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Abstract. We show that nuclear C∗-algebras have a refined version of the
completely positive approximation property, in which the maps that approxi-
mately factorize through finite dimensional algebras are convex combinations
of order zero maps. We use this to show that a separable nuclear C∗-algebra
A which is closely contained in a C∗-algebra B embeds into B.

The decomposition rank and nuclear dimension of a C∗-algebra are noncom-
mutative notions of covering dimension which play a prominent role in the struc-
ture and classification theory of C∗-algebras (see, e.g. [ET08, Win10a, Win10b]).
These dimensions are defined in terms of uniformly decomposable completely
positive approximations of nuclear C∗-algebras. The main theorem of this paper
places these definitions in a broader context by providing a sharpening of the
completely positive approximation property: nuclear C∗-algebras always have
decomposable completely positive approximations.

We apply our approximation theorem to resolve a problem in perturbation
theory of nuclear C∗-algebras. Given two C∗-algebras A and B concretely rep-
resented on the same Hilbert space, say that A ⊆γ B if operators in the unit
ball of A can be approximated in B upto γ. In [Chr80], Christensen showed
that a sufficiently small near containment M ⊆γ N of von Neumann alge-
bras with M injective induces an embedding M ↪→ N . In the C∗-context,
[CSS+09, Theorem 6.10 ] (see also [CSS+10]) produces embeddings from suffi-
ciently small uniform near containments A ⊆γ B when A is separable and has
finite nuclear dimension, however the estimates in this result depend on the nu-
clear dimension of A. The approximation theorem enables us to remove the
hypothesis of finite nuclear dimension and establish a C∗-version of Christensen’s
embedding theorem with a universal constant valid for all separable nuclear C∗-
algebras. This is the subject of Section 2.

Recall that a C∗-algebraA is nuclear if and only if it has the completely positive
approximation property ([CE78, Kir77]), that is, if for any finite subset F ⊆ A
and for any ε > 0 there is a finite dimensional C∗-algebra A0 and completely
positive contractions
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such that ‖ϕ ◦ ψ(a) − a‖ < ε for all a ∈ F . We call the triple (A0, ψ, ϕ) a CP
approximation for (F, ε). The decomposition rank was introduced in [KW04] us-
ing order zero maps and decomposable maps. A completely positive contraction
ϕ : A → B is said to be an order zero map if ϕ preserves orthogonality, i.e. when-
ever self-adjoint elements x, y ∈ A satisfy xy = 0 then we also have ϕ(x)ϕ(y) = 0.
A completely positive map ϕ : A → B is said to be n-decomposable if A decom-
poses into a direct sum A = A0 ⊕ A1 ⊕ · · · ⊕ An such that ϕ|Ak is an order
zero map for all k. If ϕ is n-decomposable for some n, we will say that ϕ is
decomposable. A nuclear C∗-algebra A is said to have decomposition rank n if n
is the smallest number such that for every finite subset F ⊆ A and ε > 0, there
exist CP approximation (A0, ψ, ϕ) where ϕ is n-decomposable. The definition of
nuclear dimension in [WZ10] uses a slightly weaker condition on approximating
triples, asking that we can approximate (F, ε) by a triple (A0, ψ, ϕ) with A0 fi-
nite dimensional, ψ a completely positive contraction and ϕ an n-decomposable
map (but not necessarily contractive). This notion reaches purely infinite C∗-
algebras, whereas C∗-algebras with finite decomposition rank are quasidiagonal
and therefore stably finite ([KW04]).

In Theorem 1.4, we refine the completely positive approximation theorem and
show that ifA is nuclear, then one can always chose CP approximations such that
the maps ϕ going back into A are decomposable and contractive, only without an
upper bound on the number of summands involved in the decomposition. In fact,
the theorem is stronger - the map ϕ can be chosen to be a convex combination of
order zero maps. Thus, one can always choose decomposable CP approximations,
and the definitions of decomposition rank and nuclear dimension simply require
placing an uniform bound on the number of summands present.

In Section 3, we present an approximation theorem for weakly nuclear com-
pletely positive contractions Φ: B → M from separable exact C∗-algebras into
properly infinite von Neumann algebras. Such maps can be approximated in the
point-weak∗ topology by a convex combination of ∗-homomorphisms B →M. In
fact we can find a fixed ∗-homomorphism ϕ : B →M so that Φ can be approxi-
mated by convex combinations of two unitary conjugates of ϕ. As a consequence
we obtain another proof of a special case of Theorem 1.4, under the additional
assumption that M(A) admits a unital embedding of O2 (e.g. if A is stable).

Part of the work on this paper was done while the authors visited the CRM in
Barcelona and we thank the CRM for its hospitality. I.H. also wishes to thank
Nate Brown for some helpful conversations regarding this paper.

1. Approximation via convex combinations of order zero maps

In this section we establish our strengthening of the completely positive ap-
proximation property for nuclear C∗-algebras. The first step is to establish a
Kaplansky density lemma for order zero maps. Recall from [KW04, Remark 2.4]
that order zero maps are projective in the sense that whenever J CD is an ideal
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and ϕ : F → D/J is an order zero map from a finite dimensional C∗-algebra,
there exists an order zero map ϕ̃ : F → D lifting ϕ, i.e. q ◦ ϕ̃ = ϕ, where
q : D → J is the quotient map. As noted in [KW04], the projectivity of order
zero maps arises from the correspondence between order zero maps F → A and
∗-homomorphisms from the cone on F into A and Loring’s projectivity of the
cones on finite dimensional C∗-algebras (see [Lor97]).

Lemma 1.1. Let A ⊂ B(H) be a separable C∗-algebra, and let M be the weak∗-
closure of A. Let F be a finite dimensional C∗-algebra and ϕ : F → M be an
order zero map. Then there exists a sequence (ϕn)∞n=1 of order zero maps F → A
such that ϕn(x)→ ϕ(x) in weak∗-topology for all x ∈ F .

Proof. Let D be the collection of all bounded sequences (xn)∞n=1 in A which
converge in the weak∗-topology on B(H) to some x ∈M. This is a C∗-subalgebra
of `∞(A). To see that D is norm closed, consider a sequence (x(m))∞m=1 in D
converging to x ∈ `∞(A). For each m ∈ N, write y(m) ∈ M for the weak∗-limit

of the sequence (x
(m)
n )∞n=1 and note that the sequence (y(m))∞m=1 is bounded. By

weak∗-compactness, there is some weak∗-limit point y ∈ M of the y(m)’s. Fix
a weak∗-neighborhood V = {z ∈ B(H) : |ϕi(z) − ϕi(y)| < ε, i = 1, · · · , r} of y
given by some normal linear functionals ϕ1, · · ·ϕr of norm 1. Fix k0 ∈ N such
that ‖x(k0) − x‖ < ε/3 and |ϕi(y(k0)) − ϕi(y)| < ε/3 for i = 1, · · · , r. Now find

n0 ∈ N such that for n ≥ n0, |ϕi(x(k0)
n ) − ϕi(y(k0))| < ε/3. Thus for n ≥ n0, we

have xn ∈ V so that y is the weak∗-limit of the sequence (xn)∞n=1.
Now let J be the ideal inD consisting of weak∗-null sequences and note that the

argument above shows that J is norm closed in D. The quotient map D → D/J
is given by evaluating the weak∗-limit of a sequence in D. By the Kaplansky den-
sity theorem every element ofM is such a weak∗-limit and so D/J is canonically
∗-isomorphic to M.

Given a finite-dimensional C∗-algebra F and an order zero map ϕ : F → M,
projectivity enables us to lift ϕ to an order zero map ϕ̃ : F → D. Writing ϕ̃ as a
sequence (ϕn)∞n=1 of contractions F → A, each of the maps ϕn is order zero and
the lifting ensures that ϕn(x)→ ϕ(x) in weak∗-topology for all x ∈ F . �

Our next lemma uses the fact that AF algebras are locally reflexive to show that
hyperfinite von-Neumann algebras M (i.e. those containing a weak∗-dense AF
C∗-subalgebra) have a stronger version of semi-discreteness: the maps coming
back into M can be taken to be ∗-homomorphisms. If one defined a ‘semi-
discreteness dimension’ analogously to the nuclear dimension, then, as expected,
all injective von Neumann algebras would be zero dimensional. Recall that a
C∗-algebra B is said to be locally reflexive if for any finite dimensional operator
system E ⊂ B∗∗ there is a net of CP contractions ψν : E → B such that ψν(x)→ x
weak∗ for any x ∈ E (see [BO08]). We recall that any nuclear C∗-algebra is locally
reflexive, and in particular any AF algebra is locally reflexive.
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Lemma 1.2. Let M be a hyperfinite von-Neumann algebra. Then there exists a
net of finite dimensional subalgebras Aν and CP contractions Φν : M→ Aν such
that Φν(a)→ a in the weak∗ topology for any a ∈M.

Proof. Given x1, · · · , xn ∈ M and a weak∗-neighborhood V of 0, let E be the
finite dimensional operator system inM spanned by the xi. It suffices to produce
a finite dimensional subalgebra A ⊂ M and a completely positive contraction
Φ: M → A with Φ(xi) − xi ∈ V for i = 1, · · · , n, as then we can produce
a net of such maps indexed by finite subsets of M and a weak∗-neighborhood
basis of 0. Let B be a weak∗-dense AF subalgebra of M and regard M as a
von Neumann subalgebra of B∗∗. By local reflexivity there exists a completely
positive contraction ϕ : E → B with ϕ(xi)−xi ∈ V for all i. By choosing a finite
dimensional subalgebra A ⊂ B which ε-contains the image under ϕ of the unit
ball of E for a sufficiently small ε and composing ϕ by a conditional expectation
from B onto A, we may additionally assume that ϕ takes values in A. Arveson’s
extension theorem then enables us to extend this map to the required map Φ. �

The previous lemmas together with Connes’ theorem from [Con76] that in-
jectivity implies hyperfiniteness will now be used to derive an approximation
property for nuclear C∗-algebras in the weak topology in which the maps going
into the algebra are order zero.

Lemma 1.3. If A is a separable nuclear C∗-algebra, then there is a net of CP
contractions

A
ψν // Aν

ϕν // A
with Aν finite dimensional such that for all a ∈ A, ϕν ◦ψν(a)→ a weakly and ϕν
are order zero maps.

Proof. Since A is nuclear, A∗∗ is injective. If π is a GNS representation of A, then
π(A)′′ is a cutdown of A∗∗ by a central projection, and therefore is injective as
well. Since A is separable, π(A)′′ has separable predual, and hence is hyperfinite
by Connes’ theorem. Since A∗∗ is a direct sum of (possibly uncountably many)
hyperfinite W ∗-algebras, it is hyperfinite itself (see [Tak03]).

For a1, · · · , an ∈ A and a weak neighborhood V of 0 in A, take a weak neigh-
borhood W of 0 with W + W ⊆ V . By Lemma 1.2, find a finite dimensional
subalgebra A0 ⊂ A∗∗ and a CP map ψ : A∗∗ → A0 such that ψ(ai)− ai ∈ W for
i = 1, · · · , n. Applying Lemma 1.1 to the inclusion map A0 ↪→ A∗∗, we can find
an order zero map ϕ : A0 → A with ϕ(ψ(ai))−ψ(ai) ∈ W for i = 1, · · · , n. Thus
ϕ(ψ(ai))− ai ∈ V for i = 1, · · · , n. Using nets indexed by finite subsets of A and
weak-neighborhoods of 0 gives the result. �

We are now in a position to deduce the main result of the paper from the
preceding lemmas. This works in the same way as the completely positive ap-
proximation property of a C∗-algebra is deduced from semidiscreteness of its
bidual.
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Theorem 1.4. If A is a nuclear C∗-algebra, then for any finite set F ⊆ A and
any ε > 0 there is a CP -approximation (A0, ψ, ϕ), ψ : A → A0, ϕ : A0 → A for
F to within ε such that ϕ, ψ are CP contractions, A0 is finite dimensional, and
ϕ is a convex combination of finitely many contractive order zero maps.

Proof. Since any finite subset of a nuclear C∗-algebra is contained in a separable
nuclear subalgebra (see [BO08]), we may assume without loss of generality that
A is separable.

It follows from the Hahn-Banach theorem that any convex subset of B(A) has
the same point-norm and point-weak closures. Thus, let K0 ⊆ B(A) be the set
of all contractive CP maps T : A → A which admit a factorization T = ϕ ◦ ψ,

where A ψ−→ A0
ϕ−→ A, with A0 finite dimensional, ψ a CP contraction and

ϕ an order zero map, and let K = conv(K0). By Lemma 1.3, the identity map
A → A lies in the point-weak closure of K0 and so there is a net of elements
Tλ ∈ K such that Tλ(a)→ a in norm for all a ∈ A.

We finally note that any T ∈ K can be decomposed as

A
ψ

//

T

''
B ϕ

// A

with B finite dimensional and ϕ a finite convex combination of order zero maps,
as follows. Write T =

∑n
i=1 tiTi, a convex combination of elements Ti ∈ K0.

Decompose each Ti as

A
ψi

//

Ti

((
Bi ϕi

// A

with ϕi order zero. Setting B =
⊕n

i=1 Bi, ψ(a) =
⊕n

i=1 ψi(a) and, denoting
ϕ̃i(a1 ⊕ a2 ⊕ ...⊕ an) = ϕi(ai), we can take ϕ =

∑n
i=1 tiϕ̃i to obtain the required

decomposition of T . �

2. Near Inclusions

In this section we apply Theorem 1.4 to near containments. First we recall the
definition of a near inclusion.

Definition 2.1. Let A and B be C∗-subalgebras of B(H). For γ > 0, write
A ⊆γ B if for each a ∈ A, there exists b ∈ B with ‖a− b‖ ≤ γ. Write A ⊂γ B if
there exists γ′ < γ with A ⊆γ B.

Combining Theorem 1.4 with a perturbation theorem for order zero maps from
[CSS+09], we can linearize a near inclusion A ⊂γ B when A is nuclear.

Lemma 2.2. Let A ⊂γ B be a near inclusion of C∗-algebras and suppose that
A is nuclear. Let η = 2(2γ + γ2)(2 + 2γ + γ2). Then there exists η0 < η with
the property that for each finite subset Z of the unit ball of A, there exists a
contractive CP map Φ: A → B such that ‖ψ(z)− z‖ ≤ η0 for z ∈ Z.
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Proof. Fix γ0 < γ so that A ⊆γ0 B and choose ε > 0 such that

η0 = 2(2γ0 + γ2
0)(2 + 2γ0 + γ2

0) + ε < η.

Given a finite subset Z of the unit ball of A, use Theorem 1.4 to produce a CP
approximation (A0, ϕ, ψ), ϕ : A → A0, ψ : A0 → A for Z to within ε such that
ϕ and ψ are CP contractions, A0 is finite dimensional, and ψ =

∑n
i=1 λiψi is a

convex combination of order zero maps. For each i, use [CSS+09, Theorem 6.4]

to find a CP map θ̃i : A0 → B with ‖θ̃i − ψi‖cb ≤ (2γ0 + γ2
0)(2 + 2γ0 + γ2

0). By

rescaling each θ̃i if necessary we can find contractive CP maps θi : A0 → B with
‖ψi − θi‖cb ≤ 2‖θ̃i − ψi‖cb. Define θ =

∑n
i=1 λiθi. This is a contractive CP map

with ‖θ − ψ‖cb ≤ 2(2γ0 + γ2
0)(2 + 2γ0 + γ2

0). Thus Φ = θ ◦ ϕ is a contractive CP
map from A into B with

‖Φ(z)− z‖ ≤ ‖θ(ϕ(z))− ψ(ϕ(z))‖+ ‖ψ(ϕ(z))− z‖ ≤ η0, z ∈ Z. �

The embedding theorem below now follows immediately from [CSS+09,
Lemma 4.1] (taking the µ of that lemma to be small enough that 8

√
6(η0)1/2 +

η0 + µ < 8
√

6η1/2 + η).

Theorem 2.3. Let A ⊂γ B be a near inclusion of C∗-algebras for some γ satis-
fying

η = 2(2γ + γ2)(2 + 2γ + γ2) < 1/210000.

Suppose that A is separable and nuclear. Then for each finite subset X of the unit
ball of A, there exists an embedding θ : A ↪→ B with ‖θ(x) − x‖ ≤ 8

√
6η1/2 + η,

for x ∈ X.

Note that the examples of Johnson [Joh82] show that in the situation of Theo-
rem 2.3 it is not generally possible to construct embeddings θ : A → B which are
uniformly close to the inclusion of A into the underlying B(H).

3. Completely positive maps from exact C∗-algebras

In this last section, we examine weakly nuclear completely positive maps
from exact algebras into properly infinite von Neumann algebras. Via the O2-
embedding theorem, such maps are automatically nuclear (see Remark 3.4 below).
More surprisingly we can approximate all such maps by convex combinations of
∗-homomorphisms. In fact more is true. An average of two unitary conjugates of
a given ∗-homomorphism can be used to make this approximation. This can be
used to give a different proof of Theorem 1.4 under the stronger assumption that
O2 embeds in unitially in the multiplier algebra of A (as happens when A is sta-
ble). This alternative approach avoids using Connes’ theorem on the equivalence
of injectivity and hyperfiniteness. We begin by recalling the standard fact that
properly infinite von Neumann algebras absorb B(`2) tensorially.

Lemma 3.1. Let M be a properly infinite von-Neumann algebra. Then M ∼=
M⊗B(`2).
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Proof. Since 1 is properly infinite,M has a countably infinite family of mutually
equivalent orthogonal projections which sum up to 1. Denoting one of those pro-
jections by e, it follows from [Tak02, Proposition V.1.22], thatM∼= eMe⊗B(`2).
Since B(`2) ∼= B(`2)⊗B(`2), we see that

M∼= eMe⊗B(`2)⊗B(`2) ∼=M⊗B(`2). �

We next prove a dilation lemma for unital completely positive maps into prop-
erly infinite von-Neumann algebras. In this lemma and the following theorem,
we write ∼ for the Murray-von Neumann equivalence relation on projections.

Lemma 3.2. Let A be a separable unital C∗-algebra, M be a properly infinite
von Neumann algebra and ϕ : A →M a unital completely positive map. Given a
projection p ∈M with 1 ∼ p ∼ 1−p, there exists a ∗-homomorphism θ : A →M
with pθ(x)p = pϕ(x)p for all x ∈ A.

Proof. First note that the multiplier algebra M(K ⊗M) of K ⊗M is contained
in B(`2)⊗M. Indeed, representing M non-degenerately on a Hilbert space H
so that K ⊗M is non-degenerately represented on `2 ⊗ H, take an increasing
sequence (Pn)n of finite rank projections in K converging strongly to 1`2(N). Given
any idealizer x ∈ B(`2 ⊗H) (i.e. x satisfying x(K ⊗M), (K ⊗M)x ⊆ K ⊗M),
it follows that (Pn ⊗ 1)x(Pn ⊗ 1) ∈ K⊗M. By taking strong operator limits we
see that x ∈ B(`2)⊗M.

Let e be a rank one projection in K and, by identifyingM with the subalgebra
(e ⊗ 1)(K ⊗M)(e ⊗ 1) of K ⊗M, view ϕ as a completely positive map into
M(K⊗M). Write p0 = e⊗p, and apply Kasparov’s Stinespring theorem [Kas80,
Theorem 3] to the map x 7→ p0ϕ(x)p0 to obtain a partial isometry v ∈M(K⊗M)
and a ∗-homomorphism π : A →M(K⊗M) with p0ϕ(x)p0 = vπ(x)v∗ for x ∈ A.
By the previous paragraph, we can view π as taking values in B(`2)⊗M and v
as a partial isometry in this algebra. We may assume that v = vπ(1) so that
vv∗ = p0. Set q0 = v∗v.

Write N0 = B(`2)⊗M. Under the identification of M with B(`2)⊗M of
Lemma 3.1, we see that e ⊗ 1M is identified with e ⊗ 1B(`2) ⊗ 1M ∼ 1B(`2) ⊗
1B(`2) ⊗ 1M. Undoing this identification, we have e ⊗ 1M ∼ 1B(`2) ⊗ 1M in N0.
Thus q0 ∼ p0 = e ⊗ p ∼ e ⊗ 1M ∼ 1B(`2) ⊗ 1M. Now consider N1 = B(`2)⊗N0

and let p1 = e ⊗ p0, q1 = e ⊗ q0. Arguing as above, we see that p1 ∼ q1 ∼ 1N1 .
Furthermore

1N1 − q1 = (1B(`2) − e)⊗ q0 + (1B(`2) ⊗ (1N0 − q0))

∼ 1B(`2) ⊗ q0 + (1B(`2) ⊗ (1N0 − q0)) = 1N1 .

In conclusion, we obtain the equivalence e⊗ e⊗ (1M − p) ∼ e⊗ e⊗ 1M ∼ 1N1 ∼
1N1 − q1 and so there is a partial isometry w ∈ N1 with ww∗ = e⊗ e⊗ (1M − p)
and w∗w = 1N1 − q1. Since e ⊗ v and w have orthogonal domain projections
and orthogonal range projections, u = e ⊗ v + w is an isometry in N1 with
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uu∗ = e⊗e⊗1M. Define a ∗-homomorphism θ : A → (e⊗e⊗1M)N1(e⊗e⊗1M)
by θ(x) = u(1⊗ π(x))u∗. As (e⊗ e⊗ p)u = e⊗ v, we have

(e⊗ e⊗ p)θ(x)(e⊗ e⊗ p) = (e⊗ v)(1⊗ π(x))(e⊗ v)∗ = e⊗ p0ϕ(x)p0, x ∈ A.
IdentifyingM with (e⊗e⊗1M)N1(e⊗e⊗1M), we can view θ as a ∗-homomorphism
from A into M with pθ(x)p = pϕ(x)p for x ∈ A, as required. �

We can now establish our approximation result for weakly nuclear completely
positive contractions from separable exact algebras into properly infinite von
Neumann algebras. Given a state λ on a von Neumann algebra M, we write
‖x‖λ for λ(x∗x)1/2.

Theorem 3.3. Let M be a properly infinite von-Neumann algebra and let B be
a separable exact C∗-algebra. Let Φ: B → M be a weakly nuclear completely
positive contraction.

(1) There exists an injective ∗-homomorphism ϕ : B → M such that Φ is in
the point-weak∗ closure of the convex hull of the family of maps {u∗ϕ(·)u |
u ∈ U(M)}. The ∗-homomorphism ϕ can be taken to be unital when Φ is
unital.

(2) Furthermore, if A ⊆ M is a weak∗-dense C∗-algebra such that Φ(B) ⊆
A and O2 is unitally contained in the multiplier algebra M(A) ⊆ M
(e.g. if A is stable) then one can find an injective ∗-homomorphism ϕ :
B →M(A) such that Φ is in the point-σ(M(A),M∗)-closure of the convex
hull of the family of maps {e−ihϕ(·)eih | h ∈ As.a., ‖h‖ < π}. Again ϕ can
be taken to be unital when Φ is unital.

Proof. We first reduce to the case in which both B and Φ are unital. If B is not
unital, then we can add a unit to B and extend Φ uniquely to a unital CP map
from the unitization. If B was already unital but Φ is not, then we can adjoin a
new unit to B and extend Φ to a unital map as well (see [BO08, Section 2.2], for
example). We thus assume that B is unital and Φ is unital.

Next, we reduce to the case where B is the Cuntz algebra O2. By [KP00,
Theorem 2.8], we can find a unital embedding of B in O2. Since Φ is weakly
nuclear, we can take a net (Φτ ) of CP -approximations to Φ in the point-weak∗

topology which factorize through finite dimensional algebras as

B
Sτ

//

Φτ

))
Mnτ Tτ

//M

where Sτ , Tτ are CP and unital. Use Arveson’s extension theorem to extend
Sτ to a unital CP map S̃τ : O2 → Mnτ . Then any cluster point of (Tτ ◦ S̃τ ) is
an extension of Φ to O2. Thus we may assume without loss of generality that
B = O2.

Since M is properly infinite, O2 embeds unitally into M. Fix such a unital
embedding ϕ : O2 → M. We will show that convex combinations of unitary
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conjugates of ϕ can be used to approximate Φ. To this end, fix a finite dimensional
operator system X ⊆ M, normal states ρ1, ...ρn ∈ M∗ and ε > 0. We will find
unitaries u1, u2 ∈ U(M) such that∣∣∣∣ρi(1

2
(u∗1ϕ(x)u1 + u∗2ϕ(x)u2)− Φ(x)

)∣∣∣∣ < ε‖x‖, x ∈ X.

Since X, ε and the states ρ1, · · · , ρn are arbitrary, this will establish the result.
Note that it actually proves more; Φ can be approximated by a convex combina-
tion of two unitary conjugates of ϕ.

By the Radon-Nikodym theorem for states (see [BO08, Proposition 3.8.3]),
there is a normal state λ ∈M∗ such that in the corresponding GNS representation
πλ with cyclic vector ξλ we can find positive operators y1, ..., yn ∈ πλ(M)′ satisfy-
ing ρi(x) = 〈πλ(x)ξλ, yiξλ〉 for i = 1, · · · , n. Fix ε′ > 0 such that 3‖yi‖

√
ε′+ε′ < ε

for all i. As M is properly infinite, there exists a projection p1 ∈ M with
p1 ∼ 1− p1 ∼ 1 such that

(3.1) ‖(1− p1)Φ(x)‖2
λ = λ(Φ(x)∗(1− p1)Φ(x)) ≤ ε′‖x‖2, x ∈ X.

By Lemma 3.2, there is a ∗-homomorphism κ : O2 →M such that

(3.2) p1κ(a)p1 = p1Φ(a)p1, a ∈ O2.

Let s = 1− 2p1, then s is a self-adjoint unitary and we have

1

2
(s∗κ(a)s+ κ(a)) = p1κ(a)p1 + (1− p1)κ(a)(1− p1), a ∈ O2.

For any y ∈M, the estimate (3.1) gives

‖y(1− p1)‖2
λ = λ((1− p1)y∗y(1− p1)) ≤ ‖y‖2λ(1− p1) ≤ ‖y‖2ε′,

as 1 ∈ X. Using (3.2), we have

‖(1− p1)κ(x)(1− p1) + p1κ(x)p1 − Φ(x)‖λ
≤‖(1− p1)κ(x)(1− p1)‖λ + ‖(1− p1)Φ(x)‖λ + ‖p1Φ(x)(1− p1)‖λ ≤ 3‖x‖

√
ε′,

for any x ∈ X, using (3.1) to estimate the middle term and the previous estimate
for the first (with y = (1− p1)κ(x)) and third (with y = p1Φ(x)). Therefore

|ρi(p1κ(x)p1 − Φ(x))| ≤ 3‖x‖‖yi‖
√
ε′, i = 1, · · ·n, x ∈ X.

Since any two unital embeddings O2 → M are approximately unitary equiv-
alent (as any properly infinite von Neumann algebra M satisfies the hypotheses
of [Rør93, Theorem 3.6]), we can choose a unitary u ∈ U(M) such that

‖u∗ϕ(x)u− κ(x)‖ < ε′‖x‖, x ∈ X.
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Taking u1 = us and u2 = u, we have∣∣∣∣ρi(1

2
(u∗1ϕ(x)u1+u∗2ϕ(a)u2)−Φ(x)

)∣∣∣∣≤ ∣∣∣∣ρi(1

2
(s∗κ(x)s+κ(x))−Φ(x)

)∣∣∣∣+ε′‖x‖
≤3‖x‖‖yi‖

√
ε′ + ‖x‖ε′

≤‖x‖ε, i = 1, · · · , n, x ∈ X,
as claimed.

For part 2, note that we had the freedom to choose any embedding ϕ : O2 →M
and so we can ensure that the range of ϕ lies in M(A). As for the unitaries, asM
is a von-Neumann algebra, we can write the unitaries in the form eib for b ∈Msa

with ‖b‖ ≤ π. By Kaplansky’s density theorem, we can find a net of self-adjoint
elements hτ ∈ A with norm smaller than π which converge to b in the SOT.
Since the exponential function is SOT-continuous (see [Dav96, Lemma I.7.2], for
example), it follows that eihτ → eib in SOT, and therefore one could replace the
unitaries by exponentials as in the statement. �

We now show how the previous result gives a second proof of Theorem 1.4 under
the stronger assumption that M(A) admits a unital embedding of O2 (e.g. if A
is stable). To see this, note that if F is a finite dimensional C∗-algebra then any
completely positive contraction Φ: F → A ⊆ A∗∗ is in the point-σ(M(A),A∗)
closure of the convex hull of the ∗-homomorphisms from F to M(A) by Theorem
3.3. Cutting down by an appropriate approximate unit and using the stability of
order zero maps it follows that Φ is in the point-σ(A,A∗) closure of the convex hull
of the order zero maps from F to A. As before, it follows from the Hahn-Banach
theorem that in fact Φ is in the point-norm closure of convex combinations of
order zero maps from F to A.

Since A is nuclear, we can find a net of CP approximations Ψλ : A → Fλ,
Φλ : Fλ → A to the identity. By the argument above, we may assume without
loss of generality that Φλ is in fact a convex combination of order zero maps,
giving us the required result.

Remark 3.4. The fact that separable exact algebras embed in O2 can be used
to give another characterization of exactness as follows. A C∗-algebra B is exact
if and only every weakly nuclear CP contraction Φ from B into a von Neumann
algebra M is in fact nuclear.

Proof. If B satisfies the hypothesis of the remark, then take Φ to be any faithful
embedding of B into B(H) to see that B is nuclearly embeddable and therefore
exact (see [BO08]). Conversely, let B be exact and take a weakly nuclear CP
contraction Φ: B → M. Fix a finite dimensional operator system E ⊂ B and
consider the separable C∗-algebra B0 generated by E which is also exact. Thus
we can embed B0 in O2. As in the first part of the proof of Theorem 3.3, Φ|E
can be extended to O2 and so is nuclear as O2 is nuclear. Since E was arbitrary,
we can approximate Φ in the point-norm topology. �
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Theorem 3.3, requires M to be properly infinite. It is natural to ask what
happens when M is a finite von Neumann algebra.

Question 3.5. LetM be type II1 factor, let F be a finite dimensional C∗-algebra
and let Φ: F →M be a completely positive contraction. Can Φ be approximated
in the point-weak topology by convex combinations of order zero maps?

One could ask the question about finite von-Neumann algebras which are not
factors and do not have a type I part. One should note, though, that ifM is finite
dimensional then one would not necessarily be able to find such approximations
for completely positive maps, due to dimension restrictions. For example, if
n > m there are many CP maps from Mn to Mm but no non-zero order zero maps.
This question is also interesting when we restrict to trace preserving maps. Note
that different factorization properties of trace preserving contractive CP maps
between finite von Neumann algebras have been considered in the literature and
can be somewhat delicate, see [HM11], for example.
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