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Given positive integers n and m, we consider dynamical systems in which n copies of a
topological space is homeomorphic to m copies of that same space. The universal such
system is shown to arise naturally from the study of a C*-algebra we denote by Om,n,
which in turn is obtained as a quotient of the well known Leavitt C*-algebra Lm,n, a
process meant to transform the generating set of partial isometries of Lm,n into a tame
set. Describing Om,n as the crossed-product of the universal (m,n)–dynamical system
by a partial action of the free group Fm+n, we show that Om,n is not exact when n and
m are both greater than or equal to 2, but the corresponding reduced crossed-product,
denoted Or

m,n, is shown to be exact and non-nuclear. Still under the assumption that
m,n ≥ 2, we prove that the partial action of Fm+n is topologically free and that Or

m,n

satisfies property (SP) (small projections). We also show that Or
m,n admits no finite

dimensional representations. The techniques developed to treat this system include
several new results pertaining to the theory of Fell bundles over discrete groups.

1. Introduction.

The well known one-sided shift on n symbols is a dynamical system in which the config-
uration space is homeomorphic to n copies of itself. In this paper we study systems in
which n copies of a topological space Y is homeomorphic to m copies of it.

Precisely, this means that one is given a pair (X,Y ) of compact Hausdorff topological
spaces such that

X =

n⋃
i=1

Hi =

m⋃
j=1

Vj ,

where the Hi are pairwise disjoint clopen subsets of X, each of which is homeomorphic to
Y via given homeomorphisms hi : Y → Hi, and the Vi are pairwise disjoint clopen subsets
of X, each of which is homeomorphic to Y via given homeomorphisms vi : Y → Vi.
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Diagram (1.1)

To the quadruple
(
X,Y, {hi}ni=1, {vj}mj=1

)
we give the name of an (m,n)–dynamical

system. When n or m are 1, this essentially reduces to the shift, but when m,n ≥ 2, a
very different behavior takes place.

The origin of the ideas developed in the present paper can be traced back to the
seminal work of Cuntz and Krieger [CK], where a dynamical interpretation of the Cuntz-
Krieger C*-algebras is given. In particular, the Cuntz algebra On corresponds to the full
shift on n symbols. Since we are using an “external” model for this dynamical system,
the C*-algebra O1,n that we attach to the (1, n)-dynamical system is isomorphic to the
algebra M2(On).

From a purely algebraic perspective, a motivation to study such systems comes from
the study of certain rings constructed by Leavitt [L] with the specific goal of having the
free module of rank n be isomorphic to the free module of rank m. We refer the reader
to [AA], [AMP], [AG1], [H] for various interpretations and generalizations of the algebras
constructed by Leavitt to the setting of graph algebras.

A similar idea lies behind the investigations conducted by Brown [B] and McClanahan
[M1], [M2], [M3], on the C*-algebras Unc

m,n. These are the C*-algebras generated by the
entries of a universal unitary matrix of size m × n. It has been observed in [AG2] that
there are isomorphisms

Lm,n ∼= Mm+1(Unc
m,n) ∼= Mn+1(Unc

m,n),

where Lm,n is the universal C*-algebra generated by partial isometries

s1, . . . , sn, t1, . . . , tm,

sharing the same source projection, and such that the sum of the range projections of the
si, as well as that of the tj , add up to the complement of the common source projection.
Incidentally Lm,n may also be constructed as a separated graph C*-algebra [AG2].
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The partial isometries generating this algebra have a somewhat stubborn algebraic
behavior, not least because their final projections fail to commute. Sidestepping this very
delicate issue we choose to mod out all of the nontrivial commutators and, after performing
this perhaps rather drastic transformation, we are left with a C*-algebra which we denote
by Om,n, and which is consequently generated by a tame (see definition (2.2) below) set
of partial isometries.

We then take advantage of the existing literature on C*-algebras generated by tame
sets of partial isometries [ELQ, E3, EL] to describe Om,n as the crossed product associated
to a partial action θu of the free group Fm+n on a compact space Ωu. In symbols

Om,n ' C(Ωu) oθu Fm+n.

It is perhaps no coincidence that the above partial action of Fm+n is given by an (m,n)–
dynamical system, as defined above, which is in fact the universal one (3.8).

While our description of the universal (m,n)–dynamical system Ωu as a subset of the
power set of Fm+n is satisfactory for some purposes, its tree-like structure may not make it
easy to be studied from some points of view. We therefore present an alternative version of
it in terms of functions defined on a certain space of finite paths (4.1). With this description
at hand we are able to show that the partial action of Fm+n on Ωu is topologically free
(4.6). When 3 ≤ m+n we show that every nonzero hereditary subalgebra of Orm,n contains
a nonzero projection belonging to C(Ωu).

We then initiate a systematic study of Om,n, begining with the fundamental questions
of nuclearity and exactness (see [BO] for an extensive study of these important properties
of C*-algebras).

When either n = 1, or m = 1, these algebras are Morita–Rieffel equivalent to Cuntz
algebras, so we concentrate on the case in which n and m are greater than or equal to 2.
Under this condition we prove that Om,n is not nuclear, and not even exact (7.2). However,
when we pass to its reduced version, namely the reduced crossed product [M4]

Orm,n = C(Ωu) orθu Fm+n

we find that Orm,n is exact, although still not nuclear.
Since the crossed product by a partial action may be defined as the cross-sectional

C*-algebra of the semidirect product Fell bundle, we dedicate a significant amount of
attention to these and in fact many of our statements about Om,n or Orm,n come straight
from corresponding results we prove for general Fell bundles.

If B is a Fell bundle over a discrete exact group whose unit fiber is an exact C*-
algebra, we prove in (5.2) that the reduced cross-sectional C*-algebra C∗r (B ) is exact.
From this it follows that the reduced crossed product of an exact C*-algebra by a partial
action of an exact group is exact, and hence that Orm,n is exact.

Being Om,n a full crossed product, we are led to study full cross-sectional C*-algebras
of Fell bundles. The well known fact [BO: 10.2.8] that the maximal tensor product of the
reduced group C*-algebra by itself contains the full group C*-algebra is generalized in (6.2),
where we prove that if B is a Fell bundle over the group G, then the full cross-sectional
C*-algebra C∗(B ) is a subalgebra of C∗r (B ) ⊗

max
C∗r (G). As an immediate consequence we
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deduce that, if C∗r (B ) is nuclear, then the full and reduced cross-sectional C*-algebras of
B agree (6.4).

As another Corollary of (6.2) we prove that, if H is a subgroup of G, then the full
cross-sectional C*-algebra of the bundle restricted to H embeds in the C*-algebra of the
whole bundle (6.3). This result turns out to be crucial in our proof that, in a partial action,
every residually finite-dimensional isotropy group is amenable when the full cross-sectional
algebra is exact (7.1).

When m,n ≥ 2, we show that there are non-amenable (7.2) isotropy groups in the
universal (m,n)–dynamical system, so exactness of Om,n is ruled out by (7.1).

We also consider the question of existence of finite dimensional representations of
Om,n and of Orm,n. A trivial argument (8.1) proves that, when n 6= m, neither Om,n nor
Orm,n admit finite dimensional representations.

The case m = n is however a lot more subtle. While it is easy to produce many finite
dimensional representations of Om,n, we have not been able to decide whether or not there
are enough of these to separate points. In other words we have not been able to decide
whether Om,n is residually finite.

With respect to Orm,n, we settle the question in (9.5), proving that Orm,n admits no
finite dimensional representation for all m,n ≥ 2.

2. The Leavitt C*-algebra.

Throughout this paper we fix positive integers n and m, with m ≤ n.

2.1. Definition. The Leavitt C*-algebra of type (m,n) is the universal unital C*-algebra
Lm,n generated by partial isometries s1, . . . , sn, t1, . . . , tm satisfying the relations

s∗i si′ = 0, for i 6= i′,

t∗j tj′ = 0, for j 6= j′,

s∗i si = t∗j tj =: w,
n∑
i=1

sis
∗
i =

m∑
j=1

tjt
∗
j =: v,

vw = 0, v + w = 1.


(R)

By choosing a specific representation, it is not difficult to see that s1s
∗
1 does not

commute with t1t
∗
1 when m,n ≥ 2, and hence that s∗1t1 is not a partial isometry (see

e.g. [E3: 5.3]). This is in contrast with many well known examples of C*-algebras generated
by sets of partial isometries which are almost always tame according to the following:

2.2. Definition. A set U of partial isometries in a C*-algebra is said to be tame if every
element of 〈U ∪ U∗〉 (meaning the multiplicative semigroup generated by U ∪ U∗) is a
partial isometry.
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See [E3: 5.4] for equivalent conditions characterizing tame sets of partial isometries.
The standard partial isometries generating the Cuntz–Krieger algebras form a tame

set [E2: 5.2], as do the corresponding ones for graph C*-algebras, higher rank graph C*-
algebras and many others.

Rather than attempt to face the wild set of partial isometries in Lm,n (incidentally a
task not everyone shies away from [AG2]), we will force it to become tame by considering
a quotient of Lm,n. In what follows we will denote by U the subset of partial isometries
in Lm,n that is most relevant to us, namely

U = {s1, . . . , sn, t1, . . . , tm}.

2.3. Definition. We will let Om,n be the quotient of Lm,n by the closed two-sided ideal
generated by all elements of the form

xx∗x− x,

as x runs in 〈U ∪ U∗〉. We will denote the images of the si and the tj in Om,n by si and
tj , respectively.

It is therefore evident that

{s1, . . . , sn, t1, . . . , tm}

is a tame set of partial isometries. In fact it is not hard to prove that Om,n is the universal
unital C*-algebra generated by a tame set of partial isometries satisfying relations (R).

Let Fm+n denote the free group generated by a set with m+ n elements, say

{a1, . . . , an, b1, . . . , bm}.

Using [E3: 5.4] we conclude that there exists a (necessarily unique) semi-saturated [E3: 5.3]
partial representation

σ : Fm+n → Om,n
such that σ(ai) = si, and σ(bj) = tj (when stating conditions such as these, which are
supposed to hold for every i = 1, . . . , n, and every j = 1, . . . ,m, we will omit making
explicit reference of the range of variation of i and j, which should always be understood
as being 1–n, and 1–m, as above).

Another universal property enjoyed by Om,n is described next.

2.4. Proposition. Let ρ be a semi-saturated partial representation of Fm+n in a unital
C*-algebra B such that the elements s′i := ρ(ai) and t′j := ρ(bj) satisfy relations (R). Then
there exists a unique unital *-homomorphism ϕ : Om,n → B such that ρ = ϕ ◦ σ.

Proof. Since ρ is a partial representation, one has that the s′i and the t′j are partial isome-
tries. By universality of Lm,n one concludes that there exists a unital *-homomorphism
ψ : Lm,n → B, such that ψ(si) = s′i, and ψ(tj) = t′j .

Observe that if x is in 〈U ∪ U∗〉, then ψ(x) lies in the multiplicative semigroup gen-
erated by the s′i, the t′j , and their adjoints. Employing [E3: 5.4] we have that ψ(x) is a
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partial isometry and hence that ψ(xx∗x−x) = 0. This implies that ψ vanishes on the ideal
referred to in (2.3) and hence that it factors through Om,n providing a *-homomorphism
ϕ : Om,n → B, such that ϕ(si) = s′i, and ϕ(tj) = t′j . Therefore

ϕ(σ(ai)) = ϕ(si) = s′i = ρ(ai),

and similarly ϕ(σ(bj)) = ρ(bj). In other words, ϕ ◦ σ coincides with ρ on the generators
of Fm+n. Since both σ and ρ are semi-saturated, we now conclude that ϕ ◦ σ = ρ on the
whole of Fm+n. �

So Om,n is the universal unital C*-algebra for partial representations of Fm+n subject
to the relations (R), according to [ELQ: 4.3], and hence we may apply [ELQ: 4.4] to deduce
that there exists a certain partial dynamical system (Ωu,Fm+n, θ

u) and a *-isomorphism

Ψ : Om,n → C(Ωu) oθu Fm+n. (2.5)

The choice of notation, specifically the use of the superscript “u”, is motivated by universal
properties to be described below. Before giving further details on the above result let us
introduce a variation of Om,n.

2.6. Definition. For every pair of positive integers (m,n) we shall let Orm,n denote the
corresponding reduced crossed product

Orm,n = C(Ωu) orθu Fm+n.

For the convenience of the reader we will now give a brief description of Ωu and of the
partial action θu. We refer the reader to [ELQ: Section 4] for further details.

The first step is to write the relations defining our algebra in terms of the final pro-
jections

e(g) := σ(g)σ(g−1),

for g ∈ Fm+n. Once this is done we arrive at

e(ai)e(ai′) = 0, for i 6= i′,

e(bj)e(bj′) = 0, for j 6= j′,

e(a−1
i ) = e(b−1

j ) =: w,

n∑
i=1

e(ai) =
m∑
j=1

e(bj) =: v,

vw = 0, v + w = 1.


(R′)

Observe that, since the e(g) are projections, all of the above relations expressing
orthogonality, that is, those having a zero as the right-hand-side, follow from “v+w = 1”.

If we are to apply the theory of [ELQ: Section 4] to our algebra, we need to add another
relation to (R′) in order to account for the fact that the partial representations involved
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in (2.4) are required to be semi-saturated. Although the definition of semi-saturatedness,
namely

|hk| = |h|+ |k| ⇒ σ(hk) = σ(h)σ(k),

is not expressed in terms of the e(g), we may use [E2: 5.4] to replace it with the equivalent
form

|hk| = |h|+ |k| ⇒ e(hk) ≤ e(h).

The next step is to translate each of the above relations in terms of equations on
{0, 1}Fm+n . For this we will find it convenient to identify this product space with the
power set P (Fm+n) in the usual way.

According to [ELQ: Section 4] and [EL: Section 2] the translation process consists in
replacing each occurrence of a final projection e(g) in the above relations with the scalar
valued function 1g defined by

1g : ξ ∈ {0, 1}Fm+n 7→ [g ∈ ξ].

Here we use brackets to denote Boolean value and we see the truth values “1” and “0” as
complex numbers. Therefore 1g is nothing but the characteristic function of the set{

ξ ∈ {0, 1}Fm+n : g ∈ ξ
}
.

The description of Ωu given in [ELQ: 4.1] therefore becomes: a necessary and sufficient
condition for a given ξ ∈ {0, 1}Fm+n to belong to Ωu is that 1 ∈ ξ, and that

(1hk1h − 1hk) (g−1ξ) = 0, whenever |hk| = |h|+ |k|,(
1ai1ai′

)
(g−1ξ) = 0, for i 6= i′,(

1bj1bj′
)
(g−1ξ) = 0, for j 6= j′,

1a−1
i

(g−1ξ) = 1b−1
j

(g−1ξ) =: w(g−1ξ),
n∑
i=1

1ai(g
−1ξ) =

m∑
j=1

1bj (g−1ξ) =: v(g−1ξ),

(vw) (g−1ξ) = 0, (v + w) (g−1ξ) = 1,


(R′′)

for every g ∈ ξ.
For example, to account for the second equation above, it is required that

0 = (1ai1ai′ )(g
−1ξ) = 1ai(g

−1ξ) 1ai′ (g
−1ξ) =

[
ai ∈ g−1ξ

][
ai′ ∈ g−1ξ

]
=

=
[
gai ∈ ξ

][
gai′ ∈ ξ

]
=
[
gai ∈ ξ ∧ gai′ ∈ ξ

]
.

This may be interpreted as saying that for every g ∈ ξ, not more than one element of the
form gai belongs to ξ.

As another example, recall from that [EL: 4.5] that, in order for ξ to satisfy the
conditions related to the first equation in (R′′), it is required that ξ be convex [EL: 4.4].
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The reader may now check that the elements of Ωu are precisely those ξ ⊆ Fm+n such
that

(a) 1 ∈ ξ,
(b) ξ is convex,

(c) for any g ∈ ξ, one and only one of the conditions below are satisfied:

•
g

◦

.............
.............
.............
.............
.............
.............
.............
.............
.......... ga3
•

..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
....
ga2◦

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
......
ga1

◦

.................................................................................................................. gb1
◦

.................................................................................................................. gb2•

..................................................................................................................
gb3◦

..................................................................................................................
gb4

◦

..................................................................................................................
ga3
−1

◦

..................................................................................................................

ga2
−1 ◦

..................................................................................................................

ga1
−1

◦
...................

...................
...................

...................
...................

...................

gb1
−1

◦

.............
.............

.............
.............

.............
.............

.............
.............

..........gb2
−1 ◦

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
....

gb3
−1 ◦

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
......

gb4
−1

Pattern (c1)

•
g

◦

.............
.............
.............
.............
.............
.............
.............
.............
.......... ga3
◦

..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
....
ga2◦

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
......
ga1

◦

.................................................................................................................. gb1
◦

.................................................................................................................. gb2◦

..................................................................................................................
gb3◦

..................................................................................................................
gb4

•

..................................................................................................................
ga3
−1

•

..................................................................................................................

ga2
−1 •

..................................................................................................................

ga1
−1

•
...................

...................
...................

...................
...................

...................

gb1
−1

•

.............
.............

.............
.............

.............
.............

.............
.............

..........gb2
−1 •

..........
..........

..........
..........

..........
..........

..........
..........

..........
..........

..........
....

gb3
−1 •

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
......

gb4
−1

Pattern (c2)

(c1) there exists a unique i ≤ n and a unique j ≤ m, such that gai and gbj lie in ξ,
and for every i and j, none of ga−1

i or gb−1
j lie in ξ,

(c2) for every i and j, none of gai or gbj lie in ξ, and for every i and j, all of ga−1
i

and gb−1
j lie in ξ.

Having completed the description of Ωu, the partial action of Fm+n is now easy to
describe: for each g ∈ Fm+n we put

Ωug =
{
ξ ∈ Ωu : g ∈ ξ

}
,

and we let

θug : Ωug−1 → Ωug ,

be given by θug (ξ) = gξ = {gh : h ∈ ξ}.

In possession of the proper notation we may now also describe the isomorphism Ψ
mentioned in (2.5). It is characterized by the fact that

Ψ(σ(g)) = 1ugδg, ∀ g ∈ Fm+n, (2.7)

where 1ug refers to the characteristic function of the clopen set Ωug ⊆ Ωu.

In what follows we will concentrate ourselves in studying the above partial action of
Fm+n as well as the structure of Om,n based on its crossed product description.



dynamical systems of type (m,n) 9

3. Dynamical systems of type (m,n).

In this section we will study pairs of compact Hausdorff topological spaces (X,Y ) such
that

X =
n⋃
i=1

Hi =
m⋃
j=1

Vj ,

where the Hi are pairwise disjoint clopen subsets of X, each of which is homeomorphic
to Y via given homeomorphisms hi : Y → Hi. Likewise we will assume that the Vi are
pairwise disjoint clopen subsets of X, each of which is homeomorphic to Y via given
homeomorphisms vi : Y → Vi. See diagram (1.1).

3.1. Definition. We will refer to the quadruple
(
X,Y, {hi}ni=1, {vj}mj=1

)
as an (m,n)–

dynamical system.

As an example, consider the situation in which Y u is the subset of Ωu consisting of
all the ξ relative to which the configuration at g = 1 follows pattern (c2). Equivalently

Y u =
{
ξ ∈ Ωu : a−1

i , b−1
j ∈ ξ, for all i and j

}
.

Let Xu be the complement of Y u relative to Ωu, and put

hui : ξ ∈ Y u 7→ aiξ ∈ Xu, and vuj : ξ ∈ Y u 7→ bjξ ∈ Xu.

We leave it for the reader to verify that this provides an example of an (m,n)–dynamical
system.

3.2. Definition. The system
(
Xu, Y u, {hui }ni=1, {vuj }mj=1

)
described above will be referred

to as the standard (m,n)–dynamical system.

It is our next immediate goal to prove that the standard (m,n)–dynamical system
possesses a universal property. We thus fix, throughout, an arbitrary (m,n)–dynamical
system (

X,Y, {hi}ni=1, {vj}mj=1

)
.

Our goal will be to prove that there exists a unique map

γ : X
·
∪Y → Ωu

such that γ(Y ) ⊆ Y u, γ(X) ⊆ Xu, γ ◦hi = hui ◦ γ, and γ ◦ vj = vuj ◦ γ.
We shall initially construct a partial action of Fm+n on the topological disjoint union

Ω := X
·
∪Y.

For this consider the inverse semigroup I(Ω) formed by all homeomorphisms between
clopen subsets of Ω. Evidently the hi and the vj are elements of I(Ω). Next consider the
unique map

θ : Fm+n → I(Ω)
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such that
θ(a±1

i ) = h±1
i , θ(b±1

j ) = v±1
j ,

and such that for each g ∈ Fm+n, written in reduced form1

g = x1x2 . . . xp,

one has that
θ(g) = θ(x1)θ(x2) . . . θ(xp).

3.3. Proposition. θ is a partial action of Fm+n on Ω.

Proof. It is not hard to prove this fact from scratch. Alternatively one may deduce it from
known results as follows: using [DP: 1.1], one may faithfully represent I(Ω) as an inverse
semigroup of partial isometries on a Hilbert space. Applying [E3: 5.4] we then conclude
that there exists a unique semi-saturated partial representation of Fm+n in I(Ω), sending
the ai to hi, and the bj to vj . Evidently this partial representation coincides with θ, and
hence we conclude that θ is a partial representation. Therefore, for every g, h ∈ Fm+n one
has that

θgθh = θgθhθh−1θh = θghθh−1θh = θghθ
−1
h θh ⊆ θgh,

meaning that θgh is an extension of θgθh, a property that characterizes partial actions. �

We may then form the crossed product C(Ω) oθ Fm+n. Given g ∈ Fm+n, denote
by Ωg the range of θg. Since θg lies in I(Ω), we have that its range is clopen. So the
characteristic function of Ωg, which we shall denote by 1g, is a continuous function on Ω.

3.4. Proposition. The map

ρ : g ∈ Fm+n 7→ 1gδg ∈ C(Ω) oθ Fm+n,

is a semi-saturated partial representation, and moreover the elements

s′i := ρ(ai), and t′j := ρ(bj)

satisfy relations (R).

Proof. Given g, h ∈ Fm+n we have

ρ(g)ρ(h) = (1gδg)(1hδh) = θg
(
θg−1(1g)1h

)
δgh = θg

(
1g−11h

)
δgh = 1g1ghδgh. (3.4.1)

Therefore

ρ(g)ρ(h)ρ(h−1) = (1g1ghδgh)(1h−1δh−1) = θgh
(
θ(gh)−1(1g1gh)1h−1

)
δg =

= θgh
(
1h−11(gh)−11h−1

)
δg = θgh

(
1(gh)−11h−1

)
δg.

1 That is, each xk is either a±1
i or b±1

j , and xk+1 6= x−1
k

.
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On the other hand

ρ(gh)ρ(h−1) = (1ghδgh)(1h−1δh−1) = θgh
(
θ(gh)−1(1gh)1h−1

)
δg =

= θgh
(
1(gh)−11h−1

)
δg,

which coincides with the above and hence proves that ρ(g)ρ(h)ρ(h−1) = ρ(gh)ρ(h−1). We
leave it for the reader to prove that ρ(g−1) = ρ(g)∗, after which the verification that ρ is
a partial representation will be concluded.

Addressing semi-saturatedness, let g, h ∈ Fm+n be such that |gh| = |g| + |h|. This
means that the reduced form of gh is precisely the concatenation of the reduced forms of
g and h, and hence we see that θgh = θg ◦ θh. In particular this implies that these two
partial homeomorphisms have the same range. Therefore

ran(θg ◦ θh) = θg(Ωg−1 ∩ Ωh) = Ωg ∩ Ωgh

coincides with the range of θgh, which is Ωgh. Having concluded that Ωg ∩Ωgh = Ωgh, we
deduce that

1g1gh = 1gh.

Employing (3.4.1) we then deduce that

ρ(g)ρ(h) = 1ghδgh = ρ(gh),

proving that ρ is semi-saturated.

Finally we leave it for the reader to prove that s′i
∗
s′i and t′j

∗
t′j coincide with the char-

acteristic function of Y , that s′is
′
i
∗

is the characteristic function of Hi (the range of hi) and
that t′jt

′
j
∗

is the characteristic function of Vj (the range of vj). The checking of relations
(R) now becomes straightforward. �

We may of course apply the above result for the standard (m,n)–dynamical system
(see (3.2)), and hence there is a semi-saturated partial representation

ρu : Fm+n → C(Ωu) oθu Fm+n, (3.5)

given by ρu(g) = 1ugδg, for every g in Fm+n. With this notation (2.7) simply says that
Ψ ◦ σ = ρu.

As another consequence of (3.4) and (2.4) we have that there exists a *-homomorphism

Φ : Om,n → C(Ω) oθ Fm+n,

such that ρ = Φ ◦ σ.

Wrapping up our previous results we obtain the commutative diagram:
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C(Ωu) oFm+n

.......

.......

.......

.......

.......

.......

..................

............

Ψ

Om,n
.......................................................
.....
.......
.....
Φ

C(Ω) oθ Fm+n

Fm+n

.............
.............
.............
.............
.............
.............
.............
.............
.......................
............ρu

................................................................................................................................... ............
σ

............................................................................................................................... .........
...ρ

Observing that the correspondence

f ∈ C(Ω) 7→ fδ1 ∈ C(Ω) oθ Fm+n

is an embedding, we will henceforth identify C(Ω) with its image within C(Ω) oθ Fm+n

without further notice, and similarly for C(Ωu).

3.6. Proposition. If Γ is defined as the composition Γ := ΦΨ−1, then Γ
(
C(Ωu)

)
⊆

C(Ω).

Proof. Since we will be dealing with two different dynamical systems here we will insist
in the convention (already used above) that 1g denotes the characteristic function of Ωg,
reserving 1ug for the characteristic function of Ωug . For each g ∈ Fm+n we have that

ρu(g)ρu(g−1) = (1ugδg)(1
u
g−1δg−1) = 1ugδ1 = 1ug ,

and similarly ρ(g)ρ(g−1) = 1g. Since Γ ◦ ρu = ρ, we deduce that

Γ(1ug ) = 1g. (3.6.1)

It is easy to see that the set {1ug : g ∈ Fm+n} separates points of Ωu, and hence by the
Stone-Weierstrass Theorem, the closed *-subalgebra it generates coincides with C(Ωu). So
the result follows from (3.6.1). �

As a consequence of the last result we see that there exists a unique continuous map

γ : Ω→ Ωu, (3.7)

such that Γ(f) = f ◦ γ, for every f ∈ C(Ωu).

3.8. Theorem. The standard (m,n)–dynamical system is universal in the following sen-
se: given any (m,n)–dynamical system(

X,Y, {hi}ni=1, {vj}mj=1

)
,

there exists a unique continuous map

γ : Ω = X
·
∪Y → Ωu,

such that

(i) γ(Y ) ⊆ Y u,

(ii) γ(X) ⊆ Xu,

(iii) γ ◦hi = hui ◦ γ,

(iv) γ ◦ vj = vuj ◦ γ.
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Proof. Regarding existence we will prove that the map γ constructed in (3.7) satisfies the
above properties. Notice that 1a−1

1
is the characteristic function of the domain of θ(a1)

(= h1), namely Y . Similarly 1u
a−1
1

is the characteristic function of Y u. Applying (3.6.1) to

g = a−1
1 we get Γ(1Y u) = 1Y , or equivalently

1Y u ◦ γ = 1Y .

For x ∈ Ω this says that x ∈ Y iff γ(x) ∈ Y u, thus proving both (i) and (ii).
Given g ∈ Fm+n, and f ∈ C0(Ωug ), one may prove by direct computation that

ρu(g−1)fρu(g) = f ◦ θug ,

and similarly for f ∈ C0(Ωg). So

f ◦ θug ◦ γ = Γ
(
f ◦ θug

)
= Γ

(
ρu(g−1)fρu(g)

)
=

= ρ(g−1)Γ(f)ρ(g) = Γ(f) ◦ θg = f ◦ γ ◦ θg.

Since f is arbitrary it follows that θug ◦ γ = γ ◦ θg. Point (iii) then follows by plugging
g = ai, while (iv) follows with g = bj .

Addressing the uniqueness of γ, suppose one is given another map

γ′ : Ω→ Ωu

satisfying (i-iv). Then it is clear that γ′ is covariant for the corresponding partial actions
of Fm+n on Ω and Ωu. Letting

π : f ∈ C(Ωu) 7→ f ◦ γ′ ∈ C(Ω),

one may easily prove that the pair (π, ρ) is a covariant representation of the partial dy-
namical system (Ωu, θu,Fm+n) in C(Ω)oθFm+n. Using [ELQ: 1.3] we conclude that there
exits a *-homomorphism

π × ρ : C(Ωu) oθu Fm+n → C(Ω) oθ Fm+n,

such that (π × ρ)(f) = f ◦ γ′, for every f ∈ C(Ωu), and such that

(π × ρ) ◦ ρu = ρ. (3.8.1)

Since the range of σ generates Om,n, and since Ψ is an isomorphism, we deduce that
the range of ρu generates C(Ωu) oθu Fm+n. We then conclude from (3.8.1) that

(π × ρ) ◦ ρu = Γ ◦ ρu,

and hence that π × ρ = Γ, which in turn implies that γ′ = γ. �
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We shall next discuss the existence of fixed points in the universal (m,n)–dynamical
system.

3.9. Proposition. If n ≥ m ≥ 2, then there is a point y in Y u such that

(vu1 )−1hu1 (y) = y = (vu2 )−1hu2 (y).

Proof. In order to prove the statement it is enough to show that there exists some (m,n)–
dynamical system

(
X,Y, {hi}ni=1, {vj}mj=1

)
, and a point y ∈ Y such that

v−1
1 h1(y) = y = v−1

2 h2(y).

By (3.8), the image of y in Y u under γ will clearly satisfy the required conditions.
We shall introduce another convenient variable by putting

p := n−m+ 1.

Let Y = {1, 2, . . . , p}N, with the product topology, and let X be given as the disjoint union
of m copies of Y . To be precise,

X = {1, 2, . . . ,m} × Y.

For every i = 1, . . . ,m, we define

hi : y ∈ Y 7→ (i, y) ∈ X,

and let us now define the vj via a process that is not as symmetric as above. For j ≤ m−1,
we put

vj : y ∈ Y 7→ (j, y) ∈ X, (3.9.1)

so that vj = hj , for all j’s considered so far. In order to define the remaining vj ’s, namely
for j of the form

j = m− 1 + k, with k = 1, . . . , p,

we let
vm−1+k(y) = (m, ky), ∀ y ∈ Y, (3.9.2)

where “ky” refers to the infinite sequence in {1, 2, . . . , p}N obtained by preceding k to y.
The easy task of checking that the above does indeed gives an (m,n)–dynamical system is
left for the reader.

We claim that the point y = (1, 1, 1, 1, . . .) satisfies the required conditions. On the
one hand we have the elementary calculation

v−1
1 h1(y) = v−1

1 (1, y) = y,

where we are using the hypothesis that m ≥ 2, to guarantee that the definition of v1 is
given by (3.9.1) rather than by (3.9.2).

If m ≥ 3, the same easy computation above yields v−1
2 h2(y) = y, and the proof would

be complete, so let us assume that m = 2. Under this condition notice that 2 = m− 1 +k,
with k = 1, so v2 is defined by (3.9.2), and hence

v2(y) = (2, ky) =
(
2, k(1, 1, 1 . . .)

)
=
(
2, (1, 1, 1 . . .)

)
= h2(y),

whence v−1
2 h2(y) = y, and the claim is proven.

As already mentioned, γ(y) is then the element of Y u satisfying the requirements. �
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4. Configurations and functions.

The purpose of this section is to give a description of the space Y u of configurations of
pattern (c2) at 1. This will be done in terms of certain functions, which we are now going
to describe.

Set Z0 := {a1, . . . , an}, Z1 := {b1, . . . , bm} and E = Z0 t Z1. We will denote the
elements of Er as words α = e1e2 · · · er in the alphabet E. Set E+ :=

⊔∞
r=1E

r. For
α = e1e2 · · · er ∈ E+ define the color of α as c(α) = 1 − i, if er ∈ Zi. We consider the
compact Hausdorff space

Z :=
∏
α∈E+

Zc(α),

where each Zi is given the discrete topology and Z is endowed with the product topology.
Elements of Z will be interpreted as functions f : E+ → E such that f(α) ∈ Zc(α) for all
α ∈ E+.

Let D be the subspace of Z consisting of the functions f such that the following
properties (*) and (**) hold for all α ∈ E+ t {·}, all e ∈ E and all β ∈ E+:

(*) f(αef(αe)) = e.
(**) f(αef(αe)β) = f(αβ).

Observe that, for e ∈ E and α ∈ E+ t {·}, we have e ∈ Zi ⇐⇒ f(αe) ∈ Z1−i. It is
easy to show that D is a closed subspace of Z, and thus D is a compact Hausdorff space
with the induced topology.

Our aim in this section is to show the following result:

4.1. Theorem. There is a canonical homeomorphism D ∼= Y u.

To show this we need some preliminaries.

4.2. Definition. A partial E-function is a family (Ω1, f1), (Ω2, f2), . . . , (Ωr, fr), for some
r ≥ 1, satisfying the following relations:

(1) Ω1 = E, and f1 : E → E is a function such that f1(e) ∈ Zc(e) for all e ∈ E.

(2) For each i = 1, . . . , r,

Ωi = {x1x2 · · ·xi ∈ Ei | xj+1 6= fj(x1x2 · · ·xj) for j = 1, . . . , i− 1},

and fi : Ωi → E is a function such that fi(α) ∈ Zc(α) for all α ∈ Ωi.

An E-function is an infinite sequence (Ω1, f1), (Ω2, f2), . . . , satisfying the above conditions
for all indices.

It is quite clear that any partial E-function can be extended (in many ways) to an
E-function.

4.3. Lemma. Given an E-function (Ω1, f1), (Ω2, f2), . . ., there is a unique function f ∈ D
such that f(α) = fi(α) for α ∈ Ωi and all i ∈ N. Therefore D can be identified with the
space of all E-functions. Moreover a basis for the topology of D is provided by the partial
E-functions by the rule:

f = ((Ω1, f1), (Ω2, f2), . . . , (Ωr, fr)) 7−→ Uf ,

where Uf = {f ∈ D | f extends f}.
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Proof. Let (Ω1, f1), (Ω2, f2), . . . , be an E-function. We have to construct an extension of
it to a function f : E+ → E such that f ∈ D. It will be clear from the construction that
f is unique.

Note that f(ef(e)) must be equal to e for e ∈ E by condition (*). This, together with
the extension property determines completely f on E≤2. Assume that f has been defined
on Er−1 for some r ≥ 3. Then we define f on Er as follows: First f(α) = fr(α) if α ∈ Ωr.
If α = x1x2 · · ·xr /∈ Ωr, there are various possibilities, that we are going to consider:

If x2 = f(x1), then we set

f(x1f(x1)x3 · · ·xr) = f(x3 · · ·xr).

Observe that this is forced by condition (**).
Analogously, if xj+1 6= f(x1 · · ·xj) for j = 1, . . . , i − 1 and xi+1 = f(x1x2 · · ·xi) for

some i < r − 1, define

f(x1x2 · · ·xif(x1 · · ·xi)xi+2 · · ·xr) = f(x1x2 · · ·xi−1xi+2 · · ·xr).

Also we have here that this is forced by (**).
Finally if xj+1 6= f(x1 · · ·xj) for j = 1, . . . , r − 2 and xr = f(x1x2 · · ·xr−1), define

f(x1x2 · · ·xr−1f(x1 · · ·xr−1)) = xr−1.

Note that this is forced by (*).
We obtain a map f : E+ → E such that f(α) ∈ Zc(α) for all α ∈ E+. We have to

check conditions (*) and (**).
For (*), let α ∈ E ∪ {·} and e ∈ E. We will check that f(αef(αe)) = e by induction

on |α|. If α = · then we have that f(ef(e)) = e by construction. Suppose that the equality
holds for words of length r and let α a word of length r + 1. Write α = x1x2 · · ·xr+1.
Assume that, for 1 ≤ i ≤ r, we have that xj+1 6= f(x1 · · ·xj) for all j = 1, . . . , i − 1, and
that xi+1 = f(x1x2 · · ·xi). Then we have

f(αef(αe)) = f(x1x2 · · ·xif(x1x2 · · ·xi)xi+2 · · ·xr+1ef(αe))

= f(x1 · · ·xi−1xi+2 · · ·xr+1ef(αe))

= f(x1 · · ·xi−1xi+2 · · ·xr+1ef(x1x2 · · ·xif(x1x2 · · ·xi)xi+2 · · ·xr+1e))

= f(x1 · · ·xi−1xi+2 · · ·xr+1ef(x1x2 · · ·xi−1xi+2 · · ·xr+1e))

= e

where we have used the induction hypothesis in the last step.
Assume that xj+1 6= f(x1 · · ·xj) for all j = 1, . . . , r, and that e = f(x1 · · ·xrxr+1).

Then we have

f(αef(αe)) = f(x1 · · ·xrxr+1f(x1 · · ·xrxr+1)f(αe))

= f(x1 · · ·xrf(αe))

= f(x1 · · ·xrf(x1x2 · · ·xrxr+1f(x1x2 · · ·xrxr+1)))

= f(x1 · · ·xrxr+1)

= e.
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Finally if xj+1 6= f(x1 · · ·xj) for all j = 1, · · · , r and e 6= f(x1x2 · · ·xr+1) then we
have

f(x1 · · ·xr+1ef(x1 · · ·xr+1e)) = e

by the definition of f .
The checking of (**) is similar. We prove that f(αef(αe)β) = f(αβ) by induction

on |α|. If α = · then f(ef(e)β) = f(β) by definition of f . Suppose (**) holds when the
length of α is ≤ r and set α = x1x2 · · ·xr+1. Assume that, for 1 ≤ i ≤ r, we have that
xj+1 6= f(x1 · · ·xj) for all j = 1, . . . , i− 1, and that xi+1 = f(x1x2 · · ·xi). Then we have

f(αef(αe)β) = f(x1x2 · · ·xif(x1x2 · · ·xi)xi+2 · · ·xr+1ef(αe)β)

= f(x1 · · ·xi−1xi+2 · · ·xr+1ef(x1 · · ·xi−1xi+2 · · ·xr+1e)β)

= f(x1 · · ·xi−1xi+2 · · ·xr+1β)

= f(x1 · · ·xr+1β)

= f(αβ)

where we have used the induction hypothesis for the third equality.
Assume that xj+1 6= f(x1 · · ·xj) for all j = 1, . . . , r, and that e = f(x1 · · ·xrxr+1).

Then we have that f(αe) = f(x1 · · ·xrxr+1e) = xr+1 by definition of f , and so

f(αef(αe)β) = f(x1 · · ·xrxr+1f(x1 · · ·xrxr+1)f(αe)β)

= f(x1 · · ·xrf(αe)β)

= f(x1 · · ·xrxr+1β)

= f(αβ).

Finally if xj+1 6= f(x1 · · ·xj) for all j = 1, · · · r and e 6= f(x1x2 · · ·xr+1) then we have

f(x1 · · ·xr+1ef(x1 · · ·xr+1e)β) = f(x1 · · ·xr+1β) = f(αβ)

by the definition of f .
Given the description of D as a subspace of Z =

∏
α∈E+ Zc(α), it is clear that the

family {Uf | f is a partial E − function} is a basis for the topology of D. �

Proof of Theorem (4.1). We will define mutually inverse maps ϕ : Y u → D and ψ : D →
Y u.

Let ξ ⊆ Fm+n be a configuration of pattern (c2) at 1. Then we have that x−1 ∈ ξ for
all x ∈ E. Now the configuration at x−1 must be of pattern (c1), so that, for each x ∈ E
there is a unique f1(x) ∈ Zc(e) such that x−1f(x) ∈ ξ. This defines a partial E-function

(E, f1). For each x1 ∈ E, the configuration at x−1
1 f1(x1) must be of pattern (c2), so all

words of the form x−1
1 f(x1)x−1

2 , with x2 6= f1(x1) must be in ξ. In the next step we look
at the configuration at vertices of the form x−1

1 f(x1)x−1
2 , where x2 6= f1(x1). Here the

configuration must be of pattern (c1), so there is a unique f2(x1x2) ∈ Zc(x2) = Zc(x1x2)

such that x−1
1 f1(x1)x−1

2 f2(x1x2) ∈ ξ. This gives us a partial E-function (Ω1, f1), (Ω2, f2),
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where of course Ω2 = {x1x2 ∈ E2 | x2 6= f1(x1)}. Proceeding in this way we obtain an
E-function ϕ(ξ) = ((Ω1, f1), (Ω2, f2), . . .).

To define ψ we just need to revert the previous process. Given an E-function

f = ((Ω1, f1), (Ω2, f2), . . .),

the configuration ψ(f) consists of 1 together with the elements of Fm+n of the form

x−1
1 f1(x1)x−1

2 f2(x1x2) · · ·x−1
r

and
x−1

1 f1(x1)x−1
2 f2(x1x2) · · ·x−1

r fr(x1x2 · · ·xr).

where x1x2 · · ·xr ∈ Ωr, for r ≥ 1. It is clear that ψ(f) is a configuration of pattern (c2) at
1, and that ϕ and ψ are mutually inverse maps.

Since both D and Y u are compact Hausdorff spaces, in order to show that ϕ is a
homeomorphism it is enough to prove that ψ is an open map. Since the family {Uf |
f is a partial E − function} is a basis for the topology of D by Lemma (4.3), it is enough
to show that ψ(Uf) is an open subset of Y u for every partial E-function f. Thus let
f = ((Ω1, f1), (Ω2, f2), . . . , (Ωr, fr)) be a partial E-function, and consider the set

T := {x−1
1 f1(x1)x−1

2 f2(x1x2) · · ·x−1
r fr(x1x2 · · ·xr) | x1x2 · · ·xr ∈ Ωr}.

By using the convexity of the elements of Y u it is straightforward to show that

ψ(Uf) = {ξ ∈ Y u | g ∈ ξ ∀g ∈ T}.

Since T is a finite subset of Fm+n, we conclude that ψ(Uf) is an open subset of Y u. This
concludes the proof of Theorem (4.1).

It will be useful to get a detailed description of the action θu of Fm+n on Y u in terms
of the picture of Y u using E-functions (Theorem 4.1).

4.4. Lemma. Let
g = z−1

r xrz
−1
r−1xr−1 · · · z−1

1 x1

be a reduced word in Fm+n, where x1, . . . , xr, z1, . . . , zr ∈ E. Then Dom(θug ) = ∅ unless
zi ∈ Zc(xi) for all i = 1, . . . , r. Assume that the latter condition holds. Then the domain
of g is precisely the set of all E-functions f = (f1, f2, . . .) such that fi(x1 · · ·xi) = zi for all
i = 1, . . . , r, and the range of g is the set of those E-functions h = (h1, h2, . . . , ) such that
hi(zrzr−1 · · · zr−i+1) = xr−i+1 for all i = 1, . . . , r. Moreover for f ∈ Dom(θug ) let h = gf
denote the image of f under the action of g. Then h = ((Ω1, h1), (Ω2, h2), . . .) with

hr+t(zrzr−1 · · · z1y1y2 · · · yt) = ft(y1 · · · yt) if zr · · · z1y1 · · · yt ∈ Ωr+t. (4.4.1)

Moreover, for i = 2, 3, . . . , r and zrzr−1 · · · ziy1 · · · yt ∈ Ωr−i+1+t with zi−1 6= y1,

hr−i+1+t(zrzr−1 · · · ziy1y2 · · · yt) = fi−1+t(x1 · · ·xi−1y1y2 · · · yt), (4.4.2)
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and for y1 · · · yt ∈ Ωt with y1 6= zr we have

ht(y1 · · · yt) = fr+t(x1x2 · · ·xry1y2 · · · yt) . (4.4.3)

Proof. Suppose that Dom(θug ) 6= ∅ and take ξ ∈ Dom(θug ), with corresponding E-function

f. Since 1 ∈ ξ we get that g ∈ ξ and by convexity we get that z−1
r xrz

−1
r−1xr−1 · · · z−1

i xi ∈ ξ
for all i = 1, . . . , r. We thus obtain that hi(zrzr−1 · · · zr−i+1) = xr−i+1 for all i = 1, . . . , r,
where h = gf. In particular it follows that xr−i+1 ∈ Zc(zr−i+1) for i = 1, . . . , r, which

is equivalent to zi ∈ Zc(xi) for i = 1, . . . , r. Moreover since gx−1
1 f1(x1) ∈ ξ, we get

z−1
r xr · · ·x2z

−1
1 f1(x1) ∈ ξ. Since z1, f(x1) ∈ Zc(x1) we get that z1 = f1(x1). Similarly we

get that fi(x− 1 · · ·xi) = zi for all i = 1, . . . , r.
Conversely, assume that zi ∈ Zc(xi) for all i = 1, . . . , r. Then there are infinitely many

E-functions f = (f1, f2, . . .) such that fi(x1x2 · · ·xi) = zi for all i = 1, . . . , r. Let f be
one of these functions. Then it is easy to verify that gf is the E-function h = (h1, h2, . . .)
determined by hi(zrzr−1 · · · zr−i+1) = xr−i+1 for i = 1, . . . , r and by the rules (4.4.1),
(4.4.2) and (4.4.3). �

Recall the following definition from [ELQ].

4.5. Definition. Let θ be a partial action of a group G on a compact Hausdorff space
X. The partial action θ is topologically free if for every t ∈ G \ {1}, the set Ft := {x ∈
Ut−1 | θt(x) = x} has empty interior.

4.6. Proposition. For m,n ≥ 2, the action of Fm+n on Ωu is topologically free.

Proof. Let g ∈ Fm+n \ {1}. Assume first that

g = z−1
r xrz

−1
r−1xr−1 · · · z−1

1 x1

is a reduced word with x1, . . . , xr, z1, . . . , zr ∈ E. Obviously we may suppose that the
domain of g is non-empty, so that zi ∈ Zc(xi) for i = 1, . . . , r by Lemma (4.4).

Note that the domain of g is contained in Y u. By Theorem (4.1) we only have to
show that for any partial E-function f there is an extension f′ of f such that gf′ 6= f′.
Obviously we can assume that f = ((Ω1, f1), (Ω2, f2), . . . , (Ωs, fs)), with s > r and that
Uf∩Dom(θug ) 6= ∅. Set t = s−r and choose y1, . . . , yt in E such that zrzr−1 · · · z1y1 · · · yt ∈
Ωs. Select yt+1 ∈ E such that yt+1 6= fs(zr · · · z1y1 · · · yt). Since m,n ≥ 2, there exits
u ∈ Zc(yt+1) such that u 6= ft+1(y1 · · · ytyt+1). Define fs+1 : Ωs+1 → E in such a way that
fs+1(z1 · · · zry1 · · · ytyt+1) = u, and arbitrarily on the other elements of Ωs+1 subject to
the condition that fs+1(w1 · · ·ws+1) ∈ Zc(ws+1). Then ((Ω1, f1), . . . , (Ωs, fs), (Ωs+1, fs+1))
is a partial E-function extending f. Extend this partial E-function to an E-function f′. If
gf′ = f′ then equation (4.4.1) gives

fs+1(zr · · · z1y1 · · · ytyt+1) = ft+1(y1 · · · ytyt+1),

which contradicts our choice of fs+1(zr · · · z1y1 · · · ytyt+1).
We conclude that Uf has points which are not fixed points for g.
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Now assume that
g = xrz

−1
r−1xr−1 · · · z−1

1 x1z
−1
0

is a reduced word in Fm+n, with x1, . . . , xr, z0, . . . , zr−1 ∈ E. Write

g′ := xrz
−1
r−1xr−1 · · · z−1

1 x1.

Assume that g · ξ = ξ for all ξ ∈ V , where V is an open subset of X. Then (z−1
0 g′) · ξ′ = ξ′

for all ξ′ ∈ z−1
0 V . By the first part of the proof we get z−1

0 g′ = 1 and thus g = g′z−1
0 = 1,

as desired. �

As an easy consequence we obtain:

4.7. Corollary. If ρ is a representation of Orm,n whose restriction to C(Ωu) is injective,
then ρ itself is injective.

Proof. Follows immediately from (4.6) and [ELQ: 2.6]. �

Recall the following definition.

4.8. Definition. A C∗-algebra satisfies property (SP) (for small projections) in case every
nonzero hereditary C∗-subalgebra contains a nonzero projection. Equivalently, for every
nonzero positive element a in A there is x ∈ A such that x∗ax is a nonzero projection.

4.9. Theorem. For 3 ≤ m + n, the C∗-algebra Orm,n satisfies property (SP). More
precisely, given a nonzero positive element c in Orm,n, there is an element x ∈ Orm,n such
that x∗cx is a nonzero projection in C(Ωu). In particular every nonzero ideal of Orm,n
contains a nonzero projection of C(Ωu).

Proof. This is well-known for the Cuntz algebras On so we may assume that m,n ≥ 2.
Let c be a nonzero positive element in Orm,n. Since the canonical conditional expec-

tation Er is faithful, we may assume that ‖Er(c)‖ = 1. By Proposition (4.6) the partial
action of Fm+n on Ωu is topologically free. Hence, it follows from [ELQ: Proposition 2.4]
that, given 1/4 > ε > 0, there is an element h ∈ C(Ωu) with 0 ≤ h ≤ 1 such that

(1) ‖hEr(c)h‖ ≥ ‖Er(c)‖ − ε,
(2) ‖hEr(c)h− hch‖ ≤ ε.
By [KR: Lemma 2.2] there is a contraction d in Orm,n such that d∗(hch)d = (hEr(c)h−ε)+,
and so it follows that (hd)∗c(hd) is a nonzero positive element in C(Ωu). Since C(Ωu) is an
AF-algebra it has property (SP) so there is an element y in C(Ωu) such that y∗(hd)∗c(hd)y
is a nonzero projection in C(Ωu). Taking x = hdy, we get the result. �

5. Exactness of the reduced cross-sectional C*-algebra of a Fell bundle.

Recall from [EL: Section 2] that the full (resp. reduced) crossed product may be defined
as the full (resp. reduced) cross sectional C*-algebra of the semidirect product Fell bundle
[E5: 2.8]. For this reason we shall now pause to prove some key results on Fell bundles in
support our study of Om,n.

We begin by discussing the notion of (minimal) tensor product of a C*-algebra by
a Fell bundle. We refer the reader to [FD] for an extensive study of the theory of Fell
bundles. We thank N. Brown for an interesting conversation from which some of the ideas
pertaining to this tensor product arose.
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5.1. Proposition. Let A be a C*-algebra and let B = {Bg}g∈G be a Fell bundle over a
discrete group G. Then

(i) There exists a unique collection of seminorms {‖ · ‖g}g∈G on the algebraic tensor
products A � Bg, such that ‖ · ‖1 is the spacial (minimal) C*-norm on A � B1, and
the completions

A⊗Bg := A�Bg
‖·‖g

become the fibers of a Fell bundle {A ⊗ Bg}g∈G, in which the multiplication and
involution operations extend the following:

(a1 ⊗ b1, a2 ⊗ b2) ∈
(
A�Bg1

)
×
(
A�Bg2

)
7−→ a1a2 ⊗ b1b2 ∈ A�Bg1g2

(a⊗ b) ∈ A�Bg 7−→ a∗ ⊗ b∗ ∈ A�Bg−1 .

(ii) Denoting the resulting Fell bundle by A ⊗ B , there exists a (necessarily unique)
*-isomorphism

ϕ : A⊗ C∗r (B )→ C∗r (A⊗B ),

such that ϕ(a ⊗ bg) = a ⊗ bg, whenever a ∈ A, and b ∈ Bg, for any g (the last two
tensor product signs should be given the appropriate and obvious meaning in each
case).

Proof. In order to prove uniqueness, suppose that a collection of norms is given as above.
Then, for every g ∈ G, and any c ∈ A�Bg, one has that

‖c‖2g = ‖c∗c‖1.

Since c∗c ∈ A � B1, and since the norm on A � B1 is assumed to be the spacial norm,
uniqueness immediately follows. As for existence, let

π : A→ B(H)

be a faithful representation of A on a Hilbert space H, and let

ρ :
⋃
g∈G

Bg → B(K)

be a representation (in the sense of [E2: 2.2]) of B on a Hilbert space K, which is isometric
on each Bg. Such a representation may be easily obtained by composing the natural inclu-
sion maps Bg → C∗r (B ), which are isometric by [E2: 2.5], with any faithful representation
of C∗r (B ).

Consider the representations

π′ = π ⊗ 1 : A → B(H ⊗K)

ρ′ = 1⊗ ρ :
⋃
g∈GBg → B(H ⊗K),
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and let
Cg = span

(
π′(A)ρ′(Bg)

)
.

It is then easy to see that CgCh ⊆ Cgh, and C∗g ⊆ Cg−1 , for every g, h ∈ G. So we may
think of C = {Cg}g∈G as a Fell bundle over G, with operations borrowed from B(H ⊗K).

For each g in G consider the seminorm ‖ · ‖g on A � Bg obtained as the result of
composing the maps

A�Bg
π′⊗ρ′−→ Cg

‖·‖−→ R.

Evidently the completion of A � Bg under this seminorm is isometrically isomorphic to
Cg. By [BO: 3.3.1] we have that ‖ · ‖1 is the spatial norm and the remaining conditions in
(i) may now easily be verified.

In order to prove (ii) we consider two other representations of our objects, namely

π′′ = π′ ⊗ 1 = π ⊗ 1⊗ 1 : A → B
(
H ⊗K ⊗ `2(G)

)
ρ′′ = ρ′ ⊗ λ = 1⊗ ρ⊗ λ :

⋃
g∈GBg → B

(
H ⊗K ⊗ `2(G)

)
,

where λ is the regular representation of G, and for any given bg in Bg, we put

ρ′′(bg) = 1⊗ ρ(bg)⊗ λg.

Observing that ρ′′ is also isometric on each Bg, we see that the closed *-subalgebra of
B
(
H ⊗K ⊗ `2(G)

)
generated by the range of ρ′′ is isomorphic to C∗r (B ) by [E2: 3.7] (the

faithful conditional expectation is just the restriction to the diagonal). Alternatively one
may also deduce this from [E4: 3.4].

By [BO: 3.3.1] one then has that A ⊗ C∗r (B ) is isomorphic to the subalgebra of op-
erators generated by π′′(A)ρ′′(B ). For further reference let us observe that the present
model of A⊗ C∗r (B ) within B

(
H ⊗K ⊗ `2(G)

)
is therefore generated by the set

{a⊗ (bg ⊗ λg) : a ∈ A, g ∈ G, bg ∈ Bg}.

Observe that, for each g ∈ G, the map

σg : x ∈ Cg 7−→ x⊗ λg ∈ B
(
H ⊗K ⊗ `2(G)

)
is an isometry and, collectively, they provide a representation of C in B

(
H ⊗K ⊗ `2(G)

)
.

By the same reasoning employed above, based on [E2: 3.7] or [E4: 3.4], we have that
C∗r (C ) is isomorphic to the closed *-subalgebra of B

(
H ⊗ K ⊗ `2(G)

)
generated by the

union of the ranges of all the σg. Therefore our model of C∗r (C ) within B
(
H⊗K⊗ `2(G)

)
is generated by the set

{(a⊗ bg)⊗ λg : a ∈ A, g ∈ G, bg ∈ Bg}.

The models being identical, we conclude that the algebras A ⊗ C∗r (B ) and C∗r (A ⊗B )
are naturally isomorphic. �



dynamical systems of type (m,n) 23

5.2. Proposition. Let B = {Bg}g∈G be a Fell bundle over an exact discrete group G.
If B1 is an exact C*-algebra, then so is C∗r (B ).

Proof. Let
0→ J

ι→ A
π→ Q→ 0

be an exact sequence of C*-algebras. We need to prove that

0→ J ⊗ C∗r (B )
ι⊗1−→ A⊗ C∗r (B )

π⊗1−→ Q⊗ C∗r (B )→ 0

is also exact. Employing the isomorphisms obtained in (5.1) we may instead prove the
exactness of the sequence

0→ C∗r (J ⊗B )
ι⊗1−→ C∗r (A⊗B )

π⊗1−→ C∗r (Q⊗B )→ 0. (5.2.1)

In naming the arrows in the above sequence we have committed a slight abuse of language
since we should actually have employed the isomorphisms obtained in (5.1). Nevertheless,
if the map we labeled π⊗1 in the last sequence above is applied to an element in C∗r (A⊗B )
of the form a⊗bg, with bg ∈ Bg, the result will be π(a)⊗bg, so we feel our choice of notation
is justified.

As it is well known, the only possibly controversial point relating to the exactness of
(5.2.1) is whether or not the kernel of π ⊗ 1, which we will refer to as K, is contained in
the image of ι ⊗ 1. We will arrive at this conclusion by applying [E4: 5.3] to K. For this
we need to recall from [E2: 3.5] that, for each g in G, there is a contractive linear map

Fg : C∗r (B )→ Bg

satisfying Fg(
∑
h bh) = bg, whenever (bh)h is a finitely supported section of B . Here we

shall make use of these maps both for the Fell bundle A⊗B and for Q⊗B , and we will
denote them by FAg and FQg , respectively.

According to [E4: 5.2], to check that the ideal K in C∗r (A⊗B ) is invariant we must
verify that FAg (K) ⊆ K, for each g in G. For this we consider the diagram

C∗r (A⊗B )
π⊗1
−→ C∗r (Q⊗B )

FAg

y yFQg
A⊗Bg

π⊗1
−→ Q⊗Bg

In order to check that this is commutative, let x ∈ C∗r (A⊗B ) have the form x = a⊗ bh,
where a ∈ A and bh ∈ Bh, for some h ∈ G. Employing Kronecker symbols we then have
that

(π ⊗ 1)FAg (x) = δgh(π ⊗ 1)(x) = δghπ(a)⊗ bh,

while
FQg (π ⊗ 1)(x) = FQg (π(a)⊗ bh) = δghπ(a)⊗ bh.
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Since the set of elements x considered above clearly generates C∗r (A⊗B ), we see that the
diagram is indeed commutative. If we now take an arbitrary element x ∈ K, we will have
that

0 = FQg (π ⊗ 1)(x) = (π ⊗ 1)FAg (x),

which implies that FAg (x) ∈ K, meaning that K is invariant under FAg .
Given that G is assumed to be exact, we may apply [E4: 5.3] to conclude that K

is induced , meaning that it is generated, as an ideal, by its intersection with the unit
fiber algebra, namely K ∩ (A⊗B1). The latter evidently coincides with the kernel of the
restriction of π⊗1 to A⊗B1. However, since the image of A⊗B1 under π⊗1 is contained
in Q⊗B1, we may view K ∩ (A⊗B1) as the kernel of the third map in the sequence

0→ J ⊗B1
ι⊗1−→ A⊗B1

π⊗1−→ Q⊗B1 → 0.

At this point we invoke our second main hypothesis, namely that B1 is exact, to deduce
that the sequence above is exact, and hence that K ∩ (A ⊗ B1) = J ⊗ B1. Using angle
brackets to denote generated ideals we then have that

K =
〈
K ∩ (A⊗B1)

〉
=
〈
J ⊗B1

〉
⊆ C∗r (J ⊗B ),

which proves that (5.2.1) is exact in the middle. �

5.3. Corollary. Given a partial action α of an exact discrete group G on an exact C*-
algebra A, the reduced crossed product Aorα G is exact.

Proof. It is enough to notice that Aorα G is the reduced cross-sectional C*-algebra of the
semidirect product bundle, which is a Fell bundle over G, and has A as the unit fiber
algebra. �

Recalling from (2.6) that Orm,n is the reduced crossed product of an abelian, hence
exact, C*-algebra by the exact free group Fm+n, we obtain:

5.4. Corollary. For every positive integers n and m, one has that Orm,n is an exact
C*-algebra.

6. On full cross-sectional C*-algebras of Fell bundles.

We shall now prove some preparatory results in order to study Om,n (rather than the
reduced version Orm,n). Our goal is to show that it is not an exact C*-algebra, for m,n ≥ 2,
from which it will follow that it indeed differs from its reduced counterpart.

Since Om,n is the full crossed product C(Ωu) oθu Fm+n, we will now concentrate on
full cross-sectional algebras of Fell bundles. However we will start with a result about
reduced cross-sectional algebras which will prove to be quite useful in the study of their
full versions.

6.1. Proposition. Let B = {Bg}g∈G be a Fell bundle over a discrete group G and let H
be a subgroup of G. Denote by C = {Ch}h∈H the Fell bundle obtained by restricting B
to H, meaning that Ch = Bh, for each h ∈ H, with norm, multiplication and involution
borrowed from B . Then:

(i) There exists a conditional expectation E on C∗r (B ) whose range is isomorphic to
C∗r (C ).

(ii) If C∗r (B ) is nuclear (resp. exact), then so is C∗r (C ).
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Proof. Viewing each Bg as a subset of C∗r (B ), as allowed by [E2: 2.5], let A be the closed
linear span of

⋃
h∈H Ch. The standard conditional expectation E : C∗r (B )→ B1 given by

[E2: 2.9] may be restricted to give a conditional expectation from A to C1 = B1, satisfying
the hypothesis of [E2: 3.3]. Consequently there exists a surjective *-homomorphism

λ : A→ C∗r (C ).

By [E2: 3.6] the kernel of λ is the set formed by the elements a ∈ A such that E(a∗a) = 0.
However, applying [E2: 2.12] to C∗r (B ), one sees that only the zero element satisfies such
an equation, which means that λ is injective and hence that A is isomorphic to C∗r (C ).

We now claim that the map

EH :
∑
g∈G

bg ∈
⊕
g∈G

Bg 7→
∑
g∈H

bg ∈ A

is continuous relative to the norm on its domain induced by C∗r (B ). In order to see this
recall that, strictly according to definition [E2: 2.3], C∗r (B ) is the closed *-subalgebra of
L
(
`2(B )

)
(adjointable operators on the right Hilbert B1–module `2(B )) generated by

the range of the left regular representation of B .
Let ι be the natural inclusion of `2(C ) into `2(B ) and observe that its adjoint is the

projection of the latter onto the former. Now consider the linear map

V : T ∈ L
(
`2(B )

)
7→ ι∗Tι ∈ L

(
`2(C)

)
.

Viewing each Bg within L
(
`2(B )

)
, and each Ch within L

(
`2(C )

)
, by [E2: 2.2 & 2.5], one

may easily show that for every g ∈ G, and every bg ∈ Bg, one has that

V (bg) =

{
bg, if g ∈ H,

0, otherwise.

Therefore, given any
∑
g∈G bg ∈

⊕
g∈GBg, we have that∥∥∥ ∑

h∈H

bh

∥∥∥ =
∥∥∥V (∑

g∈G
bg

)∥∥∥ ≤ ∥∥∥∑
g∈G

bg

∥∥∥,
where the norm in the left hand side is computed in L

(
`2(C )

)
. However, due to the fact

that A and C∗r (C ) are isomorphic, the inequality above also holds if the norm in the left
hand side is computed in A. This says that EH is continuous, hence proving our claim.

One may then easily prove that the unique continuous extension of EH to A is a
conditional expectation, taking care of point (i).

Point (ii) now follows immediately from (i), since a closed *-subalgebra of an exact
C*-algebra is exact [BO: Exercise 2.3.2], and the range of a conditional expectation on a
nuclear C*-algebra is nuclear [BO: Exercise 2.3.1]. �
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Recall that λ denotes the left regular representation of a group G in C∗r (G). Also,
given a Fell bundle B , we will let Λ be the regular representation of B in C∗r (B ) [E2:
2.2].

Recall from [FD: VIII.16.12] that every representation π of B in a C*-algebra A
extends to a *-homomorphism (also denoted π by abuse of language) from C∗(B ) to A.

We thank Eberhard Kirchberg for sharing with us a very interesting idea which, when
applied to Fell bundles, yields the following curious result, mixing reduced cross-sectional
C*-algebras and maximal tensor products to produce full cross-sectional C*-algebras. See
also [BO: 10.2.8].

6.2. Theorem. Let Λ ⊗
max
λ be the representation of B in C∗r (B ) ⊗

max
C∗r (G) given by

(Λ ⊗
max
λ)bg = Λ(bg)⊗ λg, ∀ g ∈ G, ∀ bg ∈ Bg.

Then the associated *-homomorphism

Λ ⊗
max
λ : C∗(B )→ C∗r (B ) ⊗

max
C∗r (G)

is injective.

Proof. Choose a faithful representation π : C∗(B ) → B(H), where H is a Hilbert space,
and consider the representation π ⊗ λ of B on H ⊗ `2(G) given by

(π ⊗ λ)bg = π(bg)⊗ λg, ∀ g ∈ G, ∀ bg ∈ Bg.

This gives rise to the representation π⊗λ of C∗(B ) which factors through a representation

πλ : C∗r (B )→ B
(
H ⊗ `2(G)

)
,

by [E4: 3.4]. Let ρ be the right regular representation of G on `2(G), which in turn yields
the representation ρ̃ of C∗r (G) on H ⊗ `2(G) defined by

ρ̃ = 1⊗ ρ : C∗r (G)→ B
(
H ⊗ `2(G)

)
.

It is easy to see that the range of πλ commutes with the range of ρ̃, so there exists a
representation

πλ ⊗ ρ̃ : C∗r (B ) ⊗
max
C∗r (G)→ B

(
H ⊗ `2(G)

)
,

such that
(πλ ⊗ ρ̃)(x⊗ y) = πλ(x)ρ̃(y), ∀x ∈ C∗r (B ), ∀ y ∈ C∗r (G).

Given any g in G, and any bg ∈ Bg, observe that

(πλ ⊗ ρ̃)(Λ ⊗
max
λ)bg = (πλ ⊗ ρ̃)

(
Λ(bg)⊗ λg

)
= πλ

(
Λ(bg)

)
ρ̃(λg) =

=
(
π(bg)⊗ λg

)
(1⊗ ρg) = π(bg)⊗ λgρg.
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Denoting by {δg}g∈G the standard orthonormal basis of `2(G), pick any ξ ∈ H, and observe
that the above operator, when applied to ξ ⊗ δ1 produces

(πλ ⊗ ρ̃)(Λ ⊗
max
λ)bg ξ⊗δ1

=
(
π(bg)⊗ λgρg

)
(ξ ⊗ δ1) = π(bg)ξ ⊗ δ1.

By linearity, density and continuity we conclude that

(πλ ⊗ ρ̃)(Λ ⊗
max
λ)x

ξ⊗δ1
= π(x)ξ ⊗ δ1, ∀x ∈ C∗(B ).

Therefore, assuming that (Λ ⊗
max
λ)x = 0, for some x ∈ C∗(B ), we deduce that π(x)ξ = 0,

for all ξ ∈ H, and hence that π(x) = 0. Since π was supposed to be injective on C∗(B ),
we deduce that x = 0. �

The following is also based on an idea verbally communicated to us by Kirchberg.

6.3. Corollary. Let B be a Fell bundle over a discrete group G and let H be a subgroup
of G. Consider the Fell bundle C = {Ch}h∈H obtained by restricting B to H, meaning
that Ch = Bh, for each h ∈ H, with norm, multiplication and involution borrowed from
B . Then the natural map ι : C∗(C )→ C∗(B ) is injective.

Proof. Recall from (6.1.i) that there exists a conditional expectation from C∗r (B ) onto
C∗r (C ), as well as a conditional expectation from C∗r (G) to C∗r (H). Therefore by [BO:
3.6.6] one has that the natural maps below are injective:

C∗r (C ) ⊗
max
C∗r (H) ↪→ C∗r (B ) ⊗

max
C∗r (H) ↪→ C∗r (B ) ⊗

max
C∗r (G).

Consider the diagram

C∗r (C ) ⊗
max
C∗r (H) ↪→ C∗r (B ) ⊗

max
C∗r (G)

↑ ↑

C∗(C )
ι−→ C∗(B )

where the vertical arrows are the versions of Λ ⊗
max
λ for C and B , respectively. By checking

on elements ch ∈ Ch, it is elementary to prove that the above diagram commutes. Since
all arrows, with the possible exception of ι, are known to be injective, we deduce that ι is
injective as well. �

The following is an interesting conclusion to be drawn from (6.2).

6.4. Theorem. Let B be a Fell bundle over the discrete group G. If the reduced cross-
sectional C*-algebra C∗r (B ) is nuclear, then the regular representation

Λ : C∗(B )→ C∗r (B )

is an isomorphism.
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Proof. Consider the commutative diagram

C∗(B )

Λ ⊗
max

λ

−→ C∗r (B ) ⊗
max
C∗r (G)

Λ
y yq

C∗r (B )
id⊗λ
−→ C∗r (B )⊗ C∗r (G)

where q is the natural map from the maximal to the minimal tensor product. Assuming
that C∗r (B ) is nuclear we have that q is injective [BO: 3.6.12], and hence Λ is injective. �

6.5. Remark. According to [E2: 4.1], the above result says that B is an amenable Fell
bundle. However, as observed in the very last paragraph of [E3], we do not know whether
this implies the approximation property for B [E2: 4.4]. Nevertheless, in view of [BO: 4.4.3],
it is perhaps reasonable to believe that the approximation property could be deduced from
the nuclearity of C∗r (B ).

7. Isotropy groups for partial actions.

Given a partial action
θ =

{
θg : Xg−1 → Xg

}
g∈G

of a discrete group G on a locally compact Hausdorff topological space X, recall that the
isotropy subgroup for a given point x ∈ X is the subgroup of G defined by

Gx =
{
g ∈ G : x ∈ Xg−1 , θg(x) = x

}
.

7.1. Proposition. Let X be a Hausdorff locally compact topological space, let G be a
discrete group, and let θ be a partial action of G on X. Then:

(i) If the full crossed product C0(X) oθ G is exact, then for every x in X for which Gx

is residually finite-dimensional [BO: p. 96], one has that Gx is amenable.

(ii) If the reduced crossed product C0(X)orθG is nuclear, then the isotropy group of every
point in X is amenable.

(iii) If the reduced crossed product C0(X) orθ G is exact, then the isotropy group of every
point in X is exact.

Proof. Given x in X, consider the restriction of θ to Gx, thus obtaining a partial action of
Gx on X. Observing that the full crossed product is defined to be the full cross-sectional
C*-algebra of the associated semidirect product Fell bundle, we deduce from (6.3) that
C0(X)oθ Gx is isomorphic to a closed *-subalgebra of C0(X)oθ G. By the assumption in
(i) that the latter is exact, we deduce that C0(X)oθ Gx is also exact [BO: Exercise 2.3.2].

Consider the *-homomorphism

π : f ∈ C0(X) 7→ f(x) · 1 ∈ C∗(Gx),



dynamical systems of type (m,n) 29

as well as the universal representation of Gx

u : Gx → C∗(Gx).

Viewing C∗(Gx) as an algebra of operators on some Hilbert space, it is easy to check that
(π, u) is a covariant representation of the partial dynamical system

(
C0(X), Gx, θ|Gx

)
, in

the sense of [ELQ: 1.2]. Therefore, by [ELQ: 1.3] there exists a *-homomorphism

π × u : C0(X) oθ Gx → C∗(Gx)

such that
(π × u)(fδh) = f(x)uh,

for all h in Gx, and all f in C0(Xh). One moment of reflexion is enough to convince
ourselves that π × u is surjective and hence that C∗(Gx) is exact by [BO: 9.4.3].

Under the assumption that Gx is residually finite-dimensional we then deduce from
[BO: 3.7.11] that Gx is amenable, completing the proof of (i).

We next consider the diagram

C0(X) oθ Gx
π×u
−→ C∗(Gx)

Λ
y yΛx

C0(X) orθ Gx
ϕ
· · · · · · C∗r (Gx)

E
y yτ

C0(X)
χx

−→ C

(7.1.1)

where Λ is the left regular representation (see the paragraph following [E2: 2.3]), Λx is
the version of Λ for the trivial one-dimensional Fell bundle over Gx, E is the standard
conditional expectation [E2: 2.9], τ is the unique normalized trace on C∗r (Gx) such that
τ(λh) = 0, for all h 6= 1, and finally χx is the character on C0(X) given by point evaluation
at x. Incidentally τ coincides with the standard conditional expectation in the context of
the trivial bundle over Gx.

By checking on elements of the form fδh, it is elementary to verify that the diagram
commutes. We claim that π×u maps the kernel of Λ into the kernel of Λx. In order to see
this, suppose that x lies in the kernel of Λ. Then by [E2: 3.6] we have that E(x∗x) = 0, so

0 = χx
(
E
(
Λ(x∗x)

))
= τ

(
Λx
(
(π × u)(x∗x)

))
= τ

(
y∗y),

where y = Λx
(
(π×u)x

)
. Since τ is a faithful trace on C∗r (Gx) [E2: 2.12], we conclude that

y = 0, which proves that (π × u)x belongs to the kernel of Λx, hence the claim.
As a consequence we see that there exists a *-homomorphism ψ filling the dots in

(7.1.1) in a way as to preserve the commutativity of the diagram. Since Λx is surjective,
ψ must also be surjective.

Assuming that C0(X) orθ Gx is nuclear (resp. exact), we now deduce that C∗r (Gx)
shares this property. To conclude the proof it is now enough to recall that if C∗r (Gx) is
nuclear then Gx is amenable [BO: 2.6.8], and that if C∗r (Gx) is an exact C*-algebra then
Gx is an exact group [BO: 5.1.1]. �
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7.2. Theorem. If m,n ≥ 2, then Om,n is not exact and hence it is not isomorphic to
Orm,n.

Proof. Recall from (3.9) that there exists y in Y u such that

(vu1 )−1hu1 (y) = y = (vu2 )−1hu2 (y).

This implies that b−1
1 a1 and b−1

2 a2 belong to Fym+n, the isotropy group of y.
It is easy to see that the subgroup of Fm+n generated by these two elements is iso-

morphic to F2, so we conclude that Fym+n is not amenable.
It is well known that free groups are residually finite-dimensional [C: Corollary 22]

and consequently the same applies to its subgroup Fym+n. Using (7.1.i) one deduces that
the full crossed product C(Ωu)oθu Fm+n cannot be exact, and hence the conclusion then
follows from (2.5). �

8. Absence of finite dimensional representations.

The goal of this section is to prove that Orm,n does not admit any nonzero finite dimensional
representation. In case n 6= m the same is true even for the unreduced algebras and, since
the proof of this fact is much simpler, we present it first.

8.1. Proposition. If n 6= m then Om,n (and hence also Orm,n) does not admit any non-
trivial finite dimensional representation.

Proof. Let ρ : Om,n → Md(C) be a non-degenerate d-dimensional representation, with
d > 0. Then, denoting by v and w the images of v and w (see the third and fourth relation
in (R)), we have

tr
(
ρ(v)

)
=

n∑
i=1

tr
(
ρ(sis

∗
i )
)

=
n∑
i=1

tr
(
ρ(s∗i si)

)
= n tr

(
ρ(w)

)
,

and similarly tr
(
ρ(v)

)
= m tr

(
ρ(w)

)
, so

n tr
(
ρ(w)

)
= m tr

(
ρ(w)

)
.

Since n 6= m, this implies that tr
(
ρ(w)

)
= 0, and hence also that tr

(
ρ(v)

)
= 0. Therefore

d = tr(1) = tr(ρ(1)) = tr
(
ρ(v + w)) = 0,

a contradiction. �

From now on we will develop a series of auxiliary results in order to show the nonex-
istence of nonzero finite dimensional representations of Orm,n when m = n (although our
proof will not explicitly use that m = n, and hence it will serve as a proof for the general
case). In what follows we will therefore assume that

ρ : Orm,n →Md(C)
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is non-degenerate d-dimensional representation and our task will be to arrive at a contra-
diction from it.

Restricting ρ to C(Ωu) we get a finite dimensional representation of a commutative
algebra which, as it is well known, is equivalent to a direct sum of characters. In other
words, upon conjugating ρ by some unitary matrix, we may assume that there is a d-tuple
(ξ1, ξ2, . . . , ξd) of elements of Ωu such that

ρ(f) =


f(ξ1)

f(ξ2)
. . .

f(ξd)

 ,

for every f in C(Ωu).

8.2. Proposition. The set Z = {ξ1, ξ2, . . . , ξd} is invariant under θu.

Proof. We want to prove that for every g in Fm+n, and every ξ ∈ Z ∩ Ωug−1 , one has that

θug (ξ) is in Z. Arguing by contradiction we assume that this is not so, that is, that we
can find ξ ∈ Z ∩ Ωug−1 such that θug (ξ) /∈ Z. Observing that θug (ξ) ∈ Ωug , we may pick an

f ∈ C0(Ωug ) such that f(θug (ξ)) is nonzero, but such that f vanishes identically on Z. In
particular this implies that ρ(f) = 0.

Using [ELQ: 1.4] we may write ρ = π×u, where (π, u) is a covariant representation of
the dynamical system

(
C(Ωu),Fm+n, θ

u
)
. Noticing that π is the restriction of ρ to C(Ωu),

we have
ρ
(
θug−1(f)

)
= π

(
θug−1(f)

)
= ug−1π(f)ug = 0.

It follows that
0 = θug−1(f)

ξ
= f

(
θug (ξ)

)
6= 0,

a contradiction. �

8.3. Proposition. If m,n ≥ 2, then for every ξ in Z, the isotropy group Fξm+n, contains
a subgroup isomorphic to F2.

Proof. Assume first that ξ ∈ Y u, that is, the configuration of ξ at the origin follows pattern
(c2). Then in particular b−1

1 ∈ ξ, and hence the configuration of ξ at b1 must follow pattern
(c1). Therefore there exists a unique i1 ≤ n, such that b−1

1 ai1 ∈ ξ. The configuration of ξ
at b−1

1 ai1 must then follow pattern (c2) so, in particular b−1
1 ai1b

−1
1 ∈ ξ.

Continuing in this way we may construct an infinite sequence i1, i2, . . . such that

gk := b−1
1 ai1b

−1
1 ai2b

−1
1 . . . b−1

1 aik ∈ ξ, ∀ k ∈ N.

So ξ ∈ Ωugk , and hence

θu
g−1
k

(ξ) = g−1
k ξ ∈ Z,

because Z is invariant under θu. Using the fact that Z is finite we conclude that there are
positive integers k < l, such that

g−1
l ξ = g−1

k ξ,
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so gkg
−1
l ξ = ξ, and hence the element

x := gkg
−1
l

lies in the isotropy group of ξ.
Let F2 be the free group on a set of two generators, say {c1, c2}, and consider the

unique group homomorphism
ϕ : Fm+n → F2

such that
ϕ(ai) = 1, ∀ i = 1, . . . , n,

ϕ(b1) = c1, ϕ(b2) = c2, ϕ(bj) = 1, ∀ j ≥ 3.

It is then evident that ϕ(gk) = c−k1 , and hence that

ϕ(x) = ϕ(gkg
−1
l ) = cl−k1 ,

where by assumption, l − k > 0.
Repeating the above argument with b2 in place of b1, we may find some y in the

isotropy group of ξ such that ϕ(y) is a positive power of b2.

The subgroup of Fξm+n generated by x and y is therefore a free group since its image
within F2 via ϕ is certainly free.

This concludes the proof under the assumption that the configuration of ξ at the origin
is (c2), so let us suppose that the pattern is (c1). Therefore there exists some i such that
ai ∈ ξ and hence, again by invariance of Z, we have that a−1

i ξ ∈ Z. Since 1 ∈ ξ we have
that a−1

i ∈ a
−1
i ξ, so the pattern of a−1

i ξ at the origin is necessarily (c2).
By the case already studied there is a copy of F2 inside the isotropy group of a−1

i ξ,
but since

F
a−1
i
ξ

m+n = a−1
i (Fξm+n)ai,

the same holds for the isotropy group of ξ. �

Since Z is invariant under θu we may restrict the latter to the former thus obtaining
a partial action, say θ, of Fm+n on Z.

Given ξ ∈ Z, we will denote by 1ξ the characteristic function of the singleton {ξ},
viewed as an element of C(Z).

8.4. Proposition. For every ξ ∈ Z there exists an embedding of C∗r (F2) in the reduced
crossed product C(Z) orθ Fm+n, such that the unit of the former is mapped to 1ξ.

Proof. Let G be any subgroup of Fξm+n. For each g in G, consider the element

ug = 1ξδg ∈ C(Z) orθ Fm+n.

By direct computation one checks that uguh = ugh, and ug−1 = u∗g, for every g and h in
G, and moreover that u1 = 1ξ. In other words, u is a unitary representation of G in the
hereditary subalgebra of C(Z) orθ Fm+n generated by 1ξ. Let

ϕ : C∗(G)→ C(Z) orθ Fm+n
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be the integrated form of u. Denoting by τ the canonical trace on C∗(G), and by E the
standard conditional expectation

E : C(Z) orθ Fm+n → C(Z),

one may easily prove that

E
(
ϕ(x)

)
= τ(x)1ξ, ∀x ∈ C∗(G).

Since E is faithful, for every x ∈ C∗(G) one has that

ϕ(x) = 0 ⇐⇒ E(ϕ(x∗x)) = 0 ⇐⇒ τ(x∗x) = 0.

This said we see that the kernel of ϕ coincides with the kernel of the integrated form of
the left regular representation, namely

λ : C∗(G)→ C∗r (G).

Consequently ϕ factors through C∗r (G), providing a *-homomorphism

ϕ̃ : C∗r (G)→ C(Z) orθ Fm+n,

which is injective because of the above equality of null spaces. Clearly ϕ̃(1) = 1ξ, as stated.

To conclude the proof it is therefore enough to choose G to be the subgroup of Fξm+n given
by (8.3). �

The next significant step in order to obtain a contradiction from the existence of ρ is
to prove that it admits a factorization

Orm,n
ρ−−−−→ Md(C)

ϕ↘ ↗ ρ̃

C(Z) orθ Fm+n

(8.5)

such that ϕ(f) = f |Z , for all f ∈ C(Ωu).
The poof of this factorization may perhaps be of independent interest, so we prove it

in a more general context in the next section. Although it may not look a very deep result
we have not been able to prove it in full generality, since we need to use the exactness of
free groups.

9. Invariant ideals.

Let G be a discrete group and let α be a partial action of G on A. For each g in G, denote
by Ag the range of αg.
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9.1. Definition. A closed two-sided ideal K E A is said to be α-invariant if

αg(K ∩Ag−1) ⊆ K, ∀ g ∈ G.

Given such an ideal, let B = A/K, and denote the quotient map by

q : A→ B.

For each g in G, consider the closed two-sided ideal of B given by Bg = q(Ag). Given any
b ∈ Bg−1 , write b = q(a), for some a ∈ Ag−1 , and define

βg(a) := q
(
αg(a)

)
.

It is then easy to see that βg becomes a *-isomorphism from Bg−1 to Bg, also known as a
partial automorphism of B.

9.2. Proposition. The collection of partial automorphisms {βg}g∈G forms a partial ac-
tion of G on B.

Proof. If I and J are closed two-sided ideals of A, it is well known that every element
z ∈ I ∩ J may be written as a product z = xy, with x ∈ I, and y ∈ J . In other words
I ∩ J = IJ . Therefore

q(I ∩ J) = q(IJ) = q(I)q(J) = q(I) ∩ q(J).

We then conclude that

βg(Bg−1 ∩Bh) = βg
(
q(Ag−1) ∩ q(Ah)

)
= βg

(
q(Ag−1 ∩Ah)

)
= q
(
αg(Ag−1 ∩Ah)

)
=

= q
(
Ag ∩Agh

)
= q(Ag) ∩ q(Agh) = Bg ∩Bgh.

We leave the verification of the remaining axioms ([E1], [M4], [E5]) to the reader. �

9.3. Proposition. Under the above assumptions, there exists a unique surjective *-
homomorphism

ϕ : Aorα G→ B orβ G,

such that ϕ(agδg) = q(ag)δg, for all g ∈ G, and all ag ∈ Ag.

Proof. Recalling that the reduced crossed product C*-algebra coincides with the reduced
cross-sectional C*-algebra of the corresponding semidirect product bundle [E5: 2.8], denote
by A and B the corresponding Fell bundles. Precisely A =

{
Agδg

}
g∈G, with multiplica-

tion

(agδg, bhδh) ∈ Agδg ×Ahδh 7→ αg
(
α−1
g (ag)bh

)
δgh ∈ Aghδgh

and involution

agδg ∈ Agδg 7→ αg−1(a∗g)δg−1 ∈ Ag−1δg−1 ,
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and likewise for B. It is then easy to see that the correspondence

agδg ∈ Agδg 7→ q(ag)δg ∈ Bgδg

defines a homomorphism in the category of Fell bundles and hence induces a *-homo-
morphism of full cross-sectional C*-algebras

ψ : C∗(A )→ C∗(B ).

Denoting by
E : C∗(A )→ A, and F : C∗(B )→ B

the corresponding conditional expectations [E2: 2.9], one easily verifies that Fψ = qE.
From this it follows that, for every element x in the kernel of the regular representation
[E2: 2.2],

ΛA : C∗(A )→ C∗r (A ),

one has that
F
(
ψ(x∗x)

)
= q
(
E(x∗x)

)
= 0,

by [E2: 3.6]. Therefore, by [E2: 2.12], we see that ψ(x∗x) lies in the kernel of the regular
representation ΛB relative to B. We conclude that ψ factors through the quotient providing
a map ϕ such that the diagram below is commutative.

C∗(A )
ψ−→ C∗(B )

ΛA

y yΛB

C∗r (A )
ϕ−→ C∗r (B ).

Identifying reduced crossed products with their corresponding reduced cross-sectional al-
gebras, the proof is complete. �

9.4. Proposition. Let α be a partial action of a discrete exact group G on a C*-algebra
A, and let ρ be a *-representation of A orα G on a Hilbert space H. Letting K be the
null-space of ρ|A, then K is α-invariant, so we may speak of the quotient partial action β
of (9.2), and of the map ϕ of (9.3). Under these conditions there exists a *-representation
ρ̃ of A/K orβ G, such that the diagram

Aorα G
ρ−−−−→ B (H)

ϕ↘ ↗ ρ̃

A/K orβ G

commutes.
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Proof. Let J be the null space of ρ, so that K = A ∩ J . Given any g ∈ G, and any
a ∈ K ∩Ag−1 , observe that, identifying A with its image in AorαG, as usual, one has that

(bδg)a(bδg)
∗ = bαg(a)b∗, ∀ b ∈ Ag.

Applying ρ on both sides of the above equality, we conclude that bαg(a)b∗ ∈ K. If we
now let b run along an approximate identity for Ag, we conclude that αg(a) lies in K, thus
proving that K is α-invariant.

We next claim that
Ker(ϕ) ⊆ Ker(ρ). (9.4.1)

With that goal in mind, let

E : Aorα G→ A, and F : A/K orβ G→ A/K,

be the associated conditional expectations (unlike (9.3), here these are seen as maps on
the reduced cross-sectional algebras). Given x in the kernel of ϕ, we have that

0 = F
(
ϕ(x∗x)

)
= q
(
E(x∗x)

)
,

so we see that E(x∗x) lies in K ⊆ J . Using [E4: 5.1] we deduce that x is in the ideal of
A orα G generated by K, and hence that x is in J . This proves (9.4.1) and, since ϕ is
surjective, we have that ρ factors through ϕ, which means precisely that a map ρ̃ exists
with the stated properties. �

Returning to the situation we left at the end of the previous section, recall that ρ is
a non-degenerate d-dimensional representation of Orm,n. Notice that

K := Ker
(
ρ|C(Ωu)

)
=
{
f ∈ C(Ωu) : f(ξi) = 0, ∀i = 1, . . . d

}
.

The quotient of C(Ωu) by K may then be naturally identified with C(Z), and the quotient
partial action given by (9.2) becomes the action induced by the restriction of θu to Z. Thus,
when applied to our situation, the diagram in the statement of (9.4) becomes precisely (8.5).

The restriction of ρ̃ to the copy of C∗r (F2) provided by (8.4) will then be a (possibly
degenerate) d-dimensional representation of the simple infinite-dimensional C*-algebra
C∗r (F2). Such a representation must therefore be identically zero and hence, in particular,

ρ̃(1ξ) = 0,

because, as seen above, 1ξ lies in the copy of C∗r (F2) alluded to. Observing that the unit
of C(Z) orθ Fm+n is given by

1 =
∑
ξ∈Z

1ξ,

we deduce that ρ̃(1) = 0 and hence that ρ̃ = 0. A glance at (8.5) then gives ρ = 0.
This proves the following main result:

9.5. Theorem. Orm,n admits no nonzero finite dimensional representations.
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