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Abstract

A survey of some recent results on nonparametric on-line estimation is presented. The first result deals
with an on-line estimation for a smooth signal S(t) in the classic ‘signal plus Gaussian white noise’
model. Then an analogous on-line estimator for the regression estimation problem with equidistant
design is described and justified. Finally some preliminary results related to the on-line estimation for
the diffusion observed process are described.
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1 On-line estimation of a signal in a Gaussian white noise model

We consider an observation processXε(t) having the form

Xε(t) =
∫ t

0
S(s)ds+ εW(t), t ∈ [0,1]. (1.1)

HereW(t) is a standard Wiener process andε > 0 is a small parameter. Denote byΣ(β, L)
a class of functionsS(t), t ∈ [0,T] having k derivatives on (0,T) with k-th derivative
S(k)(t) satisfying the Ḧolder condition with the exponentα ∈ (0,1](β = k+ α):

|S(k)(t + h) − S(k)(t)| ≤ L|h|α.
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2 On-line nonparametric estimation

The following problem was considered by Ibragimov and Khasminskii (1981): what
is the rate of convergence to 0 for the best estimators ofS,S(1), . . . ,S(k), asε → 0,
and how can estimators with this rate be created? It was shownin Ibragimov and
Khasminskii (1980a, 1981) that the kernel and projection estimatorsŜε(t) for a suitable
choice of parameters have a property

sup
S∈Σ(β,L)

E
([ Ŝε(t) − S(t)
ε2β/(2β+1)

]2
+

k∑

j=1

[ Ŝ( j)
ε (t) − S( j)(t)
ε2(β− j)/(2β+1)

]2)
≤ C, (1.2)

and there are no estimators with uniformly inΣ(β, L) better rate of convergence to 0 risks
(here and below we denote byC,Ci generic positive constants, which may be different
and do not depend onε).

In some applications it is necessary to create a tracking (oron-line) type of estimator
for S, that is estimators with the property:̂Sε(t + h) is based on̂Sε(t) and observation
process on the time interval [t, t + h] only. Unfortunately the well-known kernel and
projection estimators do not have this property.

The tracking estimator for the model (1.1) was proposed by Chow et al.(1997). This
estimator has the structure of a Kalman filter. Heuristicallythis estimator is based on the
auxiliary filtering model

dS(t) = S(1)(t)dt

dS( j)(t) = S( j+1)(t)dt, j = 1, . . . , k− 1

dS(k)(t) = σεdW′(t)

dXt = S(t)dt+ εdW(t). (1.3)

It is clear that the last equation in (1.3) is equivalent to (1.1). Assuming that the standard
Wiener processesW(t) and W′(t) are independent and choosing a constantσε in a
suitable way, we arrive at the following estimator forS(t) = S(0)(t), . . . ,S(k)(t) (see
details in Chowet al. (1997))

dŜ( j)
ε (t) = Ŝ( j+1)

ε (t)dt+
q j

ε2( j+1)/(2β+1)

(
dXε(t) − Ŝε(t)dt

)
,

j = 0,1, . . . , k− 1 (1.4)

dŜ(k)
ε (t) =

qk

ε2(k+1)/(2β+1)

(
dXε(t) − Ŝε(t)dt

)
,

subject to the initial conditionŝS(0) = S◦, Ŝ( j)(0) = S j
◦, j = 1, . . . , k, which reflect a

priori information onS(0), S( j)(0), j = 1, . . . , k.
Denote bypk(λ) the polynomial

pk(λ) = λ
k+1
+ q0λ

k
+ . . . + qk−1λ + qk.

The following result was proven in Chowet al. (1997):
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Theorem 1.1 For any choice q0, . . . ,qk such that all roots of the polynomial pk(λ) have
negative real parts, and for arbitrary bounded initial conditions S◦, . . . ,Sk

◦ the tracking
filter (1.4) has the property: there exists an initial boundary layer ∆ε = C1ε

2/2β+1

log(1/ε) such that for t≥ ∆ε the inequality (1.2) is valid.

Remark 1.2 It is proven in Chowet al. (1997) also, that the initial boundary layer of
the orderε2/2β+1 is inevitable for any tracking type estimator.

Remark 1.3 An analogous result was proven in Chowet al.(2001) for the estimation of
a time dependent spatial signal observed in a cylindrical Gaussian white noise model of
the small intensityε. It is proven in Chowet al. (2001) that outside of the inevitable
boundary layer the symbiosis of a projection estimator in the space variables and
tracking type estimator in the time variable also has an optimal rate of convergence
of risks to0, as ε → 0, for a suitable choice parameters of a tracking filter and a
projection estimator.

2 On-line estimation of a smooth regression function

It is well known that the model (1.1) is a natural approximation for the regression
estimation model with equidistant design. In more detail, consider the following
statistical model. Letf (t) ∈ R1, t ∈ [0,1], be a function fromΣ(β, L), tin = i

n, i = 1, . . . ,n,
and the observation model has the form

Xin = f (tin) + σ(tin)ξin, (2.1)

where (ξin)i≤n is a sequence of i.i.d. random variables withEξin = 0, Eξ2in = 1 and
σ2(tin) < C. The natural analogy of an estimator (1.4) is the tracking estimator (hereafter
we write for brevityti instead oftin andXi instead ofXin)

f̂ ( j)
n (ti) = f̂ ( j)

n (ti−1) +
1
n
̂f ( j+1)
n (ti−1) +

q j

n
(2β− j)
2β+1

(
Xi − f̂ (0)

n (ti−1)
)

j = 0,1, . . . , k− 1 (2.2)

f̂ (k)
n (ti) = f̂ (k)

n (ti−1) +
qk

n
(2β−k)
2β+1

(
Xi − f̂ (0)

n (ti−1)
)

subject to some initial conditionŝf (0)
n (0), f̂ (1)

n (0), . . . , f̂ (k)
n (0).The following theorem,

analogous to Theorem 1.1, was proven by Khasminskii and Liptser (2002):

Theorem 2.1 Let q0, . . . ,qk are chosen so that all roots of the polynomial pk(λ)
have negative real parts. Let an observation model has the form (2.1), f ∈ Σ(β, L)
and σ2(t) < C. Then the estimator (2.2) with arbitrary bounded initial conditions
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f̂ (0)
n (0), f̂ (1)

n (0), . . . , f̂ (k)
n (0) possesses the property: for tl > C1n

− 1
2β+1 logn := δn

sup
f∈
∑

(β,L)

k∑

j=0

E
(
f ( j)(tℓ) − f̂ ( j)

n (tℓ)
)2n

2(β− j)
2β+1 ≤ C2. (2.3)

Remark 2.2 Similar the proof an analogous property of the estimator (1.4) it is easy
to conclude from the results in Stone (1980) and Ibragimov and Khasminskii (1980b)
that the rate of convergence of risks to zero for n→ ∞ in (2.3) is unimprovable. The
boundary layer of order n−

1
2β+1 is also inevitable for any on-line estimator.

Remark 2.3 It is easy to apply the estimator (2.2) for the estimation f with the best
rate of convergence of risk to0 for all t ∈ [δn,1]. It is enough to set, for instance,

f̂ ( j)
n (t) = f̂ ( j)

n (tℓ) for tl ≤ t < tl+1.

Proof of Theorems 1.1 and 2.1 are similar.Making use of the choice parameters
q0, . . . ,qk and the recursive form of estimators (1.4), (2.2) one can find the suitable
upper bounds for the bias and variance of these estimators. As an illustration, consider
the simplest case of the estimation problem (2.1) withf ∈ Σ(1, L) (β = 1). Then the
estimator (2.2) takes the form

f̂n(tℓ) = f̂n(tℓ−1) +
q0

n2/3
(Xℓ − f̂n(tℓ−1)); f̂n(0) = f0 (2.4)

with arbitrary boundedf0 and positive boundedq0. Making use of (2.1) and notations
∆n(ℓ) = f̂n(tℓ) − f (tℓ), ∆ f (tℓ) = f (tℓ+1) − f (tℓ), one can rewrite (2.4) as

∆n(ℓ) = (1−
q0

n2/3
)(∆n(ℓ − 1)− (1−

q0

n2/3
)∆ f (tℓ−1) +

q0σ(tℓ)ξℓ
n2/3

. (2.5)

It follows from (2.5) that

∆n(ℓ) = (1−
q0

n2/3
)ℓ∆n(0)−

ℓ−1∑

i=0

(1−
q0

n2/3
)ℓ−i
∆ f (ti) (2.6)

+
q0

n2/3

ℓ−1∑

i=0

(1−
q0

n2/3
)ℓ−iσ(ti)ξi .

It follows from the assumptionβ = 1 that|∆ f (ti)| ≤ L/n. Thus we have from (2.6) that

|E∆n(ℓ)| ≤ |∆n(0)| exp{−
q0ℓ

n2/3
} +Cn−1/3.

So |E∆n(ℓ)| ≤ Cn−1/3, asℓ ≥ C1n2/3 logn, or, equivalently, astℓ = l/n ≥ C1n−1/3 logn.
Analogously one can obtain

Var∆n(ℓ) ≤
C

n4/3

ℓ−1∑

i=0

(1−
q0

n2/3
)2(ℓ−i) ≤ Cn−2/3.
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These upper bounds for|E∆n(ℓ)|, Var∆n(ℓ) imply the assertion of the Theorem 2.1 for
the caseβ = 1. ¤

3 On-line estimation for the diffusion observed process

Recently we started (together with Y. Golubev) to study the problem of on-line
estimation of an unknown signalS(t) for the case of a diffusion observed process. A
preliminary result concerns estimating a signal of the smoothnessα,0 < α ≤ 1 only.

Assume that an observed process is a solution of the stochastic differential equation
onR1

dXε(t) = F(t,Xε(t),S(t))dt+ εσ(t,Xε(t))dw(t); Xε(0) = x0. (3.1)

(It is a natural generalization of an observation model (1.1)) HereS(t) : R1 7→ R1 is
an unknown function, and the problem is to estimate this function on the interval (0,T)
making use ofXε(t),0 ≤ t ≤ T. Let the following conditions hold:

A1. The functionsF, σ are Lipschitzian with respect to all variables, andσ is
bounded.

A2. The functionS(t) satisfies the Ḧolder condition

|S(t + h) − S(t)| ≤ L|h|α, 0 < α ≤ 1.

A3. For some positiveCi and all 0 ≤ t ≤ T, x ∈ R1,S ∈ R1 the inequality
C1 ≤ |

∂F(t,x,S)
∂S | ≤ C2 holds.

We consider the following on-line estimatorSε(t)

dSε(t) =
dXε(t) − F(t,Xε(t),Sε(t))dt
γεF′S(t,Xε(t),Sε(t))

; Sε(0) = S(0). (3.2)

Theorem 3.1 Under conditions A1 − A3 the estimator (3.2) withγε = kε
2

2α+1 (k is an
arbitrary positive constant) has the property

E|Sε(t) − S(t)|2 ≤ Cε
4α

2α+1 (3.3)

as t> Cε
2

2α+1 log(1/ε) (here C is large enough, but independent ofε).

Proof. IntroduceSδ(t) = (2δ)−1
∫
R1 exp{− |t−u|

δ
}S(u)du. It is easy to see from A2 that

|Sδ(t) − S(t)| ≤ c3δ
α, |S′δ(t)| ≤ c3δ

α−1. (3.4)

Introduce a new processxδ(t) = Sε(t) − Sδ(t). Then we have from (3.1) and (3.2)

dxδ(t) =
1
γε
∆ε(t)dt+

εσ(t,Xε(t))
γεF′S(t,Xε(t),Sε(t))

dw(t) − S′δ(t)dt. (3.5)
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Here we denote

∆ε(t) =
F(t,Xε(t),S(t)) − F(t,Xε(t),Sδ(t) + xδ(t))

F′S(t,Xε(t),Sδ(t) + xδ(t))
(3.6)

The equation (3.5) and Ito formula imply

d[xδ(t)]
2
=

2
γε

xδ(t)∆ε(t)dt+ 2
εxδ(t)σ(t,Xε(t))
γεF′S(t,Xε(t),Sε(t))

dw(t) (3.7)

+[
εσ(t,Xε(t))

γεF′S(t,Xε(t),Sε(t))
]2dt− 2xδ(t)S

′
δ(t)dt.

It follows from A3 and (3.4) that

xδ(t)∆ε(t) = xδ(t)
F(t,Xε(t),S(t)) − F(t,Xε(t),Sδ(t))

F′S(t,Xε(t),Sδ(t) + xδ(t))

+xδ(t)
F(t,Xε(t),Sδ(t)) − F(t,Xε(t),Sδ(t) + xδ(t))

F′S(t,Xε(t),Sδ(t) + xδ(t))

≤
C2

C1
|xδ(t)||S(t) − Sδ(t)| −

C1

C2
|xδ(t)|

2 ≤ C4|xδ(t)|δ
α −

C1

C2
|xδ(t)|

2. (3.8)

DenoteVδ(t) = E[xδ(t)]2. Then it is clear from (3.7), (3.4) and (3.8) that

V′δ(t) ≤ −
k1

γε
Vδ(t) + k2(

δ2α

γε
+
ε2

γ2
ε

+ γεδ
2α−2) (3.9)

for small enough positive constantk1 and large enough constantk2 (both independent of
ε, δ, γε). Now choose the parametersδ, γε asδ ≍ ε

2
2α+1 , γε ≍ ε

2
2α+1 . Then we obtain from

(3.9) for some positive constantsk3, k4 independent ofε the inequality

V′δ(t) ≤ −k3ε
− 2

2α+1 Vδ(t) + k4ε
4α−2
2α+1 (3.10)

It follows from (3.10) that

Vδ(t) ≤ Vδ(0) exp{−k3ε
− 2

2α+1 t} +
k4

k3
ε

4α
2α+1 . (3.11)

The initial value Vδ(0) = S(0) − Sδ(0) is bounded. Thus we can conclude from
(3.11) thatVδ(t) ≤ Cε

4α
2α+1 , as t > Cε

2
2α+1 log(1/ε). Note now thatE|Sε(t) − S(t)|2 ≤

2Vδ(t) + 2|Sδ(t) − S(t)|2. The theorem follows from these upper bounds and (3.4).¤

Remark 3.1 It follows from the s.1 that the rate of convergence in Theorem3.1 is
unimprovable: it is unimprovable even for the case F(t, x,S) = S, σ(t, x) = 1.
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5 Concluding remark

The estimators (1.4), (2.2), (3.2) can be used for extrapolation too. For instance, the
expression

fn(tl + h) =
k∑

j=0

h j

j!
f̂n(tl)

can be used for estimation off (tl + h) on the basis of observationsX1n, . . . ,Xln. It is not
hard to check with help of Theorem 2.1 that

E| fn(tl + h) − f (tl + h)|2 ≤ C max{h,n−
1

2β+1 }2β,

and better rate of convergence of risk is unattainable.
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Resum

Es presenta un recull d’alguns resultats recents en estimació no-paramètrica en lı́nia. El primer resultat
tracta d’una estimació en lı́nia per a un senyal suau S(t) en el model clàssic “senyal més soroll blanc
Gaussià (GWN)”. Aleshores es descriu i justifica un estimador en lı́nia anàleg pel problema d’estimació
de regressió amb disseny equidistant. Finalment, es descriuen alguns resultats preliminars en relació
a l’estimació en lı́nia pel procés de difusió observada.

MSC: 62G05, 62G08, 62M05.
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