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Abstract

Deviations from assigned treatment occur often in clinical trials. In such a setting, the
traditional intent-to-treat analysis does not measure biological efficacy but rather programmatic
effectiveness. For all-or-nothing compliance situation, Loeys and Goetghebeur (2003) recently
proposed a Structural Proportional Hazards method. It allows for causal estimation in the
complier subpopulation provided the exclusion restriction holds: randomization per se has no
effect unless exposure has changed. This assumption is typically made with structural models for
noncompliance but questioned when the trial is not blinded. In this paper we extend the structural
PH model to allow for an effect of randomization per se. This enables analyzing sensitivity of
conclusions to deviations from the exclusion restriction. In a colo-rectal cancer trial we find the
causal estimator of the effect of an arterial device implantation to be remarkably insensitive to
such deviations.
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1 Introduction

While the randomized clinical trial remains the gold standard design for causal inference,

a thorough analysis of the impact of an intervention should consider treatment actually

received besides treatment assigned. The distance between intended and materialized

treatments can indeed vary widely, first inside the trial and later under less controlled
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conditions. Hence the challenge to estimate the effect of different levels of treatment that

occur in practice.

The hazard ratio has become the most popular measure of the effect of treatment

on survival. Intention-to-treat results are typically cast in those terms, the theory has

been well developed and resulting estimators well understood. On the other hand,

structural accelerated failure time models (SAFT) as proposed by Robins and Tsiatis

(1991) have become the usual tools for ‘causal survival analysis’ conditional on observed

exposures. These models express how survival time can be shrunk or expanded by

a parametric function of observed exposures to yield potential treatment-free survival

times. In the absence of a direct effect of randomization, potential treatment-free

survival times are by design equally distributed between randomized arms. To tap into

the proportional hazards tradition and allow for a smooth exchange of information,

Loeys and Goetghebeur (2003) developed structural proportional hazards models. They

analyzed ECOG-trial E9288 (Kemeny et al., 2002), a randomized clinical trial in

colorectal cancer patients with liver metastases. This ECOG multi-centre trial was

initiated because the long-term outcome of resection of hepatic metastases remained

poor and arterial chemotherapy regimens targeted to the liver had demonstrated high

potential. Patients were randomly assigned to either surgical resection alone (control

arm, 56 patients) or surgical resection followed by chemotherapy (experimental arm,

53 patients). Interest focused on comparing 5-year survival with and without the

implantation. The multi-centric nature of the study made preoperative randomization the

practical option. As a result, ten patients who were randomized to receive experimental

treatment, did not receive the arterial device implantation, possibly for reasons related to

their survival chance.

At the First Barcelona Workshop on Survival Analysis, Ross Prentice raised

questions concerning the exclusion restriction given the unblinded nature of the study.

It is not inconceivable for instance that the bad news of not being able to receive the

implant once it was planned had a negative effect on the patients outcome. Likewise,

surgery involving an intended implant might be scheduled earlier in the day, which may

have its own impact on survival etc. In response to such concerns this paper sets out to

conduct a sensitivity analysis as follows.

In Section 2 we provide a rationale for causal methodology in a proportional

hazards framework. Section 3 details the structural proportional hazards approach under

the exclusion restriction. In Section 4 we extend the model and adapt the estimation

procedure to allow for a sensitivity analysis and examine the impact of violations of the

exclusion restriction on the causal PH-estimator. In Section 5 we move on to investigate

the joint effect of assignment in both the noncompliant (‘the exclusion effect’) and

compliant (‘the causal effect’) subpopulation. The methodology is applied to the E9288-

data in Section 6 and discussed in Section 7.
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2 Rationale for a causal proportional hazards estimator

When clinical trial participants fail to adhere to their assigned treatment, a

straightforward but naive estimator of the effect of treatment actually received compares

patients who were observed to receive the experimental exposure with those who did

not. Consider specifically the Cox model

h(t | Ei) = h0(t)exp(β0Ei), (1)

where Ei is the all-or-nothing exposure indicator and h(t | Ei) is the hazard rate for

failure at time t given exposure. When compliance is selective, i.e. when individuals

who comply are prognostically different from those who do not, the parameter β0 carries

no causal interpretation.

Therefore the most commonly used approach is an intent-to-treat analysis. In

proportional hazard terms:

h(t | Ri) = h0(t)exp(γ0Ri), (2)

where Ri = 1 indicates the experimental arm. The advantage of this approach is its

validity under the null. When experimental treatment has no effect, survival distributions

coincide on both randomized arms and γ0 = 0 corresponds to the true model. However,

in the presence of non-compliance, γ0 does not generally measure the biological effect

of treatment but rather mixes the effect on compliers with the absence of effect on non-

compliers.

To estimate the causal effect of treatment actually received, structural models can be

used. Loeys and Goetghebeur (2003) consider

h(t | Ri = 1,Ui = u) = h(t | Ri = 0,Ui = u)exp(ψ0u) (3)

where Ui is the potential all-or-nothing exposure for the ith subject, that is the exposure

that would have been observed had subject i been randomized to experimental treatment.

Ui is observed on the experimental arm but latent on the control arm. The Causal

Proportional Hazards Effect of Treatment (C-PROPHET) is the log hazard ratio ψ0 in

model (3). It compares survival under experimental and potential control conditions

in the treatable subgroup {Ui = 1}. A negative (respectively positive) ψ0 implies a

beneficial (respectively harmful) effect of implantation in the treatable subset.

In the subgroup {Ui = 0} that would not have been treated when assigned to

experimental treatment, no effect of assignment on survival is assumed. Imbens and

Rubin (1997) call this assumption the ‘exclusion restriction’, while Pearl (2002) calls this

‘the absence of indirect effect’. The main challenge for inference in model (3) stems from

Ui being unobserved in the control arm. We summarize in the next section how ψ0 can

be estimated under the exclusion restriction despite ignoring this potential compliance

information.
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3 Inference for the C-PROPHET estimator

If potential receivers of the experimental exposure were known at baseline in both arms,

one would fit a proportional hazards model in the subgroup {Ui = 1}. Denote then

Breslow’s cumulative baseline hazard estimator for survival in the {Ri = 0,Ui = 1}-

group by Ĥ01(t). Within the {Ui = 1}-subset the partial likelihood score equation can be

rewritten - in the absence of ties - as

∑
t( j)

[
R( j)−

{
Ĥ01(t( j))− Ĥ01(t( j−1))

}
n11 je

ψ0

]
= 0 (4)

where t( j) is the j-th ordered failure time in the treatable subset and R( j) the

corresponding assignment indicator. It thus suffices to estimate the jumps of the

cumulative hazard for the unobserved subset of compliers in the control arm. H01 can

be estimated via the corresponding survival estimator Ŝ∗01(t),

Ŝ∗01(t) = {Ŝ0(t)− (1− π̂)Ŝ10(t)}/π̂, (5)

with Sr(t) := Pr(Ti > t | Ri = r), Sru(t) := Pr(Ti > t | Ri = r,Ui = u), and π̂ the observed

compliance proportion in the experimental arm. The Kaplan-Meier estimates Ŝ0(t) and

Ŝ10(t) will be consistent under independent censoring or the weaker assumption that

censoring is non-informative for the control arm as a whole, while in the experimental

arm censoring is non-informative conditional on treatment exposure. Frangakis and

Rubin (1999) argue that it is sometimes more reasonable to assume non-informative

censoring on potential treatment exposure in both arms, and showed that even under this

scenario S01(t) is identifiable. Because Ŝ∗01(t) is not necessarily monotonic decreasing

and found to be a poor estimator for S01(t), Loeys and Goetghebeur (2002) suggested

to improve on the proposed estimator via isotonic regression and the ‘Pool-Adjacent-

Violators’ Algorithm (Barlow et al., 1972). To avoid ties in bootstrap samples (Efron,

1981), the jackknife procedure is proposed for variance estimation. Simulation revealed

that this procedure provides a somewhat conservative variance estimator in this setting.

4 The exclusion restriction: a sensitivity analysis

The exclusion restriction implied by model (3) disallows an effect of assignment for

(potential) non-receivers. While this is plausible in double-blind settings, our motivating

example E9288 was unblinded.

Consider therefore the following pair of causal models:
{

h(t | Ri = 1,Ui = 0) = h(t | Ri = 0,Ui = 0)exp(η0)

h(t | Ri = 1,Ui = 1) = h(t | Ri = 0,Ui = 1)exp(ψ0)
(6)

In the treatable subset {Ui = 1} we consider a proportional hazards effect of exposure

as before, but in the {Ui = 0}-subset we no longer require equality in distribution
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between randomized arms. Instead, a positive η0 in (6) implies that omission of an

implantantion that was assigned is bad news added to bad news, i.e. observing the

inability of an implant on the experimental arm deteriorates the already bad survival

prognosis compared to not observing this on the control arm. This additionally imposed

proportional hazard assumption in the {Ui = 0}-subset can be rewritten in terms of the

survival distributions:

S00(t) = S10(t)
exp(−η0). (7)

Using equality (7), we obtain a treatment-free survival curve for potential compliers from

Ŝ∗01(t;η0) = {Ŝ0(t)− (1− π̂)Ŝ10(t)
exp(−η0)}/π̂. (8)

As before, the pointwise estimator need not be monotone and isotonic regression on

time yields our estimator Ŝ01(t;η0). Upon substituting the monotonized Ŝ01 to obtain

H̃01(t;η0) = − log Ŝ01(t;η0), we estimate ψ0 in function of η0 as

exp(ψ̂0(η0)) =
∑t( j)

R( j)

∑t( j)

{
H̃01(t( j);η0)− H̃01(t( j−1);η0)

}
n11 j

. (9)

5 Joint estimation of effect in the compliant and noncompliant subpopulation

In the previous section ψ0 is estimated as a function of a fixed sensitivity parameter η0.

Next we investigate joint estimation of η0 and ψ0.

The estimation procedure outlined in Section 3 is restricted to all-or-nothing

compliance. Indeed, when several levels of compliance are involved, the survival

distribution S01(t) is no longer identified without strong additional assumptions.

Recently, Loeys and Goetghebeur (2002) proposed an alternative estimation procedure

that overcomes this limitation. Specifically, they backtransform observed survival

distributions in the experimental arm by exponential functions of the measured exposures

to obtain treatment-free survival distributions. Averaging these over all complier

subgroups yields an unconditional treatment-free survival curve in the treatment arm.

Under the exclusion restriction this should match the corresponding curve on the control

arm. Allowing now for an effect of assignment in the {Ui = 0}-group as in model (6),

the idea is to check whether the distribution of observed survival times in the control

arm is close to the new mixture of backtransformed survival distributions observed in

the experimental arm:

S1 0(t;η,ψ) = Ŝ10(t)
exp(−η)(1− π̂)+ Ŝ11(t)

exp(−ψ)π̂. (10)

Parameter values η and ψ which ‘equalize’ the treatment-free survival distributions

between randomized arms are point estimators for η0 and ψ0. Because we are estimating

two parameters here, two estimating equations are needed. Loeys and Goetghebeur
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(2002) combine a logrank and weighted logrank test statistic which are built as sums

of ‘pseudo’ martingale residuals. As the test statistic Q(η,ψ) is approximately χ2(2),

a 95% confidence region for (η0,ψ0) is formed by the set of (η,ψ)-values for which

Q(η,ψ) is below 6.0.

In practice the information may be weak and identification of both η0 and ψ0 over-

ambitious. Small scale simulations confirm that with limited selectivity (i.e. receivers

and non-receivers having a comparable baseline survival prognosis) identifiability

problems indeed occur. However with an increasing selection effect both ‘causal’ effects

were reasonably well identified in the simulation setting. Results on the dataset E9288

are described next.
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Figure 1: 3 approaches: (1) As treated (2) Intent-to-treat (3) C-PROPHET.

Note: AD stands for Arterial Device).

6 The causal effect of an arterial device implantation

In this section we analyze the E9288-data. Within the 5-year follow-up, 30 patients

(54%) died on the control arm compared to 33 patients (62%) on the experimental

arm. Figure 1 shows results following models (1), (2) and (3). The as-treated analysis

estimates a non-significant beneficial effect of implantation but is only valid under the

assumption that non-receivers on the experimental arm form a random subset from
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the entire population. The estimated effect under the intent-to-treat analysis reveals

a non-significant harmful effect of assignment, but does not capture the effect of the

implantation actually received. The structural analysis reveals a 43% increase in hazard

associated with arterial device implantation in the treatable subset. The latter is derived

under the exclusion restriction. Under this assumption, it is further shown in Loeys

and Goetghebeur (2003) how the selectivity of patients getting the intervention can

be presented by contrasting Ŝ01, as estimated in (5) with Ŝ10 = Ŝ00, as observed in

non-compliers in the experimental arm. That plot revealed that patients who would not

have received the intervention when assigned to it have a much worse intervention-free

survival prognosis than patients that would have received the intervention. This selection

effect is also seen in the as-treated estimator, which mixes the causal treatment effect

in the treatable subgroup with a diluted selectivity effect, and thus differs from the C-

Prophet estimator.

Following Section 4 we can now investigate how sensitive the C-PROPHET estimator

is to violations of the exclusion restriction. From Figure 2, we learn that under

the assumption of a 50% decrease (respectively increase) in hazard associated with

implantation assignment in the untreatable subset, the estimated causal effect equals 1.53

with 95% confidence interval ranging from 0.72 to 3.25 (respectively 1.36, with 95%

CI: 0.68− 2.77). We thus observe that quite substantial deviations from the exclusion

restriction have rather limited impact on the estimated causal hazard ratio. Relative to

the width of the 95% confidence interval, the change in causal effect as a function of the

sensitivity parameter is indeed quite small.
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Figure 2: The causal hazard ratio exp(ψ0) (with 95% confidence interval) as a

function of the sensitivity parameter exp(η0).
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Figure 3: Joint estimation of the sensitivity hazard ratio exp(η0) and causal

hazard ratio exp(ψ0).

Results of joint estimation of η0 and ψ0 as outlined in Section 5 are summarized in

Figure 3. Contour plots show the value of the χ2(2)-test statistic Q(η,ψ) as a function

of exp(η) and exp(ψ). Point estimators for exp(η0) and exp(ψ0) equal 6.63 and 1.19.

As the 95% confidence region does not close for increasing values of η, identifiability

of η0 is rather poor, in contrast to that of ψ0. Nevertheless the data appear to favour the

region of η suggesting that bad news add more bad news. A substantial positive effect of

an intended but absent implant is excluded as a possibility. Surprisingly however we see

negligeable impact on estimation of the primary parameter. A marginal 95% confidence

interval for η0 and ψ0 can be found upon projecting the 3.84-contour on the axes (Robins

and Greenland, 1994).

7 Discussion

In this paper we presented two approaches to investigate violations against the exclusion

restriction in a causal proportional hazards framework. While the approach presented

in Section 4 is limited to all-or-nothing compliance, the approach of Section 5 allows

for several compliance levels. As identifiability under the second approach relies on

the unobserved selectivity, one should be careful when interpreting its results. In a

missing data setting Scharfstein (2002) recently discovered that when the signal for

inference on η0 is weak, it is dangerous to believe the η-estimate. He therefore favors

a sensitivity approach as proposed in Section 4. Interestingly, Scharfstein (2002) found
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narrow confidence intervals conditional on η relative to an enormous range of point

estimates for ψ as η varies. In contrast we obtain in our motivating example, despite

a non-negligeable portion of observed non-compliers on the experimental arm (10 out

of 53), changes in the outcome distribution of potential non-receivers with a relatively

small impact on the causal parameter estimates.

Further research would be welcomed on the role baseline predictors for treatment-

free survival and/or exposure. In as treated model (1) we cannot expect to capture the

dependence between treatment-free survival and potential experimental compliance by

conditioning on these baseline covariates, and the as treated approach will still give

biased results. Loeys and Goetghebeur (2002) propose an estimation procedure allowing

to identify population-averaged Causal PROPortional Hazards Effects of Treatment at

observed exposure and covariate levels. Conditioning on baseline covariates in model (3)

can then address confounding (in the presence of imbalance between randomized arms),

conservatism and/or help to keep censoring non-informative.

Finally it is worth remembering that our approach studies survival models conditional

on exposure status. Marginal proportional hazards models have recently been introduced

by Hernan, Brumback and Robins (2000).
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Resum

Les desviacions del tractament assignat són comuns en assajos clı́nics. En aquest context,
l’anàlisi tradicional per intenció de tractar no mesura l’eficàcia biològica sinó l’eficàcia de
la programació. Per a aquelles situacions on el compliment és total o nul, Loeys and
Goetghebeur (2003) proposen un mètode estructural de riscos proporcionals. Aquest mètode
permet l’estimació causal en la subpoblació que compleix, sempre que es verifiqui la restricció
d’exclusió: l’aleatorització per se no te cap efecte llevat que es canviı̈ l’exposició. Aquesta
premissa s’usa en general amb models estructurals per a incompliment però es qüestiona quan
l’assaig no és cec. En aquest treball estenem el model estructural de riscos proporcionals de
manera que admeti un efecte d’aleatorizació per se. Això ha de permetre analitzar la sensibilitat
de les conclusions a les desviacions de la restricció d’exclusió. A un assaig clı́nic sobre càncer
colo-rectal trobem que l’estimador causal de l’efecte de la implantació d’un dispositiu arterial és
remarcablement insensible a aquestes desviacions.
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