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Abstract

The one-way analysis of variance is a staple of elementary statistics courses. The hypothesis test
of homogeneity of the means encourages the use of the selected-model based estimators which are
usually assessed without any regard for the uncertainty about the outcome of the test. We expose
the weaknesses of such estimators when the uncertainty is taken into account, as it should be, and
propose synthetic estimators as an alternative.
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1 Introduction

For most students of statistics, analysis of variance (ANOVA) is their first encounter with
model-based inference. In the standard one-way setting of K groups with nk observations
each, drawn independently and at random from the respective normal distributions
N(μk , σ

2), k = 1, . . . ,K, the two contending models are

A, no constraints on the expectations μk , k = 1, . . . ,K;
B, homogeneity; μ1 = μ2 = . . . = μK .
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The centrepiece of a typical analysis is the test of the hypothesis that model B is
valid. The possible outcomes of the test are that we have evidence against model B,
that is, for rejecting the hypothesis that B is valid, or that we have failed to find such
evidence. These outcomes are often interpreted as:

a, model B is not appropriate;
b, model B might be appropriate.

Thus, rejection of B is equated to ruling B out, discarding the possibility of the error of
the first kind. Logical consistency is corroded further when after failing to reject B we
proceed to adopt B, and act as if B were valid. Any model selection, such as one based
on the likelihood ratio or an information criterion, entails similar inconsistency if the
imperfection of the model selection process is ignored.

In this paper, we explore the properties of estimators based on selected models,
relate their distributions to mixtures and propose, as an alternative, synthetic estimators
which linearly combine the contending estimators. We focus on the standard setting of
ANOVA, using elementary tools, and demonstrate that the deeply ingrained two-stage
strategy of identifying a suitable model and basing all subsequent inferences on this
model is not conducive to efficient estimation.

The next section introduces the setting and describes the model-selection based
estimator of the expectation of a group. The following section defines synthetic
estimators which combine the alternative (constituent) estimators, and identifies their
principal difficulty – estimation of the weights to be accorded to the constituent
estimators. This problem is addressed in Section 4. The properties of several versions
of these estimators are explored by simulations in Section 5. Section 6 incorporates
prior information, within the frequentist framework, about the deviation μ1 − μ of the
expectation of the target group from the overall expectation. Section 7 applies synthesis
to estimating the within-group variance σ2. The concluding section discusses the full
potential of synthetic estimators and some of its implications.

2 Estimating μ1μ1μ1

There are two obvious candidates for estimating the expectation μ1 : the sample mean
μ̂1 = ȳ1 of the n1 observations in group 1 and μ̂, the sample mean of all the n =
n1 + · · · + nK observations y = (y11 , y21 , . . . , ynK K)�. We refer to them as single-model
based estimators. Their respective distributions are

μ̂1 ∼ N
(
μ1 ,
σ2

n1

)
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μ̂ ∼ N
(
μ,
σ2

n

)
.

We regard the mean squared error (MSE) as the arbiter of the quality of an estimator;
smaller MSE (greater efficiency) is preferred. The estimators μ̂1 and μ̂ have respective
MSEs σ2/n1 and σ2/n + (μ1 − μ)2. This suggests that when we entertain only μ̂1 and μ̂
as possible estimators of μ1 we should use μ̂1 when we believe that

(μ1 − μ)2 > σ2g1 , (1)

where g1 = 1/n1 − 1/n, and use μ̂ otherwise. We define gk , k = 2, . . . ,K, similarly
to g1 . Setting aside for the moment the fact that μ1 − μ is not known, the criterion
based on (1) implies that our choice between models A and B should not be made by a
hypothesis test in a blanket fashion for all subsequent inferences that are based on y. For
example, the expectation for a group with a small sample size n1 may be estimated more
efficiently by μ̂, whereas the expectation of another group, with a greater sample size
n2 , may be estimated more efficiently by μ̂2 . This calls into question the presumption
that a valid model is the ideal basis for efficient estimation. If the expectations μk were
in a sufficiently narrow range, without all of them coinciding, μ̂ would be more efficient
than μ̂1 for estimating μ1 , even though it would be based on the invalid model B.

Let I be the indicator of the event that model B is selected by the established
ANOVA or a similar procedure. In the conventional approach, the analysis concludes
with the selected-model based estimator

μ̂†1 = (1 − I) μ̂1 + Iμ̂ , (2)

stating that it is unbiased and has the sampling variance

var†
(
μ̂†1

)
= (1 − I) var( μ̂1) + I var( μ̂) . (3)

(Note that this ‘variance’ is not a constant, but a random variable with a scaled Bernoulli
distribution.) That is, if A is selected, then we report μ̂1 and associate it with sampling
varianceσ2/n1 , and if B is selected, then we report μ̂ and associate it with varianceσ2/n,
claiming in both cases that the estimator is unbiased. Even if σ2 is known or its efficient
estimator is substituted in (3), this conclusion is flawed, and this is easy to show by
simulations. The key to such a demonstration is to apply the model selection, between
the data-generation and estimation steps, in each replication. Figure 1 displays the

empirical (simulated) distributions of the estimator μ̂†1 and the estimator of
√

var†( μ̂
†
1)

obtained by substituting the conventional estimates for the variances on the right-hand
side of (3). The diagram is based on the setting with K = 5 groups, each with nk = 7
observations, μ1 = 1, μ2 = . . . = μ5 = − 1

4
, so that μ = 0, and σ2 = 1. The size of the

F-test for selecting between A and B is set to α = 0.05.
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Figure 1: The empirical distribution of μ̂†1 and of the estimator of its standard error,

√
v̂ar†( μ̂

†
1) , for the

setting with μ1 = 1, μ2 = . . . = μ5 = − 1
4 and σ2 = 1. The solid vertical lines indicate the respective targets,

μ1 = 1 and MSE( μ̂†1; μ1) = 0.718, and the vertical dashes the empirical expectations of the estimators.
The shaded parts correspond to the outcomes when the null-hypothesis was not rejected. Based on 25 000
replications.

The shaded part of the histogram of μ̂†1 in the left-hand panel represents the
replications in which the null hypothesis was not rejected and μ̂ was evaluated. The
vertical lines mark the expectation (dashes, E( μ̂†1) = 0.686) and the target (solid line,
μ1 = 1). The estimator μ̂†1 is biased and distinctly not normally distributed; in fact, its
density is bimodal, with a small value at its expectation. The conditional distributions
( μ̂1 | I = 1) and ( μ̂ | I = 0) have a narrow overlap; 0.45, a value near the point where the
two conditional densities intersect, is the 0.46-percentile of ( μ̂ | I = 0) and the 99.23-
percentile of ( μ̂ | I = 1).

The empirical distribution of the estimator of the standard error of μ̂†1 based on (3) is
drawn in the right-hand panel. Every one of the 25 000 generated estimates falls short of
the empirical root-MSE, which is equal to 0.718; the empirical mean of these estimates
is 0.320. Clearly, any reference to a χ2 distribution for the estimated sampling variance
would be grossly erroneous. In summary, the model selection is a highly non-ignorable
process.

Some of the findings from this example can be confirmed analytically and
generalised. For instance, unless the appropriate model is selected with certainty or
μ1 = μ, estimator μ̂†1 is biased:

E
(
μ̂†1

)
= pA E ( μ̂1 | I = 0) + pB E ( μ̂ | I = 1)

= μ1 + pB {E ( μ̂ | I = 1) − E ( μ̂1 | I = 1)} ,
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where pA = P(I = 0) and pB = 1 − pA . Note that E( μ̂ | I = 0) � μ1 and
E( μ̂1 | I = 1) � μ, because the sample means μ̂1 and μ̂ are correlated with I.

The variance formula (3) remains incorrect even when I is replaced by its
expectation pB :

MSE
(
μ̂†1 ; μ1

)
= pA MSE ( μ̂1 | I = 0) + pB MSE ( μ̂ | I = 1)

= pA var ( μ̂1 | I = 0) + pB var ( μ̂ | I = 1)

+ pA {E ( μ̂1 | I = 0) − μ1}2 + pB {E ( μ̂ | I = 1) − μ1}2 .

The last two terms are positive, unless pA pB = 0 or μ1 = μ. Their total differs from
the squared bias of (3) in estimating the MSE, because var( μ̂1 | I = 0) � var( μ̂1) and
var( μ̂ | I = 1) � var( μ̂). The conditioning in these two variances is essential; I is
independent of neither μ̂1 nor μ̂.

3 Synthetic estimation

As an alternative to the selected-model based estimator μ̂†1 , we consider the convex
combination

μ̃1 = (1 − b1) μ̂1 + b1μ̂ ,

and set the coefficient b1 (or, in a more rigorous notation, bμ1
) so as to minimise

M(b1) = MSE(μ̃1 ; μ1). After substituting cov( μ̂1 , μ̂) = σ2/n and rearranging the terms,
we obtain

M(b1) = (1 − b1)
2 σ

2

n1

+ b2
1

σ2

n
+ 2b1(1 − b1)

σ2

n
+ b2

1(μ1 − μ)2

= b2
1

{
g1σ

2 + (μ1 − μ)2
}
− 2b1 g1σ

2 +
σ2

n1

.

This function attains its minimum at

b∗1 =
g1

g1 +
(μ1 − μ)2

σ2

.

If b∗1 were established with precision, the ideal synthetic estimator

μ̃1(b
∗
1) = (1 − b∗1) μ̂1 + b∗1μ̂ (4)
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would be more efficient than both μ̂1 and μ̂ because these constituent estimators are
equal to μ̃1(0) and μ̃1(1), whereas b∗1 ∈ (0, 1). The MSE of μ̃1(b∗1) is σ2(1/n1 − b∗1 g1). For
the setting of Figure 1, this corresponds to root-MSE 0.362.

In practice, b∗1 has to be estimated, so the estimator μ̃1(b̂∗1) is less efficient than μ̃1(b∗1),
and may be less efficient than μ̂1 or μ̂. In model selection we incur a similar loss due to
uncertainty about the validity of model B. However, even if model B could be ruled out,
μ̂ may be more efficient than μ̂1 , because the squared bias of μ̂ may be smaller than the
variance reduction g1σ

2; see (1). With errors of both kinds in model selection, μ̂†1 is likely
to have MSE greater than min

{
σ2/n1 , σ

2/n + (μ1 − μ)2}. The key questions therefore are
how much efficiency is lost and how much are the respective MSEs underestimated in
the two approaches.

For selected-model based estimation, we can, in principle, choose any selection
process (binary statistic) I. Similarly, for synthetic estimation, we can choose any
estimator of the coefficient b∗1 . Except for Hjort and Claeskens (2003), statistical
literature offers little rationale for choosing a different model-selection process I for
one target (μ1) than for another (μ2 or σ2). In contrast, in synthetic estimation, the ideal
coefficients b∗k for the distinct expectations μk coincide only when n1 = . . . = nK .

4 Estimating b∗1b∗1b∗1

To address the problem without any distractions, we assume first that σ2 is known. The
obvious way of estimating b∗1 is naively, by

b̂1 =
g1

g1 +
( μ̂1 − μ̂)2

σ2

. (5)

As E( μ̂1 − μ̂)2 = (μ1 − μ)2 + g1σ
2, 1/b̂1 overestimates 1/b∗1 . This does not imply that b̂1

underestimates b∗1 , but cases when E(b̂1) < b∗1 arise only in some esoteric situations.
If we adjust ( μ̂1 − μ̂)2 for its bias in estimating (μ1 − μ)2, we obtain the estimator
b̂1 = g1σ

2/( μ̂1 − μ̂)2. Its values can exceed unity, in which case μ̂1 would be associated
with negative ‘weight’ 1− b̂1 . This estimator of b∗1 is therefore not suitable. In any case,
unbiased estimation of 1/b∗1 does not lead to unbiased estimation of b∗1 .

When there are several groups and we have no external information about the relative
sizes of the expectations μk or deviations μk − μ, we might estimate (μ1 − μ)2 by an
(approximately) unbiased estimator of the group-level variance

σ2
B =

1
K

K∑
k=1

(μk − μ)2 .
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Such an estimator would be biased for (μ1 − μ)2, but its MSE may be much smaller,
because it draws on the information in all the groups. The variance σ2

B can be estimated
without bias by moment matching. We define a statistic quadratic in the outcomes y,
such as

S B =
1
K

K∑
k=1

( μ̂k − μ̂)2 ,

and match it with its expectation, E(S B) = ḡσ2 + σ2
B , where ḡ = 1

K
(g1 + · · · + gK). This

yields the estimator

σ̂2
B = S B − ḡ σ̂2 ,

where σ̂2 is an unbiased estimator ofσ2. The estimator σ̂2
B can be interpreted as adjusting

S B for its bias in estimating σ2
B . It can attain negative values, and these should be

truncated at zero, even though the resulting estimator is biased. The pooled within-group
variance estimator is the obvious choice for σ̂2.

Yet another way of estimating b∗1 is to consider the consequences of its under- and
overestimation. By underestimating b∗1 we tend to err on the side of attaching greater
weight to μ̂1 , reducing the bias but increasing the variance of μ̃1 , which nevertheless
has the upper bound σ2/n1 . In contrast, by overestimating b∗1 we tend to err on the side
of attaching greater weight to μ̂, the bias of which does not have an a priori bound.
This suggests that underestimating b∗1 , and hence overestimating (μ1 − μ)2 or σ2

B , is
preferable. This has the added advantage that the greater denominator in b̂1 brings about
greater stability. Instead of overestimating the denominator of b∗1 , we may simply use
the estimator μ̃1(r1b̂1) with an a priori set constant factor r1 < 1.

The synthetic estimator can be described as a shrinkage estimator, pulling the
unbiased estimator μ̂1 toward the more stable but biased estimator μ̂. The estimator
μ̃1(r1b̂1) thus involves reduced shrinkage. When b∗1 is estimated using σ̂2

B , μ̃1 has the
same form as empirical Bayes estimators (Efron and Morris, 1972), which borrow
strength across the groups. The only essential difference arises due to the different
meaning of the between-group variance. It relates to a finite set of groups in our fixed-
effects and to an infinite population of groups in the random-effects setting. Through the
involvement of σ̂2

B in b̂1 , the synthetic estimator μ̃1(b̂1) can borrow strength across the
groups, or exploit their similarity, even without assuming a superpopulation of groups.

5 Empirical assessment

An analytical expression can be derived for neither MSE( μ̂†1 ; μ1) nor MSE{ μ̃1(b̂1); μ1},
and so these quantities can only be estimated by simulations. However, setting up such
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simulations is easy, not much more difficult than programming a single replication of
the data-generating, model selection and estimation processes.

We lose no generality by reducing our attention to parameter values μ = 0, σ2 = 1
and, owing to symmetry, to positive deviations Δ = μ1 − μ. As the benchmark, we
use the ANOVA estimator μ̂†1 based on the F-test with the conventional size α = 0.05.
Instead of the outcomes yik it suffices to generate the sample means μ̂k as random draws
from N(μk , σ

2/n1) and the within-group corrected sums of squares s2
k =

∑
i(yik − μ̂k)2

independently from suitably scaled χ2 distributions:

(nk − 1)
s2

k

σ2
∼ χ2

nk−1 .

For a fixed set of sample sizes n1 , . . . , nK , we execute 5 000 replications of the ANOVA
and synthetic estimators for each value of Δ on a grid of 76 equidistant points in the
closed interval [0, 3]. For each estimator, we evaluate its empirical bias and MSE. For
ANOVA estimators, the probability of rejecting model B can be obtained as the tail of
the appropriate non-central F-distribution.

Figure 2 displays the root-MSEs of several estimators of μ1 , as functions of the
(absolute) deviation Δ. It exposes the gross inefficiency of the selected-model based
estimator μ̂†1 for a wide range of deviationsΔ. The synthetic estimator μ̃1(b̂1) with naively
estimated b∗1 is more efficient than the estimator with b̂1 = g1/(g1 + σ̂

2
B), except for very

small values of Δ. In our setting, σ2
B =

1
4

is much smaller than (μ1 − μ)2 = 1, so σ̂2
B is
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Figure 2: The root-MSEs of the estimators of μ1 : μ̂†1 given by (2) (solid line), μ̃1(b̂1) with b̂1 given by (5)
(short dashes), μ̃1(b̂1) with b̂1 = g1/(g1 + σ̂

2
B) (dots), μ̂1 (dots and short dashes), μ̂ (long dashes) and the

ideal synthetic estimator μ̃1(b∗1) given by (4) (dots and long dashes). The figures at the bottom of the diagram
are the probabilities of rejecting model B by the standard F-test.
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a poor estimator of (μ1 − μ)2. For large values of Δ, μ̂†1 is marginally more efficient than
μ̃1(b̂1), and both of them approach the efficiency of μ̂1 , without surpassing it. In fact, for
Δ > 2.5, the null hypothesis is rejected and μ̂†1 = μ̂1 in all 5 000 replications.

The power of the F-test, that is, the probabilities β(Δ) of rejecting model B, are given
at the bottom of the diagram for Δ = 0, 0.2, . . . , 3. The model-selection estimator μ̂†1
is less efficient than μ̂1 when Δ = 1.4 and β(1.4) = 0.88 (root-MSE 0.57) and when
Δ = 0.4 and β(0.4) = 0.12 (root-MSE 0.45). Thus, the probability of the ‘correct’ model
choice is a poor proxy for the efficiency of μ̂†1 .

Figure 3 contains the plot of the root-MSEs of the synthetic estimators of μ1 with
reduced shrinkage, μ̃1(rb̂1), with the naive estimator b̂1 of b∗1 and 0.6 ≤ r ≤ 1.0. It shows
that by reducing the shrinkage we improve estimation around Δ = 1, where the MSE is
largest, at the expense of losing some efficiency for small values of Δ, where the MSE
is smallest. The root-MSE of the ideal synthetic estimator μ̃(b∗1) is smaller than for any
synthetic estimator with estimated b∗1 .
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40
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r = 1
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Figure 3: The root-MSEs of the estimators of μ̃1(rb̂1) with naively estimated b∗1 and r = 0.6, 0.7, 0.8, 0.9
and 1.0.

We conclude this section with Figure 4 which presents the empirical distributions of
μ̃1(b̂1) using the naive estimator b̂1 given by (5), and of the naive estimator of its root-
MSE, σ̂2(1/n1 − g1 b̂1). The same setting for the simulation and the same layout for the
diagram are used as in Figure 1. The distributions in Figure 4 are unimodal and do not
deviate substantially from normality and a scaled χ2 distribution with many degrees of
freedom. The estimator μ̃1 has a small bias but, more importantly, its root-MSE is much
smaller than for μ̂†1 . Because the uncertainty about b∗1 is ignored, the root-MSE of μ̃1

is underestimated, by 0.063, but much less blatantly than it is for μ̂†1 . Admittedly, this
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Figure 4: The empirical distributions of μ̃1(b̂1) and of the naive estimator of its standard error for the same
setting as in Figure 1. Based on 25 000 replications.

comparison of μ̃1 and μ̂†1 is somewhat unfair, because the setting is least favourable for
the latter. However, for μ1 = 1, μ̃1 also has (nearly) the highest root-MSE, see Figure 2.

6 Prior information about ΔΔΔ

An unsatisfactory property of all of the estimators explored so far is that they fail to
outperform μ̂1 uniformly. In this section we make amends on this count, although for
that we require an upper bound on the absolute deviations |Δ |. Suppose we are confident
that |Δ | is smaller than an a priori set value Δ∗. We apply the synthetic estimator
that is optimal when Δ = Δ∗ , and assess its properties when in fact |Δ | ≤ Δ∗ . Let
BΔ = g1/(g1 + Δ

2/σ2) and B∗ = BΔ∗ . The MSE of the estimator μ̃1(B∗) is

B2
∗
(
g1σ

2 + Δ2
)
− 2B∗g1σ

2 +
σ2

n1
.

For fixed Δ∗ , this is an increasing (linear) function of Δ2, so it attains its maximum in
[0,Δ2

∗] for Δ2 = Δ2
∗ . At this point, μ̃1(B∗) coincides with the ideal synthetic estimator, and

so it is efficient. Therefore, among the synthetic estimators it is the minimax estimator;
any other synthetic estimator has a greater maximum MSE within Δ ∈ (−Δ∗ ,Δ∗). Figure
5 provides an illustration using our earlier setting with K = 5 groups, n1 = . . . = nK = 7,
and σ2 = 1, and with Δ∗ set to 1.5. The estimator μ̃1(B1.5) is uniformly more efficient
than μ̂1 for μ1 ∈ (μ−Δ∗ , μ+Δ∗), and is less efficient than μ̂ only when |Δ | is very small.

If we are justified to setΔ∗ lower, say, to 0.75, then the estimator μ̃1(B0.75) is uniformly
more efficient than μ̃1(B1.5) while |Δ | < 0.75. It is more efficient for slightly greater
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Figure 5: The root-MSEs of the minimax synthetic estimators. The same setting is used as in Figures 2
and 3. The root-MSEs of the minimax synthetic estimators are drawn by thick solid lines in the ranges of
deviations Δ assumed to be plausible and by thin solid lines outside them. The upper bound Δ∗ is indicated
at the left-hand margin and by the vertical dots.

absolute deviations |Δ |, but its MSE increases more steeply than for Δ∗ = 1.5. Using a
value of Δ∗ that is too small has more severe consequences than making a conservative
choice of a greater value of Δ∗ .

7 Estimating σ2σ2σ2

Synthetic estimation can be applied also to σ2, by combining the two candidate
estimators

σ̂2
A =

1
n − K

K∑
k=1

nk∑
i=1

(yik − μ̂k)
2

σ̂2
B =

1
n − 1

K∑
k=1

nk∑
i=1

(yik − μ̂)2 ,

based on the respective models A and B. These two estimators are connected by the
orthogonal decomposition

(n − 1) σ̂2
B = (n − K) σ̂2

A +

K∑
k=1

nk ( μ̂k − μ̂)2 . (6)
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Their distributions are scaled χ2,

(n − K)
σ̂2

A

σ2
∼ χ2

n−K,0

(n − 1)
σ̂2

B

σ2
∼ χ2

n−1,γ ,

where the subscripts indicate the number of degrees of freedom and the noncentrality,

and γ =
∑

k nk (μk − μ)2/σ2. The orthogonal decomposition in (6) implies that

cov
(
σ̂2

A , σ̂
2
B

)
=

n − K
n − 1

var
(
σ̂2

A

)
=

2σ4

n − 1
.

Further,

var
(
σ̂2

A

)
=

2σ4

n − K

var
(
σ̂2

B

)
=

2σ4

n − 1
+

4γσ4

(n − 1)2
.

The convex combination

σ̃2 = (1 − bW) σ̂2
A + bW σ̂

2
B

attains its minimum MSE in estimating σ2 for

b∗W =
var

(
σ̂2

A

)
− cov

(
σ̂2

A , σ̂
2
B

)
var

(
σ̂2

A

)
+ var

(
σ̂2

B

)
− 2cov

(
σ̂2

A , σ̂
2
B

)
+

{
E

(
σ̂2

A

)
− E

(
σ̂2

B

)}2

=

2σ4

n − K
− 2σ4

n − 1
2σ4

n − K
− 2σ4

n − 1
+

4γσ4

(n − 1)2
+
γ2σ4

(n − 1)2

=
2q

2q + 4γ + γ2
, (7)

where q = (K − 1)(n − 1)/(n − K).
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In a balanced design, with nk ≡ n/K, and many groups K, so that n 	 nk ,

b∗W �
2K

2K + 4n
σ2

B

σ2
+ n2σ

4
B

σ4

<
1

1 + 2nk

σ2
B

σ2

,

after approximating q by K and γ by nσ2
B/σ

2. This is smaller than the coefficient b∗1
for estimating μ1 , when Δ2 in its denominator is replaced by σ2

B . This comparison
of b∗1 and b∗W can be motivated as follows. For estimating μ1 , we seek to exploit the
n − n1 observations from outside group 1, which could increase the effective number
of observations from n1 to n. In many settings this amounts to a several-fold increase.
In contrast, for estimating σ2, we seek to engage K − 1 degrees of freedom in addition
to n − K. Usually this amounts to only a modest increase. For example, in the setting
studied earlier, n1 = 7, n = 35 and K = 5, synthetic estimation of μ1 seeks to exploit the
information in 28 observations in addition to the seven in group 1, whereas estimation
of σ2 draws on only four degrees of freedom in addition to n − K = 30. We should
be disposed much less favourably toward submodel B for estimating σ2 than for μ1 ,
because synthesis has a very modest potential for gain in precision given the threat
of bias associated with the contentious K − 1 degrees of freedom. This reinforces our
earlier conclusion that selecting the same model for estimating several targets associated
with a dataset need not be optimal for all of them. Combining the single-model based
estimators using the same set of weights for several targets, as is done by Bayesian
model averaging (Kass and Raftery, 1995; Hoeting et al., 1999) may also be suboptimal
– estimators have to be averaged with target-specific weights.

8 Discussion and conclusions

We introduced synthetic estimators for the ANOVA setting and showed that their
weaknesses (low efficiency for some parameter values) are not as pronounced as for
the selected-model based estimators. The principle applied, of combining alternative
estimators instead of selecting one of them, is applicable much more generally; see
Longford (2003) for its application to ordinary regression and Longford (2007) to
estimation of the MSE in a setting similar to ANOVA.

A synthetic estimator θ̃ which has constituent estimators θ̂A and θ̂B , based on
respective models A and B, can be paired with a model-selection based estimator θ̂
which selects between the models A and B and the respective single-model based
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estimators θ̂A and θ̂B . The synthetic estimator θ̃ has a greater potential than the model-
selection based estimator θ̂, because its ideal version μ̃(b∗) is more efficient than the
ideal version of θ̂, equal to the single-model based estimator with the smaller MSE.
The synthetic estimator can be extended to more than two constituent estimators; see
Longford (2005, Chap. 11) for details.

Our conclusion calls for a revision of the dictum that identification of a
(parsimonious) valid model is an essential prerequisite for efficient estimation. We
have shown that estimators based on some invalid models, namely submodels of valid
models, are efficient for some targets. The presented perspective calls into question the
effectiveness of all model-selection procedures, including those based on information
criteria, which seek to maximise the probability of the appropriate choice without
assessing the consequences of an inappropriate model choice, however small its
probability may be.

Diagnostic procedures can be considered similarly. Since their application may lead
to a revision of the model or of the dataset, the estimator involved is a mixture of
the (numerous) estimators that are specific to the possible outcomes of the diagnostic
process. This should not be regarded as an unqualified discouragement from applying
diagnostic procedures. However, when the outcome of the procedure is subject to
uncertainty, the estimator that incorporates the application of a procedure has a
distribution different from its version that skips the application. If we are certain that a
particular diagnostic procedure is unnecessary, the estimator is more efficient than if we
were not certain and applied it, even if the actual outcome of the procedure is negative,
failing to find any contradiction with the model assumptions. Applying a comprehensive
battery of diagnostic procedures is not a good practice because it inflates the chances
of an inappropriate revision of the model or dataset following a false positive finding.
Instead, procedures should be carefully selected to respond to the analyst’s uncertainties
as assessed prior to data inspection.

Model selection and diagnostic procedures do not come for free in inference, and
we do not act with scientific integrity when we quote the (conditional) properties of
estimators given their selection, ignoring the uncertainty associated with the application
of such procedures. The lack of integrity is exacerbated when we do not inform about
the details of the procedures applied, or when they are applied informally and afford no
simple description. Addressing these problems is essential for integrity in the conduct
of statistical inference.

Unbiased estimation of MSEs of synthetic estimators is an open problem, just as it is
for selected-model based estimators and estimators that are applied following diagnostic
and data-cleaning procedures. Exploration by simulations is the only solution available
at present even for the simplest settings. Methods based on expansions, which are valid
only asymptotically, cannot resolve the issues we have highlighted in this paper because
model uncertainty and the trade-off between sampling variance and bias are essentially
small-sample issues.
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