
Escola d’Enginyeria

Departament d’Arquitectura de

Computadors i Sistemes Operatius

Including the Workload Effect in the Parallel

Program Signature

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/13320103?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Thesis submitted by Javier Martinez

Canillas for the degree of Master in

High Performance Computing by the

Universitat Autònoma de Barcelona, un-

der the supervision of Dr. Emilio Luque

Barcelona, June 2011

ii

Including the Workload Effect in the Parallel
Program Signature

Thesis submitted by Javier Martinez Canillas for the degree of Master in High Perfor-

mance Computing by the Universitat Autònoma de Barcelona, under the supervision of

Dr. Emilio Luque, at the Computer Architecture and Operating Systems Department.

Barcelona, June 2011

Supervisor

Dr. Emilio Luque

This work is dedicated to my parents

brothers and to the love of my life. I hope I

can give you back in some way all the love

received from all of you.

Abstract

Performance prediction and application behavior modeling have been the subject of exten-

sive research that aim to estimate applications performance with an acceptable precision.

A novel approach to predict the performance of parallel applications is based in the con-

cept of Parallel Application Signatures [36] that consists in extract an application most

relevant parts (phases) and the number of times they repeat (weights). Executing these

phases in a target machine and multiplying its exeuction time by its weight an estimation

of the application total execution time can be made.

One of the problems is that the performance of an application depends on the program

workload. Every type of workload affects differently how an application performs in a

given system and so affects the signature execution time.

Since the workloads used in most scientific parallel applications have dimensions and

data ranges well known and the behavior of these applications are mostly deterministic,

a model of how the programs workload affect its performance can be obtained. We create

a new methodology to model how a program’s workload affect the parallel application

signature.

Using regression analysis we are able to generalize each phase time execution and

weight function to predict an application performance in a target system for any type

of workload within predefined range. We validate our methodology using a synthetic

program, benchmarks applications and well known real scientific applications.

Resumen

La predicción del rendimiento y el modelado del comportamiento de las aplicaciones son

tópicos ampliamente estudiados y se cuentan con numerosos trabajos de investigación que

pretenden estimar el rendimiento de la aplicaciones con una precisión aceptable. Un nuevo

enfoque para predecir enfoque para predecir el rendimiento de aplicaciones paralelas es el

basado en el concepto de las firmas de aplicaciones paralelas [36] que consiste en extraer

las partes mas relevantes de una aplicación (fases) y el numero de veces que se repiten

(pesos). Ejecutando estas fases en una maquina destino y multiplicando su tiempo de

ejecución por su peso, se puede obtener una estimación del tiempo total de ejecución de

la aplicación.

Uno de los problemas es que el rendimiento de una aplicación depende de la carga de

trabajo de esta. Cada tipo de carga de trabajo afecta de manera distinta el rendimiento

que tiene una aplicación en un sistema determinado y por lo tanto el tiempo de ejecución

de la firma.

Dado que las cargas de trabajo de la mayoŕıa de las aplicaciones cient́ıficas paralelas,

tienen dimensiones y rango de datos bien conocidos y que el comportamiento de estas

aplicaciones es generalmente determinista, se puede obtener un modelo de como la carga

de trabajo de un programa afecta su rendimiento. Hemos creado una nueva metodoloǵıa

para modelar como la carga de trabajo de un programa afecta a la firma de la aplicación

paralela.

Usando análisis de regresión, hemos podido generalizar las funciones de tiempo de

ejecución y peso para cada fase para predecir el rendimiento de una aplicación en un

sistema destino para cualquier tipo de carga de trabajo dentro de un rango predefinido.

Hemos validado nuestra metodoloǵıa utilizando un programa sintético, aplicaciones de

benchmarks y aplicaciones reales cient́ıficas bien conocidas.

Acknowledgements

First of all I want to thank to mi advisor Doctor Emilio Luque Fadón for his invalu-

able guide, patience and dedication. Without his constant support and orientation, this

research would not be possible.

To Doctor Dolores Rexachs del Rosario for her supervision, recommendations and

suggestion. Se tried very hard to help me take the best of my.

Also I want to thank to the supporters of this research work the MEC-MICINN Spain

under contract TIN2007-64974, the European ITEA2 project H4H, No 09011 and the

Avanza Competitividad I+D+I program under contract TSI-020400-2010-120.

I want to thank my fellows at the CAOS department for their patience and support,

especially to my research group.

Many thanks to my co-workers that behave as good friends in many moments during

this work, thank you Carlos Nuñez, Hugo Meyer, Ronal Muresano, Marcela Castro, Carlos

Brum and Abel Castellanos.

I want to give special thanks to Doctor Alvaro Wong. He not only probe to be a good

friend and co-worker but also helped me greatly during all the master. His experience,

advice and recommendations were crucial to finish this project.

To Doctor Benjamı́n Barán who was the one that introduced me to the fascinating

world of research. He has been my mentor and an example to follow all over these years,

showing me that research can also be made in Paraguay with sweat and hard work.

A special mention to my profesors, classmates and friends of the “Facultad de Ciencias

y Tecnoloǵıa de la Univesidad Católica”, with whom I had shared my years of formation

as an Engineer, especially to Roberto Rodŕıguez Alcalá, Raúl Gutiérrez, Miguel Prieto,

Juan Mignaco, Rodrigo Villalba y Vı́ctor González.

Finally I want to thank my wife Tami, for all her patience and for give me strengths

when I needed. She was the one that make this work possible.

i

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Context . 2

1.3 Objective . 4

1.4 Thesis Organization . 4

2 Concepts 5

2.1 Computational Complexity Theory . 5

2.2 Workload Characterization . 7

2.3 Regression Analysis . 8

2.3.1 Linear Regression . 9

2.3.2 Polynomial Regression . 9

2.3.3 Interpolation and Extrapolation . 10

3 Related Work 11

3.1 Introduction . 11

3.2 Analytical Models . 12

3.3 Simulation Models . 13

3.4 Measurement Techniques . 13

3.4.1 Benchmarks . 14

3.4.2 Application Measurement . 15

4 Parallel Application Signatures 16

4.1 Introduction . 16

4.2 Conceptual Basis . 16

4.3 Signature Creation . 17

4.3.1 Machine-Independent Model Creation (Obtaining Phases and Weights) 17

4.3.2 Signature Creation for an Architecture (Phases Checkpoint) 18

4.4 Signature Execution . 18

ii

5 Modelling the Workload Effect in the Parallel Signatures 19

5.1 Introduction . 19

5.2 The Problem with the Single Checkpoint 20

5.3 Workload Characteristics in Scientific Applications 21

5.4 The Workload Effect in the Signatures . 22

5.5 Methodology to Model the Workload Effect 23

5.5.1 Obtaining and measuring points . 26

5.5.2 Complexity and Weight functions estimation 26

5.5.3 Estimated functions validation . 28

5.5.4 Functions parametrization in the target system 29

5.5.5 Functions evaluation and performance prediction 29

6 Methodology Experimental Validation 31

6.1 Introduction . 31

6.2 Scientific Applications . 31

6.3 Execution Environment . 32

6.4 Experimental Results . 33

6.4.1 Evaluate Phase Identification Ability: Synthetic App 33

6.4.2 Analyzing Well Establish Workloads (Benchmarks Applications) . . 36

6.4.3 Validation with Real Workloads (Scientific Applications) 39

7 Conclusions and Future Work 42

7.1 Contributions . 42

7.2 Future Work . 43

Bibliography 44

iii

Chapter 1

Introduction

1.1 Motivation

Parallel application performance prediction is one of the challenges that we face today

due the diversity of cluster systems. Being able to know how an application will perform

in an execution environment could lead to make smarter decisions. These decisions can

be to choose the best system to run an application, budget the cost of executions, job

scheduling optimization or improve the administration of computational resources.

The problem is that predicting performance of a parallel application with acceptable

accuracy is not a trivial task. There are many dimensions that have an impact in appli-

cation performance. One of this dimensions to consider is the program’s workload. Every

type of workload affects differently how the application performs in a given system. Be

able to model the workload’s effect in a parallel application can led to more general and

powerful estimation models.

Many scientific parallel application present two characteristics that allows to obtain a

model for performance evaluation and prediction. First most applications used in High

Performance Computing have workloads whose dimensions and ranges are well known by

its users. Second, their behavior is deterministic and their computational time complex-

ity changes with the workload in predictable way. We can use these characteristics to

developed a methodology that allows to create a performance evaluation and estimation

model for parallel applications.

A novel approach to predict the performance of parallel applications is based in the

concept of Parallel Application Signatures [36]. Since parallel application have an repeti-

tive behavior, the parallel application signature methodology is able to a create machine-

independent model of the application that represents the program’s characteristics. From

this model, the most relevant parts (phases) of the application are extracted an this forms

1

a program’s signature.

Extracting an application signatures with different workloads and executing in a target

machine allows to build an analytical model of each application phases time complexity

and weight function.

1.2 Context

This work introduces a new methodology to model the effect of the workload in the

signature of message passing parallel applications to predict its performance in distinct

target systems under different workloads.

There are many problems in computer science that have a high level of complexity.

The best way to tackle a complex task is to breaking down the problem in many smaller

sub-problems, a strategy known as divide and conquer that has been used since the times

of the roman empire.

In computing, the complexity of a problem is measure as the computing time and

memory needed to solve the problem. So dividing in smaller sub-problems means paral-

lelizing the program in different process. This have two benefits, first since the processes

run in parallel the time needed to solve the problem is reduced, we say that the program

scale when running in different machines or processors. Second, since we have many pro-

cesses to solve the problem, each process could use only a fraction of the data needed for

the computation, this can be an advantage when all the data does not fit in a machine

memory. To be able to run in parallel many processes a computing system that have a lot

of computation units. These computation intensive machines are called supercomputers

since they are far more powerful than conventional computers. Another approach is to

use a cluster of computers with many processors connected by high speed interconnects.

High Performance Computing (HPC) is the field in computer science that studies the

use of supercomputers and computer clusters to solve advanced computation problems.

Figure 1.1 shows the relation between HPC systems and HPC applications. Most scien-

tific applications are parallel to obtain the maximum speedup of the application and to

compute it in the minimum time. Even when the application can be parallelized, most

applications need that the processes are able to communicate to share information. Ba-

sically there are two paradigms to communicate parallel processes, shared memory and

distributed memory. In shared memory, all the process share the same memory address

space so they can use the memory to communicate. In distributed memory, every process

has its own memory address space and the processes send messages each other every time

they want to communicate. This is the reason why distributed memory is also calling

2

message passing paradigm. There is a third approach even when technically is only a

combination of two. In hybrid parallel applications, processes can use both message pass-

ing and shared memory to communicate among themselves. This work focuses in message

passing parallel applications. This type of applications are the most widely used since

they scale better than shared memory ones.

Parallel HPC applicationsHPC systems

Shared memory Message passing Hybrid

Performance evaluation

Analytical Simulation Measurement

Figure 1.1: Context of this work

A problem that always arises in HPC is how to analyze and application performance in

a given system. Basically there are three methods to analyze to analyze and application

behavior. The first is to create and analytical model of the application, the second one

is to simulate and application in a given environment, and the third one is to measure

the application in execution. A novel approach is the one used in the pas2p (parallel

application performance for performance prediction) methodology [36] where parallel ap-

plication signatures are used to evaluate an application performance. The problem is that

the performance of an application is tightly coupled with the type of workload. The same

application can perform very differently with two different types of workloads. For this

reason, is needed to model not only the application structure, but also how the workload

affects and application performance and therefore its signature. The proposal is to use

an approach that is a mixture between a measurement method and an analytical method

to model how the workload affects and application in order to predict its performance.

3

1.3 Objective

The objective of this work [22] is to create a methodology that allows to model how the

application workload affects the program’s signature. Analyzing the interaction between

processes in a parallel application we can extract executable signatures that characterize

the computational and communication behavior for a given workload. Executing the sig-

nature in a target system allows to predict an application full execution time for one type

of workload. Because scientific data-independent application behavior is deterministic,

we can execute the application with different types of workloads and these execution are

points of the functions that defines each application phase execution time and weight.

Using regression analysis we can estimate for each phase the time execution and weight

function and build an analytical model that mimics the program’s behavior. Also, the

exact numbers of points needed to reconstruct the functions are known. To estimate an

application performance in a target machine for a given type of workload is a matter of

executing a set of signatures to calibrate the model, and use this model to predict the

application performance for that specific workload.

1.4 Thesis Organization

The rest of the document is organized as follows:

Chapter 2 “Concepts” introduces some concepts which later chapters are built upon.

Chapter 3 “Related Works” presents the previous research work that is related and

from some ideas were borrowed.

Chapter 4 “Parallel Application Signatures” introduces the concept of signatures of

an message passing parallel application. What is the conceptual basis of the signatures,

how they are created and executed to evaluate an application performance.

Chapter 5 “Modelling the Workload Effect in the Parallel Signatures” explain the

methodology to model the effect that the workloads has in the parallel application sig-

natures. What is the motivation to analyze the workload effect and how to model for

predict an application performance with many types of workloads.

Chapter 6 “Methodology Experimental Validation” shows the experimental results

used to validate the methodology with a set of applications with different workloads.

Chapter 7 “Conclusions and Future Work” summarizes some conclusions, the contri-

butions of this work and the future lines that remains open to further research activities.

4

Chapter 2

Concepts

2.1 Computational Complexity Theory

The study of Algorithms is one of the most important fields in computer science. Not

only because algorithms are an effective method to express instructions but also because

they can be studied in a language and machine-independent way. This means that we

need techniques that enable us to compare the efficiency of algorithms without implement

them [29].

One way to measure the efficiency of an algorithm in a machine-independent way is

to count the number of steps that it needs in order to finish its computation for any

given input. With this model of computation a number of steps can be associate with

any operation. For example mathematical operations (+, -, *, /, etc) can assumed to be

carried in one step and a memory operation in two steps. Using this method, two sorting

algorithms can be compared in a machine-independent way for example.

However, to understand how well or bad an algorithm is in general, we must know

how it works in all cases. An algorithm that performs well for a given input, can perform

really bad for a different input. So, any algorithm has three different complexities that

have to be evaluated to really understand its behavior [29]:

• The worst-case complexity of the algorithm is the function defined by the maxi-

mum number of steps taken in any instance n.

• The best-case complexity of the algorithm is the function defined by the minimum

number of steps taken in any instance n.

• The average-case complexity of the algorithm, which is the function defined by

the average number of steps over all instances of n.

5

From these three complexities, the worst-case is the most useful. Since the complexity

depends on the input data and one usually does not known which input is going to be

used with an algorithm. Being pessimistic and considering the worst case is the best way

to go.

Each of these time complexities define a numerical complexity : T → N , where T

is the time needed to finish the computation and N is the problem size. Usually these

numerical functions are not known and are too complicated, so we need a more simplistic

notation to referrer to them. A simpler and widely used notation is the “Big Oh” or

asymptotic complexity notation.

Since the exact functions that models best, worst and average time complexity of an

algorithm are very difficult to work precisely, it is easier to think in terms of upper and

lower bounds of the time complexity function. If we can express the time complexity

function as a different function O(g(n)) that is an upper bound of the real function f(n),

we can simplifies the analysis not taking into account details that are not relevant when

comparing different algorithms

The formal definition of an upper bound function in the Big Oh notation is as follows

[29]:

• f(n) = O(g(n)) means c ∗ g(n) is an upper bound on f(n). Thus there exists

some constant c such that f(n) is always ≤ c ∗ g(n), for large enough n (i.e:

n ≥ n0).

The notation discards constants and lower order terms and denotes the complexity of

the algorithm when its input size n tends to infinity. While doing this, the notation group

functions in classes, so any given function belongs to a particular class of complexity and

is equivalent with respect to the others functions in this class. Fortunately, only a small

set of function classes tend to cover almost all the algorithms that we can analyze. So, to

analyze the complexity of a given algorithm, this can be classified in one of a small group

of time complexities functions. Table 2.1 list these most common complexities function

classes in order of increasing dominance.

6

Table 2.1: Common time complexities used to estimate the phases execution time

Running time Class name

O(1) Constant functions

O(logn) Logarithmic functions

O(n) Linear functions

O(nlogn) Superlinear functions

O(n2) Quadratic functions

O(n3) Cubic functions

O(cn) Exponential functions

O(n!) Factorial functions

2.2 Workload Characterization

As stated before, the performance of an algorithm is usually measured by its running

time, expressed as a function size of the problem its solves. Another term to refer to this

size of the problem is the workload, the amount of processing that the computer has been

given to do at a given time [4]. When evaluating a computer in terms of performance,

usually two metrics are used:

1. Latency: the time between a user request and a response to the request from the

system.

2. Throughput: How much work is accomplished over a period of time.

Both metrics are based on time and since the running time of an algorithm is a

function of the problem size, the performance of any type of computer system cannot be

determined without knowing the workload. Even the same algorithm can have different

running times and complexity functions depending of the input data. For example the

famous quicksort sorting algorithm [14] has an average-case complexity of O(nlogn) and

a worst-case complexity of O(nn). That means that different inputs may lead to very

different performance results. Depending of the type of workload, the running time of the

algorithm can vary from slightly more than linear to quadratic.

This is the reason why is very important to understand a program’s workload, be able

to characterize and model it. Workload characterization consists of a description of the

workload by means of quantitative parameters and functions [4]. The level of detail in

workload characterization depend on the context of the evaluation. For example if the

analysis is to measure the performance of different sorting algorithms, it is enough to

7

considerer the workload as the input size of the array to sort. But when studying CPU

architectures, a much more detailed characterization is required.

One of the most important uses of performance evaluation is to compare different

systems. For these comparison to be accurate, the systems have to be compared under

equivalent conditions and in particular under the same workload. This motivates the

canonization of a select set of workloads than are then ported to different systems and

used as the basis for comparison. Such standardized workloads are called benchmarks

[11].

The reasons why benchmarks are so popular in the High Performance Computing field

is that most scientific parallel application has a predictable behavior. These applications

has small parts where most of the processing occurs. So a set of synthetic applications or

application Kernels can be developed that mimic the behavior of real applications when

they are computing their most intensive part. This can be done because the workloads of

real scientific applications are affected mostly by a set of parameters and input data size.

The workload can be decomposed in a set of dimensions whose data ranges are known by

the users of the application.

This two properties of the application’s workload: The fact that they have an impact

on the application performance and that in the case of scientific applications, their di-

mensions and data range values are well known, makes the workload characterization a

fundamental part of any study of the performance of parallel application.

2.3 Regression Analysis

The classical way of doing science is to use the scientific method. That means observing

a phenomena and collecting the data for a latter analysis. When collecting data usually

there are many variables involved. Sometimes it is necessary to determine the causal effect

of one variable upon another. Fortunately statistics provide us with tools and techniques

to do this.

Regression Analysis is a statistical tool for the investigation of relationship between

variables [34]. Data is assembled on the underlying variables of interest and regression

is employed to estimate the quantitative effect of the casual variables upon the variables

that they influence. So, the goal of regression analysis is to determine a function of the

independent variables called the regression function that best fit a set of data observations.

To model this relationship, a number of regression models are used. Observational data

are modeled by functions that represents a relationship between a number of parameters

and one or more independent variables. If the relationship between the variables is linear,

8

we use a linear regression model. Conversely, if the relationship is not linear, we use a

nonlinear regression model.

2.3.1 Linear Regression

The goal of regression analysis is to determine the values of parameters for a function

that cause the function to best fit a set of data observations. These data observations

are usually composed of two variables. An independent variable (X) and a dependant

variable (Y). In linear regression, the function is a linear (straight-line) equation.

That means that the best fit regression function f : X → Y can be denoted as an

linear equation:

y = a0 + a1 ∗ x+ ε (2.1)

One of the simplest linear regression model is using two points (x0, y0), (x1, y1) and

create a regression model that is:

y = y0 + (y1 − y0) ∗
(x− x0)
(x1 − x0)

(2.2)

2.3.2 Polynomial Regression

Not always the relationship between the dependant and independent variables can be

describe as a straight line. This may mean one of two things:

• The relationship between variables is linear but cannot be modeled using a

straight line.

• The relationship between variables is not linear and a non-linear regression model

will best fit the data set.

Another powerful form of linear regression is the polynomial regression in which the

relationship between the independent variable and dependent variable is modeled as an

polynomial of some order n. The polynomial regression fits not only relationships that

are polynomial (i.e: quadratic or cubic) but also non-linear relationship between the

dependent variable and the independent variable.

Even when they can fit a non-linear relationship between variables, the polynomial

regression function is linear, in the sense that the relationship between variables is de-

scribed as linear. This is function can be approximated using a polynomial expression or

more formally any function can be denoted as a finite length expression of variables and

9

constant using only operations of addition, subtraction, multiplication and non-negative

integer exponents.

So, in the case of the polynomial regression, the best fit regression function can be

denoted as a polynomial of order k:

y = a0 ∗ x0 + a1 ∗ x+ a2 ∗ x2 + · · ·+ ak−1 ∗ xk−1 + ak ∗ xk + ε (2.3)

2.3.3 Interpolation and Extrapolation

Regression analysis is used to obtain a model for a function that best fit a data set.

Once the model has been obtained, regression models can be used to predict a value of

the dependant Y variable given known values of the X independent variable, since the

regression models are expressed in terms of the independent variable X.

When using the regression function to predict a value that is between the range of the

data set we say we are interpolating the function. In the other hand if we are predicting a

value that is outside the range of the data set, we say we are extrapolating the function.

Since the regression model is only an approximation of the real function, both inter-

polating and extrapolating a value contains errors. Nevertheless, if the regression model

was chosen carefully, this error can be below an acceptable threshold. Since the regres-

sion function, models the function between the range of the data set, it has much less

error than extrapolation. Since there is not information about the function outside the

range, extrapolation has to deal with the uncertain. For this reason interpolation is more

frequently used than extrapolation [34].

10

Chapter 3

Related Work

3.1 Introduction

The study of applications performance has always been a topic of research in computer

science, some authors even say that it is a basic element of experimental computer sci-

ence [10]. This is even more true in the field of High Performance Computing (HPC).

Since HPC deal with complex problems that needs to be decomposed in smaller parts and

be computed in parallel to be solved in a reasonable time. So obtaining the maximum

performance of an application in a given system is a necessary goal. The objectives of

performance evaluation are to compare design alternatives when building new systems,

identify the problems in a existent system to solve them and asses the capacity require-

ments when setting up systems for production use.

There are three main factors that affect the performance of a computer system. These

are [10]:

1. The system’s design.

2. The system’s implementation.

3. The workload to which the system is subjected.

To design and implement a computer system are probably the two topics more stud-

ied and understood in the computer science field. Almost every computer scientist has

studied in depth courses on data structures, algorithms, computer architecture, operating

systems and compilers. Sadly, performance evaluation in general and workload modeling

in particular are typically not given much consideration in academic curricula [11].

11

So, there exists a strong correlation between the performance of a computing system

and the workload that is processing. An application can behave differently and its per-

formance can vary greatly depending on which workload was chosen for the application.

That is why it is very important to consider not only how to construct performance models

but also how to model a system workload.

In this section we analyze previous research activity found in the literature to build

performance evaluation and prediction model and how they deal with the workload. There

are many previous works that build an application model for performance prediction. But

most approaches can be classified in one of three groups: analytical models [20, 5, 12, 27],

simulation based [35, 23] and performance evaluation by measuring [30, 25]. In the next

subsection we will look at each approach.

3.2 Analytical Models

Computer applications are mathematical or numerical models to solve problems of differ-

ent areas such as physics, chemistry, medicine, engineering and economics. So it is natural

to represent programs using an analytical model. These models resemble key characteris-

tics of an application. A performance prediction in a target system can be obtained using

these analyzing these mathematical models.

In [30] is proposed an analytical model for a performance metric. The performance

metric is called HINT, a performance benchmark that allows to measure the overall per-

formance of a wide variety of computing machines with a range of memory sizes and

time scales. The HINT analytical model allows to predict the performance curves using

hardware specifications as input parameters.

Another performance analytical performance prediction model is proposed for Car-

rington et al [5] analyzes an application memory and communication usage patterns to

build an analytical performance model. They map the information with a machine pro-

file and use simulation to estimate the application performance in a variety of compute

platforms. This method needs to analyze hardware characteristics while our approach

only needs information about the application behavior and does not need to simulate the

underlying hardware since our signature can be directly executed on it.

Lu and Reed [19] used curve fitting of historical trace data using polylines. These

curves characterize the application behavior and can be used to analyze its performance.

Our analytical model also is based in curve fitting using regression functions. But instead

of build a curve fitting function using historical trace data, our approach use the measures

of the signature running in a target system, with a fraction of the cost because the

12

signature only contains the application’s most relevant phases.

Parallel applications can not be easily modeled in detail with analytical models [15].

Mathematical models present a trade off between simplicity and accuracy. The model is

an abstraction of a real system. Its complexity grows as more details are added to that

abstraction. Also, significant expertise is needed to derive even a simple analytical model

of an parallel application [27].

3.3 Simulation Models

Simulation based approaches simulate the execution of an application in a specific envi-

ronment to estimate the real performance.

Labarta et al [16, 13] also uses simulation to evaluate the performance of message

passing parallel applications. In their work they use the Dimemas simulator, which is a

trace driven and rebuilds the behavior of a parallel application using a trace file and some

architecture specific parameters.

Another work that uses simulation is Mambo [3] which was develop for IBM to be a

full system simulator for modeling PowerPC based systems. Since the system is highly

modular, the implementation support multiple simulation modes from a simple purely

functional simulation of the PowerPC instructions to cycle accurate simulation of an

entire system. Mambo also includes trace collection and debugging interfaces to allow

detailed analysis of the simulated hardware and software.

Simulation models are difficult to develop and the simulation model has to be validated

and verified. Also, a deep understanding of the underlying system one is trying to simulate

is needed.

3.4 Measurement Techniques

Measurement techniques are based in the fact that scientific deterministic application

spends most of its computation time executing a few segments that has a high level of

repetition. This property allows to evaluate an application performance without the need

to measure the whole application. In this subsection we analyze the two measurement

techniques that are found in the literature that are benchmarks and application measure-

ment.

13

3.4.1 Benchmarks

As stated before, scientific applications spend most of its computation time executing a

few mathematical operations. So one can thing of these most executed operations are the

kernel of an application. Since the application spend most of its execution time computing

this code, here should be a correlation between the performance of the application kernel

and the complete application.

In order to estimate the performance of computing systems, in the literature have

been proposed a number of application kernels known as benchmarks. This benchmarks

reflects the behavior and workload of many common applications so they are useful to

compare different systems.

The benchmarks more widely used are:

• LINPACK Benchmark [9]: developed at the Argone National Laboratory, is one

of the most used benchmarks. It is used for example to compare the performance

of the 500 more powerful cluster computers in the world (Top500). The principal

characteristics of LINPACK is that it make an extensive use of floating point

operations and spent most of its computation time executing routines known as

BLAST (Basic Linear Algebra Subroutines).

• SPEC Benchmakrs [8]: The Standard Performance Evaluation Corporation to

measure computers performance, are Benchmarks created to obtain a perfor-

mance metric to compare compute intensive workloads in different systems. The

benchmark is focused in comparing CPU and hence FPU speed.

• NAS Parallel Benchmarks [2]: is a benchmark suite developed for the NASA Ad-

vanced Supercomputing Division (NAS) to evaluate the performance of parallel

systems. The benchmarks consist of five kernels that represents programs used

to simulate fluid mechanics.

Since benchmarks represents real applications kernels. They can be used to estimate

the performance of real applications. One can choose an application benchmark that exe-

cutes these same most used mathematical operations and whose workload type is similar

to the one used by the real application. Because deterministic application performance

does not depend on the data input value, only with the input data size and the mathe-

matical operations that use this input, the benchmark application can give us an idea of

how the target system meet the application demand for computational resources.

The problem is that benchmarks are to specific too generalize a parallel application

behavior [30].

14

3.4.2 Application Measurement

Most scientific applications have a high level of repetitive behavior. Some approaches as

the one used for the SimPoint tool [28, 26] analyzes shared memory applications to find

similar patterns in different execution times. Algorithms are proposed to automatically

group similar portions of program’s execution into phases. First, similar execution in-

tervals are identified, second each similar execution interval is compared with a basics

blocks vector. Finally, an analysis is made to group each similar execution interval in

portions that are representative of the overall execution time of the application. The goal

is to obtain these portions of the application that are representative to simulate them in

different architectures.

Yang et al [39] also extract an application most executed segments and used them for

performance prediction. They develop a methodology to predict an application perfor-

mance using partial executions. They argue that relative performance can be observed

without running a parallel application in full since most parallel codes are iterative after

a minimal startup period.

Sodhi and Subhlok [31] develop a method to create what they called a Performance

Skeleton of an application. A Performance Skeleton is a synthetic program that repre-

sents a real application. Analyzing the skeleton performance reflects the real application

performance in any scenario. Our application signature also reflect the performance of

the application it represents but it is not a synthetic application that behaves like a real

application, it is composed of segments of the real application.

In [36, 38, 37], a different approach is proposed. Is based both in the fact that most

parallel application have a repetitive behavior and that only partial executions are needed

to estimate the total performance of an application. Instead of instrumenting the appli-

cation on an instruction level basis, they instrument the application in the MPI library

communication layer. Each communication primitive is traced and this information is

analyzed to search for similar communication and computations patterns. With this in-

formation a high level model of the application is constructed and the most relevant phases

of the application. To each phase a weight is assigned based in the number of times that

it repeats. The number of relevant phases of the application and each phase weight is

known as an application signature. Executing this signature in a target machine allows

to predict the total application performance with a minimal cost.

This methodology is known as PAS2P (Parallel Application Signature for Performance

Prediction) and this research grew out of this earlier work and its goal is to include the

workload effect in the parallel application signature.

15

Chapter 4

Parallel Application Signatures

4.1 Introduction

4.2 Conceptual Basis

Applications usually have different phases that repeat. This seems to be the case in

serial [28, 33, 32] and parallel applications, both shared memory [26] and message passing

applications[36].

We instrument the MPI library using function interposition and execute parallel ap-

plications in a parallel machine. The instrumented library produces a trace log. The data

collected is used to characterize computation and communication behavior of the appli-

cation. To obtain the machine-independent application model [38], the trace is logged by

means of a logical global clock according to causality relations between communication

events. The developed algorithm is inspired by Lamport’s algorithm. Once we have the

logical trace, it is processed using a technique that searches for similarity [37], to identify

and extract the most relevant event sequences (phases) and assign them a weight based

on the number of times they occur.

Afterward, to build the Parallel Application Signature, the last step is to re-run the

application to create the coordinated checkpoints before each relevant phase happens,

therefore, the signature will be defined by a set of executable phases and weights.

The execution of the signature in different target systems allows to measure the ex-

ecution time of each phase, and hence to estimate the entire application s run time in

each of those systems by extrapolation of each phase s execution time using the weights

we had obtained.

The execution time of the application signature is a small fraction of the whole appli-

cation s run-time.

16

It is important to notice that the signature creation and execution is a two step process.

The first step is to analyze the application, build the application model, extract its phases

and weights and use that information to build an executable signature. The second step

is executing that application signature in a (normally) different system, to measure the

phases execution time and predict the application total execution time.

In the next sections we explain in detail how these two steps are performed while the

Figure 4.1 shows the process.

Parallel
Application

1) Collection data.
2)Parallel Application Model.
3) Patterns Identification.
4)Extract phases and Weights.

Cluster B

Cluster C

Cluster D

Cluster A

Phases’
Weights

Parallel Application Signature
Binary Phases+ Coordinated

Checkpoint

PAS2P Methodology

SS

Prediction

Instrumentation /
monitoring

Phases

Weight

Weight

Weight

Time of each
Phase

Time of each
Phase

Time of each
Phase

Prediction
D

Prediction
C

S

S

Prediction
B

Figure 4.1: Parallel Application Signature Creation and Execution

4.3 Signature Creation

To create the signature first we build a machine-independent model of the application

and then use that model to create a machine-dependent signature. Below we describe

this process:

4.3.1 Machine-Independent Model Creation (Obtaining Phases

and Weights)

As described before, we instrument the MPI library to obtain an application communica-

tion and computation trace. The trace contains all the communications events between

processes and the computation time elapsed between communication primitives. In this

context an event is a message sent or a message receive. With this information we build

an application model and use this model to make a study about where in the application

17

the more computing time is spent (relevant phases), and how many times those phases

repeats (weights).

4.3.2 Signature Creation for an Architecture (Phases Check-

point)

When all the phases and its corresponding weights have been determined. The application

is executed again to make a coordinated checkpoint [1] before each phase occurs. The

checkpoint has to be coordinated to ensure that all process has a consistent view of

the execution environment and can normally resume execution later on restart. The

checkpoint for each phase and the application phase weight vector are the executable

signature elements.

4.4 Signature Execution

One we have the application signature, we can run it on target machines to predict the

full application execution time. For each phase, we use the checkpoints to restart the

application before the phase begins and measure its execution time until the phase ends.

Predicting the application total execution time is a matter of adding the multiplication

of each phase execution time by its weight as shown in Equation 4.1.

PAET =
k∑

i=1

PETi ∗Wi (4.1)

where PAET is the Predicted Application Execution Time, k is the number of phases,

PETi is the Phase i Execution Time and Wi is the phase i Weight.

This procedure works because the phase number and weight do not change from ma-

chine to machine. The phases represents the program structure and the weights represent

iterators. These iterators can be constant or depend on the program’s input data size.

The only component that changes from machine to machine is the phases execution time.

So it is the only thing that we have to measure in the target system.

18

Chapter 5

Modelling the Workload Effect in

the Parallel Signatures

5.1 Introduction

The parallel application signatures can be used to predict an application’s total execution

time for a given workload. But parallel applications are executed with different types of

workloads. Every type of workload affects differently how the application performs in a

given system. Be able to model the workload’s effect in a parallel application signature can

led to more general and powerful estimation models. Many scientific parallel application

present two characteristics that allows to obtain a model for performance evaluation and

prediction. First most applications used in High Performance Computing have workloads

whose dimensions and ranges are well known by its users. Second, their behavior is

deterministic and their computational time complexity changes with the workload in

predictable way. We used these characteristics to developed a methodology that allows

us to create a performance evaluation and estimation model for parallel applications. We

extract the most relevant phases of an application and execute these phases with different

workloads to estimate the phases time complexity and build an analytical model.

This chapter describes the methodology used to model the workload effect in a parallel

application signature. The methodology consist of many steps that builds an abstract

model of the application’s behavior while its workload is being varied. The methodology

is based in the fact that most scientific parallel applications are deterministic and their

workloads can be characterized by an domain expert.

Section 5.2 explains a characteristic of the parallel application signatures and why a

single signature cannot be used to predict any type of wrokload. Section 5.3 states why

its possible to model a scientific parallel application’s workload while Section 5.4 analyzes

19

the effect that the workload variation has in the parallel application signatures. Finally

Section 5.5 details the methodology used to model the workload effect in the program’s

signature.

5.2 The Problem with the Single Checkpoint

As explained in chapter 4, a parallel application signature has two components:

• A set phases P where each pi ∈ P is a relevant phase of the application.

• A weight vector W where each wi ∈ W represents the repetition count for each

phase pi ∈ P .

To estimate the total execution time of an application in a target system the signa-

ture is executed. That means that every phase pi is executed an their execution times

measured. A new vector T is created where each ti ∈ T represents the execution time

for each phase pi. Having both vectors we can predict the application’s total execution

time adding the multiplication of each phase execution time ti by the number of times

the phase repeats in the application wi.

As stated before, a checkpoint library is used to create the set of relevant phases P .

For each phase pi a coordinated checkpoint is made. This coordinated checkpoint saves

all the parallel process state such as CPU registers and memory contents. That means

that is not only saved the .

To measure a phase in a target system the checkpoint is restarted. Every process

continues execution before the phase occurs. Since the checkpoint saves not only the

process code but also the process data, the signature cannot be parametrized with different

input data.

Since the signature only contains a single checkpoint that executes the parallel appli-

cation with one type of workload, cannot be used to predict with a different workload.

Lets use as an example Los Alamos National Laboratory’s Parallel Ocean Program (POP)

[17] which is a real scientific parallel application. Figure 5.1 shows a number of POP ex-

ecutions with different input sizes. For each input size a parallel application signature

was created and its execution time is different as well as the predicted total application

execution time.

20

POP 120 Signature 1 56.3064 sec

POP 140

POP 160

65.1074 sec

73.9126 sec

Signature 2

Signature 3

Figure 5.1: POP signatures execution times with different workloads

Every input size is a different type of workload. That means that the signature exe-

cution time depends on the workload. Formally we say that the signature execution is a

function signature : WLn → T ⊆ <. Where WLn is the workload of dimension n and T

is the signature execution time.

So, if we have k different types of workloads, we need k different signatures to predict

an application performance with every possible workload. This is even more problematic

if the workload space is not finite, this mean that we need an infinite number of signatures

to cover all possible the cases.

5.3 Workload Characteristics in Scientific Applica-

tions

Scientific applications usually have workloads whose characteristics are well known and

understood. A workload can have many dimensions that affects the application behavior

differently. An every dimension has a data range in which is valid to use the application.

This is one of the reasons why benchmarks applications can be developed. A bench-

mark is a synthetic program that executes mathematical routines used by real applications

with input data that is similar both in size and characteristics as the one used by sci-

entific applications. This could not have been possible if the input data that defines an

application workload would not have been analyzed, understood and characterized.

21

It does not mean that characterizing and scientific application input data is easy, but

its mean that it can be done. Either formally or at least empirical. Scientists known what

are the input data dimensions and the values they can use for each dimension.

To better illustrate how a program’s data input has many dimensions that affect

differently the application behavior we will use a simple example. The Jacobi method is

an iterative algorithm to resolve a system of linear equations where the largest absolute

value for each row and column is dominated by the diagonal element [6]. This is a

good example because many scientific problems can be modeled has a system of linear

equations.

The workload for an application that implements the Jacobi method is composed of

two dimensions:

• The matrix size that represents the system of linear equations.

• The converge condition that determines the numbers of iterations that the algo-

rithm will do.

The matrix size is problem domain dependant and depends of the numbers of variables

that every linear equation has. Each of these dimensions will affect the program behavior

differently. This is not only the case for the program implementing the Jacobi method

but for any scientific application whose workload’s is composed of many dimensions.

Since the signature is composed of program segments, each dimension will have a

different effect on the programs signature. In the next section we will explain how the

workload affects the application signatures, what elements are altered by a workload

variation and what remains the same independently of the program’s workload.

5.4 The Workload Effect in the Signatures

As explained in section 5.2 a parallel application signature has two elements, a set of the

phases P and a weight vector W . Also, when a signature is executed in a target machine

we obtain a execution time vector T that contains each phase execution time.

Another characteristic of the signature is that its execution time changes with different

types of workloads. Since the application and the signature execution time are functions

of the workload.

So the natural question that arises is: How does the signature elements change with

the workload?

A prior step needed to construct the parallel application signature is to build an appli-

cation platform independent model. This model is an abstraction of the real application

22

using its communication and computation patterns. The model resembles how the appli-

cation was developed so its not only platform independent but also workload independent.

That means that the application phases are always the same independent of the input

data used.

An element that changes with the workload variation is the execution time vector T .

For different types of workload, each signature will have different execution times for each

phase.

Each phase usually represents a code segment defined by the programmer in the par-

allel application. Each one of this code segments can use the input data to make com-

putation in a different way. Because most scientific applications are deterministic, its

phases are also deterministic and their behavior is determined by a some computational

time complexity. So the execution time of a phase will change with different workloads

and the variation in the execution time will depend of the time complexity of the phase.

For example, if a phase has a time complexity of O(N), then its execution time will vary

linearly with the input data.

The other element that could be affected by the workload is the weight vector W .

Just as a phase represents an application code segment, the weight of a phase generally

represents an iterator. This iterator can be programmed explicitly or may be due to a

stopping condition (i.e: a convergence threshold).

A program can have fixed iterators o they can vary with the workload. If an iterator

is used to execute a code segment a fixed number of times, then the phase that represents

this code segment will have a fixed weight that is independent of the type of workload.

In the other hand if the iterator varies with the workload, then the phase weight will also

change with different workloads.

5.5 Methodology to Model the Workload Effect

As stated before, the parallel application signature execution time is a function of the

workload. That means that if we wan to use signatures to estimate an application total

execution time with different workloads, we will need to build one signature for every type

of workload we want to use.

This approach may work if an application have a small and finite set of workloads.

But if the application have a many different workloads, this approach is very expensive

both in computation time to build the signatures and in space to store the checkpoints.

Also, if one of the dimensions in the workload can have infinite values, this approach is

even less feasible since we cannot generate a infinite set of signatures.

23

Now since most scientific applications are deterministic and their behavior is guided by

its computational time complexity. The question is if we really need to build a signature

for every kind of workload. Can we obtain a prediction model that is general?

In Section 5.4 is explained what elements in a signature change with the workload. So

in order to have a general prediction model, we need to model how this elements change

with the workload. The two elements that change are the time and weight vectors that

represents each phase execution time and frequency for a given workload.

If each phase execution time and weight can be modeled as function of the workload

then we can build or general prediction model. Since we know that the workloads in a

scientific parallel application have well known dimensions and that each dimension has

values between a predefined range. Building the prediction model is possible if we can

obtain for each phase pi ∈ P :

• A function fexecutioni : WLn → T ⊆ < that models the phase execution time

for a given workload wl ∈ WLn of dimension n.

• A function fweighti : WLn → W ⊆ < that models the phase weight for a given

workload wl ∈ WLn of dimension n.

To build the functions fexecution and fweight for each phase, a set of signatures are

executed with different workloads. Each signature will have different execution times and

weights for its phases. Thats mean that each signature will have its own phase execution

time vector T and its phase weight vector W .

Since the phase number does not change with the workload. All the application phases

are present in each signature as well as their execution time and weight. So for each phase

we have a number of execution times and weights, one for each signature executed. So

for each phase now we have a number of phase execution time and phase weights. These

values of execution time and weight can be used to estimate the functions fexecution

and fweight. For each phase the fexecution function is the phase time complexity and

the fweight function is the one that models how the phase weight is affected by the

input data. Since the weights represents iterators and the application is deterministic,

the function fweight is also predictable.

These characteristics founded in most scientific parallel applications allows to develop

a methodology to build a general prediction model for parallel applications. Using this

model we can predict the performance of a parallel application for any type of workload

between the predefined range without needing to create one signature for any type of

workload.

24

We create only a small number of signatures for different workloads and measure the

phases execution time and weights to obtain a number of points. Using this points and

regression analysis we can estimate the time execution (fexecution) and weight variation

(fweight) for each phase. This give us an analytical model with a number of variables.

These variables are the execution times and weights for each phase in the signatures. So

to predict the performance of an application in a target system for an unknown workload,

first the needed signatures are executed and the analytical model parametrized, then for

each phase the fexecution and fweight functions are evaluated and the execution times

and weight for the phases of the unknown workload are obtained. One we have those

values the predicted application execution time can be obtained. Figure 5.2 shows the

steps used in the methodology.

Methodology

Yes

Obtaining and measuring points

Complexity and Weight functions estimation

Estimated functions validation

Functions parametrization in the target system

Functions evaluation and performance prediction

Error allowed
No

Figure 5.2: Methodology diagram

The first three steps happen in the source system and are used to build the analytical

model. While the last two happen in the target system and are used to parametrize the

model and predict the application performance. The next subsections explain in detail

each step of the methodology.

25

5.5.1 Obtaining and measuring points

The first step in the methodology is to obtain and measure a number of points to estimate

each phase time complexity and weight change. In this step a set of signatures of an

application are executed with different workloads. As stated before, with each signature

execution we can obtain phases execution times and weights.

Lets use an example to illustrate this step. Assume that there is an application

whose workload is composed of one dimension. This dimension is a vector length that

affects the execution time of its phases and one of the phases has a O(N2) (quadratic)

time complexity. Figure 5.3 shows the execution of four signatures with different vector

lengths and the execution time for this phase.

0 500 1000 1500 2000 2500 3000 3500 4000
Vector Length [n]

0

1

2

3

4

5

Ex
ec

ut
io

n
tim

e
[s

]

Execution time
Interpolation function

Figure 5.3: A phase execution times with different workloads

5.5.2 Complexity and Weight functions estimation

Once we have the execution times and weights for each phase with different workloads.

We can estimate the phase execution time function fexecution and the phase weight

function fweight. Since a phase execution time depends on the phase time complexity,

we use regression analysis to estimate the phase execution function using common time

complexities for different algorithms. The number of points used to estimate the functions

will depend of the kind of regression analysis we use. For example, we only need only two

26

points if we want to estimate the function using a linear regression but three points are

need to use a quadratic regression function. As more complex is the regression function

used, more points are needed. Figure 5.4 shows the execution time function estimation for

the example phase used in the last subsection both using linear and quadratic regression

functions.

0 500 1000 1500 2000 2500 3000 3500 4000
Vector Length [n]

0

1

2

3

4

5

Ex
ec

ut
io

n
tim

e
[s

]

Linear regression function
Execution time

0 500 1000 1500 2000 2500 3000 3500 4000
Vector Length [n]

0

1

2

3

4

5

Ex
ec

ut
io

n
tim

e
[s

]

Quadratic regression function
Execution time

Figure 5.4: Phase execution time estimation using different regression functions

27

5.5.3 Estimated functions validation

Once we have an estimated function we need to validate it. We use interpolate our

estimated functions to obtain the phase execution and weight values for a point that we

have already executed. Since the signature was execute in the source system their values

are known but were not used to estimate the function. With this procedure we can test

the ability of the functions to generalize. Figure 5.5 shows the values obtained for our

example phase for a different point using both the linear and quadratic function.

0 500 1000 1500 2000 2500 3000 3500 4000
Vector Length [n]

0

1

2

3

4

5

Ex
ec

ut
io

n
tim

e
[s

]

Linear regression function
Execution time
Estimation
Real Value

0 500 1000 1500 2000 2500 3000 3500 4000
Vector Length [n]

0

1

2

3

4

5

Ex
ec

ut
io

n
tim

e
[s

]

Quadratic regression function
Execution time
Estimation
Real Value

Figure 5.5: Phase execution time estimation functions validation

28

The first three steps of the methodology were presented here as if they are sequential

to make the procedure more easy to understand. But as is shown in Figure 5.2, this first

three steps are an iterative process. First two signatures are created and executed. The

execution time and weight for each phase are used as the first two points to estimate. The

first approach is to use linear regression function. Then a third signature is constructed

and executed. The phases execution times and weight are measured and also are obtained

using the estimated functions. Because both the real values and the interpolated ones are

available, the functions ability to generalize can be test. If the error is above a threshold

for some function, we use this third point and try to estimate the function using a different

regression method. Then we create a fourth signature with a different workload to validate

the new estimated function. We keep creating signatures until every function has been

validated and the error is below our threshold.

To choose the workloads for creating the signatures we use a binary algorithm. The

first two signatures are the endpoints of the value range for the workloads dimensions. The

next point is the mean value for this two point. Then we randomly choose the segment

that is bigger or less than the last mean value and use the mean value from the last mean

value and the extreme value and so for.

With this procedure we know exactly for each function what regression method can

be used for estimation and how many points (signatures) we need to execute in the target

system to parametrize the estimated function.

5.5.4 Functions parametrization in the target system

This is the first step that happen in the target system. At this point we know how

many phases and application has, what regression method can be used to estimate the

complexity function fexecutioni and fweighti for the phasei and how many signatures

we need to execute in the target system to parametrize the functions.

So these signatures are executed and their phases execution times and weights mea-

sured. With this information the estimated functions fexecutioni and fweighti are esti-

mated.

5.5.5 Functions evaluation and performance prediction

The last step is to evaluate each function and predict the application performance. Since

we have already the functions fexecutioni and fweighti for each phase, the total execution

29

time for an application with a workload n can be predicted evaluating each of these

functions to obtain the phase execution time and phase weight. So to obtain the Predicted

Application Execution Time (PAET) for a workload n, the Equation 5.1 is used:

PAETn =
k∑

i=1

fexecutioni(n) ∗ fweighti(n) (5.1)

where k is the number of phases, fexecutioni is the phase i execution time function and

fweighti is the phase i weight function.

30

Chapter 6

Methodology Experimental

Validation

6.1 Introduction

This chapter shows the results of the experimental validation of the methodology. For this

a set of different applications that behave differently were used. Each application has its

own communication patter, workload and behavior. Even when all the applications are

message passing parallel applications, they are very different in resource requirements and

application domain. To stress the methodology and be sure that it can model the workload

impact in any scientific applications, a number of different test cases where made. This test

cases is composed of synthetic applications, benchmarks and real scientific applications.

6.2 Scientific Applications

As stated before, to validate the methodology ability for prediction, a number of ex-

periments were made with different parallel applications. The number and type of the

application chosen were to reflect a broad spectrum both in application domain and char-

acteristics. The applications range from simple synthetic applications to complex real

scientific parallel programs. In this subsection each application used is presented and

their behavior explained.

• Synthetic application: The application is composed of two phases. Each phases

has different communication patterns and computational time complexity. The

application has different inputs that changes how it behaves with the workload.

31

The most important is a vector length that is used in both phases to make a fake

computation (the computation is done but the value is never used).

• NAS-CG (Conjugate Gradient): The application is one of the third benchmark

applications found in the NASA Advanced Supercomputing Division’s suite NAS

Parallel Benchmarks [7] that are used in the experiments. It estimate the smallest

value of a large sparse symmetric matrix using the inverse iteration with the

conjugate gradient method for solving systems of linear equations.

• NAS-BT (Block Tridiagonal): Solve a synthetic system of nonlinear partial dif-

ferential equations using an algorithm that involves a block tridiagonal solver

kernel.

• NAS-SP (Scalar Pentadiagonal): Solve a synthetic system of nonlinear partial

differential equations using an algorithm that involves a scalar pentadiagonal

solver kernel.

• Sweep3D (3D Discrete Ordinates Neutron Transport): It solves a 1-group time-

independent discrete ordinates (Sn) 3D cartesian (XYZ) geometry neutron trans-

port problem. The XYZ geometry is represented by an IJK logically rectangular

grid of cells [18].

• SMG2000 (Semicoarsening Multigrid Solver): Is a parallel semicoarsening multi-

grid solver for the linear systems arising from finite difference, finite volume, or

finite element discretizations of a diffusion equation on logically rectangular grids

[24].

• Parallel Ocean Program (POP): Is an ocean circulation model in which depth is

used as the vertical coordinate. The model solves the three-dimensional primi-

tive equations for fluid motions on the sphere under hydrostatic and Boussinesq

approximations [17].

6.3 Execution Environment

The applications chosen are parallel applications that are computation intensive. Also,

they are executed with relevant workloads to justify to signature creation. If the work-

load was very small, then the complete application could be executed in an execution

environment to analyze its performance.

32

For this reason all the experiments were made in different computer clusters. All the

parallel application signatures where extracted in a the cluster system A and executed in

a different cluster system B. Table 6.1 shows cluster A and B characteristics.

Table 6.1: Cluster Systems Characteristics

Cluster A
Dual-Core Intel(R) Xeon(R), 3.00GHz, 4MB L2(2x2),

12 GB RAM, Network Gigabit Ethernet (32 Nodes)

Cluster B
2 x Quad-Core Intel(R) Xeon(R), 2.66GHz, 2x6MB L2,

16 GB RAM, Network Gigabit Ethernet (8 Nodes)

6.4 Experimental Results

6.4.1 Evaluate Phase Identification Ability: Synthetic App

Before using our method with real parallel application. We wanted to validate our model

using an application whose structure and behavior is well known to us. If we know the

application behavior, we can validate our model in an experimental basis. To validate

the model we use a synthetic parallel application that is composed of two parts. Each

part is a sequence of the same phase. So the application has two relevant phases, phase1

and phase2. The application structure is shown in Figure 6.1. Each phase alternate com-

munication and computation, using two different communications patterns and different

computational time complexities. While phase1 has a time complexity of O(n), phase2

has a time complexity of O(n2). The communication patterns used for each phase are

shown in Figure 6.2.

Figure 6.1: Synthetic application structure

33

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P3

P4

P1: Process 1
P2: Process 2
P3: Process 3
P4: Process 4

Line: Computation
Dashed line: Communication
Arrows: MPI messages

(a) Phase 1 communication pattern

P1

P2

P3

P4

P1

P2

P3

P4

P1

P2

P3

P4

P1: Process 1
P2: Process 2
P3: Process 3
P4: Process 4

Line: Computation
Dashed line: Communication
Arrows: MPI messages

(b) Phase 2 communication pattern

Figure 6.2: Synthetic application phases communication patterns

The input could have many dimensions that affect the application differently. That

means that an input element is a tuple where each element represents a different input

data dimension that has a different impact on the program’s workload. For example, the

synthetic application can change the size of the MPI messages, the length of the vector its

computes and the number of times each phase repeats (iterations). In these experiments,

we change both the length of the vector used in the computation for each phase and the

number of times each phase repeats.

We execute the signatures in the cluster A described in the Table 6.1 and measure for

each input data size the phases execution time and weight. Then we used the methodology

described in Section 5 to obtain the phases execution time and weight functions using

regression analysis. Once we have this functions we predicted each phase execution time

and weight for a unknown input data size using interpolation methods. Finally we used

the Equation 5.1 to estimate the application total execution time for that input data size.

Later we extracted signatures for that input data size and measure the real values and

the real application execution time to validate the accuracy of our prediction.

Table 6.2 shows the values of each phase execution time and weight obtained for

different vectors lengths and a fixed iterator. While Table 6.3 shows the values for a fixed

vector length and different iterator values.

As expected, changing the vector length has a direct impact on the phases computation

time since its time complexity is directed related with this value. Looking at Table 6.2 we

can see that the phases weight does not change if we maintain the number of phases that

repeats in the sequence. In the other hand, Table 6.3 shows how changing the value of

the iterator affects the phases weight but has little impact in the phases time complexity.

34

Table 6.2: Synthetic application results changing the input vector length

Vector Phase 1 Phase 2

Length Exec. Time (Sec) Weight Exec. Time (Sec) Weight

1000 0.0001125 100 0.33682 99

2000 0.0002157 100 1.34379 99

3000 0.0003280 100 3.02133 99

Table 6.3: Synthetic application results changing the phases iterations

Iterator Phase 1 Phase 2

Value Exec. Time (Sec) Weight Exec. Time (Sec) Weight

100 0.0001796 100 8.39032 99

200 0.0001081 200 8.39015 199

300 0.0001436 300 8.39035 299

Figure 6.3 shows graphically how phase1 and phase2 execution time changes as we

increase the input vector size used in the computation for each phase. As expected, phase1

changes linearly while phase2 changes quadratically. The Figure also shows how we can use

regression functions to generalize the partial function obtained executing the signatures.

Since phase1 complexity functions is linear, we need only two points and a linear regression

function. With phase2 we cannot use a linear function, since its complexity is quadratic,

we need at least three points and a quadratic regression function to generalize its behavior.

Using a linear function and interpolation will get a value with an error bigger than we can

tolerate. Table 6.4 shows the values obtained interpolating the regression functions in the

range 1000 to 3000 for an unknown input vector size 2500 for each phase. Table 6.5 shows

the prediction time obtained summing the interpolation for each phase fexecution(2500)

function multiplied by the interpolation of the fweight(2500) function.

35

0 500 1000 1500 2000 2500 3000 3500 4000
Vector Length [n]

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

0.00035

0.00040

Ex
ec

ut
io

n
tim

e
[s

]

Synthetic - Phase 1 execution time

Linear regression function
Execution time
Estimation
Real Value

(a) Phase 1

0 500 1000 1500 2000 2500 3000 3500 4000
Vector Length [n]

0

1

2

3

4

5

Ex
ec

ut
io

n
tim

e
[s

]

Synthetic - Phase 2 execution time

Quadratic regression function
Execution time
Estimation
Real Value

(b) Phase 2

Figure 6.3: Synthetic - phases execution times

Table 6.4: Synthetic phase execution time estimation and error for an unknown vector
input size 2500 in the range 1000 to 3000

Phase 1

Regression function PPET (Sec) PET (Sec) PPETE (%)

Linear 0.0002719 0.0002871 5.31%

Phase 2

Regression function PPET PET PPETE

Linear 2.18256 2.09837 4.01%

Quadratic 2.09874 2.09837 0.01%

PPET: Phase Predicted Execution

PET: Phase Execution Time

PETE: Phase Predicted Execution Time Error

6.4.2 Analyzing Well Establish Workloads (Benchmarks Appli-

cations)

Once the methodology has been validated used the synthetic application, the next step

was to experiment if the methodology works for modeling the effect of standard set of

workloads using benchmarks applications. Since benchmarks are well suited to compare

different systems under similar conditions and the goal of the methodology is to analyze

the workload effect in the parallel application signature to predict an application’s per-

36

Table 6.5: Execution Times on Cluster B

Application
SET PAET AET PETE

(Sec) (Sec) (Sec) (%)

Synthetic 2.10 207.80 209.87 2.07%

SET: Signature Execution Time

PAET: Predicted Application Execution Time

AET: Application Execution Time

PETE: Predicted Execution Time Error

formance, we needed a benchmark suite that is widely used to test our methodology. The

NAS benchmark was finally the suite chosen because it suits our needs in great detail. As

commented in Section 6.2, the applications used for validation from the NAS benchmark

suite are the Conjugate Gradient (CG), Block Tridiagonal (BT) and Scalar Pentadiagonal

(SP).

Since benchmarks are a canonization of a select set of workloads, all the application

of the NAS suite have a group of type of workloads known as classes. These classes are

a discrete set of workloads and stress the systems using different loads. Each type of

workload is characterized by a set of parameters. The parameters are application specific

and each workload has a different value for each parameter.

The NAS benchmarks applications comes with a number of stock classes that are the

A, B, C and D. From theses classes the A is very small so we will not use it, since almost

all the phases of the application will be relevant with such a small workload. Having

only three types of workload is not sufficient to model some time complexity functions.

For example, if a complexity functions is of type O(n2) we need at least three points to

model the function and at least one different point to validate it. To have more points we

created two more workload classes that do not come with the standard NAS installation.

We called these two classes X and Y. X is a class whose workload is an intermediate

value between class B and C, and class Y is an intermediate value between class C and D.

Because each type of workload has its own set of parameters for each application, class X

and Y were created obtaining the intermediate value for each class parameter. Table 6.6

shows the workload classes for each application used, the parameters that conforms the

workload and the values used for each class.

Table 6.7 shows the workloads values used in the experiments and the value to be

predicted while Table 6.8 shows the results predicting the unknown workload values.

37

Table 6.6: NAS applications classes, parameters and values used

Class CG BT SP

na non zero niter shift problem size niter na niter

B 75000 13 75 60 102 200 102 400

X 112500 14 75 85 132 200 132 400

C 150000 15 75 110 162 200 162 400

Y 825000 18 87.5 305 285 225 285 450

D 1500000 21 100 500 408 250 408 500

Table 6.7: Workloads values and unknown workload value to be predicted for the NAS
applications

NAS Application Workload Values Used Workload Value to be Predicted

CG B, C, D Y

BT B, C, D Y

SP B, C, D Y

Table 6.8: Execution Times on Cluster B

Application
SET PAET AET PETE

(Sec) (Sec) (Sec) (%)

CG 15.82 1081.09 1085.32 0.38%

BT 86.96 806.17 814.42 1.01%

SP 70.85 1569.43 1572.84 0.21%

SET: Signature Execution Time

PAET: Predicted Application Execution Time

AET: Application Execution Time

PETE: Predicted Execution Time Error

6.4.3 Validation with Real Workloads (Scientific Applications)

To validate the proposal we extracted the parallel application signature not only from

a synthetic application but also from three well known parallel applications. As stayed

38

before, an application input size affects the application performance in a scientific de-

terministic parallel application in different ways since the input is not usually a scalar.

For example the Sweep3D application input can change both the phase execution time

and phase weight as well. In the Sweep3D case, we treat both dimensions separated.

The test case Sweep3D-n varies the Sweep3D input data size and the Sweep3D-i changes

the applications iterations. Table 6.9 shows the applications, data ranges and unknown

workload values to be predicted.

Table 6.9: Workloads values and unknown workload value to be predicted used in the
experiments

Application Workload Values Used Workload Value to be Predicted

SMG2000 250, 275, 300 290

Sweep3D-n 120, 140, 160 150

Sweep3D-i 8, 12, 16 10

POP 120, 140, 160 150

Figure 6.4 shows one phase execution time prediction for the Sweep3D-n and SMG2000

applications for an unknown workload value using regression analysis and interpolation

techniques.

Table 6.10 shows for each application the results obtained using our methodology to

predict an unknown workload value while Figure 6.5 shows the Predicted Application

Execution Time (PAET) and Application Execution Time (AET) of each application.

We can see from the results that the Signature Execution Time (SET) is just a small

fraction of the complete Application Execution Time (AET). Also the Predicted Appli-

cation Execution Time (PAET) is very accurate with prediction errors that are below 4%

and a worst error less 7%. For most application quadratic interpolation function were

used. Only for the synthetic application a combination of linear and quadratic regression

functions was used since it has two phases with different computational time complexity.

39

0

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0,008

0,009

210 220 250

E
x
e

c
u

ti
o

n
 t
im

e
 (

s
e

c
)

Data input value (n)

Sweep3D-n phase 1 execution time prediction for data input value 220

Execution time (sec)

Linear regression

(a) Sweep3D-n

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,2

250 275 290 300

E
x
e

c
u

ti
o

n
 t
im

e
 (

s
e

c
)

Data input value (n)

SMG2000 phase 1 execution time prediction for data input value 290

Execution time (sec)

Quadratic regression

(b) SMG2000

Figure 6.4: Phase execution time prediction for Sweep3D-n and SMG2000

40

Table 6.10: Execution Times on Cluster B

Application
SET PAET AET PETE IF NP

(Sec) (Sec) (Sec) (%)

SMG2000 15.10 355.60 365.18 2.62% Q 3

Sweep3D-n 2.85 979.86 1010.68 3.04% Q 3

Sweep3D-i 2.15 1065.79 1058.91 6.87% Q 3

POP 2.30 67.39 70.19 3.98% Q 3

SET: Signature Execution Time

PAET: Predicted Application Execution Time

AET: Application Execution Time

PETE: Predicted Execution Time Error

IF: Interpolation function

NP: Number of points

L: Linear Q: Quadratic

1

10

100

1000

10000

SMG2000 Sweep3D-n Sweep3D-i POP

E
x

e
c

u
ti

o
n

 t
im

e
 (

s
e

c
)

Real

Prediction

Figure 6.5: Applications execution time and predicted execution time

41

Chapter 7

Conclusions and Future Work

In this work we proposed a methodology to analyze and model the impact of an ap-

plication workload in the parallel application signature. Extracting only a small set of

signatures with different types of workloads and executing these signatures in a target

machine allows to estimate each phase execution time and weight function. Because the

signature contains the most relevant phases of an application, measuring each phase exe-

cution time and weight for different workloads allows to obtain the phases execution time

function (fexecution) and weight function (fweight). Regression analysis was used to

build the functions that model the phases behavior. Once the functions are obtained, an

application performance can be predicted for any workload between a predefined range

using interpolation methods.

Experiments were made using a synthetic application, applications from a benchmark

suite used to compare different systems performance and well known real applications.

The results obtained estimating the application’s total execution time for these applica-

tions shows the effectiveness of the method.

7.1 Contributions

A methodology was presented [22] to model the impact that the variation of the work-

load has in the parallel application signature and use this information for performance

prediction. A synthetic application was developed to analyze the variation in a program

behavior caused by the workload variation.

A better algorithm to choose the workloads types was proposed [21]. It uses binary

search to choose a workload type as a point to estimate the time complexity and weight

function for each phase. Experimental validation of the methodology was made using real

scientific applications.

42

7.2 Future Work

As future work we plan to continue extending our methodology to cover other dimensions

that affect an application behavior such as its scalability. An open question is if we can

model how an application will perform if we increase the number of processes and use

more cores to make computation. Since the communication pattern is defined by the

programmer and usually this pattern changes in a predictable way with the number of

process used. It seems probable that we can mimic this communication pattern to add

more process to the parallel application signature.

Another open line is to support parallel applications that communicate using shared

memory and hybrid applications that use both message passing and shared memory. Fi-

nally the model can be extended for other parallel computation models that use specialized

circuit such as the ones based in Graphics Processing Unit (GPU).

43

Bibliography

[1] Jason Ansel, Kapil Arya, and Gene Cooperman. DMTCP: Transparent checkpointing

for cluster computations and the desktop. In 23rd IEEE International Parallel and

Distributed Processing Symposium, Rome, Italy, May 2009.

[2] D.H. Bailey, E. Barszcz, J.T. Barton, D.S. Browning, R.L. Carter, L. Dagum, R.A.

Fatoohi, P.O. Frederickson, T.A. Lasinski, R.S. Schreiber, et al. The nas parallel

benchmarks. International Journal of High Performance Computing Applications,

5(3):63, 1991.

[3] P. Bohrer, J. Peterson, M. Elnozahy, R. Rajamony, A. Gheith, R. Rockhold, C. Le-

furgy, H. Shafi, T. Nakra, R. Simpson, et al. Mambo: a full system simulator

for the powerpc architecture. ACM SIGMETRICS Performance Evaluation Review,

31(4):8–12, 2004.

[4] M. Calzarossa, L. Massari, and D. Tessera. Workload characterization issues and

methodologies. Performance Evaluation: Origins and Directions, pages 459–482,

2000.

[5] L. Carrington, A. Snavely, and N. Wolter. A performance prediction framework for

scientific applications. Future Generation Computer Systems, 22(3):336–346, 2006.

[6] J.W. Demmel and Inc Books24x7. Applied numerical linear algebra, volume 150.

Society for Industrial and Applied Mathematics Philadelphia, 1997.

[7] Nasa Advanced Supercomputing (NAS) Division. Nas parallel benchmarks. http:

//www.nas.nasa.gov/Resources/Software/npb.html, 2011. [Online; accessed June-

2011].

[8] K.M. Dixit. The spec benchmarks. Parallel Computing, 17(10-11):1195–1209, 1991.

[9] J.J. Dongarra, P. Luszczek, and A. Petitet. The linpack benchmark: past, present

44

http://www.nas.nasa.gov/Resources/Software/npb.html
http://www.nas.nasa.gov/Resources/Software/npb.html

and future. Concurrency and Computation Practice and Experience, 15(9):803–820,

2003.

[10] Dror G. Feitelson. Workload modeling for performance evaluation. In Performance

Evaluation of Complex Systems: Techniques and Tools, pages 114–141. Springer Ver-

lag, 2002.

[11] Dror G. Feitelson. Workload Modeling for Computer Systems Performance Evalua-

tion. 2011.

[12] H. Gautama and A. van Gemund. Performance prediction of data-dependent task

parallel programs. Euro-Par 2001 Parallel Processing, pages 106–116, 2001.

[13] S. Girona, J. Labarta, and R. Badia. Validation of dimemas communication model for

mpi collective operations. Recent Advances in Parallel Virtual Machine and Message

Passing Interface, pages 39–46, 2000.

[14] C.A.R. Hoare. Quicksort. The Computer Journal, 5(1):10, 1962.

[15] E. Ipek, B.R. De Supinski, M. Schulz, and S.A. McKee. An approach to performance

prediction for parallel applications. Euro-Par 2005 Parallel Processing, pages 196–

205, 2005.

[16] J. Labarta, S. Girona, V. Pillet, T. Cortes, and L. Gregoris. Dip: A parallel pro-

gram development environment. In Euro-Par’96 Parallel Processing, pages 665–674.

Springer, 1996.

[17] Los Alamos National Laboratory. The parallel ocean program (pop). http://climate.

lanl.gov/Models/POP/, 2011. [Online; accessed June-2011].

[18] Los Alamos National Laboratory. Performance and architecture laboratory software.

http://www.ccs3.lanl.gov/PAL/software.shtml, 2011. [Online; accessed June-2011].

[19] C. Lu and D.A. Reed. Compact application signatures for parallel and distributed

scientific codes. In Proc. of the 2002 ACM/IEEE conf. on Supercomputing, pages

1–10. IEEE Computer Society Press, 2002.

[20] Gabriel Marin and John Mellor-Crummey. Cross-architecture performance predic-

tions for scientific applications using parameterized models. SIGMETRICS Perform.

Eval. Rev., 32:2–13, June 2004.

45

http://climate.lanl.gov/Models/POP/
http://climate.lanl.gov/Models/POP/
http://www.ccs3.lanl.gov/PAL/software.shtml

[21] J. Martinez Canillas, A. Wong, D. Rexachs, and E. Luque. Including the work-

load effect in the parallel program signature. In High Performance Computing and

Communications (HPCC), 2011 IEEE International Conference on. IEEE, 2011.

[22] J. Martinez Canillas, A. Wong, D. Rexachs, and E. Luque. Predicting parallel ap-

plications performance using signatures: the workload effect. In Computer Systems

and Applications (AICCSA), 2011 IEEE/ACS International Conference on. IEEE,

2011.

[23] Michael O. McCracken and Allan Snavely. A simulation toolkit to investigate the

effects of grid characteristics on workflow completion time. pages 6:1–6:10, 2009.

[24] The National Nuclear Security Administration (NNSA). Purple archive. https://

asc.llnl.gov/computing resources/purple/archive/benchmarks/smg/, 2011. [Online;

accessed June-2011].

[25] C. Olschanowsky, M. Tikir, L. Carrington, and A. Snavely. PSnAP: Accurate Syn-

thetic Address Streams Through Memory Profiles. Languages and Compilers for

Parallel Computing, pages 353–367, 2010.

[26] E. Perelman, M. Polito, J.Y. Bouguet, J. Sampson, B. Calder, and C. Dulong. Detect-

ing phases in parallel applications on shared memory architectures. In Parallel and

Distributed Processing Symposium, 2006. IPDPS 2006. 20th International, page 10.

IEEE, 2006.

[27] G. Romanazzi and P. Jimack. Parallel performance prediction for multigrid codes

on distributed memory architectures. High Performance Computing and Communi-

cations, pages 647–658, 2007.

[28] T. Sherwood, E. Perelman, and B. Calder. Basic block distribution analysis to find

periodic behavior and simulation points in applications. In Parallel Architectures

and Compilation Techniques, 2001. Proceedings. 2001 International Conference on,

pages 3–14. IEEE, 2002.

[29] S.S. Skiena. How to design algorithms. The Algorithm Design Manual, pages 32–40,

2008.

[30] Quinn O. Snell and John L. Gustafson. An analytical model of the hint perfor-

mance metric. In Proceedings of the 1996 ACM/IEEE conference on Supercomputing

(CDROM), Supercomputing ’96, Washington, DC, USA, 1996. IEEE Computer So-

ciety.

46

https://asc.llnl.gov/computing_resources/purple/archive/benchmarks/smg/
https://asc.llnl.gov/computing_resources/purple/archive/benchmarks/smg/

[31] S. Sodhi, J. Subhlok, and Q. Xu. Performance prediction with skeletons. Cluster

Computing, 11(2):151–165, 2008.

[32] A. Strube, D. Rexachs, and E. Luque. Software Probes: A Method for Quickly

Characterizing Applications’ Performance on Heterogeneous Environments. In Par-

allel Processing Workshops, 2009. ICPPW’09. International Conference on, pages

262–269. IEEE, 2009.

[33] A.O. Strube, D. Rexachs, and E. Luque. Software probes: Towards a quick method

for machine characterization and application performance prediction. In 2008 In-

ternational Symposium on Parallel and Distributed Computing, pages 23–30. IEEE,

2008.

[34] A. Sykes. An introduction to regression analysis. Law School, University of Chicago,

1993.

[35] M. Tikir, M. Laurenzano, L. Carrington, and A. Snavely. PSINS: An open source

event tracer and execution simulator for MPI applications. Euro-Par 2009 Parallel

Processing, pages 135–148, 2009.

[36] A. Wong, D. Rexachs, and E. Luque. Parallel application signature. Cluster Comput-

ing and Workshops, 2009. CLUSTER’09. IEEE International Conference on, pages

1–4, 2009.

[37] A. Wong, D. Rexachs, and E. Luque. Extraction of Parallel Application Signatures

for Performance Prediction. High Performance Computing and Communications,

10th IEEE Int. Conf. on, pages 223–230, 2010.

[38] A. Wong, D. Rexachs, and E. Luque. Parallel application signature for performance

prediction. In International Conference on Parallel and Distributed Processing Tech-

niques and Applications (PDPTA 2010) CSREA Press., 2(408-414), 2010.

[39] L.T. Yang, X. Ma, and F. Mueller. Cross-platform performance prediction of parallel

applications using partial execution. 2005.

47

Javier Martinez Canillas. Master Thesis 2011.

	Introduction
	Motivation
	Context
	Objective
	Thesis Organization

	Concepts
	Computational Complexity Theory
	Workload Characterization
	Regression Analysis
	Linear Regression
	Polynomial Regression
	Interpolation and Extrapolation

	Related Work
	Introduction
	Analytical Models
	Simulation Models
	Measurement Techniques
	Benchmarks
	Application Measurement

	Parallel Application Signatures
	Introduction
	Conceptual Basis
	Signature Creation
	Machine-Independent Model Creation (Obtaining Phases and Weights)
	Signature Creation for an Architecture (Phases Checkpoint)

	Signature Execution

	Modelling the Workload Effect in the Parallel Signatures
	Introduction
	The Problem with the Single Checkpoint
	Workload Characteristics in Scientific Applications
	The Workload Effect in the Signatures
	Methodology to Model the Workload Effect
	Obtaining and measuring points
	Complexity and Weight functions estimation
	Estimated functions validation
	Functions parametrization in the target system
	Functions evaluation and performance prediction

	Methodology Experimental Validation
	Introduction
	Scientific Applications
	Execution Environment
	Experimental Results
	Evaluate Phase Identification Ability: Synthetic App
	Analyzing Well Establish Workloads (Benchmarks Applications)
	Validation with Real Workloads (Scientific Applications)

	Conclusions and Future Work
	Contributions
	Future Work

	Bibliography

