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record values and their concomitants in the

presence of inter-record times?
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Abstract

It is shown that, although the distribution of inter-record time does not depend on the parent
distribution, Fisher information increases when inter-record times are included. The general
results concern different classes of bivariate distributions and propose a comparison study of
the Fisher information. This study is done in situations in which the univariate counterpart of
the underlying bivariate family belongs to a general continuous parametric family and its well-
known subclasses such as location-scale and shape families, exponential family and proportional
(reversed) hazard model. We derived some explicit formulas for the additional information of
record time given records and their concomitants (bivariate records) for some classes of bivariate
distributions. Some common distributions are considered as examples for illustrations and are
classified according to this criterion. A simulation study and a real data example from bivariate
normal distribution are considered to study the relative efficiencies of estimator based on bivariate
record values and inter-record times with respect to the corresponding estimator based on iid
sample of the same size and bivariate records only.
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1 Introduction

Let {(Xi,Yi), i ≥ 1} be a sequence of bivariate random variables from a continuous

distribution with the real valued parameter θ . Let {Rn,n ≥ 1} be the sequence of record

values in the sequence of X’s. Then the Y -variable associated with the X-value which is
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quantified as the nth record is called the concomitant of the nth record and is denoted by

R[n]. The most important use of concomitants of record values arises in experiments in

which a specified characteristic’s measurements of an individual are made sequentially

and only values that exceed or fall below the current extreme value are recorded. So

the only observations are bivariate record values, i.e., records and their concomitants.

Such situations often occur in industrial stress, life time experiments, sporting matches,

weather data recording and some other experimental fields.

Under certain regularity conditions, the Fisher information about the real parameter

θ contained in a random variable X with density f (x;θ ) is defined by (see, for example,

Lehmann, 1989, p. 115), IX(θ ) = E
(

∂ log f (X ;θ )
∂θ

)2

= −E
(

∂ 2 log f (X ;θ )

∂θ2

)

. The Fisher

information plays an important role in statistical estimation and inference through the

information (Cramér-Rao) inequality and its association with the asymptotic properties,

especially the asymptotic variance of the maximum likelihood estimators. It can also be

used to compute the variance of the estimator whose variance is equal to Cramér-Rao

lower bound, i.e., δ(X), Var(δ(X)) = ( ∂
∂θ

Eδ(X))2/IX(θ ). Abo-Eleneen and Nagaraja

(2002) investigated some properties of Fisher information in an order statistic and its

concomitant. Recently, Nagaraja and Abo-Eleneen (2008) considered bivariate censored

samples and evaluated the Fisher information contained in a collection of order statistics

and their concomitans.

Several authors have considered the amount of Fisher information in record data and

have discussed its applications in inference [see, for example, Ahmadi and Arghami

(2001, 2003), Hofmann and Nagaraja (2003), Balakrishnan and Stepanov (2005) and

references therein]. However, the treatment of Fisher information contained in the bi-

variate record values is very limited. The question “How much information is contained

in records and their concomitants about a specified parameter?” was addressed by Amini

and Ahmadi (2007, 2008).

The time at which a record appears is called record time. There is no information,

in record times themselves, about the sampling distribution, since for a continuous

sampling distribution F , the joint distribution of record times does not depend on F

(see, Arnold et al., 1998, Section 2.5). Nevertheless, there is crucial information about

F in the joint distribution of record times and record values. Actually, in the process

of obtaining the bivariate record values, one usually observes the record times. So, it is

worthwhile to use them, since they provide meaningful additional information. Ahmadi

and Arghami (2003) and Hofmann (2004) presented some comparison results of Fisher

information in univariate record values and record times with the Fisher information

contained in the same number of random univariate observations. The aim of this paper

is to investigate the amount of Fisher information in bivariate record values in the

presence of inter-record times in some well-known bivariate classes of distributions. We

have especially focused on the increment of Fisher information by considering inter-

record times. We also study some estimation results based on bivariate record values

and inter-record times.
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The rest of paper is organized as follows. Section 2 contains some preliminaries

and introduction to some classes of univariate and bivariate distributions. In Section

3, we establish some general results to compare the amount of the Fisher information

contained in a set of the first n bivariate record values and inter-record times with a

bivariate random sample of same size from the parent distribution. For each result, we

give some examples for illustration. In Section 4, a simulation study and a real data

example from bivariate normal distribution are also presented.

2 Preliminaries

Let {(Xi,Yi), i ≥ 1} be a sequence of iid bivariate random variables with an absolutely

continuous cumulative distribution function (cdf) FX ,Y (x,y;θ), where θ is a real valued

parameter. The marginal probability density function (pdf) and cdf of X are denoted

by fX(x;θ) and FX(x;θ), respectively. Furthermore, hX(x;θ) = fX(x;θ)/F̄X(x;θ) and

h̃X(x;θ) = fX(x;θ)/FX(x;θ) are the hazard rate and the reversed hazard rate functions

of X , respectively, where F̄X(x;θ) = 1−FX(x;θ).

The sequence of bivariate record values is defined as (Rn,R[n]) = (XTn ,YTn), n ≥ 1,

where T1 = 1 with probability one and for n ≥ 2, Tn = min{ j : j > Tn−1, X j > XTn−1
}.

An analogous definition deals with lower records and their concomitants. In this pa-

per, we assume that the data available for study are records (upper or lower), inter-record

times and their concomitants. Such data may be rewritten as (R1,∆1,R[1]),(R2,∆2,R[2]),

. . . ,(Rn,∆n,R[n]), where ∆i = Ti+1 −Ti −1, i = 1,2, . . . ,n−1, ∆n = 0 are the number of

trials needed to obtain new records. Let us denote

Rn = (R1, . . . ,Rn), ∆∆∆n = (∆1, . . . ,∆n),Cn = (R[1], . . . ,R[n]).

Suppose the observed data is (r1,δ1,s1), . . . ,(rn,δn,sn), then the joint pdf of the first n

upper records and inter-record times is (see Arnold et al., 1998, p. 169)

f(Rn,∆∆∆n)(rn,δδδn;θ) =
n

∏
i=1

fX(ri;θ){FX(ri;θ)}δi . (1)

Using (1) the joint pdf of records, inter-record times and their concomitants is given by

f(Rn,∆∆∆n,Cn)(rn,δδδn,sn;θ) =
n

∏
i=1

fX ,Y (ri,si;θ){FX(ri;θ)}δi . (2)

So, the conditional probability mass function of ∆∆∆n given (Rn,Cn) is given by

f(∆∆∆n|Rn,Cn)(δδδn|rn,sn;θ) =
n−1

∏
i=1

[FX(ri;θ)]
δiF̄X(ri;θ). (3)
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In order to perform a comparison study, first let us consider some classes of univari-

ate and bivariate distributions as follows:

F = { fX ,Y : fY |X is free of θ},

B = { fX ,Y : fX ,Y (x,y;θ) = a(θ)b(x,y)exp{c(θ)d(x,y)},a(θ)> 0,b(x,y)> 0},

K = { fX ,Y : fY |X(y|x) is in the form of fX ,Y in B},

C1 = {FX : F̄X(x;θ) = (Ḡ(x))α(θ )},

C2 = {FX : FX(x;θ) = (H(x))β(θ )},

Di = { fX ,Y ∈ F : FX ∈ Ci}, i = 1,2,

Ei = { fX ,Y ∈ K : FX ∈ Ci, with c(θ ) = α(θ )I1(i)+β(θ )I2(i)}, i = 1,2,

G = { fX ,Y ∈ F : fX ∈ E },

H = { fX ,Y ∈ K : fX ∈ E },

LB = { fX ,Y ∈ B : FX(x;θ) = F0(x−θ ), θ ∈ R or FX(x;θ) = F1(θx), θ > 0},

SB = { fX ,Y ∈ B : FX(x;θ) = F1(x
θ ), θ > 0, x > 0},

LK = { fX ,Y ∈ K : FX(x;θ) = F0(x−θ ), θ ∈ R or FX(x;θ) = F1(θx), θ > 0}

and

SK = { fX ,Y ∈ K : FX(x;θ) = F1(x
θ ), θ > 0, x > 0},

where α(θ ) and β(θ ) are real positive functions, G(x) and H(x) are arbitrary continuous

cdf’s, free of θ , Ḡ(x) = 1−G(x), E in G and H stands for the well-known exponential

family, F0 and F1 are arbitrary cdf’s, free of θ (Fi(t) = FX(t; i), i = 0,1) and F̄i(x) =

1−Fi(x), i = 0,1. Let hi(x) and h̃i(x), i = 0,1 stand for the standard hazard rate and

the reversed hazard rate functions of a random variable with pdf fi and cdf Fi, i = 0,1,

respectively.

Indeed, C1 and C2 stand for two well-known families of distributions in life-time

experiments literature, the proportional hazard model and proportional reversed hazard

model, respectively (see for example Lawless, 2003). Classes B, D1 and D2 include

several well-known distributions (see Amini and Ahmadi, 2008). We should emphasize

that, although in the two classes D1 and D2, fY |X is free of θ , fY may depend on it. In
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fact by considering a single (X ,Y ), one would find X a sufficient statistic for θ . Since

C1 and C2 are both subsets of E , D1 and D2 are both subsets of G .

It is clear that LB ⊂ B, SB ⊂ B and Di ⊂ G ⊂ H ⊂ B, i = 1,2. Note that in the

functional form of B, one may let d(x,y,η) = 0 and a(θ ,η) = 1 to obtain a form of

fY |X(y|x) that is free of θ .

We shall note that, although we have used bivariate upper records and times to obtain

the results of this paper, corresponding results for bivariate lower records are derived and

classified in Table 8.

The hazard rate function and the reversed hazard rate functions are important

characteristics for the analysis of reliability data. A random variable X is said to be

Increasing Hazard Rate (Reversed Hazard Rate), Decreasing Hazard Rate (Decreasing

Reversed Hazard Rate) or Constant Hazard Rate (Constant Reversed Hazard Rate), and

is denoted by IHR (IRHR), DHR (DRHR) or CHR (CRHR), if its hazard rate (reversed

hazard rate) function is increasing, decreasing or constant, respectively.

3 Main results

Since reparameterizing θ = z(γ), for a differentiable z(.), transforms the Fisher informa-

tion of any data to (
∂

∂γ
z(γ))2IX(z(γ)) (see Lehmann, 1989), we may assume throughout

that c(θ ) = θ . To prove the main results of this paper, we need the following lemma.

The proof is easy and hence is omitted.

Lemma 1 The pdf fX ,Y (x,y;θ) belongs to B with natural parameter θ (c(θ ) = θ ) if

and only if ∂ 2

∂θ2 log fX ,Y (x,y;θ) does not depend on x and y.

Note: Obviously, we have

IRn,∆∆∆n,Cn
(θ ) = IRn,Cn(θ )+ I∆∆∆n|Rn,Cn

(θ ), (4)

where I∆∆∆n|Rn,Cn
(θ ) = I∆∆∆n|Rn

(θ ) is indeed ERn(I∆∆∆n|Rn
(θ )). Hereafter, we will use the

notation I∆∆∆n|Rn,Cn
(θ ) instead of ERn(I∆∆∆n|Rn

(θ )).

Proposition 1 Let {(Xi,Yi), i ≥ 1} be a sequence of iid bivariate random variables with

pdf fX ,Y (x,y;θ), then IRn,Cn,∆∆∆n
(θ ) ≥ IRn,Cn(θ ), with equality while FX is free of θ and

the increment of Fisher information by considering inter-record times is given by

I∆∆∆n|Rn,Cn
(θ ) =−

n−1

∑
i=1

E

[

FX(Ri;θ )

F̄X(Ri;θ )

∂ 2

∂θ 2
logFX(Ri;θ )+

∂ 2

∂θ 2
log F̄X(Ri;θ )

]

.

So I∆∆∆n|Rn,Cn
(θ ) = 0 when FX is free of θ .
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Proof From (4), we conclude that IRn,Cn,∆∆∆n
(θ )≥ IRn,Cn(θ ). Using (3) and the fact that

E(δi|Ri)=FX(Ri;θ )/F̄X(Ri;θ ) along with the definition of Fisher information, the proof

is complete.

The univariate case of Proposition 1 is obtained by Hofmann (2004).

Example 1 (Farlie-Gumbel-Morgenstern family of distributions) Let

fX ,Y (x,y;θ) = fX(x) fY (y)[1+θ(1−2FX(x))(1−2FY (y))],−1 < θ < 1.

Amini and Ahmadi (2007) showed that for this family IRn,Cn(θ ) > nI(X ,Y )(θ ). However,

since FX is free of θ , Proposition 1 yields that I∆∆∆n|Rn,Cn
(θ ) = 0. So IRn,Cn,∆∆∆n

(θ ) >

nI(X ,Y )(θ ).

Theorem 1 Suppose fX ,Y (x,y;θ) belongs to K and let l(x;θ)=
∂ 2

∂θ 2
log fX(x;θ). Then

(i) if l(x;θ) is decreasing in x and FX(x;θ ) is strictly log-concave or log-linear in θ ,

then IRn,Cn,∆∆∆n
(θ )> nI(X ,Y )(θ );

(ii) if l(x;θ) is increasing in x and FX(x;θ ) is strictly log-convex or log-linear in θ ,

then IRn,Cn,∆∆∆n
(θ )< nI(X ,Y )(θ ).

Proof

(i) Equation (2) yields

∂ 2

∂θ 2
log f(Rn,∆∆∆n,Cn)(rn,δδδn,sn;θ) =

n

∑
i=1

∂ 2

∂θ 2
log fX ,Y (ri,si;θ)+

n−1

∑
i=1

δi

∂ 2

∂θ 2
log FX(ri;θ).

(5)

The second term of the right hand side of (5) is non-positive by assumption. On

the other hand

∂ 2

∂θ 2
log fX ,Y (ri,si;θ) =

∂ 2

∂θ 2
log fX(ri;θ)+

∂ 2

∂θ 2
log fY |X(si|ri;θ). (6)

By assumptions and in the view of Lemma 1 the second term on the right hand side

of (6) does not depend on ri and si. Noting that record values are stochastically

ordered, i.e., Ri <st Ri+1, we have E(l(Ri;θ )) > E(l(Ri+1;θ )) for each i, since

l(x;θ ) is decreasing in x. Thus the proof is complete using the definition of Fisher

information.

(ii) The proof is similar to that of part (i).
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Remark 1 One can easily see that

∂ 2

∂θ 2
logFX(x;θ) =

L(x;θ)

F2
X (x;θ)

,

where L(x;θ) =FX(x;θ)∂ 2/∂θ 2FX(x;θ)−(∂/∂θFX(x;θ))2. So FX(x;θ ) is strictly log-

concave, log-linear or strictly log-convex if and only if L(x;θ ) is negative, zero or

positive. This approach is used in the next illustrative examples.

Remark 2 For the case of lower records, their concomitants and inter-record times the

result of the Theorem 1 holds by considering F̄X instead of FX and replacing increasing

by decreasing and vice versa.

Example 2 Bivariate normal with a known correlation r and µX =r−1µY = σX = σY

= θ . This family does not belong to class B. However, the distribution of Y given X = x

is normal with mean rx and variance θ 2(1−r2) which is a member of B. So, this family

is a member of K . Taking α= θ−1, l(x;α) =−α−4/2−α−3x/4 which is decreasing in

x. Also

L(x;α) =
1

2π
e−(1/2)(αx−1)2

[

(αx−1)
∫ ∞

αx−1
e−(1/2)u2

du− e−(1/2)(αx−1)2

]

,

it can be shown that the expression in the bracket on the right hand side of the above

equation is negative (see Ahmadi and Arghami, 2001). Hence IRn,Cn,∆∆∆n
(θ )> nI(X ,Y )(θ )

by Theorem 1.

Theorem 2 Let fX ,Y (x,y;θ) belong to B. Then IRn,Cn,∆∆∆n
(θ ) is less than, equal to or

greater than nI(X ,Y )(θ ) if FX(x;θ) is strictly log-convex, log-linear and strictly log-

concave, respectively in θ .

Proof By Lemma 1, the first term on the right hand side of (5) does not depend on ri’s

and si’s, and it’s expected value equals −nI(X ,Y )(θ). This completes the proof.

Some illustrative examples of Theorem 2 are bivariate normal with a known corre-

lation r, µX = θ µY = 0 and σX = σY = 1, Arnold and Strauss’s bivariate exponential

(Arnold and Strauss, 1988 [See also Amini and Ahmadi, 2008]), Mardia’s bivariate

Pareto distribution with the joint pdf

fX ,Y (x,y;θ) = θ (θ +1)(1+ x+ y)−(θ+2), x, y, θ > 0,

McKay’s bivariate gamma distribution and Bilateral bivariate Pareto distribution. The

results of these examples are summarized in Table 8 and the last two are presented

below.
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Example 3 McKay’s bivariate gamma distribution (McKay, 1934). Suppose (X ,Y ) has

the joint pdf

fX ,Y (x,y;θ) =
θ a+b

Γ(a)Γ(b)
xa−1(y− x)b−1e−θ y, y > x > 0, θ > 0, (7)

where a and b are known positive real numbers and Γ(.) is the well-known gamma func-

tion.

This family is a member of B and the marginal distribution of X is gamma with parame-

ters a and θ . Hence L(x;θ)= θ2a−2xa

Γ(a)2 e−θx
{

(a−1−θx)
∫ x

0 ya−1 exp(−θy) dy− xae−θx
}

,

which is negative (see Ahmadi and Arghami, 2003). Therefore, applying Theorem 2,

IRn,Cn,∆∆∆n
(θ )> nI(X ,Y )(θ ).

Example 4 Bilateral bivariate Pareto distribution. This family has the joint pdf (for

example, see De Groot, 1970)

fX ,Y (x,y;θ) = θ (θ +1)(a−b)θ (y− x)−(θ+2), x < b < a < y, θ > 1, (8)

where the two quantities a and b are known positive real numbers.

This is again a member of B, and the marginal pdf of X is given by fX(x;θ) = θ (a−b)θ

(a−x)θ+1 .

We obtain L(x;θ) = 0. Hence applying Theorem 2, IRn,Cn,∆∆∆n
(θ ) = nI(X ,Y )(θ ).

Theorem 3 (Location or scale marginal in B) Let fX ,Y (x,y;θ ,η) belong to LB , then:

(i) IRn,Cn,∆∆∆n
(θ ) is less than, equal to or greater than nI(X ,Y )(θ ) if X, is IRHR, CRHR or

DRHR, respectively;

(ii) the increment of Fisher information by considering inter-record times is equal to

I∆∆∆n|Rn,Cn
(θ ) =

n−1

∑
i=1

E

[

h2
0(Ri −θ )

F0(Ri −θ )

]

, (9)

for a location marginal and equals

I∆∆∆n|Rn,Cn
(θ ) =

n−1

∑
i=1

E

[

R2
i h2

1(θRi)

F1(θRi)

]

, (10)

for the scale marginal.

Proof

(i) One can easily show that for both location and scale families, ∂ 2

∂θ2 logFX(x;θ) and

∂ 2

∂x2 logFX(x;θ) have the same sign, that is, convexity, linearity and concavity of



Morteza Amini and Jafar Ahmadi 221

logFX(x;θ), in x is similar to that in θ . On the other hand, FX(x;θ) is strictly log-

convex, log-linear or strictly log-concave in x if and only if the reversed hazard

rate function, h̃X(x;θ), is increasing, constant or decreasing in x, respectively. So

the results of part(i) follow from Theorem 2 and Remark 2.

(ii) Use Proposition 1. Note that for location and scale families, ∂ 2

∂θ2 logFX(x;θ) is

equal to ∂ 2

∂x2 logFX(x;θ) and x2 ∂ 2

∂x2 logFX(x;θ), respectively. Also ∂ 2

∂x2 logFX(x;θ)

equals ∂
∂x

log h̃X(x;θ) and ∂ 2

∂x2 log F̄X(x;θ) equals ∂
∂x

loghX(x;θ). So

I∆∆∆n|Rn,Cn
(θ ) =

n−1

∑
i=1

E

(

h′0(Ri −θ )−
h̃′0(Ri −θ )F0(Ri −θ )

F̄0(Ri −θ )

)

=
n−1

∑
i=1

E

[

h2
0(Ri −θ )

F0(Ri −θ )

]

,

for a location marginal and

I∆∆∆n|Rn,Cn
(θ ) =

n−1

∑
i=1

E

[

R2
i

(

h′1(θRi)−
h̃′1(θRi)F1(θRi)

F̄1(θRi)

)]

=
n−1

∑
i=1

E

[

R2
i h2

1(θRi)

F1(θRi)

]

,

for the scale marginal.

Example 5 Bivariate normal with known correlation r, µX = θ µY = 0 and σX

= σY = 1. The considered bivariate normal family belongs to LB, and the normal dis-

tribution is DRHR. Hence Theorem 3 also yields that IRn,Cn,∆∆∆n
(θ )> nI(X ,Y )(θ ). Table 1

shows the values of I∆∆∆n|Rn,Cn
(θ ) for n = 2,3,5,7,10 of the normal distribution.

Example 6 (Continuation of Example 3) This family belongs to LB and the distribution

of X is DRHR. Therefore, applying Theorem 3, IRn,Cn,∆∆∆n
(θ )> nI(X ,Y )(θ ). Table 2 shows

the values of θ 2I∆∆∆n|Rn,Cn
(θ ) for different values of n and a. As can be seen, these values

increase as the shape parameter a increases.

Example 7 Bivariate gamma exponential distribution (i). Suppose that

fX ,Y (x,y;θ) = θdxexp{−(θx+dxy)} x > 0, y > 0, θ > 0, (11)

where d is a known positive real number. This family belongs to LB, and the exponential

distribution is DRHR. Therefore Theorem 3 yields that IRn,Cn,∆∆∆n
(θ ) > nI(X ,Y )(θ ). The

values of θ 2I∆∆∆n|Rn,Cn
(θ ) in Table 2 with a = 1 are the corresponding Fisher information

for the exponential distribution.



222 How much Fisher information is contained in record values...

Table 1: The values of I∆∆∆n|Rn,Cn
(0) for n = 2,3,5,7,10

from standard normal distribution.

n 2 3 5 7 10

I∆∆∆n|Rn,Cn
(0) 1.6718 4.7961 15.7557 33.5634 73.9717

Corollary 1 (Shape marginal in B) Let fX ,Y (x,y;θ) belong to SB. Then IRn,Cn,∆∆∆n
(θ )

is less than, equal to or greater than nI(X ,Y )(θ ), if k(x) = xh̃1(x) is increasing, constant

or decreasing in x.

Proof As in the proof of Theorem 2, and since we have in shape family FX(x;θ ) =

F1(x
θ ), taking γ= xθ it follows that

∂ 2

∂θ 2
logF1(x

θ ) = xθ (logx)2[
∂

∂γ
γh̃1(γ)].

Since x > 0, this gives us the result.

Example 8 Sub-class of H with power distribution marginal. In order to illustrate

the result of Corollary 1, a sub-class of S with FX(x) = xθ , x > 0, θ > 0 is concerned.

Hence, fY |X(y|x) must have the functional form of B. So this class is also a sub-class of

H with power distribution marginal. For power distribution, k(x) = xh̃1(x) = 1, x > 0,

which is constant. So IRn,Cn,∆∆∆n
(θ ) = nI(X ,Y )(θ ) by Corollary 1. An example of such

bivariate distributions can be

fX ,Y (x,y;θ) = θ 2x−1 exp{θ (logx+ x− y)}, 0 < x < y, θ > 0.

Corollary 2 (Location or scale marginal in K ) Let fX ,Y (x,y;θ) belong to LK . Then

IRn,Cn,∆∆∆n
(θ ) is less (greater) than nI(X ,Y )(θ ) if X is IRHR (DRHR), or CRHR and l(x;θ)

is increasing (decreasing) in x.

Proof The proof is similar to that of Theorems 1 and 3.

Table 2: The values of θ2I∆∆∆n|Rn,Cn
(θ) for n = 3(2)7,10 and a = 0.5,1,2

of gamma distribution.

a

n 0.5 1 2

3 5.2036 8.8980 15.4526

5 27.0356 41.6880 66.4591

7 78.9683 114.1098 172.0214

10 245.0912 332.3383 473.1286
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Example 9 (Continuation of Example 2) The considered bivariate normal family be-

longs to LK with respect to parameter α, l(x;θ) is decreasing in x and the normal

distribution is DRHR. Hence IRn,Cn,∆∆∆n
(θ )> nI(X ,Y )(θ ) by Corollary 2.

Corollary 3 (Shape marginal in K ) Let fX ,Y (x,y;θ ,η) belong to SK . Then IRn,Cn,∆∆∆n
(θ )

is less (greater) than nI(X ,Y )(θ ), if k(x) = xh̃1(x) is increasing (decreasing) or constant

and l(x;θ) is increasing (decreasing) in x.

Proof The proof is similar to Theorem 1 and Corollary 1.

Corollary 4 Let {(Xi,Yi), i ≥ 1} be distributed as the family

{ fX ,Y (x,y;θ) ∈ B;FX is free of θ},

then IRn,Cn,∆∆∆n
(θ ) = nI(X ,Y )(θ ).

Proof It is deduced from Theorem 2, since L(x;θ ) = 0.

Example 10 Bivariate gamma exponential distribution (ii). Consider the joint pdf

fX ,Y (x,y;θ) =
abθ

Γ(b)
xb exp{−(ax+θxy)} x > 0, y > 0, θ > 0, (12)

where a and b are known positive real numbers. This family is a member of B and FX

is free of θ . Therefore by Corollary 4, IRn,Cn,∆∆∆n
(θ ) = nI(X ,Y )(θ ).

Remark 3 For the case of lower records, their concomitants and inter-record times the

results of Theorem 3 and Corollaries 1, 2 and 3 are reversed. For example in Corollary 2

IRn,Cn,∆∆∆n
(θ ) is less than (greater than) nI(X ,Y )(θ ), if X is DHR (IHR) or CHR and l(x;θ)

is decreasing (increasing) in x. Note that in this case, we consider the standard hazard

rate function in location and scale families, i.e., hi(x), i = 0,1.

Theorem 4 Let fX ,Y (x,y;θ) belong to E1, then:

(i) IRn,Cn,∆∆∆n
(θ )> nI(X ,Y )(θ );

(ii) the increment of Fisher information by considering inter-record times is equal to

I∆∆∆n|Rn,Cn
(θ ) =

(

α′(θ )

α(θ )

)2 n−1

∑
i=1

i(i+1)ξ(i+2), (13)

where ξ(.) is the Riemann Zeta function.
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Table 3: The values of (α(θ)/α′(θ))2I∆∆∆n|Rn,Cn
(α) for n = 2(3)14 in (13).

n 2 5 8 11 14

(α(θ)/α′(θ))2I∆∆∆n|Rn,Cn
(α) 2.404 41.688 170.222 442.365 912.397

Proof

(i) The class E1 is a subclass of B. Assuming α(θ) = α, we have

L(x;α) =−(logḠ(x))2Ḡ(x)α,

which is clearly negative. Hence, the result follows from Theorem 2.

(ii) Using Proposition 1, we have

I∆∆∆n|Rn,Cn
(α) =

n−1

∑
i=1

E

(

(logḠ(Ri))
2

1− Ḡ(Ri)α

)

= α−2
n−1

∑
i=1

E

(

(log F̄(Ri))
2

1− F̄(Ri)

)

= α−2
n−1

∑
i=1

1

(i−1)!

∫ 1

0

(− logv)i+1

1− v
dv.

Expanding the term 1/(1− v), we get

I∆∆∆n|Rn,Cn
(α) = α−2

n−1

∑
i=1

1

(i−1)!

∞

∑
j=1

∫ 1

0
v j−1(− logv)i+1 dv

= α−2
n−1

∑
i=1

i(i+1)ξ(i+2).

Table 3 shows the values of (α(θ )/α′(θ ))2I∆∆∆n|Rn,Cn
(α) for n = 2(3)14 in class E1.

Example 11 (Continuation of Example 7) The distribution of X is exponential with

parameter θ , which belongs to C1. Also the conditional distribution of Y given X = x

is free of θ . Hence, this family is a member of E1. Therefore Corollary 4 yields that

IRn,Cn,∆∆∆n
(θ )> nI(X ,Y )(θ ).

Theorem 5 Let fX ,Y (x,y;θ ,η) belong to E2, then:

(i) IRn,Cn,∆∆∆n
(θ ) = nI(X ,Y )(θ );

(ii) the increment of Fisher information by considering inter-record times is equal to

I∆∆∆n|Rn,Cn
(θ ) =

(

β ′(θ )

β(θ )

)2 n−1

∑
i=1

ϕ(i), (14)
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where

ϕ(i) =
∞

∑
r=1

∞

∑
s=1

1

rs

[

1

(r+ s−1)i
− 1

(r+ s)i

]

. (15)

Proof

(i) The class E2 is a subclass of B with c(θ) = β(θ ). We may assume without loss of

generality that β(θ ) = β . The result follows from Theorem 2, since L(x;β) = 0.

(ii) Using Proposition 1, we have

I∆∆∆n|Rn,Cn
(β) =

n−1

∑
i=1

E

(

H(Ri)
β(logH(Ri))

2

(1−H(Ri)β)2

)

= β−2
n−1

∑
i=1

E

(

F(Ri)(logF(Ri))
2

(1− F̄(Ri))2

)

= β−2
n−1

∑
i=1

1

(i−1)!

∫ 1

0

v

(1− v)2
(logv)2(− log(1− v))i−1 dv.

Expanding log(v) we have

I∆∆∆n|Rn,Cn
(β) = β−2

n−1

∑
i=1

1

(i−1)!

∞

∑
r=1

∞

∑
s=1

1

rs

∫ 1

0
v(1− v)r+s−2(− log(1− v))i−1 dv

= β−2
n−1

∑
i=1

∞

∑
r=1

∞

∑
s=1

1

rs

[

1

(r+ s−1)i
− 1

(r+ s)i

]

.

Table 4 shows the values of ϕ(i) for i = 1(1)7, which are calculated to 4 decimal

places using the R package. These values tend very quickly to 1 as i increases, such

that they are approximately equal to one, for i ≥ 7. Hence using these values is a proper

approach to calculate I∆∆∆n|Rn,Cn
(β). Table 5 shows these values for n= 2(3)14 in class E2.

Table 4: The values of ϕ(i) in (15) for i = 1(1)7.

i 1 2 3 4 5 6 7

ϕ(i) 0.8857 0.9772 0.9943 0.9984 0.9995 0.9999 1.0000

Table 5: The values of (β(θ)/β ′(θ))2I∆∆∆n|Rn,Cn
(β) in (14) for n = 2(3)14.

n 2 5 8 11 14

(β(θ)/β ′(θ))2I∆∆∆n|Rn,Cn
(β) 0.8857 3.8608 6.8602 9.8602 12.8602
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Example 12 (Continuation of Example 4). We have FX(x;θ) =
(

a−b
a−x

)θ
. Hence FX

belongs to C2 and therefore fX ,Y (x,y;θ) ∈ E2. Thus, using Theorem 5, IRn,Cn,∆∆∆n
(θ ) =

nI(X ,Y )(θ ).

Theorem 6 Let fX ,Y (x,y;θ) belong to F or K . Then IRn,Cn,∆∆∆n
(θ ) is less than, equal to

or greater than nI(X ,Y )(θ ) if and only if IRn,∆∆∆n
(θ ) is less than, equal to or greater than

nIX(θ ), respectively.

Proof From equations (1) and (2)

IRn,Cn,∆∆∆n
(θ ) = IRn,∆∆∆n

(θ )−E

[

n

∑
i=1

∂ 2

∂θ 2
log fY |X(R[i]|Ri;θ)

]

.

The expectation above is equal to zero and nE
[

∂ 2

∂θ2 log fY |X(Y |X ;θ )
]

in F and K ,

respectively. Hence, in both classes

IRn,Cn,∆∆∆n
(θ )−nI(X ,Y )(θ) = IRn,∆∆∆n

(θ )−nIX(θ ).

A result similar to Theorem 6 holds for lower records.

4 Estimation

To illustrate the applications of comparison study of Fisher information, discussed in

previous section, we present a simulation study and a real data example.

4.1 A simulation study

In order to compare the performance of estimators based on bivariate records and inter-

record times with corresponding estimators based on other types of data, consider a

bivariate normal distribution. For simplicity, we may assume that the only unknown

parameter in this model is θ = E(X), i.e.,

fX ,Y (x,y;θ) =
1

2π
√

1− r2
exp







[

(x−θ)2 + y2 −2r (x−θ )y
]

−2(1− r2)







,

x, y ∈ R, θ ∈ R.

(16)

The likelihood equation for deriving the MLE of θ based on bivariate record values

and inter-record times (θ̂RCT , if exists) is as follows:
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n

∑
i=1

Ri −nθ − r
n

∑
i=1

R[i]− (1− r2)
n

∑
i=1

δih̃0 (Ri −θ) = 0. (17)

In this case, θ̂RCT has no explicit form and the values of this estimator have to be derived

by numerical methods.

Now, the following criteria are interesting:

(a) Relative efficiency (RE) of estimator based on bivariate record values and inter-

record times with respect to estimator based on bivariate record values only.

(b) RE of estimator based on bivariate record values and inter-record times with

respect to estimator based on an independent bivariate random sample of the same

size.

For deriving the RE of case (a), we may consider the likelihood equation for deriving

the MLE of θ based on bivariate record values only (θ̂RC, if exists) as follows

n

∑
i=1

Ri −nθ − r
n

∑
i=1

R[i]− (1− r2)
n−1

∑
i=1

h0 (Ri −θ) = 0. (18)

Again, the values of θ̂RC have to be derived by numerical methods. For deriving the RE

of case (b), note that the MLE of θ based on an iid sample of size n from this bivariate

family equals

θ̂ IID = n−1[
n

∑
i=1

Xi − r
n

∑
i=1

Yi],

which is an unbiased estimator of θ with a variance equal to (1− r2)/n.

Table 6: (a) RE(θ̂RCT , θ̂RC) in bivariate normal distribution for different values of r and n.

r

n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

3 3.052 2.799 2.633 2.431 2.207 1.909 1.494 1.175 1.035

5 6.583 6.088 5.517 4.756 3.707 2.975 2.062 1.372 1.044

7 12.291 11.325 9.506 7.469 5.735 4.137 2.777 1.624 1.057

10 25.743 22.500 18.092 13.622 9.527 6.489 3.821 2.060 2.052

Table 7: (b) RE(θ̂RCT , θ̂ IID) in bivariate normal distribution for different values of r and n.

r

n 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

3 1.680 1.630 1.594 1.596 1.550 1.625 1.727 1.918 2.767

5 2.568 2.557 2.425 2.420 2.307 2.216 2.172 2.244 2.810

7 3.716 3.605 3.563 3.446 3.240 3.132 2.813 2.694 2.884

10 5.784 5.865 5.573 5.382 4.950 4.439 3.872 3.448 3.142
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Tables 6 and 7 show the simulated values of RE of θ̂RCT based on the first n bivariate

upper records and inter-record times relative to θ̂RC and θ̂ IID, respectively, which are

derived using 100,000 iterations generated by the R package. The minimum number of

iterations is used to derive the root of equations (17) and (18) to 3 decimal places. Also

the default method of finding the roots of equations in the R package is considered.

As one can see in Figure 1, MSE(θ̂RCT ) decreases as n or r increases. The simulated

values showed that MSE(θ̂RCT ) has similar values for positive and negative values of r.

Also, since θ is a location parameter, the values of MSE(θ̂RCT ) does not depend on θ .

The values of RE(θ̂RCT , θ̂RC) and RE(θ̂RCT , θ̂ IID) increase as n increases. The values of

Table 7 seem to have a minimum point when r increases and the value of r for which

RE(θ̂RCT , θ̂ IID) is minimum, tends to 1 by increasing n.

These values show that, in this example, the estimator of θ =E(X) based on bivariate

record values and inter-record times is more efficient than the corresponding estimator

based on bivariate record values only and the estimator based on an iid bivariate

sample of the same size. The result of Fisher information comparison for the parameter

θ = E(X) in this model and the fact that considering inter-record times causes an

increment of Fisher information, uphold these estimation results.
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Figure 1: MSE(θ̂RCT ) in bivariate normal distribution for different values of r and n.

4.2 A real data example

As a real data example, we have considered 130 observations of temperatures at

Neuenburg, Switzerland, on July (X) and August (Y ), during 1864-1993 (Arnold et al.,
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1998, p. 278). For these data, bivariate record values and inter-record times are given as

follows:

Year 1864 1865 1869 1870 1881 1904 1911 1928 1983

i 1 2 3 4 5 6 7 8 9

Records (July), Ri 19.0 20.1 21.0 21.4 21.7 22.0 22.1 22.6 23.4

Concomitants (August), R[i] 17.3 16.7 17.5 16.1 18.5 19.5 21.7 20.1 19.6

Inter-record times, ∆i 0 3 0 10 22 6 16 54 0

In order to check the normality of the marginal distributions of X and Y , the

corresponding Q-Q plots are drawn as follows.

The values of the Mardia test statistics (Mardia, 1974) are obtained as V ∗
1 = 8.36×

10−141 and V ∗
2 =−0.289. Since the null hypothesis is rejected for large values of V ∗

1 and

|V ∗
2 |, this indicates that the bivariate normal model provides a good fit to the above data.

Maximum likelihood estimates of the parameters, based on bivariate record values

and also based on bivariate record values and inter-record times, are obtained by solving

likelihood equations of bivariate normal distribution numerically as follows:

Parameter (θ ) µ1 µ2 σ2
1 σ2

2 ρ

Bivariate records 20.35 17.36 0.89 2.67 0.60

Bivariate records and times 20.12 17.21 1.32 2.82 0.63

Complete sample (n = 130) 18.79 18.04 2.89 2.15 0.31

I∆∆∆n|Rn,Cn
(θ̂) 58.64 0 168.06 0 0

The complete sample estimators and the values of I∆∆∆n|Rn,Cn
(θ ) (estimated values if

unknown) are also given. As we can see, larger values of I∆∆∆n|Rn,Cn
(θ ) cause a larger

difference of the estimate based on bivariate records and complete sample estimates,
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with respect to the corresponding difference of the estimate based on bivariate records

and times.

5 Concluding remarks

In this paper, we have considered the problem of studying Fisher information in bivariate

records in the present of inter-record times. Although, there is no information in record

times themselves about the sampling distribution, the joint distribution of records and

record times depends on it. We have seen that they provide significant additional

information (see Table 8). For various cases an explicit formula for the increment of

the Fisher information in the presence of inter-record times have obtained. Some general

results have established to compare the amount of Fisher information in bivariate records

and inter-record times with a random sample. Several classes of common univariate

and bivariate families of distributions have been taken into account and some examples

have been given in each cases to explain the results. The results of Section 4 show

that the estimator on the basis of bivariate record values including inter-record times is

more efficient than the corresponding estimator based on iid sample of the same size

and the estimator based on bivariate records only. These results agree with the facts

that IRn,Cn,∆∆∆n
(θ )> nI(X ,Y )(θ ) and IRn,Cn,∆∆∆n

(θ )> IRn,Cn(θ ) (when FX depends on θ ) for

bivariate normal distribution.

Table 8: Classification of some bivariate distributions based on information properties,

by considering their marginal properties.

Bivariate URC URCT LRC LRCT UR URT LR LRT

distribution

Bivariate Normal,

θ = E(X) or Var(X) < > < > < > < >

θ = E(Y ) or Var(Y ) = = = = = = = =

McKay’s Biv. Gamma (7)

0 < a < 1 > > < < > > < <
a = 1 = > < = = > < =
a > 1 < > < > < > < >

Biv. Gamma exponential (11) = > < = = > < =

(12) = = = = = = = =

Bilateral Biv. Pareto (8) < = = > < = = >

Mardia Biv. Pareto = > < = = > < =

Arnold and Strauss’s

Bivariate Exponential [7] > > < < < > < >

Class E1 = > < = = > < =

Class E2 < = = > < = = >
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Finally, some common bivariate distribution are classified in Table 8, according to

the introduced criteria. The abbreviations URC (LRC), URCT (LRCT), UR (LR) and

URT (LRT) are considered for upper (lower) records with their concomitants, upper

(lower) records with their concomitants and inter-record times, upper (lower) records

and upper (lower) records and inter-record times, respectively. The symbols “>”, “=”

and “<” mean that the Fisher information contained in the first n of the aforementioned

statistics about θ is greater than, equal to and less than Fisher information contained

in a random sample of size n from the parent bivariate distribution (or its X-marginal

distribution for record statistics without concomitants). The results of the columns URC,

LRC, UR and LR are given by Amini and Ahmadi (2008). The columns URT and LRT

are the results of Theorem 6. From Table 8 we observe that there is a marked increase

in the Fisher information by including inter-record times.
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