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Abstract

In this paper we have adopted the Khoshnevisan et al. (2007) family of estimators to extreme
ranked set sampling (ERSS) using information on single and two auxiliary variables. Expressions
for mean square error (MSE) of proposed estimators are derived to first order of approximation.
Monte Carlo simulations and real data sets have been used to illustrate the method. The results
indicate that the estimators under ERSS are more efficient as compared to estimators based on
simple random sampling (SRS), when the underlying populations are symmetric.
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1. Introduction

Ranked set sampling (RSS) was introduced by McIntyre (1952) and suggested using RSS

as a costly efficient alternative as compared to SRS. Takahasi and Wakimoto (1968) de-

veloped the mathematical theory and proved that the sample mean of a ranked set sample

is an unbiased estimator of the population mean and possesses smaller variance than the

sample mean of a simple random sample with the same sample size. Samawi and Mut-

tlak (1996) suggested the use of RSS to estimate the population ratio and showed that

it gives more efficient estimates as compared to SRS. Samawi et al. (1996) introduced

ERSS to estimate the population mean and showed that the sample mean under ERSS
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is an unbiased and is more efficient than the sample mean based on SRS. Samawi

(2002) introduced the ratio estimation in estimating the population ratio using ERSS

and showed that the ratio estimator under ERSS is an approximately unbiased estimator

of the population ratio. Also in the case of symmetric populations ratio estimators

under ERSS are more efficient than ratio estimators under SRS. Samawi and Saeid

(2004) investigated the use of the separate and the combined ratio estimators in ERSS.

Samawi et al. (2004) studied the use of regression estimator in ERSS and showed that

for symmetric distributions, the regression estimator under ERSS is more efficient as

compared to SRS and RSS.

In this paper, SRS and ERSS methods are used for estimating the population mean of

the study variable Y by using information on the auxiliary variables X and Z.

The organization of this paper is as follows. Section 2 includes sampling methods

like SRS and ERSS. In Section 3, main notations and results are given. Sections 4 and

5 comprise of a family of ratio estimators using single and two auxiliary variables.

Section 6 describes of simulation and empirical studies and Section 7 finally provides

the conclusion.

2. Sampling methods

2.1. Simple random sampling

In SRS, m units out of N units of a population are drawn in such a way that every possible

combination of items that could make up a given sample size has an equal chance of

being selected. In usual practice, a simple random sample is drawn unit by unit.

2.2. Ranked set sampling

RSS procedure involves selection of m sets, each of m units from the population. It is

assumed that units within each set can be ranked visually at no cost or at little cost.

From the first set of m units, the lowest ranked unit is selected; the remaining units of

the sample are discarded. From the second set of m units, the second lowest ranked unit

is selected and the remaining units are discarded. The procedure is continued until from

the mth set, the mth ranked unit is selected. This completes one cycle of a ranked set

sample of size m. The whole process can be repeated r times to get a ranked set sample

of size n = mr.

2.3. Extreme ranked set sampling

Samawi et al. (1996) introduced a new variety of ranked set sampling, named as ERSS to

estimate the population mean and have shown that ERSS gives more efficient estimates

as compared to SRS.
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In ERSS, m independent samples, each of m units are drawn from infinite population

to estimate the unknown parameter. Here we assume that lowest and largest units of

these samples can be detected visually with no cost or with little cost as explained

by Samawi (2002). From the first set of m units, the lowest ranked unit is measured,

similarly from the second set of m units, the largest ranked unit is measured. Again in

the third set of m units the lowest ranked unit is measured and so on. The procedure

continues until from (m−1) units, (m−1) units are measured. From the last mth

sample, the selection of the unit depends whether m is even or not. It can be measured

in two ways:

(i) If m is even then the largest ranked unit is to be selected; we denote such a sample

with notation ERSSa.

(ii) If m is odd then for the measurement of the mth unit, we take the average of the

lowest and largest units of the mth sample; such a sample will be donated by ERSSb

or we take the median of the mth sample; such a sample is denoted by ERSSc.

The choice of a sample ERSSb will be more difficult as compared to the choices of

ERSSa and ERSSc (see Samawi et al. 1996). The above procedure can be repeated r

times to select an ERSS of size mr units.

3. Notations under SRS and ERSS

Let (X1, Y1) ,(X2, Y2) , . . . ,(Xm, Ym) be a random sample from a bivariate normal dis-

tribution with probability density function f (X ,Y ), having parameters µX , µY , σX , σY

and ρ. We assume that the ranking is performed on the auxiliary variable X for esti-

mating the population mean (µY ). Let (X11, Y11) ,(X12, Y12) , . . . ,(X1m, Y1m), (X21, Y21) ,

(X22, Y22) , . . . ,(X2m, Y2m) ,. . . , (Xm1, Ym1) ,(Xm2, Ym2) , . . . ,(Xmm, Ymm) be m indepen-

dent bivariate random vectors each of size m,
(

Xi(1), Yi[1]

)

,
(

Xi(2), Yi[2]

)

, . . . ,
(

Xi(m), Yi[m]

)

be the RSS for i = 1,2, . . .m. In ERSS, if m is even then
(

X1(1) j, Y1[1] j

)

,
(

X2(m) j, Y2[m] j

)

,

. . . ,
(

Xm−1(1) j, Ym−1[1] j

)

,
(

Xm(m) j, Ym[m] j

)

, denoted by ERSSa, and if m is odd then
(

X1(1) j, Y1[1] j

)

,
(

X2(m) j, Y2[m] j

)

, . . . ,
(

Xm−1(m) j, Ym−1[m] j

)

,
(

X
m(m+1

2 ) j
, Y

m[m+1
2 ] j

)

,

denoted by ERSSc, for the jth cycle, where j=1,2,. . . , r.

Considering ranking on the auxiliary variable X , we use the following notations and

results.

Let E (Xi) = µX , E (Yi) = µY , Var (Xi) = σ
2
X , Var (Yi) = σ

2
Y , E

(

Xi(m)

)

= µX(m),

E
(

Yi[m]

)

= µY [m], E
(

Xi(1)

)

= µX(1), E
(

Yi[1]

)

= µY [1], Var
(

Xi(1)

)

= σ2
X(1), Var

(

Yi[1]

)

=

σ2
Y [1],
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Var
(

Xi(m)

)

= σ2
X(m), Var

(

Yi[m]

)

= σ2
Y [m],

E
(

X
i(m+1

2 )

)

= µ
X(m+1

2 ), E
(

Y
i[m+1

2 ]

)

= µ
Y [m+1

2 ],

Var
(

X
i(m+1

2 )

)

= σ2

X(m+1
2 )

, Var
(

Y
i[m+1

2 ]

)

= σ2

Y [m+1
2 ]

and

Cov
(

Xi(h),Yi[k]

)

= σX(h)Y [k].

In SRS the sample means of variables X and Y are

X̄ =
1

mr

r

∑
j=1

m

∑
i=1

Xi j

and

Ȳ =
1

mr

r

∑
j=1

m

∑
i=1

Yi j

In ERSSa, the sample means of X and Y are

X̄(a) =
1

2

(

X̄(1)+ X̄(m)

)

,

where

X̄(1) =
2

mr

r

∑
j=1

m/2

∑
i=1

X2i−1(1) j, X̄(m) =
2

mr

r

∑
j=1

m/2

∑
i=1

X2i(m) j

and

Ȳ[a] =
1

2

(

Ȳ[1]+ Ȳ[m]

)

,

where

Ȳ[1] =
2

mr

r

∑
j=1

m/2

∑
i=1

Y2i−1[1] j, Ȳ[m] =
2

mr

r

∑
j=1

m/2

∑
i=1

Y2i[m] j.

In ERSSc, we define

X̄(c)=

r

∑
j=1

(

X1(1) j +X2(m) j + · · ·+Xm−1(m) j +X
m(m+1

2 ) j

)

mr
=

(

m−1
2

)

(

X̄ ′
(1)+ X̄ ′

(m)

)

+ X̄ ′

(m+1
2 )

m
,
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where

X̄ ′
(1) =

2

r (m−1)

r

∑
j=1

(m−1)/2

∑
i=1

X2i−1(1) j, X̄ ′
(m) =

2

r (m−1)

r

∑
j=1

(m−1)/2

∑
i=1

X2i(m) j,

X̄ ′

(m+1
2 ) =

1

r

r

∑
j=1

X
m(m+1

2 ) j
.

Also for Y , we have

Ȳ[c] =

r

∑
j=1

(

Y1[1] j +Y2[m] j + · · ·+Ym−1[m] j +Y
m[m+1

2 ] j

)

mr
=

(

m−1
2

)

(

Ȳ ′
[1]+ Ȳ ′

[m]

)

+ Ȳ ′

[m+1
2 ]

m
,

where

Ȳ ′
[1] =

2

r (m−1)

r

∑
j=1

(m−1)/2

∑
i=1

Y2i−1[1] j, Ȳ ′
[m] =

2

r (m−1)

r

∑
j=1

(m−1)/2

∑
i=1

Y2i[m] j,

Ȳ ′

[m+1
2 ] =

1

r

r

∑
j=1

Y
m[m+1

2 ] j
.

Similarly, in case of the two auxiliary variables X and Z, when ranking is done on Z,

we use the following notations.

E
(

Yi[m]

)

= µY [m], E
(

Xi[m]

)

= µX [m], E
(

Zi(m)

)

= µZ(m),

E
(

Yi[1]

)

= µY [1], E
(

Xi[1]

)

= µX [1], E
(

Zi(1)

)

= µZ(1),

Var
(

Yi[1]

)

= σ2
Y [1], Var

(

Xi[1]

)

= σ2
X [1], Var

(

Zi(1)

)

= σ2
Z(1),

Var
(

Yi[m]

)

= σ2
Y [m], Var

(

Xi[m]

)

= σ2
X [m], Var

(

Zi(m)

)

= σ2
Z(m),

E
(

Y
i[m+1

2 ]

)

= µ
Y [m+1

2 ], E
(

X
i[m+1

2 ]

)

= µ
X[m+1

2 ], E
(

Z
i(m+1

2 )

)

= µ
Z(m+1

2 ),

Var
(

Y
i[m+1

2 ]

)

= σ2

Y [m+1
2 ]

, Var
(

X
i[m+1

2 ]

)

= σ2

X[m+1
2 ]

, Var
(

Z
i(m+1

2 )

)

= σ2

Z(m+1
2 )

,

Cov
(

Xi[h],Yi[k]

)

= σX [h]Y [k], Cov
(

Xi[h],Zi(k)

)

= σX [h]Z(k) and Cov
(

Yi[h],Zi(k)

)

= σY [h]Z(k).

In SRS the sample means of variables X , Y and Z are

X̄ =
1

mr

r

∑
j=1

m

∑
i=1

Xi j, Ȳ =
1

mr

r

∑
j=1

m

∑
i=1

Yi j and Z̄ =
1

mr

r

∑
j=1

m

∑
i=1

Zi j.
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In ERSSa, the sample means of X , Y and Z are

X̄[a] =
1

2

(

X̄[1]+ X̄[m]

)

,

where

X̄[1] =
2

mr

r

∑
j=1

m/2

∑
i=1

X2i−1[1] j, X̄[m] =
2

mr

r

∑
j=1

m/2

∑
i=1

X2i[m] j, Ȳ[a] =
1

2

(

Ȳ[1]+ Ȳ[m]

)

,

where

Ȳ[1]=
2

mr

r

∑
j=1

m/2

∑
i=1

Y2i−1[1] j, Ȳ[m]=
2

mr

r

∑
j=1

m/2

∑
i=1

Y2i[m] j and Z̄(a)=
1

2

(

Z̄(1)+ Z̄(m)

)

,

where

Z̄(1) =
2

mr

r

∑
j=1

m/2

∑
i=1

Z2i−1(1) j, Z̄(m) =
2

mr

r

∑
j=1

m/2

∑
i=1

Z2i(m) j.

In ERSSc, the sample means for X , Y and Z are

X̄[c] =

(

m−1
2

)

(

X̄ ′
[1]+ X̄ ′

[m]

)

+ X̄ ′

[m+1
2 ]

m
,

where

X̄ ′
[1] =

2

r (m−1)

r

∑
j=1

(m−1)/2

∑
i=1

X2i−1[1] j, X̄ ′
[m] =

2

r (m−1)

r

∑
j=1

(m−1)/2

∑
i=1

X2i[m] j,

X̄ ′

[m+1
2 ] =

1

r

r

∑
j=1

X
m[m+1

2 ] j
, Ȳ[c] =

(

m−1
2

)

(

Ȳ ′
[1]+ Ȳ ′

[m]

)

+ Ȳ ′

[m+1
2 ]

m
,

where

Ȳ ′
[1] =

2

r (m−1)

r

∑
j=1

(m−1)/2

∑
i=1

Y2i−1[1] j, Ȳ ′
[m] =

2

r (m−1)

r

∑
j=1

(m−1)/2

∑
i=1

Y2i[m] j,

Ȳ ′

[m+1
2 ] =

1

r

r

∑
j=1

Y
m[m+1

2 ] j
and Z̄(c) =

(

m−1
2

)

(

Z̄′
(1)+ Z̄′

(m)

)

+ Z̄′

(m+1
2 )

m
,
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where

Z̄′
(1) =

2

r (m−1)

r

∑
j=1

(m−1)/2

∑
i=1

Z2i−1(1) j, Z̄′
(m) =

2

r (m−1)

r

∑
j=1

(m−1)/2

∑
i=1

Z2i(m) j,

Z̄′

(m+1
2 ) =

1

r

r

∑
j=1

Z
m(m+1

2 ) j
.

4. Proposed estimators using the single auxiliary variable

4.1. A family of ratio estimators using ERSSaERSSaERSSa

Following Khoshnevisan et al. (2007), we propose a family of ratio estimators in ERSSa

using the single auxiliary variable, when ranking is performed on the auxiliary variable

X and is given by

ˆ̄YERSSa = Ȳ[a]

[

aµX +b

α
(

a X̄(a)+b
)

+(1−α)(aµX +b)

]g

, (1)

where α and g are suitable constants, also a and b are either real numbers or functions

of known parameters for the auxiliary variable X , like coefficient of variation (CX)

or coefficient of kurtosis (β2X)or standard deviation (SX) or coefficient of correlation

(ρY X).

Using bivariate Taylor series expansion, we have

(

ˆ̄YERSSa −µY

)

∼=
1

2

[

Ȳ[1]−E
(

Ȳ[1]

)]

+
1

2

[

Ȳ[m]−E
(

Ȳ[m]

)]

−
µY (aαg)

[

X̄(1)−E
(

X̄(1)

)]

2(aµX +b)

−
µY (aαg)

[

X̄(m)−E
(

X̄(m)

)]

2(aµX +b)
. (2)

Solving (2) and using assumption of symmetry of distribution, the approximate MSE

of ˆ̄YERSSa is given by

MSE
(

ˆ̄YERSSa

)

∼=
1

mr

(

σ2
Y [1]+w2σ2

X(1)−2wσX(1)Y [1]

)

, (3)

where w =
µY (aαg)

(aµX +b)
.
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Minimizing (3) with respect to w, we get the optimum value of w i.e.

w(opt) =
σX(1)Y [1]

σ2
X(1)

.

The minimum MSE of ˆ̄YERSSa is given by

MSEmin

(

ˆ̄YERSSa

)

∼=
σ2

Y [1]

(

1−ρ2
X(1)Y [1]

)

mr
, (4)

where ρ2
X(1)Y [1] =

σ2
X(1)Y [1]

σ2
X(1)σ

2
Y [1]

.

Note that the minimum MSE in (4) is equal to the MSE of the traditional regression

estimator based on single auxiliary variable under ERSSa.

4.2. A Family of ratio estimators using ERSScERSScERSSc

We propose the same family of ratio estimators in ERSSc as

ˆ̄YERSSc = Ȳ[c]

[

aµX +b

α
(

a X̄(c)+b
)

+(1−α)(aµX +b)

]g

, (5)

where α, g, a 6= 0 and b are defined earlier.

Using bivariate Taylor series expansion, we have

(

ˆ̄YERSSc −µY

)

∼=
(m−1)

2m

[

Ȳ ′
[1]−E

(

Ȳ ′
[1]

)]

+
(m−1)

2m

[

Ȳ ′
[m]−E

(

Ȳ ′
[m]

)]

+

[

Ȳ ′

[m+1
2 ]

−E

(

Ȳ ′

[m+1
2 ]

)]

m
−
µY (aαg)(m−1)

[

X̄ ′
(1)−E

(

X̄ ′
(1)

)]

2m(aµX +b)

−
µY (aαg)(m−1)

[

X̄ ′
(m)−E

(

X̄ ′
(m)

)]

2m(aµX +b)
−

µY (aαg)

[

X̄ ′

(m+1
2 )

−E

(

X̄ ′

(m+1
2 )

)]

m(aµX +b)
.

(6)

Using the assumption of symmetry of distribution, the approximate MSE of ˆ̄YERSSc ,

is given by
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MSE
(

ˆ̄YERSSc

)

∼=
1

mr





(m−1)σ2
Y [1]+σ

2

Y [m+1
2 ]

m
+w2

(m−1)σ2
X(1)+σ

2

X(m+1
2 )

m

−2w
(m−1)σX(1)Y [1]+σX(m+1

2 )Y [m+1
2 ]

m

)

, (7)

where w is defined earlier.

Also (7) can be written as

MSE
(

ˆ̄YERSSc

)

∼=
1

mr

[

σ2∗
Y [1]+w2σ2∗

X(1)−2wσ∗
X(1)Y [1]

]

, (8)

where

σ2∗
Y [1] =

(m−1)σ2
Y [1]+σ

2

Y [m+1
2 ]

m
, σ2∗

X(1) =
(m−1)σ2

X(1)+σ
2

X(m+1
2 )

m

and

σ∗
X(1)Y [1] =

(m−1)σX(1)Y [1]+σX(m+1
2 )Y [m+1

2 ]

m
.

The minimum MSE of ˆ̄YERSSc at the optimum value of w given by w(opt) =
σ∗

X(1)Y [1]

σ2∗
X(1)

is

MSEmin

(

ˆ̄YERSSc

)

∼=
σ2∗

Y [1]

(

1−ρ2∗
X(1)Y [1]

)

mr
, (9)

where ρ2∗
X(1)Y [1] =

σ2∗
X(1)Y [1]

σ2∗
X(1)σ

2∗
Y [1]

.

Note that the minimum MSE in (9) is of similar form to the MSE of the regression

estimator based on the single auxiliary variable under ERSSc. Also from (1) and (5),

several different forms of ratio and product estimators can be generalized by taking

different values of α,g, a and b. It is to be noted that for g = +1 and g = −1, we can

make the ratio and product family of estimators respectively under ERSSa and ERSSc

using the single auxiliary variable.
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5. Proposed estimators using the two auxiliary variables

5.1. A family of ratio estimators in ERSSaERSSaERSSa

Following Khoshnevisan et al. (2007), we propose a family of ratio estimators in ERSSa

using information on the two auxiliary variables, when ranking is performed on the

auxiliary variable Z.

ˆ̄Y
′

ERSSa
=

Ȳ[a]

[

aµX +b

α1

(

a X̄[a]+b
)

+(1−α1)(aµX +b)

]g1
[

cµZ +d

α2

(

c Z̄(a)+d
)

+(1−α2)(cµZ +d)

]g2

,

(10)

where α1, α2, g1 and g2 are suitable constants, also a, b, c and d are either real numbers

or functions of known parameters for the auxiliary variables X and Z respectively.

Using multivariate Taylor series expansion, we have

(

ˆ̄Y
′

ERSSa
−µY

)

∼=
1

2

[

Ȳ[1]−E
(

Ȳ[1]

)]

+
1

2

[

Ȳ[m]−E
(

Ȳ[m]

)]

−
µY (aα1g1)

[

X̄[1]−E
(

X̄[1]

)]

2(aµX +b)

−
µY (aα1g1)

[

X̄[m]−E
(

X̄[m]

)]

2(aµX +b)
−
µY (cα2g2)

[

Z̄(1)−E
(

Z̄(1)

)]

2(cµZ +d)

−
µY (cα2g2)

[

Z̄(m)−E
(

Z̄(m)

)]

2(cµZ +d)
. (11)

Squaring both sides, taking expectation of (11) and using assumption of symmetry

of distribution, the MSE of ˆ̄Y
′

ERSSa
is given by

MSE
(

ˆ̄Y
′

ERSSa

)

∼=

1

mr

(

σ2
Y [1]+w2

1σ
2
X [1]+w2

2σ
2
Z(1)−2w1σX [1]Y [1]−2w2σY [1]Z(1)+2w1w2σX [1]Z(1)

)

. (12)

Minimizing MSE
(

ˆ̄Y
′

ERSSa

)

with respect to w1 and w2, the optimum values of w1 and

w2, are given by

w1(opt) =
σ2

Z(1)σX [1]Y [1]−σX [1]Z(1)σY [1]Z(1)

σ2
X [1]σ

2
Z(1)−σ

2
X [1]Z(1)
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and

w2(opt) =
σ2

X [1]σY [1]Z(1)−σX [1]Z(1)σX [1]Y [1]

σ2
X [1]σ

2
Z(1)−σ

2
X [1]Z(1)

.

Substituting the optimum values of w1 and w2 in (12), we get

MSEmin

(

ˆ̄Y
′

ERSSa

)

∼=
σ2

Y [1]

(

1−R2
Y [1].X [1]Z(1)

)

mr
, (13)

where R2
Y [1].X [1]Z(1) =

ρ2
X [1]Y [1]+ρ

2
Y [1]Z(1)−2ρX [1]Y [1]ρY [1]Z(1)ρX [1]Z(1)

1−ρ2
X [1]Z(1)

is the multiple cor-

relation coefficient of Y [1] on X [1] and Z (1) in ERSSa. The minimum MSE of ˆ̄Y
′

ERSSa

is equal to the MSE of the regression estimator when using the two auxiliary variables.

5.2. A family of ratio estimators in ERSScERSScERSSc

We propose a following family of estimators in ERSSc using the two auxiliary variables

X and Z as

ˆ̄Y
′

ERSSc
=

Ȳ[c]

[

aµX +b

α1

(

a X̄[c]+b
)

+(1−α1)(aµX +b)

]g1
[

cµZ +d

α2

(

c Z̄(c)+d
)

+(1−α2)(cµZ +d)

]g2

,

(14)

where α1,α2,g1, g2, a, b, c and d are suitable constants as described earlier.

Using multivariate Taylor series expansion, we have

(

ˆ̄Y
′

ERSSc
−µY

)

∼=
(m−1)

2m

[

Ȳ ′
[1]−E

(

Ȳ ′
[1]

)]

+
(m−1)

2m

[

Ȳ ′
[m]−E

(

Ȳ ′
[m]

)]

−
1

m

[

Ȳ ′

[m+1
2 ]−E

(

Ȳ ′

[m+1
2 ]

)]

−
µY (aα1g1)(m−1)

[

X̄ ′
[1]−E

(

X̄ ′
[1]

)]

2m(aµX +b)

−
µY (aα1g1)(m−1)

[

X̄ ′
[m]−E

(

X̄ ′
[m]

)]

2m(aµX +b)

−
µY (cα2g2)(m−1)

[

Z̄′
(1)−E

(

Z̄′
(1)

)]

2m(cµZ +d)
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−
µY (cα2g2)(m−1)

[

Z̄′
(m)−E

(

Z̄′
(m)

)]

2m(cµZ +d)

−

µY (aα1g1)

[

X̄ ′

[m+1
2 ]

−E

(

X̄ ′

[m+1
2 ]

)]

m(aµX +b)
−

µY (cα2g2)

[

Z̄′

(m+1
2 )

−E

(

Z̄′

(m+1
2 )

)]

m(cµZ +d)
. (15)

Squaring, taking expectation and using assumption of symmetry of distribution, we

have

MSE
(

ˆ̄Y
′

ERSSc

)

∼=
1

mr





(m−1)σ2
Y [1]+σ

2

Y [m+1
2 ]

m
+w2

1

(m−1)σ2
X [1]+σ

2

X[m+1
2 ]

m

+w2
2

(m−1)σ2
Z(1)+σ

2

Z(m+1
2 )

m
−2w1

(m−1)σX [1]Y [1]+σX[m+1
2 ]Y [m+1

2 ]

m

−2w2

(m−1)σY [1]Z(1)+σY [m+1
2 ]Z(m+1

2 )

m
+2w1w2

(m−1)σX [1]Z(1)+σX[m+1
2 ]Z(m+1

2 )

m

)

.

(16)

The above expression can be written as

MSE
(

ˆ̄Y
′

ERSSc

)

∼=

1

mr

[

σ2∗
Y [1]+w2

1σ
2∗
X [1]+w2

2σ
2∗
Z(1)−2w1σ

∗
X [1]Y [1]−2w2σ

∗
Y [1]Z(1)+2w1w2σ

∗
X [1]Z(1)

]

, (17)

where

w1 =
µY (aα1g1)

(aµX +b)
, w2 =

µY (cα2g2)

(cµZ +d)
, σ2∗

Y [1] =
(m−1)σ2

Y [1]+σ
2

Y [m+1
2 ]

m
,

σ2∗
X [1] =

(m−1)σ2
X [1]+σ

2

X[m+1
2 ]

m
, σ2∗

Z(1) =
(m−1)σ2

Z(1)+σ
2

Z(m+1
2 )

m
,

σ∗
X [1]Y [1] =

(m−1)σX [1]Y [1]+σX[m+1
2 ]Y [m+1

2 ]

m
,
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σ∗
Y [1]Z(1) =

(m−1)σY [1]Z(1)+σY [m+1
2 ]Z(m+1

2 )

m

and

σ∗
X [1]Z(1) =

(m−1)σX [1]Z(1)+σX[m+1
2 ]Z(m+1

2 )

m
.

Using (17), the optimum values of w1 and w2 are given by

w1(opt) =
σ2∗

Z(1)σ
∗
X [1]Y [1]−σ

∗
X [1]Z(1)σ

∗
Y [1]Z(1)

σ2∗
X [1]σ

2∗
Z(1)−σ

2∗
X [1]Z(1)

and

w2(opt) =
σ2∗

X [1]σ
∗
Y [1]Z(1)−σ

∗
X [1]Z(1)σ

∗
X [1]Y [1]

σ2∗
X [1]σ

2∗
Z(1)−σ

2∗
X [1]Z(1)

.

Substituting the optimum values of w1 and w2 in (17), we get the minimum MSE of
ˆ̄Y
′

ERSSc
, which is given by

MSEmin

(

ˆ̄Y
′

ERSSc

)

∼=
σ2∗

Y [1]

(

1−R2∗
Y [1].X [1]Z(1)

)

mr
, (18)

where

R2∗
Y [1].X [1]Z(1) =

ρ2∗
X [1]Y [1]+ρ

2∗
Y [1]Z(1)−2ρ∗

X [1]Y [1]ρ
∗
Y [1]Z(1)ρ

∗
X [1]Z(1)

(

1−ρ2∗
X [1]Z(1)

)

is the multiple correlation coefficient of Y [1] on X [1] and Z (1) in ERSSc. The expression

given in (18) is equal to the MSE of the regression estimator when using the two

auxiliary variables under ERSSc.

Note: For different choices of g1 and g2 in (10) and (14), we have

g1 = g2 = 1, ratio estimator,

g1 = g2 =−1, product estimator,

g1 = 1 and g2 =−1, ratio-product estimator,

g1 =−1 and g2 = 1, product-ratio estimator.
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6. Simulation study

A simulation study has been made to examine the performance of the considered estima-

tors in SRS and ERSS for estimating the population mean, when ranking is done on the

auxiliary variables X and Z separately. Following Samawi (2002), bivariate random ob-

servations were generated from bivariate normal distribution having parameters µX = 6,

µY = 3, σX = σY = 1 and ρXY =±0.99, ±0.95, ±0.90, ±0.70 and ±0.50. Using 4000

simulations, estimates of MSEs for ratio estimators were computed as given in Tables

1-5 (see Appendix). We consider m(r) as 4(2), 4(4), 5(2), 6(2) and 6(4) respectively to

study the performances of the ratio estimators under SRS, ERSSa and ERSSc.

Further simulation has also been done for the same family of ratio estimators using

the two auxiliary variables. For this trivariate random observations were generated from

trivariate normal distribution having parameters µX = 6, µY = 3, µZ = 8, σX = σY =

σZ = 1 and for different values of ρXY . The correlation coefficients between (Y, Z) and

(X , Z) are assumed to be ρY Z = 0.70 and ρXZ = 0.60 respectively as shown in Tables

6-8, with different sample sizes m and different cycles r. Again 4000 simulations have

been made to study the performances of a family of the ratio estimators using the two

auxiliary variables.

From Tables 1-5 (see Appendix), it is noted that all considered ratio estimators

using the one auxiliary variable (X) perform better under ERSS as compared to SRS

for different values of ρXY . In the case of using the two auxiliary variables X and Z (see

Tables 6-8, Appendix), for r = 1 and r = 2, ERSS again gives more precise estimates as

compared to SRS. Also as we increase r=1 to r = 2, the MSE values of each estimator

decreases under both SRS and ERSS schemes.

6.1. Empirical study

In this section, we have illustrated the performance of various estimators of population

mean under SRS and ERSS through natural data sets. ERSS performs better than SRS in

case of symmetric populations. In order to generate the symmetric data from positively

skewed data, we have taken the logarithm of the study variable (Y ) and the auxiliary

variables (X and Z).

Table 9 provides the estimated MSE values of all considered estimators using the

single auxiliary variable (X) based on 4000 samples drawn with replacement. It is

immediate to observe that the proposed estimators under ERSS perform better than the

estimators based on SRS. Among all estimators, the estimator ˆ̄Y1ERSSa is more efficient

for all values of m.

Table 10 gives the estimated MSE values of all considered estimators using the two

auxiliary variables (X and Z) based on 4000 samples drawn with replacement. The

proposed estimators under ERSS also perform better than the estimators based on SRS.

For this data set, the estimator ˆ̄Y
′

1ERSSa
has the smaller MSE values than other considered

estimators ˆ̄Y
′

iERSSa
(i = 2,3,4).
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7. Conclusion

In the present paper, we have studied the problem of estimating the population mean

using single and two auxiliary variables in ERSS, when we have known information

about the population parameters. A given family of estimators includes several ratio type

estimators, which have also been adopted by different authors in SRS. We examined the

effect of transformations on the same family of estimators in ERSS. From Tables 1-5, the

estimators ˆ̄Y4ERSSa and ˆ̄Y4ERSSc , with a = α = g = 1 and b = SX , perform better than all

other estimators when ρXY < 0. In Tables 1-5 for ρXY > 0, the estimator ˆ̄Y3ERSSa , with

a = β2X , α = g = 1 and b = CX , generally give more precise estimates as compared

to other estimators. In case of two auxiliary variables (see Tables 7 and 8), the ratio

estimators ˆ̄Y
′

3ERSSa
and ˆ̄Y

′

3ERSSc
, with choices α1 = α2 = g1 = g2 = 1, a = β2X , b =CX ,

c = β2Z and d = CZ , are efficient in all other estimators for all values of ρXY with

different sample size m. Finally, it is recommended to use ERSS over SRS in symmetric

populations, in order to get more precise estimates of population mean.
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Appendix

Table 1: MSE values of different estimators using SRS and ERSS for m = 4,r = 2.

Estimator ρXY 0.99 0.9 0.8 0.7 0.5 −0.99 −0.9 −0.8 −0.7 −0.5

ˆ̄Y1ERSSa
= ȳ[a]

[

µX +ρXY

x̄(a)+ρXY

]

SRS 0.0421445 0.0459502 0.0536968 0.0768756 0.0966342 0.3431534 0.332503 0.3220496 0.2717683 0.2336323

ERSS 0.0213953 0.0280724 0.0375345 0.0680077 0.0953278 0.1614094 0.1560954 0.1592598 0.1694472 0.1643586

ˆ̄Y2ERSSa
= ȳ[a]

[

µX +CX

x̄(a)+CX

]

SRS 0.0342081 0.0394587 0.0459384 0.0698305 0.0957964 0.2810607 0.2736063 0.2645737 0.2302537 0.2125556

ERSS 0.0186795 0.0259662 0.0352951 0.0643397 0.0906895 0.1374189 0.1399317 0.1437876 0.1578388 0.1538846

ˆ̄Y3ERSSa
= ȳ[a]

[

β2XµX +CX

β2X x̄(a)+CX

]

SRS 0.0343591 0.0376966 0.046057 0.0689711 0.0985591 0.2839814 0.2827303 0.2785348 0.2435255 0.2236065

ERSS 0.0178802 0.0247913 0.0346036 0.0654427 0.0937825 0.1419155 0.1458068 0.141693 0.1573677 0.1596848

ˆ̄Y4ERSSa
= ȳ[a]

[

µX +SX

x̄(a)+SX

]

SRS 0.0431915 0.0477002 0.0535503 0.0718311 0.094948 0.2536793 0.2470929 0.2436818 0.2271933 0.2072925

ERSS 0.0227204 0.0286125 0.0369096 0.0703841 0.09294 0.1271421 0.1330668 0.1314235 0.1430808 0.1503416

Table 2: MSE values of different estimators using SRS and ERSS for m = 4,r = 4.

Estimator ρXY 0.99 0.9 0.8 0.7 0.5 −0.99 −0.9 −0.8 −0.7 −0.5

ˆ̄Y1ERSSa
= ȳ[a]

[

µX +ρXY

x̄(a)+ρXY

]

SRS 0.021717 0.0235508 0.0249642 0.0366157 0.0464009 0.1658218 0.1563325 0.152332 0.1354153 0.1171365

ERSS 0.0107867 0.0147103 0.0190514 0.0347934 0.0460406 0.0783965 0.0774434 0.0807905 0.0812439 0.0815075

ˆ̄Y2ERSSa
= ȳ[a]

[

µX +CX

x̄(a)+CX

]

SRS 0.0174917 0.0190349 0.0221608 0.0349446 0.045639 0.1358885 0.1438294 0.1313778 0.1232827 0.1116966

ERSS 0.0092618 0.0131617 0.01722 0.0320217 0.0465724 0.0681436 0.0708875 0.0721552 0.0742076 0.0752605

ˆ̄Y3ERSSa
= ȳ[a]

[

β2XµX +CX

β2X x̄(a)+CX

]

SRS 0.0168429 0.0192322 0.0216478 0.0353861 0.0478808 0.1430786 0.1383039 0.1367204 0.116574 0.1148881

ERSS 0.0089404 0.0123172 0.0166099 0.0348346 0.0480005 0.0686419 0.0688538 0.0731911 0.0790872 0.0751499

ˆ̄Y4ERSSa
= ȳ[a]

[

µX +SX

x̄(a)+SX

]

SRS 0.0218861 0.0244523 0.0257768 0.0381466 0.0447497 0.123449 0.1257248 0.12019 0.1146243 0.1009705

ERSS 0.0110367 0.0144961 0.0186961 0.0342148 0.0485601 0.0637671 0.0646209 0.0668673 0.0728451 0.0727519



Table 3: MSE values of different estimators using SRS and ERSS for m = 6,r = 2.

Estimator ρXY 0.99 0.9 0.8 0.7 0.5 −0.99 −0.9 −0.8 −0.7 −0.5

ˆ̄Y1ERSSa
= ȳ[a]

[

µX +ρXY

x̄(a)+ρXY

]

SRS 0.0276638 0.0310981 0.0339876 0.0492321 0.0623409 0.2198379 0.2056067 0.2040597 0.1750035 0.15697

ERSS 0.0125093 0.0179924 0.0232678 0.0444828 0.0625907 0.0909455 0.0915863 0.0956375 0.0963579 0.1004085

ˆ̄Y2ERSSa
= ȳ[a]

[

µX +CX

x̄(a)+CX

]

SRS 0.0228799 0.028244 0.0311799 0.0452084 0.0644545 0.1936849 0.1822071 0.1833652 0.1721255 0.1467526

ERSS 0.0102854 0.0154112 0.0217249 0.0437198 0.0611709 0.0788966 0.0813828 0.08313 0.0966679 0.098809

ˆ̄Y3ERSSa
= ȳ[a]

[

β2XµX +CX

β2X x̄(a)+CX

]

SRS 0.023543 0.0266576 0.0307184 0.0468753 0.0627374 0.1894285 0.187493 0.1834673 0.1657038 0.148337

ERSS 0.0101325 0.0154559 0.0211064 0.0454989 0.0635411 0.0769606 0.0848768 0.08612 0.0936018 0.0972394

ˆ̄Y4ERSSa
= ȳ[a]

[

µX +SX

x̄(a)+SX

]

SRS 0.0284588 0.0308181 0.0338651 0.048739 0.0646897 0.1614895 0.1726636 0.1640717 0.1508197 0.1369065

ERSS 0.0128794 0.0173838 0.0238402 0.0439633 0.0633808 0.0704374 0.0764649 0.0776193 0.0874932 0.0983925

Table 4: MSE values of different estimators using SRS and ERSS for m = 6,r = 4.

Estimator ρXY 0.99 0.9 0.8 0.7 0.5 −0.99 −0.9 −0.8 −0.7 −0.5

ˆ̄Y1ERSSa
= ȳ[a]

[

µX +ρXY

x̄(a)+ρXY

]

SRS 0.0133039 0.0148865 0.0170387 0.0239208 0.0312614 0.1091832 0.1102434 0.0999666 0.090003 0.0764261

ERSS 0.0065831 0.0088927 0.0114613 0.0226373 0.0310097 0.0456315 0.0447123 0.0472675 0.0501376 0.0510662

ˆ̄Y2ERSSa
= ȳ[a]

[

µX +CX

x̄(a)+CX

]

SRS 0.0117771 0.0131748 0.0154717 0.0228518 0.030882 0.0919903 0.0920865 0.0866318 0.0833786 0.0718192

ERSS 0.0052139 0.007885 0.0110488 0.0216899 0.0321166 0.0385758 0.0400184 0.0407774 0.0457131 0.0481164

ˆ̄Y3ERSSa
= ȳ[a]

[

β2XµX +CX

β2X x̄(a)+CX

]

SRS 0.011078 0.013142 0.0149048 0.0243094 0.0308484 0.0915886 0.0917993 0.0891019 0.079593 0.0754453

ERSS 0.0048665 0.0075851 0.0106771 0.0222789 0.0308866 0.0390286 0.0414351 0.0413122 0.0467898 0.0487322

ˆ̄Y4ERSSa
= ȳ[a]

[

µX +SX

x̄(a)+SX

]

SRS 0.013897 0.0148891 0.0174452 0.0236295 0.0314632 0.0877026 0.0829768 0.0808907 0.0719681 0.0665056

ERSS 0.0062653 0.0092167 0.0120893 0.022158 0.0312568 0.0361718 0.0369842 0.0391167 0.0410935 0.0468384



Table 5: MSE values of different estimators using SRS and ERSS for m = 5,r = 2.

Estimator ρXY 0.99 0.9 0.8 0.7 0.5 −0.99 −0.9 −0.8 −0.7 −0.5

ˆ̄Y1ERSSc
= ȳ[c]

[

µX +ρXY

x̄(c)+ρXY

]

SRS 0.0337842 0.0364239 0.0406543 0.0606875 0.078297 0.262396 0.2657483 0.255815 0.2125039 0.1911728

ERSS 0.0156276 0.0217249 0.028424 0.0537139 0.0739129 0.1054132 0.1133406 0.1088354 0.1215593 0.1208256

ˆ̄Y2ERSSc
= ȳ[c]

[

µX +CX

x̄(c)+CX

]

SRS 0.0272919 0.0313738 0.0354903 0.0559322 0.0752243 0.2202212 0.2207612 0.2131319 0.1939198 0.1723402

ERSS 0.013084 0.0188902 0.0268646 0.0524263 0.0737738 0.091501 0.0921889 0.0989449 0.1129062 0.1136797

ˆ̄Y3ERSSc
= ȳ[c]

[

β2XµX +CX

β2X x̄(c)+CX

]

SRS 0.0277326 0.0304337 0.0352675 0.0577364 0.0741742 0.2386541 0.2225659 0.21779 0.1927738 0.182693

ERSS 0.0123854 0.0193276 0.0258538 0.0518648 0.0761968 0.0972475 0.0981524 0.1052062 0.1178463 0.1166842

ˆ̄Y4ERSSc
= ȳ[c]

[

µX +SX

x̄(c)+SX

]

SRS 0.0353522 0.0371511 0.0436183 0.0577978 0.0757769 0.2082045 0.2042378 0.2015726 0.1789549 0.1646477

ERSS 0.0147976 0.0206443 0.0283466 0.053068 0.0742967 0.0853865 0.0904359 0.0950412 0.1041661 0.1122718

Table 6: MSE values of different estimators using SRS and ERSS for m = 4,r = 1.

Estimator ρXY 0.99 0.95 0.90 0.80 0.75

ˆ̄Y
′

1ERSSa
= ȳ[a]

[

µX +ρXY

x̄[a]+ρXY

][

µZ +ρY Z

z̄(a)+ρYZ

]

SRS 0.0407724 0.0501944 0.0592333 0.0824846 0.0930625

ERSS 0.0389418 0.0395594 0.0377836 0.0373521 0.0376105

ˆ̄Y
′

2ERSSa
= ȳ[a]

[

µX +CX

x̄[a]+CX

][

µZ +CZ

z̄(a)+CZ

]

SRS 0.0325959 0.0391727 0.0554632 0.0779341 0.0896016

ERSS 0.0289404 0.029944 0.0299202 0.0294217 0.0303673

ˆ̄Y
′

3ERSSa
= ȳ[a]

[

β2XµX +CX

β2X x̄[a]+CX

][

β2ZµZ +CZ

β2Z z̄(a)+CZ

]

SRS 0.0311288 0.0393582 0.0503898 0.0760209 0.0873974

ERSS 0.0269807 0.0272861 0.0293202 0.0304836 0.0275289

ˆ̄Y
′

4ERSSa
= ȳ[a]

[

µX +SX

x̄[a]+SX

][

µZ +SZ

z̄(a)+SZ

]

SRS 0.0446412 0.0502939 0.0623651 0.0846077 0.0935501

ERSS 0.0386108 0.0411331 0.0394753 0.0393358 0.0392025



Table 7: MSE values of different estimators using SRS and ERSS for m = 5,r = 1.

Estimator ρXY 0.99 0.95 0.90 0.80 0.75

ˆ̄Y
′

1ERSSc
= ȳ[c]

[

µX +ρXY

x̄[c]+ρXY

][

µZ +ρY Z

z̄(c)+ρYZ

]

SRS 0.0317161 0.0380387 0.0458682 0.0654852 0.0720379

ERSS 0.0299674 0.028886 0.0288459 0.0299894 0.0306687

ˆ̄Y
′

2ERSSc
= ȳ[c]

[

µX +CX

x̄[c]+CX

][

µZ +CZ

z̄(c)+CZ

]

SRS 0.0242259 0.0321638 0.0398709 0.0599825 0.0709018

ERSS 0.0221972 0.0233933 0.022709 0.0232737 0.0233012

ˆ̄Y
′

3ERSSc
= ȳ[c]

[

β2XµX +CX

β2X x̄[c]+CX

][

β2ZµZ +CZ

β2Z z̄(c)+CZ

]

SRS 0.0238334 0.0311472 0.0413165 0.0602494 0.0688909

ERSS 0.0214479 0.0212721 0.0222061 0.0205364 0.0219412

ˆ̄Y
′

4ERSSc
= ȳ[c]

[

µX +SX

x̄[c]+SX

][

µZ +SZ

z̄(c)+SZ

]

SRS 0.0330982 0.0391957 0.049966 0.069275 0.0761463

ERSS 0.029793 0.0300217 0.0308689 0.0312941 0.0305486

Table 8: MSE values of different estimators using SRS and ERSS for m = 5,r = 2.

Estimator ρXY 0.99 0.95 0.90 0.80 0.75

ˆ̄Y
′

1ERSSc
= ȳ[c]

[

µX +ρXY

x̄[c]+ρXY

][

µZ +ρY Z

z̄(c)+ρYZ

]

SRS 0.0159022 0.0182493 0.0223628 0.0317303 0.0351792

ERSS 0.0149805 0.0146252 0.0147981 0.0150615 0.0149301

ˆ̄Y
′

2ERSSc
= ȳ[c]

[

µX +CX

x̄[c]+CX

][

µZ +CZ

z̄(c)+CZ

]

SRS 0.0115080 0.0154952 0.0197208 0.0313548 0.0351996

ERSS 0.0110513 0.0109730 0.0110084 0.0111618 0.0111697

ˆ̄Y
′

3ERSSc
= ȳ[c]

[

β2XµX +CX

β2X x̄[c]+CX

][

β2ZµZ +CZ

β2Z z̄(c)+CZ

]

SRS 0.0109745 0.0143726 0.0195953 0.0311480 0.0356664

ERSS 0.0107352 0.0106756 0.0103141 0.0105737 0.0103239

ˆ̄Y
′

4ERSSc
= ȳ[c]

[

µX +SX

x̄[c]+SX

][

µZ +SZ

z̄(c)+SZ

]

SRS 0.0160405 0.0187243 0.0234514 0.0316207 0.0367001

ERSS 0.0146324 0.0153025 0.0146813 0.0143856 0.0153041



64 A family of ratio estimators for population mean in extreme ranked set sampling using two...

Population-I: Source: Murthy (1967).

log(Y ): output of a factory, log(X) : fixed capital.

N = 80, m = 4, 6, 8, r = 1, µY = 8.480904, µX = 6.750716 and ρXY = 0.9640175.

Table 9: Estimated MSE values.

Estimator SRS and ERSS m = 4 m = 6 m = 8

ˆ̄Y1ERSSa
= ȳ[a]

[

µX +ρXY

x̄(a)+ρXY

]

SRS 0.05314492 0.03622249 0.02676690

ERSS 0.02439540 0.01409169 0.01021740

ˆ̄Y2ERSSa
= ȳ[a]

[

µX +CX

x̄(a)+CX

]

SRS 0.07966297 0.05430063 0.04004554

ERSS 0.03555703 0.01935204 0.01299920

ˆ̄Y3ERSSa
= ȳ[a]

[

β2XµX +CX

β2X x̄(a)+CX

]

SRS 0.08237797 0.05614814 0.04140083

ERSS 0.03670370 0.01989512 0.01329300

ˆ̄Y4ERSSa
= ȳ[a]

[

µX +SX

x̄(a)+SX

]

SRS 0.05842170 0.03982448 0.02941517

ERSS 0.02660899 0.01513016 0.01075533

Population-II: Source: Murthy (1967).

log(Y ): output of a factory, log(X): fixed capital and log(Z) : number of workers.

N = 80, m = 4,6,8, r = 1, µY = 8.480904, µX = 6.750716, µZ = 5.233816,

ρXY = 0.9640175 and ρY Z = 0.916134.

Table 10: Estimated MSE values.

Estimator SRS and ERSS m = 4 m = 6 m = 8

ˆ̄Y
′

1ERSSa
= ȳ[a]

[

µX +ρXY

x̄[a]+ρXY

][

µZ +ρYZ

z̄(a)+ρYZ

]

SRS 0.7599230 0.4833926 0.3632148

ERSS 0.2603936 0.1286980 0.0919748

ˆ̄Y
′

2ERSSa
= ȳ[a]

[

µX +CX

x̄[a]+CX

][

µZ +CZ

z̄(a)+CZ

]

SRS 1.0409530 0.6582852 0.4931993

ERSS 0.3510492 0.1686980 0.1163822

ˆ̄Y
′

3ERSSa
= ȳ[a]

[

β2XµX +CX

β2X x̄[a]+CX

][

β2ZµZ +CZ

β2Z z̄(a)+CZ

]

SRS 1.0751500 0.6794242 0.5088861

ERSS 0.3618654 0.1734536 0.1193290

ˆ̄Y
′

4ERSSa
= ȳ[a]

[

µX +SX

x̄[a]+SX

][

µZ +SZ

z̄(a)+SZ

]

SRS 0.7816216 0.4970571 0.3733052

ERSS 0.2679331 0.1318287 0.0934524


