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Abstract

Hypothesis testing is a model selection problem for which the solution proposed by the two main
statistical streams of thought, frequentists and Bayesians, substantially differ. One may think that this
fact might be due to the prior chosen in the Bayesian analysis and that a convenient prior selection may
reconcile both approaches. However, the Bayesian robustness viewpoint has shown that, in general,
this is not so and hence a profound disagreement between both approaches exists.
In this paper we briefly revise the basic aspects of hypothesis testing for both the frequentist and
Bayesian procedures and discuss the variable selection problem in normal linear regression for which
the discrepancies are more apparent. Illustrations on simulated and real data are given.
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1 Introduction

In parametric statistical inference estimating parameters and hypothesis testing are two
basic but different problems, although some Bayesian estimation devices have gained
some popularity as hypothesis testing tools. For instance, high posterior probability
regions have been used as acceptance regions for the null hypothesis (see, for instance,
the analysis of variance solution proposed by Lindley 1970, Box and Tiao 1992). This is
misleading as far as the hypotheses to be tested do not play any role in the construction
of such acceptance regions.
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4 On the frequentist and Bayesian approaches to hypothesis testing

To distinguish between estimation and testing was strongly recommended by Jeffreys
(1961, pp. 245-249), mainly because the methods commonly used for estimation are
typically not suitable for hypothesis testing. Thus, we think it is timely to devote a
separate paper to discuss the setting and tools devised for hypothesis testing from the
frequentist and Bayesian perspectives. We want to thank the Editor of SORT for inviting
us to contribute on this topic.

In this paper we deal with frequentist and Bayesian parametric hypothesis testing
procedures. A third approach, based solely on the likelihood function, which we do not
discuss here, is to be found in Royall (1997) and Pawitan (2001). As Pawitan (2001,
p. 15) states: The distinguishing view is that inference is possible directly from the
likelihood function; this is neither Bayesian nor frequentist, and in fact both schools
would reject such a view as they allow only probability-based inference.

From the frequentist viewpoint two closely related methods have been developed.
One is the Neyman-Pearson theory of significance tests and the other one is based on
Fisher’s notion of p-values. Here, we shall give arguments that make the p-values to be
preferable to significance tests.

On the Bayesian side, robustness with respect to the prior showed that there is
a strong discrepancy between the frequentist and Bayesian solutions to parametric
hypothesis testing (Berger 1985, 1994, Berger and Delampady 1987, Berger and Sellke
1987, Berger and Mortera 1999, Casella and Berger 1997, Moreno and Cano 1998,
Moreno 2005, among others). This means that the discrepancy is not due to the prior
chosen for the Bayesian analysis but it is of a more fundamental nature which is inherent
to the procedures. In particular, there is a marked difference on the way frequentist and
Bayesian methods account for the sample size, and the dimensions of the null and the
alternative parametric spaces.

Since subjective prior distributions for the parameters of the models involved in
hypothesis testing are not generally available, and their use is perceived as the weak
point in the Bayesian implementation, objective prior distributions will be employed
in this paper. By objective priors we mean priors that only depend on the sampling
model and theoretical training samples. This priors are called intrinsic priors (Berger
and Pericchi 1996, Moreno 1997, Moreno et al. 1998) and their merits can be judged
for each specific application. We remark that they have been proved to behave extremely
well in a wide variety of problems (Casella and Moreno 2004, 2005, Girón and Moreno
2004, 2005, Moreno et al. 1999, 2000, 2003, 2005, Moreno and Liseo 2003).

The rest of the paper is organized as follows. The second section is devoted to
briefly describing significance tests and p-values. Section 3 reviews the Bayesian testing
machinery and justifies the need for objective priors. The challenging problem of
testing whether the means of two normal distributions with unknown variances are
equal is considered in Section 4. A comparison of the frequentist and Bayesian testing
procedures for the normal linear regression model, including a discussion on some
fundamental issues of the variable selection problem, is given in Section 5, and some
conclusions and recommendations are given in Section 6.
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2 Significance tests and p-values

Let X denote an observable random variable and x = (x1, . . . , xn) an available
sample from either the model P0(x) or P1(x) with probability densities f0(x) or f1(x),
respectively. Suppose that we want to choose between either the null hypothesis H0 :
f0(x) or the alternative H1 : f1(x). This is the simplest hypothesis testing formulation.

For this problem the well-known Neyman-Pearson theory of significance tests
proposes a subset of the sample space Rn, the so-called critical or rejection region,

Wα =

{
y :

f1(y)
f0(y)

≥ cα

}
, (1)

as the region containing evidence against the null hypothesis. The threshold cα is
determined so that the probability of the critical region under the null is α, that is

P0(Wα) =
∫

Wα

f0(y) dy = α.

Given the data x, the null H0 is rejected at the significance level α if x ∈ Wα, and
accepted otherwise. The value α is usually taken to be small so that we have a small
probability of rejecting the null when it is true. Typically α is chosen to be 0.05 or 0.01.

Fisher criticized the notion of significance of the Neyman-Pearson theory and
proposed replacing cα in (1) with the observed likelihood ratio λn(x) = f1(x)/ f0(x),
so that the above critical region becomes

Wn(x) =

{
y :

f1(y)
f0(y)

≥ λn(x)

}
,

that now depends on the observed data x. The probability of this region under the null,
p = P0(Wn(x)) say, is called the p-value of the data x, and it is interpreted in such a way
that a small enough p-value implies evidence against H0. The smaller the p-value the
stronger the evidence against the null.

Significance tests and p-values substantially differ. While the p-value depends on
the data thus giving a measure of how strongly the observed data reject the null, the
significance test does not provide such a measure. This simple fact implies that, for the
dicotomous testing problem, the p-value is consistent under the null and the alternative,
while the significance test is consistent under the alternative but it is not under the null.

Indeed, when sampling from the null and the sample size grows to infinity the
likelihood ratio statistic λn(x) tends to zero under P0, and the corresponding sequence
of p-values tends to 1. This implies that, asymptotically, there is no evidence at all to
reject the null. Alternatively, when the sample comes from the alternative hypothesis,
the statistic λn(x) tends to ∞ under P0, and hence the corresponding sequence of p-
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values tends to 0 showing an increasing evidence to reject the null. On the other hand,
when sampling from the null, the significance test will reject H0 with probability α even
when the sample size increases to infinity. This means that the significance test is not
a consistent procedure under the null, although it is consistent when sampling from the
alternative (Casella and Berger 1990, pp. 381-382, Wilks 1962, pp. 411).

Under some regularity conditions on the likelihood, this theory can be extended to
the more general situation of considering a family of probability densities { f (x|θ), θ ∈
Θ}, where Θ might be a multidimensional parametric space, and the null H0 : θ ∈ Θ0

and the alternative H1 : θ ∈ Θ1 may contain more than one density. To preserve the good
properties of the mentioned simplest hypothesis testing procedures, the hypotheses must
be nested, that is Θ0 ⊂ Θ1, and also we must have k0 = dim(Θ0) strictly smaller than
k1 = dim(Θ1). The critical region now is

Wn(x) =

{
y :

f (y|θ̂1(y))

f (y|θ̂0(y))
≥ λ̂n(x)

}
,

where θ̂1(y), θ̂0(y) are the MLE’s of θ in the spaces Θ1 and Θ0, respectively, and
λ̂n(x) = f (x|θ̂1(x))/ f (x|θ̂0(x)).

Two important difficulties now arise with the p-values. First, it is not clear how the
probability of Wn(x) under the null can be computed when either the null is composite
or the distribution induced by λ̂n(y) depends on some (nuisance) parameter, as in the
Behrens-Fisher problem which we briefly deal with in Section 4.

Second, while a small p-value might contain evidence against the null for a dataset,
the same p-value for a different sample size and/or for a null parameter space of
different dimension might not contain the same evidence against the null. In fact,
when we consider multiple tests, i.e. when we want to test that some subsets of
regression coefficients are zero, as in variable selection, the frequentist literature (see, for
instance Miller 2002) recognizes that the meaning of the p-value should depend on the
dimensions of the null and the alternative parameter spaces and, consequently, provides
a variety of methods to correct the p-value to account for this. It has also been recognized
that the bigger the sample size the smaller the evidence of a given p-value against the
null so that it is also necessary to correct the p-value to account for the sample size.
These considerations have prompted the need to introduce frequentist criteria based on
statistics that, in some way, adjust for all the varying parameters in the model such as
the sample size and the dimensions of the null and the alternative hypothesis, such as
the adjusted R2, Mallow‘s Cp or the AIC criteria.

In summary, the meaning of the p-value is unfortunately unclear. Its interpretation
should depend on the dimension of the null space, the dimension of the alternative space,
and the sample size in an unknown, and probably complex and non-trivial, way; as a
consequence, the calibration of a p-value is deemed to be a very difficult task, although
some attempts for calibrating the p-values can be found in Sellke et al. (2001) and Girón
et al. (2004).
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Furthermore, although a p-value is derived as a probabilistic statement and,
consequently, lies between zero and one, it cannot be interpreted as the posterior
probability that the null is true – this is an instance of the well known transposed
conditional or prosecutor’s fallacy. However, practitioners of the p-values have very
often this wrong probability interpretation in mind, maybe because this provides them
with some sort of a (wrong) measurement devise for calibration.

3 Bayesian hypothesis testing

From a Bayesian viewpoint the testing problem is treated as follows. Consider the
simplest testing problem where we have to choose either the model M0 : f0(x) or
M1 : f1(x) based on the observations x = (x1, . . . , xn). Let di denote the decision of
choosing Mi and let P be the prior probability defined on the model space {M0 ,M1}.
Assume that a loss L(di,Mj) = ci j, i, j = 0, 1, is incurred when we make the decision di

and the true model is Mj (for other loss functions in model selection, see San Martini
and Spezzaferri 1984, and Bernardo and Smith 1994).

Assuming that the loss for a correct decision is zero, that is cii = 0, and ci j > 0
otherwise, d1 is the optimal decision when the posterior risks satisfy R(d0|x) >R(d1|x).
This implies the following inequality

P(M0|x) <
c01

c01 + c10
.

By Bayes theorem, this is equivalent to the inequality

f1(x)
f0(x)

>
c10

c01

P(M0)
P(M1)

.

Notice that the value of P(M0|x) is a measure, in a probability scale, of the strength
we have in accepting the model M0. We now observe a first important difference between
the p-value and the Bayesian report. While the former is obtained by integration over a
region of the sample space, namely the rejection region, the latter is obtained directly
from the loss function and the prior probabilities assigned to the models.

The extension to the more realistic case of a parametric families of densities is
straightforward. Consider the sampling models { f (x|θ0), θ0 ∈ Θ0} and { f (x|θ1), θ1 ∈ Θ1}.
A complete Bayesian specification of the models needs prior distributions for the
parameter θ0 and θ1, that is

M0 : { f (x|θ0), π0(θ0)},
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and

M1 : { f (x|θ1), π1(θ1)}.

Then under the loss function given above, assuming c01 = c10 and P(M0) = P(M1) =
1/2, the model M0 is to be rejected if

P(M0|x) =
1

1 + B10(x)
< 1/2, (2)

where B10(x), the Bayes factor for models {M1,M0}, is the ratio of the marginal density,
sometimes called the integrated or marginal likelihood, of the data under the two models,
that is

B10(x) =
m1(x)
m0(x)

=

∫
f (x|θ1)π1(θ1) dθ1∫
f (x|θ0)π0(θ0) dθ0

.

We note that a second important difference between the p-values and the Bayesian
method is that while in the p-value approach the parameters of the null and the
alternative hypothesis are estimated using the maximum likelihood method, in the
Bayesian approach they are integrated out using prior distributions.

For nested models it can be shown that, under mild conditions, the Bayesian
procedure chooses the correct model with probability that tends to one as the sample
size increases, so that it is a consistent procedure under both the null and the alternative
hypothesis (see, for instance, O’Hagan and Forster 2004, p.182).

This approach needs the specification of the losses ci j, i, j = 0, 1, the prior
distributions for parameters π0(θ0) and π1(θ1), and the model prior (P(M0), P(M1)).
While the specification of the loss function and the model prior seems to be a
plausible task in real applications, the specification of subjective priors for parameters
is admittedly a hard task. For instance, when θ1 represents the vector of regression
coefficients and the variance error of a regression model, to specify the prior is far
from trivial. More so when the null parameter θ0 is a subvector of the set of regression
coefficients of θ1, thus indicating that a submodel is being considered plausible and a
testing problem is called for.

This problem is an important example in which the use of objective priors is fully
justified. Unfortunately, the priors considered for estimation, as the Jeffreys or the
reference priors by Berger and Bernardo (1992), are typically improper so that they
depend on arbitrary multiplicative constants that leave the Bayes factor ill-defined as
the following simple example shows.

Example 1 Suppose that X is a random variable with distribution N(x|μ, σ2), with
both parameters unknown, and we want to test H0 : μ = 0 versus H1 : μ � 0.
This is equivalent to choosing between models M0 : {x|σ0 ∼ N(x|0, σ0), π0(σ0)} and
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{x|μ, σ1 ∼ N(x|μ, σ1), π1(μ, σ1)}. The reference prior for the parameter of the null model
is π0(σ0) = c0/σ0 , where c0 is an arbitrary positive constant that cannot be specified
because π0 is improper. Likewise, the reference prior for the parameter of the alternative
model is π1(μ, σ1) = c1/σ1, where again c1 is an arbitrary positive constant. Therefore,
the Bayes factor B10(x) is defined up to the multiplicative constant c1/c0, whatever the
data x might be.

3.1 Intrinsic priors

Consider the Bayesian models

M0 : { f (x|θ0), πN
0 (θ0)},

and

M1 : { f (x|θ1), πN
1 (θ1)}

where πN
0 and πN

1 are objective, or default, improper priors.
Lempers (1971, section 5.3) overcomes the difficulty that the Bayes factor for

improper priors is not well defined by considering a partial Bayes factor. This is a Bayes
factor constructed as follows. A part of the sample x, the training part, is devoted to
converting the reference improper priors for the parameters of the null and alternative
models into proper posteriors. Then, with the rest of the sample the Bayes factor is
computed using these proper posteriors as priors. That is, the whole sample x is split
into (x = x(t), x(n − t)), where x(t) is the training sample of the vector and x(n − t) the
remaining one. Then, the posterior distributions for the above priors are

πi(θi|x(t)) =
f (x(t)|θi)πN

i (θi)∫
f (x(t)|θi)πN

i (θi) dθi
, i = 0, 1,

that are now proper. Now, using the above posteriors as priors, the Bayes factor for the
rest of the data x(n − t) turns out to be

BP
10(x) =

∫
f (x|θ1)πN

1 (θ1) dθ1∫
f (x|θ0)πN

0 (θ0) dθ0

∫
f (x(t)|θ0)πN

0 (θ0) dθ0∫
f (x(t)|θ1)πN

1 (θ1) dθ1
= BN

10(x)B01(x(t)).

Note that the partial Bayes factor is a well defined Bayes factor that uses each of the
components of the sample only once. However, it does depend on the specific training
sample x(t) we choose.
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To avoid the arbitrariness in choosing the training sample Berger and Pericchi (1996)
suggested computing the partial Bayes factors for all possible training samples with
minimal size x(�), and then computing the mean of those partial Bayes factors. The
number � is chosen so that the marginals of x(�) with respect to the improper priors are
positive and finite so that the factor B01(x(�)) is well-defined up to the multiplicative
constant c0/c1.

The resulting value was called the arithmetic intrinsic Bayes factor, which does
not depend on any arbitrary constant nor the particular training sample. Then, the
Bayes factor appearing in (2) is replaced with the arithmetic intrinsic Bayes factor for
computing the null posterior probability “as if” it were a Bayes factor.

We observe that the arithmetic intrinsic Bayes factor is a mean of (partial) Bayes
factors and hence it reuses the sample observations. We also observe that for some
subsamples of minimal size it might be the case that the marginal mi(x(�)) could be zero
or infinite. In that case, the Bayes factor is not well defined and we adopt the convention
of not considering those subsamples. This implies that the arithmetic intrinsic Bayes
factor might be quite unstable depending on the nature of the sample at hand. Some
samples can have very many nice subsamples of minimal size but others may not have
so many.

However, to use the arithmetic intrinsic Bayes factor “as if” it were a Bayes factor
is, in our opinion, not the best use we can give to the arithmetic intrinsic Bayes factor. It
can be better employed as a tool for constructing priors. In fact, the arithmetic intrinsic
Bayes factor is not a Bayes factor although as the sample size increases it becomes more
and more stable and tends to be a Bayes factor for the so called intrinsic priors. Thus,
if we use theoretical training samples instead of actual samples along with a limiting
procedure we end up with intrinsic priors (Moreno et al. 1998).

Given the model

M0 : { f (x|θ0), πN
0 (θ0)}

and

M1 : { f (x|θ1), πN
1 (θ1)},

where f (x|θ0) is nested into f (x|θ1) and πN
1 is improper, the following statements can be

proven.
(i) The intrinsic prior for θ1 conditional on an arbitrary but fixed point θ0 is given by

πI(θ1|θ0) = πN
1 (θ1)EX(�)|θ1

f (X(�)|θ0)∫
f (X(�)|θ1)πN

1 (θ1) dθ1
,

where X(�) is a vector of dimension � with i.i.d components and distribution
f (x|θ1), such that
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0 <
∫

f (X(�)|θ1)πN
1 (θ1) dθ1 < ∞,

� being the smallest natural number satisfying the above inequality. Roughly
speaking, � coincides with the dimension of θ1 .

(ii) πI(θ1|θ0) is a probability density for θ1, for any fixed θ0.
(iii) If the default prior πN

0 (θ0) is also improper, the ratio

BI
10(x) =

∫
f (x|θ1)πI(θ1|θ0)πN

0 (θ0) dθ0 dθ1∫
f (x|θ0)πN

0 (θ0) dθ0
(3)

is the limit of the sequence of Bayes factors given by

Bi =

∫
Ci

f (x|θ1)πI(θ1|θ0)πN
0 (θ0|Ci) dθ0 dθ1∫

Ci
f (x|θ0)πN

0 (θ0|Ci) dθ0
,

where {Ci, i ≥ 1} is a covering monotone increasing sequence of sets in Θ0. Of
course it can be shown that the limiting value (3) does not depend on the chosen
sequence {Ci, i ≥ 1}.

In summary, intrinsic priors are well defined priors for testing problem involving
nested models. For some particular non-nested models intrinsic priors can also be
defined (Cano et al. 2004). The Bayes factor for intrinsic priors can be seen as the
stabilized version of the arithmetic intrinsic Bayes factor. Further, as the sample size n
tends to infinity the sequence of intrinsic posterior probabilities of model M0

P(M0|x1, . . . , xn) =
1

1 + BI
10(x1, . . . , xn)

tends to one when sampling from the null and tends to zero when sampling from the
alternative, so that the intrinsic Bayesian procedure is consistent; for a result in this
direction see Moreno and Girón (2005a) for the case of the general normal linear model.

4 The two sample problem

A p-value does not always exist, so that some sort of “approximation” is in that case
necessary. A classical example in which this situation ocurrs is that of comparing
the means of two normal distributions with unknown variances. Let N(x1|μ1, σ2

1),
N(x2|μ2, σ2

2) be two normal distributions where the means μ1, μ2 and variances σ2
1, σ

2
2

are unknown. Suppose that samples x1 = (x11, x12, . . . , x1n1 ) and x2 = (x21, x22, . . . , x2n2 )
have been drawn independently for each of the distributions, and we are interested in
testing the null H0 : μ1 = μ2 versus the alternative H1 : μ1 � μ2.
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Under the frequentist point of view this problem is easily solved when σ1 = σ2 or
when σ1 = kσ2 and k is known. In fact, an exact p-value can be computed by using a
test statistic which follows a t-distribution.

However, standard normal theory cannot be applied when the quotient betweeen the
variancesσ2

1 andσ2
2 is unknown. This is the well-known Behrens-Fisher problem and we

emphasize the fact that an exact p-value does not exist. This is a theoretically relevant
result that demonstrates that frequentist testing procedures cannot be applied to some
important problems. Certainly this theoretical gap is not such a serious problem from
the applications viewpoint since “good” approximations – to a nonexistent solution! –
were given by Fisher (1936), Wald (1955), and Welch (1947).

Under the Bayesian viewpoint the problem was “solved” by regarding it as a problem
of interval estimation of the parameter λ = μ1 − μ2. From the posterior distribution of
λ a (1 − α) highest posterior interval was computed and the result was declared to be
significant if this interval did not contain the origin (Lindley 1970, pp. 92-93).

Notice that the posterior distribution of λ on which the inference is based – a location-
scale transformation of the standard Behrens-Fisher distribution (Girón et al. 1999) – is
obtained under the condition that μ1 � μ2; otherwise, if μ1 = μ2 is assumed, the posterior
distribution of λ would be a point mass on zero. Therefore, using this procedure the key
function for testing the null H0 : μ1 = μ2 is the posterior distribution of λ conditional on
the alternative hypothesis which otherwise has a posterior probability equal to zero. Of
course, this cannot be the solution to the Behrens-Fisher testing problem.

In Moreno et al. (1999) it was shown that the Behrens-Fisher problem can be
formulated as a model selection problem for nested models for which an intrinsic
Bayesian solution exists. Indeed, under the null, the Bayesian default sampling model is

M0 : f0(x1, x2|θ0) = N(x1|μ, τ21)N(x2|μ, τ22), πN
0 (θ0) =

c0

τ1τ2
,

and under the alternative is

M1 : f1(x1, x2|θ1) = N(x1|μ1, σ2
1)N(x2|μ2, σ2

2), π
N
1 (θ1) =

c1

σ1σ2
,

where θ0 = (μ, τ1, τ2), θ1 = (μ1, μ2, σ1, σ2), πN
i is the reference prior, and c0, c1 are

arbitrary positive constants.
Applying the standard intrinsic methodology to these models the intrinsic prior for

the parameters μ1, μ2, σ1, σ2 conditional on a null point μ, τ1, τ2, is shown to be

πI(θ1|θ0) =
2∏

i=1

N

⎛⎜⎜⎜⎜⎝μi|μ, τ
2
i + σ

2
i

2

⎞⎟⎟⎟⎟⎠ HC+(σi|0, τi),
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where HC+(σi|0, τi) denotes the half-Cauchy distribution on the positive part of the
real line located at 0 and with scale parameter τi. Under the conditional intrinsic prior
the μi’s are independent and centered at the null parameter μ and the σi’s are also
independent. Hence, the unconditional intrinsic prior distribution for μi is a mixture
of normal distributions which has no moments. A nice property to be expected from an
objective prior.

For the samples x1, x2 having size, mean and variance (n1, x̄1, s2
1), (n2, x̄2, s2

2)
respectively, the Bayes factor for the intrinsic priors (πN

0 (θ0), πI(θ1)) is given by

BI
10(x1, x2) =

2
π5/2

Γ( n1
2 )Γ( n2

2 )

Γ( n1+n2−1
2 )

B
A
,

where B =
∫ ∞
−∞

[
2∏

i=1
Ii(μ)

]
dμ,

Ii(μ) =
∫ π/2

0

dϕi

bi(μ, ϕi)
,

bi(μ, ϕi) =
(sinϕi)ni−1(

1
2 +

sin2 ϕi

ni

)−1/2
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

nis2
i

sin2 ϕi

+
(x̄i − μ)2(

1
2 +

sin2 ϕi

ni

)ni/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ni/2

,

and

A =
∫ π/2

0

dϕ
a(ϕ)
,

a(ϕ) =
sinn1 ϕ cosn2 ϕ(

sin2 ϕ
n1
+

cos2 ϕ
n2

)−1/2
⎛⎜⎜⎜⎜⎜⎜⎜⎝

n1s2
1

sin2 ϕ
+

n2s2
2

cos2 ϕ
+

(x̄1 − x̄2)2

sin2 ϕ
n1
+

cos2 ϕ
n2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(n1+n2−1)/2

.

It is easy to see that the Bayes factor for intrinsic priors BI
10 depends on the sample

(x1, x2) through the statistic (s2
1, s

2
2, |x̄1 − x̄2|, n1, n2). Since the p-value in the Welch’s

approximation also depends on the the sample through this statistic it follows that
there is a one-to-one relationship between the p-values and the null model posterior
probabilities.

As an illustration of this relationship, in Table 1 we display p-values and null model
posterior probabilities for sample observations with

n1 = 200, s2
1 = 12, n2 = 120, s2

2 = 40,
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Table 1: Comparison of p-values and null posterior probabilities for n1 = 200 and
n2 = 120.

|x̄1 − x̄2| t p-value P(M0|x1, x2)
0.0 0.00 1.00 0.94
0.5 0.79 0.43 0.92
1.2 1.91 0.06 0.72
1.3 2.06 0.04 0.65
1.4 2.22 0.03 0.57
1.5 2.38 0.02 0.49
2.0 3.17 0.001 0.10

and several values of the difference |x̄1 − x̄2| and the corresponding t statistic defined as

t =
|x̄1 − x̄2|√

s2
1/n1 + s2

2/n2

.

From the numbers in Table 1 we conclude that when the values of |x̄1 − x̄2| are close
to zero or large enough both procedures make the correct decision. However, when the
empirical evidence is not conclusive, a situation far beyond intuition for which statistical
methods are unavoidable, there is a strong disagreement between the report provided by
Welch‘s p-values and that of the intrinsic null posterior probabilities. For instance, for
values of the t statistic between 2.00 and 2.35, the p-values show evidence against the
null hypothesis, stronger as t increases, while the null posterior probabilities show the
opposite, they still favour the null hypothesis.

Such a disagreement heavily depends on the sample size. If we reduce the above
sample sizes to n1 = 20 and n2 = 12, while maintaining the values of s2

1 and s2
2, the

frequentist and Bayesian reports are not so strongly contradictory, as seen from Table
2, and it may happen that a p-value accepts the null but the corresponding posterior
probability of the null may be less than 0.5 and then the Bayesian test rejects it. For
instance, for |x̄1 − x̄2| = 4.22 or t = 2.04, the p-value is 0.06 while the null posterior
probability is smaller than 0.5.

Table 2: Comparison of p-values and null posterior probabilities for n1 = 20 and
n2 = 12.

|x̄1 − x̄2| t p-value P(M0|x1, x2)
0.00 0.00 1.00 0.83
2.20 1.06 0.30 0.75
4.22 2.04 0.06 0.46
5.00 2.42 0.03 0.32
10.00 4.80 0.002 0.008

In passing, we note that when |x̄1 − x̄2| = 0 we expect both the p-value and null
posterior probability to be large. Since the sample size is finite we should not expect
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the p-value to attain its maximum value of one, but it does. However, the null posterior
probability is always strictly smaller than one.

5 Testing hypotheses in linear regression

A scenario where the discrepancies between the p-values and the objective Bayesian
test are apparent is that of testing that some regression coefficients of a linear regression
model are equal to zero. Suppose that the observable random variable y follows the
normal linear model

y =
k∑

i=1

αixi + ε,

where the random error term ε ∼ N(ε|0, σ2), ααα = (α1, . . . , αk)t is the vector of
regression coefficients, and (x1, . . . , xk) is a set of potential explanatory variables. Given
n independent observations y = (y1, . . . , yn)t from the model and denoting the design
matrix by

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x11 . . . x1k

x21 . . . x2k
...

. . .
...

xn1 . . . xnk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

the likelihood function of (ααα, σ) is given by the density of a Nn(y|Xααα, σ2In), where it is
assumed that X is of full rank k, (k < n).

Consider the partition of ααα as αααt = (αααt
0,ααα

t
1) and the corresponding partition of the

columns of X = (X0|X1), so that X0 is of dimensions n × k0 and X1 is n × k1, where
k1 = k − k0 .

In this setting, an important problem consists in testing that some of the covariates
have no influence on the variable y. That is, we are interested in testing the null
H0 : ααα0 = 0 versus the alternative H1 : ααα0 � 0. This is the natural way of reducing the
complexity of the original linear model proposed. If the null is accepted the implication
is that the covariates x1, . . . , xk0 will not be considered as explanatory variables.

5.1 The uniformly most powerful test

The frequentist testing procedure, derived from the likelihood ratio test, is based on the
distribution of the ratio Bn = SS/SS1 of the quadratic forms
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SS = yt(In−H)y, SS1 = yt(In−H1)y,

where H = X(XtX)−1Xt and H1 = X1(Xt
1X1)−1Xt

1 are the hat matrices of the full and
the reduced models, respectively. It is well known, from standard linear model theory,
that the sampling distribution of the Bn statistic under the null H0 : ααα0 = 0 is

Bn|H0 ∼ Be

(
·|n − k

2
,
k0

2

)
,

where Be(·|α, β) denotes the beta distribution with parameters α and β.
When sampling from the alternative H1 : ααα0 � 0, the corresponding distribution is

1 − Bn|H1 ∼ Be′
(
· |k0

2
,
n − k

2
; δ

)
,

where

δ = αααt
0X

t
0(In−H1)X0ααα0

and Be′(·|α, β; δ) denotes the noncentral beta distribution with parameters α and β and
noncentrality parameter δ. If H0 : ααα0 = 0 is true, then δ = 0, and the noncentral
distribution reduces to the central one.

The UMP test of size α (Lehmann 1986, theorem 5, pp. 300 and pp. 369) has the
following critical region

Reject H0 when Bn ≤ I−1α
(n − k

2
,
k0

2

)
,

where I−1α ((n − k)/2, k0/2) denotes the α fractile of the Beta distribution Be(·|((n −
k)/2, k0/2).

Likewise, for a given sampling value Bn, the p-value is given by

p =
∫ Bn

0
be

(
z|n − k

2
,
k0

2

)
dz.

where be(z|(n − k)/2, k0/2) denotes the density of the corresponding beta distribution.
We remark that the p-value is an increasing function of Bn so that small values of Bn

contain evidence against the null hypothesis.
This test is usually written in terms of the F-statistic, which is related to Bn, by

F =
n − k
k0

1 − Bn

Bn
,

although for numerical illustrations it is more convenient to use the bounded Bn statistic
instead of the unbounded F.
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5.2 The objective Bayesian test

The default Bayesian formulation of this testing problem would be that of choosing
between the Bayesian models

M0 : Nn(y|X1γ1, σ
2
0In), π

N
0 (γ1, σ0) =

c0

σ0
,

and

M1 : Nn(y|Xα, σ2
1In), π

N
1 (ααα, σ1) =

c1

σ1
,

where πN represents the usual improper reference prior (Berger and Bernardo, 1992) for
estimating the regression coefficients and the standard error. Unfortunately these priors
are improper and hence cannot be used for solving the above testing problem.

Application of the standard intrinsic methodology (Moreno, Girón and Torres 2003,
Girón et al. 2004) renders the intrinsic priors of (ααα, σ1) conditional on (γ1, σ0) as

πI(ααα, σ1|γ1, σ0) =
2

πσ0(1 + σ2
1/σ

2
0)

Nk(α|γ̃α|γ̃α|γ̃1, (σ2
0 + σ

2
1)W

−1),

where γ̃t1 = (0t, γt1) and W−1 is

W−1=
n

k + 1
(XtX)−1.

We note that the conditional intrinsic prior for the parameter of the alternative ααα
is centered at the null parameter γ̃1. Further, the conditional intrinsic prior for σ1

is a half Cauchy located at zero and with scale parameter σ0. This implies that the
conditional intrinsic prior has no moments, a desirable property for a default prior. The
unconditional intrinsic prior for (ααα, σ1) is given by

πI(ααα, σ1) =
∫
πI(ααα, σ1|γ1, σ0)π

N
0 (γ1, σ0)dγ1dσ0.

Of course, this prior is fully automatic, i.e. does not depend on any tuning parameters
nor processes any subjective prior information.

Using the so called pair of intrinsic priors πN
0 (γ1, σ0) and πI(ααα, σ1), the intrinsic

posterior probability of model M0 is given by

P(M0|y,X) =
1

1 + B10
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where

B10 =
2(k + 1)k0/2

π

∫ π/2

0

sink0 ϕ (n + (k + 1) sin2 ϕ)(n−k)/2

(nBn + (k + 1) sin2 ϕ)(n−k1)/2
dϕ. (4)

From this expression, and also from the frequentist analysis of the testing problem
in subsection 5.1, it follows that for fixed values of the sample size n, the number of
covariates k and the dimension of the null hypothesis k1, the statistic Bn is a sufficient
statistic for the testing problem, as the Bayes factor for the intrinsic priors does not
depend on other ancillary statistics such as happens with other Bayes factors for linear
models found in the literature, which depend on the quotient of the determinants |XtX|
and |Xt

1X1|.
Bayesian testing procedures different from the above one have been given by Berger

and Pericchi (1996), O’Hagan (1995) and Zellner (1986) who proposed the use of the
arithmetic intrinsic Bayes factor, the fractional Bayes factor and the Bayes factor derived
from the g-priors, respectively. Except for the arithmetic intrinsic Bayes factor, the other
two proposals depend on some tuning parameters which have to be adjusted.

Let us mention that for normal linear models the O‘Hagan fractional Bayes factor
provides sensible fractional priors for testing problems in a similar asymptotic way as
the arithmetic intrinsic Bayes factor provides intrinsic priors (Moreno 1997). For so
doing, the tuning parameter in the fractional Bayes factor is fixed as the quotient m/n,
where m is the minimal training sample size. The results obtained when using Bayes
factors for fractional priors are very close to those provided by Bayes factors for intrinsic
priors, and hence only intrinsic priors are being considered here.

5.3 Comparing the frequentist and Bayesian tests

The dependence of the p-value and the posterior probability of the null on the sufficient
statistic (Bn, n, k, k1), where n, k, and k1 are ancillary makes possible the comparison of
the frequentist and objective Bayesian test.

For fixed values of the ancillaries n, k and k1, the p-value and the intrinsic posterior
probability of the null model P(M0|Bn, n, k, k1) are monotone increasing functions of the
Bn statistic. This permits us to establish a one-to-one relation between both measures of
evidence through the parametric equations

y = P(M0|b, n, k, k1)

p = Ib

(
n − k

2
,
k − k1

2

)
,

(5)

where the parameter b, the sufficient statistic, ranges in the interval [0, 1].
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The separate behaviour of y and p as the sufficient statistic b goes to zero or one is
as follows. The null posterior probability and the p-value go to zero as b tends to zero,
whatever the values of the ancillaries, as

lim
b→0

P(M0|b, n, k, k1) = 0 and lim
b→0

Ib
(n − k

2
,
k − k1

2

)
= 0.

If Bn = 0, then the residual sum of squares of the full model SS is also 0; this means
that there is no uncertainty in the full model, i.e. it is deterministic; thus, the reduced
model M0 has zero posterior probability and the p-value is also zero, so that the full
model is obviously accepted.

When Bn tends to one, then the p-value tends to one whatever the values of the
ancillaries, but the null posterior probability tends to a number strictly smaller that one
(Theorem 2.2 in Girón et al 2004) which, on the other hand, tends to one as n goes to
infinity.

In this case, as Bn = 1, the residual sum of squares of the full SS and the reduced
null model SS1 are the same so that the data favour either model equally; however,
the frequentist evidence in favour of the reduced model M0 is one as if there were
no uncertainty about what model to choose but, on the other hand, the Bayesian test
accounts for the uncertainty inherent in the data rendering a posterior probability of M0

greater than 1/2 but strictly less than 1; hence, the Bayesian test chooses the simpler
model, which is a consequence of the built-in Occam’s razor implicit in the objective
Bayesian test.

From the above equations (5) we can eliminate the parameter b to obtain a explicit
equation of the null posterior probability as a function of the p-value, n, k and k1,

y = P(M0|I−1p (n − k/2, k − k1/2), n, k, k1).

From this equation it follows that for fixed values of n, k and k1, the null posterior
probability is an increasing function of the p-value. Therefore, the difference between
the frequentist and Bayesian measures of evidence is a simple calibration problem. For
this reason this curve is given the name of calibration curve in Girón et al (2004).

Unfortunately, the null posterior probability also depends on n, k, k1 so that the
properties of the calibration curve have to be established in a case-by-case basis.
When simultaneous hypothesis testing are considered we have to jump among different
calibration curves hence losing the monotonicity between the null posterior probabilities
and the p-values. In this latter case calibration is no longer possible.

In the remainder of this section the number of possible regressors k will be keep
fixed. In Figures 1 and 2 we display the typical behavior of the calibration curves, first,
for different values of the sample size n and fixed k1, and second, for different values of
k1 and fixed n.
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The calibration curves in Figure 1 correspond to k = 10 and k1 = 9 and n = 20, 50
and 90; they indicate that for a given p-value the null posterior probability increases as
the sample size increases. Further, from the consistency of the Bayes factor for intrinsic
priors it follows that the slope of the calibration curve at the origin tends to infinity
as n increases. This shows that the evidence against the null conveyed by the p-values
should be diminished as the sample size n increases in order to reconcile the frequentist
and Bayesian test. Otherwise, we would reject a null hypothesis that has a very high
posterior probability.

Figure 1: Three calibration curves for different sample sizes n = 20, n = 50 and n = 90, when the number
of regressors is k = 10, and k1 = 9.

Pr(H0|p)

The curves in Figure 2, for a fixed value of the sample size n, indicate that small
p-values correspond to small posterior probabilities when k1 is large, and also that the
posterior probability increases as k1 decreases. This implies that for small values of k1 a
p-value would reject a null hypothesis that has a large posterior probability, a fact which
is generally acknowledged in the literature. But, on the other hand, for large values of k1

a p-value would accept a null hypothesis that has a small posterior probability. Notice,
in Figure 2, that for the curve with k1 = 9 there is an interval of p-values larger than
0.05 whose corresponding posterior probabilities of the null are smaller than 1/2. This
important fact, which is generally overlooked by the feeling that p-values tend to reject
the null hypothesis more often than the Bayesian tests, also reveals that the opposite may
happen sometimes; namely, that a null hypothesis may be not rejected by the frequentist
p-value and rejected by the Bayesian test for the same data.

Figure 2 also indicates that, when comparing several nulls of different dimension
k1 that convey the same frequentist evidence, the Bayesian test chooses the simplest
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Figure 2: Four calibration curves, plotted for values of p-values in the interval (0, 0.10), for different
choices of k1 = 0, 5, 7, 9, when the sample size is n = 50, and the number of regressors is k = 10.

Pr(H0|p)

hypothesis or model. As before, this is another instance of the automatic Occam’s razor
property implicit in the objective Bayesian test.

5.4 Variable selection in regression

Although the purpose of this paper is to critically revise the similarities and, above all,
the enormous differences between the two approaches to hypothesis testing, we want to
devote this last section to the important problem of variable selection in normal linear
regression, where we have to consider simultaneously a large number of multiple tests of
different dimensions k1, and then provide an ordering of the plausibility of the different
models considered. A recent contribution to the subject, mainly from a frequentist
perspective, is the revised version of the classical monograph by Miller (2002), where a
chapter on Bayesian variable selection has been added.

We do not discuss here sequential, or non-exhaustive, frequentist variable selection
procedures such as forward, backward and stepwise selection methods nor the
more recent ones such as the lasso or shrinkage methods, in order to concentrate
our discussion on exhaustive search methods from the frequentist and Bayesian
perspectives. Neither do we discuss here the well known asymptotic BIC criterion for
model selection, because we can dispense with it as we have the non-asymptotically
based from above and from below Bayesian criteria.

The all subsets selection criterion is based on the idea of classifying the set of all
models, say M, in k disjoint classes, where k is the number of covariates of the full
model, according to the number of covariates j, i.e.M = ⋃k

j=1M j. Within each class,
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the model with minimum residual sum of squares SS j is chosen, so that we end up with
k maximal models, one for each class. Note that p-values or the equivalent F statistic
provide the same ordering within the class M j and, consequently, the same sets of
maximals, but these criteria turn to be useless when comparing models with different
number of covariates, a fact which is well recognized by frequentist statisticians.

Hence, the problem of choosing the best model within the maximals, is far from
trivial and a large number of procedures have been proposed in the literature. The
underlying idea is to correct the SS j, or a simple function of it and the ancillaries
to account for the different number of covariates, as do the well known adjusted R2,
Mallows Cp, and the AIC criteria. Unfortunately, these corrections do not always work
properly.

From the objective Bayesian viewpoint, which is mainly based on the results
of Section 5.2, two procedures for model selection have been proposed. The main
difference between these procedures relies on the form of encompassing – that is, of
nesting – the class of all possible submodels. The so called from above procedure
(Casella and Moreno 2005, Girón et al. 2004) is based on comparing all the submodels
with the full model, and ordering them according to the posterior probabilities of all
submodels using the formulae of Section 5.2. We denote these posterior probabilities by
Pfa(Mi|Sn) for any submodel Mi, where Sn = (Bn, n, k, k1). The interpretation of these
probabilities is that the model with highest posterior probability represents the most
plausible reduction in complexity from the full model, the second highest the second
most plausible model, and so on.

As these posterior probabilities are monote increasing functions of theBn statistic for
fixed ancillaries, this means that within each class of modelsM j the ordering provided
is the same as the one based on the residual sum of squares SS j. Thus, the Bayesian
solution from above is the maximal model having the largest posterior probability of its
corresponding model. No need for extra adjustment!

The so called from below procedure (Girón et al. 2005b and Moreno and Girón
2005), based on the simple fact that the intercept only model is nested into any other
possible model as far as it includes the intercept, produces a possibly different ordering
of all the submodels of the full model. The ordering is now based on the Bayes factors
resulting from comparing the current submodel with the intercept only model. Further, it
turns out that this procedure provides a coherent set of model posterior probabilities on
the set of all possible submodels denoted by Pfb(Mi|Sn), and these coherent probabilities
are monote increasing functions of the R2 statistic as now Bn = 1 − R2, which in
turn, is also a monote decreasing function of the residual sum of squares SS j of the
corresponding submodel. This means, as with the from above Bayesian criterion, that
the model chosen by the from below criterion is also the maximal model having the
largest Bayes factor or, equivalently, the highest model posterior probability Pfb(Mi|Sn).

The main conclusion derived from these comparisons is, first, that the two Bayesian
criteria always choose a maximal model, i.e. they are compatible with the best subsets
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partial ordering and, second, that they are fully automatic in the sense that no tuning of
extra parameters, neither the use of outside information nor additional criteria, is needed.

Table 3: Comparison of different variable selection criteria for Hald’s data

Models From below From above Adjusted Mallows
Pfb(Mi|Sn) Pfa(Mi|Sn) R2 R2 Cp

{x1, x2} 0.5466 0.7407 0.9787 0.9744 2.6782
{x1, x4} 0.1766 0.5364 0.9725 0.9670 5.4958
{x1, x2, x4} 0.0889 0.7231 0.9823 0.9764 3.0182
{x1, x2, x3} 0.0879 0.7211 0.9823 0.9764 3.0413
{x1, x3, x4} 0.0708 0.6809 0.9813 0.9750 3.4968
{x2, x3, x4} 0.0165 0.3780 0.9728 0.9638 7.3375

Table 3 compares the results of several model selection criteria for the famous Hald’s
data on the composition of cement. The analysis illustrates the Occam’s razor property
of the Bayesian criteria. Note also that, for these data, the adjusted R2 does not adjust
the ordering provided by the original R2 for the most plausible models.

A large simulation study, see Moreno and Girón (2005b) for the description and
extent of the study, has shown that the adjusted R2 performs very poorly in almost all
situations, a well known fact. Mallow’s Cp and the AIC criteria perform in a very similar
way – another well known fact – but they show a poorer behaviour when compared
with either Bayesian criteria in most circumstantes. This suggests that the Bayesian
criteria account for the difference in dimensionality in some automatic way, hidden in the
formulae of their corresponding Bayes factors, in the same manner they automatically
obey Occam’s razor principle.

Table 4 illustrates these comments for a medium size linear model, k = 6, i.e. with
five covariates excluding the intercept, sample size n = 40 and values of k1 ranging from
2 to 6.

Table 4: Comparison of different variable selection criteria for the simulated data.

N.o of covariates
Criterion 1 2 3 4 5
From below 0.901 0.910 0.962 0.977 1.000
From above 0.573 0.657 0.793 0.927 1.000
Mallows Cp 0.500 0.563 0.692 0.850 1.000
Adjusted R2 0.234 0.292 0.452 0.716 1.000

The model considered for simulation is

y = Xα + ε

where y is a vector of length 40, X is a 40 × 6 matrix whose entries were obtained by
simulation from a standard normal distribution N(0, 1), except the entries in the first
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column which were set equal to 1 to include the intercept, and ααα = (α1, α2, . . . , α6)t is a
vector of length 6. The error terms in εεε = (ε1, . . . , εn) are i.i.d. εi ∼ N(0, 1).

After fixing X, samples of size 5000 were simulated from the model for five different
settings of the vector of regression coefficients ααα including 1, 2 3, 4 and 5 non zero
coefficients. In particular, we set

ααα1 = (−1,−2, 0, 0, 0, 0)
ααα2 = (−1,−2, 2, 0, 0, 0)
ααα3 = (−1,−2, 2,−3, 0, 0)
ααα4 = (−1,−2, 3/2,−2, 2, 0)
ααα5 = (−1,−2, 3/2,−2, 2,−1).

The entries in Table 4 represent the proportion of times that the true model is selected
in the first place in the 5000 simulations according to the four criteria and to the number
of nonzero regression coefficients in the model.

The relation between the p-values, or any equivalent model selection procedure,
and the Bayesian model posterior probabilities in the variable selection problem can
be summarized as follows. For a fixed sample size n, models with the same number of
regressors k1 are ordered in the same manner by all criteria: p-values, R2 and adjusted R2,
Mallows Cp, AIC and the two Bayesian procedures. However, when comparing models
with different number of regressors all frequentist and Bayesian criteria generally
provide different orderings of the models. But, as we have learned from the simulations,
the frequentist behaviour of the Bayesian criteria generally outperforms that of the
frequentist ones. Comparisons between the from below and from below Bayesian criteria
are discussed in Moreno and Girón (2005b). The conclusion in that paper is that for
models with a small or medium number of relevant covariates, as the one illustrated in
Table 3, the from below criterion performs better that the from above one, but for models
with a large number of influential covariates, the opposite may happen.

6 Discussion

Two measures of evidence for hypothesis testing, frequentist and Bayesian, have been
considered and compared in this paper for some important testing problems. The case of
the standard normal model is not dealt with in the paper as it is a particular case of the
normal linear model with no covariates; in this case the sample size is the only ancillary,
and the frequentist-Bayesian comparison or calibration just depends on the sample size.

We have first recalled that standard normal-theory does not apply to the Behrens-
Fisher problem of testing the equality of the means of two normal populations under
heteroscedasticity, as there is no clear-cut p-value and, consequently, frequentist theory
has to resort to computing an approximate p-value by adjusting the degrees of freedom
of a t-distribution on which the solution of the homoscedastic case is based.
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For this problem, we have illustrated the fact that p-values reject the null hypothesis
for data for which the Bayesian inference accepts, more markedly as both sample sizes
increase. To make p-values more unsatisfactory we have also seen that for small sample
sizes p-values would accept the null for data for which the Bayesian rejects.

Therefore, we have to admit that the usual interpretation of a p-value as a measure
of evidence against the null regardless the sample size, though it entails a notable
simplification, may produce wrong answers. It is clear that the enormous success of
the p-values in the realm of applications is partially due to their simplicity for scientific
communication, but the bad news is that such a simplicity may be misleading.

The study of the relation between the two measures of evidence has been extended
to normal data in the presence of covariates, that is to the normal linear model. Here two
new ancillaries, in addition to the sample size, arise: the number of covariates and the
dimension of the null. We have illustrated that the dimension of the null hypothesis is
another fundamental ancillary to be taken into account when interpreting p-values. The
disregard of this ancillary may produce the rejection of null hypotheses that have high
posterior probabilities or the acceptation of nulls that have low posterior probabilities.

Finally, we have considered the variable selection problem, a challenging multiple
testing problem, because for this problem the sample size and the dimension of the
null play a very important role. For selecting variables we necessarily have to jump
among models whose null parameter spaces have different dimensions. To overcome
this difficulty, the frequentist approach has to adjust some statistic, usually the one
based on the ratio of sums of the residuals under the full and null models, in several
ways to account for the different number of covariates involved. This accommodation,
however, is not very convincing. The objective Bayesian approach seems to deal with
this problem in a more appropiate way than the frequentist counterpart because all the
ancillaries in the problem are properly taken into account. Furthermore, the objective
Bayesian solution works in a fully automatic way in the sense that there is no need for
adjusting any tuning parameters.
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