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Abstract

In this paper, we present case deletion and mean shift outlier models for linear mixed measure-
ment error models using the corrected likelihood of Nakamura (1990). We derive the corrected
score test statistic for outliers detection based on mean shift outlier models. Furthermore, several
case deletion diagnostics are constructed as a tool for influence diagnostics. It is found that they
can be written in terms of studentized residuals of model, error contrast matrix and the inverse of
the response variable covariance matrix. Our influence diagnostics are illustrated through a real
data set.
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1. Introduction

Since all the observations in a data set do not play an equal role in determining

estimators, tests and other statistics, it is important to consider influential points in

data analysis. To identify anomalous observations, various approaches, including case

deletion model (CDM) and mean shift outlier model (MSOM), have been proposed in

the literature (Cook and Weisberg, 1982).

In linear mixed models, CDM, MSOM and related diagnostics are studied more

widely by different authors including, Christensen et al. (1992), Banerjee and Frees

(1997), Zhong and Wei (1999), Haslett and Dillane (2004), Zewotir and Galpin (2005)

and Li et al. (2009).
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Christensen et al. (1992) proposed case deletion diagnostics for both fixed effects and

variance components. Banerjee and Frees (1997) proposed case deletion diagnostics for

both fixed effects and random subject effects in linear longitudinal models. Zhong and

Wei (1999) presented a unified diagnostic method for linear mixed models based upon

the joint likelihood given by Robinson (1991). They showed that the estimates of pa-

rameters in CDM are equivalent to those in MSOM. Haslett and Dillane (2004) proved a

‘delete = replace’ identity in linear models and applied it to deletion diagnostics for esti-

mators of variance components. Zewotir and Galpin (2005) provided routine diagnostic

tools for fixed effects, random effects and variance components, which are computa-

tionally inexpensive. Li et al. (2009) considered subset deletion diagnostics for fixed ef-

fects, random effects and one variance component in varying coefficient mixed models.

As pointed out by Davidian and Giltinan (1995), independent variables in the models

are often measured with non-negligible errors. Hence it is of great interest to study

the measurement error models. On regression diagnostics for linear measurement error

models, only some works has been done by Kelly (1984), Fuller (1987), Wellman and

Gunst (1991), Zhong et al. (2000). Zhong et al. (2000) obtained CDM and MSOM for

linear measurement error models. Also, they derived several diagnostics via CDM.

In linear mixed measurement error models the only work is due to Fung et al. (2003).

However, in this paper, the corrected score function and the other relevant relations

are not derived correctly. This problem also exists in diagnostic methods such as case

deletion diagnostic on fixed effects. Furthermore, some of the relations in Fung et al.

(2003) are somewhat different with Zhong et al. (2002).

Since there is no outstanding work in diagnostic methods for linear mixed mea-

surement error models, in this paper, we concentrate on diagnostic methods for these

models upon the corrected score function of Nakamura (1990). In Section 2, we present

the model and the corrected score method for estimation of parameters. By using the

corrected score method, Section 3 deals with two diagnostic models: CDM and MSOM.

Besides, since MSOM is efficient to detect outliers, we construct a corrected score test

for detecting outliers. In Section 4, we develop case deletion diagnostics for detecting

influential points in linear mixed measurement error models. The given diagnostics are

similar to diagnostics in linear mixed models and so are easy to compute. An influ-

ence analysis of a data set on hedonic housing-prices is given to illustrate the results in

Section 5. Concluding remarks are given in Section 6.

2. Model definition and estimation

Consider the following linear mixed model with measurement errors in fixed effects:

y = Zβ+U b+ ǫ,

X = Z+∆.
(1)
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In this model β is a p× 1 vector of unobservable parameters, which are called fixed

effects; Z and U = [U1 |U2| . . . |Um] are n × p and n × q matrices of “regressors”,

respectively, where Ui is an n× qi known design matrix of the random effect factor

i; bT =
(

bT
1 ,bT

2 , . . . ,bT
m

)

, where bi is a qi × 1 vector of unobservable random effects

from N
(

0,σ2
i I
)

, i = 1, . . . ,m; ǫ is an n× 1 vector of unobservable random errors from

N
(

0,σ2I
)

. The variances σ2 and σ2
i , i = 1, . . . ,m are called variance components. X is

the observed value of Z with the measurement error ∆, where ∆ is an n× p random

matrix from N (0,I⊗ΛΛΛ). We assume that bi,ǫ and ∆ are mutually independent. One

may also write b ∼ N
(

0,σ2
Σ
)

, where Σ is a block diagonal matrix with the ith block

being γiI, for γi = σ
2
i

/

σ2, so that y has a multivariate normal distribution with E (y) =

Zβ and Var(y) = σ2V, in which V = I+UΣUT = I+∑
m
i=1γiUiU

T
i . The conditional

distribution of b|y is b|y ∼ N
(

ΣUTV−1 (y−Zβ) ,σ2
ΣT
)

where T =
(

I+UTUΣ
)−1

.

The log-likelihood of y is given by

l
(

β,σ2,γ;Z,y
)

=−n

2
log
(

2πσ2
)

− 1

2
log(|V|)− 1

2σ2

[

(y−Zβ)T
V−1 (y−Zβ)

]

,

where
(

σ2,γ
)

=
(

σ2,γ1, . . . ,γm

)

belongs toΩ =
{(

σ2,γ
)

: σ2 > 0,γi ≥ 0 (i = 1, . . . ,m)
}

.

Also, the conditional log-likelihood of b|y is given by

lb
(

β,σ2,γ;Z,y
)

=−q

2
log
(

2πσ2
)

− 1

2
log(|ΣT|)

− 1

2σ2

{

[

b−ΣUTV−1 (y−Zβ)
]T
(ΣT)−1

[

b−ΣUTV−1 (y−Zβ)
]

}

.

Suppose that as in the model (1), the covariate Z is measured with error and the

correlated structure arises from the random effects. If we simply replace Z by X, then

the estimates obtained from the score functions are not consistent in general. Various

ways are proposed in dealing with measurement error models. In this paper, we use

corrected score method proposed by Nakamura (1990) that is a common approach

in measurement error models (see also Nakamura, 1992; Hanfelt and Liang, 1997;

Gimenz and Bolfarine, 1997 and Zhong et al., 2000). In this method, we have to

find a corrected score function whose expectation with respect to the measurement

error distribution coincides with the usual score function based on the unknown true

independent variables. For the model (1), Zhong et al. (2002) derived the corrected score

estimates of fixed and random effects.

Let E∗ denotes the conditional mean with respect to X given y. The corrected log-

likelihood l∗
(

β,σ2,γ;X,y
)

for our model should satisfy

E∗ [∂ l∗
(

β,σ2,γ;X,y
)

/∂ β
]

= ∂ l
(

β,σ2,γ;Z,y
)

/∂ β,

E∗ [∂ l∗1
(

σ2,γ;X,y
)

/∂σ2
]

= ∂ l1
(

σ2,γ;Z,y
)

/∂σ2
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and

E∗ [∂ l∗1
(

σ2,γ;X,y
)

/∂γi

]

= ∂ l1
(

σ2,γ;Z,y
)

/∂γi, i = 1, . . . ,m,

where l1
(

σ2,γ;Z,y
)

= l
(

β̂(γ) ,σ2,γ;Z,y
)

, in which β̂= β̂(γ) is maximum likelihood

estimate of β and l∗1
(

σ2,γ;X,y
)

= l∗
(

β̂(γ) ,σ2,γ;X,y
)

, in which β̂ = β̂(γ) is the

solution of the equation ∂ l∗
(

β,σ2,γ;X,y
)

/∂ β= 0. Also, the conditional corrected log-

likelihood l∗b
(

β,σ2,γ;X,y
)

should satisfy

E∗ [∂ l∗b
(

β,σ2,γ;X,y
)

/∂b
]

= ∂ lb
(

β,σ2,γ;Z,y
)

/∂b.

The following equation is useful to find such l∗ and l∗b,

E∗ (XTAX
)

= ZTAZ+ tr(A)ΛΛΛ.

Given ΛΛΛ, l∗ and l∗b are obtained as

l∗
(

β,σ2,γ;X,y
)

=−n

2
log
(

2πσ2
)

− 1

2
log(|V|)

− 1

2σ2

{

(y−Xβ)T
V−1 (y−Xβ)− tr

(

V−1
)

βTΛΛΛβ
}

and

l∗b
(

β,σ2,γ;X,y
)

=−q

2
log
(

2πσ2
)

− 1

2
log(|ΣT|)

− 1

2σ2

{

[

b−ΣUTV−1 (y−Xβ)
]T
(ΣT)−1

[

b−ΣUTV−1 (y−Xβ)
]

−tr
(

I−V−1
)

βT
ΛΛΛβ
}

.

If the γi’s (and hence V) are known, by solving the equations ∂ l∗
(

β,σ2,γ;X,y
)

/∂ β=

0, ∂ l∗1
(

σ2,γ;X,y
)

/∂σ2 = 0 and ∂ l∗b
(

β,σ2,γ;X,y
)

/∂b = 0, the corrected score esti-

mates of β, σ2 and b, respectively, are given by (See Zhong et al., 2002 and Zare et al.,

2011 for more details)

β̂=
(

XTV−1X− tr
(

V−1
)

ΛΛΛ
)−1

XTV−1y,

σ̂2 =
1

n

[

(

y−Xβ̂
)T

V−1
(

y−Xβ̂
)

− tr
(

V−1
)

β̂
T
ΛΛΛβ̂

]

,

b̃ =ΣUTV−1
(

y−Xβ̂
)

.
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If the γi’s are unknown, the corrected score estimates are substituted back into Σ to

obtain β̂, σ̂2 and b̃. For the estimation of γi’s, we can use the corrected score estimates

of σ2
1, . . . ,σ2

m that are given by (Zare et al., 2011)

σ̂2
i =

1

qi − tr(Tii)

[

b̃
T

i b̃i − tr
(

D̂
T

i D̂i

)

β̂
T
ΛΛΛβ̂
]

, i = 1, . . . ,m,

where Ti j is i jth block of matrix T =







T11 · · · T1m

...
. . .

...

Tm1 · · · Tmm






, D̂i = γ̂iU

T
i V−1 =

(

σ̂2
i /σ̂

2
)

UT
i V−1 and b̃i = D̂i

(

y−Xβ̂
)

.

The above results show that we must use an iterative numerical procedure to obtain

the corrected score estimates of parameters. We use the iterative algorithm given in Zare

et al. (2011). Also, Zare et al. (2011) showed the corrected score estimates of γi’s are

consistent. In continuing, we assume that the γi’s are known.

For notational simplicity, A(i) denotes an n×m matrix A with ith row removed, A[i]

denotes a matrix A with the ith row and column removed, aT
i denotes the ith row of A

and ai j denotes the i jth element of A. Similarly, a(i) denotes vector a with the ith element

removed and ai denotes the ith element of a. Without loss of generality, we partition the

matrices as if the ith deleted case is the first row; i.e. i = 1. Then

X =

[

xT
i

X(i)

]

, Z =

[

zT
i

Z(i)

]

, y =

[

yi

y(i)

]

and C = V−1 =

[

cii cT
i(i)

ci(i) V−1
[i] + ci(i)c

T
i(i)/cii

]

.

3. Mean shift outlier and case deletion model

In regression diagnostics, there are two commonly used models: CDM amd MSOM

(Cook and Weisberg, 1982). Each of models has its own advantage in practice. CDM’s

are used to obtain case deletion diagnostics for detecting influential observations.

MSOM’s are used for detecting outlier observations. It is well known that in linear

(mixed) models maximum likelihood estimates of parameters in CDM and MSOM are

equal. In linear measurement error models, the estimates are approximately equal.

3.1. Mean shift outlier model

A commonly used diagnostic model is MSOM (Cook and Weisberg, 1982). MSOM can

be represented as

y j = zT
j β+uT

j b+ ǫ j for j 6= i, j = 1, . . . ,n, yi = zT
i β+uT

i b+τ+ ǫi,

xT
k = zT

k +δ
T
k for k = 1, . . . ,n, (2)
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where τ is an extra parameter to indicate the presence of an outlier (Cook and Weisberg,

1982). Obviously, if value of τ is nonzero, then it no longer comes from the original

model, and so ith case may be an outlier. An outlier test can be formulated as a test of

the null hypothesis that τ = 0. The corrected likelihood estimates of β, σ2, τ, and b in

(2) are denoted by β̂mi, σ̂
2
mi, τ̂mi and b̃mi, respectively.

Theorem 1 For model (2), we have

β̂mi = β̂−
[

XTV−1X− tr
(

V−1
)

ΛΛΛ
]−1

XTci

ν̂i

rii

,

τ̂mi =
ν̂i

rii

, σ̂2
mi =

n− t2
i

(

1+ β̂
T
ΛΛΛβ̂/σ̂2

)

n
σ̂2 and b̃mi = b̃−ΣUTri

ν̂i

rii

,

where cT
i and rT

i are ith rows of V−1 and R=V−1−V−1X
[

XTV−1X− tr
(

V−1
)

ΛΛΛ
]−1

XT

V−1, respectively, cii and rii are the ith diagonal elements of V−1 and R, ν̂i = yi−xT
i β̂−

uT
i b̃ is ith residual of model and ti = ν̂i/(σ̂ν

√
rii) is ith studentized residual of model, in

which σ̂2
ν = σ̂

2 + β̂
T
ΛΛΛβ̂.

Theorem 2 For MSOM, the score test statistic for the hypothesis H0 : τ= 0 is given by

SCi =
ν̂2

i

σ̂2rii

= t2
i

(

1+ β̂
T
ΛΛΛβ̂/σ̂2

)

.

This theorem shows that score statistic SCi is a multiple of the square of studentized

residual of model that is an adequate diagnostic statistic as often used in linear regression

diagnostics.

3.2. Case deletion model

As mentioned, CDM is the fundamental basis for constructing effective diagnostics.

CDM can be represented as

y j = zT
j β+uT

j b+ ǫ j, xT
j = zT

j +δ
T
j for j 6= i, j = 1, . . . ,n.

Let β̂(i), σ̂
2
(i) and b̃(i) denote the estimates of β, σ2 and b when the ith case is deleted,

respectively.

Theorem 3 For model (3), we have

β̂(i) ≈ β̂−
[

XTV−1X− tr
(

V−1
)

ΛΛΛ
]−1

XTci

ν̂i

rii

,
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σ̂2
(i) ≈

n

n−1
σ̂2 − ν̂2

i

(n−1)rii

=
n− t

2
i

(

1+ β̂
T

ΛΛΛβ̂/σ̂2
)

n−1
σ̂2,

b̃(i) ≈ b̃−ΣUTri

ν̂i

rii

.

Comparing results of the theorems 1 and 3, it is obvious that the estimates of the

parameters are approximately the same. In the following section we derive different

diagnostic measures based on CDM.

4. Influence diagnostics

It is well known that results from an analysis can be substantially influenced by one or a

few observations; that is, all the observations have not equal effect in statistical models.

Case deletion diagnostics are the usual methods to measure the influence of individual

observations in the statistical models with dropping the observation from data set and

computing a convenient norm of the change in the parameters. Let the corrected Fisher

information matrix of y for β be I∗(β), then

I∗(β) =
1

σ2

[

XTV−1X− tr
(

V−1
)

ΛΛΛ
]

.

Also, the corrected Fisher information matrix of y for b is

I∗(b) =
1

σ2

(

UTU+Σ
−1
)

.

4.1. Analogue of generalized Cook’s distance

4.1.1. Analogue of generalized Cook’s distance for fixed effects

The generalized Cook (1977) distance is the norm of β̂− β̂(i) with respect to certain

weight matrix M > 0, i.e.

CDi (β) =
(

β̂− β̂(i)
)T

M
(

β̂− β̂(i)
)

.

Choosing M = Î
∗
(β) = σ̂−2

[

XTV−1X− tr
(

V−1
)

ΛΛΛ
]

, where Î
∗
(β) is estimate of I∗(β),

yields

CDi (β) =

(

β̂− β̂(i)
)T

[

XTV−1X− tr
(

V−1
)

ΛΛΛ
]

(

β̂− β̂(i)
)

σ̂2
.
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Since

β̂(i) ≈ β̂−
[

XTV−1X− tr
(

V−1
)

ΛΛΛ
]−1

XTci

ν̂i

rii

,

we can get, approximately,

CDi (β) =
(cii − rii) ν̂

2
i

σ̂2r2
ii

=
cii − rii

rii

t2
i

(

1+ β̂
T
ΛΛΛβ̂/σ̂2

)

.

Let dk be a p-vector with 1 at the kth position and zero elsewhere, then β̂k = dT
k β̂ has the

standard error sk and t-value tk = β̂k/sk, where s2
k = σ̂

2dT
k

[

XTV−1X− tr
(

V−1
)

ΛΛΛ
]−1

dk.

The joint 100(1−α)% confidence region for parameter β is

{

β :
(

β̂−β
)T
[

XTV−1X− tr
(

V−1
)

ΛΛΛ
]

(

β̂−β
)

≤ pσ̂2F (p,n− p,α)

}

,

where F (p,n− p,α) denotes the upper α percentile of the Fisher’s distribution with

p and n − p degrees of freedom. Suppose that CDi (β) ≃ pF (p,n− p,α), then the

removal of the ith case moves corrected score estimate to the edge of the 100(1−α)%

confidence region. Such a situation may be cause for concern and so more attention

should be paid to that case. Usually, one would like each β̂(i) to stay well within a 90%,

say, confidence region. Then case i can be considered a highly influential point if

CDi (β)> pF (p,n− p,0.1) .

Based on Cook (1977), we have CDi (βk) = t2
i

(

1+ β̂
T
ΛΛΛβ̂/σ̂2

)

G2
i

(

dT
k

)

, where, for any

q′× p matrix A of rank q′, Gi (A) is defined as

Gi (A) =
1√
rii

[

A
(

XTV−1X− tr
(

V−1
)

ΛΛΛ
)−1

AT
]−1/2

A
[

XTV−1X− tr
(

V−1
)

ΛΛΛ
]−1

XTci.

As similar, case i can be considered a highly influential point if CDi (βk)>F (1,n−1,0.1),

since this case, if deleted, would move the estimate of β̂k to the edge of the 90%

confidenc region. Rio (1988) argued that G2
i

(

uT
)

can be used to measure the influence

of case i on the precision of the estimation of uTβ. Therefore, based on Rio (1988), ith

case is said to have high influential on the estimate of β̂k if G2
i

(

dT
k

)

is sufficiently large.

Let A denote a q′ × p rank q′ matrix and let Ψ = Aβ denote the combinations of

interest. A generalized measure of the importance of the ith case is defined as

CDi (Ψ) =

(

Ψ̂(i)− Ψ̂
)T
[

A
(

XTV−1X− tr
(

V−1
)

ΛΛΛ
)−1

AT
]−1
(

Ψ̂(i)− Ψ̂
)

q′σ̂2
,
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where Ψ̂(i) = Aβ̂(i) and Ψ̂ = Aβ̂. Since

Ψ̂(i)− Ψ̂ ≈ A
[

XTV−1X− tr
(

V−1
)

ΛΛΛ
]−1

XTci

ν̂i

rii

,

we can get, approximately,

CDi (Ψ) =
t2
i

(

1+ β̂
T
ΛΛΛβ̂/σ̂2

)

q′
GT

i (A)Gi (A) .

To obtain the levels of significance the values of this generalized measure should be

compared to the probability points of the central Fisher distribution with q′ and n− q′

degrees of freedom.

4.1.2. Analogue of generalized Cook’s distance for random effects

The proposed diagnostic measure examines the squared distance from the complete

data predictor of the random effects to ith case deleted predictor of the random effects,

relative to M = Î
∗
(b) = σ̂−2

(

UTU+Σ
−1
)

. This is the generalized Cook distance and

can be written as

CDi (b) =
(

b̃− b̃(i)

)T
M
(

b̃− b̃(i)

)

=

(

b̃− b̃(i)

)T (
UTU+Σ

−1
)(

b̃− b̃(i)

)

σ̂2
.

Since b̃(i) ≈ b̃−ΣUTri

ν̂i

rii

, we can get, approximately,

CDi (b) = rT
i (V− I)Vri

ν̂2
i

σ̂2r2
ii

= rT
i (V− I)Vri

t2
i

(

1+ β̂
T
ΛΛΛβ̂/σ̂2

)

rii

. (4)

Also, from (4) we have

CDi (b j) = rT
i U jT

−1
j j UT

j ri

γ j t
2
i

(

1+ β̂
T
ΛΛΛβ̂/σ̂2

)

rii

, for j = 1, . . . ,m.
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4.2. Analogue of Welsch’s distance

Welsch (1982) has suggested using Welsch’s distance as a diagnostic tool and, for

n > 15, using 3
√

p as a cutoff point for linear models. Welsch’s distance gives more

emphasize to high leverage points. It has similar rationale as Cook’s distance Essential

difference between these two methods is in the choice of scale. (Chatterjee and Hadi,

1986). For the fixed effects it is given as

Wi (β) =






(n−1)

(

β̂− β̂(i)
)T(

XT
(i)V

−1
[i] X(i)− tr

(

V−1
[i]

)

ΛΛΛ

)(

β̂− β̂(i)
)

σ̂2
(i)







1/2

≈
[

(n−1)
cii − rii

ciiriiσ̂
2
(i)

]1/2

|ν̂i| .

Welsch (1982) suggested using Wi as a diagnostic tool. The analogue of Welsch’s

distance for random effects, is

Wi (b) =



(n−1)

(

b̃− b̃(i)

)T
(

UT
(i)U(i)+Σ

−1
)

(

b̃− b̃(i)

)

σ̂2
(i)





1/2

≈
[

(n−1)
rT

i (V− I)Vri −
(

rii − cT
i ri

)2

r2
iiσ̂

2
(i)

]1/2

|ν̂i| .

4.3. Analogue of the likelihood distance

Another popular measure to assess the influence of the ith case on corrected score

estimate is the likelihood distance (Cook and Weisberg, 1982). Let l∗
(

β̂, σ̂2;X,y
)

and

l∗
(

β̂(i), σ̂
2;X,y

)

be the corrected log-likelihood evaluated at
(

β̂, σ̂2
)

and
(

β̂(i), σ̂
2
)

,

respectively. A measure of the influence of the ith case on β̂ can be derived based on

the distance between l∗
(

β̂, σ̂2;X,y
)

and l∗
(

β̂(i), σ̂
2;X,y

)

. The likelihood distance is

defined as

LDi (β) = 2
[

l∗
(

β̂, σ̂2;X,y
)

− l∗
(

β̂(i), σ̂
2;X,y

)]

.

Taylor expansion of l∗
(

β̂(i), σ̂
2;X,y

)

at β̂ gives

LDi (β) = 2















∂ l∗
(

β,σ2;X,y
)

∂ β

∣

∣

∣

∣

∣

β=β̂,σ2=σ̂2





T
(

β̂− β̂(i)
)
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+
1

2

(

β̂− β̂(i)
)T



−∂ 2l∗
(

β,σ2;X,y
)

∂ β∂βT

∣

∣

∣

∣

∣

β= β̂,σ2= σ̂2





(

β̂− β̂(i)
)







=

(

β̂− β̂(i)
)T
[

XTV−1X− tr
(

V−1
)

ΛΛΛ
]

(

β̂− β̂(i)
)

σ̂2
.

This result is exact because the third derivative is zero. As seen, we have LDi (β) =

CDi (β) As before, it can be shown that LDi (b) =CDi (b).

4.4. Analogue of the corrected Fisher information ratio

4.4.1. Analogue of corrected Fisher information ratio for fixed effects

As suggested by Belsley et al. (1980), the influence of the ith case on corrected Fisher

information matrix for β can be measured by comparing the ratio of

∣

∣

∣Î
∗
(β)
∣

∣

∣ to

∣

∣

∣Î
∗
ci (β)

∣

∣

∣;

that is,

CFIR1i (β) =

∣

∣

∣−∂ 2l∗
(

β,σ2;X,y
)

/∂ β∂ βT
∣

∣

∣

σ2= σ̂2
∣

∣

∣
−∂ 2l∗ci (β,σ2;X,y)/∂ β∂βT

∣

∣

∣
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(i)

=

∣

∣σ̂−2
[

XTV−1X− tr
(

V−1
)
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]∣

∣

∣

∣

∣σ̂−2
(i)

[

XT
(i)V

−1
[i] X(i)− tr

(

V−1
[i]

)

ΛΛΛ

]∣

∣

∣

=

(

σ̂2
(i)

σ̂2

)p ∣

∣XTV−1X− tr
(

V−1
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ΛΛΛ
∣

∣

∣

∣

∣
XT

(i)V
−1
[i] X(i)− tr

(

V−1
[i]

)

ΛΛΛ

∣

∣

∣

.

We can get, approximately,

CFIR1i (β) =





n− t2
i

(

1+ β̂
T
ΛΛΛβ̂/σ̂2

)

n−1





p

cii

rii

.

As this is close to 1 if the point is not influential, it seems sensible to use the relative

measure |CFIR1i (β)−1| as a criterion for assessing the influence of the ith case on

I∗(β). The larger the statistic |CFIR1i (β)−1|, the higher the influence of the ith case.

If one uses the trace instead of the determinant, the corrected fisher information ratio

becomes
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CFIR2i (β) = tr

{

[

−∂ 2l∗
(
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)

/∂ β∂βT
]∣

∣

∣
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[

−∂ 2l∗ci

(

β,σ2;X,y
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/∂ β∂βT
]−1
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}
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(
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T
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)

n−1

(

cii

rii

+ p−1

)

.

If removing the ith case does not change the trace, CFIR2i (β) will be close to p and

so we could use the relative measure |CFIR2i (β)− p| as a criterion for assessing the

influence of the ith case on the corrected Fisher information for fixed effects.

4.4.2. Analogue of corrected Fisher information ratio for random effects

As similar, the influence of the ith case on corrected Fisher information matrix for b can

be measured by comparing the ratio of

∣

∣

∣Î
∗
(b)
∣

∣
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∣

∣

∣Î
∗
ci (b)

∣

∣

∣; that is,
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.

We can get, approximately,

CFIR1i (b) =





n− t2
i

(

1+ β̂
T
ΛΛΛβ̂/σ̂2

)

n−1





q

1

cii

.

Also, if one uses the trace instead of the determinant, the corrected fisher information

ratio becomes

CFIR2i (b) = tr

{

[

−∂ 2l∗b
(

β,σ2;X,y
)

/∂b∂bT
]∣

∣

σ2= σ̂2

[
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(
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)
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∣
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}

≈
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(
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T
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)
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(
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ii +q−1

)

.
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If removing the ith case does not change the trace, CFIR2i (b) will be close to q.

Hence, we could use the relative measure |CFIR2i (b)−q| as a criterion for assessing

the influence of the ith case on the corrected Fisher information for random effects The

ith observation is influential observation if |CFIR2i (b)−q| is sufficiently large.

5. Example

Diagnostic measures developed in the previous sections are applied to analyse a set of

real data which is known as the Boston Housing data set. This data set was the basis for

a 1978 paper by Harrison and Rubinfeld, which discussed approaches for using housing

market data to estimate the willingness to pay for clean air. The authors employed a

hedonic price model, based on the premise that the price of the property is determined

by structural attributes (such as size, age, condition) as well as neighborhood attributes

(such as crime rate, accessibility, environmental factors). This type of approach is often

used to quantify the effects of environmental factors that affect the price of a property. A

description of this data set can be found in Harrison and Rubinfeld (1978) and Belsley

et al. (1980).

Zhong et al. (2002) considered this data set and used the data of n= 132 census tracts

within the 15 districts of the Boston city (as a part of 506 observations on census tracts in

the Boston Standard Metropolitan Statistical Area (SMSA) in 1970). They followed the

regression model of Harrison and Rubinfeld (1978). However, the census tracts within

districts are taken as repeated measurements. All independent variables can be measured

precisely except the pollution variable NOXSQ which is taken to have measurement

errors. Therefore, a linear mixed measurement error model was employed.

Now, we consider the same data set and derive different diagnostic measures for

linear mixed measurement error model given in previous section. Figures 1-3 give the

index plot of the diagnostic measures for fixed effects and Figures 4-6 give the index

plot of the diagnostic measures for random effects, respectively. Based on generalized

Cook’s distance, a glance at Figures 1 and 4 shows that cases 9 and 15 have more

influence on fixed effect and cases 9, 16 and 36 have more influence on random effects.

The plots for Wi in Figures 2 and 5, respectively, for fixed and random effects have

almost identical behavior as CDi

Table 1 gives the parameter estimates from corrected score method with the full data

and with only case 9 deleted. As seen, after deleting case 9, the NOXSQ variable does

not have any significant effect. The RM, AGE and CHAS variables, in each case, do

not have any significant effects but after deleting case 9 their signs have been changed.

Figure 3 show that case 36 is the most influential point on corrected Fisher information

for fixed effects, while Figure 6 indicate that this case is the most influential point on

corrected Fisher information for random effects.
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Figure 1: Index plot of CDi (β). Figure 2: Index plot of Wi (β).

Figure 3: Index plot of |CFIR2i (β)− p|. Figure 4: Index plot of CDi (b).

Figure 5: Index plot of Wi (b). Figure 6: Index plot of |CFIR2i (b)−q|.
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Figure 7: Index plot of SCi. Figure 8: Scatter plot of rii versus ν̂2
i /ν̂

Tν̂.

Table 1: Corrected score estimates for the hedonic housing price data of Boston city. The t-ratios are in

parentheses.

Variable Full data Case 9 deleted % change

Intercept 9.07 (28.72) 8.90 (28.11) 001.9

RM −1.4×10−3 (−0.57) 3.6×10−3 (1.26) 352.2

AGE 7.6×10−4 (0.4) −3.7×10−4 (−0.2) 150.0

DIS 8.8×10−2 (0.59) 1.8×10−1 (1.16) 101.2

B 4.6×10−1 (2.95) 5.1×10−1 (3.43) 012.2

LSTAT −5.3×10−1 (−8.65) −4.8×10−1 (−7.77) 010.5

CRIM −7.3×10−3 (−5.36) −6.6×10−3 (−5.00) 009.7

CHAS −3.0×10−2 (−0.33) 4.6×10−3 (0.05) 115.5

NOXSQ −1.0×10−2 (−2.34) −7.8×10−3 (−1.74) 024.1

σ2
1 4.8×10−3 6.8×10−3 041.7

σ2 2.8×10−3 2.5×10−3 010.7

Table 2: Corrected score estimates for the hedonic housing price data of Boston city after deleting pair

cases {9, 15} and {9, 16}. The t-ratios are in parentheses.

Variable Pair case {9, 15} deleted % change Pair case {9, 16} deleted % change

Intercept 8.76 (28.05) 003.3 8.86 (28.97) 002.3

RM 3.7×10−3 (1.34) 358.1 2.3×10−3 (0.81) 264.3

AGE −1.0×10−4 (−0.06) 113.7 −3.4×10−4 (−0.19) 144.7

DIS 2.1×10−1 (1.4) 144.6 1.4×10−1 (0.98) 059.1

B 4.9×10−1 (3.41) 007.6 4.6×10−1 (3.12) 000.0

LSTAT −5.2×10−1 (−8.35) 002.3 −5.1×10−1 (−8.56) 003.8

CRIM −6.5×10−3 (−5.11) 011.6 −6.9×10−3 (−5.20) 005.5

CHAS 5.1×10−2 (0.60) 270.5 1.1×10−1 (1.14) 466.7

NOXSQ −7.5×10−3 (−1.7) 027.3 −6.8×10−3 (−1.59) 032.0

σ2
1 8.4×10−3 075.0 4.3×10−3 010.4

σ2 2.3×10−3 017.9 2.6×10−3 007.1
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Table 2 gives the corrected score estimates after deleting pairs of cases {9, 15}and

{9, 16}from data set. Deleting these pairs have almost the same effect with deleting case

9 on parameters of model. The only difference is that deleting cases {9, 15}has more

influence on CHAS variable and σ2
1 while deleting cases {9, 16}has more influence on

CHAS variable. Table 3 indicates the maximum percentage of changes in determinant

of corrected Fisher information after deleting case 36. Finally, Figures 7 and 8 indicate

that case 36 is also an outlier observation (see Zewotir and Galpin, 2007 for details about

plot of Figure 8).

Table 3: The determinant of the corrected Fisher information (DCFI) for the hedonic housing price data

of Boston city.

DCFI Full data Case 36 deleted % change

Fixed effects 6.08×10+31 1.17×10+32 091.7

Random effects 4.52×10+36 1.49×10+37 229.8

6. Concluding remarks

We have presented case deletion and mean shift outlier models for linear mixed measure-

ment error models that appear to be useful and can play important role in data analysis.

Also, based on the corrected likelihood, we obtained case deletion diagnostics for de-

tecting influential observations in linear mixed measurement error models. All the diag-

nostic measures are similar to diagnostics in linear mixed models. They are functions of

studentized residuals of model, error contrast matrix (R) and the inverse of the response

variable covariance matrix (C). Although no formal cutoff points are presented for these

measures, it appears that relative comparisons such as ranking or simple index plots are

a promising and practical approach to pinpoint influential observations. Here, the results

obtained with the assumption that the γi’s are known. In practice, we do not know the

γi’s. So, the corrected score estimates of the γi’s are used and the results are useful as

an approximation. In this paper, we fitted a linear mixed model with measurement error

in fixed effects (and not in random effects) by specifying the covariance structure of b,

ǫ and ∆∆∆. Here we have assumed that Σ and ΛΛΛ are known and Σ has diagonal structure

with the ith block being γi I. However, if random effects are also measured with errors

and Σ and ΛΛΛ are unknown, extending our diagnostics is an area of future research.
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Appendix

Proof of Theorem 1:

It follows from (2) that the corrected log-likelihood of y and the conditional corrected

log-likelihood of b|y for MSOM, respectively, are given by

l∗mi

(

β,σ2;X,y
)

=−n

2
log
(

2πσ2
)

− 1

2
log(|V|)− 1

2σ2

{

(

y(i)−X(i)β
)T(

V−1
[i]

+ci(i)c
T
i(i)/cii

)(

y(i)−X(i)β
)

+ cii

(

yi −xT
i β−τ

)2

+2
(

yi −xT
i β−τ

)

cT
i(i)

(

y(i)−X(i)β
)

− tr
(

V−1
)

βTΛΛΛβ

}

, (5)

l∗bmi

(

β,σ2;X,y
)

=−q

2
log
(

2πσ2
)

− 1

2
log(|ΣT|)− 1

2σ2

{

bT (ΣT)−1
b

−2bT (ΣT)−1
Σ

[

cii

(

yi −xT
i β−τ

)

ui +
(

yi −xT
i β−τ
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UT
(i)ci(i)

+ui c
T
i(i)

(

y(i)−X(i)β
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+UT
(i)

(

V−1
[i] + ci(i)c

T
i(i)/cii

)(

y(i)−X(i)β
)

+F (β,τ)
]

}

(6)

where

F (β,τ) =
(

y(i)−X(i)β
)T [

I−V−1
[i] − ci(i)c

T
i(i)/cii

](

y(i)−X(i)β
)

+(1− cii)
(

yi −xT
i β−τ

)2 −2
(

yi −xT
i β−τ

)

cT
i(i)

(

y(i)−X(i)β
)

− tr
(

I−V−1
)

βTΛΛΛβ

The corrected likelihood estimates of β̂mi, σ̂
2
mi, τ̂mi and b̃mi, are derived with differenti-

ating (5) with respect to β, σ2 and τ and (6) with respect to b.

Proof of Theorem 2:

Since corrected score estimate is asymptotically normal, the score test can be used (Cox

and Hinkley, 1974). Let the corrected Fisher information matrix of y for β and τ be

J(β ,τ), then the score statistic under H0 : τ= 0 is

SCi =

[

∂ l∗mi

(

β,σ2;X,y
)

∂τ

]T

Jττ

[

∂ l∗mi

(

β,σ2;X,y
)

∂τ

]

∣

∣

∣

∣

∣

∣

(β̂,σ̂2)

,

where Jττ is the lower right corner of J−1 (β,τ). It is easily seen that under H0 : τ= 0
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∂ l∗mi
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)
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,
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T
ΛΛΛβ̂/σ̂2

)

.

Proof of Theorem 3:

It follows from (5) that the corrected log-likelihood of y and the conditional corrected

log-likelihood of b|y for CDM, respectively, are given by

l∗ci
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The corrected score estimates of β, σ2 and b will be obtained with differentiating (7)

with respect to β and σ2 and (8) with respect to b. Then we have
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(i) =

[

y(i)−X(i)β̂(i)

]T

V−1
[i]

[

y(i)−X(i)β̂(i)

]

− tr
(

V−1
[i]

)

β̂
T

(i)ΛΛΛβ̂(i)

= yT
(i)V

−1
[i] y(i)− β̂

T

(i)X
T
(i)V

−1
[i] y(i)

= yTV−1y−yTci c
T
i y/cii

−
[

β̂−
(

XTV−1X− tr
(

V−1
)

ΛΛΛ
)−1

XTci

ν̂i

rii

+Op

(

n−1
)

]T
(

XTV−1y

−XTci c
T
i y/cii

)

= nσ̂2 −yTci c
T
i y/cii + cT

i X
[

XTV−1X− tr
(

V−1
)

ΛΛΛ
]−1

XTV−1y
ν̂i

rii

− cT
i X
[

XTV−1X− tr
(

V−1
)

ΛΛΛ
]−1

XTci c
T
i y
ν̂i

ciirii

+ β̂
T
XTci c

T
i y/cii

+Op (1) = nσ̂2 − ν̂
2
i

rii

+Op (1) ,

and hence, σ̂2
(i) ≈

n− t2
i

(

1+ β̂
T
ΛΛΛβ̂/σ̂2

)

n−1
σ̂2,

b̃(i) =ΣUT
(i)V

−1
[i]

(

y(i)−X(i)β̂(i)

)

≈ b̃−ΣUTri

ν̂i

rii

.

References

Banerjee, M. and Frees, E. W. (1997). Influence diagnostics for linear longitudinal models. Journal of the

American Statistical Association, 92, 999–1005.

Belsley, D. A., Kuh, E. and Welsch, R. E. (1980). Regression Diagnostics: Identifying Influential Data and

Sources of Collinearity. Wiley, New York.

Chatterjee, S. and Hadi, A. S. (1986). Influential observation, high leverage points and outliers in linear

regression (with discussion). Statistical Science, 1, 379–416.

Christensen, R., Pearson, L. M. and Johnson, W. (1992). Case deletion diagnostics for mixed models. Tech-

nometrics, 34, 38–45.

Cook, R. D. (1977). Detection of influential observations in linear regression. Technometrics, 19, 15–18.

Cook, R. D. and Weisberg, S. (1982). Residuals and Influence in Regression. Chapman and Hall, London.

Cox, D. R. and Hinkley, D. V. (1974). Theoretical Statistics. Chapman and Hall, London.

Davidian, M. and Giltinan, D. M. (1995). Nonlinear Models for Repeated Measurement Data. Chapman

and Hall, London.

Fuller, W. A. (1987). Measurement Error Models. Wiley, New York.

Fung, W. K., Zhong, X. P. and Wei, B. C. (2003). On estimation and influence diagnostics in linear mixed

measurement errors models. American Journal of Mathematical and Management Sciences, 23, 37–

59.

Gimenz, P. and Bolfarine, H. (1997). Corrected score functions in classical error-in-variables and incidental

parameter models. The Australian Journal of Statistics, 39, 325–344.



144 Diagnostic measures for linear mixed measurement error models

Hanfelt, J. J. and Liang, K. Y. (1997). Approximate likelihood for generalized linear errors-in-variables

models. Journal of the Royal Statistical Society. Series B, 59, 627–637.

Harrison, D. and Rubinfeld, D. L. (1978). Hedonic housing prices and the demand for clean air. Journal of

Environmental Economics and Management, 5, 81–102.

Haslett, J. and Dillane, D. (2004). Application of ‘delete=replace’ to deletion diagnostics for variance

component estimation in linear mixed model. Journal of the Royal Statistical Society. Series B, 66,

131–143.

Kelly, G. E. (1984). The influence function in the errors in variables problems, The Annals of Statistics, 12,

87–100.

Li, Z., Xu, W., and Zhu, L. (2009). Influence diagnostics and outlier tests for varying coefficient mixed

models. Journal of Multivariate Analysis, 100, 2002–2017.

Nakamura, T. (1990). Corrected score function for errors-in-variables models: Methodology and application

to generalized linear models. Biometrika, 77, 127–137.

Nakamura, T. (1992). Proportional hazards model with covariates subject to measurement error. Biometrics,

48, 829–838.

Rio, M. (1988). On the potential in the estimation of linear functions in regression. Communications in

Statistics. Theory and Methods, 17, 729–738.

Robinson, G. K. (1991). That BLUP is a good thing: The estimation of random effects (with discussion).

Statistical Science, 6, 15–51.

Wellman, J. M. and Gunst, R. F. (1991). Influence diagnostics for linear measurement errors models. Bio-

metrika, 78, 373–380.

Welsch, R. E. (1982). Influence functions and regression diagnostics. In Modern Data Analysis (R.L.

Launer and A.F. Siegel, eds.), Academic, New York.

Zare, K., Rasekh, A. and Rasekhi, A. (2011). Estimation of variance components in linear mixed measure-

ment error models. Statistical Papers, DOI 10.1007/s00362-011-0387-0.

Zewotir, T. and Galpin, J. S. (2005). Influence diagnostics for linear mixed models. Journal of Data Sci-

ence, 3, 153–177.

Zewotir, T. and Galpin, J. S. (2007). A unified approach on residuals, leverages and outliers in the linear

mixed model, Test, 16, 58–75.

Zhong, X. P. and Wei, B. C. (1999). Influence analysis on linear models with random effects. Applied

Mathematics. A Journal of Chinese Universities. Ser. B., 14, 169–176.

Zhong, X. P., Fung, W. K. and Wei, B. C. (2002). Estimation in linear models with random effects and

errors-in-variables. Annals of the Institute of Statistical Mathematics, 54, 595–606.

Zhong, X. P., Wei, B. C. and Fung, W. K. (2000). Influence analysis for linear measurement error models.

Annals of the Institute of Statistical Mathematics, 52, 367–379.




