
THE β–MEIXNER MODEL

ABSTRACT. We propose to approximate the Meixner model by a member of the β–
family introduced in [Kuz10a]. The advantage of such approximations are the semi–
explicit formulas for the running extrema under the β–family processes which enables
us to produce more efficient algorithms for certain path dependent options.

1. INTRODUCTION

Schoutens and Van Damme in [SD10] explore the numerical performance of the
β-family introduced by Kuznetsov (see [Kuz10a]) both in the equity and in the credit
risk field. Their benchmark is the Variance Gamma (VG) process. Their conclusion is
that thanks to the semi–explicit formulas for the running extrema under the β–family
they are able to produce faster and more accurate results for pricing credit default
swaps (CDS). In fact, the formulas for the running extrema are derived from explicit
expressions of the Wiener-Hopf factorization. Under the VG process, the CDS are
priced using a partial differential integral equation described in Cariboni and Schoutens
[CS09]. The aim of this paper is to reproduce the same sort of results with respect to
the Meixner model, in this case though the spread of CDS under such model will be
compute by an inverse Fourier method. More precisely, the one described by Fang et
al. in [FHOMS10] and based on the cosine series expansion of the density, which is
called COS method (see [FO08] and [FO09]).

The Wiener-Hopf factorization result has lately been receiving an increasing atten-
tion for numerical purposes since the papers of [Kuz10a], [Kuz10b] and [KKP10],
where a wide range of Lévy processes for which the Wiener-Hopf factorization is
known are described. Together with the paper [SD10], the present work shows that
there is a potential use of this result for pricing path dependent options as an alter-
native for the classical approaches, namely the transformation of the problem by the
Kolmogorov equations into the deterministic field or use discrete inverse Fourier trans-
form.

The β–family process is a 10 parameter family. We will fix some of their parameters
to obtain a 3 parameter member whose Lévy measure has an asymptotic equivalence
with the Lévy measure of the Meixner process. This member of the β–family will be
called β–M process for obvious reasons. We will show that the asymptotic approxi-
mation in [SD10] and the one described here are particular cases of the more general
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technique of approximating generalized hyper-exponential Lévy processes by hyper-
exponential jump-diffusion models, which was used for pricing digital options with
barriers in Jeannin and Pistorius [JP10].

The paper is organized as follows. In section 2 we present the Meixner model and
the β–family, we also construct the β–M process and discus the general framework
of Jeannin and Pistorius [JP10]. Section 3 is devoted to derive the expressions used to
price vanilla options and CDS. Section 4 will perform the numerical experiments. We
will calibrate the Meixner and the β–M process to a surface of vanilla options using
the Carr and Madan formula (see [CM99]). With the given optimal parameters we will
calibrate the two models to a surface of CDS spreads under the Meixner model - with
the COS method - and under the β–M process - with the Wiener-Hopf factorization.
Finally, we will conclude the paper with some remarks.

2. THE β–FAMILY AND THE MEIXNER PROCESS

From now on we will consider X = {Xt | t ≥ 0} to be a Lévy process with triplet
(µ, σ, ν) and hence characterized by its Lévy exponent

(1) ΨX1(z) = −iµz +
σ2

2
z2 −

∫ ∞
−∞

(eizx − 1− izh(x))ν(dx) ,

where the cut–off function can be considered to be h(x) ≡ x for the measures we will
be looking at. Then the characteristic function for the Lévy process is

ϕXt(z) = E[eizXt ] = e−tΨX1
(z) .

The Meixner distribution, see [Sch03], is an infinitely divisible law and thus we can
associate to it a Lévy process. The characteristic function of the Meixner distribution
is

ϕ(u) =

(
cos(b/2)

cosh((au− ib)/2)

)2d

,

where a > 0, −π < b < π and d > 0. It is a process with no Brownian part and thus
its Lévy triplet is given by (µ, 0, ν) where

µ = ad tanh(b/2)− 2d

∫ ∞
1

sinh(bx/a)

sinh(πx/a)
dx(2)

ν(x) =
exp(bx/a)

x sinh(πx/a)
.(3)

To be precise, (3) is the density of the Lévy measure but we will use the same notation
for the density and the measure if there is no confusion. A member of the β–family is
a 10 parameter Lévy process (see [Kuz10a]) with triplet given by (µ, σ, ν) where

(4) ν(x) = c1
e−α1β1x

(1− e−β1x)λ1
1x>0 + c2

eα2β2x

(1− eβ2x)λ2
1x<0 ,
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with αi > 0, βi > 0, ci ≥ 0 and λi ∈ (0, 3). For the sake of completeness we
reproduce here the expression of the characteristic exponent, which satisfies

(5) ΨX1(z) = −iµz +
σ2

2
z2 − [c1I(z;α1, β1, λ1) + c2I(−z;α2, β2, λ2)] ,

where

I(z;α, β, λ) =

 I1(z;α, β, λ); λ ∈ (0, 3) \ {1, 2};
I2(z;α, β, λ); λ = 1;
I3(z;α, β, λ); λ = 2 ,

and

I1(z;α, β, λ) =
1

β
B
[
α− iz

β
, 1λ

]
− 1

β
B[α, 1− λ]

(
1 +

iz

β
[ψ(1 + α− λ)− ψ(α)]

)
I2(z;α, β, λ) = − 1

β

[
ψ

(
α− iz

β

)
− ψ(α)

]
− iz

β2
ψ′(α)

I3(z;α, β, λ) = − 1

β

(
1− α +

iz

β

)[
ψ

(
α− iz

β

)
− ψ(α)

]
− iz(1− α)

β2
ψ′(α) ,

and B(x, y) = Γ(x)Γ(y)
Γ(x+y)

is the Beta function and ψ(x) = d
du

log(Γ(u))
∣∣
x

the Digamma
function.

Consider a member of the β–family with a 3 parameter Lévy measure given by

(6) ν(x) = c
e−α1x

(1− e−x)2
1x>0 + c

eα2x

(1− ex)2
1x<0 ,

where we have set λ1 = λ2 = 2, β1 = β2 = 1 and c1 = c1 = c in the expression (4).
Recall the 3 parameter Lévy measure for the Meixner model in (3) given by (a, b, d).
If we let c = ad/π in the above expression, it turns out that the Lévy measure in (3)
and (6) are asymptotically equivalent at 0, in the sense that (1 − e−x)2 ≈ x sinh(x)
as x → 0+. The member of the β–family given by the Lévy measure in (6) will
be called β–M process. Thanks to the exponential decay outside zero of the Lévy
measure of the Meixner and the β–M process, one expects that both processes will
perform equivalently when pricing market quotes.

2.1. Financial framework. In the equity framework we will consider that the under-
lying process follows an exponential Lévy process, that is

St = S0e
(r−q+w)t+Xt ,

where S0 is the spot at time 0, r is the risk free rate, q is the dividend yield, ω is the
mean correcting drift to ensure that the discounted prices are martingales and Xt is a
Lévy process - here this will be either the Meixner or the β–M process. A key function
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in the following will be the characteristic function of the log(St). This can be derived
as

ϕlog(St)(u) = eiu(log(S0)+(r−q+w)t)ϕXt(u)(7)

= eiu(log(S0)+(r−q+w)t)−tΨX1
(u) ,(8)

where ω = ΨX1(−i) = − logϕX1(−i), ϕXt is the characteristic function and ΨX1 is
the Lévy exponent of the process.

In the setting of the credit risk we will follow a firm value approach as done in
the equity world. Therefore the total aggregate asset value, Vt, of a firm follows the
dynamics given by

Vt = V0e
(r−q+w)t+Xt = V0e

Yt .

Notice that since X is a Lévy process so it is Y , where we only have changed the drift.
We will claim that default occurs when the process reaches a certain barrier for the first
time, i.e. at time

τB = inf{0 ≤ t ≤ T | Vt ≤ B}
= inf{0 ≤ t ≤ T | Yt ≤ ln(B/V0)} ,

where B is the Barrier. Here, the barrier B will be set to B = RV0 for a certain
recovery rate R ∈ (0, 1).

2.2. The running extrema under the β–M process. In [Kuz10a], Kuznetsov found
the explicit expressions for the Wiener-Hopf factorization of the members of the β–
family and other particular processes. In a posterior work Kuznetsov [Kuz10b] and
Kuznetsov et al. [KKP10] showed using the same sort of techniques that there exist a
wide set of processes from which the Wiener-Hopf factorization is known in explicit
form. These are called meromorphic Lévy processes and among other conditions the
one that gives them their name is that the Lévy exponent is a meromorphic function.
The Wiener-Hopf factors are essentially the characteristic function for the running
supremum and infimum of a process at exponential times and for this reason are of
great importance in pricing CDS. A related work of one of the authors treat the topic
of inverting analytic characteristic functions in [FCU10] - the family of measures de-
scribed there can be used to construct non trivial examples of meromorphic Lévy pro-
cesses. Before these studies, only for a few cases the computation of the Wiener-Hopf
factors were feasible, see for instance Rogers [Rog00] for one-sided Lévy process or
Kou and Wang [KW03], and the references therein, for the case where the jumps are
double exponentially distributed.
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Let X be a β–M process, according to [Kuz10a], for a given q > 0, the Wiener–
Hopf factors for a β–M process are given by the formulas

Φ−q (z) =
1

1 + iz
ζ+0 (q)

∏
n≥1

1 + iz
(n−1+α2)

1 + iz
ζn(q)

Φ+
q (z) =

1

1 + iz
ζ−0 (q)

∏
n≤−1

1 + iz
(n+1−α1)

1 + iz
ζn(q)

,

where ζn(q), ζ+
0 (q) and ζ−0 (q) are the zeros of the equation ΨX1(iζ) + q = 0 with ΨX1

being the Lévy exponent given in (5). The roots of such equation can be localized,
which is very desirable result for the numerical implementation, in the intervals

ζ−0 (q) ∈ (−α1, 0)

ζ+
0 (q) ∈ (0, α2)

ζn(q) ∈ (α2 + n− 1, α2 + n) , n ≥ 1

ζn(q) ∈ (−α1 + n,−α1 + n+ 1) , n ≤ −1 .

It turns out that the expressions Φ−q (z) and Φ+
q (z) are invertible, for instance the ex-

pression for the running infimum can be written as

(9) P
[

inf
0≤t≤τ(q)

Xt > x

]
= 1− c+

0 (q)eζ
+
0 (q)x −

∑
n≥1

cn(q)eζn(q)x ,

where τ(q) is an exponential distributed random variable with parameter q and
(10)

c+
0 (q) =

∏
n≥1

1− ζ+0 (q)

(n−1+α2)

1− ζ+0 (q)

ζn(q)

, ck(q) =
1− ζk(q)

(k−1+α2)

1− ζk(q)

ζ+0 (q)

∏
n≥1
n 6=k

1− ζk(q)
(n−1+α2)

1− ζk(q)
ζn(q)

for k ≥ 1 .

The derivations in [Kuz10a] show that P[inf0≤t≤T Xt > x] is the inverse Laplace trans-
form of P[inf0≤t≤τ(q) Xt > x], therefore one can recover the distribution of the running
infimum up to a deterministic time T , i.e. we have the equality

(11)
d

dx
P
[

inf
0≤t≤τ(q)

Xt ≤ x

]
=

d

dx

∫ ∞
0

qe−qtP
[

inf
0≤t≤T

Xt ≤ x

]
dt .

2.3. Hyper-exponential framework. A Lévy process is said to a be generalized
hyper-exponential process if its Lévy measure has a density which can be written as

k(x) = k+(x)1{x>0} + k−(−x)1{x<0} ,

where k+ and k− are completely monotone functions on (0,∞). By Bernstein’s theo-
rem on completely monotone functions, k(x) must be a mixture of exponential func-
tions, i.e. of the form

(12) k(x) = 1x>0

∫ ∞
0

e−uxµ+(du) + 1x<0

∫ 0

−∞
e−uxµ−(du) ,
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for some measures µ+ and µ− on (0,∞) and (−∞, 0) respectively. Jeannin and Pis-
torius [JP10] give several examples which belong to this family, some of them are the
double exponential model [KW03], the variance gamma, the Meixner process or the
normal-inverse Gaussian process. For the double exponential model the Lévy measure
can be written as a sum of exponentials because µ+ and µ− are point mass measures.
The advantage of such observation is that the Wiener-Hopf factors can be computed
explicitly. For the rest of the examples though a nice approximation of the density can
be computed by a finite Riemann sum of (12) as

k(x) ≈ 1x>0

∑
i∈I

ωie
−ζix + 1x<0

∑
j∈J

ωje
−ζjx ,

where I , J are finite partitions of (0,∞) and (−∞, 0) respectively, and ωi, ωj are
weights. For instance, one could choose ζi ∈ [ti, ti+1], ζj ∈ [tj+1, tj], ωi=µ+([ti, ti+1])
and ωj = µ−([tj+1, tj]) for i ∈ I and j ∈ J . The Wiener-Hopf factorization is known
for the above processes, called hyper-exponential jump-diffusion Lévy processes, and
thus an approximate price for path dependent options can be generated. This is exactly
what Jeannin and Pistorius [JP10] do. A similar study from another point of view can
be found in [AMP07]. The only drawback in [JP10] methodology is that the inten-
sities of the approximation are fixed in advance and the computation of the weights
are done by minimizing the square error with respect to the original measure. A more
systematic approach can be found in Crosby et al. [CSM09]. There, the approxima-
tion is done at the level of the Lévy exponents but at the end the algorithm also ap-
proximate an infinite integral using the Gaussian quadrature. This methodology leads
to a ill-posed linear problem, solved using Tikhonov regularization. The work also
presents estimates for the discretization error and the truncation error. As opposite to
Jeannin and Pistorius, Crosby et al. use an inverse Laplace approximation to price
barrier options instead of using the Wiener-Hopf factorization. Our purpose is to con-
sider the meromorphic Lévy family [KKP10] as an approximating family, the possible
advantages are several. Wiener-Hopf factors seem faster and more accurate than usual
approaches, a wide range of approximation techniques by complex analysis method-
ologies can be used and finally joint distributions for path dependent operators can be
computed, see [KKP10] and [KKPvS10]. The theoretical study of this methodology
is out of the scope of this paper but, in view of [SD10] and the results presented here,
an investigation of how good meromorphic Lévy processes are as an approximating
family is of great interest.

Now we show how the approximations of [SD10] and the one here belong to the
framework of hyper-exponential jump-diffusion processes. The numerical implemen-
tation of the formulas (9) and (10) must be done by a truncation of the infinite sum and
the infinite product. This means that essentially we are approximating the Wiener–
Hopf factors of the process by a finite product. It turns out that this expressions for
the Wiener–Hopf factors generate hyper-exponential jump-diffusion processes. Here
though the particular choices of the intensities and the weights for the approximation
are given by the way we approximated the Lévy measure. To show that, consider
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Newton’s generalized binomial theorem which sets the equality

(1− e−x)−n =
∑
k≥0

(
n+ k − 1

k

)
e−kx x ≥ 0, n ∈ N .

Therefore, the Lévy measure of the Meixner model is being approximated by the mea-
sure

ν(x) = c
e−α1x

(1− e−x)2
1x>0 + c

eα2x

(1− ex)2
1x<0

= 1x>0c
∑
k≥0

(k + 1)e−(k+α1)x + 1x<0c
∑
k≥0

(k + 1)e(k+α2)x ,

whose infinite sum should be truncated for numerical implementations. The same is
valid for the approximation in [SD10].

3. CALIBRATION METHODS

The models presented here were calibrated to a surface of vanilla options and to
a surface of credit default swaps. The calibration will be conducted with respect the
mean squared error and thus with respect to the objective function

RMSE =

√√√√∑
options

(market price−model price)2

number of options
.

It is worth to remark here that both models have the same number of parameters.
Essentially the Meixner model is a three parameter model, since it has a given drift
for a given surface of data and it is a pure jump process. For the β–M process we are
going to set the volatility equal zero and because again the drift is also given so that
the discounted prices are martingales, then it is also a three parameter model.

3.1. Vanilla surface calibration. One way of pricing call options is through the char-
acteristic function of the process by the Carr and Madan [CM99] formula, the main
advantage of the formula is the possibility of using the fast Fourier transform (FFT) to
invert the transformation. For the sake of completeness we sketch out here the formula.
The price of a call option with strike K and maturity T is

C(K,T ) = e−rTE[max((ST −K), 0)]

=
e−rT

π

∫ ∞
0

e−iukρ(u)du

≈ e−rT

π
Real

(
FFT

[
eiujbρ(uj)η

(
3 + (−1)j − 1{j=1}

3

)]
j=1,...,n

)
,
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where α > 0 is a damping factor, n ∈ N, uj = η(j−1), k = −b+λ(n−1) = log(K),
λη = 2π/n and

ρ(u) =
e−rTϕlog(ST )(u− i(α + 1))

α2 + α− u2 + i(2α + 1)u
.

3.2. CDS spreads calibration. Recall the notation of Section 2.1, let us remark here
that quoting CDS spreads is very similar to price digital down and out barrier options
(DDOB) - or the probability of survival - as showed by the well known relation

(13) c(B, T ) = (1−R)

[
1− erTP[inf0≤t≤T Vt > B]∫∞
0
e−rtP[inf0≤s≤t Vs > B]dt

− r
]
,

for a CDS spread at maturity T , barrierB and recovery rateR. Therefore, we only need
how to price DDOB since the integral part in the above formula can be approximated
by multi-step trapezoid rule.

For the β–M process the quantity P[inf0≤t≤T Vt > B] is essentially given by the
formula (11) where we have to invert a Laplace transform. The general methods to
invert a Laplace transform require to evaluate the transformation at complex points,
this means evaluating the right hand side of expression (9) at complex points q. This
expression essentially depend on ζ+

0 (q) and {ζn(q)}n≥1. Unfortunately, the intervals
of localization of such zeros given in Section 2.2 are only valid for q > 0. One way to
overcome this problem is to use the Gaver-Stehfest algorithm, which was also used in
[SD10]. This method only requires to evaluate the transformation at positive points.

Under the Meixner model the computation of P[inf0≤t≤T Vt > B] will be given by
the COS method. This method is described in Fang et al. [FHOMS10] and based in
the studies of [FO08] and [FO09]. This method is based on the fact that the Fourier
cosine expansion of the conditional density for a Lévy process is close related to its
characteristic function.

4. NUMERICAL RESULTS

The data set for the vanilla surface will be the one proposed in [Sch03, p. 6]. Since
we already have a calibration of the Meixner model under this surface of call options
(see [Sch03, p. 81]). For such data the risk free interest rate is r = 1.20%, the
dividend yield is q = 1.90% and S0 = 1124.47. This data set was taken at the close
of the market on 18/04/2002. The CDS spreads are taken from [CS09, p. 70]. We set
r = 2.24%, q = 0 and the recovery rate R = 0.5. This data was taken on 26/10/2004.
All computations were carried out in a Intel(R) Core(TM)2 CPU 6300 at 1.86GHz
with Octave.

4.1. Equity results. The optimal parameters for the calibration of the Meixner model
and the β–M model are summarized in Fig. 1. On Fig. 2 and Fig. 3 we depicted
the performance of such optimal parameters against the market data. Essentially the
two models fail and success on the same regions although the calibration of the β–M
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model is better with respect to the RMSE error. The results are very similar to the ones
in [SD10].

β–M model (c, α1, α2) Meixner model (a, b, d)

Starting values (0.0438, 11.6560, 4.1428) (0.3977, −1.4940, 0.3462)

Optimal parameters (0.0538, 7.9017, 1.7344) (0.4764, −1.4723, 0.2581)

RMSE 3.1612 3.3506

CPU(s) 120.24 42.93

Figure 1. Calibration on the vanilla surface.

Figure 2. Meixner calibra-
tion on the vanilla surface.

Figure 3. β–M calibration
on the vanilla surface.

For the Carr and Madan formula we have set η = 0.25, n = 4096 and α = 1.5 and
carried out 250 iterations for a minimizing algorithm. The starting points for the
Meixner model are the ones given as optimal in [Sch03]. The starting points for
the β–M are the ones that make Lévy measures of both models asymptotically equiv-
alent.

4.2. CDS spreads results. In this section we start our calibration with obtained pa-
rameters of the previous one. For computing the coefficients c+

0 (q), ζ+
0 (q), cn(q) and

ζn(q) of equation (9) we have computed 100 roots of the equation ΨX1(iζ) + q = 0
and used them to compute 75 coefficients cn(q), therefore we have discretized (9) by a
sum of 75 terms. Finally the integral (11) was discretized following a Gaver-Stehfest
algorithm by a sum of 8 terms while the integral in (13) was discretized by the trape-
zoid rule with 360 steps. Again we have minimize the square error iterating 250 times
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Company 1 year 3 years 5 years 7 years 10 years

General Elec. Market 5 14 25 29 36
β-M 6 13 25 29 35
COS 5 15 24 30 36

General Motors Market 86 157 207 229 242
β-M 88 162 206 230 239
COS 80 159 208 229 238

Whirlpool Market 16 36 66 73 86
β-M 17 35 67 75 83
COS 14 40 62 76 85

Walt Disney Market 6 21 36 45 56
β-M 6 24 37 47 55
COS 6 21 36 46 55

Eastman Kodak Market 54 86 127 143 157
β-M 50 87 126 142 157
COS 44 92 126 143 153

Figure 4. Calibration on CDS spreads.

a minimizing function. Fig. 4 shows the spreads of both models in comparison with
market data.

In Fig. 5 we summarize the resulting coefficients. The results are again very similar
to the ones presented in [SD10]. It turns out that the approximation with the β–M per-
forms better that the Meixner model. The time of computation though is much more
greater. As commented in [SD10], the Wiener-Hopf approach algorithm spends most
of the time in computing the roots ζn(q). Because these are localized, the computation
for a single root is fast and hence allowing a parallel computing implementation of the
same algorithm would speed the process by a factor of 100, and therefore outperform-
ing the COS method.

It is worth to remark that our computations show that the square error is lower when
the spread curve to be calibrated is flatter. This featured is not observed in the imple-
mentation of [SD10]. In Fig. 6 we have depicted the square error of the β-M process
and β-VG process with respect to the difference of the spreads at the initial maturity
and at the final maturity. In Fig. 7 we depicted the spreads curves.

5. CONCLUSION

We have showed that the β–M is a good approximation for the Meixner model
and derived a fast and accurate algorithm to price CDS based on the Wiener-Hopf
factorization of the process. We have showed that the approximations of [SD10] to the
variance gamma process and the one made here for the Meixner model are particular
cases of the more general framework of hyper-exponential jump-diffusion processes.
Together, the results suggest that the Wiener-Hopf approach perform better than the



THE β–MEIXNER MODEL 11

Company β-M c α1 α2 RMSE (bps) CPU (s)
COS a b d

General Elec. β-M 0.0673 12.1249 6.2399 0.5161 8240.8
COS 0.2983 -0.4972 0.4299 0.8406 629.2

General Motors β-M 0.1356 8.0528 4.0011 2.8248 8660.7
COS 0.9106 0.2355 0.1737 3.2221 633.9

Whirlpool β-M 0.0728 5.6308 5.5544 1.9191 8152.3
COS 0.4392 0.0318 0.3507 2.9893 640.1

Walt Disney β-M 0.0695 6.4666 6.2615 1.6712 8149.5
COS 0.3597 0.0127 0.4087 0.7459 681.8

Eastman Kodak β-M 0.1421 12.2455 5.4404 2.1331 8669.7
COS 0.7093 0.1401 0.2046 5.4497 684.9

Figure 5. Calibration on CDS spreads.

Figure 6. RMSE with re-
spect to difference of the
spreads at the initial matu-
rity and at the final maturity.

Figure 7. CDS spreads surface.

general methodologies for pricing DDOB options. Despite the two results are based
on members of the β–family, what really makes the Wiener-Hopf approach possible
is the fact that the β–family belongs to the more general family of meromorphic Lévy
processes.
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