood
estimate , we consider the likelihood displacement

LD(w) = 2{l(8) - 1B.,)},

where 9w denotes the maximum likelihood estimate under the model /(0 | w).

The idea of local influence (Cook, 1986) is concerned with characterizing the
behavior of LD(w) around w,y. The procedure consists in selecting a unit direction d,
|| d ||= 1, and then considering the plot of LD(w, + ad) against a, where a € R. This
plot is called lifted line. Note that, since LD(w,) = 0, LD(w, + ad) has a local minimum
at a = 0. Each lifted line can be characterized by considering the normal curvature
Cq(0) around a = 0. This curvature is interpreted as the inverse radius of the best fitting
circle at a = 0. The suggestion is to consider direction d,,,, corresponding to the largest
curvature Cq, (0). The index plot of d,,,, may reveal those observations which, under
small perturbations, exercise notable influence on LD(w). Cook(1986) showed that the
normal curvature at direction d takes the form Cq(0) = 2|d” AT (L)"'Ad | where —L is
the observed Fisher information matrix for the postulated model (w = w,) and A is the
(p+1)xn matrix with elements A ;; = 0’LO|w)/06 ; Ow;, evaluated at @ = 0 and w = w,
j=1...,p+2andi = 1,...,n Then, Cq, is the largest eigenvalue of the matrix
B = A”T(L)'A, and d,,, is the corresponding eigenvector. The index plot of d,,, for the
matrix A”(I.)"'A can show how to perturb the log-likelihood function to obtain larger
changes in the estimate of 6.

Another procedure is the total local curvature corresponding to the ith element,
which follows by taking d; or an n X 1 vector of zeros with one at the ith position. Thus,
the curvature at the direction d; assumes the form

Ci=2|A/LO) A (6)
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where AT denotes the izh row of A. This is named total local influence (see, for example,
Lesaffre and Verbeke, 1998). It is suggested looking at the index plot of C;.

We find, after some algebraic manipulation, the following expressions for the
weighted log-likelihood function and for the elements of the matrix A:

In this case the perturbed log-likelihood function takes the form

0lw) = [log(@)+ ] > wi+ Y wilogl = p)+(@=1) > wlogt)
ieF ieF ieF
—exp{d)} Z wit’ + Z w; log [p,» +(1=p)) exp{—t,‘.’e”}] (7)

ieF ieC

Letus denote A = (Ay,...,A,;»)".

Then the elements of vector A is given in appendix B.

However, if the interest is only in vector B, the normal curvature in direction d is
given by Cq(B) = 2|d"AT(L." - B»,)Ad| (see Cook, 1986), where

g._[(0 0
270 L,

with L,, denoting the submatrix of L. obtained according to partition

Q" I411 L12 )
L) =
© ( Ly La
The index plot of the largest eigenvector of AT(I';_1 — By)A can reveal those

observations to be most influential on B.

4.2 Local influence on predictions

Letz be a p X 1 vector of values of the explanatory variables, for which we do not
P

necessarily have an observed response. Then, the prediction at z is (z) = ) z,5;.
j=1

Analogously, the point prediction at z based on the perturbed model becomes [i(z, w) =

P A P! P P . . . .
2. ZiBjw, Where B, = (Biy, ... B,,w)T denotes the maximum likelihood estimate from
j=1

the perturbed model. Thomas and Cook (1990) have investigated the effect of small
perturbations in predictions at some particular point z in continuous generalized linear
models and by assuming ¢ known or estimated separately from 3. ¢! is defined as
a dispersion parameter. For more details, see McCullagh and Nelder (1989). They
defined three objective functions based on different residuals. Because the diagnostic
calculations were identical for the proposed functions, they concentrated the application
of the methodology on the objective function f(z,w) = {1(z) — ji(z,w)}*.



122 Assessing influence in survival data with a cure fraction and covariates

Similarly, we will concentrate our study on investigating the normal curvature of the
surface formed by vector w and function f(z,w), around w,. The normal curvature at
unit direction d takes, in this case, the form Cq(z) = 2 | d'fd |, where f = 0* /0w Ow”
is evaluated at w, and ﬁ From Thomas and Cook (1990) one has that

f= AT(E;ﬁlzzTﬂgﬁl)A,
where A = §*1(6 | w)/0B dw”. Consequently
d,0(2) o< —ATL;’;Z.

In the sequence we discuss the calculation of d,,.(z) under additive perturbations for
the response and for each continuous explanatory variable.

4.2.1 Response perturbation

Consider regression model (3) by assuming now that each ¢ is perturbed as f; —
i+ S)w; = 1,0 = 1,...,n, where (§,) is a scale factor that can be the estimated
standard deviation of T and w;eR. Below we give the expressions for the log-likelihood
function

Here the perturbed log-likelihood function is expressed as

0lw) = rlog(a)+rd+ Y log(l=p)+(a@—1) ) log(t) -

ieF ieF
exp{d} Z £ + Z log [p,» +(1=py) exp{—t}‘"e‘}] (8)
ieF ieC

where 7 = 1; + (S )w;.
Matrix A = (A, Ay, ..., A,4»)" is given in appendix C.
Vector d,,..(z) is constructed by taking z = x;, which corresponds to the n X 1 vector

() o —ATEpx ©9)

A large value for the ith component of (15), d,,., (X;), indicates that the ith observation
should have substantial local influence on ¥;. Then, the suggestion is to take the index
plot of the n X 1 vector (d,y, (X1), - - ., dyax (X,))" in order to identify those observations
with high influence on its own fitted value.

4.2.2 Explanatory variable perturbation

Consider now an additive perturbation on a particular continuous explanatory variable,
namely X,, by making x;,, = x; + w;S,, where S, is a scaled factor that can be the
estimated standard deviation of X,. This perturbation scheme leads to the following
expressions for the log-likelihood function and for the elements of matrix A:
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The perturbed log-likelihood function is, in this case, expressed as

10|w) = rlog(a/)+r/l+210g(1—p}k)+(a/—I)Zlog(t,-)—

ieF ieF
expld} Y 1 + > log|p; + (1 = pj)expl-#e')] (10)
ieF ieC
where p; = oAl and X;7B = B1xi + Poxpp + -+ + Bi(xiy + wiS ) + -+ + BLox;
i 1+exp{x;fTB} i i i t\Ait D x pip-

Matrix A = (A, A, . .., AP+2)T is given in appendix D.
Similarly to the response perturbation case, the suggestion here is to evaluate the
largest curvature at z = x;, which leads to

Cmax(Xi) = 2 | dT f.dma)r | 5

max

and consequently
dmax(xi) x _ATL;[;XI'-

To see for which observed values of X, the prediction is most sensitive under small
changes in X;, we can perform the plot of C,,..(X;) against x;,. The index plot of the
n X 1 vector (£pay, (X1), - - - » max, (X,))" can indicate those observations for which a small
perturbation in the value of X, leads to a substantial change in the prediction.

4.3 Generalized leverage

Let /(0) denote the log-likelihood function from the postulated model in equation (10),5the
MLE of 8 and u the expectation of T, then, t = ,u(/é) will be the predicted response vector.

The main idea behind the concept of leverage (see, for instance, Cook and Weisberg,
1982; Wei et al., 1998) is that of evaluating the influence of f; on its own predicted

value. This influence may well be represented by derivative % that equals £;; is the
i-th principal diagonal element of the projection matrix H = X(X'X)"'X” and X is
the model matrix. Extensions to more general regression models have been given, for

instance, by St. Laurent and Cook (1992), and Wei, et al. (1998) and Paula (1999),
when 0 is restricted with inequalities. Hence, it follows from Wei et al.(1998) that the

nxn matrix (%) of generalized leverage can be expressed as:
— o -l
GL®) = {Dg[-L(B)] Let} (11

evaluated at 6 = 6.
Matrix Dg = (Da,D e Dﬂ) is given in appendix E.
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5 Residual analysis

In order to study departures from the error assumption as the well as the presence of
outliers, we will first consider the martingale residual proposed by Barlow and Prentice
(1988) (see also Therneau et al., 1990). This residual was introduced in counting
processes and can be written for the Weibull model with a cure fraction and covariates
as

[ L+log|pi+ (1= pexp{-2el}], if ieF; 0
™= og [+ (1= pyexp{ - fet)), if ieC. 12)
Due to the skewness distributional form of 7, it has maximum value +1 and minimum
value —oco, and transformations to achieve a more normal shaped form would be more
appropriate for residual analysis. Another possibility is to use the deviance residual
(see, for instance, McCullagh and Nelder, 1989, Section 2.4), which has been largely
applied in generalized linear models (GLMs). Various authors have investigated the use
of deviance residuals in GLMs (see, for instance, Williams, 1987; Hinkley et al., 1991;
Paula 1995; Ortega et al., 2007) as well as in other regression models (see, for example,
Farhrmeir and Tutz, 1994). In the Weibull model with a cure fraction and covariates, the
modified residual deviance is expressed here as

sgn(ry;,)

-2- 2log{[ﬁ,- + (1= pexp{ - fel)|x

12
R
D= log [15,- +(1 - pexpf{ - tl‘?eﬂ}] }] , if ieF; (13)

sgn(er){ - 2log [ﬁ,- +(1-pexpf{- tf’eﬁ}]}l/z, if ieC,

where ry, is the residual martingale corresponding to the Weibull model with a cure
fraction and covariates.

6 Application

In this section, the application of the local influence theory to a set of real data on cancer
recurrence is discussed. The data are part of an assay on cutaneous melanoma (a type
of malignant cancer) for the evaluation of postoperative treatment performance with a
high dose of a certain drug (interferon alfa-2b) in order to prevent recurrence. Patients
were included in the study from 1991 to 1995, and follow-up was conducted until 1998.
The data were collected by Ibrahim et al. (2001); variable T represented the time until
the patient’s death. The original size of the sample was n = 427 patients , 10 of whom
did not present a value for covariable tumor thickness, herein denominated as Breslow.
When such cases were removed, a sample of size n = 417 patients was considered. The
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Survival Distribution Function
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Figure 1: Plot of the Survivor Function.

percentage of censored observations was 56%. The following data were associated with
each participant, i = 1,2,...,n.

t;: observed time (in years);
¢;: censoring indicator (O=censoring, 1=lifetime observed);
x;1: treatment (O=observation, 1=interferon);
. age (in years);
X;: nodule (nodule category: to 4);
Xy sex (O=male, 1=female);
X;s: p-s. (performance status-patient’s functional capacity scale as regards his daily
activities: O=fully active, 1=other);
e x;s: Breslow (tumor thickness in mm).

e o 0 0 0 o o
=
|38

The survival function graph, Kaplan-Meier estimate, is presented in Figure 1, from
where a fraction of survivors can be observed.

6.1 Maximum likelihood results

To obtain the maximum likelihood estimates for the parameters in the Weibull model we
use the subroutine MAXBFGS in Ox, whose results are given in the Table following.
The mean cure fraction estimated was p = 0.5162.
In Table 1, it is estimated that the only significant variable is x3(nodule). Also, the
information criteria based on the decision theory which penalize models with a large
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Table 1: Maximum likelihood estimates for the complete data set of the Weibull model with a
cure fraction and covariates

Parameter Estimate SE p-value
a 1.6104 0.1066 —
A -1.2877 0.1217 —
Bo 2.2656 0.5811 < 0.0001
Bi -0.1603 0.2247 0.4756
B2 -0.0142 0.0086 0.0977
B3 -0.5392 0.1142 < 0.0001
B 0.2019 0.2315 0.3832
Bs —-0.1509 0.3352 0.6527
Bs —-0.0599 0.0391 0.1253
Statistics Value Statistics Value
AIC 1045.578 BIC 1081.876

number of parameters were used. The used criteria are based on the AIC statistics
(Akaike Information Criterion) and BIC (Bayesian Information Criterion) (see Table 1).

6.2 Bayesian analysis

We consider now a Bayesian analysis for the data considering the following independent
prior (4) with values of the hyperparameters given fora = b = 0,1, u3 = pg, = 0
and O'i = o'[zfj = 100, j = 0,1,...,6. Considering those prior densities we generated
two parallel independent runs of the Gibbs sampler chain with size 40,000 for each
parameter, discarding the first 5,000 iterations. To eliminate the effect of the initial
values and to avoid correlation problems, we considered a spacing of size 10, obtaining

a sample of size 3,500 from each chain. To monitor the convergence of the Gibbs

Table 2: Bayesian estimates. Posterior summary results of fitting the Weibull model with a cure
[fraction and covariates to the data set.

A

Parameters Mean SD 95% credible interval R
a 1.5760 0.1123 (1.353; 1.793) 1.017
A -1.3020 0.1227 (-1.544 ; -1.071) 1.000
Bo 2.2870 0.5962 (1.164 ; 3.508) 1.002
Bi —-0.1506 0.2325 (=0.603 ; 0.299) 1.001
B> -0.0136 0.0086 (=0.031 ; 0.002) 1.001
B3 -0.5700 0.1268 (-0.826 ; —0.339) 1.005
Ba 0.2095 0.2377 (-0.259 ; 0.674) 1.072
Bs -0.1508 0.3446 (-0.839; 0.509) 1.001

B -0.0681 0.0432 (=0.159 ; 0.009) 1.011
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samples, we used the between and within sequence information, following the approach
developed in Gelman and Rubin (1992) to obtain the potential scale reduction, R. In all
cases, these values were close to one, indicating the convergence of the chain. In Table 2
we report posterior summaries for the parameters of the Weibull, mixture model and, in
Figure 2, we have the approximate marginal posterior densities considering 7,000 Gibbs
samples.

In Table 2, we observe that only the covariate nodule (x;) presents significant effect
on lifetime. It is interesting to note that the Bayesian analysis is very similar to the
classical analysis. The computational implementation of the algorithm was developed
in the software package R jointly with package R2Winbug (see Gelman, 2004), and the

programs can be requested from the authors.

o
o ; ©
> © > > °
a - a a °
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o T 1 1 711 o 1 1 11 o Tt 1 1 1
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Figure 2: Approximate marginal posterior densities for parameters of the Weibull model with a cure

fraction and covariates.
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Figure 3: (a) Index plot of d,,,., for 8 (case-weights perturbation). (b) Total local influence on the estimates
6 (case-weights perturbation)

6.3 Local influence analysis

In this section, we will make an analysis of local influence for the data set given in
Ibrahim et. al. (2001), using a cure fraction in the Weibull model.

6.3.1 Case-weights perturbation

By applying the local influence theory developed in Section 3, where case-weight
perturbation is used, value Cq, = 1.5820 was obtained as maximum curvature. In
Figure 3(a), the graph of the eigenvector corresponding to Cq4, 1is presented, and
total influence C; is shown in Figure 3(b). Observations 23 and §176 are the most
distinguished in relation to the others.

6.3.2 Prediction of influence using the response variable perturbation

Next, the influence of perturbations on the observed survival times will be analyzed.
The value for the maximum curvature calculated was Cq, 11.21. Figure 4 (a),
containing the graph for |d,,,| versus the observation index, shows that some points
were distinguished from the others, among which are points §279 and §341. The same
applies to Figure 4(b), which corresponds to total local influence (C;). By analyzing the
data associated with these two observations, it is noted that the highlighted observations
refer to patients with shorter non-censored survival times.

6.3.3 Prediction of influence using the explanatory variable perturbation

The perturbation of vectors for covariates age (x,) and Breslow (x4) are investigated
here. For perturbation of covariable age, value Cq, = 1.0374 was obtained as maximum

curvature, and for the perturbation of covariable Breslow, value Cq, = 1.2864 was
achieved. The respective graphs of |d,..| as well as total local influence C; against the
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explanatory variable perturbation). (d) Generalized leverage for @

observation index are shown in Figures 5(a), 5(b) and 5(c). In these three graphs, we
can see no influential observation.
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6.3.4 Generalized leverage analysis

Figure 5(d) exhibits the index plot of GL(0), using the model given in equation (12). The
generalized leverage graph presented in Figure 5(d) confirms the tendencies observed
under local and total influence methods. Observations with large and small values for t
tend to have a high influence on these own-fitted values. We note outstanding influence
observations #33, #279 and #341. The graph for GL(0) is very similar to the one given
in Figure 4(a).

6.4 Residual analysis

In order to detect possible outlying observations as well as departures from the
assumptions generalized log-gamma regression models with a cure fraction, we present,
in Figure 6(a) and 6(b), the graphs of r), and rp, against the order observations.

By analyzing the martingale residual and modified deviance residual graph, a random
behavior is observed for the data. A tendency to form two groups is also noted;
however, this results from considering the logistic function to introduce covariables.
Such problems are also observed in the logistic regression. For further details, refer to
Hosmer et al. (2003), Mccullagh et al. (1989), among others.

(a) (b)

s et i B L
R :
'

% S0 5 10 125 'so'ws mlz.s e L ] ‘2
L) " L]
e AR | e R
Rl -E..\-' o o LA T
.

5 % B ons B s W 2 M M W W w0 W e
.

Martingal Residual
Deviance Residual

[T TR T N Y
. : e T P KR TCPIRE U
Ao " LTI - L i ! _'l-.,.#..- ..h:."‘"::?rl ‘_El- x.
.\ Jror L . I L R T .

. . [ " " "y M LI

Index Index

Figure 6: (a) Index plot of the martingal residual ry,. (b) Index plot of the modified deviance residual rp,.

6.5 Impact of the detected influential observations

Therefore, diagnostic analysis (local influence, local influence on predictions,
generalized leverage and residual analysis) detected the following four cases §23, §176,
#279 and #341 as potentially influential. In order to reveal the impact of these three
observations on the parameter estimates, we refitted the model under some situations.
First, we individually eliminated each one of these three cases. In Table 4, we have
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Table 3: Relative changes [-RC- in %], parameter estimates and their p-values in parentheses
for the indicated set.

Propping Bo B B Bs Ba Bs Bs
all observations 2.27 -0.16 —-0.01 -0.54 0.20 -0.15 -0.06
(<0.01) (048) (0.10) (<0.01) (0.38) (0.65) (0.13)

(11 [-51  [-3] [(-1] (3] (31 [-1]
#23 2.23 -0.15 -0.01 -0.53 020 -0.15 -0.06
(<0.01) (0.50) (0.11) (<0.01) (0.40) (0.64) (0.12)

(1] (-4 [-2] (-2] (4] =71 [-4]
#176 2.25 -0.17  -0.01 -0.53 0.19 -0.16 —-0.06
(<0.01) (045 (0.10) (<0.01) (0.40) (0.63) (0.13)

(1] (=21 [-2] (-1] 21 [-14]  [0]
#279 2.24 -0.16 -0.01 -0.53 020 -0.13 -0.06
(<0.01) (047) (0.11) (<0.01) (039 (0.70) (0.13)

(11 (111 [-2] [(-1] (9] (8] [-2]
#341 2.29 -0.18 -0.01 -0.54 022 -0.16 -0.06
(<0.01) (0.43) (0.09) (<0.01) (0.34) (0.63) (0.12)

(0] (=31 [-1] [—4] (toy  [=11]  [-5]
#23/4176 2.26 -0.16 -0.01 -0.52 0.18 -0.17 -0.06
(<0.01) (0.48) (0.09) (<0.01) (0.42) (0.61) (0.13)

(1] (=51 [-1] (3] (9] (=91 [-2]
#23 /4279 2.25 -0.15 -0.01 -0.52 0.18 -0.14 -0.06
(<0.01) (049) (0.10) (<0.01) (042) (0.68) (0.12)

[1] [-3] [-3] [-2] [3] [-12] [0]
#23/4341 230  -0.17 -001 -053 021 -0.17 -0.06
(<0.01) (046) (0.08) (<0.01) (0.37) (0.61) (0.12)

(2] [-6]  [-5] [-3] (6] =71 [-4]
#176/4279 222 -0.17 -0.01 -0.52 0.19 -0.14 -0.06
(<0.01) (044) (0.11) (<0.01) (041) (0.67) (0.13)

(0] (=151 [0] [-3] (51 [-14]  [-2]
#176/4341 2.27 -0.18  -0.01 -0.52 0.21 -0.17  -0.06
(<0.01) (041) (0.09) (<0.01) (035 (0.60) (0.12)

[0] [-12]  [-1] [-2] [71 [-6] [-1]
#279/4341 226  -0.18 -001 -053 022 -0.14 -0.06
(<0.01) (042) (0.10) (<0.01) (0.35) (0.67) (0.12)

the relative changes (in percentage) of each parameter estimate, defined by: RCy, =
[(9j -0 (1)) /9]] % 100, and the corresponding p-values, where ] (1) denotes the MLE of
0; after that “set I’ of observations has been removed.
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Table 4: Continuation Relative changes [-RC- in %], parameter estimates and their p-values

in parentheses for the indicated set.

Propping Bo B B Bs Ba Bs Bs
[1] [-1] [-3] [-5] [13] [-3] [-6]
#23/4176/4279 2.24 -0.16 -0.01 -0.51 0.18 -0.15 -0.06
(<0.01) (0.47) (0.100 (<0.01) (0.44) (0.65 (0.13)
[0] [-5] [0] [-3] [0] [-2] [-1]
#23/4279/4341 2.27 -0.17 -0.01 -0.52 0.20 -0.15 -0.06
(<0.01) (045 (0.09) (<0.01) (038 (0.66) (0.12)
[1] [-171  [-3] [-4] [3] [-1] [-2]
#176/4279/4341 2.24 -0.19 -0.01 -0.52 0.21 -0.15 -0.06
(<001) (040) (0.10) (<0.01) (0.36) (0.65) (0.12)
[0] [-10] [-2] [-5] [4] [-5] [-4]
H23/8176/4279/4341 2.26 -0.18 -0.01 -0.51 0.19 -0.16 -0.06
(<0.01) (0.42) (0.100 (<0.01) (039 (0.63) (0.12)

From Tables 3 and 4 we can notice some robust aspects of the maximum likelihood
estimates from the Weibull model with a cure fraction and covariates. In general, the
significance of the parameter estimates does not change after removing set I at the level
of 5 %. A significant change was found when observations 23 and 341 were removed,
from which it was noted that covariate age was significant if an 8% level were taken
into account. Therefore, we did not encounter inferential change after removing the

observations given in the diagnostic graphs.

0,75 1

0,5 1

Survival Distribution Function

0,25 -

® Kaplan-Meier estimate
8 Weibull Mixture Models

With Cure Fraction

3

Time

Figure 7: Theoretical survival curve and Kaplan-Meier curve
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6.6 Quality of fitting

In order to measure quality of fitting, a Kaplan-Meier survival graph and a survival graph
estimated by the Weibull model with a cure fraction were plotted. Good model fitting
was observed.

7 Concluding Remarks

The local influence theory (Cook (1986) and Thomas and Cook (1990)), that of
generalized leverage proposed by Wei et al. (1998) and a study based on martingale
and deviance residual in a survival model with a cure fraction were discussed in this
study by using two estimation approaches: the maximum likelihood and the Bayesian
approaches. The matrices necessary for application of the technique were obtained by
taking into account various types of perturbations to the data elements and to the models.
By applying such results to a data set, indication was found of which observations or set
of observations would sensitively influence the analysis results. This fact is illustrated
in Application (Section 7). By means of a real data set, it was observed that, for some
perturbation schemes, the presence of certain observations could considerably change
the levels of significance of certain variables. The results of the applications indicate
that the local influence technique as well as that of generalized leverage in models with
a cure fraction can be rather useful in the detection of possibly influential points by
admitting two types of estimation methods: maximum likelihood and Bayesian. In
order to measure quality of fitting, martingale and deviance residuals were used, which
showed that the model fitting was correct. The Kaplan-Meier survival function was also
plotted with the survival function for the proposed model, indicating good model fitting.

Appendix A: Matrix of second derivatives I.(y)

Here we derive the necessary formulas to obtain the second order partial derivatives of
the log-likelihood function. After some algebraic manipulations, we obtain

Lo = ——5 —expl-A) Z; #[log(t)]
-y (1 - p[tog(t)] | - log) | pil1 + log(h)} + (1 = pi]
ieC [Pi +(1- pi)hi]2
L, = —expl) ) # log(r)
ieF

» (1 = po)| log(e) || Togt) || pi{1 + og()} + (1 = poh] |

ieC [pi + (1 - p,-)hi]2
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) (xi)pi] log(t)]| Tog(hy) |
{1+ expxB)|[pi + (1 = pioh|

Laﬁ =

L, = -—exp{d} Z t

ieF
1 = pohilog(h)|1 + log(h) + (1 = phi{—log(h)}
+Z< philog(h)| 1+ log(hy) + (1 = p)hi{—log(hy)}]

= [pi + (1= pii||

(x;)pi| — log() |

L (1 +explx!B)|[pi + (1 = pidh|

L/w:

~()pi| 1 + exp(xIB)(pi - 1)
ier (11— pi)2[1 + exp{XiT,B}]2
(2)pil1 - h,-]{[l — exp(x/B}||p: + (1 = pioh] - pi[ 1 - h,-]}

v [1 + exp{x?ﬁ}]z[pi +(1- Pi)hi]2

T
exXp(X:
where hi = eXp{—tfe’l}, pi = P( ,B)

=——/i=1,2,..., dj=1,2,...,p.
1 + exp(x/B) ! nandJ p

Appendix B: Local influence: Case-weight perturbation L(y)

Here, we provide the derivatives of the elements considering the case-weight
perturbation scheme. Then the elements of vector A, take the form

1 .
— +log(t)[1 + log(h;)], if ieF;
(04

Ay =

(1 = po[log(h)][ log(t)|h:

= , if ieC.
[pi + (1 = phi]

The elements of vector A, take the form
1 + log(hy), if ieF;

Ay = (1- ﬁi)[log(ili)]ili

= if ieC.
[pi+ (1 = pphi]
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The elements of vector A, for j = 3,..., p + 2, can be expressed as

_ - (xl])pl —, lf léF,
(1= po[l + expix; B}]
Aji = ~
i)pill —h; .
i) Pil ] , if ieC.

[1 +exp{x/B}][p: + (1 — ph]
where

N J exp(x!B
b= expleiic) p= PP
1 + exp(x!B)

Appendix C: Local influence on predictions: Response perturbation

Here we provide the derivatives of elements A;; of matrix A considering the response
variables perturbation scheme. The elements of vector A; take the form

(St’) + (S ) log(h)(t) ™ [(&) log(t) + 1], if ieF;

(@) log(r)[1 + log(h)] + 1
pi+(1 - pi)ili

Ay =1 (1=p)(S0) log(iz»(r,»)%{

(@)log(h)(1 = p;) 1og(t,<>fa,} .
- — if ieC.
[pi + (1 = p)hy]
the elements of vector A, are expressed as
(S (@) Tog(hy)(t) ™", if ieF;
Ay = N 1+1o il,' I—Qi lo il,- .
(S)(1 = p(@) log<hi)(ti)1{ Ltlosth) (1= ploet )2}, it ieC
pilhi=1]1+1  [pi(h; — 1) + 1]
and the elements of the vector A;, j = 3, ..., p + 2 are expressed as
0, if iefF;
A = | S AE)@ loglhia)
J
1 1-p) —h
{ ——— 4 ( Ap’)f 2 — 2}, if ieC.
[1+exp{xBH][pi + (1 = pddh]  [1 +expix!B}][pi + (1 = pi)hi]
where

. exp(x/p)
pi=

ill- =ex {—t?eﬁ} = —.
b [+ expxB)
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Appendix D: Local influence on predictions: Explanatory variable
perturbation

In this appendix we provide the derivatives of elements A;; of matrix A considering the
explanatory variables perturbation scheme. The elements of vector A are expressed as

0, if ieF;

A=Y B8 )Py log(hy) log(r) { hi +(1—ﬁi>izi<1—fzi)}

= - — - — ieC.
[1 +expix;B}] pi+ (1 =pdhi  [pi+ (A = pph]

the elements of vector A, are expressed as
0, if ieF;

Ai=1 (B)S ) log(h)(h)(py)
[1+ explx/BY[p: + (1 - poh,]*

if ieC.

the elements of vector A;, for j = 3,...,p+ 2 and j # ¢, take the forms

_ xij(,ét)(sx)(ﬁi) if ieF:
[1+ exp{xiT[i}]’ ’
) A R pil = hy)
Ay =1 —x;(D)S DB = hy =
=4 =P DB ){ T oon BT+ AT
_ [1 - exp{xiTB}] } if ieC
[+ (1= poh][1 + expx’B) S '
the elements of vector A, are given by
xith .
-SSP+ ————|, F,
(89| 1+ T exp{xm}]] s ie
(SDPNA = p)*(1 - hy) - A
A, = - 1 +B,xi[1 — exp{x; B}
[pi + (1 = phi] { [ b ]}
(S DBPIA = p[1 = k] .
_ ~ se ieC.
[pi + (1 = pidh,]?

where

.

A 5 exp(x;

h = exp{—tﬁ’ed} pi= P(—,ﬁ)A
1+ exp(x/B)
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Appendix E: Generalized leverage

In this appendix we provide the derivatives of elements D,,D,,Dg, of matrix Dy
considering generalized leverage.
The elements of vector Dy are expressed as

D, = (1 - p)(@) *exp|{ -

| &>
—
=)
(S}
—_—
[sN
|+
_
+
—_—
>
>+
—
~
——

a
B . ]! A a+1
Dy = (x,-j)(p,»)[l + exp{xiﬁ}] exp{ - 5}10g( 3 )
where i
. 80 Lot
Lot = W = _I_J/lt,
L.B,'li
with
£ —exp{)i~![alog(t) + 1], Vi:ieF,
_g’,-_z(l - Pi) exp{ﬁ}iz,-tf"l log(#;)
L, = A
"] {8 - explllar? + & + [log(r)]™)-
(1= ph; exp{Ajarl], Vi:ieC.
) —at* " exp{A}, Vi:ieF;
Ly, = NS ) A n
" e2a-p exp(Ahard ' giar? + (1 - pexpiihy],  Vi:ieC.
B 0, Yi: ieF,
Lﬁ_,l‘, = A_D A Tm1-17 M A a1 N N 2 . .
872 pixij[1 + exp{x; B}] " hiexp{a}as;~" X {gi = (1= ppll - hi]}, Vi:ieC.
where

j b expl , exp{x/ B}
hi =ceX - t;'l X {/l} 5 Ai = Ai + (1 - A,‘)h,‘ and Ai = —_— —.
d P 8= g S exp{x/ B}
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