
NEW PRE-DUAL SPACE OF MORREY SPACE

A. GOGATISHVILI AND R.CH. MUSTAFAYEV

Abstract. In this paper we give new characterization of the classical Morrey
space. Complementary global Morrey-type spaces are introduced. It is proved
that for particular values of parameters these spaces give new pre-dual space
of the classical Morrey space. We also show that our new pre-dual space of the
Morrey space coincides with known pre-dual spaces.

1. Introduction

The well-known Morrey spaces Mp,λ introduced by C.B. Morrey in 1938 [11]
in relation to the study of partial differential equations, were widely investigated
during last decades, including the study of classical operators of Harmonic Analy-
sis - maximal, singular and potential operators - in generalizations of these spaces
(the so-called Morrey-type spaces). In the theory of partial differential equations,
along with the weighted Lebesgue spaces, Morrey-type spaces also play an im-
portant role. These spaces appeared to be quite useful in the study of the local
behavior of the solutions to partial differential equations, apriori estimates and
other topics in the theory of PDE.

In [5] local Morrey-type spaces LMpθ,ω and global Morrey-type spaces GMpθ,ω

were defined and some properties of these spaces were studied. Authors investi-
gated the boundedness of the Hardy-Littlewood maximal operator in these spaces.
After this paper was intensive study of boundedness of other classical operators
such as fractional maximal operator, Riesz potential and Calderón-Zygmund sin-
gular integral operator (see, for instance [7], for references).

Later in [6] ”so-called” complementary local Morrey-type spaces
{
LMpθ,ω were

introduced and the boundedness of fractional maximal operator from comple-

mentary local Morrey-type space
{
LMpθ,ω into local Morrey-type space LMpθ,ω

was investigated. As in the definition of the space
{
LMpθ,ω was used complement

2000 Mathematics Subject Classification. 26D15, 46E30 .
Key words and phrases. Local and Global Morrey-type spaces, complementary local Morrey-

type spaces, associate spaces, dual spaces, multidimensional Hardy inequalities.
The research of A. Gogatishvili was partialy supported by the grant no. 201/05/2033 and

201/08/0383 of the Grant Agency of the Czech Republic, by the Institutional Research Plan
no. AV0Z10190503 of AS CR. The research of R. Mustafayev was supported by a Post Doc-
toral Fellowship of INTAS (Grant 06-1000015-6385), by the Institutional Research Plan no.
AV0Z10190503 of AS CR and by the Science Development Foundation under the President of
the Republic of Azerbaijan Project No. EIF-2010-1(1)-40/06-1.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/13318234?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 A. GOGATISHVILI AND R.CH. MUSTAFAYEV

of ball instead of ball, it was named complementary local Morrey-type space and

no relation between LMpθ,ω and
{
LMpθ,ω was studied.

In [8] it is proved that the space
{
LMp′θ′,ω̃ is dual space of the space LMpθ,ω,

where 1 ≤ p, θ < ∞, p′ and θ′ are conjugate exponents of p and θ, respectively,

and ω̃(t) = ωθ−1(t)
(∫∞

t
ωθ(s)ds

)−1
(see Theorem 3.6 below).

Our goal in this paper is to introduce global complementary Morrey-type space
and show that this new space is pre-dual of classical Morrey space.

The paper is organized as follows. We start with notations and give some
preliminaries in Section 2. In Section 3 we recall some results on associate spaces
of local Morrey-type spaces and complementary local Morrey-type spaces. New
characterization of the Morrey space was given in Section 4. In Section 5 we
investigate some properties of intersection and union of complementary local
Morrey-type spaces. New characterization of pre-dual space of Morrey space was
given in Section 6. Finally, in Section 7 we recall known pre-dual spaces of the
Morrey space and compare new one with known spaces.

2. Notations and Preliminaries

Now we make some conventions. Throughout the paper, we always denote by
c and C a positive constant which is independent of main parameters, but it may
vary from line to line. By A . B we mean that A ≤ cB with some positive
constant c independent of appropriate quantities. If A . B and B . A, we write
A ≈ B and say that A and B are equivalent. Constant, with subscript such as
c1, does not change in different occurrences. For a measurable set E, χE denotes
the characteristic function of E.

Given a function w defined on (0,∞), we say that w satisfies the doubling
condition if there exists a constant D > 0 such that for any t > 0, we have
w(2t) ≤ Dw(t). When w satisfies this condition, we denote w ∈ 42, for short.

Unless a special remarks is made, the differential element dx is omitted when
the integrals under consideration are the Lebesgue integrals.

Let Y be a Banach space and X its subspace. The closure of X in Y we will
denote by [X]Y .

Let X and Y be two Banach spaces. The symbol X ↪→ Y means that X ⊂ Y
and the natural embedding of X in Y is continuous. We say that X coincides with
Y (and write X = Y ) if X and Y are equivalent in the algebraic and topological
sense (their norms are equivalent).

Definition 2.1. Banach spaces Xα, α ∈ A, form a Banach family if there exists
a Banach space W such that

Xα ↪→ W, α ∈ A.

If (Xα)α∈A is a Banach family, the concepts of its sum Σ(Xα)α∈A and intersec-
tion 4(Xα)α∈A will be introduced as follows.
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Definition 2.2 ([4], Definition 2.1.35). The sum of a family (Xα)α∈A is the term
applied to a Banach space X such that

(a) Xα ↪→ X, α ∈ A;
(b) If for certain Banach space Y we have

Xα ↪→ Y, α ∈ A, then X ↪→ Y.

Changing the direction of embeddings, we obtain from here the definition of
the intersection of the family (Xα)α∈A.

Note that the sum and intersection of a Banach family exist ([4], Proposition
2.1.36).

For a fixed p with p ∈ [1,∞), p′ denotes the conjugate exponent of p, namely,

p′ :=


p

1−p if 0 < p < 1,

+∞ if p = 1,
p
p−1

if 1 < p < +∞,
1 if p = +∞,

and 1/(+∞) = 0, 0/0 = 0, 0 · (±∞) = 0.
If E is a nonempty measurable subset on Rn and f is a measurable function

on E, then we put

‖g‖Lp(E) : =

(∫
E

|f(y)|pdy
) 1

p

, 0 < p < +∞,

‖f‖L∞(E) : = sup{α : |{y ∈ E : |f(y)| ≥ α}| > 0}.
If I is a nonempty measurable subset on (0,+∞) and g is a measurable function
on I, then we define ‖g‖Lp(I) and ‖g‖L∞(I), correspondingly.

For x ∈ Rn and r > 0, let B(x, r) be the open ball centered at x of radius r

and
{
B(x, r) := Rn\B(x, r).

Morrey spacesMp,λ were introduced by C. Morrey in 1938 [11] and defined as
follows: for 0 ≤ λ ≤ n, 1 ≤ p ≤ ∞, f ∈Mp,λ if f ∈ Lloc

p (Rn) and

‖f‖Mp,λ
≡ ‖f‖Mp,λ(Rn) = sup

x∈Rn, r>0
r
λ−n
p ‖f‖Lp(B(x,r)) <∞,

where B(x, r) is the open ball centered at x of radius r.
Note that Mp,0 = L∞(Rn) and Mp,n = Lp(Rn). If λ < 0 or λ > n, then
Mp,λ = Θ, where Θ is the set of all functions equivalent to 0 on Rn.

In [1] D.R.Adams introduced a variant of Morrey-type spaces as follows: For
0 ≤ λ ≤ n, 1 ≤ p, θ ≤ ∞, f ∈Mpθ,λ if f ∈ Lloc

p (Rn) and

‖f‖Mpθ,λ
≡ ‖f‖Mpθ,λ(Rn) = sup

x∈Rn
‖r−

λ
p ‖f‖Lp(B(x,r))‖Lθ(0,∞) <∞.

(If θ =∞, then Mpθ,λ =Mp,λ.)
Let us recall definitions of local Morrey-type spaces and complementary local

Morrey-type spaces.
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Definition 2.3. ([5]) Let 0 < p, θ ≤ ∞ and let w be a non-negative measurable
function on (0,∞). We denote by LMpθ,ω the local Morrey-type space, the space
of all functions f ∈ Lloc

p (Rn) with finite quasinorm

‖f‖LMpθ,ω
≡ ‖f‖LMpθ,ω(Rn) =

∥∥w(r)‖f‖Lp(B(0,r))

∥∥
Lθ(0,∞)

.

Definition 2.4. ([6]) Let 0 < p, θ ≤ ∞ and let w be a non-negative measurable

function on (0,∞). We denote by
{
LMpθ,ω the complementary local Morrey-

type space, the space of all functions f ∈ Lp(
{
B(0, t)) for all t > 0 with finite

quasinorm

‖f‖ {LMpθ,ω
≡ ‖f‖ {LMpθ,ω(Rn)

=
∥∥∥w(r)‖f‖

Lp( {B(0,r))

∥∥∥
Lθ(0,∞)

.

Definition 2.5. Let 0 < p, θ ≤ ∞. We denote by Ωθ the set all non-negative
measurable functions ω on (0,∞) such that

0 < ‖ω‖Lθ(t,∞) <∞, t > 0,

and by
{
Ωθ the set all non-negative measurable functions ω on (0,∞) such that

0 < ‖ω‖Lθ(0,t) <∞, t > 0.

It is convenient to define local Morrey-type spaces and complementary local
Morrey-type spaces at any fixed point x ∈ Rn.

Definition 2.6. Let 0 < p, θ ≤ ∞ and let w be a non-negative measurable

function on (0,∞). For any fixed x ∈ Rn we denote by LM
{x}
pθ,ω, the local Morrey-

type space: the space of all functions f ∈ Lloc
p (Rn) with finite quasinorm

‖f‖
LM

{x}
pθ,ω
≡ ‖f‖

LM
{x}
pθ,ω(Rn)

:=
∥∥w(r)‖f‖Lp(B(x,r))

∥∥
Lθ(0,∞)

= ‖f(x+ ·)‖LMpθ,ω
.

Definition 2.7. Let 0 < p, θ ≤ ∞ and let w be a non-negative measurable func-

tion on (0,∞). For any fixed x ∈ Rn we denote by
{
LM

{x}
pθ,w the complementary

local Morrey-type space, the space of all functions f ∈ Lp(
{
B(x, t)) for all t > 0

with finite quasinorm

‖f‖ {LM
{x}
pθ,w

≡ ‖f‖ {LM
{x}
pθ,w(Rn)

:=
∥∥∥w(r)‖f‖

Lp( {B(x,r))

∥∥∥
Lθ(0,∞)

= ‖f(x+ ·)‖ {LMpθ,ω
.

Note by LMpθ,ω = LM
{0}
pθ,ω and

{
LMpθ,ω =

{
LM

{0}
pθ,w.

In [5] global Morrey-type spaces GMpθ,w were defined.

Definition 2.8. ([5]) Let 0 < p, θ ≤ ∞ and let w be a non-negative measurable
function on (0,∞). We denote by GMpθ,w, the global Morrey-type space, the
space of all functions f ∈ Lloc

p (Rn) with finite quasinorms

‖f‖GMpθ,w
= ‖f‖GMpθ,w(Rn) := sup

x∈Rn
‖f(x+ ·)‖LMpθ,ω

= sup
x∈Rn
‖f‖

LM
{x}
pθ,ω

.
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Note that the space GMpθ,w is the intersection space of the Banach family

(LM
{x}
pθ,ω)x∈Rn , that is, GMpθ,w = 4(LM

{x}
pθ,ω).

Note that
‖f‖LMp∞,1

= ‖f‖GMp∞,1
= ‖f‖Lp .

Furthermore, GMp∞,r−λ/p ≡ Mp,λ, 0 < λ < n. The interpolation properties
of the spaces GMp∞,w were studied by S. Spanne in [13]. The spaces GMpθ,r−λ

were used by G. Lu [10] for studying the embedding theorems for vector fields of
Hörmander type.

As mentioned in [6], the intersection 4(
{
LM

{x}
pθ,w) of the Banach family

(
{
LM

{x}
pθ,w)x∈Rn , defined by the finiteness of the quasi-norm

‖f‖4( {LM
{x}
pθ,w)

= sup
x∈Rn

∥∥∥ω(r)‖f‖
Lp( {B(x,r))

∥∥∥
Lθ(0,∞)

= sup
x∈Rn
‖f‖ {LM

{x}
pθ,w

is of no particular interest because this expression is equal to the product
‖f‖Lp(Rn) × ‖ω‖Lθ(0,∞). It means that

4(
{
LM

{x}
pθ,w) =

{
Lp(Rn), if ‖w‖Lθ(0,∞) <∞

Θ, if ‖w‖Lθ(0,∞) =∞.
It is natural to define global complementary Morrey-type space as a sum of a
Banach family in the following way.

Definition 2.9. Let 0 < q, θ ≤ ∞ and let w be a non-negative measurable func-

tion on (0,∞). We denote by
{
GM qθ,w := Σx∈Rn(

{
LM

{x}
qθ,w), the complementary

global Morrey space, the set of all functions f such that f =
∑

k fk in the sense

of distributions, where fk ∈
{
LM

{xk}
qθ,w , xk ∈ Rn, and

∑
k ‖fk‖ {LM

{xk}
qθ,w

<∞.

We define a quasi-norm in
{
GM qθ,w

‖f‖ {GMqθ,w
:= inf

f=
∑
k fk

∑
k

‖fk‖ {LM
{xk}
qθ,w

,

where the infimum is taken over all representation of f of the form
∑

k fk, fk ∈
{
LM

{xk}
qθ,w ,

∑
k ‖fk‖ {LM

{xk}
qθ,w

<∞ and xk ∈ Rn.

Remark 2.10. Note that in view of Lemma 7.5 this definition is correct (see
[4, p.110] and [3]).

3. Associate and dual spaces of local Morrey-type and
complementary local Morrey-type spaces

Let (R, µ) be a totally σ-finite non-atomic measure space. Let M(R, µ) be the
set of all µ-measurable a.e. finite real functions on R.



6 A. GOGATISHVILI AND R.CH. MUSTAFAYEV

Definition 3.1. Let X be a set of functions from M(R, µ), endowed with a
positively homogeneous functional ‖ · ‖X , defined for every f ∈ M(R, µ) and
such that f ∈ X if and only if ‖f‖X < ∞. We define the associate space X ′ of
X as the set of all functions f ∈M(R, µ) such that ‖f‖X′ <∞, where

‖f‖X′ = sup

{∫
R
|fg|dµ : ‖g‖X ≤ 1

}
.

In what follows we assume R = Rn and dµ = dx.
In [8] the associate spaces of local Morrey-type and complementary local

Morrey-type spaces were calculated. Our method of construction of the pre-
dual space of the Morrey space mainly based on these results. For the sake of
completeness we recall some statements from [8].

Theorem 3.2. ([8], Theorem 4.5) Assume 1 ≤ p <∞, 0 < θ ≤ ∞. Let ω ∈ {
Ωθ.

Set X =
{
LMpθ,ω.

(i) Let 0 < θ ≤ 1. Then

‖f‖X′ ≈ sup
t∈(0,∞)

‖f‖Lp′ (B(0,t))‖ω‖−1
Lθ(0,t),

with the positive constant in equivalency independent of f .
(ii) Let 1 < θ ≤ ∞. Then

‖f‖X′ ≈
(∫

(0,∞)

‖f‖θ′Lp′ (B(0,t))d
(
−‖ω‖−θ′Lθ(0,t+)

)) 1
θ′

+
‖f‖Lp′ (Rn)

‖ω‖Lθ(0,∞)

,

with the positive constant in equivalency independent of f .

Theorem 3.3. ([8], Theorem 4.6) Assume 1 ≤ p <∞, 0 < θ ≤ ∞. Let ω ∈ Ωθ.
Set X = LMpθ,ω.

(i) Let 0 < θ ≤ 1. Then

‖f‖X′ ≈ sup
t∈(0,∞)

‖f‖
Lp′ (

{B(0,t))
‖ω‖−1

Lθ(t,∞),

with the positive constant in equivalency independent of f .
(ii) Let 1 < θ ≤ ∞. Then

‖f‖X′ ≈
(∫

(0,∞)

‖f‖θ′
Lp′ (

{B(0,t))
d‖ω‖−θ′Lθ(t−,∞)

) 1
θ′

+
‖f‖Lp′ (Rn)

‖ω‖Lθ(0,∞)

,

with the positive constant in equivalency independent of f .

In fact more general results, which are important for our applications, are true.

Theorem 3.4. Assume 1 ≤ p < ∞, 0 < θ ≤ ∞. Let ω ∈ {
Ωθ. For any fixed

x ∈ Rn set X =
{
LM

{x}
pθ,ω.

(i) Let 0 < θ ≤ 1. Then

‖f‖X′ ≈ sup
t∈(0,∞)

‖f‖Lp′ (B(x,t))‖ω‖−1
Lθ(0,t),
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with the positive constant in equivalency independent of f and x.
(ii) Let 1 < θ ≤ ∞. Then

‖f‖X′ ≈
(∫

(0,∞)

‖f‖θ′Lp′ (B(x,t))d
(
−‖ω‖−θ′Lθ(0,t+)

)) 1
θ′

+
‖f‖Lp′ (Rn)

‖ω‖Lθ(0,∞)

,

with the positive constant in equivalency independent of f and x.

Proof. Let x be any fixed point in Rn. Then

‖f‖X′ = ‖f‖( {LM
{x}
pθ,ω

)′ = sup

{∫
Rn
|f(y)g(y)|dy : ‖g‖ {LM

{x}
pθ,ω

≤ 1

}
= sup

{∫
Rn
|f(x+ y)g(x+ y)|dy : ‖g(x+ ·)‖ {LMpθ,ω

≤ 1

}
= sup

{∫
Rn
|f(x+ y)g(y)|dy : ‖g‖ {LMpθ,ω

≤ 1

}
= ‖f(x+ ·)‖( {LMpθ,ω

)′ .
It remains to apply Theorem 3.2. �

Theorem 3.5. Assume 1 ≤ p < ∞, 0 < θ ≤ ∞. Let ω ∈ Ωθ. For any fixed

x ∈ Rn set X = LM
{x}
pθ,ω.

(i) Let 0 < θ ≤ 1. Then

‖f‖X′ ≈ sup
t∈(0,∞)

‖f‖
Lp′ (

{B(x,t))
‖ω‖−1

Lθ(t,∞),

with the positive constant in equivalency independent of f and x.
(ii) Let 1 < θ ≤ ∞. Then

‖f‖X′ ≈
(∫

(0,∞)

‖f‖θ′
Lp′ (

{B(x,t))
d‖ω‖−θ′Lθ(t−,∞)

) 1
θ′

+
‖f‖Lp′ (Rn)

‖ω‖Lθ(0,∞)

,

with the positive constant in equivalency independent of f and x.

The proof of Theorem 3.5 is similar to that of Theorem 3.4 (we only need to
apply Theorem 3.3 instead of Theorem 3.2) and we omit it.

It was shown in [8] that for some values of parameters the dual spaces coincide
with the asssociated spaces. Namely, the following theorems were proved.

Theorem 3.6. ([8], Theorem 5.1) Assume 1 ≤ p <∞, 1 ≤ θ <∞. Let ω ∈ Ωθ

and ‖ω‖Lθ(0,∞) =∞. Then

(3.1) (LMpθ,ω)∗ =
{
LMp′θ′,ω̃ ,

where ω̃(t) = ωθ−1(t)
(∫∞

t
ωθ(s)ds

)−1
, under the following pairing:

< f, g >=

∫
Rn
fg.



8 A. GOGATISHVILI AND R.CH. MUSTAFAYEV

Moreover ‖f‖ {LMp′θ′,ω̃
= supg

∣∣∫
Rn fg

∣∣ , where the supremum is taken over all

functions g ∈ LMpθ,ω with ‖g‖LMpθ,ω
≤ 1.

Theorem 3.7. ([8], Theorem 5.2) Assume 1 ≤ p <∞, 1 ≤ θ <∞. Let ω ∈ {
Ωθ

and ‖ω‖Lθ(0,∞) =∞. Then

(3.2)
(

{
LMpθ,ω

)∗
= LMp′θ′,ω,

where ω(t) = ωθ−1(t)
(∫ t

0
ωθ(s)ds

)−1

, under the following pairing:

< f, g >=

∫
Rn
fg.

Moreover ‖f‖LMp′θ′,ω
= supg

∣∣∫
Rn fg

∣∣ , where the supremum is taken over all func-

tions g ∈ {
LMpθ,ω : ‖g‖ {LMpθ,ω

≤ 1.

In fact more general results hold true.

Theorem 3.8. Assume 1 ≤ p < ∞, 1 ≤ θ < ∞. Let ω ∈ Ωθ and ‖ω‖Lθ(0,∞) =
∞. Then for any x ∈ Rn

(3.3)
(
LM

{x}
pθ,ω

)∗
=

{
LM

{x}
p′θ′,ω̃ ,

where ω̃(t) = ωθ−1(t)
(∫∞

t
ωθ(s)ds

)−1
, under the following pairing:

< f, g >=

∫
Rn
fg.

Moreover ‖f‖ {LM
{x}
p′θ′,ω̃

= supg
∣∣∫

Rn fg
∣∣ , where the supremum is taken over all

functions g ∈ LM{x}
pθ,ω with ‖g‖

LM
{x}
pθ,ω
≤ 1.

Theorem 3.9. Assume 1 ≤ p < ∞, 1 ≤ θ < ∞. Let ω ∈ {
Ωθ and ‖ω‖Lθ(0,∞) =

∞. Then for any x ∈ Rn

(3.4)
(

{
LM

{x}
pθ,ω

)∗
= LM

{x}
p′θ′,ω,

where ω(t) = ωθ−1(t)
(∫ t

0
ωθ(s)ds

)−1

, under the following pairing:

< f, g >=

∫
Rn
fg.

Moreover ‖f‖
LM

{x}
p′θ′,ω

= supg
∣∣∫

Rn fg
∣∣ , where the supremum is taken over all func-

tions g ∈ {
LM

{x}
pθ,ω : ‖g‖ {LM

{x}
pθ,ω

≤ 1.

Proofs of Theorem 3.8 and Theorem 3.9 are analogous to proofs of Theorem
3.6 and Theorem 3.7, respectively and we omit them.
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4. New characterization of Morrey space

In this section we give new characterization of classical Morrey space.
Note that

g 7→ inf
x∈Rn

∫ ∞
0

r
n−λ
p
−1‖g‖

Lp′ (
{B(x,r))

dr

is positively homogeneous functional on
⋃
x∈Rn

{
LM

{x}
p′1,n−λ

p
−1

.

Denote by

(4.1) M̃p,λ :=
{
f ∈M(Rn, dx) : ‖f‖M̃p,λ

<∞
}

the associate space of the set of functions
⋃
x∈Rn

{
LM

{x}
p′1,n−λ

p
−1

, where

(4.2) ‖f‖M̃p,λ
:= sup

{∫
Rn
|fg| : inf

x∈Rn

∫ ∞
0

r
n−λ
p
−1‖g‖

Lp′ (
{B(x,r))

dr ≤ 1

}
.

To study properties of the space M̃p,λ following results are useful.

Lemma 4.1. Let 1 ≤ p <∞ and 0 < λ < n. Then the inequality

(4.3)

∫
Rn
|fg| ≤ C‖f‖Mp,λ

inf
x∈Rn

∫ ∞
0

r
n−λ
p
−1‖g‖

Lp′ (
{B(x,r))

dr,

holds with positive constant C independent of functions f and g.

Proof. For θ =∞ and w(t) = t
λ−n
n Corollary 3.5 (part (ii)) implies the following

inequality∫
Rn
|fg| ≤ C sup

t>0
t
λ−n
p ‖f‖Lp(B(x,t))

∫ ∞
0

r
n−λ
p
−1‖g‖

Lp′ (
{B(x,r))

dr,(4.4)

with constant C independent of f , g and x ∈ Rn. Therefore∫
Rn
|fg| ≤ C sup

x∈Rn, t>0
t
λ−n
p ‖f‖Lp(B(x,t))

∫ ∞
0

r
n−λ
p
−1‖g‖

Lp′ (
{B(x,r))

dr

= C‖f‖Mp,λ

∫ ∞
0

r
n−λ
p
−1‖g‖

Lp′ (
{B(x,r))

dr.

(4.5)

In view of arbitrariness of x we arrive at (4.3). �

Lemma 4.2. Let 1 ≤ p <∞ and 0 < λ < n. Then

(4.6) inf
x∈Rn

∫ ∞
0

r
n−λ
p
−1‖g‖

Lp′ (
{B(x,r))

dr = 0

if and only if g = 0 on Rn.
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Proof. Obviously, inf
x∈Rn

∫∞
0
r
n−λ
p
−1‖g‖

Lp′ (
{B(x,r))

dr = 0, when g = 0 a.e. on Rn.

Now assume that inf
x∈Rn

∫∞
0
r
n−λ
p
−1‖g‖

Lp′ (
{B(x,r))

dr = 0. For any fixed R > 0

consider the function f = χB(0,R). Obviously, f ∈ Mp,λ, since ‖χB(0,R)‖Mp,λ
≈

Rλ/p. Then by the inequality (4.3), we have
∫
B(0,R)

|f | = 0, therefore, f = 0 a.e.

on B(0, R). From arbitrariness of R, we get that f = 0 a.e. on Rn. �

Lemma 4.3. Let 1 ≤ p <∞ and 0 < λ < n. Then⋃
x∈Rn

{
LM

{x}
p′1,n−λ

p
−1
⊂ Lloc

1 (Rn).

Proof. Let g be any function from
⋃
x∈Rn

{
LM

{x}
p′1,n−λ

p
−1

. Then there exists x ∈ Rn

such that g ∈ {
LM

{x}
p′1,n−λ

p
−1

. Let R be any fixed positive number. Since the

function f = χB(x,R) ∈Mp,λ and ‖f‖Mp,λ
≈ Rλ/p, by the inequality (4.5) we get∫

B(x,R)

|g(y)|dy ≤ CR
λ
p ‖g‖ {LM

{x}
p′1, n−λp −1

<∞.

In view of arbitrariness of R we get that g ∈ Lloc
1 (Rn). �

Lemma 4.4. Assume 1 ≤ p < ∞ and 0 < λ < n. Moreover, let f ∈ Lloc
p′ (Rn).

Then for any fixed x ∈ Rn and R > 0

fχB(x,R) ∈
{
LM

{x}
p′1,n−λ

p
−1
.

Proof. Indeed, for any fixed x ∈ Rn and R : 0 < R <∞, we get

‖fχB(x,R)‖ {LM
{x}
p′1, n−λp −1

=

∫ ∞
0

r
n−λ
p
−1‖fχB(x,R)‖Lp′ ( {B(x,r))

dr

=

∫ ∞
0

r
n−λ
p
−1

(∫
{B(x,r)∩B(x,R)

|f |p′
) 1

p′

dr

=

∫ R

0

r
n−λ
p
−1

(∫
{B(x,r)∩B(x,R)

|f |p′
) 1

p′

dr

≤
(∫

B(x,R)

|f |p′
) 1

p′
∫ R

0

r
n−λ
p
−1dr

= c1R
n−λ
p

(∫
B(x,R)

|f |p′
) 1

p′

<∞. �

Our main result in this section reads as follows.

Theorem 4.5. Assume 1 ≤ p <∞ and 0 < λ < n. Then

(4.7) ‖f‖Mp,λ
≈ ‖f‖M̃p,λ

.
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Proof. By Lemma 4.1, it is easy to see that

‖f‖M̃p,λ
. ‖f‖Mp,λ

.

Let us to prove opposite estimate ‖f‖Mp,λ
. ‖f‖M̃p,λ

. If ‖f‖M̃p,λ
= ∞, then

there is nothing to prove. Assume that ‖f‖M̃p,λ
<∞.

Observe that for g ∈ Lloc
p′ (Rn) the inequality

(4.8)

∫
B(x,R)

|fg| ≤ CR
n−λ
p

(∫
B(x,R)

|g|p′
) 1

p′

‖f‖M̃p,λ

holds with constant C > 0 independent of f , g, x and R. Indeed, let x be any
fixed point in Rn and R > 0. When

∫
B(x,R)

|g|p′ = 0 there is nothing to prove,

since in this case g = 0 a.e. on B(x,R). Assume that
∫
B(x,R)

|g|p′ > 0. Denote by

(4.9) h(y) =
g(y)χB(x,R)(y)

c1R
n−λ
p

(∫
B(x,R

|g|p′
) 1
p′
.

By Lemma 4.4

h ∈ {
LM

{x}
p′1,n−λ

p
−1
,

and moreover, ‖h‖ {LM
{x}
p′1, n−λp −1

≤ 1. Consequently,

inf
x∈Rn

∫ ∞
0

r
n−λ
p
−1‖h‖

Lp′ (
{B(x,r))

dr ≤ 1.

Therefore

(4.10)

∫
Rn
|hf | ≤ ‖f‖M̃p,λ

,

and from (4.9), we get (4.8).
The inequality (4.8) implies that f ∈ Lloc

1 (Rn). By Theorem of Resonance
(see [12, Lemma 27, p.283]) we get that f ∈ Lloc

p (Rn). The function g :=

|f |p−1χB(x,R) ∈ Lloc
p′ (Rn), and if we put the function g into the inequality (4.8),

we obtain ∫
B(x,R)

|f |p ≤ cR
n−λ
p

(∫
B(x,R)

|f |p
) 1

p′

‖f‖M̃p,λ
.

Therefore,

R
λ−n
p

(∫
B(x,R)

|f |p
) 1

p

≤ c‖f‖M̃p,λ
.

Since a constant c is independent of x and R, we get

‖f‖Mp,λ
≤ c‖f‖M̃p,λ

. �
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5. Intersection and union of complementary local Morrey-type
spaces

In this section we investigate some properties of intersection and union of
complementary local Morrey-type spaces.

The following lemma is true.

Lemma 5.1. Let 0 < p, θ ≤ ∞ and w ∈ {
Ωθ

⋂
42. Then for any x1, x2 ∈ Rn,

x1 6= x2

(5.1)
{
LM

{x1}
pθ,w (Rn)

⋂
{
LM

{x2}
pθ,w (Rn) =

{
LMpθ,w(Rn)

⋂
Lp(Rn).

Proof. In order to prove that

(5.2)
{
LM

{x1}
pθ,w (Rn)

⋂
{
LM

{x2}
pθ,w (Rn) ⊂ {

LMpθ,w(Rn)
⋂

Lp(Rn)

observe that for x1 6= x2

(5.3)
{
LM

{x1}
pθ,w (Rn)

⋂
{
LM

{x2}
pθ,w (Rn) ⊂ Lp(Rn).

Indeed, let f ∈ {
LM

{x1}
pθ,w (Rn)

⋂ {
LM

{x2}
pθ,w (Rn). Since for any R > 0 and x ∈ Rn

‖f‖ {LM
{x}
pθ,ω

=

(∫ ∞
0

w(r)θ‖f‖θ
Lp( {B(x,r))

dr

) 1
θ

≥
(∫ R

0

w(r)θ‖f‖θ
Lp( {B(x,r))

dr

) 1
θ

&

(∫ R

0

w(r)θdr

) 1
θ

‖f‖
Lp( {B(x,R))

(5.4)

and w ∈ {
Ωθ, then f ∈ Lp(

{
B(xi, R)), i = 1, 2. Denote by R0 = |x1 − x2|/2.

Then

‖f‖Lp(Rn) ≤ ‖f‖Lp( {B(x1,R0))
+ ‖f‖

Lp( {B(x2,R0))
<∞.

It proves (5.3). Remains to show that

(5.5)
{
LM

{x1}
pθ,w (Rn)

⋂
{
LM

{x2}
pθ,w (Rn) ⊂ {

LMpθ,w(Rn).

Let f ∈ {
LMx

pθ,w(Rn), where x is a fixed point in Rn. For any r > 2|x| we have
{
B(0, r) ⊂ {

B(x, r/2). Indeed, for y ∈ B(x, r/2) we get |y| ≤ |y − x| + |x| ≤
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r/2 + r/2 = r, that is, B(x, r/2) ⊂ B(0, r). Using w ∈ 42,

‖f‖ {LMpθ,ω
=

(∫ ∞
0

w(r)θ‖f‖θ
Lp( {B(0,r))

dr

) 1
θ

=

({∫ 2|x|

0

+

∫ ∞
2|x|

}
w(r)θ‖f‖θ

Lp( {B(0,r))
dr

) 1
θ

.

(∫ 2|x|

0

w(r)θdr

) 1
θ

‖f‖Lp(Rn) +

(∫ ∞
2|x|

w(r)θ‖f‖θ
Lp( {B(x,r/2))

dr

) 1
θ

.

(∫ 2|x|

0

w(r)θdr

) 1
θ

‖f‖Lp(Rn) +

(∫ ∞
0

w(r)θ‖f‖θ
Lp( {B(x,r))

dr

) 1
θ

≈

(∫ 2|x|

0

w(r)θdr

) 1
θ

‖f‖Lp(Rn) + ‖f‖ {LM
{x}
pθ,ω

.

(5.6)

Let f ∈ {
LM

{x1}
pθ,w (Rn)

⋂ {
LM

{x2}
pθ,w (Rn). By (5.3) f ∈ Lp(Rn). Then by (5.6), we

get that f ∈ {
LMpθ,ω, since w ∈ {

Ωθ. �

Corollary 5.2. Let 0 < p, θ ≤ ∞ and w ∈ {
Ωθ

⋂
42. Then

(5.7)
⋂
x∈Rn

{
LM

{x}
pθ,w(Rn) =

{
LMpθ,w(Rn)

⋂
Lp(Rn).

Lemma 5.3. Let 0 < p, θ ≤ ∞ and w ∈ {
Ωθ

⋂
42. Then for any x ∈ Rn

(5.8)
[

{
LMpθ,w(Rn)

⋂
Lp(Rn)

]
{LM

{x}
pθ,w(Rn)

=
{
LM

{x}
pθ,w(Rn),

that is, the set
{
LMpθ,w(Rn)

⋂
Lp(Rn) is dense in

{
LM

{x}
pθ,w(Rn).

Proof. Let x be any fixed point Rn. For f ∈ {
LM

{x}
pθ,w(Rn) and any k ∈ N, denote

by fk = fχB(x,k)\B(x, 1
k

). It is evident that fk → f , k → ∞ a.e in Rn. By

Lebesgue’s Dominated Convergence Theorem, we get that

‖f − fk‖ {LM
{x}
pθ,w(Rn)

→ 0, k →∞.

On the other hand, it is evident that fk ∈ Lp(Rn), k ∈ N. Since fk ∈
{
LM

{x}
pθ,w(Rn),

by (5.6), we get that fk ∈
{
LMpθ,w(Rn). Finally, we arrive at

fk ∈
{
LMpθ,w(Rn)

⋂
Lp(Rn). �
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Lemma 5.4. Let 0 < p, θ ≤ ∞ and w ∈ {
Ωθ

⋂
42. Then for any x1, x2 ∈ Rn

such that x1 6= x2

(5.9)
[

{
LM

{x1}
pθ,w (Rn)

⋂
{
LM

{x2}
pθ,w (Rn)

]
{LM

{xi}
pθ,w (Rn)

=
{
LM

{xi}
pθ,w(Rn), i = 1, 2.

Proof. The statement immediately follows from Lemma 5.1 and Lemma 5.3. �

6. New characterization of pre-dual space of Morrey space

In this section we prove that the space
{
GMp′1,n−λ

p
−1 is pre-dual space of the

Morrey space GMp∞,λ−n
p

.

Theorem 6.1. Let 1 ≤ p <∞ and 0 < λ < n. Then(
{
GMp′1,n−λ

p
−1

)∗
= GMp∞,λ−n

p
.

Proof. Let f ∈ GMp∞,λ−n
p

and g ∈ {
GMp′1,n−λ

p
−1. For any representation of

g =
∑

k gk with gk ∈
{
LM

{xk}
p′1,n−λ

p
−1

and
∑

k ‖gk‖ {LM
{xk}

p′1, n−λp −1

<∞, where xk ∈ Rn,

we have∣∣∣∣∫
Rn
f(x)g(x)dx

∣∣∣∣ =

∣∣∣∣∣
∫

Rn
f(x)

∑
k

gk(x)dx

∣∣∣∣∣ ≤∑
k

∫
Rn
|f(x)gk(x)|dx.

Applying (4.4), we get∣∣∣∣∫
Rn
f(x)g(x)dx

∣∣∣∣ . ‖f‖GMp∞, λ−np

∑
k

‖gk‖ {LM
{xk}

p′1, n−λp −1

(6.1)

Since (6.1) holds for any representation of g, then∣∣∣∣∫
Rn
f(x)g(x)dx

∣∣∣∣ . ‖f‖GMp∞, λ−np
‖g‖ {GM

p′1, n−λp −1

.(6.2)

It proves that GMp∞,λ−n
p
⊂
(

{
GMp′1,n−λ

p
−1

)∗
.

Let us show that
(

{
GMp′1,n−λ

p
−1

)∗
⊂ GMp∞,λ−n

p
. It follows from the definition

of the space
{
GMp′1,n−λ

p
−1 that for any fixed x ∈ Rn

{
LM

{x}
p′1,n−λ

p
−1
⊂ {

GMp′1,n−λ
p
−1,

and
‖f‖ {GM

p′1, n−λp −1

≤ ‖f‖ {LM
{x}
p′1, n−λp −1

.
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If L ∈
(

{
GMp′1,n−λ

p
−1

)∗
, then for any x ∈ Rn

(6.3) |L(f)| ≤ C‖f‖ {GM
p′1, n−λp −1

≤ C‖f‖ {
LM

{x}
p′1, n−λp −1

for every f ∈ {
LM

{x}
p′1,n−λ

p
−1

. Thus L ∈
(

{
LM

{x}
p′1,n−λ

p
−1

)∗
. By Theorem 3.7,(

{
LM

{x}
p′1,n−λ

p
−1

)∗
= LM

{x}
p∞,λ−n

p

,

and there exists unique gx ∈ LM{x}
p∞,λ−n

p

such that

(6.4) L(f) =

∫
Rn
f(z)gx(z)dz

for any f ∈ {
LM

{x}
p′1,n−λ

p
−1

. It is easy to see that if x1, x2 ∈ Rn, x1 6= x2, then

gx1 = gx2 .
Indeed, by (6.4) we get that

(6.5)

∫
Rn

(gx1 − gx2)f = 0

for any f ∈ {
LM

{x1}
p′1,n−λ

p
−1

(Rn)
⋂ {

LM
{x2}
p′1,n−λ

p
−1

(Rn). By Lemma 5.4, we have[
{
LM

{x1}
pθ,w (Rn)

⋂
{
LM

{x2}
pθ,w (Rn)

]
{LM

{xi}
pθ,w (Rn)

=
{
LM

{xi}
pθ,w(Rn), i = 1, 2.

In view of fact that
{
LM

{xi}
p′1,n−λ

p
−1

(Rn), i = 1, 2 are Banach spaces and the inter-

section
{
LM

{x1}
p′1,n−λ

p
−1

(Rn)
⋂

{
LM

{x2}
p′1,n−λ

p
−1

(Rn)

is subspace both of them, we get that gx1 = gx2 . By (6.3)∫
Rn
f(z)g(z)dz ≤ C‖f‖ {LM

{x}
p′1, n−λp −1

.

Thus

‖g‖
LM

{x}
p∞, λ−np

≤ C.

Since constant C does not depend on x, we get that

‖g‖GM
p∞, λ−np

<∞.

Summarizing, we have already proved that there exists unique g ∈ GMp∞,λ−n
p

(6.6) L(f) =

∫
Rn
fg
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for every f ∈
⋃
x∈Rn

{
LM

{x}
p′1,n−λ

p
−1

. Let us prove that (6.6) holds for any f ∈
{
GMp′1,n−λ

p
−1. Let f be any function from GMp′1,n−λ

p
−1 and f =

∑
k fk be any

representation of f with fk ∈
{
LM

{xk}
p′1,n−λ

p
−1

and
∑

k ‖fk‖ {LM
{xk}

p′1, n−λp −1

<∞, where

xk ∈ Rn. For finite representation there is nothing to prove. Assume that the
representation is infinite, that is, f =

∑∞
k=1 fk. Since∣∣∣∣∣L (f)− L

(
m∑
k=1

fk

)∣∣∣∣∣ =

∣∣∣∣∣L
(

∞∑
k=m+1

fk

)∣∣∣∣∣
≤

∞∑
k=m+1

|L(fk)| .
∞∑

k=m+1

‖fk‖ {LM
{xk}

p′1, n−λp −1

→ 0, m→∞,

and, using (4.4),∣∣∣∣∣
∫

Rn
fg −

∫
Rn

(
m∑
k=1

fk

)
g

∣∣∣∣∣
=

∣∣∣∣∣
∫

Rn

(
f −

m∑
k=1

fk

)
g

∣∣∣∣∣ =

∣∣∣∣∣
∫

Rn

(
∞∑

k=m+1

fk

)
g

∣∣∣∣∣
≤

∞∑
k=m+1

∫
Rn
|fkg| . ‖g‖GMp∞,λ

∞∑
k=m+1

‖fk‖ {LM
{xk}

p′1, n−λp −1

→ 0, m→∞,

we arrive at

L(f) =

∫
Rn
fg

for any f ∈ {
GMp′1,n−λ

p
−1. �

7. Equivalent Predual Spaces

For p > 1 there are already three characterization of the predual space of a
Morrey space in the literature. First, in 1986, C.T. Zorko proved the following
theorem.

Theorem 7.1 ([14], Theorem 5). Let p ∈ (1,∞) and λ ∈ (0, n). Then a predual
space of Mp,λ is Zp′,λ in the following sense: if g ∈ Mp,λ, then

∫
Rn fg is an

element of (Zp′,λ)∗. Moreover, for any L ∈ (Zp′,λ)∗, there exists g ∈ Mp,λ such
that

L(f) =

∫
Rn
fg, f ∈ Zp′,λ.
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The space Zp′,λ is defined by the set of all functions f on Rn with the norm

‖f‖Zp′,λ = inf

{
‖{ck}‖`1 : f =

∑
k

ckak

}
<∞,

where ak is a (p′, n − λ)-atom and ‖{ck}‖ =
∑

k |ck| < ∞, and the infimum is
taken over all possible atomic decompositions of f . Additionally, we say that a
function a on Rn is an (p′, n − λ)-atom provided that a is supported on a ball
B ⊂ Rn and satisfies

‖a‖p′ ≤
1

|B|
n−λ
np

.

Second, in 1998, E.A. Kalita obtained another description of the predual space
of a Morrey space as follows.

Theorem 7.2 ([9], Theorem 1). Let p ∈ (1,∞) and λ ∈ (0, n). Then a predual
space of Mp,λ is Kp′,λ in the following sense: if g ∈ Mp,λ, then

∫
Rn fg is an

element of (Kp′,λ)∗. Moreover, for any L ∈ (Kp′,λ)∗, there exists g ∈ Mp,λ such
that

L(f) =

∫
Rn
fg, f ∈ Kp′,λ.

The Kp′,λ consists of all functions f on Rn with the quasi-norm

‖f‖Kp′,λ = inf
σ

(∫
Rn
|f |p′ω1−p′

σ

) 1
p′

,

where

ωσ(x) =

∫
Rn+1

+

r−(n−λ)1R1
+

(r − |x− y|)dσ(y, r),

and where the infimum is taken over all σ ∈ M+(Rn+1
+ ) (the class of all nonneg-

ative Radon measures on the upper half space Rn+1
+ = {(x, r) : x ∈ Rn, r > 0})

with normalization σ(Rn+1
+ ) = 1.

Third, in 2004, D.R. Adams and J. Xiao obtained another description of the
predual space of a Morrey space as follows.

Theorem 7.3 ([2], Theorem 2.3). Let p ∈ (1,∞) and λ ∈ (0, n). Then the
pre-dual space of Mp,λ is Hp′,λ under the following pairing:

< f, g >=

∫
Rn
fg.

Moreover,

‖f‖Mp,λ
= sup

g

∣∣∣∣∫
Rn
fg

∣∣∣∣ ,
where the supremum is taken over all functions g ∈ Hp′,λ with ‖g‖Hp′,λ ≤ 1.
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We say that g is in Hp′,λ if

(7.1) ‖g‖Hp′,λ = inf
ω

(∫
Rn
|g|p′ω1−p′

) 1
p′

<∞,

where the infimum is over all nonnegative function ω on Rn satisfying

‖ω‖
L1(Λ

(∞)
n−λ)
≤ 1.

Here Λ
(∞)
d , 0 < d ≤ n, denotes the d-dimensional Hausdorff capasity, that is,

Λ
(∞)
d (E) = inf

∑
rdj ,

where the infimum is taken over all countable coverings of E ⊂ Rn by open balls
of radius rj.

The following relationship obtained in [2].

Theorem 7.4 ([2], Theorem 3.3). Let p ∈ (1,∞) and λ ∈ (0, n). Then Zp′,λ =
Kp′,λ = Hp′,λ with

‖ · ‖Zp′,λ ≈ ‖ · ‖Kp′,λ ≈ ‖ · ‖Hp′,λ .

Let us compare
{
GMp′1,n−λ

p
−1 with known pre-dual spaces. The following

Lemma is true.

Lemma 7.5. Let 1 ≤ p <∞ and 0 < λ < n. Then⋃
x∈Rn

{
LM

{x}
p′1,n−λ

p
−1
⊂ Zp′,λ.

Proof. Let x be any point in Rn and let f be any function from
{
LM

{x}
p′1,n−λ

p
−1

. It

is possible to decompose f in the following way:

f =
∑
k

2k
n−λ
p ‖f‖Lp′ (B(x,2k)\B(x,2k−1))

fχB(x,2k)\B(x,2k−1)

2k
n−λ
p ‖f‖Lp′ (B(x,2k)\B(x,2k−1))

.

Denote by λk = 2k
n−λ
p ‖f‖Lp′ (B(x,2k)\B(x,2k−1)) and ak =

fχ
B(x,2k)\B(x,2k−1)

2
k n−λp ‖f‖

Lp′ (B(x,2k)\B(x,2k−1))

.

Note that ak is (p′, n − λ)-atom. Indeed, it is obvious that supp ak ⊂ B(x, 2k).
On the other hand,

‖ak‖Lp′ (Rn) =
1

2k
n−λ
p

≈
1

|B(x, 2k)|
n−λ
np

.
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Note that {λk} ∈ `1. Indeed,∑
k

|λk| =
∑
k

2k
n−λ
p ‖f‖Lp′ (B(x,2k)\B(x,2k−1))

.
∑
k

∫ 2k−1

2k−2

r
n−λ
p
−1dr‖f‖

Lp′ (
{B(x,2k−1))

.
∑
k

∫ 2k−1

2k−2

r
n−λ
p
−1‖f‖

Lp′ (
{B(x,r))

dr

.
∫ ∞

0

r
n−λ
p
−1‖f‖

Lp′ (
{
B(x,r))

dr = ‖f‖ {
LM

{x}
p′1, n−λp −1

.

Recall the following fact: If ψ is a testing function supported in B(x1, r1) and a
is an atom, we have ∣∣∣∣∫ a(x)ψ(x)dx

∣∣∣∣ ≤ r
−λ
p

1 ‖ψ‖∞

(see, for instance, [14]).
Therefore f =

∑
k λkak in the sense of distributions. Thus f ∈ Zp′,λ and

‖f‖Zp′,λ . ‖f‖ {LM
{x}
p′1, n−λp −1

<∞. �

Finally, we prove that the space
{
GMp′1,n−λ

p
−1 coincide with known pre-dual

spaces, namely, the following Theorem is true.

Theorem 7.6. Let 1 ≤ p <∞ and 0 < λ < n. Then
{
GMp′1,n−λ

p
−1 = Zp′,λ.

Proof. At first prove that

Zp′,λ ⊂
{
GMp′1,n−λ

p
−1.

Let f ∈ Zp′,λ. Suppose f =
∑

k ckak, where each ak is (p′, n−λ)-atom supported

in some ball B(xk, rk) and
∑

k |λk| < ∞. Observe that ak ∈
{
LM

{xk}
p′1,n−λ

p
−1

.

Indeed,

‖a‖ {LM
{xk}

p′1, n−λp −1

=

∫ ∞
0

r
n−λ
p
−1‖ak‖Lp′ ( {B(xk,r))

dr =

∫ rk

0

r
n−λ
p
−1‖ak‖Lp′ ( {B(xk,r))

dr

. r
n−λ
p

k ‖ak‖Lp′ (Rn) .
r
n−λ
p

k

|B(xk, rk)|
n−λ
np

= c1 <∞.

Then ∑
k

‖ckak‖ {LM
{xk}

p′1, n−λp −1

. c1

∑
k

|ck| <∞,
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that is, f ∈ {
GMp′1,n−λ

p
−1.

Conversely, by Lemma 7.5

⋃
x∈Rn

{
LM

{x}
p′1,n−λ

p
−1
⊂ Zp′,λ.

Assume that f ∈ {
GMp′1,n−λ

p
−1 and f =

∑
k fk be any representation of f with

fk ∈
{
LM

{xk}
p′1,n−λ

p
−1

and
∑

k ‖fk‖ {LM
{xk}

p′1, n−λp −1

<∞, where xk ∈ Rn. Then

‖f‖Zp′,λ = ‖
∑
k

fk‖Zp′,λ ≤
∑
k

‖fk‖Zp′,λ .
∑
k

‖fk‖ {LM
{xk}

p′1, n−λp −1

<∞. �
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