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Abstract

Multivariate failure time data arise in various forms including recurrent event data when individuals
are followed to observe the sequence of occurrences of a certain type of event; correlated failure
time when an individual is followed for the occurrence of two or more types of events for which the
individual is simultaneously at risk, or when distinct individuals have dependent event times; or
more complicated multistate processes when individuals may move among a number of discrete
states over the course of a follow-up study and the states and associated sojourn times are
recorded. Here we provide a critical review of statistical models and data analysis methods
for the analysis of recurrent event data and correlated failure time data. This review suggests
a valuable role for partially marginalized intensity models for the analysis of recurrent event
data, and points to the usefulness of marginal hazard rate models and nonparametric estimates
of pairwise dependencies for the analysis of correlated failure times. Areas in need of further
methodology development are indicated.
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1 Introduction

While univariate failure time methods, including Kaplan-Meier curves, censored data

rank tests, and Cox regression methods are well developed, methods for the analysis of
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multivariate failure times are less unified and their comparative properties have not been

extensively studied. Here, we review the state of development of statistical models and

methods for the analysis of recurrent event time data and of correlated (or clustered)

failure time data. Our aims are to identify known comparative properties of available

methods, and to highlight areas for needed research.

There is a long history of point process modelling and estimation for recurrent event

data, with emphasis on Poisson and renewal processes (e.g., Cox and Lewis, 1966;

Snyder, 1975; Cox and Isham, 1980; Andersen et al., 1993). Cox (1973) discusses these

types of models, modulated by regression variables, while other authors (Gail et al.,

1980; Prentice et al, 1981) consider more general classes of regression models which

allow the intensity rate at a given time to depend on the individual’s prior failure history

through stratification or regression modeling. Andersen and Gill (1982) give a thorough

account of the asymptotic distribution theory for Cox-type modulated Poisson processes

using martingale methods. Additional work (Lawless, 1987; Aalen and Huseby, 1991)

has added random effects toward extending the applicability of Poisson and renewal

process models.

Much of the recent work on recurrent event data analysis has emphasized mean

models. These models express the failure intensity at a given follow-up time as a function

of regression variables, but do not condition on the individual’s preceding failure history

(Nelson, 1988, 1995; Lawless and Nadeau, 1995). These models have the attractive

feature of providing a simple specification for the expected number of failures as a

function of follow-up time. Lin and colleagues provide asymptotic distribution theory

for the fitting of Cox-type mean models (Lin et al., 2000), and accelerated failure time

models (Lin et al., 1998). However, the independent censoring assumption that attends

these regression models may be inappropriately strong. Wang et al. (2001) introduce

a multiplicative random effect into Cox-type mean models for recurrent events, toward

relaxing the independent censoring assumption. Related work focuses on the distribution

of gap times between successive events under mean models (Wang and Chang, 1999; Lin

et al., 1999).

It is natural to seek a nonparametric estimator of the multivariate survivor function

for the analysis of correlated failure time data. Similar to the role played by the

Kaplan-Meier estimator for univariate failure time data, such an estimator could form

the basis for the display of failure time data, for comparisons among samples, and

for regression generalizations. Such an estimator could also allow one to assess the

potential of data on auxiliary failure time variables to strengthen the marginal analysis

of a failure time variate of interest by exploiting dependent censorship, the so-called

auxiliary data problem. Unfortunately the multivariate survivor function estimation

problem has yet to be completely solved. There are many possible strongly consistent

nonparametric estimators of the multivariate survivor function, but an estimator that

is computationally convenient with attractive moderate and large sample efficiency

properties has yet to be developed. For example, there are computationally convenient
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estimators (e.g., Dabrowska, 1988; Prentice and Cai, 1992) of good moderate sample

performance, but these estimators are in general not nonparametrically efficient and,

in particular, since they use Kaplan-Meier margins, they do not address the auxiliary

data problem. On the other hand, van der Laan (1996) has developed a nonparametric

maximum likelihood approach to this problem that has the possibility of nonparametric

efficiency, but it involves some data reduction, and moderate sample efficiency may be

less than that of the simpler estimators. However, available survivor function estimators

are either unnecessary for, or adequate for, the study of the relationship between marginal

hazard rates and regression variables (e.g., Wei et al., 1989), and for the nonparametric

assessment of pairwise dependencies among correlated failure time variables (e.g., Fan

et al., 2000).

Subsequent sections amplify the above comments in a manner that relates closely

to Chapters 9 and 10 of the second edition of our book on failure time data analysis

(Kalbfleisch and Prentice, 2002). Additional general references on multivariate failure

time data analysis methods include Hougaard (2000) and Chapters 9 and 10 of Andersen

et al. (1993). These works place substantial emphasis on random effects or frailty

models. In conjunction with Chapter 8 of Kalbfleisch and Prentice (2002) these sources

also provide a recent account of the literature on competing risk and more general

multistate models for failure time data.

2 Recurrent event modelling

Consider a point process of event times T1,T2, . . . on an individual in a study population,

and suppose the process is right censored by a censoring time C. Often there will be

a baseline covariate x = (x1, . . . ,xp)
′ for the individual or, more generally, an evolving

covariate process having history X(t) = {x(u),0 ≤ u < t} prior to follow-up time t. Let

Ñ(t) denote the number of failures on an individual by follow-up time t; that is, in the

time interval (0, t]. Also let N(t) denote the observed number of failures on the individual

in (0, t]. Note that N(t) may be less than Ñ(t) because of the censoring. Data analytic

questions of interest may involve the relationship of recurrent event rates to treatment

choices, or repair activities, or other aspects of the preceding covariate history. In other

instances, questions may involve the relationship of recurrent event rates to the preceding

event history. In some applications principal interest may focus on overall event rates

in the study population and on the ‘population-averaged’ relationship of such rates to

covariates.

The overall (cumulative) intensity process Λ is defined by

dΛ(t) = E{dÑ(t)|Ñ(u),0 ≤ u < t,X(t)}. (1)

Note that the intensity rate (1) is allowed to depend on both the preceding covariate

history and the preceding event history for the individual. In comparison a marginal
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intensity process, also denoted by Λ, is defined by

dΛ(t) = E{dÑ(t)|X(t)}, (2)

so that the marginal intensity rate at time t depends on the preceding covariate history,

but not the preceding counting process history for the individual. One can also entertain

various partially marginalized intensity processes Λ, as defined by

dΛ(t) = E[dÑ(t)|q{Ñ(u),0 ≤ u < t},X(t)] (3)

which conditions on some aspects q{N(u),0 ≤ u < t} of the preceding counting history,

as well as the preceding covariate history. For example q(·) could be defined as Ñ(t−)

which conditions on the number of preceding events on the individual (Pepe and Cai,

1993), as [Ñ(t−),1{N(t−) 6= N(t−−1)}] which conditions on the number of preceding

events along with an indicator of whether the individual has experienced an event in the

preceding unit of time. Note that the intensities (1) and (2) are also special cases of (3).

Note also that (3) differs from the (continuous time) intensity models Λ∗
s of Wei et al.

(1989) which can be defined for s = 0,1,2, ... by

dΛ∗
s (t) = P{dÑ(t) = 1, Ñ(t−) = s|X(t)}. (4)

The model (4) is somewhat unappealing in the recurrent event setting in that a study

subject is considered at risk for a second event at time t without having experienced a

first event prior to time t. The models (4) are, however, natural and useful for the analysis

of correlated failure time, as is elaborated below.

Consider the partially marginalized intensity rate (3) and the ability to

(asymptotically) identify Λ under right censorship. Such identifiability requires an

independent censorship assumption that can be written

E[dN(t)|q{N(u);0 ≤ u < t},X(t),{Y (u),0 ≤ u < t}]

= Y (t)Λ(t) (5)

where the ‘at risk’ process Y is given by Y (t) = 1 if C ≥ t and 0 if C < t. For independent

censorship to hold the censoring rate at follow-up time t can depend on X(t) and

q{N(u),0 ≤ u < t}, but not on other aspects of {N(u);0 ≤ u < t}. Hence identifiability

of the marginal intensity rate (2) requires that censorship not depend in any way on the

preceding counting process history, while the overall intensity (1) can be identified under

arbitrary dependencies of the censoring on the preceding counting process history.

The same types of regression models can be entertained for recurrent event intensities

as for univariate hazard functions. For example one may specify for (3) a relative risk or

Cox (1972)-type regression model

dΛ(t) = dΛ0(t)exp{Z(t)′β} (6)

where Z(t) = {Z1(t), . . . ,Zm(t)}′ is formed from q{N(u);0 ≤ u < t} and X(t), giving a

Markov model that is modulated by covariates. A more flexible stratified model would
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specify

dΛ(t) = dΛos(t)exp{Z(t)′β} (7)

where the time-dependent stratification s = s(t) is also formed from q{N(u);0 ≤ u < t}

and X(t); for example, s(t) = N(t−). Another class of stratified Cox-type models is given

by

dΛ(t) = dΛos(v)exp{Z(t)′β} (8)

where v = t − TN(t−) is the backward recurrence or gap time; that is the time having

elapsed since the immediately preceding event (with the convention that T0 = 0). This

gives a renewal process that is modulated by covariates.

One could also entertain log-linear or accelerated failure time (AFT) models for (3);

for example,

dΛ(t) = dΛ0

{

∫ t

0
exp{Z(u)′β}du

}

. (9)

3 Estimation in relative risk models for recurrent events

Now consider estimation of the regression parameter β in the Cox-type relative risk

model (6). From (3) and (5)

dMi(t) = dNi(t)−Yi(t)exp{Zi(t)
′β}dΛ0(t)

informally has expectation zero under independent censorship. Hence

U(β) =
n

∑
i=1

∫ ∞

0
{Zi(u)− ε(β,u)}dMi(u)

has expectation zero where i indexes the sample of n study subjects and

ε(β,u) =
n

∑
i=1

Yi(u)Zi(u)exp{Zi(u)′β}

/

n

∑
i=1

Yi(u)exp{Zi(u)′β}.

Straightforward algebra shows that Mi can be replaced by Ni in U(β) so that U(β) = 0

is an unbiased estimating equation giving rise to the estimate β̂. Under independent and

identically distributed assumptions on {Ni,Yi,Zi}, i = 1, . . . ,n and regularity conditions,

Lin et al. (2000) use empirical process theory to show that

n−1/2U(β) d
N(0,Σ).

The variance of the limiting normal distribution is consistently estimated by

Σ̂ = n−1
n

∑
i=1

ÛiÛ
′
i ,
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where Ûi =

∫ ∞

0
{Zi(u) − ε(β̂,u)}dM̂i(u), Λ̂0(t) =

∫ t

0

n

∑
i=1

dNi(u)/
n

∑
i=1

Yi(u)exp{Zi(u)′β̂}

and M̂i is equal to Mi with β̂ and Λ̂0 in place of β and Λ0.

It follows that

n1/2(β̂−β) d
N{0, I(β)−1ΣI(β)−1}

and I(β) is consistently estimated by −n−1dU(β̂)/dβ̂′.

These results generalize to the stratified Cox models (7) and (8). Also the same

empirical process approach, and a rather similar development, lead to corresponding

asymptotic distribution theory for estimation under the accelerated failure time model

(9) (Lin et al., 1998).

It is important to note that the covariate history X(t) included in (3) need not be

increasing across time, for the estimation procedures just outlined to apply. Thus, for

example, models (1)-(3) and the empirical process asymptotic arguments can be used

to study the dependence of failure rate on the recent history of an evolving covariate

without conditioning on the entire preceding covariate history. This is subject, of course,

to the appropriateness of the corresponding independent censorship assumption.

4 Bladder tumor illustration

Byar (1980) discusses a randomized trial conducted by the Veteran’s Administration

Cooperative Urological Group of patients having superficial bladder tumors. One

question of interest involved the comparison of tumor recurrence rates following

randomization of 48 patients assigned to placebo to that for 38 patients assigned to the

drug thiotepa. Trial follow-up continued for 31 months on average with 87 recurrences

(recorded in months) among placebo patients as compared to 45 recurrences among

thiotepa patients. Individual patients experienced from zero to nine recurrences during

follow-up. See Andrews and Hertzberg (1985, pp.254-259) or Kalbfleisch and Prentice

(2002, p.292) for a listing of these data. Baseline covariates included the number of

bladder tumors for a patient prior to randomization (truncated at 8), and the diameter of

the largest such tumor in millimeters.

Table 1 shows related regression analyses of these bladder tumor recurrence rates

with an emphasis on the effect of thiotepa treatment. The first analysis (Lin et al., 2000)

applies a Cox model (6) to the rates (2). In addition to its interpretation in terms of

the failure rates (2), the expected number of recurrences in (0, t] for an individual is

proportional to exp{Z(t)′β} since Z(t) = z is time independent. This gives a useful mean

model interpretation to the regression parameters.

The second analysis (Lin et al., 1998) applies the accelerated failure time model

(9) to the rates (2). The Cox model analysis indicates an estimated relative risk of

exp(−0.524) = 0.59 for the thiotepa as compared to placebo recurrence rate with a

corresponding significance level of 0.05. The AFT model provides a very similar point
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estimate (exp(−0.542) = 0.58) for a rescaling of the rate at which a patient traverses the

time axis under thiotepa versus placebo. The similarity of all three regression coefficients

in these two analyses arises from the fact that Λ0(t) in (9) is approximately proportional

to t in this application.

These mean model analyses require the censoring rate at follow-up time t to be

independent of the patient’s prior recurrence time history. Simple Cox model analyses of

censoring rates that include treatment, number of initial tumors and initial tumor size as

covariates do not indicate any important dependence of the censoring rate on the number

of prior recurrences for a patient, but did show a nearly threefold, highly significant

increase in the censoring rate if the patient had a recurrence during the preceding month.

Table 1: Regression parameter estimate of the rate of recurrence of superficial bladder
tumors under various models.

Treatment Number Initial Gap Recurrence

(0-placebo; Initial Tumor Time Within

Regression Model 1-thiotepa) Tumors Size (v) Past Month

Cox model (6) −0.524 0.201 −0.041

for (2) (0.262)∗ (0.064) (0.076)

AFT model (9) −0.542 0.204 −0.038

for (2) (0.312) (0.066) (0.084)

Cox model (7) −0.346 0.122 −0.017 −0.082 −1.387

with s = N(t−) for (3) (0.185) (0.047) (0.061) (0.027) (0.579)

∗ Estimated standard errors in parentheses.

Hence a model for the partially marginalized recurrence rate (3) may be needed for a

valid analysis of these data with conditioning on q{N(u),0 ≤ u < t} that includes at least

an indicator of whether a recent recurrence was recorded. The final analysis of Table 1

uses a Cox model (7) that stratifies at follow-up time t on the number of prior tumors

N(t−) and includes in the regression function an indicator of whether a recurrence

occurred within the past month, as well as the gap time (v) since the immediately

preceding recurrence. All three of these aspects of the preceding counting process

history relate strongly to the recurrence rate at a given follow-up time. For example,

patients recording a recurrence in the preceding month had an estimated recurrence

rate of about one quarter the rate of those without such recurrence (exp(−1.387) =

.25). This lower rate may correspond in part to the withdrawal of patients having a

comparatively poor prognosis from further trial participation, arguing for an appropriate

control of the preceding counting process history in assessing treatment effects. In fact,

the relative recurrence risk associated with thiotepa in this analysis is estimated as

exp(−0.346) = 0.71, somewhat closer to the null compared to the other analyses, though

some moderate evidence of benefit for thiotepa remains with a standardized test statistic

of value −0.346/0.185 = −1.87 and corresponding significance level of about 0.06.
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5 Correlated failure time data analysis

Consider now failure times T̃1, . . . , T̃m that may be correlated. For example, these

variates may represent times to (ages at) disease occurrence in a family study in

genetic epidemiology, or times to the occurrence of m distinct diseases for an individual

in a clinical trial or cohort study. Denote by x = (x1, . . . ,xp)
′ baseline covariates

corresponding to (T̃1, . . . , T̃m). Additionally, there may be evolving covariates X j(t j) =

{x j(u);0 ≤ u < t j} corresponding to T̃j, j = 1, . . . ,m. Topics of interest in the analysis of

correlated failure time data include the relationship of marginal hazard rates dΛ j(t) on

the corresponding preceding covariate history X j(t), which for notational convenience

can be defined to include the baseline covariate vector x; and study of the dependencies

among failure times, or failure rates, given covariates.

One can define a hazard rate corresponding to any subset of {T̃1, . . . , T̃m}. For

example, an sth order hazard rate at (t1, . . . , ts) can be defined, in an obvious notation, by

Λ1...s{dt1, . . . ,dts;X j(t j), j = 1, . . . ,s}

= P
{

T̃j ∈ [t j, t j + dt j), j = 1, . . . ,s|T̃j ≥ t j,X j(t j), j = 1, . . . ,s
}

.

Suppose that T̃j is subject to right censoring by C j, j = 1, . . . ,m, so that one

observes Tj = T̃j ∧ C j, and δ j = 1(Tj = T̃j), j = 1, . . . ,m. In general a rather

strong independent censorship condition is needed to allow the identifiability of

hazard rates of all orders. For example, for identifiability of Λ1...s one needs to

assume

P
{

Tj ∈ [t j, t j + dt j),δ j = 1, j = 1, . . . ,s|Yj(u);0 ≤ u < t j,X j(t j), j = 1, . . . ,s
}

=
s

∏
j=1

Yj(t j)Λ1...s{dt1, . . . ,dts;X j(t j), j = 1, . . . ,s}, (10)

with a corresponding assumption for the hazard rates corresponding to other subsets

of T̃1, . . . , T̃m. Such conditions will be fulfilled, for example, with fixed covariates x, if

(T̃1, . . . , T̃m) is independent of (C1, . . . ,Cm) given x. The applicability of an independent

censoring assumption must be carefully considered if T̃1, . . . , T̃m correspond to the times

to disease events on individual study subjects, as potential censoring times for one type

of disease may depend on the occurrence times for another type of disease.

Often the questions of interest focus on regression effects on marginal hazard rates

which may, for example, be addressed using Cox-type models of the form

Λ j{dt j;X j(t j)} = Λ0 j(dt j)exp{Z j(t j)
′β}, j = 1, . . . ,m. (11)

Under an independent censoring assumption of the type (10) for the marginal rates

Λ1, . . . ,Λm one can construct an unbiased estimating function for β as
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U(β) =
n

∑
i=1

∫ ∞

0

m

∑
j=1

{

Z ji(u)− ε j(β,u)
}

dM ji(u)

=
n

∑
i=1

∫ ∞

0

m

∑
j=1

{

Z ji(u)− ε j(β,u)
}

dN ji(u) (12)

based on a sample (T1i, . . . ,Tmi),(δ1i, . . . ,δmi), i = 1, . . . ,n with

ε j(β,u) =
n

∑
i=1

Yji(u)Z ji(u)exp{Z ji(u)′β}

/

n

∑
i=1

Yji(u)exp{Z ji(u)′β}.

Under iid conditions on counting, at risk and censoring processes for the n

observations, empirical process methods imply (Wei, Lin and Weissfeld, 1989) that

n1/2(β̂−β) d
N{0, I(β)−1ΣI(β)−1}

where β̂ solves U(β) = 0. It further can be seen that I(β) is consistently estimated by

−n−1∂U(β̂)/∂β̂′ and Σ is consistently estimated by

Σ̂ = n−1
n

∑
i=1

Û·iÛ
′
·i,

where Û·i =
∫ ∞

0 ∑
m
j=1{Z ji(u)− ε j(β̂,u)}M̂ ji(du),

M̂ ji(du) = N ji(du)−Yji(u)exp{Z ji(u)′β̂}Λ̂0 j(du),

and

Λ̂o j(du) =
n

∑
i=1

N ji(du)

/

n

∑
i=1

Yji(u)exp{Z ji(u)′β̂}.

The estimating function (12) effectively makes a working independence assumption

among the correlated failure times. Some modest efficiency improvement is possible by

introducing a weight function into (12) (Cai and Prentice, 1995), a topic that relates

closely to the auxiliary data problem mentioned above. These methods have been

adapted to models (11) that specify a common baseline hazard rate Λo j ≡ Λ0 in (11)

(Lee et al., 1992; Cai and Prentice, 1997), and AFT models have also been considered

for marginal hazard regression modeling (Lin and Wei, 1992).

Now consider the nonparametric estimation of pairwise dependencies from censored

correlated failure time data. Pairwise dependency measures can be generated by an

appropriate integration of a local dependency measure over a follow-up region of

interest. Ignoring covariates and denoting the joint survivor function for (T̃1, T̃2) by

F(t1, t2) = P(T̃1 > t1, T̃2 > t2), two potential local dependency measures (Oakes, 1989)

at a point (s1,s2) are the cross ratio

c(s1,s2) = F(ds1,ds2)F(s−1 ,s−2 )/{F(s−1 ,ds2)F(ds1,s
−
2 )}

= λ1(s1|T2 = s2)/λ1(s1|T2 ≥ s2)

= λ2(s2|T1 = s1)/λ2(s2|T1 ≥ s1),
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and a local concordance measure

c̃(s1,s2) = E{sign(T̃11 − T̃12)(T̃21 − T̃22)|T̃11 ∧ T̃12 = s1, T̃21 ∧ T̃22 = s2}

where (T̃11, T̃21) and (T̃12, T̃22) are independent observations from F . These local

dependency measures give rise, respectively, to nonparametric dependency measures of

ready interpretation over a follow-up region (0, t1]× (0, t2] as follows (Fan et al., 2000):

An average reciprocal cross ratio measure can be defined by

C(t1, t2) =

∫ t1

0

∫ t2

0
c(s1,s2)

−1F(ds1,ds2)

/

∫ t1

0

∫ t2

0
F(ds1,ds2),

while an average concordance measure is given by

J(t1, t2) = E{sign(T̃11 − T̃12)(T̃21 − T̃22)|T̃11 ∧ T̃12 ≤ t1, T̃21 ∧ T̃22 ≤ t2}

=

∫ t1

0

∫ t2

0
F(s−1 ,s−2 )F(ds1,ds2)−

∫ t1

0

∫ t2

0
F(s−1 ,ds2)F(ds1,s

−
2 )

∫ t1

0

∫ t2

0
F(s−1 ,s−2 )F(ds1,ds2)+

∫ t1

0

∫ t2

0
F(s−1 ,ds2)F(ds1,s

−
2 )

.

Corresponding nonparametric estimators Ĉ(t1, t2) and Ĵ(t1, t2) arise by inserting a

nonparametric strongly consistent estimator for F . Such estimators can be shown to

be strongly consistent and to converge weakly to a Gaussian process, and bootstrap

procedures are applicable for variance estimation.

The pairwise dependency estimators just described rely on a nonparametric estimator

of the bivariate survivor function. Also the efficiency of the marginal regression

parameter estimation may possibly be improved if an efficient nonparametric procedure

were available to estimate marginal survivor and hazard functions. Such an estimator

would need to exploit dependencies between the correlated failure times in order to make

better use of censored observations. However, the problem of efficient nonparametric

estimation of a bivariate survivor function has proven to be quite difficult, and a fully

satisfactory estimation procedure has yet to be developed.

All proposed nonparametric estimators of F place mass within the risk region,

defined by points (t1, t2) such that #{T1 ≥ t1,T2 ≥ t2} > 0, only on the grid formed by

uncensored T1 and T2 values. Let Λ̂(t1, t2) = Λ̂12(t1, t2) = F̂(∆t1,∆t2)/F̂(t−1 , t−2 ) denote

a bivariate hazard rate estimator at (t1, t2). Then given estimators F̂1(t1) = F̂1(t1,0)

and F̂2(t2) = F̂2(0, t2), for example Kaplan-Meier estimators, of the marginal survivor

functions one can recursively and uniquely generate a survivor function estimator using

F̂(t1, t2) = F̂(t−1 , t2)+ F̂(t1, t
−
2 )− F̂(t−1 , t−2 ){1− Λ̂(∆t1,∆t2)}.

The Bickel survivor function estimator (e.g., Dabrowska, 1988) uses a simple empirical

hazard rate estimator

Λ̂E(∆t1,∆t2) = #{T1 = t1,T2 = t2,δ1 = 1,δ2 = 1}/#{T1 ≥ t1,T2 ≥ t2}.
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Estimators of better efficiency assign mass at (t1, t2) in a manner that acknowledges

the amount of marginal mass remaining along T1 = t1 and T2 = t2 at or beyond (t1, t2).

Specifically, if one defines

L̂1(∆t1, t
−
2 ) = −F̂(∆t1, t

−
2 )/F̂(t−1 , t−2 )

and Λ̂1(∆t1, t
−
2 ) = #{T1 = t1,T2 ≥ t2,δ1 = 1}

/

#{T1 ≥ t1,T2 ≥ t2},

with a corresponding specification for L̂2 and Λ̂2, then the Prentice-Cai (1992) hazard

rate estimator can be written

Λ̂E(∆t1,∆t2)+ L̂1(∆t1,0){L̂2(t
−
1 ,∆t2)−Λ̂2(t

−
1 ,∆t2)}+ L̂2(0,∆t2){L̂1(∆t1, t

−
2 )−Λ̂1(∆t1, t

−
2 )}

and the Dabrowska (1988) hazard rate estimator is given by

L̂1(∆t1, t
−
2 )L̂2(t

−
1 ,∆t2) +

{1− L̂1(∆t1, t
−
2 )}{1− L̂2(t

−
1 ,∆t2)}

{1− Λ̂1(∆t1, t
−
2 )}{1− Λ̂2(t

−
1 ,∆t2)}

{Λ̂E(∆t1,∆t2)− Λ̂1(∆t1, t
−
2 )Λ̂2(t

−
1 ,∆t2)}

These estimators tend to have excellent moderate sample performance although they

are generally not nonparametric efficient due, at least in part, to their use of Kaplan-

Meier estimates of marginal survivor function.

Nonparametric maximum likelihood estimation of F suffers from serious uniqueness

problems. Van der Laan (1996) provided a method for repairing the NPMLE over a

region (0,τ1) × (0,τ2). His method begins by truncating the T1 data at τ1 and the

T2 data at τ2. Fixed partitions of (0,τ1] and (0,τ2] are then defined and potential

censoring times (assumed to be available) are replaced by potential censoring times at the

immediately preceding partition point. Nonparametric maximum likelihood estimation

then proceeds using the E-M algorithm by distributing singly censored observations in a

manner that conditions on the partition strip in which they reside. Van der Laan develops

the impressive result that nonparametric efficient estimation is possible if the partition

bandwidths decrease to zero at a slow rate as sample size increases. Unfortunately the

moderate sample performance of the repaired NPMLE is often found to be poorer than

that of the Dabrowska and Prentice-Cai estimators in spite of the iterative calculation

and the need to have potential censoring times available. Hence this survivor function

estimation problem evidently needs further development.

6 Additional comments

Multivariate failure time methods have not yet achieved the state of development of

corresponding univariate methods. However, flexible models and estimation procedures

are available for the analysis of recurrent events. Methods based on frailty models (e.g.,
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Hougaard, 2000) also have application to aspects of this problem, and frailties can

provide an approach for relaxing an independent censorship assumption alternative to the

analysis of partially marginalized rates discussed here (e.g., Wang et al., 2001). Inverse

censoring probability weighting potentially provides a means of retaining the desirable

interpretation of the mean model (2) while avoiding an unduly strong independent

censorship assumption. A simple version of this approach (e.g., Robins et al., 1994)

would estimate β in (6) for a mean model (2) using an estimating function

U(β) =
n

∑
i=1

∫ ∞

0
π̂i(u)−1{Zi(u)− ε(β,u)}dNi(u),

where π̂(u) is an estimate of P{Ci < u|X(u)} and X(u) is comprised of covariates that

are external to the recurrent event process. Further analysis of the relative merits of

this approach to the partially marginalized hazard rate modeling approach would be of

interest.

Correlated failure time methods are available that are adequate for most practical

purposes. The development of a convenient efficient nonparametric multivariate survivor

function estimator could, however, unify such methods and strengthen them for a variety

of purposes. In particular, methods for using data on auxiliary variables, including high

dimensional variables that may arise in genomic and proteomic problems in molecular

genetics could provide a valuable advance for the analysis of such heavily censored

endpoints on disease occurrence and mortality in epidemiologic and disease prevention

contexts.

Acknowledgment

This work was partially supported by grant CA-53996 from the U.S. National Institutes

of Health.

References

Aalen, O.O. and Husebye, E. (1991). Statistical analysis of repeated events forming renewal processes.

Statistics in Medicine 10, 1227-1240.

Andersen, P.K., Borgan, O., Gill, R.D. and Keiding, N. (1993). Statistical Models Based on Counting

Processes, New York: Springer-Verlag.

Andersen, P.K. and Gill, R.D. (1982). Cox’s regression model for counting processes: a large sample study.

Annals of Statistics, 10, 1100-1120.

Andrews, D.F. and Herzberg, A.M. (1985). Data: A Collection of Problems from Many Fields for the

Student and Research Worker, New York: Springer-Verlag.

Byar, D.P. (1980). The Veteran’s Administration study of chemoprophylaxis of recurrent stage I bladder

tumors: comparisons of placebo, pyridoxine, and topical thiotepa. In: Bladder Tumors and Other



R. L. Prentice and John D. Kalbfleisch 77

Topics in Urological Oncology. M. Pavone-Macaluso, P.H. Smith and F. Edsmyn, eds., pp.363-370,

New York: Plenum.

Cai, J. and Prentice, R.L. (1995). Estimating equations for hazard ratio parameters based on correlated

failure time data. Biometrika, 82, 151-164.

Cai, J. and Prentice, R.L. (1997). Regression estimation using multivariate failure time data and a common

baseline hazard function model. Lifetime Data Analysis, 3, 197-213.

Cox, D.R. (1972). Regression models and life tables (with discussion). Journal of the Royal Statistical

Society, Series B, 34, 187-220.

Cox, D.R. (1973). The statistical analysis of dependencies in point processes. In: Symposium on Point

Processes. P.A.W. Lewis, ed., pp. 55-66, New York: Wiley.

Cox, D.R. and Isham, V. (1980). Point Processes, London: Chapman and Hall.

Cox, D.R. and Lewis, P.A. (1966). The Statistical Analysis of a Series of Events, London: Methuen.

Dabrowska, D.M. (1988). Kaplan-Meier estimate on the plane. Annals of Statistics, 16, 1475-1489.

Fan, J., Hsu, L. and Prentice, R.L. (2000). Dependence estimation over a finite bivariate failure time

region. Lifetime Data Analysis, 6, 343-355.

Gail, M.H., Santner, T.J. and Brown, C.C. (1980). An analysis of comparative carcinogenesis experiments

based on multiple times to tumor. Biometrics, 36, 255-266.

Hougaard, P. (2000). Analysis of Multivariate Survival Data. Springer-Verlag, New York.

Kalbfleisch, J.D. and Prentice, R.L. (2002). The Statistical Analysis of Failure Time Data, Second Edition.

New York: Wiley.

Lawless, J.F. (1987). Regression methods for Poisson process data. Journal of the American Statistical

Association, 82, 808-815.

Lawless, J.F. and Nadeau, C. (1995). Some simple and robust methods for the analysis of recurrent events.

Technometrics, 37, 158-168.

Lee, E.W., Wei, L.J. and Amato, D.A. (1992). Cox-type regression analysis for large numbers of small

groups of correlated failure time observations. In Survival Analysis: State of the Art, J.P. Klein and

P.K. Goel (eds.), Kluwer Academic Publishers, 237-247.

Lin, D.Y., Sun, W. and Ying, Z. (1999). Nonparametric estimation of the gap time distribution for serial

events with censored data. Biometrika, 86, 59-70.

Lin, J.S. and Wei, L.J. (1992). Linear regression for multivariate failure time observations. Journal of the

American Statistical Association, 87, 1091-1097.

Lin, D.Y., Wei, L.J., Yang, I. and Ying, Z. (2000). Semiparametric regression for the mean and rate

functions of recurrent events. Journal of the Royal Statistical Society, B, 62, 711-730.

Lin, D.Y., Wei, L.J. and Ying, Z. (1998). Accelerated failure time models for counting processes.

Biometrika, 85, 605-618.

Nelson, W.B. (1988). Graphical analysis of system repair data. Journal of Quality Technology, 20, 24-35.

Nelson, W.B. (1995). Confidence limits for recurrence data-applied to cost or number of product repairs.

Technometrics, 37, 147-157.

Oakes, D. (1989). Bivariate survival models induced by frailties. Journal of the American Statistical

Association, 84, 487-493.

Pepe, M.S. and Cai, J. (1993). Some graphical displays and marginal regression analyses for recurrent

failure times and time dependent covariates. Journal of the American Statistical Association, 88,

811-820.

Prentice, R.L. and Cai, J. (1992). Covariance and survivor function estimation using censored multivariate

failure time data. Biometrika, 79, 495-512.

Prentice, R.L., Williams, B.J. and Peterson, A.V. (1981). On the regression analysis of multivariate time

data. Biometrika, 68, 373-379.



78 Aspects of the analysis of multivariate failure time data

Robins, J.M., Rotnitsky, A. and Zhao, L.P. (1994). Estimation of regression coefficients when some

regressors are not always observed. Journal of the American Statistical Association, 89, 846-866.

Snyder, D.L. (1975). Random Point Processes, New York: Wiley.

Van der Laan, M.J. (1996). Efficient estimation in the bivariate censoring model and repairing NPMLE.

Annals of Statistics, 24, 596-627.

Wang, M.-C. and Chang, S.-H. (1999). Nonparametric estimation of a recurrent survival function. Journal

of the American Statistical Association, 94, 146-153.

Wang, M.-C., Qin, J. and Chiang, C.-T. (2001). Analyzing recurrent event data with informative censoring.

Journal of the American Statistical Association, 96, 1057-1065.

Wei, L.J., Lin, D.Y. and Weissfeld, L. (1989). Regression analysis of multivariate incomplete failure time

data by modeling marginal distributions. Journal of the American Statistical Association, 84, 1065-

1073.

Resum

Les dades multivariants de temps de supervivència sorgeixen en situacions diverses. Entre
d’altres inclouen a) dades d’esdeveniments recurrents: obtingudes quan s’observa la seqüència
d’ocurrències d’un cert tipus d’esdeveniment; b) temps de fallades correlacionats: quan s’estudia
l’ocurrència de dos o més tipus d’esdeveniments per individus que estan simultàniament a risc;
c) dades obtingudes d’individus diferents que tenen temps fins a un esdeveniment depenents; d)
processos multi-estat més complicats en els quals els individus es mouen entre un número discret
d’estats, durant el transcurs d’un estudi de seguiment, i en els quals es registren els diferents
estats aixı́ com el temps transcorregut en ells. En aquest article presentem una revisió crı́tica dels
models i dels mètodes estadı́stics per a l’anàlisi de dades d’esdeveniments recurrents i de temps
de fallada correlacionats. Aquesta revisió indica el rol important que els models d’intensitats
parcialment marginalitzats poden jugar en les anàlisis de dades recurrents i remarca la utilitat
dels models de funcions de risc marginals i dels estimadors noparamètrics de les dependències
dos a dos per les anàlisis de dades correlacionades. S’indiquen àrees on és necessari més
desenvolupament metodològic.
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