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L.J. CUMMINGS, J. LOW, AND T.G. MYERS

Abstract. Systematic asymptotic methods are used to formulate a model
for the extensional flow of a thin sheet of nematic liquid crystal. With no
external body forces applied, the model is found to be equivalent to the so-
called Trouton model for Newtonian sheets (and fibers), albeit with a modified
“Trouton ratio”. However, with a symmetry-breaking electric field gradient
applied, behavior deviates from the Newtonian case, and the sheet can undergo
finite-time breakup if a suitable destabilizing field is applied. Some simple exact
solutions are presented to illustrate the results in certain idealized limits, as
well as sample numerical results to the full model equations.

1. Introduction

Nematic liquid crystals are ubiquitous in nature, and find wide application
in many industrial processes. Many modern display devices, as well as other
optical applications (including those in the cosmetics industry: many modern
makeup products rely on liquid crystals for their iridescent optical qualities);
certain thermometers, and some biopathogen detection methods are just a few
examples where the liquid crystalline nature of the chemicals involved is key to
performance [15]. An understanding of how liquid crystals behave under a wide
variety of conditions is thus important; but due to the highly complex nature
of the governing dynamic equations it can be very challenging to investigate
behavior theoretically from a mechanistic viewpoint. Simple experimental setups
can therefore be very valuable as an investigative tool to reveal novel behavior
and new regimes not exhibited by Newtonian fluids. For example, a system
as simple as a spreading nematic droplet can exhibit highly complex fingering
instabilities [16]; an asymptotically-reduced mathematical model [1, 4, 5] reveals
that these are probably due to the different boundary effects at the rigid substrate
and the free surface.

In this paper we investigate another such simple experimental configuration
that allows free-surface dynamics to be investigated using analytical tools: a two-
dimensional “nematic liquid bridge”, or nematic sheet. This scenario is very well
understood for the Newtonian case (due to its wide application in, for example,
a variety of glass manufacturing processes; see for example [10,11] and references
therein), but apart from some preliminary experimental studies on nematic fibers
by Savage et al. [20], has not been studied in the nematic case. Here we employ
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systematic asymptotic methods to derive a simplified mathematical model for
the evolution of such a thin sheet. With certain simplifying assumptions a closed
system of governing equations coupling the flow velocity of the nematic liquid
crystal along the sheet’s centerline, and the sheet thickness, can be obtained.
The setup is similar to that of a drawn fiber (which was studied for the nematic
case by Cheong & Rey [19]), but, due to the simpler geometry of the sheet (which
makes dealing with the free surface anchoring conditions on the nematic molecules
easier), the model we obtain is more tractable analytically. To explore the sheet
dynamics more fully, we also consider its response to an applied electric field.

The paper is set out as follows: in section 2 we describe the modeling, the
asymptotic approximations made to derive a simplified model; and give a brief
discussion of suitable boundary conditions. Section 3 deals with simple explicit
solutions of the reduced asymptotic model: first possible steady states in the
presence of an electric field (and their stability characteristics) are considered;
and second, it is shown that when surface tension effects are neglected the model
may be solved exactly (special cases of such solutions are presented). The detailed
analysis of electric field effects is relegated to an Appendix. In section 4 we carry
out numerical simulations of the full unsteady model and explore dependence
on initial and boundary conditions, and on electric field gradients. Finally, in
section 5 we present our conclusions.

2. The model

The details of the theory governing the flow of NLCs are well documented
and provided in texts such as [3, 8, 14]. The notation we employ is mostly the
same as that used by Leslie [14], the two main functions being the velocity field
of the flow, v = (v1, v2, v3) = (u, v, w), and the director field n, the unit vector
describing the orientation of the anisotropic axis in the liquid crystal (an idealised
representation of the local preferred average direction of the rod-like liquid crystal
molecules). The evolution of n is determined by elastic stresses within the NLC,
by the local flow-field, and by any externally-acting fields. In this paper we shall
restrict attention to the 2D case in which flow, and the director field, are confined
to the (x, z)-plane, so that v = (v1, 0, v3) = (u, 0, w), and n = (sin θ, 0, cos θ).
We also neglect inertia from the outset, since only slowly-deforming sheets will
be considered.

The governing equations holding in the bulk sample (allowing for the possibility
of a dielectric effect due to an applied electric field E, but neglecting inertial
effects) are:

∂

∂xi

(
∂W

∂θxi

)
− ∂W

∂θ
+ g̃i

∂ni
∂θ

,(1)

0 = − ∂π
∂xi

+ g̃k
∂nk
∂θ

+
∂t̃ik
∂xk

(2)
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∂vi
∂xi

= 0,(3)

representing energy, momentum, and mass conservation, respectively. The quan-
tities g̃ and π are defined by

g̃i = −γ1Ni − γ2eiknk, eij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
,(4)

Ni = ṅi − ωiknk, ωij =
1

2

(
∂vi
∂xj
− ∂vj
∂xi

)
,(5)

π = p+W,(6)

where γ1 and γ2 are constants and p is the pressure; and W is the bulk energy,
containing elastic and possible dielectric contributions. It is defined in terms of
the director by

2W = K1(∇ · n)2 +K2(n · ∇ ∧ n)2 +K3

(
(n · ∇)n

)
·
(
(n · ∇)n

)
− εε⊥E ·E − ε(ε‖ − ε⊥)(n ·E)2,(7)

where K1, K2 and K3 are elastic constants, ε is the permittivity of free space and
ε‖ and ε⊥ are the relative dielectric permittivities parallel and perpendicular to

the long axis of the molecules. Finally, t̃ij is the extra-stress tensor (related to
the stress σij by σij = −πδij + t̃ij), given by:

t̃ij = α1nknpekpninj + α2Ninj + α3Njni + α4eij + α5eiknknj + α6ejknkni,(8)

where the αi are constant coefficients having the dimensions of viscosity though
they are not necessarily positive (they are related to the γi in (4) by γ1 = α3−α2,
γ2 = α6−α5), and µ = α4/2 corresponds to the dynamic viscosity in the standard
Newtonian (isotropic) case when all other αi are zero.

Equation (1) is the energy equation, in which the terms in W represent the
elastic energy associated with the director field; and the tendency of the director
to align in an applied electric field E (when ε‖ > ε⊥). The g̃ term couples to
the fluid flow. The three elastic contributions to the energy in (7) are known as
splay, twist and bend, respectively, and represent energy penalties incurred when
the director field has local behavior of these types [8].

The model must be solved subject to appropriate boundary conditions. For a
stretched sheet with free surfaces these are: an anchoring condition on the director
field at each of the free surfaces; a stress balance condition that equates the
stress vector at each sheet surface to any external forces acting; and a kinematic
condition at each sheet surface. Since any real sheet is of finite extent, we also
include boundary conditions at the sheet’s ends that specify how the sheet is
being stretched (specified end velocities, and a constant pulling force, are the two
driving scenarios considered here).

The anchoring condition models the fact that the molecules of the liquid crystal
have a preferred orientation at a free interface, and is detailed below. The stress
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balance takes the form

σν± = −γ̂κ±ν± on z = H ± h/2,(9)

where σij = −πδij + t̃ij is the stress tensor, ν± is the outward normal vector to
the free surface z = H ± h/2, κ± is its curvature; and γ̂ is a coefficient of surface
tension. The kinematic condition states

v · ν± = V ±ν on z = H ± h/2,(10)

where V ±ν is the outward normal velocity of the interface z = H ± h/2.

2.1. Scaling and nondimensionalisation. The experimental set-up we have in
mind is a thin 2D sheet of nematic liquid crystal (NLC), extended from its ends.
The Newtonian analog has been considered by several authors; we will follow the
approach of Howell [10, 11] (but see also van de Fliert, Howell & Ockendon [7]
and the many references within these papers for other asymptotic work on the
Newtonian problem).

We formulate the problem for the general case in which the NLC film occupies
the region between the two free surfaces z = H ± h/2, where H(x, t) represents
the centerline and h(x, t) is the thickness. However, as in the Newtonian case
it will emerge that the centerline is straight to leading-order for any sheet in
extensional flow (at least on any relevant timescales).

To derive systematic asymptotic approximations to the governing equations we
introduce appropriate scalings for the flow variables as follows [24]

(x, z) = L(x̃, δz̃), (u,w) = U(ũ, δw̃), t =
L

U
t̃, π =

µU

L
p̃,

where L is the lengthscale of typical variations in the x-direction (for example,
it could be the initial length of the sheet); U is a typical flow velocity along the

sheet axis (usually fixed by pulling on the sheet’s ends); δ = ĥ/L� 1 is a typical

aspect ratio of the sheet (ĥ being a typical sheet thickness), and µ ≡ α4/2 is
the representative viscosity scaling in the pressure (since this corresponds to the

usual viscosity in the isotropic case in (8)).1 We also write h = ĥh̃, H = ĥH̃ to
define the dimensionless sheet width and centerline equation.

If K = K1 is a representative value of the elastic constants K1, K2, K3, (7)
gives the appropriate scaling for W as

W =
K

δ2L2
W̃ ,

assuming that elastic effects are important at leading order. Since the director
field is a 2D unit vector we write it as

n = (sin θ, 0, cos θ), θ(x, z, t).(11)

1The coefficient α4 is always positive, as may be shown by considering the entropy of the
system [14].
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We assume further that the elastic constants K1 and K3 are equal: K1 = K3 = K
(see e.g. [8,22] for the validity of this commonly-used assumption), and that any
applied electric field has a component only in the z-direction:

E = a(x)ez +O(δ),(12)

(where a(x) is, in principle, arbitrary; see Appendix B for the detailed justi-
fication of this electric field, which is the most general form compatible with
Maxwell’s equations and with no variation across the sheet). Then we write
a(x) = E0ã(x̃) to nondimensionalize the electric field, where E0 is some represen-
tative field strength.

Henceforth we drop the tildes, on the understanding that we are working in
the dimensionless variables (unless explicitly stated otherwise).

2.2. Asymptotic expansion of the governing equations. In the dimension-
less variables, but dropping the tildes, the bulk energy W in (7) is

W =
1

2

(
θ2
z + δ2θ2

x

)
− δe(x) cos2 θ − δλe(x)(13)

where

e(x) =
ĥLE2

0a(x)2ε(ε‖ − ε⊥)

K
= e0a(x)2, λ =

ε⊥
ε‖ − ε⊥

,(14)

and thus, for example, e(x) is quadratic in x if a(x) is linear in x. Here we
assume that e, e0, a are order-one, so that elasticity is the dominant contribution
to the bulk energy; however, we allow the electric field effect to be comparable
to the surface energy, as we now explain.

The director field satisfies “anchoring” boundary conditions at each surface,
which model its tendency to align at a certain angle, θB, with the normal to
the interface ν (in the absence of external forces, θB is the angle that minimizes
surface energy for the system). Since both interfaces are free and assumed to be
in contact with air we take θB to be the same angle for each surface (though it
is possible that different conditions could be manufactured for the two surfaces,
for example, if the sheet is a barrier between two different gases). We take an
ad-hoc anchoring condition which says that, in the absence of an applied field,
the director will take the preferred direction; but that an applied field will act
to pull the anchoring angle towards the field direction (z-direction, within the
sheet):

θ = θBg(a(x)) on z = H ± h/2.(15)

The function g is monotonically decreasing in a and tends to zero for large a to
align the director fully with the field. One possible form, which is the form we
will assume for all of our example calculations in this paper, is

g(a) =
Eα
a

aα + Eα
a

,(16)



6 L.J. CUMMINGS, J. LOW, AND T.G. MYERS

for some parameters Ea > 0 (an alignment field strength) and α > 1. This
anchoring condition is only approximate, since in the absence of a field θ assumes
the value θB, whereas it should be the angle between n and ν that takes the value
θB. However, in our asymptotic approximation ν = ±(0, 1) + O(δ2), so that the
condition (15) is correct to the order required.

We asymptotically expand all dependent variables (θ, u, v, p, H, h) in powers

of the small parameter δ = ĥ/L, and substitute into equations (1)–(3) to obtain a
hierarchy of governing equations at orders 1, δ, δ2, etc. The boundary conditions
(9), (10) and (15) are Taylor-expanded onto the leading-order free boundaries
z = H0 ± h0/2 to yield boundary conditions for the governing equations at each
order in δ. The x- and z-components of the momentum equations (2) and the
energy equation (1) at leading order then reduce to

u0zz

(
α4 − (α2 − α5) cos2 θ0 + (α3 + α6) sin2 θ0 + 2α1 sin2 θ0 cos2 θ0

)
+

+2u0zθ0z

(
α2 + α3 − α5 + α6 + 2α1 cos 2θ0

)
sin θ0 cos θ0 = 0,(17)

u0zz

(
α1 + α2 + α3 + α5 + α6 + α1 cos 2θ0

)
sin θ0 cos θ0

)
− 2N̂θ0zzθ0z +

+u0zθ0z

(
α1 cos 4θ0 + (α1 + α2 + α3 + 2α5) cos 2θ0 − α2 + α3

)
= 0,(18)

2N̂θ0zz − u0z

(
α2 − α3 + (α6 − α5) cos 2θ0

)
= 0,(19)

respectively, where the dimensionless parameter N̂ = K/(µUδL) (an inverse
Ericksen number) measures the relative importance of elastic and viscous effects.
These equations must be solved subject to the leading-order boundary conditions
at z = H0 ± h0/2. The normal components of the stress conditions (9) at each
interface yield, at order δ−1,

u0z = 0 on z = H0 ± h0/2.(20)

The leading order in the anchoring conditions (15) gives

θ0 = θBg(a(x)) on z = H0 ± h0/2,(21)

while the kinematic conditions (10) give

w0 = H0t + u0H0x ±
1

2
(h0t + u0h0x) on z = H0 ± h0/2.(22)

Eliminating u0z between equations (18) and (19) reveals θ0z is constant and
hence u0z = 0. Applying the boundary conditions then determines

u0 = u0(x, t), θ0 = θ0(x) = θBg(a(x)),(23)

with g given by (16) (or similar). The leading-order incompressibility equation
(3) may now be integrated to give an expression for w0,

w0 = H0t + (u0H0)x − zu0x,(24)
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where we have applied a kinematic condition (22) at the top surface. Applying
the condition at the bottom surface provides the mass balance

h0t + (u0h0)x = 0 .(25)

To make further progress we need to examine higher orders in the governing
equations. At order δ in the x- and z-components of (2) we find

u1zz = 0,(26)

p0z = 0,(27)

where (26) was used to obtain (27). Hence p0 = p0(x). The O(δ) energy equation
(1) gives

u0x(α5 − α6) sin 2θ0 +
1

2

(
α3 − α2 + (α5 − α6) cos 2θ0

)
u1z

+ N̂
(
θ1zz − e(x) sin 2θ0

)
= 0.(28)

This last equation will give θ1 in terms of u0, θ0.
We now require the boundary conditions at the appropriate order. The O(1)

normal component of the stress conditions (9) gives

u1z =
u0x(α6 − α5 + α1 cos 2θ0) sin 2θ0

α4 − (α2 − α5) cos2 θ0 + (α3 + α6) sin2 θ0 + 2α1 sin2 θ0 cos2 θ0

≡ U1(θ0)u0x ,(29)

on z = ±h0

2
. Combining equations (26) and (29) gives

u1 = zU1(θ0)u0x + U0(x, t),(30)

where U0 is undetermined and U1 is defined in (29). The O(1) tangential compo-
nents of the stress conditions (9) give the same result on both upper and lower
free boundaries, z = ±h0/2,

p0(x, t) = −(α4 + (α5 + α6 + α1 cos 2θ0) cos2 θ0)u0x+

+
u0xU1(θ0)

2
(α1 + α2 + α3 + α5 + α6 + α1 cos 2θ0) sin θ0 cos θ0 −

γ

2
h0xx(31)

where γ = γ̂δ/(µU) is a dimensionless coefficient of interfacial tension. Since
the condition takes the same form on both free boundaries, and contains only
functions that are independent of z, in fact the right-hand side must give the
expression for the leading-order pressure throughout the sheet.

Returning to equation (28) above, we can now solve for θ1 after applying the
appropriate anchoring condition at O(δ), θ1 = 0 on z = ±h0/2. The problem
reduces to

θ1zz = e(x) sin 2θ0(32)

− u0x

N̂

[
(α5 − α6) sin 2θ0 +

U1(θ0)

2

(
α3 − α2 + (α5 − α6) cos 2θ0

)]
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≡ Q1(x)(33)

(here Q1(x) is introduced as convenient shorthand for the right-hand side of (32)).
Hence we determine the unique solution

θ1 =
Q1(x)

2

(
z2 − h0(x, t)

2

4

)
.(34)

We now have expressions for θ0, θ1, p0 and a mass balance relating the unknowns
u0, h0. To close the system we must continue to yet higher orders. The algebra
now becomes too cumbersome to describe in detail: it involves examining equa-
tion (2) to O(δ2), which leads to an equation for u2zz. Integration then leads
to

u2z|z=h0/2
− u2z|z=−h0/2

=

∫ h0/2

−h0/2

u2zz dz = h0K(x, t) ,(35)

where K is known in terms of u0, θ0. The terms u2z evaluated on both free
boundaries are given by the stress conditions (9) at O(δ). So, finally, we obtain
an extra equation relating u0 and h0, which can be solved, together with (25), to
yield the leading order solution.

We examine the cases with and without an electric field separately below. Since
we have now reduced the problem to one for leading-order dependent variables
u0, h0, θ0, we drop the subscripts on these quantities.

2.2.1. No electric field, a(x) = 0 = e(x). With no electric field the leading order
director angle θ is simply constant (see (23)), dictated by anchoring conditions,
and we may set it to zero with no loss of generality (the solvability condition (35)
above is somewhat messy for a general value of θ (see equation (71) in Appendix
A), but in all cases takes the same general form). For θ = 0 we obtain(

2α4 + α1 + α5 + α6

)(
uxh
)
x

+
γ

2
hhxxx = 0,(36)

which must be solved together with equation (25),

ht + (uh)x = 0.(37)

The governing equations for a Newtonian film are retrieved by setting α1 = α2 =
α3 = α5 = α6 = 0 and α4 = 1. In general then the above equations are equivalent
to the Newtonian case, with a difference only of timescale. The first term in (36)
is the axial gradient of the (leading order) dimensionless tension in the sheet, and
the premultiplying factor is known as the Trouton ratio. The Newtonian limit
of equations (36) and (37) with surface tension γ = 0 is known as the Trouton
model for a viscous sheet, and was considered in detail by Howell [10, 11] (see
also references therein for earlier work on similar systems).

Appropriate boundary and initial conditions for equations (36) and (37) are
that the initial profile of the sheet, hi(x) = h(x, 0), is specified, and that we
apply conditions at each end of the sheet. We consider a sheet stretched between
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two plates that are pulled apart. We assume that one plate (one end of the
sheet) is fixed: u(0, t) = 0, while the other, at x = s(t), is pulled either with
(a) prescribed velocity, or (b) prescribed force F . In case (a) the appropriate
condition is u(s(t), t) = ṡ(t), with s(t) given (this is equivalent to specifying the
position of the sheet’s end); and in case (b) we have F = h(s(t), t)(−p(s(t), t) +
2ux(s(t), t)), where F is prescribed but s(t) is unknown. With γ = 0 these
conditions suffice to close the problem; but if γ 6= 0 then we need an extra
condition at each end, such as specification of the contact angle ∂h/∂x between
the fluid and the plate. The boundary conditions are discussed further when
solutions are presented in §3.

Since, to this order in the asymptotics, the behavior is essentially Newtonian
in this field-free case, and this was considered exhaustively by Howell and co-
authors [10,11], we move on to the more complicated model that results when an
electric field is applied.

2.3. Applied electric field. The analog of equation (36) is extremely compli-
cated with an applied field, and in the most general case it is not clear whether
it ought to simplify significantly. However, since with no applied field we obtain
essentially the Newtonian result, we are encouraged to examine the special case
α1 = α2 = α3 = α5 = α6 = 0 to make further progress, and to determine the
general form of the final governing equation in this situation. The appropriate
governing equations are now equation (37):

ht + (uh)x = 0.(38)

and

2α4

(
uxh
)
x

+ N̂h
(
e(x)(cos2 θ + λ)

)
x

+
γ

2
hhxxx = 0,(39)

where e(x) and λ are as defined in (14):

e(x) =
ĥLE2

0a(x)2ε(ε‖ − ε⊥)

K
= e0a(x)2, λ =

ε⊥
ε‖ − ε⊥

,(40)

and the director angle θ is prescribed by (23b) and (16):

θ0(x) = θBg(a(x)), with g(a) =
Eα
a

aα + Eα
a

,(41)

where θB is the anchoring angle. The function a(x) is determined by knowledge
of the applied electric field (see Appendix B). The problem once again reduces to
solving (38), (41) for u, h. In the following sections we consider various approaches
to solving this model.

3. Simple model solutions

We first consider some simple exact solutions of our model: (i) steady state,
achievable (in a nontrivial sense) only for the fixed-force end condition and with
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nonzero surface tension γ; and (ii) exact unsteady “pulling” solutions, where the
end velocity is prescribed, but surface tension is zero. These solutions, which
we present only for simple choices of electric field, can act as a guide for more
general numerical solutions, which we present later in §4.

We note that, for the steady solutions considered below, and for our subsequent
numerical results, it is convenient to work on a fixed length domain, [0, 1]. We
can re-scale by choosing ξ = x/s(t), where x = s(t) is the right-hand end of the
sheet, so that the domain in ξ-space is the interval [0, 1]. Then the governing
equations are

2sα4(uξh)ξ + N̂hs2
[
e(ξ)(cos2 θ + λ)

]
ξ

+
γ

2
hhξξξ = 0(42)

sht − ξsthξ + (uh)ξ = 0(43)

together with our definition for θ, (23b), (16).
When the velocities of the sheet ends are specified, appropriate boundary and

initial conditions are

u(0, t) = 0, u(s(t), t) = ṡ(t), h(ξ, 0) = hi(ξ)(44)

hξ(0, t) = −s cotφ0 = −sβ0 hξ(1, t) = s cotφ1 = sβ1 ,(45)

where s(t) is prescribed (and in the time-dependent case, we suppose s(0) = 1 for
definiteness), and φ0, φ1 are contact angles at x = 0, x = s(t). These angles are
specified when γ 6= 0; if surface tension is neglected we only require the first set
of conditions (44). If motion is driven by a specified force applied at one end of
the bridge, an extra condition is required since the domain length s(t) in x-space
is unknown. This condition is an explicit conservation of mass constraint, which
was automatically enforced by the previous boundary conditions (44). The force
condition at the pulling end is

F = h(−p+ 2ux) at x = s(t),(46)

and thus the boundary conditions (44) are replaced by

u(0, t) = 0, F = h

[
f(θ)

s
uξ +

γ

2s2
hξξ +

2

s
uξ

]
ξ=1

,(47)

V = s

∫ 1

0

h dξ,(48)

where f(θ) here is the coefficient of (−ux) in the expression for the pressure (31).
The position of the right hand boundary is defined by

st = u(1, t) s(0) = 1 .(49)

3.1. Steady states. With a prescribed (nonzero) velocity at the ends there is
clearly no steady state; however, with a prescribed force a steady state is possible.
Using the formulation above, the mass balance (43) shows that uh is constant,
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and since u(0, t) = 0 we infer that u = 0 everywhere. Setting u = 0 in (42), the
problem is then governed by

N̂s2
[
e(ξ)(cos2 θ + λ)

]
ξ

+
γ

2
hξξξ = 0.(50)

In the absence of an electric field the film thickness is quadratic, with coefficients
determined by conditions (45), (47)

h =
s

2
(β1 + β0)ξ

2 − sβ0ξ +
2sF

γ(β0 + β1)
+
s

2
(β0 − β1),(51)

where the βi are related to the contact angles; see (45). The position s of the
sheet’s right-hand end is then fixed by the volume condition (48) as

s2 = V

[
2F

γ(β0 + β1)
+

1

6
(β0 − 2β1)

]−1

,(52)

which simplifies to

s2 =
6γV β0

6F − γβ2
0

(53)

when the contact angles are equal (β1 = β0). This result seems counterintuitive
at first, since it says that a greater force corresponds to a shorter bridge, while
smaller forces support longer bridges. However, it makes sense, since the surface
tension force that must be countered is higher in a short, more highly-curved
bridge, while a longer bridge is flatter and easier to sustain. A sufficiently large
force applied to a short bridge would indeed elongate it; but if the force were
sustained at the same high level then the bridge would elongate indefinitely and
no steady state could be achieved. Note that there is a minimum threshold force
for a steady state to exist, but any force F > γβ2

0/6 gives rise to a steady state.
Any “pushing” force F < 0 acting to compress the sheet can never, of course,
yield a steady state.

With an electric field equation (50) integrates once immediately, but then the
remaining integration depends on the form of the field. In the simplest nontrivial
case, where the term [e(x)(cos2 θ + λ)] is linear in x, say

EF = N̂
[
e(x)(cos2 θ + λ)

]
x
,(54)

for constant EF , then

h = −EF s
3ξ3

3γ
+

[
(β0 + β1) +

s2EF
γ

]
sξ2

2
− β0sξ +

2sF

γ(β0 + β1)− s2EF
−

− s3EF
6γ

+
s

2
(β0 − β1).(55)
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The position s of the sheet’s end is again determined by (48), which leads to a
cubic equation for y = s2:

(EFy − γ(β0 + β1))

[
V − y

12

(
2(β0 − 2β1)−

EFy

γ

)]
+ 2Fy = 0.(56)

The requirement that y > 0 for a given field EF restricts the possible values for
F ; or vice-versa, if one thinks of specifying F and finding the field EF that gives
a steady solution. In particular, we see that for the right electric field, a steady
state can exist even with zero force F = 0. In this case (setting β1 = β0 for
simplicity),

y = −γβ0

EF
±

√
γ2β2

0

E2
F

− 12γV

EF
,

and while both solutions are negative for EF > 0, one is positive for EF < 0.
For such solutions, the film thickness h is always zero at the pulling end x = s,
as may be seen from condition (46). Note that the requirement that the film
thickness h ≥ 0 everywhere is not guaranteed, and solutions must be checked for
this property, as well as for positive sheet length.

At large fields |EF | � 1 solutions are possible only for EF > 0. In this case
an asymptotic expansion can be constructed for y = s2, in inverse powers of EF ,
and is found to yield

s2 =
γ(β0 + β1)

EF

[
1− 2F

V EF
+O

(
1

E2
F

)]
,

h = s

[
−1

3
(β0 + β1)ξ

3 + (β0 + β1)ξ
2 − β0ξ −

1

3
(2β1 − β0) +

V EF
γ(β0 + β1)

+O

(
1

EF

)]
provided F 6= 0 (this solution, which simplifies considerably for equal contact
angles β1 = β0, is valid for both extensional and compressive forces F , as long as
|F | � EF ). If the applied force F is large then it must be positive for solutions
to exist, and when F � 1 the asymptotic solution for y = s2 in inverse powers
of F takes the form

s2 =
γV

2F
(β0 + β1)

[
1− 1

12F

(
γ(β0 + β1)(β0 − 2β1) + 6EFV

)
+O

(
1

F 2

)]
(this solution is valid for fields EF of either sign, as long as |EF | � F ). The profile

h depends on ξ only at order 1/
√
F ; at leading order (order F ) and order-one h

is constant,

h =
2sF

γ(β0 + β1)

(
1 +

EFV

2F
+O(F−3/2)

)
.
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Several solutions, which illustrate the range of possibilities, are shown in fig-
ure 1. In all cases β0 = β1 = 0.5, which gives positive curvature, and γ = 1 = V .
A negative value for EF augments the surface tension force and so allows longer
bridges; a positive value requires shorter bridges. If we choose β0 = β1 < 0 there
is no real solution for s; no steady state of this kind exists, and presumably this
form of bridge would rupture, likely at its end(s).

(a) 0.0 0.2 0.4 0.6 0.8 1.0
x0.0

0.5

1.0

1.5

2.0
h

(b) 0.0 0.2 0.4 0.6 0.8 1.0
x0.0

0.5

1.0

1.5

2.0

h

(c) 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
x0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
h

Figure 1. Solutions to the steady state problem with a constant force ap-
plied at one end. (a) Applied force is F = 1, while the field values are: EF = 1
(dashed), EF = 0 (solid) and EF = −1 (dash-dotted). (b) Applied field is
such that EF = −10, while the force at the end is: F = 0 (solid), F = 0.25
(dashed), F = 1 (dash-dotted), and F = 2 (dotted). (c) Applied field is such
that EF = 10, while the force at the end is: F = 0.01 (dashed), F = −1
(solid).

3.2. Solution of the zero surface tension model, γ = 0. We now consider
the case in which surface tension is negligible in the model, setting γ = 0 in the
model (38)–(41) summarized in §2.3. Following the approach of Howell [10, 11]
for Newtonian sheets, this model may be solved, at least in certain special cases,
by introducing a Lagrangian transformation (x, t) 7→ (η, τ), where

xτ = u(x(η, τ), τ), x(η, 0) = η, t = τ.(57)

Then

∂τ = ∂t + u∂x, and uη = uxxη,
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so that (37) becomes

hτ +
huη
xη

= 0.(58)

Now note that u = xτ , so uη = xητ , and (58) becomes

hτxη + hxητ = (hxη)τ = 0 =⇒ xη =
hi(η)

h(η, τ)
,(59)

where hi(η) = h(η, 0) is the initial condition on the sheet profile.
In equation (39) we write

R(x) =
(
e(x)(cos2 θ + λ)

)
x
.(60)

We will consider R(x) to be a specifiable function, since e(x) = e0a(x)2, θ =
g(a(x)) is a given function of a(x), and we suppose the external electric field
may be chosen so as to generate any form of a(x) (how to calculate the required
external field is described in Appendix B; note however that many choices of a(x)
will require an external field that may be very difficult or impossible to generate
in practice). Writing the first term in (39) as −2α4(hτ )x, and using (59), equation
(39) (with γ = 0) becomes

4hητ
xη

= N̂Rh =⇒ 4hητ = N̂R(η)hi(η),(61)

where R is as defined in (60) above. The system is closed by suitable boundary
conditions as already discussed; with zero surface tension it is sufficient to specify
the positions of the sheet’s ends, or fix one end and specify the force applied to
the other end. In the former case it is easy to integrate twice to find the explicit
solution parametrically:

h(η, τ) = A(τ) + hi(η) +
τN̂

4

∫ η

0

R(η′)hi(η
′) dη′,(62)

where hi is the initial condition on the sheet thickness, h(η, 0) = hi(η) and A(τ)
is fixed by specifying the sheet length s(τ), with A(0) = 0:

s(τ) =

∫ 1

0

xηdη =

∫ 1

0

hi(η) dη

A(τ) + hi(η) + τN̂
4

∫ η
0
R(η′)hi(η′)dη′

.(63)

For physically-relevant solutions we assume s(τ) is a prescribed, increasing func-
tion of τ , with s(0) = 1.

The latter condition of a prescribed force at the sheet’s end leads to a more
complicated free boundary problem, and the exact solution cannot be obtained
so neatly. We do not consider this case further analytically.
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3.2.1. Specific solution family: Rhi constant. The simplest nontrivial case to con-
sider is when the combination Rhi is constant (e.g. constant R and an initially
flat sheet). Since hi > 0 necessarily, R is then of one sign for all relevant η, so
with no loss of generality we write R(η)hi(η) = sgn(R), and explicitly evaluate
the integral in (62) to give

h(η, τ) = A(τ) + hi(η) + sgn(R)
N̂ητ

4
.(64)

To determine A(τ) then requires that we evaluate the integral in (63),

s(τ) =

∫ 1

0

hi(η) dη

A(τ) + hi(η) + sgn(R) N̂ητ
4

=

∫ 1

0

dη

1 + |R|
(
A(τ) + sgn(R) N̂ητ

4

) ,(65)

which requires specification of hi or R, and the pulling function s(τ).
For the particular case in which both hi and R are constant (hi(η) = 1, R(η) =

sgn(R)) we can evaluate A(τ) explicitly, and also invert the relation (59) to find
x(η, τ), obtaining the exact solution parametrically as

h(η, τ) =
sgn(R)N̂ητ

4
+

sgn(R)N̂τ

4(exp( N̂ητ
4
s(τ))− 1)

,

x(η, τ) =
4

sgn(R)N̂τ
log

[
η

(
exp

(
sgn(R)N̂τ

4
s(τ)

)
− 1

)
+ 1

]
.

For any monotone increasing pulling function s(τ) (assuming s(τ) < ∞ while
τ < ∞) these solutions thin indefinitely at the ends (for both sgn(R) > 0, < 0),
but do not break off in finite time. Typical solutions are shown in figures 2 and 3.
By way of contrast we note that the equivalent Newtonian solution for hi(η) = 1

1 2 3 4

0.2

0.4

0.6

0.8

1.0

x

h
(x
,t

)

Figure 2. Exact solution to the unsteady problem for an initially-uniform
sheet hi(x, 0) = 1, with the right-hand end pulled at unit speed so that its
position is at s(t) = 1+t. The sheet profile is shown at times t = 0.1, 0.5, 1, 2, 3.
The applied field is such that R(x) = 1 (as defined in (60)), and the parameter
N̂ = 1.

is simply

h(η, τ) =
1

s(τ)
, x = ηs(τ)(66)
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1 2 3 4

0.2

0.4

0.6

0.8

1.0

x

h
(x
,t

)

Figure 3. Exact solution to the unsteady problem for an initially-uniform
sheet hi(x, 0) = 1, with the right-hand end pulled at unit speed so that its
position is at s(t) = 1+t. The sheet profile is shown at times t = 0.1, 0.5, 1, 2, 3.
The applied field is such that R(x) = −1 (as defined in (60)), and the parameter
N̂ = 1.

(set N̂ = 0 in (62), (63) and (59)), so the Newtonian sheet is unaffected by the
applied field and simply thins uniformly to conserve mass.

We can analyze the general solution (62) and show that for most choices of
initial condition, any choice of pulling function s(τ) for which s becomes arbi-
trarily large will lead ultimately to film breakup. However, we cannot say with
certainty where the film will break. So far in simulations film breakup has only
been observed at the endpoints – whether or not internal breakup can occur is
an open mathematical question.

4. Numerical solutions of the full model

We now present some numerical solutions of the full (time-dependent, nonzero
surface tension) model equations, which numerically we solve in the fixed-domain
form (42)–(43).

The first example we consider is the nonzero surface tension analog of the exact
solution of §3.2.1. Again, we take the electric field to be such that R(x) = ±1, as
defined in (60), and fix one end x = 0 of the initially uniform sheet (hi(x) = 1),
while the other end at x = s(t) is pulled at unit speed, so that u(s(t), t) = 1,
with s(t) = 1 + t (c.f. (44)). This form of the electric field is particularly simple
to implement, since the governing equation (42) reduces to

2s(uξh)ξ ± N̂hs3 +
γ

2
hhξξξ = 0,(67)

(recall we set α4 = 1 throughout). Since we include surface tension effects we must
also specify the contact angles at the sheet’s ends, as in (45). For an initially-flat
sheet we choose contact angles of π/2 (β0 = 0 = β1), since these are compatible
with the initial condition. The resulting numerical solutions are shown in figure
4, in which the left-hand figure with R(x) = 1 may be directly compared with
figure 2, and the right-hand figure with R(x) = −1 may be compared with 3. The

parameter N̂ = 1 in all cases, and results for surface tension parameter values
γ = 1 (solid curves), and γ = 4 (dashed curves) are shown. The sheet profile is
shown at times t = 0.1, 0.5, 1, 2, 3 as it extends.
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Different contact angles are explored by means of a different initial condition,

hi(ξ, 0) = c cosh([ξ − 0.5]/c)− c cosh(0.5/c) + 1,(68)

with c = 1.039 to match boundary conditions β0 = β1 = 0.5. Simulations for
this initial condition are shown in figure 5 (again, the left-hand subfigure has
R(x) = 1 while R(x) = −1 in the right-hand subfigure). Here the contact angles
at the sheet’s ends are specified by setting β0 = β1 = 0.5. The sheet’s right-hand
end is pulled at unit speed, the parameter N̂ = 1, and results for two surface
tension values γ = 1 (solid curves), and γ = 4 (dashed curves) are shown. The
evolution is shown over longer times here (up to t = 4 in the left-hand figure and
up to t = 6 in the right-hand figure) to give a qualitative feel for the large-time
evolution of such a sheet. While the behavior is qualitatively similar in zero

x

h
(x
,t

)

Figure 4. Numerical solutions to the unsteady problem with nonzero sur-
face tension, for an initially-uniform sheet hi(x, 0) = 1, with left-hand end fixed
at x = 0 and right-hand end at s(t) = 1+ t (pulled at unit speed). The applied
field is such that R(x) (defined in (60)) takes values R(x) = 1 (left-hand figure)
and R(x) = −1 (right-hand figure). The sheet profile h(x, t) is shown at times
t = 0, 0.1, 0.5, 1, 2, 3, for surface tension γ = 1 (solid) and γ = 4 (dashed).

x

h
(x
,t

)

Figure 5. Evolution of a non-flat initial sheet (68) under the action of the
electric field such that R(x) = 1 (left-hand plot; profile h(x, t) shown at times
t = 0, 0.1, 0.5, 1, 2, 3, 4) and R(x) = −1 (right-hand plot; profile h(x, t) shown
at times t = 0, 0.1, 0.5, 1, 2, 3, 4, 5, 6). Other details as for figure 4.

and nonzero surface tension cases, the general feature observed is that the sheet
thins more rapidly as surface tension decreases. These observations suggest that
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nonzero surface tension will delay the breakup of such sheets (though we are
unable to carry our numerics through to breakup time).

The final example we consider is a more realistic externally-applied electric
field, Eext, across an initially-uniform sheet. We use the external field given in
(81) (Appendix B),

Eext = ẑex + xeẑ,(69)

where ẑ is related to the dimensionless coordinate z (used from §2.2 onwards) by
ẑ = δz (it is the dimensionless but unstretched coordinate perpendicular to the
sheet). The corresponding field within the sheet is

E = a(x)ez +O(δ),(70)

where a(x) is determined by solving (82) numerically. The function a(x), together
with its gradient, is shown in figure 6; it is very close to linear, but not quite.
This function a(x) is substituted in (42), which is then solved together with (43)

x

a
(x

)

x

d
a
/d
x

Figure 6. Electric field function a(x) and its derivative.

subject to the boundary conditions. The results for the sheet evolution are shown
in figures 7 (end velocity of sheet specified) and 8 (constant force prescribed at
the sheet’s end), for the two surface tension values γ = 1, 4.

5. Discussion and conclusions

We have used systematic asymptotic expansions to derive a new model for the
dynamics of a thin film of nematic liquid crystal, under the action of stretching
from its ends, and an externally-applied electric field. With certain simplifying
assumptions (as outlined in §2), we deduce that (as for the Newtonian case) the
sheet is flat to leading order, its centerline lying along the x-axis. The asymptotic
analysis must be taken to second order in the film aspect ratio in order to obtain
a closed system; when this is done two coupled PDEs are obtained for the sheet
thickness h(x, t), and the velocity of the sheet along its axis, u(x, t). These PDEs
depend also on the director angle θ which, with the same anchoring conditions
on each free surface, is also a function only of the axial coordinate (and possibly
time), θ(x, t), and this is determined by the anchoring conditions at the free
surfaces of the sheet and by the externally-applied electric field, which can be
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Figure 7. Numerical solutions to the unsteady problem with nonzero sur-
face tension, for an initially-uniform sheet hi(x, 0) = 1 (left-hand figure)
and non-flat initial condition (68) (right-hand figure). The left-hand end is
fixed and its right-hand end is pulled at unit speed, so that its position is at
s(t) = 1 + t. The applied field is given by (69), (70) (a(x) as defined in (82)
and plotted in Fig. 6). The sheet profile h(x, t) at times t = 0, 0.1, 0.5, 1, 2, 3 is
shown, for surface tension γ = 1 (solid) and γ = 4 (dashed).
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h
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x

h
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Figure 8. Numerical solutions to the unsteady problem with nonzero sur-
face tension, for an initially-uniform sheet hi(x, 0) = 1 (left-hand figure, sheet
profile shown at times t = 0, 0.1, 0.5, 1, 2) and non-flat initial condition (68)
(right-hand figure, sheet profile shown at times t = 0, 0.1, 0.5, 1). The left-
hand end is fixed while the right-hand end is pulled with a force of 1.8 units,
and the applied field is as for Fig. 7. Surface tension values γ = 1 (solid) and
γ = 4 (dashed) are shown.

solved for separately as explained in Appendix B. This calculation of the electric
field is another contribution of this paper.

The full system, accounting for surface tension effects, the applied field, the
surface anchoring of the nematic molecules, and suitable conditions at the sheet’s
ends, is summarized in §2.3. With no applied field, it is found that the evolution
is exactly as for a Newtonian sheet, but the presence of an electric field gradient
can dramatically change matters. An exact method for finding solutions (which
follows the approach of Howell [10] for the Newtonian case) is presented for the
zero surface tension case. When surface tension effects are significant numerical
methods must be used, and several examples are presented for this case.

The analysis has several limitations, which a more in-depth (and consider-
ably more complicated) analysis is required to resolve. Firstly, in order to solve
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explicitly for the director angle, we only consider electric field effects that are sub-
dominant to the internal elasticity of the sheet (though dominant over surface
energy effects). Therefore, our analysis will be valid only for moderate applied
electric fields. Secondly, motivated in part by our zero-field results, which re-
duced essentially to the model for the Newtonian sheet, we used a “Newtonian”
simplification to reduce the governing equations in the applied-field case: that is,
we set all the Leslie viscosities other than the Newtonian analog, α4, to zero. We
saw explicitly that this simplification is rigorously justifiable in the field-free case,
but it is not obvious whether it is a legitimate simplification in the more general
case with an applied field. This issue would benefit from further consideration,
and in a future publication we will investigate very simple flows with an applied
field and different (nonzero) Leslie viscosities.

Experiments on a similar setup (but with liquid crystalline fibers, rather than
sheets, in extensional flow) have been carried out by Savage et al. [20]. Although
Newtonian fibers in extension are governed by the same model as Newtonian
sheets in extension (with a change only of Trouton ratio; the model is the same
as the field-free case derived here), an extensional nematic fiber is quite different
to an extensional nematic sheet, primarily because of the surface anchoring. With
a nematic sheet, it is trivial for the director to adopt the same anchoring condition
on each free surface (uniform director field throughout the sheet). However, for
a circular fiber, any anchoring angle other than planar anchoring at the fiber
surface leads to a nontrivial problem for the equilibrium director field within the
fiber. Thus, the asymptotic analysis for an extensional nematic fiber will be much
more complicated in general than the sheet considered here. These differences
make it impossible to compare our results to those of [20].
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Appendix A. Governing equation for general anchoring condition

F (θB)

G(θB)
(h0u

′
0(x))x +

γ

2
h0h0xxx = 0(71)
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where

G(θB) = (α1 cos(4θB)− α1 + 2 cos(2θB)(α2 + α3 − α5 + α6)+(72)

+ 2α2 − 2α3 − 4α4 − 2α5 − 2α6)(73)

F (θB) = (2 cos(2θB)(α1 + 2α4 + α5 + α6)(α2 + α3 − α5 + α6)+(74)

+ cos(4θB)(α1(α2 − α3) + (α2 + α3)(α5 − α6))+(75)

+ α1α2 − α1α3 − 4α1α4 − 2α1α5 − 2α1α6+(76)

+ 4α2α4 + α2α5 + 3α2α6 − 4α3α4 − 3α3α5 − α3α6−(77)

−8α2
4 − 8α4α5 − 8α4α6 − 2α2

5 − 4α5α6 − 2α2
6

)
(78)

Appendix B. The electric field within the sheet

The applied field satisfies Maxwell’s equations both inside and outside the ne-
matic sheet, with appropriate jump conditions at the interfaces. Within the sheet
the slender scalings apply, with x ∼ L, z ∼ δL; and if |E| ∼ E0 then the electric
potential φ ∼ δLE0. In dimensionless variables with these scalings then, the
electric field within the sheet satisfies

E = ∇φ = δφxex + φzez,(79)

and, accounting for the dielectric anisotropy within the nematic, Maxwell’s equa-
tions require ∇ · (εE) = 0, so that

(ε33φz)z + δ(ε13φx)z + δ(ε13φz)x + δ2(ε11φx)x = 0

within the sheet. In this 2D case the coefficients of the dielectric tensor ε can be
written explicitly in terms of the director components n1 = sin θ, n3 = cos θ, as

ε33 = (ε‖ − ε⊥) cos2 θ + ε⊥, ε13 = (ε‖ − ε⊥) sin θ cos θ, ε11 = (ε‖ − ε⊥) sin2 θ + ε⊥.

Since in the thin sheet approximation the director angle θ is independent of the
coordinate z perpendicular to the film to leading order (see (23)), so that ε33 is
independent of z, the leading-order electric potential φ0 satisfies

φ0 = za(x) + b(x),

corresponding to an electric field (from (79))

E = φ0zez +O(δ) = a(x)ez +O(δ).

Here a(x) is arbitrary, though in practice will have to match to a solution of
Maxwell’s equations outside the nematic sheet via the appropriate boundary con-
ditions.

With the free energy density scaled with K/(δ2L2), the dimensionless energy
density W is then given by

2W = θ2
z − δe(x)(cos2 θ + λ) +O(δ2),
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where

e(x) =
δL2E2

0ε0(ε‖ − ε⊥)

K
a(x)2 = e0a(x)2, λ =

ε⊥
ε‖ − ε⊥

,

and e(x) is assumed to be O(1).

B.1. The required exterior field. The above relates to the electric field within
the nematic sheet, but in practice we envisage an externally-supplied electric
field, which we write in terms of (dimensionless) electric potentials φ (inside the
film; see above) and Φ (outside the film); φ and Φ scale differently, as discussed
below. Outside the nematic sheet we assume the dielectric tensor εij to be the
identity tensor δij. Then, outside the sheet Φ satisfies Laplace’s equation, and the
jump conditions across the air-nematic interface are (in the dimensional, unscaled
variables)

[ν∗ · ε∗ ·E∗] = 0, [E∗ · t∗] = 0,

where ν∗ is the normal vector and t∗ the tangent vector to the interface.
In the outer (air) region the geometry is no longer slender: both x∗- and z∗-

coordinates scale with sheet length L∗, and we use dimensionless variables (x, ẑ)
to denote this different scaling. We then have Laplace’s equation in (x, ẑ) for
the electric potential Φ (now made dimensionless by scaling with LE0), and the
above boundary conditions are applied, to leading order, on the line ẑ = 0. We
only need consider Φ in the region ẑ > 0 since we know the sheet geometry
is symmetric about the x-axis, to leading order. With our knowledge of the
scalings and solution in the slender sheet region, the problem for the leading-
order potential Φ0 is then

∇2Φ0 = 0 ẑ > 0,

Φ0x = 0 on ẑ = 0,

Φ0ẑ = ε33φ0z = (ε‖ − ε⊥)(cos2 θ + λ)a(x) on ẑ = 0,

where, recall, θ is a prescribed function of a(x) given by (23). We solve this
problem by writing (cos2 θ+λ)a(x) = A′(x), and introducing a complex potential
f(Z), such that Φ0 = <(f(Z)), with Z = x + iẑ. Then on the boundary ẑ = 0
we have f ′(Z) = Φ0x − iΦ0ẑ = −iεaA′(x), that is,

f ′(Z) = −iεaA′(Z) on =(Z) = 0

(here we have introduced the dielectric anisotropy, εa = ε‖−ε⊥). Provided A′(Z)
is analytic, this condition may then be analytically continued away from this
boundary, and we may deduce that in fact

f(Z) = −iεaA(Z) + κ in =(Z) > 0.
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Hence we have the (leading order) electric potential and field everywhere; substi-
tuting for θ(x) = θBg(a(x)) from (23), we finally have

Eext = ∇Φ0 = εa
(
=((cos2(θBg(a(Z))) + λ)a(Z)),<((cos2(θBg(a(Z))) + λ)a(Z))

)
+O(δ),(80)

with g(a) given by (16). Thus, assuming that there is some way to generate the
above exterior field for any given choice of a(x), our original assumptions about
the form of the electric field within the sheet are justified. For example, if we
wish to consider a field E = a(x)ez +O(δ) with a(x) = x, then the exterior field
at any point (x, ẑ) outside the sheet must take the form

Eext = εa

(
=
[
(cos2

(
θBE

2
a

Z2 + E2
a

)
+ λ)Z

]
,<
[
(cos2

(
θBE

2
a

Z2 + E2
a

)
+ λ)Z

])
+O(δ),

where we set α = 2 in (16) for definiteness.
On the other hand, we can now turn the problem around and ask: for a given

external field satisfying Φ0x|ẑ=0 = 0, what is the corresponding field within the
nematic sheet? By way of illustration, suppose the external field is given by

Φ0 =
1

2
<(−iZ2) = xẑ, Eext = ẑex + xeẑ,(81)

which satisfies the boundary condition. The function A(Z) is then given by
A′(Z) = Z/εa, so the (leading order) field within the sheet is E = a(x)ez, where
a(x) satisfies

x

εa
= a(x)

[
cos2

(
θBE

2
a

a(x)2 + E2
a

)
+ λ

]
(82)

(again, we set α = 2 in (16) for definiteness).
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[23] Tóth-Katona, T., Buka, A. Nematic liquid crystal-air interface in a radial Hele-Shaw
cell: Electric field effects. Phys. Rev. E. 67 (2003), 041717.

[24] Ockendon, H., Ockendon, J.R. Viscous flow. Cambridge University Press (1995).



EXTENSIONAL FLOW OF NEMATIC LIQUID CRYSTAL 25

L.J. Cummings
Department of Mathematical Sciences
New Jersey Institute of Technology
Newark NJ 07102-1982

J. Low
Centre de Recerca Matemàtica
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