
An approximate solution method for boundary layer

flow of a power law fluid over a flat plate

T. G. Myers

Centre de Recerca de Matemàtica, UAB Science Faculty,
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Abstract

The work in this paper deals with the development of momentum and
thermal boundary layers when a power law fluid flows over a flat plate. At
the plate we impose either constant temperature, constant flux or a Newton
cooling condition. The problem is analysed using similarity solutions, integral
momentum and energy equations and an approximation technique which is a
form of the Heat Balance Integral Method. The fluid properties are assumed
to be independent of temperature, hence the momentum equation uncouples
from the thermal problem. We first derive the similarity equations for the
velocity and present exact solutions for the case where the power law index
n = 2. The similarity solutions are used to validate the new approximation
method. This new technique is then applied to the thermal boundary layer,
where a similarity solution can only be obtained for the case n = 1.
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L Plate length
m Flow consistency index
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n Power law index
Re Reynolds number Re = ρU2−n

∞
Ln/m

Pr Prandtl number Pr = H2U∞/(κL)
Q Non-dimensional heat flux at y = 0
T Fluid temperature
T∞ Far field temperature
u = (u, v) Velocity vector
U∞ Far field velocity

δ(x), δT (x) Momentum and thermal boundary layer thickness
ǫ = δT /δ Ratio of boundary layer thicknesses
κ Thermal diffusivity
ρ Fluid density
τ Shear stress
ξ Similarity variable

Subscripts

0 Value in fluid at substrate y = 0+

s Value at substrate y = 0−

1. Introduction

Describing the flow of a Newtonian fluid in the boundary layer above
a flat plate is one of the classical problems of fluid mechanics. Since the
majority of practical fluids are non-Newtonian the extension of this theory
to such fluids is obviously also a key problem. Hence, in this paper the flow
of a power law fluid past a flat plate, as well as the associated heat transfer,
is examined.

The boundary layer flow of a power law fluid has received much analyt-
ical attention, see [7, 8, 10, 11, 12, 16] for example. When dealing with the
momentum boundary layer alone the problem may be analysed using similar-
ity methods. For the Newtonian case the governing equations reduce to the
Blasius equation: an ordinary differential equation that is easily solved nu-
merically [26]. For a power law fluid the reduction of the system via similarity
variables leads to a modified version of the Blasius equation [11, 12, 25, 27].

2



When the thermal boundary layer is included, due to the differences in
the power of the stress gradient and second derivative of temperature, a
similarity solution is not possible (except in the Newtonian case). In this
case there are two standard ways forward. The governing equations can
be solved numerically, see [2, 14, 28] for example, or via integral methods
(which will be discussed in detail later), see [1, 7, 8]. The accuracy of the
latter approach is known to deteriorate as the fluid becomes less Newtonian,
[8, 12]. As discussed by Chhabra [8] the numerical results are more accurate
than the integral methods but the integral methods are useful since they
often lead to closed form solutions. For this reason in the following work
we will examine the integral method approach, with a view to improving its
accuracy.

In §2 we derive the governing equations and corresponding integral forms
describing the momentum and thermal boundary layers. In §3 we discuss
the similarity solutions for the original and integral forms of the momentum
equation. It is shown that both problems have an exact solution for the case
where the power law index n = 2. The numerical solution of the appropriate
ordinary differential equations tends to these solutions as n → 2. In §4 we
describe the standard approximation to the momentum equations attributed
to von Kármán and Pohlhausen, see [26], as well as a more accurate method
developed by Chhabra [7, 8]. We then demonstrate a variation of the method
designed for the analogous Heat Balance Integral Method that minimises the
error introduced by solving the governing equations only in an integral sense,
see [18, 21, 22, 23]. After demonstrating the improved accuracy of the new
method we then apply it to the thermal boundary layer in §5 for a constant
temperature, a constant flux and Newton cooling condition at the plate.

2. General theory

The boundary layer equations for two dimensional steady incompressible
flow are

u
∂u

∂x
+ v

∂u

∂y
= U∞

dU∞

dx
+

1

ρ

∂τ

∂y
(1)

∂u

∂x
+
∂v

∂y
= 0 (2)
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where (u, v) is the fluid velocity, U∞ is the velocity in the far field and τ is
the shear stress. The velocity profile is subject to the boundary conditions

u = v = 0 (3)

at y = 0 and
u = U∞ (4)

as y → ∞. At x = 0 the flow is the far field flow, u(0, y) = U∞. For a power
law fluid we can set

τ = m

∣

∣

∣

∣

∂u

∂y

∣

∣

∣

∣

n−1
∂u

∂y
, (5)

where m is the consistency index and n > 0.
If the physical properties of the fluid only depend weakly on the tempera-

ture (so that we can assume they are constant) then the momentum boundary
layer can be analysed independently of the thermal problem. The thermal
problem depends on the flow and for an incompressible fluid is governed by

∂

∂x
(uT ) +

∂

∂y
(vT ) = κ

∂2T

∂y2
(6)

where κ is the thermal diffusivity and T → T∞ as y → ∞, T (0, y) = T∞. We
will discuss the boundary condition at y = 0 later.

For a Newtonian fluid equations (1 – 6), with the temperature specified
at the plate T (x, 0) = Ts, can be examined using a similarity variable, see [9,
p311]. However, when n 6= 1 the similarity reduction is not possible so we
must resort to numerical or approximate solution methods.

A standard approximation is known as the Integral Momentum Equation
(IME), [7]. The IME may be obtained from the boundary layer equations (1,
2) or via a simple mass and momentum balance argument, see [7, pp345-351],
[26, pp191]. Integrating equation (1) over y ∈ [0, h], where h is everywhere
greater than the boundary layer thickness leads to

ρ

∫ h

0

u
∂u

∂x
+ v

∂u

∂y
− U∞

dU∞

dx
dy = τ |hy=0 . (7)

We can replace v in the integral via equation (2) after noting v(x, 0) = 0.
This leads to a double integral term; changing the order of integration and
integrating once gives

ρ

∫ h

0

2u
∂u

∂x
− U∞

∂u

∂x
− U∞

dU∞

dx
dy = −τ0 , (8)
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where τ0 is the shear stress in the fluid at y = 0. In the simplest case U∞

is constant and the integral is zero everywhere outside the boundary layer
(since then u = U∞) and we may replace the upper limit of the integral by
the unknown boundary layer thickness δ = δ(x) to find

ρ

∫ δ

0

∂

∂x
[u(U∞ − u)] dy = ρ

d

dx

∫ δ

0

u(U∞ − u) dy = τ0 . (9)

This is known as the Integral Momentum Equation (IME). In this form it
holds for both laminar and turbulent flow and no assumption has been made
about the nature of the fluid [7]. However, from now on we will assume that
the power law relation, equation (5), holds. A similar analysis on (6) leads
to the Integral Energy Equation (IEE)

d

dx

∫ δT

0

u(T∞ − T ) dy = κ
∂T

∂y

∣

∣

∣

∣

y=0

, (10)

where the thickness of the thermal boundary layer δT (x) 6= δ(x).
In §4, when we develop the approximation method, we will work with

derivative forms of these equations and so denote G = ρu(U∞ − u), F =
u(T∞ − T ). Then we will use derivative forms of the integral equations

(a)
∂G

∂x
= −∂τ

∂y
(b)

∂F

∂x
= −κ∂

2T

∂y2
. (11)

Note, these equations follow from (9,10) by integrating over the boundary
layer. For example, with (11b) we note that F (δT ) = Ty(δT ) = 0 and so

∫ δT (x)

0

∂F

∂x
dy =

d

dx

∫ δT (x)

0

F dy

∫ δT (x)

0

∂2T

∂y2
dy = − ∂T

∂y

∣

∣

∣

∣

y=0

.

(12)
Equation (10) then follows immediately.

2.1. Non-dimensionalisation

Using the standard boundary layer scaling for a power law fluid we set

u = U∞û , v =
U∞

Re1/(n+1)
v̂ , x = Lx̂ , (13)

y = Hŷ =
L

Re1/(n+1)
ŷ , T̂ =

T − Ts

T∞ − Ts
(14)
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where U∞ is assumed constant, the Reynolds number Re = ρU2−n
∞

Ln/m and
L is the plate length. Equation (1) becomes

u
∂u

∂x
+ v

∂u

∂y
=

∂

∂y

(

∣

∣

∣

∣

∂u

∂y

∣

∣

∣

∣

n−1
∂u

∂y

)

, (15)

where the hats have been dropped. The thermal problem is described by

Pr

(

∂

∂x
(uT ) +

∂

∂y
(vT )

)

=
∂2T

∂y2
(16)

where the Prandtl number Pr = H2U∞/(κL). The IME (9) and IEE (10)
become

∫ δ

0

∂

∂x
[u(1 − u)] dy =





[

∣

∣

∣

∣

∂u

∂y

∣

∣

∣

∣

n−1
∂u

∂y

]

y=0





n

(17)

Pr
d

dx

∫ δT

0

u(1 − T ) dy =
∂T

∂y

∣

∣

∣

∣

y=0

. (18)

Finally, the derivative forms in (11) are now

(a)
∂G

∂x
= − ∂

∂y

(

∣

∣

∣

∣

∂u

∂y

∣

∣

∣

∣

n−1
∂u

∂y

)

(b) Pr
∂F

∂x
= −∂

2T

∂y2
, (19)

where now G = u(1 − u), F = u(1 − T ).
The velocity is subject to the boundary conditions

u(x, 0) = v(x, 0) = 0 , u(x,∞) = 1 , u(0, y) = 1 . (20)

The temperature is subject to

T (x,∞) = T (0, y) = 1 , (a) T (x, 0) = 0 , (b) Ty(x, 0) = Q , (c) Ty = HT
(21)

where Q is a non-dimensional constant heat input and H is a non-dimensional
heat transfer coefficient. We will deal with each of the conditions (21 a, b,
c) in §5.
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3. Similarity solution for the velocity

For a Newtonian fluid the similarity solution is obtained by introducing
a stream function (u, v) = (ψy,−ψx). The stream function may be expressed
in terms of the similarity variable ξ = y/

√
2x, so ψ =

√
2xg(ξ) and g(ξ) is an

as yet unknown function. Then u = gξ and v = (ξgξ − g)/
√

2x. Substituting
these into equation (15) leads to the Blasius equation, see, for example, [26,
p167-172]. The boundary layer equations for a power law fluid may be derived
in a similar manner. The similarity variable is ξ = y/(n(n+ 1)x)1/(n+1) and

u = ψy =
ψξ

[n(n+ 1)x]1/(n+1)
= gξ (22)

v = −ψx =
1

n+ 1

[

n(n + 1)

xn

]1/(n+1)

(ξgξ − g) . (23)

The modified Blasius equation is then

∂

∂ξ

(

∣

∣

∣

∣

∂2g

∂ξ2

∣

∣

∣

∣

n−1
∂2g

∂ξ2

)

+ ng
∂2g

∂ξ2
= 0 (24)

which is solved subject to g(0) = gξ(0) = 0, gξ(∞) = 1 (corresponding to
u = v = 0 on y = 0 and u → 1 as y → ∞). Equation (24) is often written
with the modulus sign removed or with all the gξξ terms put together, as
written below in equation (25): this requires division by gn−1

ξξ , see [11, 12]
for example. For n ≤ 1 it can be shown gξξ > 0 [4, 16] and hence these
simplifications are valid. For n > 1, gξξ is compactly supported, that is
there exists a point ξ = ξc > 0 beyond which gξξ = 0 [4]. If the modulus
sign is removed then numerical solutions can predict gξξ becomes negative
beyond ξc and so the velocity will decrease in an unphysical manner. This
is in accordance with the observation of [1, 27] that the boundary layer has
finite thickness. Denier & Dabrowski [11] show that for n > 1 a viscous
adjustment layer should be introduced to match to the far-field boundary
conditions. However, from now on we will neglect the modulus sign in the
stress expression and so deal with

∂3g

∂ξ3
+ g

(

∂2g

∂ξ2

)2−n

= 0 . (25)

This equation holds for all ξ > 0 when n ≤ 1 and for ξ < ξc when n > 1.
Consequently we only deal with physically realistic velocity profiles.
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The similarity solution of the momentum equation (19 a) involves the
same variable, ξ. Since there is no vertical velocity then there is no need to
introduce the stream function and so the governing equation is one order less
than (25) (of course since (25) is autonomous we could also reduce the order
by one). Setting u(x, y) = f(ξ) and neglecting the modulus sign leads to

∂2f

∂ξ2
− (1 − 2f)ξ

(

∂f

∂ξ

)2−n

= 0 . (26)

The three conditions u(x, 0)=0, u(x,∞)=1, u(0, y)=1 reduce to f(0) = 0,
f(∞) = 1.

The limiting case n = 2 reduces equation (25) to gξξξ + g = 0. This is
a linear constant coefficients equation, with solutions of the form erx, where
r3 = −1. The solution satisfying the boundary condition at ξ = 0 is

g(ξ) = A0

[

e−ξ + eξ/2

(

√
3 sin

√
3ξ

2
− cos

√
3ξ

2

)]

. (27)

Now it is clear that the requirement gξ(∞) = 1 cannot be met and a finite
width must be imposed, see [11]. Denoting the edge of the boundary layer
as ξc we set gξ(ξc) = 1 and introduce a further condition to determine ξc,
namely gξξ(ξc) = 0. This leads to

A0 =

[

−e−ξc + eξc/2

(

√
3 sin

√
3ξc
2

+ cos

√
3ξc
2

)]

−1

, (28)

where ξc satisfies the transcendental equation

e−ξc + 2eξc/2 cos

√
3ξc
2

= 0 . (29)

In a similar fashion we may solve the Integral Momentum equation (26)
for the case n = 2. Now the solution is in terms of Airy functions with

f(ξ) = a0Ai(−21/3ξ) + a1Bi(−21/3ξ) +
1

2
(30)

and

a0 = −32/3Γ(2/3)

2
−
√

3a1 (31)

a1 =
32/3Γ(2/3)

2

Ai′(−21/3ξc)

Bi′(−21/3ξc) −
√

3Ai′(−21/3ξc)
(32)
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where primes denote differentiation with respect to ξ. The position of the
edge of the boundary layer ξc satisfies

a0Ai(−21/3ξc) + a1Bi(−21/3ξc) =
1

2
. (33)

Figure 1 near here

A comparison of the velocities u(ξ) = f(ξ), gξ(ξ) predicted by the two
similarity solutions is shown in Figure 1. The solution to the IME problem,
equation (26), is shown as a dashed line whilst that of the original problem,
equation (25), is the solid line. The results are shown for four values of
n = 0.5, 1, 1.5, 2. Note, to highlight the differences in the solutions we have
truncated the computational domain shown in the figure. For example, when
n = 0.5 we actually carry out the calculation for gξ(ξ) until ξ = 50 and for
f(ξ) until ξ = 20. For n = 0.5 the two solutions are clearly quite different,
however, the statement that the IME becomes less accurate as the fluid
becomes less Newtonian [8, 12] is not strictly true given that the error for n =
1.5 is smaller than that for n = 1. The lines for n = 2 show the two analytical
solutions, (27, 30). Note that, after discussing the fact that the similarity
solution does not exhibit the correct far-field behaviour for n > 1 we still
present results for n = 1.5, where we have taken the end-point as ξ = 5.8 for
the g calculation. In fact up to around n = 1.75 we are able to produce results
where the velocity appears to asymptote to 1. The solid line for n = 1.5 shows
this quite clearly. Furthermore, the drag coefficient (discussed in §4.5), which
is a much stricter indicator of the accuracy, converges to within 3 decimal
places. The solutions for n > 1 exhibit the expected behaviour in that they
tend towards the analytical solution for n = 2 as n increases. So, although the
solution with n > 1 requires a finite-width boundary layer, our calculations
indicate that relatively accurate results can be obtained, at least for n < 1.75,
without carrying out any matching to an outer layer.

We now have similarity solutions for the velocity profiles from the full
boundary layer equation and the integrated version. When we consider the
thermal boundary layer a similarity solution is only possible for the New-
tonian case, [9]. This is discussed in §5.1. Consequently we will now seek
approximate solutions that do not have this restriction. The similarity solu-
tion will be used to check the accuracy of the approximate solutions.
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4. Approximate solutions

4.1. The Heat Balance Integral Method (HBIM)

The integral methods described in the following section stem from the
seminal work of von Kármán and Pohlhausen [26] on boundary layer flow.
However, there has perhaps been more research on the related Heat Balance
Integral Method (HBIM) [13, 18]. So, although the HBIM derives from the
von Kármán-Pohlhausen method we will briefly describe the HBIM first and
then show the analogy with the current problem.

The HBIM is a method for solving the heat equation in an integral sense.
If we consider the basic problem of cooling the surface y = 0 of a semi-infinite
material occupying y > 0 that is initially at a constant temperature. Then
we may write the non-dimensional problem as

∂T

∂t
=
∂2T

∂y2
, T (0, t) = 0 , T (y, 0) = 1 , T (∞, t) = 1 . (34)

Although the heat equation has infinite speed of propagation, in the HBIM a
distance δ, known as the heat penetration depth, is introduced. For y ≥ δ it is
assumed that the temperature rise above the initial temperature is negligible
and so T (δ, t) = 1 and this replaces the final condition of (34). To ensure
that the solutions merge smoothly with the constant outer solution a gradient
condition Ty(δ, t) = 0 is also imposed. Finally, the heat equation is integrated
for y ∈ [0, δ] to obtain the Heat Balance Integral

∫ δ

0

∂T

∂t
dy =

∫ δ

0

∂2T

∂y2
dy = − ∂T

∂y

∣

∣

∣

∣

y=0

. (35)

Note that this is rather a weak condition since the choice of δ only ensures
that the area under Tt and Tyy match. This means that Tt can be very
different to Tyy and so it is no surprise that certain choices of approximating
function for T perform significantly better than others [18, 21, 22].

The standard HBIM proceeds by defining a polynomial form of T , with
coefficients that satisfy the boundary conditions. Substituting the polyno-
mial into (35) then gives a first order ordinary differential equation for δ
which may be solved analytically. A classic issue with this method is the or-
der of the approximating polynomial. Goodman [13] advocates a quadratic.
However, cubic and quartic functions have also been used [3, 17, 20, 23]. To
improve the accuracy of solutions Braga et al [5] use a non-integer power that
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is chosen based on a known exact solution. To avoid the requirement that
approximate solutions should be based on known solutions, thus making the
method redundant, Myers [21, 22] developed a method where a non-integer
power is chosen based on minimising the error

E =

∫ δ

0

[

∂T

∂t
− ∂2T

∂y2

]2

dy ≥ 0 . (36)

If T is an exact solution then obviously E = 0. Approximate solutions will
have E > 0. Taking the square of Tt − Tyy prevents the cancelling of errors
of opposite sign and also magnifies the importance of regions where T does
not closely satisfy the heat equation [15].

Now consider the current problem. Comparison with the HBIM shows
that the IME, equation (17), is an integrated form of solution of equation
(19a), where the thickness of the boundary layer is equivalent to the heat
penetration depth. Hence if we wish to improve on the accuracy of the IME
then we should not only solve the integral equation, equation (17), but also
minimize the error

Ep =

∫ δ

0

(

∂G

∂x
− ∂τ

∂y

)2

dy , (37)

where G = u(1 − u) and the subscript p indicates we take a polynomial
power p. We will carry this out in §4.3 but first opt to describe the von
Kármán-Pohlhausen Method as a way of introducing the integral method for
boundary layer flows.

4.2. Von Kármán-Pohlhausen Method

The classical method involves approximating the velocity by a quartic
polynomial subject to u = 0 at y = 0, u = 1, uy = uyy = uyyy = 0 at y = δ,
hence

u = 4
y

δP
− 6

(

y

δP

)2

+ 4

(

y

δP

)3

−
(

y

δP

)4

, (38)

where the subscript P denotes Pohlhausen’s solution. Substituting this into
the IME, equation (17), without the modulus sign leads to

d

dx

(

4

45
δP

)

=

(

4

δP

)n

. (39)

Applying δP (0) = 0 gives

δP =
(

4n−1(n+ 1)45x
)1/(n+1)

. (40)
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Comparison with the Blasius solution shows that Pohlhausen’s solution is
not a particularly accurate approximation (see §4.4). Chhabra [8] derives
a more accurate representation using a cubic approximating function. The
boundary conditions applied by Chhabra are u = uyy = 0 at y = 0 and
u = 1, uy = 0 at y = δ. The condition uyy = 0 follows from setting u = 0 in
equation (1). Presumably the physical reasoning behind this new boundary
condition was based on a desire to improve the accuracy near the wall, y = 0,
with less emphasis on the solution at infinity. Consequently, one boundary
condition is dropped at infinity to be replaced by one at y = 0. This method
leads to an approximating function

u =
3

2

y

δC
− 1

2

(

y

δC

)3

. (41)

From the IME we find

δC =

(

(n+ 1)

(

3

2

)n
280

39
x

)1/(n+1)

(42)

and this gives significantly more accurate solutions than the previous method
(to be discussed further in §4.4).

4.3. Optimal power solution

An alternative method is to seek a polynomial approximation where one
of the powers is unknown. Taking the same number of terms as in Chhabra’s
solution we assume an approximating function of the form

u = a0 + a1

(

1 − y

δ

)

+ a2

(

1 − y

δ

)2

+ ap

(

1 − y

δ

)p

. (43)

We expand in terms of (1 − y/δ) for two reasons. Firstly it simplifies the
algebra. Secondly, and most importantly, it has been shown for analogous
thermal problems that this form provides more accurate solutions than the
expansion in y/δ [18]. Applying the same boundary conditions as Chhabra
we find

u = 1 − p(p− 1)

(p+ 1)(p− 2)

(

1 − y

δ

)2

+
2

(p+ 1)(p− 2)

(

1 − y

δ

)p

. (44)

For large p this reduces to a quadratic form

u →
[

1 −
(

1 − y

δ

)2
]

. (45)
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At the moment we have two unknowns, p and δ. We determine δ through
the IME, equation (17). Evaluating the integral with the velocity of (44)
gives

d

dx
[f1(p)δ] =

f2(p)

δn
(46)

where

f1(p) =
1

(p+ 1)2

[

p2 + 2p+ 3

3
− 2p4 + 11p3 + 27p2 + 25p+ 15

5(p+ 3)(2p+ 1)

]

(47)

f2(p) =

(

2p

(p+ 1)

)n

. (48)

Hence

δ =

[

(n + 1)f2

f1
x

]1/(n+1)

= αx1/(n+1) , (49)

after applying δ(0) = 0. Note, this has the same x dependence as the previous
solutions, equations (40, 42), only the constant coefficient has changed.

The value of p is determined by minimizing the error Ep, defined by
equation (37), where

∂G

∂x
=
∂u

∂x
[1 − 2u] . (50)

The derivatives required to calculate Gx and τy are

∂u

∂y
=

2p

(p+ 1)(p− 2)δ

[

(p− 1)
(

1 − y

δ

)

−
(

1 − y

δ

)p−1
]

(51)

∂2u

∂y2
=

2p(p− 1)

(p+ 1)(p− 2)δ2

[

(

1 − y

δ

)p−2

− 1

]

(52)

∂u

∂x
=

2py

(p+ 1)(p− 2)δ2

dδ

dx

[

(

1 − y

δ

)p−1

− (p− 1)
(

1 − y

δ

)

]

(53)

dδ

dx
= α

x−n/(n+1)

n+ 1
. (54)

Since the algebra becomes very cumbersome at this stage, we choose to eval-
uate Ep numerically.

4.4. Velocity results

The following results were calculated using MATLAB. The error Ep was
obtained using the derivatives defined in (51 – 54) and the integral evaluated
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with the subroutine quadl, which uses adaptive Lobatto quadrature. A range
of p values was employed and the optimal p chosen to be the one to produce
the minimum value of Ep. The value of p was fixed within 0.1% of the possible
minimum value and Ep did not change within 4 decimal places.

Figure 2 near here

The velocity profiles for a Newtonian fluid are given in Figure 2. The
similarity solutions for the boundary layer equations and the IME, equations
(25, 26), are shown as solid and dashed lines respectively. The optimal p
calculation leads to p = 3.48, which is shown as a dash-dot line and is hard
to distinguish from the p = 3 solution (dotted line). The ‘+’ signs show
Pohlhausen’s solution. These results provide little incentive for using the
new method; Chhabra’s solution seems sufficiently accurate. However, it is
clear that Pohlhausens method and the IME provide the worst approxima-
tions. So now we show solutions for n = 0.6 on Figure 3. Since the velocity
profiles in general have the form shown in Figures 1 and 2 we only show a
close-up of the solutions in the vicinity of y = 0. In this case we find the
optimal p = 10.016. Now it is clear that the optimal p solution gives the best
approximation to the boundary layer solution. Furthermore, since it provides
the best approximation for the velocity near y = 0 it will also provide the
best approximation to the drag coefficient. An interesting point to note is
that the IME similarity solution provides the worst approximation and the
polynomial solutions are significantly more accurate.

Figure 3 near here

4.5. Drag coefficient

A quantity of primary interest is the drag coefficient CD. Since this
involves the integral of the shear stress along the plate, any errors in the
shear stress will be magnified when calculating CD. It is therefore important
to have an accurate approximation to the wall stress.

In non-dimensional form the drag coefficient is scaled with τ̄ /(ρU2
0 ), where

τ̄ = mUn
0 /H

n is the shear stress scale. The drag coefficient is calculated via
the shear stress at the substrate

τ0(x) =

(

∂u

∂y

∣

∣

∣

∣

y=0

)n

=

(

gξ(0)

[n(n + 1)x]1/(n+1)

)n

. (55)
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The local skin friction coefficient is then defined as cf (x) = 2τ0(x). The
average wall stress is

τ 0 =

∫ 1

0

τ0 dx (56)

and the drag coefficient is
CD = 2τ̄0 . (57)

So for the similarity solution to the boundary layer equations we find

CD =
2(n+ 1)gn

ξξ(0)

[n(n+ 1)]n/(n+1)
, (58)

where gξξ(0) must be determined numerically. For the similarity solution for
the IME we simply replace gξξ(0) with fξ(0).

For the optimal p solution we use equations (49) and (51) to find

τ0 =

[

2p

(p+ 1)α

]n

x−n/(n+1) (59)

where α = ((n + 1)f2/f1)
1/(n+1) and f1, f2 are defined in equations (47, 48).

The corresponding drag coefficient is

Cp = 2(n+ 1)

(

2p

(p+ 1)α

)n

. (60)

Similarly, for Chhabra’s solution we can write

CC = 2(n+ 1)

[

39

280(n+ 1)

(

3

2

)1−n
]n

. (61)

If we set p = 3 in (60) then we obtain (61).
In Table 1 we present values for the drag coefficient calculated via the

numerical solution of the modified Blasius equation (25) and equation (58) as
well as the values calculated through the approximate solutions with p = 3
and the optimal p method. The values of CD for n = 3, 4, 5 are taken from [7].
We do not present results using the IME similarity solution, equation (26),
since it is clear from the previous figures that the results are not accurate.
Pantokratoras [24] points out that in numerous studies of boundary layer
flow the solutions are incorrect due to working over a domain that is too
small (in fact he gives over 70 references where the majority have inaccurate
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Table 1: Drag coefficient

n CD via (58) CC via (61) Error Cp via (60) (p) Error

0.2 2.0754 1.794 13.5 % 1.868 9.9%

0.4 1.8377 1.626 11.5% 1.7434 5.1%

0.6 1.6268 1.4914 10.7 % 1.5765 (10.016) 4%

0.8 1.4597 1.3824 5.3% 1.4239 (4.808) 2.4%

1 1.3282 1.292 2.7 % 1.307 (3.488) 1.6%

1.2 1.2234 1.2183 0.4% 1.2093 (2.74) 1.1%

1.5 1.1016 1.128 -3% 1.091 (2.114) 0.96%

1.7 1.0373 1.0781 -3.9% 1.0282 (1.876) 0.9%

2 0.959 1.014 -5.7% 0.9513 (1.6573) 0.8%

3 0.776 0.872 -12.4% 0.786 (1.352) -1.3%

4 0.678 0.79 -16.5% 0.6922 (1.24) -2.1%

5 0.613 0.732 -19.4% 0.6315 (1.18) -3%

solutions). In particular he points out that a truncated domain will lead
to errors in the values of wall shear stress and wall heat transfer. For this
reason we have taken great care to ensure that the numerical solution has
converged. The numerical solution for gξξ(0) is very sensitive to the length
of the domain and so we choose a final value for ξ that is sufficiently large so
that the solution does not change within three decimal places. Note, since
ξ = y/[x(n(n+ 1))]1/(n+1) this position will vary with n. For example, if the
boundary layer appears to have ended around y = 10 (and we carry out all
calculations at x = 1) then for n = 1 we compute until ξ = 10/

√
2, whereas

for n = 0.4 we require ξ ∼ 10/((0.2)1/1.4) ≈ 31 (in fact we take it much
further to ξ = 100). Acrivos et al [1] obtained values for the drag coefficient
that are typically around 5% different to the present ones. By decreasing
our domain we can reproduce their results, indicating that the discrepancy
is due to their taking too small a domain for the integration. In the first
column of Table 1 we show the n value, then in the second column the drag
coefficient, CD, calculated from the similarity solution, (58). The third and
fourth columns give the drag coefficient calculated using Chhabra’s solution
with p = 3 and the associated difference with the similarity solution. The
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fifth and sixth columns show the drag coefficient using the optimal p method
and the error. In brackets is the p value required to obtain this solution.
Using the optimal p method we cannot obtain solutions for n < 0.555. The
problem appears to be that as n decreases p increases and the velocity profile
becomes approximately quadratic, with a very slight deviation near x = 0.
Consequently the higher order polynomial is not appropriate. So, for small
n the velocity may be described by the quadratic form (45) where δ(x) given
by (49) takes the limiting value α → (15(n + 1)2n−1)1/(n+1). This leads to
Cp → 2(n + 1)(2/α)n as p → ∞. Unfortunately, since the deviation from
quadratic is in the vicinity of y = 0 the greatest errors are also there and
so the drag coefficient calculation deteriorates, although they are still an
improvement on choosing p = 3.

From the table it can be seen that in general the current method provides
a significantly more accurate estimate of the drag coefficient than when using
p = 3, with the exception of a small region where the error goes from positive
to negative (and consequently must somewhere be zero). When a p value
can be found the error is always below 4%. This increases to a maximum of
around 10% for the lowest value of n, when the infinite p approximation is
used. Taking p = 3 the maximum error is around 20% and half the results
shown have an error over 10%. The differences in the models can be seen
more clearly in Figure 4. This shows the drag coefficient calculated by the
similarity solution (solid line), equation (58), the optimal p solution (dashed
line) and that of equation (61) (∗’s). The kink in the dashed line at n ≈ 0.5
indicates the transition to the limiting formula. For n > 0.5 the current
method is clearly very accurate, whilst that with p = 3 shows a solution
which diverges from the numerical one. The assertion that the approximate
solution loses accuracy as the fluid becomes less Newtonian [8, 12] does not
hold for the current method; the solution accuracy is really only lost for
n < 0.5.

Figure 4 near here

From Table 1 it is clear that the optimal p = p(n). Obviously it is
undesirable (impractical) to calculate p for every case. Noting that p increases
rapidly as n → 0 we look for an approximation of the form pa =

∑

ai/n
i.

Defrawi & Finlayson [10] propose a similar approximation p ∼ 1+1/n. Since
no real fluid has n > 2 we use fifteen data points for n ∈ [0.57, 2] to obtain
the curve fit (seven of these points are given in Table 1). Using these data
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points a generalised linear approximation pa = a0 + a1/n gives an error

E =

5
∑

n=1

(

p− pa

p

)2

≈ 1.77 . (62)

Whereas if we use an approximation up to n−4 we find an error of 0.05. We
therefore take

pa = 22.13 − 98.3

n
+

165.6

n2
− 114.8

n3
+

29.01

n4
. (63)

Using this to calculate p for n ≤ 0.5 gives almost exact agreement with the
Cp obtained by letting p → ∞. The highest error occurs for n = 0.6 where
we find p = 10.74 and the error in Cp is then 2.8% (which is in fact an
improvement on the result from the exact calculation).

5. Thermal boundary layer

The thermal problem is governed by equation (16) or the IEE, equation
(18). Since the right hand side involves Tyy, whereas the momentum equation
has τn

y , a similarity solution for the coupled problem can only be found for
the case n = 1 and with a fixed temperature at y = 0. At this stage the
approximate solution methods are invaluable. Having verified in the previous
section that the optimal p method provides the most accurate results, we will
only use this method to determine the temperature profile.

We begin by analysing the case where the temperature is fixed at the sub-
strate and then briefly describe the extensions to constant flux and Newton
cooling conditions.

5.1. Similarity solution for the temperature

The similarity variable of §3 may be applied to the temperature equation
(16). To balance the right hand side (the Tyy expression) with the left hand
side (involving the velocity expressions) requires n = 1. In which case the
governing heat equation becomes

∂2T

∂ξ2
= −Prg∂T

∂ξ
(64)
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where ξ = y/
√

2x and u = gξ is the solution of (25) with n = 1. This is
to be solved subject to T (0) = 0, T (∞) = 1. For the Integral Momentum
equation, the equivalent expression is

∂2T

∂ξ2
= Prξ

[

∂f

∂ξ
(1 − T ) − f

∂T

∂ξ

]

. (65)

where u = f(ξ) is the solution of equation (26) with n = 1.

5.2. Fixed temperature substrate

First consider the boundary conditions T (0, y)=T (x,∞)=1, T (x, 0)= 0.
For the integral method the conditions on y translate to T (x, δT ) = 1,
Ty(x, δT ) = 0, T (x, 0) = 0, δT (0) = 0. Chhabra uses a physical argument
to derive a further boundary condition Tyy = 0. We may derive this in a less
intuitive way from the governing equation, namely (16), by writing it as

Pr (T∇ · u + u · ∇T )) =
∂2T

∂y2
. (66)

For an incompressible fluid ∇·u = 0 and on the boundary y = 0 the velocity
is u = 0. Consequently Tyy = 0 and this is independent of the boundary
condition on T at y = 0.

With the extra boundary condition we may specify a temperature similar
to the velocity profile of equation (44),

T = 1 − q(q − 1)

2
aq

(

1 − y

δT

)2

+ aq

(

1 − y

δT

)q

, (67)

where aq = 2/((q + 1)(q − 2)).
When calculating the IEE the algebra becomes very unwieldy. So, we

follow Chhabra [7] and note that the thermal boundary layer is thinner than
the momentum boundary layer, hence we set δT/δ = ǫ ≪ 1 (we will discuss
this later). The integral on the left hand side of (18) may be written as
∫ δT

0

u(1 − T ) dy =
(q − 2) (q + 3) (q2 + q + 4)

12 (2 + q) (1 + q)

p

(1 + p)
aqδT ǫ+ O(ǫ2) , (68)

where it should be noted that the leading order terms in ǫ have cancelled
out. Whilst the right hand side of (18) becomes

∂T

∂y

∣

∣

∣

∣

y=0

=
q(q − 2)aq

δT
. (69)
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Hence the IEE may be written as

Pr
d

dx

(

λ1ǫ
2δ
)

=
2q

1 + q

1

ǫδ
, (70)

where

λ1 =
(q + 3) (q2 + q + 4)

6 (2 + q) (1 + q)2

p

(1 + p)
. (71)

The momentum boundary layer thickness δ is given by equation (49), δ =
αx1/(n+1), and so we may write equation (70) in the form

µ1ǫx
1/(n+1) d

dx

(

ǫ2x1/(n+1)
)

= 1 (72)

where µ1 = Prλ1α
2(1+q)/(2q). This may be solved analytically to determine

ǫ(x). However, since δT (0) = δ(0) = 0 we find ǫ(0) is undefined. To avoid
this issue we set δT (x0) = 0 and then let x0 → 0 to obtain

δT = α

(

3(n+ 1)

µ1(2n+ 1)

)1/3

x(n+2)/(3(n+1)) . (73)

Finally, the problem has reduced to determining the single unknown q.
This is achieved by minimizing the error

Eq =

∫ δT

0

(

∂F

∂x
− ∂2T

∂y2

)2

dy (74)

where F = u(1 − T ).
This calculation turns out to be much simpler than in the momentum

boundary layer solution. The value of q for n > 0.5 is relatively constant
(around 13), for n < 0.5 the value increases significantly, for example, for
n = 0.3, q ≈ 35. Consequently we may obtain accurate solutions by assuming
q ≫ 1 and so the temperature is approximately quadratic

T ≈ y

δT

(

2 − y

δT

)

. (75)

Note, if we neglect the extra boundary condition Tyy(0, t) = 0 and impose a
temperature profile T = 1 − (1 − y/δT )q then it turns out that q ≈ 2 and so
the profiles are equivalent.
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In the limit of large q the constants required to calculate δT are

λ1 ≈
p

6(p+ 1)
, µ1 ≈

Pr p α2

12(p+ 1)
(76)

and α is defined in equation (49).
In Figure 5 we compare the temperature profiles at x = 1, when n = 1,

predicted by the similarity solution, equation (64), the IEE similarity solu-
tion, equation (65), and the optimal q solution, equation (67), with q ≈ 13.
For T < 0.6 the optimal q solution clearly gives excellent agreement with
the solution of equation (64). For larger T it slightly overestimates the tem-
perature. The IEE solution overestimates the temperature for small T and
underestimates it for larger T . Note, this case where n = 1 is the only one
where we can find a similarity solution to the full problem. For all other
values we must rely on the approximate solutions.

Figure 5 near here

In Figure 6 we present the temperature profiles at x = 1 calculated by
optimizing q for the profile (67) and by using the simpler quadratic approxi-
mation to the temperature, equation (75). The parameter values are similar
to those used in the example in [7, pp363-364], m = 0.3, κ = 1.4 × 10−7, ρ =
103, L = 0.5, U∞ = 2 (in SI units) but with a range of n = 0.5, 1, 1.5. The
height-scale H depends on n, H = L/Re1/(n+1) and consequently so does
the Prandtl number Pr = H2U∞/(κL). For the three n values we find
(H,Pr) = (0.0014, 56.74), (0.0087, 2136), (0.026, 1.9 × 104). The value of p
calculated from the momentum problem is p = ∞, 3.49, 2.114 which deter-
mines α = 6.33, 4.76, 3.74. From the figure we can see that the agreement is
good between all sets of curves, giving confidence in the quadratic approxi-
mation. Consequently, to determine the temperature profile in the thermal
boundary layer it is sufficient to specify T as a quadratic, through equation
(75), with δT calculated via (73) and µ1 from (76). To be specific, for the
thermal problem there is no need to search for an optimum q.

Figure 6 near here

In carrying out the preceding analysis, following [7], we made the assump-
tion that δT ≪ δ. The variation of these two functions for n = 0.5, 1, 1.5 is
shown in Figure 7, where δT is the dashed line and δ the solid line. Taking the
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definitions of δ, δT we find that the assumption reduces to the requirement
that

x1−n ≫
(

3(n+ 1)

µ1(2n+ 1)

)n+1

. (77)

So, for n < 1 there will always be a region close to x = 0 where this assump-
tion is violated. However, when we calculate this value we find that n = 0.5
leads to x ≫ 2 × 10−6 and this value decreases as n increases. So, although
the assumption is invalid near x = 0, the region where it is violated is neg-
ligible. In fact, many of the model assumptions are suspect in the vicinity
of x = 0, so this current problem should not be viewed too negatively. For
example, the plate is treated as infinitely thin: for a finite thickness plate
the velocity profile will be rather different where the fluid first contacts the
plate. For x < 0 the velocity gradient is zero and so, for n < 1 the power
law model predicts infinite viscosity, whereas for n > 1 the viscosity is zero
[19]. Once the plate is reached there is, apparently, an immediate change
to finite values. In the following examples with different conditions on the
temperature at y = 0 we will not show the development of the momentum
and thermal boundary layers because they are all approximately the same as
those shown in Figure 7.

Figure 7 near here

5.3. Constant flux and Newton cooling boundary conditions

For completeness we now summarize the analysis for constant flux and
Newton cooling boundary conditions.

For constant flux the problem is now subject to Ty(x, 0) = Q, T (x, δT ) =
1, Ty(x, δT ) = 0, Tyy(x, 0) = 0. The analysis follows that in §5.2. The temper-
ature is defined by equation (67) but now aq = δTQ/(q(q− 2)). The integral
(68) and derivative (69) remain the same and the IEE becomes

µ2
d

dx

(

ǫ3x2/(n+1)
)

= 1 (78)

where

µ2 = Pr

[

(q + 3) (q2 + q + 4)

12q (2 + q) (1 + q)

p

(1 + p)

]

α2 . (79)

This gives
δT = αµ

−1/3
2 x(n+2)/(3(n+1)) . (80)
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Evaluating Eq, again we find that q ≫ 1 and so the problem simplifies
considerably. The temperature is then given by

T ≈ 1 − δTQ

2

(

1 − y

δT

)2

(81)

with δT specified by (80) and µ2 → µ1 which is defined by equation (76b).

Figure 8 near here

In Figure 8 we compare the temperatures for the constant flux problem
using the optimal q and the quadratic approximation. In this figure the
difference can only be seen for a very small region close to y = 0 for the
case n = 0.5, otherwise the curves are indistinguishable. This is consistent
with the results of [21], where it was shown that for a standard thermal
problem the constant flux approximation was more accurate than for a fixed
temperature.

A Newton cooling condition at the substrate leads to Ty(x, 0) = HT (x, 0).
With the remaining boundary conditions the temperature is given by (67)
where aq = 2HδT/((q−2)(2q+HδT (q+1))). The IEE follows from the same
results as given by equations (68, 69) but with the new expression for aq.
This case shows a key difference to the previous two cases in that the IEE
becomes

Pr
d

dx

(

λ2(p, q, δ)ǫ
3δ2
)

=
q

2 q + ǫδH(1 + q)
(82)

where

λ2 =
(q + 3) (q2 + q + 4)

12 (2 + q) (1 + q) (2 q + ǫδH(1 + q))

p

(1 + p)
(83)

The function λ2 depends on δ and the IEE cannot be solved analytically.
However, in the case where q ≫ 1 and ǫδH = δTH ≪ 2 then

λ2 → λ′2 =
(q + 3) (q2 + q + 4)

24q (2 + q) (1 + q)

p

(1 + p)
(84)

and the problem reduces to solving

µ3
d

dx

(

ǫ3x2/(n+1)
)

= 1 (85)
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where µ3 = 2Prλ′2α
2. This leads to

δT = αµ
−1/3
3 x(n+2)/(3(n+1)) . (86)

When we minimise Eq the error decreases monotonically as q increases,
with an asymptote of around 0.063. In previous examples Eq had a distinct
minimum. Consequently we may assume that once again q is large and so
take a quadratic approximation to the temperature

T ≈ 1 − HδT
2

(

1 − y

δT

)2

. (87)

Note that the temperature stays positive since we have assumed that
HδT ≪ 2. As with the constant flux condition the constant in the ex-
pression for δT , µ3 → µ1 (defined by equation (76b)) and consequently the
non-dimensional thermal boundary layer thickness is the same for all three
thermal boundary conditions at y = 0. Figure 7 therefore serves to describe
the boundary layer growth for all three thermal boundary conditions.

In Figure 9 we show the temperature for the Newton cooling condition
with n = 0.5, 1, 1.5. Only the quadratic approximation is shown since as
mentioned above Eq decreases with q and hence q → ∞. The dimensional
heat transfer coefficient is taken as 10 W/m2K which leads to H = 0.024, 0.15,
0.43. As can be seen from Figure 7 the maximum value of δT is around 0.2
for n = 1.5 and 1.2 for n = 0.5 hence δTH ≪ 2 is easily satisfied. As with
all other examples the temperature for the shear thinning fluid grows most
rapidly.

Figure 9 near here

6. Conclusion

In this paper we have considered a number of aspects of the boundary
layer flow of a power law fluid. Firstly, we considered the similarity solu-
tions for the velocity profile using the standard boundary layer equations
and the Integral Momentum equation. For both cases an exact solution was
presented for the case n = 2. Of particular interest is the fact that although
strictly speaking the similarity solutions for n > 1 should be patched onto an
intermediate region, the results for n < 1.75 appear to be accurate without
this extra region.
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For a Newtonian fluid and a constant temperature boundary condition
similarity solutions can be found for the coupled velocity and temperature
equations. For other values of n and temperature boundary conditions we
used the polynomial approximations. For the velocity profile we found u ∼
(1 − y/δ)p, where p turned out to depend on n. The value of p may be
calculated by minimising the error or by using a relation of the form p =
Σ4

n=0ai/n
i. In all cases examined the temperature is approximately quadratic.

It was shown that the Heat Balance Integral Method was analogous to
the Integral Momentum equation. Hence the recently developed method for
minimising the error in the HBIM could be applied to this problem. The new
method does not suffer from problems associated with n > 1, namely that
the velocity gradient can become negative, and hence results were obtained
for n up to 5 (we stopped there only because this was the highest value we
could find in the literature). From the results we saw that the standard
IME generally provides rather inaccurate results. Using the new integral
method reduces the error considerably and so, hopefully, makes this a viable
alternative to the full numerical solution.

Acknowledgements

I would like to thank Prof. Chhabra of IIT Kanpur for his advice and
very importantly for sending me many appropriate reference works on this
subject.

References

[1] A. Acrivos, M.J. Shah, E.E. Petersen, Momentum and heat transfer in
laminar boundary flow of non-Newtonian fluids past external surfaces,
AIChE J. 6 (1960) 312 - 317.

[2] H.I. Andersson and T.H. Toften, Numerical-solution of the laminar
boundary-layer equations for power-law fluids, J. Non-Newt. Fl. Mech.
32(2) (1989), 175–195.

[3] A. Antic and J.M. Hill, The double-diffusivity heat transfer model for
grain stores incorporating microwave heating, Appl. Math. Modelling,
27 (2003), 629–647.

25



[4] M. Benlahsen and M. Gueddab and R. Kersner, The Generalized Blasius
equation revisited, Math. and Comp Modelling, 47(9-10) (2008), 1063–
1076.

[5] W. F. Braga, M. B. H. Mantelli, and J. L. F. Azevedo, Approximate
analytical solution for one-dimensional finite ablation problem with con-
stant time heat flux, AIAA Thermophys. Conference, 2004.

[6] T. Cebeci and P. Bradshaw, Momentum transfer in boundary layers,
McGraw-Hill 1977.

[7] R.P. Chhabra and J.F. Richardson, Non-Newtonian flow and applied
rheology, 2nd edition, Butterworth-Heineman 2008.

[8] R.P. Chhabra, Laminar boundary layer heat transfer to power law fluids:
an approximate analytical solution, J. Chem. Engng Japan 32(6) (1999),
812–816.

[9] N.P. Cheremenisoff (Ed.), Encyclopedia of Fluid Mechanics, Vol. 7 Rhe-
ology and non-Newtonian flows, Gulf Publishing 1988.

[10] M. El Defrawi and B. A. Finlayson, On the use of the integral method
for flow of power law fluids, AIChE J. 18 (1972), 251–253.

[11] J. P. Denier and P. P. Dabrowski, On the Boundary-Layer Equations
for Power-Law Fluids, Proc. R. Soc. Lond. A460 (2004), 3143–3158.

[12] C-C Hsu, A simple solution for boundary layer flow of power law fluids
past a semi-infinite flat plate. AIChE J. 15(3) (1969), 367–370.

[13] T.R. Goodman, The Heat-Balance Integral and its application to prob-
lems involving a change of phase, Trans. ASME 80 (1958), 335–342.

[14] M.J. Huang and C.K. Chen, Numerical-analysis for forced-convection
over a flat-plate in power law fluids, Int. Comm. Heat Mass Trans. 11(4)
(1984), 361–368.

[15] D. Langford, The Heat Balance Integral Method, Int. J. Heat & Mass
Trans., 16 (1973), 2424–2428.

26



[16] P.F. Lemieux, R.N. Dubey and T.E. Unny, Variational method for a
pseudoplastic fluid in a laminar boundary layer over a flat plate, Trans.
ASME J. Appl. Mech. June (1971) 345-349.

[17] S. L. Mitchell and T. G. Myers, Heat balance integral method for one-
dimensional finite ablation, AIAA J. Thermophys. & Heat Trans., 22(3)
(2008), 508–514.

[18] S.L. Mitchell and T.G. Myers, The application of standard and refined
heat balance integral methods to one-dimensional Stefan problems, to
appear SIAM Review.

[19] T.G. Myers, The application of non-Newtonian models to thin film
flow, Physical Rev. E, 72 (2005) 066302-1-11, DOI: 10.1103/Phys-
RevE.72.066302.

[20] T.G.Myers, S.L. Mitchell and G. Muchatibaya, Unsteady contact melt-
ing of a rectangular cross-section phase change material on a flat plate,
Phys. Fluids 20 (2008) 103101, DOI:10.1063/1.2990751.

[21] T.G. Myers, Optimizing the exponent in the Heat Balance and Refined
Integral Methods, Int. Commun. Heat Mass Trans. 36(2) (2009) 143-147,
DOI:10.1016/j.icheatmasstransfer. 2008.10.013.

[22] T.G. Myers, Optimal exponent heat balance and refined integral meth-
ods applied to Stefan problems. Int. J. Heat Mass Trans. 53 (2010)
1119–1127, DOI:101016/j.ijheatmasstransfer.2009.10.045.

[23] T.G. Myers, S.L. Mitchell, G. Muchatibaya and M.Y. Myers A cubic
heat balance integral method for one-dimensional melting of a finite
thickness layer. Int. J. Heat & Mass Trans. 50(25-26) (2007) 530–5317,
DOI: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.06.014.

[24] A. Pantokratoras, A common error made in investigation of bound-
ary layer flows, Appl. Math. Model. 33 (2009), 413–422. DOI:
doi:10.1016/j.apm.2007.11.009.

[25] Z. Rotem, A note on boundary layer solutions for pseudoplastic fluids,
Chem. Engng Sci. 21 (1966), 618–620.

27



[26] H. Schlichting & K. Gersten, Boundary layer theory. 8th Edition,
Springer, 2000.

[27] W.R. Schowalter, The application of boundary layer theory to power
law pseudoplastic fluids: similar solutions. AIChE J. 6 (1960), 24–28.

[28] T.Y. Wang Mixed convection from a vertical plate to non-newtonian
fluids with uniform surface heat-flux. Int. Comm. Heat Mass Trans.
22(3) (1995), 369–380.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

ξ

f(ξ), gξ(ξ)n=2

n=0.5

n=1

n=1.5

Figure 1: Comparison of similarity solutions for velocity u from equations (25), (26)
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Figure 2: Comparison of solutions for n = 1, Blasius (solid), IME (dashed), p = 3 (dotted),
optimal p = 3.48 (dash-dot), Pohlhausen (+)
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Figure 3: Comparison of solutions for n = 0.6, refined Blasius (solid), IME (dashed),
p = 3 (dotted), optimal p = 10.02 (dash-dot), Pohlhausen (+)
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Figure 4: Drag coefficient C(n) for similarity solution (solid line), optimal p (dashed line)
and p = 3 (”+”)
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Figure 6: Comparison of temperatures for n = 0.5, q = 14.85, n = 1, q = 13, n = 1.5, q =
12.96 (solid line) and quadratic profile (dashed line)
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Figure 7: Development of momentum and thermal boundary layers, δ (solid line), δT

(dashed line) for constant boundary temperature
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Figure 8: Comparison of temperatures with optimal q (solid) and quadratic formula
(dashed) for constant flux condition with n = 0.5, 1, 1.5
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Figure 9: Temperatures with quadratic formula (dashed) for Newton cooling condition with
n = 0.5, 1, 1.5
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