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Abstract

Asymptotic study of canonical correlation analysis gives the opportunity to present the different steps
of an asymptotic study and to show the interest of an operator and tensor approach of multidimensional
asymptotic statistics rather than the classical, matrix and analytic approach. Using the last approach,
Anderson (1999) assumes the random vectors to have a normal distribution and the non zero canonical
correlation coefficients to be distinct. The new approach we use, Fine (2000), is coordinate-free,
distribution-free and permits to have no restriction on the canonical correlation coefficients multiplicity
order. Of course, when vectors have a normal distribution and when the non zero canonical correlation
coefficients are distinct, it is possible to find again Anderson’s results but we diverge on two of them.
In this methodological presentation, we insist on the analysis frame (Dauxois and Pousse, 1976), the
sampling model (Dauxois, Fine and Pousse, 1979) and the different mathematical tools (Fine, 1987,
Dauxois, Romain and Viguier, 1994) which permit to solve problems encountered in this type of study,
and even to obtain asymptotic behavior of the analyses random elements such as principal components
and canonical variables.)
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Keywords: multivariate analysis, canonical correlation analysis, asymptotic study, operator, coordinate-

free, distribution-free

1 Classical approach

1.1 Population canonical correlation analysis

Let X and Y be two random vectors, p and q dimensional respectively (p ≤ q) defined

on a same probability space (Ω,A, P), centered and admitting order 4 moments. We
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assume the matrix covariance VX of X to be non-singular and we denote by HX the vector

space of real-valued random variables (r.r.v.) linear combinations of X components.

We introduce similarly VY and HY and we denote by VXY the cross covariance the

components of X with the ones of Y.

The aim of canonical correlation analysis (CCA) of (X,Y) is to measure the

relationships between X and Y . CCA may be defined as the search for f1 and g1,

r.r.v. of HX and HY with unit variance and maximal correlation ρ1 then, iteratively, for

j = 2, ..., r, (r ≤ p), as the search of f j and g j, r.r.v. of HX and HY with unit variance,

uncorrelated with the ( fk)k< j and (gk)k< j and with maximal correlation ρ j. The r.r.v. f j

and g j are called jth canonical variables and the real ρ j of [0,1] is called jth canonical

correlation coefficient.

Let RX = V
− 1

2

X
VXYV−1

Y
VYXV

− 1
2

X
and the same for RY permuting X and Y roles. It is

easy to verify that RX and RY have the same non-zero eigenvalues denoted by (ρ2
j
) j=1,...,r

when written in a decreasing order. We set : λ j = ρ
2
j
, for j = 1, ..., r, and, except in the

particular case r = p = q, we set λ j = ρ j = 0 for j > r. For j > r we define f j and g j as

r.r.v. of HX and HY respectively with unit variance and uncorrelated with the ( fk)k< j and

(gk)k< j.

CCA of (X,Y) is then :

((ρ j) j=1,...,r+1, ( f j) j=1,...,p, (g j) j=1,...,q). (1)

CCA of (X,Y) depends only on HX and HY , which are also generated by components

of X′ := V
− 1

2

X
X and Y ′ := V

− 1
2

Y
Y respectively. We show that, if (u j) j=1,...,p and (v j) j=1,...,q

denote unit eigenvectors bases of RX and RY associated with (λ j) j=1,...,p and (λ j) j=1,...,q

respectively, we can obtain canonical variables f j and g j as linear combinations of X′

and Y ′ components, using u j and v j components as coefficients, that is, by setting:

f j = 〈u j, X
′〉p et g j = 〈v j,Y

′〉q, where 〈., .〉p and 〈., .〉q denote Rp and Rq usual scalar

products.

Decomposition (1) is not unique because each canonical variable associated with a

simple eigenvalue may be replaced by its opposite and the set of canonical variables

associated with a multiple eigenvalue may be replaced by an other set according to the

choice of RX and RY eigenvectors associated with this eigenvalue.

1.2 Sample canonical correlation analysis

Let (Xl,Yl)l=1,...,n be a n-sample i.i.d. as (X,Y). We index by n the elements defined

previously and calculated on the sample : µn
X
, µn

Y
,Vn

X
,Vn

Y
,Vn

XY
,Rn

X
,Rn

Y
.

Let (λn
j
) j=1,...,p be the decreasing sequence of the p eigenvalues of Rn

X
(and of the p

largest eigenvalues of Rn
Y
, the other ones, if q > p, being null), (un

j
, vn

j
) j=1,...,p a sequence

of associated unit eigenvectors of Rn
X

and of Rn
Y

and ( f n
j
, gn

j
) j=1,...,p the canonical variables

sequence, vectors of Rn, obtained by :
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∀l ∈ {1, ..., n} ( f n
j )l = 〈un

j , (V
n
X)−

1
2 (Xl − µn

X)〉p and (gn
j)l = 〈vn

j , (V
n
Y )−

1
2 (Yl − µn

Y)〉q.

If the case arises (q > p), we let λn
p+1
= 0, we complete (vn

j
) j=1,...,p with Rn

Y

eigenvectors in order to obtain an orthonormal basis (vn
j
) j=1,...,q of Rq and we define

the canonical variables associated.

At last, for all j in {1, ..., p + 1} let ρn
j
=

√

λn
j
. Sample CCA of (X,Y) is then:

((ρn
j) j=1,...,p+1, ( f n

j ) j=1,...,p, (g
n
j) j=1,...,q). (2)

1.3 Asymptotic study

Asymptotic study of CCA consists in establishing a.s. convergence of the canonical

elements sequences of the sample CCA (2) to the corresponding canonical elements

of the population CCA (1) and in establishing convergence in distribution of the

standardized canonical elements sequences.

Difficulties are numerous : canonical variables are estimated (“predicted”) by Rn

vectors, the space dimension increasing with sample size. Then the use is to restrict

asymptotic study to Rn
X

and Rn
Y

eigenvectors : (un
j
) j=1,...,p and (vn

j
) j=1,...,q respectively,

called canonical vectors and also to the Rp and Rq vectors defined by: xn
j
= (Vn

X
)−

1
2 un

j

and yn
j
= (Vn

Y
)−

1
2 vn

j
respectively, called canonical factors; these vectors permit to obtain

directly canonical variables by:

∀l ∈ {1, . . . , n} ( f n
j )l = 〈xn

j , Xl − µn
X〉p et (gn

j)l = 〈yn
j ,Yl − µn

Y〉q.

Multiple eigenvalues case is difficult to process because the eigenvectors associated

with are not uniquely defined. Then the use is to restrict asymptotic study to the case

where all eigenvalues are simple. Uniqueness is then verified by choosing systematically

the unit vector (between the two ones) which has the first non null coordinate in respect

with the canonical basis positive.

As for all multidimensional analyses, covariance matrices of sample random

matrices Vn
X

, Vn
XY

, Rn
X

, ... are “super-matrices” (that is, matrices of matrices). Tools such

as the “vec” operator which transforms matrix into vector, have been introduced in order

to handle theses super-matrices; the difficulty comes from the necessity of fixing the

order of lines and columns elements.

In other respects, we know that the sequence (
√

n(Vn
X
−VX)) converges in distribution

to a centered normal variable, the covariance super-matrix of which is known in some

special cases, when X has a normal or elliptical distribution for example.

In the CCA frame work, we need to study convergence in distribution of the sequence

(
√

n(Vn
Z
−VZ)) with Z = (X,Y), then to study convergence in distribution of the sequence

(
√

n(Rn
Z
− RZ)) with RZ = (RX ,RY) and Rn

Z
= (Rn

X
,Rn

Y
), before studying convergence
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of the Rn
Z

eigenelements sequences and convergence of the sample canonical elements

sequences. This asymptotic study is much more complex than the one of Principal

Component Analysis (PCA) because principal values and principal vectors of the X

PCA are eigenelements of the X covariance matrix.

It is only in 1999 that Anderson publishes a CCA asymptotic study when (X,Y)

has a normal distribution and when all non zero eigenvalues are simple. Canonical

factors components and canonical correlation coefficients of the population CCA are

differentiable functions of VZ . Results are then obtained from Taylor expansions. So,

this classical approach may be qualified as matricial and analytic.

In order to simplify calculations, we propose to change variables from (X,Y) to

(X′,Y ′), which is equivalent to changing the basis in Rp and Rq. We then have: VX′ = Ip,

and RX = RX′ = VX′Y ′VY ′X′ , and similarly for VY ′ and RY .

2 Operator and tensor approach

2.1 Introduction

Difficulties previously described are ensued only from the fact that matricial tool

is not convenient. Working directly on linear operators in Euclidean spaces avoid

indices problems and can be easily extended to an Hilbertian frame. Moreover, instead

of studying eigenvectors associated with simple eigenvalues, it is possible to study

eigenprojectors associated with multiple eigenvalues. Eaton (1983) also advices a

“vector space approach” of the multidimensional statistics.

Dauxois and Pousse (1976) enlarge the PCA definition of a Rp random vector to a

Hilbert random variable and even to a Hilbert random function, that is, a Hilbert random

variable depending on a parameter in order to process temporal or spatial data. They

redefine each factorial analysis (PCA, CCA, Correspondence Analysis, Discriminant

Analysis, ...) in an operatorial and stochastic frame, that leads them to define, between

others, nonlinear analyses.

The first asymptotic study in this frame has been realized by Romain (1979) for

a Hilbert random function PCA (see also Dauxois, Pousse and Romain, 1982), study

completed by Arconte (1980) who also started on CCA asymptotic study but all tools

were not available to continue the study. Dauxois, Romain and Viguier (1994) propose

to use some tensor products and establish a dictionary between matricial and operatorial

formula. This work permits to compare common results obtained in both frames, but

also to obtain more easily complex results; writings in respect with eigenvectors basis

are established after concise formulations with operators.

These new tools permit to realize in Fine (2000) the CCA asymptotic study

without restriction, that is, without assumption on the (X,Y) distribution, in the general

case where eigenvalues may be multiple and without excluding canonical variables
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asymptotic study (CCA random elements). Therefore, our approach may be qualified

as an operator and tensor approach. We give below the different steps of the CCA

asymptotic analysis, some tools used and some examples of results.

2.2 Different steps of the CCA asymptotic study, tools, results

1) Population CCA

First, the matter is to define CCA of a pair of Euclidean random variables (population

CCA). Again, we use classical approach notations substituting (Rp, 〈., .〉p) and (Rq, 〈., .〉q
for p and q dimensional Euclidean spaces (X, 〈., .〉X) and (Y, 〈., .〉Y) respectively.

Obviously, we work without reference to any basis (free coordinate).

Let L2(P) the Hilbert space of r.r.v. defined on (Ω,A, P) and admitting order 2

moments, scalar product of which associates E( f g) to ( f , g).

The operator ΦX from X to L2(P) which associates 〈x, X〉X to x plays an essential

role in the operator approach of multidimensional statistics. In particular, X is a normal

Euclidean random variable if, and only if, ∀x ∈ X, 〈x, X〉X is a normal r.r.v..

The expected value of X is the unique element of X (Riesz theorem), denoted by

E(X), verifying: ∀x ∈ X, 〈x,E(X)〉X = E(〈x, X〉X).

For all (x, y) ∈ X×Y, we denote by x⊗ y the operator from X toY which associates

〈x′, x〉X y to x′ ; it is an element of the Hilbert space σ2(X,Y) of operators from X to

Y with the scalar product : 〈A, B〉2 = tr(AB∗). Due to the Riesz theorem, we may then

define covariance operators VX of X, VY of Y , and crossed covariance operators VXY and

VYX of X and Y: VX = E((X − µX) ⊗ (X − µX)), ...

As in the CCA classical approach (§1.1), X and Y are assumed to be centered. The

adjoint operator Φ∗
X

of ΦX is the operator from L2(P) to X which associates E( f X) to f

and then we have : Φ∗
X
◦ ΦX = VX , Φ∗

X
◦ ΦY = VXY , ...

It is convenient to represent operators relationships in the following commutative

diagram, also called a duality scheme; here, each space is identified with its dual space.

The HX and HY spaces are image spaces of ΦX and ΦY respectively and the orthogonal

projectors of L2(P) on these subspaces are:ΠX = ΦX ◦V−1
X
◦Φ∗

X
andΠY = ΦY ◦V−1

Y
◦Φ∗

Y
.

X
Φ
∗
X←− L2(P)

Φ
∗
Y−→ Y

V−1
X
↓↑ VX ↑ I VY ↑↓ V−1

Y

X
−→
ΦX L2(P)

←−
ΦY Y

Operators RX and RY , and also CCA of (X,Y), are defined as previously (symbols ◦
are deleted in order to reduce notation).
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As in the classical approach, in order to facilitate calculations, we change the scalar

product on X so that the covariance operator of X is the identity of X, and similarly for

Y. We then have: RX = VXYVYX and RY = VYXVXY .

2) Sample model and sample CCA

We use a sample model (Dauxois, Fine and Pousse, 1979) establishing a link between

the sample used in Data Analysis and the i.i.d. sample of Statistics. A sample (Xl,Yl)l∈N∗

i.i.d. as (X,Y) is built from an element ω of ΩN
∗

setting, for all l of N∗ (πl denoting the

lth projection of ΩN
∗

onto Ω) : Xl = X ◦ πl and Yl = Y ◦ πl that is Xl(ω) = X(ωl) and

Yl(ω) = Y(ωl).

We then provide L2(P) with the scalar product (random scalar product as it depends

on ω):

∀( f , g) ∈ L2(P) × L2(P), En( f g) =
1

n

n
∑

l=1

f (ωl)g(ωl).

Then we have:

En(X) = µn
X , Φ

n
X = 〈., X − µn

X〉X, Vn
X =

1

n

n
∑

l=1

(Xl − µn
X) ⊗ (Xl − µn

X), . . .

This sample model is the clue to distinguish randomness implied by the model (L2(P)

elements) from randomness implied by sampling. It permits to obtain the canonical

variables asymptotic distribution.

The duality scheme of sample CCA is the same as the population one after

substituting L2(P) for (L2(P),En) and indexing operators by n.

Sample operators Rn
X

and Rn
Y

and sample CCA are defined as previously.

3) Convergence of sample operators sequence

Limit theorems in Euclidean or Hilbert spaces permit to obtain a.s. convergence and

convergence in distribution of the covariance operators sequence without assumption on

the distribution of (X,Y) except the existence of order 4 moments. For CCA, we obtain

(remind we let Z = (X,Y)):

Wn
Z :=

√
n(Vn

Z − VZ)
D−→ WZ ∼ N(0 ;KZ),

where KZ is the covariance operator of Z ⊗ Z.

In what concerns the sample operators Rn
Z
= (Rn

X
,Rn

Y
), elements of σ2(Z) (with

Z = X×Y), a.s. convergence derives from the fact that it is possible to write Rn
X

and Rn
Y

as continuous function of Vn
Z
.

Let Un
Z
=
√

n(Rn
Z
− RZ) (:= (Un

X
,Un

Y
)).

We write Un
X
= Ψ

n
X

(Wn
Z
) where (Ψn

X
) is a sequence of random operators from

σ2(Z) to σ2(X) a.s. converging to ΨX . We then deduce the convergence in distribution
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of (Un
X

) to UX = ΨX(WZ), centered normal variable, covariance operator of which

being LX = ΨX ◦ KZ ◦ Ψ∗X , and the same result for (Un
Y
) permuting X and Y roles.

The proposition used here, is easy to prove from classical results in metric spaces

(Billingsley, 1968). We obtain for example:

UX = −
1

2
(WXRX + RXWX) +WXYVYX + VXYWYX − VXYWYVYX ∼ N(0 ;LX)

4) Convergence of eigenelements and CCA elements sequences

Whatever may be the “factorial” method, which is an analysis or a model obtained

from a spectral (or singular-value) decomposition, all results concerning eigenelements

(eigenvalues, eigenprojectors, eigenvectors associated with simple eigenvalues, ...) are

easily obtained thanks to perturbation theory of linear operators (Kato, 1980). In Fine

(1987), this theory has been adapted to bounded perturbations that permits to use it, due

to the iterated logarithm law, in the asymptotic study frame. So we obtain a.s. expansions

of eigenelements of a symmetric positive operators sequence.

We may also consult Dossou-Gbete and Pousse (1991) for limit results but, for the

convergence in distribution of some CCA elements, limit results are not sufficient when

perturbation expansions permit to conclude.

For example, for the canonical factors associated to a simple eigenvalue λi, we have:

xi = ui because VX = IX and xn
i
= (Vn

X
)−

1
2 un

i
so:

√
n(xn

i − xi) = −(Vn
X)−

1
2 ((Vn

X)
1
2 + IX)−1[

√
n(Vn

X − IX)]un
i + [
√

n(un
i − ui)].

We know that (
√

n(Vn
X
− IX)) converges in distribution to WX and (

√
n(un

i
− ui)) to

S Xi
UX xi (with S Xi

= (RX − λiIX)−) but, thanks to perturbation expansions, it is possible

to establish: √
n(xn

i − xi)
D−→ 1

2
WX xi + S Xi

UX xi ∼ N(0 ;LXi)

5) Asymptotic covariance operators in the elliptical case

We have already seen that the asymptotic covariance operator of (
√

n(Rn
X
− RX)) is

LX = ΨX ◦ KZ ◦ Ψ∗X where KZ is the asymptotic covariance operator of (
√

n(Vn
Z
− VZ))

and where the operator ΨX from σ2(Z) to σ2(X) can be written explicitly. All the

distribution limits of eigenelements or CCA elements sequences are centered normal

variables (or function of centered normal variables), covariance operator of which being

written as function of KZ in the same way.

Now, we may write explicitly these asymptotic covariance operators in the case

where Z has an elliptical distribution with mean µZ , covariance operator VZ and kurtosis

κ (real parameter, which, when it is null, leads to a N(µZ ,VZ) distribution). We then

know that KZ is the operator from σ2(Z) to itself which associates to T :

KZ(T ) = (1 + κ)VZ(T + T ∗)VZ + κ〈VZ ,T 〉2VZ .
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At this step, we need more algebraic tools. The tensor product in spaces of type σ2

is denoted by ⊗̃. For example:

∀(A, B) ∈ σ2(Z) × σ2(Z), ∀T ∈ σ2(Z), A⊗̃B(T ) = 〈T, A〉2B.

We define also product
`
⊗ in spaces of type σ2. For example:

∀(A, B) ∈ σ2(Z) × σ2(Z), ∀T ∈ σ2(Z), A
`
⊗ B(T ) = BT A∗.

We define the commutation operator C which associates to an operator T its adjoint

T ∗. At last, we substitute the space productZ = X×Y for the Hilbertian sumZ = X⊕Y;

this permits to plunge all the operators intoσ2(Z) in order to simplify notation. Projector

PX from σ2(Z) onto σ2(X) becomes in this frame a symmetric operator of σ2(Z).

The operator KZ from σ2(Z) to itself may be written as:

KZ = (1 + κ)VZ

`
⊗ VZ(I + C) + κVZ⊗̃VZ .

Let (xi)i=1,...,p be an orthonormal basis formed by canonical factors of X, then

(xi ⊗ x j)i, j=1,...,p is an orthonormal basis of σ2(X) and ((xi ⊗ x j)⊗̃((xk ⊗ xl))i, j,k,l=1,...,p

is an orthonormal basis of σ2(σ2(X)).

After calculations obtained in a concise way, it is easy to decompose operators in

respect with this type of basis. For example, we obtain for the asymptotic covariance

operator of (
√

n(Rn
X
− RX)):

LX = (1 + κ)(I + C)[−3

4
R2

X

`
⊗ IX + R2

X

`
⊗ RX + RX

`
⊗ IX −

5

4
RX

`
⊗ RX](I + C)

and, in respect with the basis of canonical factors (remember that (λ j) j=1,...,p is the

decreasing sequence of eigenvalues of RX):

LX =
1

2
(1 + κ)

p
∑

j=1

p
∑

k=1

(

−3

4
λ2

j −
3

4
λ2

k + λ
2
jλk + λ jλ

2
k + λ j + λk −

5

2
λ jλk

)

(x j ⊗ xk + xk ⊗ x j)⊗̃(x j ⊗ xk + xk ⊗ x j)

When (X,Y) has a normal distribution and when all eigenvalues are simple, it is

possible to rediscover Anderson’s results but we diverge on two of them.

6) Convergence of CCA random elements sequences

As previously announced (§ 2.1.2) the sample model permits to obtain a.s.

convergence and convergence in distribution of canonical variables sequences. We have

for example, for the canonical variable associated with a simple eigenvalue λi:

√
n( f n

i − fi))
D−→ 〈1

2
WX xi + S XiUX xi, X〉X ∼ N(0 ;MXi)



Jeanne Fine 173

with, in the particular case where (X,Y) has an elliptical distribution:

MXi =
1

4
(2 + 3κ) fi ⊗ fi + (1 + κ)

∑

j,i

(1 − λi)(λi + λ j − 2λiλ j)(λi − λ j)
−2 f j ⊗ f j

7) Inferential applications and conclusion

These results on CCA asymptotic study permit to tackle easily inferential

applications (confidence interval estimation, statistical tests, ...) which imply CCA

elements, particularly the proximity measures built on canonical correlation coefficients.

See Anderson (1999) and Dauxois and Nkiet (2002).

Further aspects and results may be consulted in Fine (2000). This methodological

presentation shows that the operator approach performs quite well in solving asymptotic

problems in multivariate statistics.

3 References

Anderson, T. W. (1999). Asymptotic Theory for Canonical Correlation Analysis. Journal of Multivariate

Analysis, 70, 1-29.

Arconte, A. (1980). Étude asymptotique de l’analyse en composantes principales et de l’analyse ca-
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Resum

L’estudi asimptòtic de l’Anàlisi de la Correlació Canònica ens permet presentar els diferents passos
de les propietats asimptòtiques i mostrar l’interès del plantejament amb operadors i tensors dels
estadı́stics multivariants en comptes del plantejament clàssic, matricial i analı́tic. Emprant aquesta
aproximació clàssica, Anderson (1999) suposa que els vectors aleatoris segueixen la distribució
normal i que els coeficients de correlacions canòniques no nuls són diferents. Fem servir un nou
plantejament a lliure distribució (Fine, 2000) que també és lliure de les coordenades i que no té
restriccions sobre l’ordre de multiplicitat de les coeficients de correlacions canòniques Tanmateix,
quan els vectors aleatoris segueixen la distribució normal i quan les coeficients de correlacions
canòniques no nul·les són diferents, podem recuperar els resultats d’Anderson, però no coincidim en
dues situacions. En aquesta presentació metodològica, insistim en l’estructura analı́tica (Dauxois and
Pousse, 1976), els models d’obtenció de mostres (Dauxois, Fine and Pousse, 1979) i diferents eines
matemàtiques (Fine, 1987, Dauxois, Romain and Viguier, 1994), que permeten resoldre problemes
que apareixen en aquest tipus d’estudi, i fins i tot obtenir el comportament asimptòtic dels aspectes
aleatoris d’altres elements (components principals, variables canòniques, ...).
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