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Abstract

In this paper, the filtering problem is revisited in the basic Gaussian homogeneous linear system driven
by fractional Brownian motions. We exhibit a simple approximate filter which is asymptotically optimal
in the sense that, when the observation time tends to infinity, the variance of the corresponding filtering
error converges to the same limit as for the exact optimal filter.
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1 Introduction

Several contributions have been already reported around filtering problems concerning
models where the driving processes are fractional Brownianmotions (fBm’s for short) :
see Kleptsynaet al. (2000) for a rather general approach and further references. The
specific case of a homogeneous linear system has been investigated in Kleptsyna and
Le Breton (2002) where explicit closed form equations are derived both for the optimal
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filter and the variance of the filtering error. Moreover, therein it is shown that this filter
is asymptotically stable in the sense that the variance of the filtering error converges to
a finite limit as the observation time tends to infinity. Here our aim is to exhibit a simple
approximate filter which has the same asymptotic behaviour as the optimal one. Let us
fix this more precisely.

As in Kleptsyna and Le Breton (2002), we deal with real-valued processesX =
(Xt, t ≥ 0) and Y = (Yt, t ≥ 0), representing the signal and the observation
respectively, governed by the following homogeneous linear system of stochastic
differential equations interpreted as integral equations :


dXt = θXtdt+ dVH

t , t ≥ 0 , X0 = 0 ,

dYt = µXtdt+ dWH
t , t ≥ 0 , Y0 = 0 .

(1.1)

HereVH = (VH
t , t ≥ 0) andWH = (WH

t , t ≥ 0) are independent normalized fBm’s
with the same Hurst parameterH in [ 1

2,1) and the coefficientsθ andµ , 0 are fixed
real constants. The system (1.1) has a uniquely defined solution process (X,Y) which
is Gaussian. Supposing that onlyY is observed but one wishes to knowX, the classical
problem of filtering the signalX at timet from the observation ofY up to timet occurs.
The solution to this problem is the conditional distribution of Xt given {Ys , 0 ≤ s ≤ t},
which of course is Gaussian. Then, it is completely determined by the conditional mean
πt(X) = IE(Xt/{Ys , 0 ≤ s ≤ t}), which we shall call theexact optimal filter, and the
varianceγXX(t) = IE(Xt − πt(X))2 of the filtering error. In Kleptsyna and Le Breton
(2002), a system of Volterra type integral equations for these characteristics is provided
and the following stability property of the filter is also shown :

lim
t→+∞

γXX(t) = γH ,

where the constantγH is given by

γH =
Γ(2H + 1)
2(θ2 + µ2)H

[
1+

√
θ2 + µ2 + θ
√
θ2 + µ2 − θ

sinπH
]
. (1.2)

In the classical caseH = 1
2 where the noises are standard Brownian motions, the system

of filtering equations reduces to the well-known Kalman-Bucy system (see,e.g., Davis
(1977) and Liptser and Shiryaev (1978)) and the asymptotic variance of the filtering
error isγ 1

2
= µ−2[

√
θ2 + µ2+θ]. In that case, substituting the constantγ 1

2
for the function

γXX(t) in the Kalman-Bucy system, one gets the simpler filtering equation

dπ∗t (X) = −
√
θ2 + µ2π∗t (X)dt+ µγ 1

2
dYt ; π∗0(X) = 0 , (1.3)

which generates the filter

π∗t (X) = µγ 1
2

∫ t

0
e−
√
θ2+µ2(t−s)dYs . (1.4)
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It turns out thatπ∗t (X) is anasymptotically optimal filterin the sense that the variance
IE(Xt − π∗t (X))2 of the corresponding filtering error converges toγ 1

2
ast goes to infinity.

Observe that actually, in this case, the asymptotic optimality in filtering is achieved in
the class of filters which can be represented as

∫ t

0
φ(t − s)dYs. In the present paper, we

show that this still holds forH > 1
2 and we identify in this class a filter for which the

variance of the filtering error converges toγH .
The paper is organized as follows. At first in Section 2, we fix some notations

and preliminaries; in particular we associate to the problem under study an equivalent
deterministic control problem. Then, our main result is stated and proved in Section 3
by exploiting the solution of this auxiliary problem which belongs to a family of infinite
time horizon deterministic control problems which are investigated in Section 4.

2 Preliminaries

Fractional Brownian motion. Here, for someH ∈ [ 1
2,1), BH = (BH

t , t ≥ 0) is a
normalized fractional Brownian motion with Hurst parameter H. This means thatBH

is a Gaussian process with continuous paths such thatBH
0 = 0, IEBH

t = 0 and

IEBH
s BH

t =
1
2

[s2H + t2H − |s− t|2H] , s, t ≥ 0 . (2.1)

Of course the fBm reduces to the standard Brownian motion when H = 1
2. For H , 1

2,
the fBm is outside the world of semimartingales but a theory of stochastic integration
with respect to fBm has been developed (see,e.g., Decreusefond and̈Ustünel (1999) or
Duncanet al. (2000)). Actually the case of deterministic integrands, which is sufficient
for the purpose of the present paper, is easy to handle (see,e.g., Norroset al.(1999)). In
particular, for a stochastic integral

St =

∫ t

0
g(t − s)dBH

s , (2.2)

we can evaluate

IES2
t =



∫ t

0
g2(s)ds if H =

1
2
,

H(2H − 1)
∫ t

0

∫ t

0
g(s)g(r) |s− r |2H−2 dsdr if H ∈ (

1
2
,1) .

In the second case, exploiting the representation

|s− r |2H−2 =
1

B(H − 1
2,2− 2H)

∫ +∞

s∨r
(τ − s)H− 3

2 (τ − r)H− 3
2 dτ ,

whereB(., .) denotes the Beta function, it is easy to check that we can rewrite

IES2
t =

H(2H − 1)

B(H − 1
2,2− 2H)

∫ +∞

0
{
∫ s∧t

0
g(r)(s− r)H− 3

2 dr}2ds.
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Therefore, we have also for allH ∈ [ 1
2,1)

lim
t→+∞

IES2
t =

2HΓ(3
2 − H)

Γ(H + 1
2)Γ(2− 2H)

∫ +∞

0
g̃2(s)ds, (2.3)

where

g̃(s) =
d
ds

∫ s

0
g(r)(s− r)H− 1

2 dr , (2.4)

andΓ is the Gamma function. Actually, the connection (2.4) can beinverted by

g(s) =
1

B(H + 1
2,

3
2 − H)

d
ds

∫ s

0
g̃(r)(s− r)

1
2−Hdr . (2.5)

Filtering errors. As announced in Section 1, in the system (1.1), we shall concentrate
on filters which take the form

π
φ
t (X) =

∫ t

0
φ(t − s)dYs .

From the first equation in (1.1), we have

Xt = eθt
∫ t

0
e−θsdVH

s ,

and, taking into account the second one, we get

π
φ
t (X) = µ

∫ t

0
φ(t − s)eθs{

∫ s

0
e−θudVH

u }ds+
∫ t

0
φ(t − s)dWH

s .

Hence, it comes that

π
φ
t (X) = µ

∫ t

0
{
∫ t

u
φ(t − s)eθsds}e−θudVH

u +

∫ t

0
φ(t − s)dWH

s ,

or

π
φ
t (X) = µ

∫ t

0
{
∫ t−u

0
φ(w)e−θwdw}eθ(t−u)dVH

u +

∫ t

0
φ(t − s)dWH

s .

Finally, the filtering error corresponding to the filterπφt (X) can be written as

Xt − πφt (X) =
∫ t

0
eθ(t−s){1− µ

∫ t−s

0
φ(w)e−θwdw}dVH

s −
∫ t

0
φ(t − s)dWH

s ,

or equivalently

Xt − πφt (X) =
∫ t

0
Zφ(t − s)dVH

s −
∫ t

0
φ(t − s)dWH

s , (2.6)
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where the functionZφ is defined fromφ, Zφ = Z say, by

Z(τ) = eθτ{1− µ
∫ τ

0
φ(w)e−θwdw} .

Notice thatZ is governed by the differential equation

Ż(τ) = θZ(τ) − µφ(τ) ; Z(0) = 1 . (2.7)

Asymptotic variance of filtering errors. Now, starting from (2.6), according to the
identities (2.2)-(2.4) with (Z,VH) and (φ,WH) in place of (g, BH) and due to the
independence ofVH andWH, we get that the asymptotic variance of the filtering error
corresponding to the filterπφt (X), i.e.,

lim
t→+∞

IE(Xt − πφt (X))2 = J(φ) , (2.8)

is given by

J(φ) =
2HΓ(3

2 − H)

Γ(H + 1
2)Γ(2− 2H)

∫ +∞

0
{Z̃2(s) + φ̃2(s)}ds, (2.9)

where, forZ linked toφ by (2.7),

Z̃(s) =
d
ds

∫ s

0
Z(r)(s− r)H− 1

2 dr ; φ̃(s) =
d
ds

∫ s

0
φ(r)(s− r)H− 1

2 dr . (2.10)

Actually, it is readily seen from (2.7) and (2.10) that the dynamics which links̃Z to φ̃ is
nothing but

Z̃(t) = θ
∫ t

0
Z̃(s)ds− µ

∫ t

0
φ̃(s)ds+ tH− 1

2 . (2.11)

Notice that of course ifH = 1
2, and hencẽφ ≡ φ andZ̃ ≡ Z, equation (2.11) is nothing

but equation (2.7) written in integral form and ifH > 1
2, then (2.11) can be rewritten as

˙̃Z(t) = θZ̃(s) − µφ̃(s)ds+ (H − 1
2

)tH− 3
2 ; Z̃(0) = 0 .

Due to the limiting property (2.8), our guess is that in orderto define an asymptotically
optimal filterπ∗t (X), one may takeπ∗t (X) = πφ

∗

t (X) where the functionφ∗ corresponds
through (2.5) to an optimal control̃φ∗ in the control problem :

min
φ̃

J̃(φ̃) subject to (2.11), (2.12)

with the performance criterioñJ(φ̃) = J(φ) defined by (2.9).
The concerned infinite time horizon deterministic control problem (2.12) belongs to

the class of control problems which are solved in Section 4. Their solutions make us
able to formulate and prove our main result.
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3 Asymptotically optimal filtering

At first, let us discuss the case whenH = 1
2. Here, in the control problem studied in

Section 4, we must takex = 1, K ≡ 0, a = θ, b = −µ andq = r = 1. Hence, applying
Theorem 4.1 (see also the particular case 4.1), it comes thatthe optimal control in (2.12)
is

φ∗(t) = µγ 1
2
e−
√
θ2+µ2t ,

where

γ 1
2
=

√
θ2 + µ2 + θ

µ2
,

is the value of the optimal cost. This means nothing but that,as claimed in Section 1, an
asymptotically optimal filter isπ∗t (X) = πφ

∗

t (X) given by (1.4).
Now, we turn to the caseH ∈ (1

2,1) where we can prove the following statement
which provides also an asymptotically optimal filter :

Theorem 3.1 Define the function V∗ by

V∗(t) =
H − 1

2

B(H + 1
2,

3
2 − H)

∫ +∞

0
e−
√
θ2+µ2tτ τ

H− 1
2

τ + 1
dτ , t > 0 . (3.1)

Let the pair of functions(φ∗,Z∗) be defined by

φ∗(t) =

θ +
√
θ2 + µ2

µ
[Z∗(t) + V∗(t)] ,

Ż∗(t) = θZ∗(t) − µφ∗(t) ; Z∗(0) = 1 .
(3.2)

Then the filter

π∗t (X) =
∫ t

0
φ∗(t − s)dYs ,

is asymptotically optimal, i.e.,

lim
t→+∞

IE(Xt − π∗t (X))2 = γH ,

whereγH is given by (1.2).

Proof. For H ∈ (1
2,1), in the control problem studied in Section 4, we must take

x = 0, K(t) = (H − 1
2)tH− 3

2 , a = θ, b = −µ and

q = r =
2HΓ(3

2 − H)

Γ(H + 1
2)Γ(2− 2H)

.

Hence, applying Theorem 4.1 (see also the particular case 4.2), we get that the following
pair (̃φ∗, Z̃∗) is optimal in the control problem (2.12) :


φ̃∗(t) =

θ +
√
θ2 + µ2

µ
[Z̃∗(t) + Ṽ∗(t)] ,

˙̃Z
∗
(t) = θZ̃∗(t) − µφ̃∗(t) + (H − 1

2)tH− 3
2 ; Z̃∗(0) = 0 ,
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where

Ṽ∗(t) = (H − 1
2

)
∫ +∞

0
e−
√
θ2+µ2r (t + r)H− 3

2 dr . (3.3)

Moreover, it is easy to check that the optimal cost in (2.12) is J̃(φ̃∗) = γH whereγH

is given by (1.2). Hence, it is clear that to define an asymptotically optimal filter by
π∗t (X) = πφ

∗

t (X) we can take the second componentφ∗ of the triple (V∗, φ∗,Z∗) which
corresponds through (2.5) to the triple (Ṽ∗, φ̃∗, Z̃∗). It is easy to check thatφ∗ is defined
by (3.2) whereV∗ corresponds through (2.5) tõV∗ and so, finally, we have just to identify
V∗. From (3.3), we compute
∫ t

0
(t − s)

1
2−HṼ∗(s)ds = (H − 1

2
)
∫ t

0
(t − s)

1
2−H{
∫ +∞

0
e−
√
θ2+µ2r (s+ r)H− 3

2 dr}ds

= (H − 1
2

)
∫ +∞

0
e−
√
θ2+µ2r{

∫ t

0
(t − s)

1
2−H(s+ r)H− 3

2 ds}dr

= (H − 1
2

)
∫ +∞

0
e−
√
θ2+µ2r{

∫ t
t+r

0
v

1
2−H(1− v)H− 3

2 dv}dr .

Observing that actually

d
dt

∫ t
t+r

0
v

1
2−H(1− v)H− 3

2 dv=
t

1
2−HrH− 1

2

t + r
,

it follows that
∫ t

0
(t − s)

1
2−HṼ∗(s)ds = (H − 1

2
)
∫ +∞

0
e−
√
θ2+µ2r {

∫ t

0

u
1
2−HrH− 1

2

u+ r
du}dr

= (H − 1
2

)
∫ t

0
{
∫ +∞

0
e−
√
θ2+µ2r u

1
2−HrH− 1

2

u+ r
dr}du

= (H − 1
2

)
∫ t

0
{
∫ +∞

0
e−
√
θ2+µ2uτ τ

H− 1
2

τ + 1
dτ}du.

From (2.5), we see that this means exactly thatV∗ is given by (3.1). ¤

Remark 3.1 (a) Observe that from (3.1) we have also

V̇∗(t) = −
√
θ2 + µ2

H − 1
2

B(H + 1
2,

3
2 − H)

∫ +∞

0
e−
√
θ2+µ2tτ τ

H+ 1
2

τ + 1
dτ , t > 0 .

Then, splitting the integral into two terms corresponding to the decomposition ofτH+
1
2

as the difference [τH+
1
2 + τH−

1
2 ] − τH− 1

2 , one may easily check thatV∗ is actually the
solution of the differential equation

V̇∗(t) =
√
θ2 + µ2V∗(t) − βH (H − 1

2
)t−

1
2−H ; lim

t→+∞
V∗(t) = 0 ,

where

βH =
(θ2 + µ2)

1−2H
4

Γ(3
2 − H)

.
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Since
∫ +∞
0

V∗(t)dt = 1, it means also that thatV∗ is the solution of the integral equation

V∗(t) =
∫ t

0

√
θ2 + µ2V∗(s)ds+ βH t

1
2−H − 1 . (3.4)

(b) Let us emphasize that, similarly to the caseH = 1
2 where the filterπ∗t (X) can be

generated by the approximate Kalman-Bucy algorithm (1.3),a recursive scheme can be
also provided for the asymptotically optimal filter in the caseH ∈ (1

2,1). At first, we
observe that due to the first equation in (3.2) we can write

π∗t (X) = µγ 1
2
[Z∗t +V∗t ] , (3.5)

where

Z∗t =
∫ t

0
Z∗(t − s)dYs ; V∗t =

∫ t

0
V∗(t − s)dYs .

Since the functionZ∗ is differentiable, we have

Z∗t = Z∗(0)Yt +

∫ t

0
{
∫ s

0
Ż∗(s− r)dYr }ds.

Hence, due to the second equation in (3.2), the processZ∗ is generated fromY by the
equation

Z∗t = θ
∫ t

0
Z∗sds− µ

∫ t

0
π∗s(X)ds+ Yt , (3.6)

Now, using equation (3.4), we can write

V∗t =
∫ t

0
ψ(t − s)dYs+ βH

∫ t

0
(t − s)

1
2−HdYs ,

where the functionψ satisfies

ψ̇(t) =
√
θ2 + µ2V∗(t) ; ψ(0) = −1 .

Consequently, we get that
∫ t

0
ψ(t − s)dYs = ψ(0)Yt +

∫ t

0
{
∫ s

0
ψ̇(s− r)dYr }ds

=

√
θ2 + µ2

∫ t

0
V∗sds− Yt .

Finally, the following equation holds forV∗t :

V∗t =
√
θ2 + µ2

∫ t

0
V∗sds+

∫ t

0
[βH (t − s)

1
2−H − 1]dYs . (3.7)
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The system (3.5)-(3.7) provides a closed-form recursion which generates the filterπ∗t (X)
from the observation processY. It is readily seen that whenH = 1

2, and henceV∗ ≡ 0
andπ∗t (X) = µγ 1

2
Z∗t , this system reduces to the single equation

π∗t (X) = −
√
θ2 + µ2

∫ t

0
π∗s(X)ds+ µγ 1

2
Yt ,

which is nothing but equation (1.3). (c) Suppose thatH > 1
2 but one does as if the noises

were standard Brownian motions and hence uses the filter generated by the approximate
Kalman-Bucy algorithm (1.3),i.e., the filter

π̃t(X) = µγ 1
2

∫ t

0
e−
√
θ2+µ2(t−s)dYs .

Then it can be checked that the corresponding asymptotic variance of the filtering error
limt→+∞ IE(Xt − π̃t(X))2 is the constant

γ̃H =
Γ(2H + 1)

(θ2 + µ2)H− 1
2

γ 1
2
.

Moreover the consequent loss of performance with respect tothe asymptotically optimal
filter can be evaluated by

γ̃H − γH =
Γ(2H + 1)
2(θ2 + µ2)H

µ2γ2
1
2

(1− sinπH) .

Let us observe that, for fixed parametersθ andµ, the asymptotic relative efficiency

γH

γ̃H

=

1+ µ2γ2
1
2

sinπH

1+ µ2γ2
1
2

,

of π̃t(X) decreases asH increases in (12,1).

4 About optimal control problems

Given a functionK = (K(t), t ≥ 0) and constantsa andb, we consider the state dynamics

Ẋt = aXt + bUt + K(t) , t ≥ 0 ; X0 = x , (4.1)

where the controlU = (Ut, t ≥ 0) can be chosen in order to drive the stateX = (Xt, t ≥
0). LetA be the class of measurable functionsU, called admissible controls, such that
the corresponding differential equation (4.1) has a unique solutionX. Given constants
q > 0 andr > 0, we define the performance criterionJ by

J(U) =
∫ +∞

0
[qX2

t + rU2
t ]dt . (4.2)
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The following statement gives the solution of the infinite time horizon deterministic
control problem corresponding to (4.1)-(4.2).

Theorem 4.1 Define the constants

ρ =
r
b2

[a+ δ] ; δ =

√
a2 +

b2

r
q . (4.3)

Assume thatlimt→+∞ K(t) = 0 and also, setting

VK(t) =
∫ +∞

0
e−δr K(t + r)dr , t ≥ 0 , (4.4)

that the functionVK is well-defined. Let the pair(U∗,X∗) be governed by

U∗t = −b

r
ρ[X∗t +VK(t)] ,

Ẋ∗t = aX∗t + bU∗t + K(t) ; X∗0 = x ,
(4.5)

Then, forJ defined by (4.2), the pair(U∗,X∗) is optimal in the control problem

min
U∈A
J(U) subject to (4.1) .

Moreover, the value of the optimal cost is

J(U∗) = ρ[x+VK(0)]2 + q
∫ +∞

0
V2

K(s)ds. (4.6)

Proof. Suppose that there exists a pair (X∗, p∗) which satisfies the Hamiltonian
system

Ẋ∗t = aX∗t −
b2

r
p∗t + K(t) ; X∗0 = x ,

ṗ∗t = −qX∗t − ap∗t ; lim
t→+∞

p∗t = 0 ,

(4.7)

Hence of courseX∗ is nothing but the state dynamics corresponding through (4.1) to
the controlU∗ defined byU∗t = −(b/r)p∗t . Let us show that for an arbitrary control
U ∈ A the inequalityJ(U) ≥ J(U∗) holds. Of course it is true whenJ(U) = +∞
and so we concentrate on the case whenJ(U) < +∞ which in particular means that
limt→+∞Xt = 0 for the corresponding state dynamicsX. Defining forT > 0

JT(U) =
∫ T

0
[qX2

t + rU2
t ]dt , (4.8)

we evaluate

JT(U) = JT(U∗) +
∫ T

0
{q[X2

t − (X∗t )2] + r[U2
t − (U∗t )2]}dt .



M. L. Kleptsyna, A. Le Breton, M. Viot 187

Using the equalityy2 − (y∗)2 = (y − y∗)2 + 2y∗(y − y∗) and exploiting the property
U∗t = −(b/r)p∗t , it is readily seen that

JT(U) = JT(U∗) + ∆1(T) + 2∆2(T) , (4.9)

where

∆1(T) =
∫ T

0
{q[Xt − X∗t ]2 + r[Ut −U∗t ]2}dt ,

∆2(T) =
∫ T

0
{qX∗t [Xt − X∗t ] − bp∗t [Ut −U∗t ]}dt .

But, rewriting the quantity in the last integral as

(Xt − X∗t )[qX∗t + ap∗t ] − p∗t [a(Xt − X∗t ) + b(Ut −U∗t )] ,

and taking into account equations (4.1) and (4.7), we see that this integral can be written
as

−
∫ T

0
(Xt − X∗t )dp∗t −

∫ T

0
p∗t d(Xt − X∗t ) .

Therefore, integrating by parts, sinceX0 − X∗0 = 0, it comes that

∆2(T) = −p∗T(XT − X∗T) .

Consequently, since∆1(T) ≥ 0, from (4.9) we get that

JT(U) ≥ JT(U∗) − 2p∗T(XT − X∗T) .

Hence, if limT→+∞X∗T = 0, lettingT tend to infinity in this inequality, due to the limiting
conditions forp∗ andX, we obtainJ(U) ≥ J(U∗).
Now, to show that the pair (U∗,X∗) defined by (4.5) is optimal, it is sufficient to check
that the pair (X∗, p∗), wherep∗t = ρ[X∗t +VK(t)], satisfies the Hamiltonian system (4.7)
and that also the limiting condition limt→+∞X∗t = 0 holds. At first, it is easy to check that
(X∗, p∗) satisfies the differential equations in (4.7). One can observe that the expression
(4.4) forVK can be rewritten as

VK(t) =
∫ +∞

t
eδ(t−s)K(s)ds, t ≥ 0 ,

and since limt→+∞ K(t) = 0, actuallyVK is nothing but the solution of the equation

V̇K(t) = δVK(t) − K(t) ; lim
t→+∞

VK(t) = 0 . (4.10)

Now, since from the first equation in (4.7) we have

Ẋ∗t = −δX∗t −
b2

r
ρVK(t) + K(t) ; X∗0 = x , (4.11)
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due to limt→+∞ K(t) = limt→+∞VK(t) = 0, it is clear that limt→+∞X∗t = 0. Hence, we
have also limt→+∞ p∗t = 0.
Finally, we evaluate the optimal costJ(U∗). At first, in order to compute the variation
p∗TX∗T − p∗0X∗0, we expressp∗t Ẋ∗t + ṗ∗tX∗t from (4.7). Then, forJT defined by (4.8), it
follows easily that

JT(U∗) = p∗0x− p∗TX∗T +
∫ T

0
p∗t K(t)dt .

Hence, sincep∗t = ρ[X∗t +VK(t)], taking the limit forT tending to infinity, we get

J(U∗) = ρ[x+VK(0)]x+ ρ
∫ +∞

0
[X∗t +VK(t)]K(t)dt .

Proceeding similarly through the evaluation of the variationVK(T)X∗T −VK(0)X∗0 from
(4.10)-(4.11), we obtain that

∫ +∞

0
X∗t K(t)dt = −b2

r
ρ

∫ +∞

0
V2

K(t)dt+
∫ +∞

0
K(t)VK(t)dt+VK(0)x .

Then, since from equation (4.10) we haveK(t) = δVK(t) − V̇K(t), it follows that

J(U∗) = ρ[x2 + 2VK(0)x] + ρ(δ − a)
∫ +∞

0
V2

K(t)dt− 2ρ
∫ +∞

0
VK(t)V̇K(t)dt .

But ρ(δ − a) = q and clearly the last integral equals−1
2V

2
K(0) and so the equality (4.6)

holds. ¤

Remark 4.1 Actually, from (4.10), we observe that

VK(t)V̇K(t) = δV2
K(t) − K(t)VK(t) ,

and hence ∫ +∞

0
V2

K(t)dt =
1
δ
{
∫ +∞

0
K(t)VK(t)dt− 1

2
V2

K(0)} .

This allows to rewrite the value (4.6) of the optimal cost as

J(U∗) = ρx[x+ 2VK(0)] +
ρ

δ
{δ + a

2
V2

K(0)+ (δ − a)
∫ +∞

0
K(t)VK(t)dt} . (4.12)

P  4.1 If we takeK ≡ 0, and hence alsoVK ≡ 0, then the optimal pair
(U∗,X∗) is governed by


U∗t = −b

r
ρX∗t ,

Ẋ∗t = aX∗t + bU∗t ; X∗0 = x .
(4.13)

Sincea− (b2/r)ρ = −δ, this means thatX∗t = e−δtx andU∗t = −(b/r)ρe−δtx. Substituting
these expressions forX∗t andU∗t in the integral

∫ +∞
0

[q(X∗t )2 + r(U∗t )2]dt, a direct
computation gives the valueJ(U∗) = ρx2 of the optimal cost, which of course is
nothing but what (4.6) says in the present case.
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P  4.2 If, for someH ∈ (1
2,1), we takeK(t) = (H− 1

2)tH− 3
2 , then the optimal

pair (U∗,X∗) is governed by (4.5) with

VK(t) = (H − 1
2

)
∫ +∞

0
e−δr(t + r)H− 3

2 dr . (4.14)

Moreover, the value of the optimal cost can be computed explicitly. Actually, here from
(4.14), straightforward computations give that

VK(0) = δ
1
2−HΓ(H +

1
2

) ;
∫ +∞

0
K(t)VK(t)dt = δ1−2H

Γ(2H)Γ(H + 1
2)Γ(2− 2H)

2Γ(3
2 − H)

.

Inserting this into the expression (4.12), one may finally get

J(U∗) = ρx[x+
2

δH−
1
2

Γ(H +
1
2

)] +
q
δ2H

Γ(2H)Γ(H + 1
2)Γ(2− 2H)

2Γ(3
2 − H)

[
1+
δ + a
δ − a

sinπH
]
.

5 Concluding comments

Linear Quadratic Gaussian (LQG) problems concerning dynamical systems governed
by Brownian motions have well-known solutions which are nowquite classical. When
the driving processes are fBm’s, the theory is not yet completed, specially from the
asymptotical point of view. In this paper, concentrating onfiltering, we have illustrated
the actual solvability of the problems. Actually, the infinite time horizon stochastic
control problems are also tractable and in forthcoming papers we shall report the results
about the regulator problem both in the case of complete and incomplete observation,
the last one mixing filtering and control.
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