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ON THE POWER PSEUDOVARIETY PCS

K. Auinger

Abstract: The pseudovariety PCS which is generated by all power semigroups of
finite completely simple semigroups is characterized in various ways. For example,

the equalities
PCS = J ©m CS = BG ©m RB

are established. This resolves a problem raised by Kad’ourek and leads to several

transparent algorithms for deciding membership in PCS.
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In the study of pseudovarieties of finite semigroups, the power op-
erator P that assigns to every pseudovariety V the pseudovariety PV
generated by all power semigroups of the members of V has attracted
considerable attention – see Chapter 11 of the monograph [1] and the
survey article [2] by Almeida. For example, the recognition of the pseu-
dovariety PG generated by all power groups (that is, power semigroups
of groups) as the pseudovariety BG of all block groups, often stated as
the famous equality

(]) PG = BG,

is a celebrated result in finite semigroup theory.
The proof of the equality (]) was originally obtained by Henckell and

Rhodes [9] as a consequence of a deep result of Ash [5]. The reader inter-
ested in the historical background, in further developments and in gen-
eralizations of the above-mentioned equality is referred to Section 4.17
of the monograph [14] by Rhodes and Steinberg and to the introduc-
tion of Kad’ourek’s paper [10]. The equality (]) in particular implies the
decidability of membership in PG which does not follow from the defi-
nition of the power operator. Indeed, the operator P does not preserve
decidability of membership [6].
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It seems to be natural to replace “groups” with “completely simple
semigroups” and to ask for a suitable description of the power pseudova-
riety PCS. This question occurs in the list of open problems in [1]. The
first solution to this was found by Steinberg [15] who proved the equality

PCS = BG ∗RZ

which implied the decidability of membership in PCS. However, nei-
ther a transparent structural description of the members of PCS nor
an efficient algorithm for the membership problem in PCS were pre-
sented. The latter fact was considered by Kad’ourek to be not com-
pletely satisfactory; he therefore proposed further research on that topic:
in [10] he studied finite semigroups S all of whose subsemigroups of the
form aSb (for a, b ∈ S) are block groups. It is easy to see that these
exactly comprise the Mal’cev product BG©m RB, see Corollary 3 below.
Kad’ourek proved that this class can be represented also as the Mal’cev
product J©m CS. Moreover, he related PCS with the latter pseudova-
riety by proving the inclusion PCS ⊆ J©m CS. The question whether
that inclusion is proper or not has been left open. It is the intention of
the present paper to resolve this problem. In fact, we shall prove more,
namely we shall establish the equalities

PCS = J©m CS = BG©m RB = ER©m RZ ∩EL©m LZ = BG ∗RZ.

The paper is organized as follows. In Section 1 we shall mention all
preliminaries needed while in Section 2 we shall formulate and prove the
main result. This will be done semantically as well as syntactically; the
members of PCS will thus be characterized in various ways.

1. Preliminaries

1.1. Definitions and notation. The reader is assumed to be famil-
iar with central facts of semigroup theory, in particular with the the-
ory of pseudovarieties of finite semigroups, including pseudoidentities
and Tilson’s derived semigroupoid theorem; sources are the mono-
graphs [1], [14] as well as Tilson’s seminal paper [16]. All semigroups
considered in this paper are finite.

We start by introducing some notation. Given a semigroup S and
an element a ∈ S, then L(a) = Sa ∪ {a} is the principal left ideal of S
generated by a, and likewise, R(a) = aS∪{a} is the principal right ideal
of S generated by a. Further, we denote by L(a)ρ the semigroup of all
inner right translations (acting on the right) ρs : L(a) → L(a), x 7→ xs
for s ∈ L(a); then ρL(a) : L(a) � L(a)ρ, s 7→ ρs is a (not necessarily
injective) homomorphism, called the right regular representation of L(a).
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Dually, λR(a) denotes the semigroup of all inner left translations (acting
on the left) λs : R(a)→ R(a), x 7→ sx for s ∈ R(a); then λR(a) : R(a) �
λR(a), s 7→ λs is a (not necessarily injective) homomorphism, called the
left regular representation of R(a).

Let S and T be two semigroups, both generated by the same set A.
Then the subsemigroup of the direct product S × T generated by the
set {(a, a) | a ∈ A}, considered as a relation from S to T , is the
canonical relational morphism S → T with respect to A.

Pseudovarieties of semigroups are usually denoted by bold-face let-
ters V, W, etc. Let RZ, LZ, RB, G, CS, and J be, respectively, the
pseudovarieties of all right zero semigroups, left zero semigroups, rect-
angular bands, groups, completely simple semigroups, and J -trivial
semigroups. Of central importance will be the pseudovariety BG of
all block groups. It consists of all semigroups all of whose regular el-
ements have a unique inverse. Equivalently, BG is comprised of all
semigroups which do not contain non-trivial right zero and left zero
subsemigroups. It is well known that BG is defined by the single pseu-
doidentity (xωyω)ω = (yωxω)ω. In addition, we shall need the pseudova-
riety ER which consists of all semigroups whose idempotent generated
subsemigroups are R-trivial. A semigroup then belongs to ER if and
only if it does not contain a non-trivial right zero subsemigroup. It is
well known that ER is defined by the single pseudoidentity (xωyω)ω =
(xωyω)ωxω. At last, we shall need yet the pseudovariety EL which is
defined dually, that is, it consists of all semigroups containing no non-
trivial left zero subsemigroup. Likewise, EL is defined by the single
pseudoidentity (yωxω)ω = xω(yωxω)ω. For the latter three pseudovari-
eties the equality BG = ER∩EL holds. All pseudovarieties considered
in this paper are pseudovarieties of semigroups.

For a semigroup S, let P(S) be the set of all non-empty subsets of S;
endowed with set-wise multiplication, the set P(S) itself becomes a semi-
group. For a homomorphism α : S → T between semigroups S and T ,
the induced mapping P(S) → P(T ), X 7→ {xα | x ∈ X} is a ho-
momorphism, the induced homomorphism. For a pseudovariety V de-
note by P′V the pseudovariety generated by all power semigroups P(S)
with S ∈ V. Likewise, the full powerset P(S) ∪ {∅} of a semigroup S
is also a semigroup under set-wise multiplication. For a pseudovariety
V let PV be the pseudovariety generated by all full power semigroups
P(S) ∪ {∅} with S ∈ V. It is well known that P′V and PV coincide if
and only if V contains a nontrivial monoid, see Lemma 5.1 in [2]. In all
cases considered in this paper, the equality P′V = PV holds.
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Finally, a semigroup S equipped with a partial order ≤ is an ordered
semigroup if a ≤ b implies ac ≤ bc and ca ≤ cb for all a, b, c ∈ S. It is
well known and easy to see that an ordered monoid M satisfying a ≤ 1
for all a ∈M is J -trivial [12].

1.2. Pseudovarieties of the forms V©m RZ, V©m LZ, V©m RB,
and V ∗ RZ. The results in this subsection are likely to be known by
experts, but the author is not aware of a proper reference. For arbitrary
pseudovarieties V and W, the Mal’cev product V©m W consists of all
semigroups S for which there exists a semigroup T ∈W and a relational
morphism φ : S → T such that, for each idempotent e ∈ T , the inverse
image of e under φ, that is, eφ−1 = {s ∈ S | (s, e) ∈ φ} (which is
a subsemigroup of S) belongs to V. Suppose that W is locally finite;
then necessary and sufficient for a semigroup S to be contained in V©m W
is that the former condition holds for the canonical relational morphism
φ : S → FW(A) (with respect to A) where A is some generating set of S
and FW(A) is the free semigroup in W generated by A. This allows
to give quite transparent descriptions of the members of the Mal’cev
products of the forms V©m RZ, V©m LZ and V©m RB, for an arbitrary
pseudovariety V.

Lemma 1. A semigroup S belongs to V©m RZ if and only if each prin-
cipal left ideal of S belongs to V; dually, S belongs to V©m LZ if and
only if each principal right ideal of S belongs to V.

Proof: Let S be a semigroup and let RZ(S) be the (free) right zero
semigroup on the set S. Thus, RZ(S) is just the set S endowed with
right zero multiplication. Let φ be the canonical relational morphism
S → RZ(S) (with respect to S). Then, for each a ∈ RZ(S) (= S)
we have aφ−1 = L(a) whence, according to the discussion before the
statement of the lemma, S ∈ V ©m RZ if and only if L(a) ∈ V for
each a ∈ S. The dual case is proved analogously.

Lemma 2. A semigroup S belongs to V©m RB if and only if, for all
a, b ∈ S, the subsemigroups {ab} ∪ aSb and {a, a2} ∪ aSa belong to V.

Proof: Let S be a semigroup and let RB(S) be the free rectangular band
on the set S. That is, RB(S) is the set S × S endowed with multipli-
cation (a, b)·(c, d) = (a, d). Let further φ : S → RB(S) be the canonical
relational morphism with respect to S; that is, φ is the subsemigroup of
S × RB(S) generated by all pairs (r, (r, r)), r ∈ S. Then S ∈ V©m RB
if and only if (a, b)φ−1 ∈ V for all a, b ∈ S. Now it remains to observe
that (a, b)φ−1 = {ab}∪ aSb for a 6= b and (a, a)φ−1 = {a, a2}∪ aSa.
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Lemma 1 and Lemma 2 are very special instances of the ‘basis the-
orem’ for Mal’cev products by Pin and Weil, see Theorem 4.1 in [13].
As mentioned in the introduction, Kad’ourek considered in [10] semi-
groups S all of whose subsemigroups of the form aSb with a, b ∈ S
are block groups; he called such semigroups aggregates of block groups.
Whether or not a semigroup is a block group depends entirely on its
set of idempotents. It is further clear that there are no idempotents in
({ab}∪aSb)\aSb nor in ({a, a2}∪aSa)\aSa. It follows that {ab}∪aSb
is a block group if and only if so is aSb and likewise {a, a2} ∪ aSa is a
block group if and only if so is aSa, for arbitrary a, b ∈ S. Consequently,
the pseudovariety BG©m RB is comprised exactly of all aggregates of
block groups. This observation is implicitly contained in [10] but (un-
fortunately) is not mentioned explicitly. In any case, we may formulate
a criterion for membership in BG©m RB.

Corollary 3. A semigroup S belongs to BG©m RB if and only if, for
each choice of elements a, b ∈ S, the semigroup aSb is a block group.

Next we present a similar description of the members of the semidirect
product pseudovariety V ∗ RZ, but only for the case when V is local.
Here we use the derived semigroupoid theorem [16], [14].

Proposition 4. Let V be a local pseudovariety; a semigroup S belongs
to V ∗RZ if and only if the image L(a)ρ of each principal left ideal L(a)
of S under the right regular representation ρL(a) belongs to V.

Proof: Let S be a semigroup, let RZ(S) be the (free) right zero semi-
group on the set S and let φ : S → RZ(S) be the canonical relational
morphism (with respect to S). Then, according to the derived semi-
groupoid theorem, the semigroup S belongs to V ∗RZ if and only if the
derived semigroupoid Dφ of φ divides a member of V. (For a proof that
the consideration of the canonical relational morphism S → RZ(S) suf-
fices here, see Proposition 3.5 in combination with Theorem 3.3 in [4].)
Since V is local, this happens if (and only if) each local semigroup
of Dφ is in V. The set of objects of the derived semigroupoid Dφ is
RZ(S)∪{1} = S ∪{1} where 1 represents a new identity adjoined to S.
However, the local semigroup at the object 1 is empty. So consider
any other object a, say. Then, as in the proof of Lemma 1, we have
aφ−1 = L(a), the principal left ideal of S generated by a. According to
the construction of the derived semigroupoid Dφ, the local semigroup
at the given object a may be identified with the semigroup of all map-
pings L(a) → L(a) induced by multiplication on the right by elements
of L(a) which semigroup by definition coincides with L(a)ρ.
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Finally, we recall the well-known equalities

CS = G©m RB and CS = G ∗RZ.

The former equality is a consequence of Lemma 2 while the latter is a
consequence of Proposition 4.

1.3. Pseudoidentity bases of pseudovarieties of the form V∗RZ.
Proposition 4 provides us with a method to obtain a basis of pseudoiden-
tities of V ∗RZ from a basis of V if V is a local pseudovariety.

Corollary 5. Let V be a local pseudovariety and let Σ be a basis of
pseudoidentities of V. Then a basis of V ∗RZ is given by the set of all
pseudoidentities of the form

xπ(y1x, . . . , ynx) = xσ(y1x, . . . , ynx)

where the pseudoidentity π(x1, . . . , xn) = σ(x1, . . . , xn) is a member of Σ
and, for each i, yi can take the value xi or the empty value, and x is
a variable not contained in {x1, . . . , xn}.

Proof: Suppose that the semigroup S belongs to V∗RZ and let π = σ be
a pseudoidentity from Σ. Choose any a ∈ S and any b1, . . . , bn ∈ S∪{1}
where 1 represents a new identity adjoined to S. Then b1a, . . . , bna
and therefore also π(b1a, . . . , bna) and σ(b1a, . . . , bna) are well defined
elements of the principal left ideal L(a). Since L(a)ρ belongs to V by
Proposition 4 and since V satisfies the pseudoidentity π(x1, . . . , xn) =
σ(x1, . . . , xn), substituting ρbia for xi, for each i, we obtain

π(ρb1a, . . . , ρbna) = σ(ρb1a, . . . , ρbna)

and therefore also

ρπ(b1a,...,bna) = ρσ(b1a,...,bna).

This means that multiplication by π(b1a, . . . , bna) and by σ(b1a, . . . , bna)
on the right induces the same transformation L(a)→ L(a). In particular,
the elements aπ(b1a, . . . , bna) and aσ(b1a, . . . , bna) coincide. Since a ∈ S
and b1, . . . , bn ∈ S ∪ {1} have been arbitrarily chosen, S satisfies each
pseudoidentity of the (above-mentioned) form

xπ(y1x, . . . , ynx) = xσ(y1x, . . . , ynx).

Let conversely S be a semigroup which satisfies all pseudoidentities of
the form xπ(y1x, . . . , ynx) = xσ(y1x, . . . , ynx) described above. Then,
reading the preceding paragraph backward, we see that the image L(a)ρ

of each principal left ideal L(a) of S under ρL(a) satisfies all pseudoiden-
tities from Σ. This means that L(a)ρ belongs to V and so S belongs
to V ∗RZ by Proposition 4.
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Corollary 5 is known and has been formulated as Theorem 2.2 in [8];
the well-informed reader will recognize it as a very special case (of a
proved instance) of the Almeida-Weil basis theorem [4, Corollary 5.4].
For more information on the basis theorem we refer the interested reader
to Section 7 in [3] and to Section 3.7 in [14].

2. The main result

2.1. Semantic characterization of the members of PCS. The
main result of the paper can be formulated as follows.

Theorem 6. The following equalities of pseudovarieties hold:

PCS = J©m CS = BG©m RB = ER©m RZ ∩EL©m LZ = BG ∗RZ.

Proof: We shall verify the inclusions

PCS⊆J©m CS ⊆ BG©m RB ⊆ ER©m RZ∩EL©m LZ ⊆ BG∗RZ ⊆ PCS.

1. The inclusion PCS ⊆ J©m CS has been proved by Kad’ourek [10,
Theorem 4.2]. Our proof uses the same relational morphism but other-
wise is different and shorter. Since P′CS = PCS it is sufficient to show
that P(S) belongs to J©m CS for each S ∈ CS.

So, let S be a completely simple semigroup. Then the quotient
set S/R forms a left zero semigroup under set-wise multiplication and
the quotient mapping R : S → S/R, a 7→ Ra is a homomorphism. Like-
wise, the quotient set S/L is a right zero semigroup and the quotient
mapping L : S → S/L , a 7→ La is a homomorphism. Denote by R
and L the respective induced homomorphisms R : P(S)→ P(S/R) and
L : P(S) → P(S/L ). Note that P(S/R) is a left zero semigroup while
P(S/L ) is a right zero semigroup. Moreover, for every X ∈ P(S) we
have

XR = {U ∈ S/R | X ∩ U 6= ∅} and XL = {V ∈ S/L | X ∩ V 6= ∅}.
Consider the direct product

T := P(S/R)× S ×P(S/L )

which is again a completely simple semigroup. For every X ∈ P(S) set

XΦ := {(XR, x,XL) | x ∈ X} = {XR} ×X × {XL}.
Then Φ is a relational morphism P(S)→ T . Let (A, e,B) be an idempo-
tent of T with (A, e,B)Φ−1 non-empty; note that e is an idempotent of S.
We intend to show that the semigroup (A, e,B)Φ−1 is J -trivial. In order
to do so, it is sufficient to verify that the set Reg((A, e,B)Φ−1) of all reg-
ular elements is contained in a J -trivial subsemigroup of (A, e,B)Φ−1.
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Then each regular J -class of (A, e,B)Φ−1 is trivial whence the semi-
group (A, e,B)Φ−1 is itself J -trivial.

Set

S(A,B) :=
⋃

U∈A, V ∈B
U ∩ V

and let I be the (completely simple) subsemigroup generated by all idem-
potents of S(A,B). Then I is an idempotent of (A, e,B)Φ−1. Let

MI := {X ∈ (A, e,B)Φ−1 | IX = XI = X}

be the local submonoid of (A, e,B)Φ−1 with respect to I. We claim that
X ⊇ I for each X ∈ MI . Indeed, let X ∈ MI and, for an arbitrary
idempotent g of I let Ig be the H -class of I containing g. First observe
that Ie = eIe ⊆ XI = X since e ∈ X. Next, let f be the unique
idempotent such that e R f L g; then Ig = gIef ⊆ IXI = X. So,
X contains each H -class of I and thus contains I itself. Therefore,
the monoid MI is ordered by reverse inclusion ⊇ with I the greatest
element, and so MI is J -trivial [12]. It suffices now to show that
Reg((A, e,B)Φ−1) is contained in MI .

For each X ⊆ S denote by EX the set of all idempotents of X.
Let F be an idempotent of (A, e,B)Φ−1; then F is a (completely simple)
subsemigroup of S(A,B) with FR = A and FL = B. Let U ∈ A,
V ∈ B, a ∈ F ∩ U , b ∈ F ∩ V ; then (ab)ω ∈ F ∩ U ∩ V . It follows
that F contains all idempotents of S(A,B), hence F ⊇ I and EF = EI .
Then F = F 2 ⊇ FI ⊇ FEI = FEF = F whence FI = F and dually
also IF = F . Moreover, for each regular element X of (A, e,B)Φ−1 there
exist idempotents F , G such that FX = X = XG; then IX = IFX =
FX = X and dually also XI = X. Consequently, Reg((A, e,B)Φ−1) is
contained in MI , as required.

2. The inclusion J©m CS ⊆ BG©m RB is a consequence of the equal-
ity BG = J©m G (see Section 7 in [11]) and of standard facts concerning
the operation ©m (see Lemma 1.4 in [17]):

J©m CS = J©m (G©m RB) ⊆ (J©m G)©m RB = BG©m RB.

3. An indirect argument will be used to prove the inclusion

BG©m RB ⊆ ER©m RZ ∩EL©m LZ.

Indeed, suppose that S /∈ ER©m RZ. Then, according to Lemma 1, there
exists a principal left ideal L(a) of S which does not belong to ER.
Consequently there exist distinct idempotents e, f in L(a) forming a
(non-trivial) right zero subsemigroup. This right zero subsemigroup then
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is, in fact, contained in the left ideal Sa. However, since e{e, f} = {e, f},
the right zero subsemigroup {e, f} is even contained in eSa, so that the
latter subsemigroup of S cannot be a block group. Corollary 3 now
implies that S /∈ BG©m RB. By the dual argument, one also shows that
S /∈ EL©m LZ entails that S /∈ BG©m RB.

4. In order to prove the inclusion

ER©m RZ ∩EL©m LZ ⊆ BG ∗RZ,

suppose that S ∈ ER©m RZ ∩ EL©m LZ. According to Lemma 1 this
means that each principal left ideal of S is in ER and each principal right
ideal of S is in EL. It is well known and easy to see that BG is local (by
taking advantage of the consolidation operation [16], [14] – the reader
may also consult the proof of Proposition 1 in [15]). Therefore we may
now apply Proposition 4: in order to show that S belongs to BG∗RZ, it
is sufficient to verify that the image L(a)ρ of each principal left ideal L(a)
of S under ρL(a) belongs to ER∩EL (= BG). Since each principal left
ideal L(a) is in ER so is its image L(a)ρ. It remains to prove that
L(a)ρ is in EL. We need to show that each (at most) two-element left
zero subsemigroup {ρca, ρda} of L(a)ρ is trivial; here ca, da are arbitrary
elements of L(a) (c and/or d may be the empty symbol). By assumption,
the equalities

a(ca)=a(ca)2, a(da)=a(da)2, a(ca)(da)=a(ca), a(da)(ca)=a(da)

hold. Shifting the brackets to the left we observe that the inner left trans-
lations λac, λad : R(a) → R(a) form a left zero subsemigroup of λR(a),
the image of R(a) under λR(a). Since R(a) is in EL so is λR(a). Hence
{λac, λad} is a trivial semigroup and so λac = λad. It follows that
(ac)a = (ad)a and therefore also a(ca) = a(da) hold. But then ρca = ρda,
that is, the left zero semigroup {ρca, ρda} is trivial.

5. Finally, in order to verify the inclusion BG ∗ RZ ⊆ PCS, we may
argue exactly as in [15], namely we may use the inclusion PG ∗RZ ⊆
P(G ∗ RZ) (proved in [7]) and the equalities PG = BG and CS =
G ∗RZ.

Just as in Theorem 4.2 of [10], the first step in the proof of Theorem 6
actually proves the inclusion PQ ⊆ J©m Q for each pseudovariety Q of
completely simple semigroups. The reason for this is that the left zero
semigroup P(S/R) is trivial if and only if so is S/R and the right zero
semigroup P(S/L ) is trivial if and only if so is S/L . Consequently,
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both power semigroups belong to the pseudovariety generated by S, and
therefore also T belongs to the pseudovariety generated by S.

As already mentioned, two papers are devoted to the study of the
pseudovariety PCS, namely Steinberg’s paper [15] and Kad’ourek’s pa-
per [10]. The main result in the former is the inclusion PCS ⊆ BG∗RZ
while the main results of the latter are the inclusion PCS ⊆ J©m CS and
the equality BG©m RB = J©m CS. Whereas the inclusion of the latter
paper forms an essential ingredient of our proof we get the inclusion of
the former and the equality of the latter for free. It should be noted
however, that we do make use of the celebrated equality PG = BG.

The last three items in the chain of equalities in Theorem 6 give
rise to three (equivalent) structural characterizations of the members of
PCS. These characterizations in turn lead to transparent algorithms
for testing membership in PCS. Indeed, immediately from Corollary 3
we get: a semigroup S belongs to PCS if and only if aSb is a block
group for all a, b ∈ S that is, if and only if it is an aggregate of block
groups in the sense of Kad’ourek [10]. Next, expressing membership in
ER©m RZ ∩ EL©m LZ in terms of Lemma 1 we obtain: a semigroup S
belongs to PCS if and only if each principal left ideal of S is in ER and
each principal right ideal of S is in EL. Finally, applying Proposition 4
to BG ∗RZ we see: a semigroup S belongs to PCS if and only if the
image L(a)ρ of each principal left ideal L(a) of S under the right regular
representation ρL(a) is a block group. In the latter two cases, the one-
sided ideals L(a) and R(a) may be replaced with the one-sided ideals Sa
and aS, respectively.

The equality PG = BG has two analogues in the completely simple
case, namely, on the one hand Steinberg’s equality

PCS = P(G ∗RZ) = BG ∗RZ,

on the other hand the equality

PCS = P(G©m RB) = BG©m RB.

Finally, both equalities PG = J ∗G and PG = J©m G (see [11]) have
their obvious analogues, namely

PCS = J ∗CS and PCS = J©m CS.

The latter occurs in the statement of Theorem 6 and is important in
its proof. In contrast, the author is not aware of a direct argument for
the former: it follows merely from the equalities PCS = BG ∗ RZ,
BG = J ∗G, CS = G ∗ RZ and the associativity of the operation ∗,
see [10].
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2.2. Syntactic characterization of the members of PCS. The
last three items in the chain of equalities in Theorem 6 also give rise to
three syntactic characterizations of the pseudovariety PCS. First, using
the fact that BG is defined by the pseudoidentity (xωyω)ω = (yωxω)ω,
it follows from Corollary 3 that BG ©m RB is defined by the single
pseudoidentity

((sxt)ω(syt)ω)ω = ((syt)ω(sxt)ω)ω,

see [10]. This statement can also be deduced from the already mentioned
Pin-Weil basis theorem for Mal’cev products [13]. Further on, as men-
tioned in the preliminaries, the pseudoidentity (yωzω)ω = (yωzω)ωyω

defines ER. Moreover, every idempotent in the principal left ideal L(x)
of a semigroup S can be written as (ax)ω for some element a of S. In
view of Lemma 1, it follows that the pseudovariety ER©m RZ is defined
by the pseudoidentity

(†) ((ax)ω(bx)ω)ω = ((ax)ω(bx)ω)ω(ax)ω.

Dually, EL©m LZ is defined by the pseudoidentity

(‡) ((xb)ω(xa)ω)ω = (xa)ω((xb)ω(xa)ω)ω.

(Again, both statements are immediate consequences of the above-men-
tioned basis theorem for Mal’cev products [13].) Consequently, the two
pseudoidentities (†), (‡) form a basis of ER©m RZ ∩EL©m LZ. Finally,
as a consequence of Corollary 5 we obtain a basis of pseudoidentities of
BG ∗RZ as follows.

Corollary 7. The pseudovariety BG∗RZ is defined by the pseudoiden-
tity

(?) x((yx)ω(zx)ω)ω = x((zx)ω(yx)ω)ω.

Proof: It has been noticed in the preliminaries that the single pseu-
doidentity (yωzω)ω = (zωyω)ω forms a basis of BG. As already men-
tioned in part 4 of the proof of Theorem 6, the pseudovariety BG is local.
Thus we may apply to the pseudovariety BG ∗RZ the rule formulated
in Corollary 5. In this way, we obtain four pseudoidentities, each of the
form

x((ax)ω(bx)ω)ω = x((bx)ω(ax)ω)ω

where a as well as b can be a variable or the empty symbol. If a, say,
represents the empty symbol then (ax)ω becomes xω which is the same
as (xx)ω. So, in the case that a and/or b represent the empty symbol,
the corresponding pseudoidentity can be obtained from the one in which
a as well as b represent variables, simply by substituting the variable a
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and/or b with the variable x. Therefore the pseudoidentity (?) defines
BG ∗RZ.

We arrive at the main theorem in this section.

Theorem 8. Each of the pseudoidentity systems (i)–(iii) forms a basis
of pseudoidentities of PCS:

((sxt)ω(syt)ω)ω = ((syt)ω(sxt)ω)ω,(i)

((ax)ω(bx)ω)ω = ((ax)ω(bx)ω)ω(ax)ω and(ii)

((xb)ω(xa)ω)ω = (xa)ω((xb)ω(xa)ω)ω,

x((ax)ω(bx)ω)ω = x((bx)ω(ax)ω)ω.(iii)

It is interesting to see directly, that is, using only syntactic argu-
ments, that the systems of pseudoidentities (i)–(iii) are equivalent. In
the following, we shall present such a syntactic derivation.

In order to prove that (i) implies (ii) we first note that by substituting
ts for x in (i) and using (stst)ω = (st)ω we get

(i’) ((st)ω(syt)ω)ω = ((syt)ω(st)ω)ω.

Now, using the equalities yω(yωzω)ω = (yωzω)ω = (yωzω)ωzω we obtain

((ax)ω(bx)ω)ω = (((ax)ω(bx)ω)ω)ω

= ((ax)ω((ax)ω(bx)ω)ω)ω

= ((ax)ω(amx)ω)ω for m = x(ax)ω−1(bx)ω−1b

= ((amx)ω(ax)ω)ω by (i’)

= (((ax)ω(bx)ω)ω(ax)ω)ω

and

((ax)ω(bx)ω)ω = (((ax)ω(bx)ω)ω(ax)ω)ω(\)

= (((ax)ω(bx)ω)ω(ax)ω)ω(ax)ω

= ((ax)ω(bx)ω)ω(ax)ω by (\).

The second pseudoidentity of (ii) is derived analogously (by reading (i’)
from right to left, that is, the two sides of that pseudoidentity are
swapped with each other).
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Let us consider next the pseudoidentites (ii) and denote them by (ii1)
and (ii2), respectively. In order to verify that (ii) implies (iii), we mul-
tiply (ii1) by x on the left to obtain:

x·((ax)ω(bx)ω)ω = x·((ax)ω(bx)ω)ω(ax)ω by (ii1)

= (xa)ω((xb)ω(xa)ω)ω·x shifting brackets

= ((xb)ω(xa)ω)ω·x by (ii2)

= x·((bx)ω(ax)ω)ω shifting brackets.

Finally, we intend to derive (i) from (iii). For this purpose, we note
that shifting the brackets in (iii) we get an equivalent pseudoidentity,
namely:

(iiis) ((xa)ω(xb)ω)ωx = ((xb)ω(xa)ω)ωx.

Having this in mind and assuming (iii), we obtain

((sxt)ω(syt)ω)ω = ((sxt)ω(syt)ω)ω((sxt)ω(syt)ω)ω

= lt((sxt)ω(syt)ω)ω

= lt((syt)ω(sxt)ω)ω by (iii)

= ((sxt)ω(syt)ω)ω((syt)ω(sxt)ω)ω

= ((sxt)ω(syt)ω)ωsr

= ((syt)ω(sxt)ω)ωsr by (iiis)

= ((syt)ω(sxt)ω)ω((syt)ω(sxt)ω)ω

= ((syt)ω(sxt)ω)ω,

where

l = ((sxt)ω(syt)ω)ω−1(sxt)ω(syt)ω−1sy

and

r = yt(syt)ω−1(sxt)ω((syt)ω(sxt)ω)ω−1,

which proves that (iii) implies (i). Altogether we have given an alterna-
tive, purely syntactic proof of the equalities

BG©m RB = ER©m RZ ∩EL©m LZ = BG ∗RZ.

What is more, we actually have proved the implications:

(i)⇒ (i’)⇒ (ii)⇒ (iii)⇒ (i).
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From this it follows that (i’) is yet another pseudoidentity defining PCS.
Moreover, each of the pseudoidentity bases of Theorem 8 provides a new
algorithm for deciding membership in PCS.

2.3. Another algorithmic problem. For two completely simple semi-
groups B and C, the direct product P(B)×P(C) embeds in P(B×C).
Hence the pseudovariety PCS consists of all divisors of the power semi-
groups P(C) of all completely simple semigroups C. For a given semi-
group S ∈ PCS (that is, a semigroup S that has successfully passed a
membership test for PCS), one may ask how to construct a completely
simple semigroup C for which S divides P(C). The analogous question
for the members of PG had been a standing problem and was solved
by Steinberg and the author [7]. Based on that we shall construct a
solution for the present case.

So, let S ∈ PCS, let RZ(S) be the (free) right zero semigroup
on S and let φ : S → RZ(S) be the canonical relational morphism as
in Lemma 1. The derived semigroupoid Dφ of φ has set of objects
RZ(S) ∪ {1} = S ∪ {1} where 1 /∈ S. The set Dφ(a, 1) of all mor-
phisms a→ 1 is empty for each object a; for b ∈ S, the set Dφ(1, b) can
be identified with the set of all triples (1, γ, b) where γ is a ‘translation’
{1} → L(b), 1 7→ 1g = g with g ∈ L(b); finally, for two objects a, b ∈ S,
the set Dφ(a, b) can be identified with the set of all triples (a, σ, b) where
σ denotes the mapping L(a) → L(b), x 7→ xs for s ∈ L(b). The compo-
sition of two composable morphisms is the obvious one:

(∗) (a, σ, b)(b, τ, c) = (a, στ, c).

Let BG(S) be the consolidated semigroup of Dφ as in [16], [14] (see
also below). Since S ∈ BG ∗ RZ, the derived semigroupoid theorem
implies that (i) the local semigroups of Dφ are block groups (and so
BG(S) itself is a block group since BG(S) does not contain non-trivial
left zero and right zero subsemigroups) and (ii) S divides the wreath
product BG(S) oRZ(S).

Next, from Theorem 4.5 in [7] we are aware how to construct from
BG(S) a group G(S) such that BG(S) divides the power group P(G(S)).
Standard properties of the wreath product then imply that BG(S) o
RZ(S) and hence also S divide the wreath product P(G(S)) o RZ(S).
Finally, in Lemmas 2.1 and 2.2 in [7] a division from P(G(S)) o RZ(S)
to P(G(S) oRZ(S)) is explicitly constructed. Consequently, the original
semigroup S divides the power semigroup P(G(S) o RZ(S)) and G(S) o
RZ(S) is completely simple.
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We summarize the procedure as follows: for S ∈ PCS let BG(S) be
the set consisting of an element 0 together with all triples (a, σ, b) for

a ∈ S ∪{1}, b ∈ S and σ being a mapping L̃(a)→ L(b) of the form x 7→
xs for some s ∈ L(b) (here L̃(1) = {1} while L̃(a) = L(a) if a 6= 1). Let
BG(S) be endowed with the multiplication (∗) whenever possible and let
all other products be defined to be 0. Then BG(S) is a block group; let
G(S) be a group for which BG(S) divides the power group P(G(S)), as
constructed in [7]. Then S divides the power semigroup P(G(S)oRZ(S))
where RZ(S) is the set S endowed with right zero multiplication, and
G(S) oRZ(S) is completely simple.

Personal remark of the author. The work on this paper started as a joint
project with J. Kad’ourek (initiated by the author). Unfortunately, from
the very beginning, this cooperation was overshadowed by dissent on
various matters of the joint work. After some while the author felt that
there was no longer the possibility to write the paper in a way that would
be satisfactory for both authors and resigned from that cooperation.
The outcome is now entirely according to the view of the author, and
Kad’ourek did not accept co-authorship for it.
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