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1. Introduction and statement of the main results

The functions
ζ(s)

(s�ρ)k
, where ρ is a non-trivial zero of the Riemann

zeta function, and k an integer between 1 and the multiplicity mρ of ρ,

are square-integrable on the critical line. In [3] I proved that they

are a complete and minimal system in a certain L ⊂ L2(1
2
+ iR;

|ds|
2π ).

The Hilbert space L can be characterized as follows: a function g(s)

belongs to L if it is the Mellin transform g(s) = f̂(s) =
∫ ∞
0
f(x)x�s dx

of a square integrable function f(x) on (0, +∞), which is constant on
(0, 1) and such that its cosine transform

∫ ∞
0
2 cos(2πxy)f(y) dy also is

constant on (0, 1). I also proved in [3] that the dual system is complete

(and minimal, of course) in L.

It is a fact that the Mellin transform g(s) = f̂(s) of an f satisfying

these support conditions is a meromorphic function in the entire com�

plex plane, having trivial zeros at �2, �4, . . . , and at most a pole at

1. The entire functions s(s � 1)π�
s
2Γ(s

2
)̂f(s) and s(s � 1)π�

s
2Γ(s
2
)F̂ f(s),

where F is the Fourier cosine transform on L2(0, +∞; dx), are exchanged
by s↔ 1�s. Evaluating these entire functions or their derivatives at
any given s defines bounded linear forms. I refer to [3] for these and

other facts.

A conference talk by Yurii Belov on his joint work with Anton Baranov

[1, 2] introduced me to the notion of “hereditary completeness”. Let

(xn)n∈I be a complete and minimal system in some separable Hilbert
space, and (yn)n∈I the dual system. Let J ⊂ I and define the vectors zn
by zn = xn for n ∈ J and zn = yn for n < J. If, for all J ⊂ I, ZJ = (zn)n∈I
is a complete system, then (xn) is said to be hereditarily complete.

Equivalently the system (xn) is hereditarily complete if any vector x

is in the closed linear span of the vectors (yn,x)xn (scalar products

in this paper are linear in the second factor).

We will use as index set I the set of all couples (ρ, k) with ζ(ρ) =

0 (non-trivial zero) and 1 6 k 6 mρ. We then define xρ,k =
ζ(s)

(s�ρ)k
.

From [3] these vectors are a complete and minimal system and the dual

system is also complete. The matrix of size mρ × mρ expressing the
dual vectors yρ,mρ, yρ,mρ�1, . . . , yρ,1 in terms of the evaluators g 7→
g(ρ), g 7→ g′(ρ), . . . , g 7→ g(mρ�1)(ρ) is upper-triangular and in�

vertible.1 In particular, requiring that g should be perpendicular to

yρ,mρ, yρ,mρ�1, . . . , yρ,k+1, is equivalent to asking that g(ρ) = g
′(ρ) =

1An explicit formula shall be given later.
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· · · = g(mρ�k�1)(ρ) = 0 (which is satisfied in particular by the k vectors
g = xρ,1, xρ,2, . . ., xρ,k).

The methods from the present paper do not allow considering arbitrary

subsets Σ of the index set I, but only those, which we call admissible,

which are defined in the following manner: Σ = {(ρ, k), 1 6 k 6 kΣ(ρ)}

where the function kΣ : ρ 7→ kΣ(ρ) ∈ {0, 1, . . . , mρ} is otherwise arbit�
rary.

Theorem 1. Let Σ be an admissible subset of the index set I = {(ρ, k), 1 6

k 6 mρ}. Let ZΣ be the system of the vectors xρ,k, 1 6 k 6 kΣ(ρ), com�
bined with the yρ,k, kΣ(ρ) < k 6 mρ (or equivalently with the evaluators

g 7→ g(j)(ρ), 0 6 j < mρ � kΣ(ρ)). The closed linear span of ZΣ has at
most codimension 1 in L.

A. Baranov and Y. Belov have studied in a general manner in [1] sys�

tems of reproducing kernels in some Hilbert spaces consisting of ana�

lytic functions, identifying classes of spaces where the biorthogonal

(we say here “dual” for “biorthogonal”) system is always complete, and

giving examples where it is not complete. They examine the question of

the hereditary completeness in further work [2], and in particular in�

side the Paley-Wiener spaces. They have a general “codimension at most

1” Theorem in this context (and will perhaps in fact exclude, under

general circumstances, the codimension 1 case). In the present paper,

we don’t know whether codimension 1 is a true possibility or only an

indication of the weaknesses of the techniques we have employed.

To prove Theorem 1 let’s assume to the contrary that there are two

functions perpendicular to the vectors of the system ZΣ, then there
is one, say G, non trivial, and with the additional condition G(0) = 0.

We know (see [3]) that g(s) = G(s)/s also belongs to L. At each ρ the

function G, hence also g, has order of vanishing at least equal to

mρ � kΣ(ρ). And G is perpendicular to the ζ(s)/(s � ρ)
k, 1 6 k 6 kΣ(ρ).

According to Theorem 2 (which is stated next) the function g belongs

to the closed linear span of the ζ(s)/(s � ρ)k, 1 6 k 6 mρ � mρ(g), where

mρ(g) is the multiplicity of ρ as a (possible) zero of g. But mρ(g) >

mρ � kΣ(ρ), hence mρ � mρ(g) 6 kΣ(ρ). So G is perpendicular to g:

∫ ∞

�∞

|G(1
2
+ it)|2

1
2
+ it

dt = 0

Taking the real part we obtain that G vanishes identically, contradic�

tion.

Hence it suffices to prove the following:
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Theorem 2. Let g ∈ L belong to the domain of multiplication by s. Then
g is in the closed linear span of the vectors

ζ(s)

(s�ρ)k
, 1 6 k 6 mρ � mρ(g),

where mρ(g) is the multiplicity of ρ as a zero of g (so 0 if g(ρ) , 0).

We can prove the conclusion of Theorem 2 under far weaker hypotheses

(in particular under hypotheses which, contrarily to the one made in

Theorem 2, do not exclude from their scope the functions ζ(s)/(s � ρ)

themselves. . . ) but, at this time, not when no hypothesis has been made

on g. However, the stated formulation suffices to our goal here.

2. Proof of Theorem 2

Let φ(x) be a smooth function on (0,∞) with its compact support in
[1e, e], and such that φ̂(

1
2
) =
∫ ∞
0
φ(x)x�

1
2 dx = 1. We will also use ψ(x) =

1
xφ(

1
x), which verifies ψ̂(s) = φ̂(1�s). The Mellin transform θ(s) = φ̂(s)

is an entire function which decreases faster than any inverse power of

|s| when |s|→ ∞ in any fixed vertical strip of finite width (follows
immediately from integration by parts).

Note that φ̂(1
2
+ it) =

∫ 1
�1
ω(u)e�iut du, where ω(u) = φ(eu)eu/2, and

φ̂(1
2
+ iǫt) =

∫ ǫ
�ǫ
1
ǫω(

u
ǫ)e
�iut du. Let θǫ(s) = θ(ǫ(s �

1
2
) + 1
2
). On any compact

this converges uniformly to the constant function 1 as ǫ→ 0, and θǫ(s)
is uniformly bounded in s and 0 < ǫ < 1 when s is restricted to a vertical

strip of finite width.

Let g ∈ L, g(s) =
∫ ∞
0
f(x)x�s dx. The function gǫ(s) = θǫ(s)g(s) is the

Mellin transform of the multiplicative convolution:

fǫ(x) =

∫ exp(+ǫ)

exp(�ǫ)
φǫ(t)f(

x

t
)
dt

t

with φǫ(t)
√
t = 1ǫ

(
φ(t1/ǫ)

√
t1/ǫ
)
.

A Mellin transform such as
∫ ∞
0
f(x)x�s dx can also be written for s =

1
2
+it as

∫ ∞
0
f(x)x1/2x�it dxx , thus exhibiting it as the additive Fourier

transform of u 7→ f(eu)eu/2. From this point of view we thus know that
multiplying two Mellin transforms is like the additive convolution of

two functions α(eu)eu/2 and β(eu)eu/2 whose result should be written as

a function γ(eu)eu/2, thus given by

γ(eu)eu/2 =

∫

R
α(eu�v)e(u�v)/2β(ev)ev/2 dv =

∫

R
α(eu�v)β(ev)eu/2 dv

=⇒ γ(x) =

∫ ∞

0
β(t)α(

x

t
)
dt

t

This explains the formula for the multiplicative convolution fǫ.
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The function fǫ is constant for 0 < x < exp(�ǫ), and its Fourier co�

sine transform also: indeed F (fǫ) is the multiplicative convolution
of F (f) with ψǫ(x) = 1xφǫ(

1
x) (the “Intertwining formula” of [4]).

I will need a formula for θǫ(s)g(s) as a Mellin transform but for

large Re(s). The expression
∫ ∞
0
fǫ(x)x

�s dx needs modification to give

an integral which makes sense for Re(s) > 1, because of the behavior

for x→ 0.
Let us first look at pointwise values of fǫ(x):

|fǫ(x)|
2x 6

∫ exp(+ǫ)

exp(�ǫ)
|φǫ(x)|

2dx

∫ ∞

0
|f(x)|2 dx = cǫ�1

for some constant c, so in particular for ǫ fixed, we have fǫ(x) =

O(x�1/2) as x→ +∞. This shows that for any η > 0,
∫ ∞
η
fǫ(x)x

�s dx makes

sense directly as an analytic function for Re(s) > 1
2
. Although we don’t

really need it, let us observe that a much better bound can be obtained

for fǫ(x) as x→ +∞. Indeed, with F the Fourier cosine transform, and
ψǫ(t) =

1
tφǫ(

1
t):

fǫ(x) =

∫ ∞

0

1

t
φǫ(
x

t
)f(t) dt =

∫ ∞

0

1

x
ψǫ(
t

x
)f(t) dt

=

∫ ∞

0
F (ψǫ)(xy)F (f)(y) dy

=

∫ 1

0
F (ψǫ)(xy)β dy +

∫ ∞

1
F (ψǫ)(xy)F (f)(y) dy

= �β

∫ ∞

1
F (ψǫ)(xy) dy +

∫ ∞

1
F (ψǫ)(xy)F (f)(y) dy

Here, β is the constant value of F (f) on (0, 1). Now, F (ψǫ) is an even
function in the Schwartz class, and it follows then by elementary ar�

guments that fǫ(x) also has Schwartz decrease as x → +∞. This is a
general phenomenon related to the support property [4, §4]. In this

manner, we see that in fact
∫ ∞
η
fǫ(x)x

�s dx directly defines an entire

function of s, for any η > 0.

And for η 6 exp(�ǫ), fǫ(x) is a constant C(ǫ) on (0, η) and we can

compute
∫ η
0
C(ǫ)x�s dx for Re(s) < 1, do the analytic continuation and

reexpress it as �
∫ ∞
η
C(ǫ)x�s dx for Re(s) > 1. In the end we obtain that

a valid representation of θǫ(s)g(s) as an absolutely convergent integ�

ral, for Re(s) > 1, is
∫ ∞

η
(fǫ(x) � C(ǫ))x

�s dx
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where η is chosen 6 exp(�ǫ). The quantity C(ǫ) is also the opposite of

the residue of θǫ(s)g(s) at s = 1, so it is θ(ǫ
1
2
+ 1
2
) times the constant

value C(0) of f on (0, 1). We have limǫ→0 C(ǫ) = C(0), and at any rate
this is a bounded quantity. These remarks will serve later.

The functions fǫ converge to the original f in the L
2 sense as ǫ→ 0+,

but the problem is that the gǫ do not necessarily belong to L: fǫ and

F (fǫ) are a priori constant only on (0, exp(�ǫ)). In the similar compu�
tations from my paper [3] this problem was avoided by first replacing f

with a function with stronger support properties, but here we can’t do

that, at least we do not see an obvious way to regularize the function

g (making it decrease in the vertical direction) while at the same time

maintaining its vanishing on a certain set of zeros.

There is an a priori (polynomial in vertical strips) upper bound on

the growth of g(s) [3, Th. 4.8], so gǫ(s) = θǫ(s)g(s) indeed decreases

faster than any inverse polynomial when we go to∞ in any fixed vertical
strip of finite width. This allows computing some contour integrals,

with the help of the following theorem, which I believe originates

with Valiron, and certainly exists also under stronger forms, but the

following will be sufficient for our immediate goals.

Proposition (from [5, IX.7.]). There is a real number A and a strictly

increasing sequence Tn > n such that |ζ(s)|
�1 < |s|A on |Im(s)| = Tn,

�1 6 Re(s) 6 +2.

Note 1. (taken verbatim from [3]) from now on an infinite sum
∑
ρ a(ρ)

(with complex numbers or functions or Hilbert space vectors a(ρ)’s

indexed by the non-trivial zeros of the Riemann zeta function) means

lim
n→∞

∑

|Im(ρ)|<Tn

a(ρ) ,

where the limit might be, if we are dealing with functions, a pointwise

almost everywhere limit, or a Hilbert space limit. When we say that

the partial sums are bounded (as complex numbers, or as Hilbert space

vectors) we only refer to the partial sums as written above. When we

say that the series is absolutely convergent it means that we group

together the contributions of the ρ’s with Tn < |Im(ρ)| < Tn+1 before

evaluating the absolute value or Hilbert norm. When building series

of residues we write sometimes things as if the zeros were all simple:

this is just to make the notation easier, but no hypothesis is made in

this paper on the multiplicities mρ, and the formula used for writing

a(ρ) is a symbolic representation, valid for a simple zero, of the more

complicated expression which would apply in case of multiplicity.
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Let us follow the method of [3, Thm. 5.2], which is to consider a

contour integral with

F(s) =
gǫ(s)

ζ(s)

ζ(Z)

Z � s

where Z is a fixed parameter. We will mainly be interested by the Z’s

on the critical line, but let us take it arbitrarily at this stage

(distinct from 1 and from the zeros of the Riemann zeta function). We

integrate F(s) on the rectangle with boundary lines |Re(s) � 1
2
| = d,

|Im(s)| = Tn, where d >
1
2
is large enough so that |Re(Z) � 1

2
| < d.

Letting n→ ∞ we obtain:
∑

ρ

gǫ(ρ)

ζ′(ρ)
ζ(Z)

Z � ρ
�gǫ(Z) =

ζ(Z)

2π


∫

Re(s)=1
2
+d
�

∫

Re(s)=1
2
�d

gǫ(s)

(Z � s)ζ(s)
|ds|



Let us pause to comment on the meaning of
gǫ(ρ)
ζ′(ρ)

ζ(Z)
Z�ρ : as explained in

the Note 1, it is a symbolic notation for

Res
s=ρ

gǫ(s)

ζ(s)

ζ(Z)

Z � s
=
∑

06j<mρ

∑

06i6j

cj�i(ρ)
g
(i)
ǫ (ρ)

i!

ζ(Z)

(Z � ρ)mρ�j

where

(s � ρ)mρ

ζ(s)
= c0(ρ) + c1(ρ)(s � ρ) + c2(ρ)(s � ρ)

2 + · · ·

The linear combination G 7→ ∑06i6j cj�i(ρ)G
(i)(ρ)
i! of evaluators, applied

to G(s) = xρ′,j′(s) = ζ(s)/(s � ρ
′)j
′
gives 1 if ρ′ = ρ and j′ = mρ � j and 0

otherwise, as can be seen from direct calculation of Ress=ρ
1

(s�ρ′)j′(Z�s)
;

it thus represents the vector yρ,mρ�j of the dual system.

The change of variable s 7→ 1 � s transforms the integral on the line
Re(s) = 1

2
�d into a similar one (where Z is replaced by 1�Z) on the line

Re(s) = 1
2
+ d:

gǫ(1 � s)

ζ(1 � s)
=
F̂ (fǫ)(s)
ζ(s)

As we have already mentioned that F (fǫ) is the multiplicative convo�
lution of F (f) by ψǫ, all our future arguments and bounds for the in�
tegral initially already defined on the line Re(s) = 1

2
+ d would apply

similarly to the integral initially on Re(s) = 1
2
� d.

On the line Re(s) = 1
2
+ d, ζ(s)�1 can be replaced with the absolutely

convergent expression
∑
k>1 µ(k)k

�s, which allows termwise integra�

tion. Let us check that for ǫ 6 log 2 all the contributions with k > 2
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vanish. For this we write gǫ(s)k
�s =

∫ ∞
0
1
k
fǫ(
x
k
)x�s dx. From previous

discussion we know that the correct formula when Re(s) > 1 is:∫ ∞

η

(
1

k
fǫ(
x

k
) �
1

k
C(ǫ)

)
x�s dx

with some η 6 k exp(�ǫ). For k > 2 and ǫ 6 log 2 we can take η = 1 in this

formula. We want to evaluate

1

2π

∫

Re(s)=1
2
+d

gǫ(s)k
�s

Z � s
|ds|

as an application of Plancherel theorem.2 So we compute the c.c. (com�

plex conjugate):

c.c.(Z � s) = Z � (1 + 2d � s) = �(1 + 2d � Z � s)

With w = 1 + 2d � Z, there holds Re(w) > 1
2
+ d = Re(s), so

(w � s)�1 =

∫ 1

0
xw�1�s dx =

∫ 1

0
xd�Zx�

1
2
�iIm(s) dx

On the other hand:

gǫ(s)k
�s =

∫ ∞

η

(
1

k
fǫ(
x

k
) �
1

k
C(ǫ)

)
x�dx�

1
2
�iIm(s) dx

So, by the Plancherel formula:

1

2π

∫

Re(s)=1
2
+d

gǫ(s)k
�s

Z � s
|ds| = �

∫ 1

min(η,1)
x�Z
(
1

k
fǫ(
x

k
) �
1

k
C(ǫ)

)
dx

For k > 2 (and ǫ 6 log 2) we can take η = 1 and this vanishes.

So we have the representation, for each given fixed Z (not 1 and not

a zero of the Riemann zeta function):
∑

ρ

gǫ(ρ)

ζ′(ρ)
ζ(Z)

Z � ρ
� gǫ(Z) =

ζ(Z)

2π

∫

Re(s)=1
2
+d

gǫ(s)

Z � s
|ds|

︸                                 ︷︷                                 ︸
Aǫ(Z)

+ Bǫ(Z)

Aǫ(Z) = �ζ(Z)

∫ 1

η
x�Z (fǫ(x) � C(ǫ)) dx η = exp(�ǫ)

The convergence of the series taken over the zeros of the Riemann zeta

function (and with the meaning from the Note 1) has so far only been

proven pointwise. The second half of [3, Proof of 5.2] gives, on page

80, arguments to establish that the series of functions of Z indexed by

the zeros of the Riemann zeta function (and their multiplicities) is

2It is also possible to shift the contour of integration to the right to show that

it vanishes for k > 2 and ǫ 6 log 2.
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an absolutely convergent one in the sense of the L2-norm (and with the

meaning from the Note 1 above). We do not repeat the arguments which

can be applied here identically. As a corollary the sum Aǫ(Z) + Bǫ(Z) is

square-integrable on the critical line, a fact which is seen directly

from
∫ 1
η
x�Z (fǫ(x) � C(ǫ)) dx = O( 1

1+|Z|
) for Re(Z) bounded, obtained by

an integration by parts, as fǫ is smooth. But we would also like to

examine, as this would complete the proof of Theorem 2, if the L2-norm

of Aǫ(Z) + Bǫ(Z) goes to zero as ǫ → 0; this is where we will use the
hypothesis that sg(s) also belongs to L.

As an aside, for a fixed Z we can show without hypothesis that Aǫ(Z)

goes to zero. We already mentioned that C(ǫ) was bounded, and we estim�

ated pointwise |fǫ(x)| 6 c(xǫ)
�1
2 for some constant c. As we integrate

over x in the interval from e�ǫ to 1, this gives Aǫ(Z) = ζ(Z)O(ǫ
1
2),

uniformly in Z for Re(Z) bounded.

We now bound Aǫ(Z) otherwise. As we are mainly interested in Re(Z) =
1
2
, we will from now on take d = 1. By the Plancherel argument, or by a

shift of the line of integration towards +∞:
1

2π

∫

Re(s)=3
2

g(s)

Z � s
|ds| = 0 .

Aǫ(Z) =
ζ(Z)

2π

∫

Re(s)=3
2

gǫ(s) � g(s)

Z � s
|ds|

Writing 1
Z�s =

1
Z +

s
Z(Z�s)

and using Cauchy-Schwarz:

|Aǫ(Z)| 6
|ζ(Z)|

|Z|

∫

Re(s)=3
2

|s||gǫ(s) � g(s)|

(
1

|s|
+

1

|Z � s|

)
|ds|

2π

|Aǫ(Z)| 6
|ζ(Z)|

|Z|

√∫

Re(s)=3
2

|s|2|gǫ(s) � g(s)|
2
|ds|

2π


√
1

3
+

√
1

2



The last remaining integral does not depend on Z but is a numerical

quantity depending on ǫ. It goes to zero as ǫ→ 0 from the Lebesgue dom�
inated convergence theorem. We silently used that sg(s) was square-in�

tegrable on the line Re(s) = 3
2
. But this is clear as, by hypothesis,

sg(s) = C
s�1
+ k(s) with some k in the Hardy-space of the half-plane

Re(s) > 1
2
.

Combining the results obtained we conclude that g(Z) can be arbit�

rarily well approximated in L2-norm by a finite linear combination of

the ζ(Z)/(Z�ρ)k where only those k between 1 and mρ �mρ(g) (inclusive)

appear, which is the statement of Theorem 2.
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3. The completeness of the evaluators without Kreı̆n’s theorem

In [3] I proved that the evaluators associated with the zeros of the

Riemann zeta function were complete: i.e. if an element g in L is such

that g(s)/ζ(s) is entire, then g is the zero function. I used a Theorem

of Kreı̆n on entire functions in the Cartwright class.

A more elementary proof can now be given. Again with gǫ(s) being

defined as θ(ǫ(s � 1
2
) + 1

2
)g(s), in the evaluation of the contour in�

tegral built with
gǫ(s)

ζ(s)
ζ(Z)
Z�s (where Z is again a parameter distinct from

1 and from the zeros of the zeta function) the only singularity is now

at s = Z, and we obtain the formula:

�gǫ(Z) =
ζ(Z)

2π


∫

Re(s)=12+d
�

∫

Re(s)=12�d

gǫ(s)

(Z � s)ζ(s)
|ds|

 = Aǫ(Z)+Bǫ(Z)

We can as well take Re(Z) = 1
2
and d = 1. But we have argued already

that for fixed Z there hold (under no additional hypothesis on g) the

pointwise limits Aǫ(Z) → 0, Bǫ(Z) → 0, for ǫ → 0. This proves that g
is the zero function.

The same argument would show that the only functions in L which van�

ish (with at least the same multiplicities) on all but perhaps finitely

many zeros of the Riemann zeta function are the finite linear combin�

ations of the functions
ζ(s)

(s�ρ)k
. Indeed the sum of the residues being

now finite, there is no problem with taking the limit ǫ→ 0 to obtain a
pointwise identity, which suffices for the conclusion.

This gives examples of mixed systems being complete, but I must leave

open the question whether codimension 1 can really happen for some

other kind of combined system.
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