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Abstract. For sentences φ of Lω1,ω, we investigate the question of absolute-
ness of φ having models in uncountable cardinalities. We first observe that
having a model in ℵ1 is an absolute property, but having a model in ℵ2 is
not as it may depend on the validity of the Continuum Hypothesis. We then
consider the GCH context and provide sentences for any α ∈ ω1 \ {0, 1, ω} for
which the existence of a model in ℵα is non-absolute (relative to large cardinal
hypotheses).

Throughout, we assume φ is an Lω1,ω sentence which has infinite models. By
Löwenheim-Skolem, φ must have a countable model, so the property “having a
countable model” is an absolute property of such sentences in the sense that its
validity does not depend on the properties of the set theoretic universe we work
in, i.e. it is a consequence of ZFC. A main tool for absoluteness considerations
is Shoenfields absoluteness Theorem (Theorem 25.20 in [7]). It states that any
property expressed by either a Σ1

2 or a Π1
2 formula is absolute between transitive

models of ZFC.
The purpose of this paper is to investigate the question of how far we can

replace “countable” by higher cardinalities. As John Baldwin observed in [2], it
follows from results of [6] that the property of φ having arbitrarily large models is
absolute (it can be expressed in form of the existence of an infinite indiscernible
sequence, which by Shoenfield absoluteness is absolute). Consequently, since the
Hanf number of the logic Lω1,ω equals iω1 , the existence of models in cardinalities
above that number is absolute. Therefore the context we are interested in is where
φ (absolutely) does not have a model of size iω1 .
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1. The case ℵ1

For complete sentences φ (meaning that any model of φ satisfies the same Lω1,ω

sentences), having a model in ℵ1 is an absolute notion. We have the following
characterization (see also [2]) of φ having a model of size ℵ1 (which is a Σ1

1

property and therefore absolute by Shoenfield’s absoluteness Theorem):

(∗) There exist two countable models M,N of φ such that M is a
proper elementary (in the fragment of φ) substructure of N .

To see that this is a characterization, note first that if φ has an uncountable
model, (∗) holds by Löwenheim-Skolem. For the converse, we use the complete-
ness of φ which implies that any two countable models of φ are isomorphic (by
Scotts isomorphism Theorem, since φ must imply Scott sentences of countable
models). Then, as N ∼= M , we can find a proper countable Lω1,ω-elementary
extension of N as well and continue this procedure ω1 many times (taking unions
at limit stages). The union of this elementary chain will then be a model of φ of
size ℵ1.

If the sentence is not complete, there might be examples of φ having an un-
countable model, where (∗) fails (Gregory claimed the existence of such an ex-
ample in [5]). However having a model of size ℵ1 turns out to be absolute in
general1. We have to provide a slightly more subtle criteria to deal with possibly
incomplete φ. To state it, we have to regard the sentence φ as a set theoretic
object using standard coding of formulas of Lω1,ω. φ can thus be regarded as a
hereditarily countable set.

The following property which (again by Shoenfield) is absolute, characterizes
φ having a model of size ℵ1:

(∗∗) There is a countable model U of ZFC− (ZFC without the
power set axiom) containing φ with U |= “ω1 exists and there is a
model of φ with universe ω1”.

First, suppose φ has a model M of size ℵ1, say one with universe ω1. As both
φ and M are elements of Hω2 (the collection of sets hereditarily of size at most
ℵ1), we have Hω2 |= ZFC− + “there is a model of φ with universe ω1”. Now
it suffices to take a countable (first order) elementary substructure U ≺ Hω2

containing φ, and U will have the properties of (∗∗).
Conversely, assuming (∗∗) holds for some countable U , we can take an elemen-

tary extension U ′ of U where all (in the sense of U) countable sets are unchanged
and all (in U) uncountable ones become sets of size ℵ1 (using Corollary A of
Theorem 36 in [9]). In particular this is true for the ω1 of U ′ on which we know a
model M of φ lives (note that U ′ |= (M |= φ) implies that M |= φ in the real uni-
verse; to see this, consider U ′ as a transitive model (via the Mostowski-collapse)

1This has also been observed recently by Paul Larson. His argument uses iterated generic
ultrapowers. Rami Grossberg points out, he knew of this fact already in the 1980’s but did not
publish it, and that others like Shelah, Barwise and Keisler most likely knew of it even earlier.



and use that satisfaction can be expressed by a ∆0-formula). So we get a model
of φ of size ℵ1.

There is another absolute criteria characterizing φ having an uncountable
model, but it requires going beyond the logic Lω1,ω. Let us consider the ex-
tension Lω1,ω(Q) of Lω1,ω obtained by adding an extra quantifier Q with the
semantics “there exist uncountably many”. As is shown in [3], Lω1,ω(Q) admits
a completeness theorem which actually has a very natural (absolute) deduction
calculus. Now the statement

(∗ ∗ ∗) There is a proof of ¬Qx(x = x) starting from φ

characterizes φ having only countable models. Thus the negation of (∗ ∗ ∗) is
an (absolute) property characterizing φ having an uncountable model. Note that
this argument shows that model existence in ℵ1 is absolute even for Lω1,ω(Q)
sentences.

2. Going beyond ℵ1

It is not generally true that the existence of a model of size ℵ2 is an absolute
property.

A very simple way to see this is to take any sentence φ that has models exactly
up to size continuum. We easily find even complete sentences with this property.
Then clearly, φ has a model of size ℵ2 if and only if the continuum hypothesis
fails.

More generally, such a sentence has a model of size ℵα if and only if 2ℵ0 ≥ ℵα.
So for any α > 1, the existence of a model of size ℵα is non-absolute.

There are many examples of complete Lω1,ω-sentences in the literature having
models exactly up to size continuum, but they are mostly more complicated
than necessary for our purposes, because their authors have been interested in
additional properties. Therefore we provide here a very simple such example:

Let the language L consist of countably many binary relation symbols En
(n < ω), and let σ ∈ Lω1,ω be the conjunction of

• All En are equivalence relations such that E0 has two classes and each
En-class is the union of exactly two En+1-classes.
• ∀x, y((

∧
n<ω

En(x, y))→ x = y)

It is an easy back-and-forth argument to show that any two countable models
of σ are isomorphic, so σ is complete. Every model represents a set of branches
through a full binary tree, so there cannot be models greater than the continuum.
On the other hand, the Cantor space 2ω together with the relations “En(x, y) if
and only if x and y coincide on the n + 1 first components” is a model of σ of
size continuum.



3. Going beyond ℵ1 under the assumption of GCH

As we have seen, playing with the cardinal exponential function provides triv-
ial examples for the non-absoluteness of the existence of models of cardinality
greater than ℵ1. A next natural question is if this is the only non-absoluteness
phenomenon there is. That is, under the additional assumption of GCH does the
existence of models in cardinalities greater than ℵ1 become an absolute notion?

We will now provide two sequences of examples which answer this question
negatively for all cardinalities ℵα where α > 1 is a countable ordinal, not equal
to ω. The first sequence of examples works for α not limit or successor of a limit
ordinal, the second one for all α > ω. Before we start either construction, we will
define sentences which will be used in both cases.

3.1. Auxiliary sentences. Let Lα0 = {Qβ, an, <, F}β≤α; n<ω, where the Qβ are
unary predicates, the an are constant symbols, < is a binary and F a ternary
relation symbol.

Let σα0 ∈ (Lα0 )ω1,ω be the conjunction of the following sentences:

• The universe is the union of all Qβ.
• Q0 = {an|n < ω} where all an designate distinct elements.
• For any β < α, Qβ+1 is disjoint from any Qγ for all γ ≤ β.
• For any limit ordinal β ≤ α, Qβ =

⋃
γ<β

Qγ.

• < linearly orders Qβ+1 for every β < α and x < y implies that for some
β < α, both x and y belong to Qβ+1.
• F (a, b, c) implies that for some β < α, a ∈ Qβ+1, b < a and c ∈ Qβ.
• For every β < α and every a ∈ Qβ+1, F (a, ·, ·) defines a total injective

function from {x|x < a} into Qβ.

Note that for β a limit ordinal or zero, Qβ is not ordered by < and if α = 0,
both < and F are empty relations.

Definition 1. Let κ be an infinite cardinal and < be a total linear ordering on
some set X. This ordering is called κ-like, if all proper initial segments have
cardinality strictly less than κ.

Q0 is countable by definition and thus the ordering on Q1 is ω1-like by the
properties of F . Also, for any β < α, |Qβ+1| ≤ |Qβ|+ because F forces the
ordering on Qβ+1 to be |Qβ|+-like. Consequently, the cardinality of Qβ is at most
ℵβ for all β ≤ α and the maximum possible cardinality of a model of σα0 is ℵα.

3.2. Coding Kurepa-families. Suppose in this section that there is some count-
able ordinal δ such that α = δ + 2. First, we recall a classical definition.

Definition 2. Let κ be any infinite cardinal. A κ+ Kurepa-family is a family F
of subsets of some set A with |A| = κ+, such that |F| > κ+ and for any subset
B ⊂ A with |B| = κ, |{X ∩B|X ∈ F}| ≤ κ.

Let KHκ+ be the statement that there exists a κ+-Kurepa-family.



Let Lα1 = Lα0 ∪ {R, T} where R is a binary and T a ternary relation symbol.
We will now define a sentence σα1 ∈ (Lα1 )ω1,ω with the following properties: every
model of σα1 is a model of σα0 with the additional property that if in a model of σα1
for some β we have |Qβ+2| > |Qβ+1| > |Qβ|, then the elements of Qβ+2 will code
(via R seen as a relation between Qβ+2 and Qβ+1) a |Qβ+1| Kurepa-family on
Qβ+1. The relation T will be used to code for any initial segment I of (Qβ+1, <)
|I| many subsets of I so that we can axiomatize the property of any set coded by
R to have an intersection with I coinciding with one of those sets.

Let σα1 ∈ (Lα1 )ω1,ω be the conjunction of σα0 and the following:

• T (a, b, c) implies that for some β < α, a, b, c ∈ Qβ+1

• R(a, b) implies that for some β with β+1 < α, a ∈ Qβ+2 and b ∈ Qβ+1 and
noting Aq = {x ∈ Qβ+1|R(q, x)} for q in Qβ+2, q 6= q′ implies Aq 6= Aq′ .
• For all β with β + 1 < α and a ∈ Qβ+2, b ∈ Qβ+1, there is some c < b

such that Aa ∩ {x|x < b} = {x|T (b, c, x)}.

Lemma 3. Suppose for some β < α, |Qβ+1| > |Qβ| (i.e. |Qβ+1| = |Qβ|+). Then
the ordering on Qβ+1 must have cofinality |Qβ+1|.

Proof. Each inital segment Ib = {x|x < b} of the order on Qβ+1 has size at most
|Qβ| by the properties of F . If (bi)i<λ is cofinal in that order, Qβ+1 =

⋃
γ<λ

Ibγ

implies |Qβ+1| = λ · |Qβ| which must equal λ (because we assume |Qβ+1| >
|Qβ|). �

Lemma 4. Suppose β is such that β + 1 < α and let κ = |Qβ|. Suppose the
cardinalities increase in the next two steps, i.e. that |Qβ+1| = κ+ and |Qβ+2| =
κ++. Then F = {Aq|q ∈ Qβ+2} is a κ+-Kurepa-family (on Qβ+1).

Proof. Let X ⊂ Qβ+1 be of cardinality at most κ. Since κ+ is regular and the
cofinality of the order on Qβ+1 equals κ+ (by Lemma 3, using |Qβ| = κ and
|Qβ+1| = κ+), X is included in some initial segment Ia = {x|x < a} of (Qβ+1, <).
Using the properties of R and T , |{Y ∩X|Y ∈ F}| ≤ |{Y ∩ Ia|Y ∈ F}| ≤ |Ia| ≤
|Qβ| = κ. Thus, since |F| = |Qβ+2| = κ++ > κ+, F satisfies the definition of a
κ+-Kurepa-family. �

Proposition 5. Suppose for some α < ω1, KHκ is true for every successor
cardinal κ < ℵα. Then σα1 has a model of cardinality ℵα.

Proof. We can explicitly construct such a model for every α using the given
Kurepa-families.

Let the Qβ be any sets (with the disjointness and union properties formulated
in σα0 ) of cardinality ℵβ and order them in the order type of ℵβ (except for β zero
or limit). We obviously have no trouble defining the F relations at this point.

Next, define the R relations such that the sets Aq form Kurepa-families iso-
morphic to the given ones in the corresponding cardinalities.



Finally, the T -relations have to be defined such that the sets coded on the
initial segments by them capture all possibilities for intersections of sets Aq with
that initial segment. �

Proposition 6. Suppose for some δ < ω1, KHℵδ+1
fails. Then σδ+2

1 has no model
of cardinality ℵδ+2.

Proof. Assume the contrary for some δ < ω1 and let M |= σδ+2
1 be of cardinality

ℵδ+2. Clearly, Qδ+k must be exactly of cardinality ℵα+k for all k ∈ {0, 1, 2}
(since these are the maximum possible cardinalities for those sets). Now we get
a ℵδ+1-Kurepa-family by Lemma 4, contradicting our assumption. �

In conclusion, for any α < ω1 which is not a limit or successor of a limit ordinal,
we get an example of an (incomplete) Lω1,ω-sentence such that the existence of a
model in ℵα is non-absolute, even under the assumption of GCH, as the existence
of the model depends on the existence of Kurepa-families.

As for the consistency of the assumptions of the Propositions 5 and 6, we
remark that it is folklore that the existence of Kurepa-families in different ℵα (α <
ω1) is independent from one another. We will now describe the formal arguments
for the cases we need (essentially the same arguments would work more generally
for “switching on and off” independently the existence of Kurepa-families in
different ℵα). In the constructible universe, KHκ+ is true for all cardinals κ (this
follows from the fact that ♦+ holds at successor cardinals in L, see [8]). On the
other hand we have:

Theorem 7. The consistency of “ZFC+there are uncountably many inaccessible
cardinals” implies the consistency of “ZFC+GCH+∀α < ω1¬KHℵα+1”

Proof. This is a slight generalisation of Silver’s argument that if κ is inaccessible
then after forcing with Coll(ω1, < κ), the forcing to convert κ into ℵ2 with
countable conditions, KHℵ1 fails (see [7]).

Assume GCH, let κ0 be ℵ1 and let (κβ)0<β<ω1 enumerate the first ω1-many
inaccessible cardinals in increasing order. Let P be the fully supported product
of the forcings Coll(κβ, < κβ+1) for β < ω1. Then in the extension, κβ equals
ℵβ+1. We claim that KHκβ fails for each β < ω1.

Indeed, the forcing P can be factored as P (< β) × P (≥ β) where P (< β)
refers only to the collapses Coll(κγ, < κγ+1) for γ < β and P (≥ β) refers only
to the the collapses Coll(κγ, < κγ+1) for γ ≥ β. Similarly, V [G] factors as
V [G(< β)][G(≥ β)]. In the model V [G(< β)], κβ+1 is still inaccessible, so we can
apply Silver’s argument to conclude that KHκβ+1

fails in V [G(< β)][G(≥ β)] =
V [G], using the closure of the forcing P (≥ β) under sequences of length less than
κβ. �

Why does our sequence of examples not work for limit cardinals or limit suc-
cessors?



In the absence of any Kurepa-families, we can still have |Qβ+1| = |Qβ|+ for
some β, just not two times in a row in order to not contradict Lemma 4. For
example, in the case κ = |Qβ| = |Qβ+1|, the ordering on Qβ+1 may be such that
every initial segment has cardinality κ and the cofinality is κ as well. Then,
assuming T codes sufficiently different sets on every initial segment of Qβ+1, we
have κκ = κ+ many possibilities for sets Aq for q ∈ Qβ+2, so Qβ+2 may have
cardinality κ+.

That is, still assuming no kind of Kurepa-family exists, the biggest models we
can get are those where for any cardinality κ > ℵ0, there are not more than
two sets Qβ of size κ. For finite n, we see that in this context the maximum
cardinality of a model of σn1 is ℵk where k is the smallest integer greater or equal
to n

2
. In particular, we see that for any limit ordinal or successor of a limit ordinal

α, σα1 absolutely has a model of cardinality ℵα.
To find an example with non-absolute existence of a model in ℵω for example,

one strategy could be to construct sentences φn (n < ω) and find two set theoretic
properties A, B which are both compatible with GCH, such that for any n < ω,
the maximum cardinality of a model of φn is ℵn if A holds and ℵ1 if B holds.
Then we could define a new sentence whose models are the union of models of φn
for all n and get an example where under A there is a model in ℵω, and under B
there is none. Using the Kurepa techniques, we cannot seem to make the “gap”
bigger than from ℵn

2
to ℵn.

We also remark that there are slight variations of the sentences σα1 which still
give non-absoluteness of model-existence in ℵα, while needing weaker assumptions
in the Propositions 5 and 6. For example, if we code Kurepa-families only on
the top level (subsets of Qα−1) by restricting R to Qα ×Qα−1, the sentence will
have a model of size ℵα if and only if an ℵα−1-Kurepa-family exists. For model
existence in ℵn for finite n, we could also choose to code Kurepa-families only on
the lowest level (subsets of Q1). Then the sentence has a model in ℵn if and only
if an ℵ1-Kurepa-family exists.

3.3. Coding special Aronszajn trees. To deal with limits (greater than ω)
and limit successors, we use the concept of “special Aronszajn trees”:

Definition 8. A tree is a partially ordered set (T,<) such that for any element
t ∈ T , the set {x|x < t} is well ordered by <. The rank rk(t) of t is the order
type of {x|x < t}. For any ordinal α, let Tα = {t ∈ T |rk(t) = α}.

For any cardinal κ, a κ+-tree is a tree T such that Tκ+ = ∅ and for all α < κ+,
0 < |Tα| < κ+. T is normal, if

• |T0| = 1
• every element has at least two immediate successors
• for any t ∈ T and α with rk(t) < α < κ+, there is some t′ > t with

rk(t′) = α.



A normal κ+-tree T is a special κ+-Aronszajn tree, if there is some set A
of size κ and a function f : T → A such that for all t, t′ ∈ T , t < t′ implies
f(t) 6= f(t′).

Let Lα2 = Lα0 ∪ {≺, f, g, rk}, where ≺, f, g, rk are binary relation symbols and
let σα2 ∈ (Lα2 )ω1,ω be the conjunction of σα0 and the following statements:

• The relation ≺ partially orders Qβ+1 for every β < α and a ≺ b implies
that for some β < α, a, b ∈ Qβ+1.
• For every β < α and a ∈ Qβ+1, the set {x|x ≺ a} is linearly ordered by
≺.
• For every β < α, every element x ∈ Qβ+1 has at least two immediate
≺-successors.
• rk ⊂

⋃
β<α

(Qβ+1×Qβ+1) defines on each Qβ+1 an idempotent total function

(we will write rk(x) = y for rk(x, y)), i.e. we have rk(rk(a)) = rk(a) for all
a ∈ Qβ+1 (the idea is that the fibers rk−1[{a}] are the levels of the “tree”
defined by ≺).
• a ≺ b implies rk(a) < rk(b).
• rk(a) = rk(b) implies that for all c ≺ a, there is some d ≺ b with rk(d) =

rk(c).
• For all β < α and a, b ∈ Qβ+1, if for all c ≺ a there exists some d ≺ b

with rk(d) = rk(c) and conversely for all d ≺ b there exists some c ≺ a
with rk(c) = rk(d), then we must also have rk(a) = rk(b).
• For any a, b with rk(b) > rk(a), there is some c with rk(c) = rk(b) and
a ≺ c (i.e. every element has a ≺-successor at every higher level).
• f, g ⊂

⋃
β<α

(Qβ+1×Qβ) both define total functions from every Qβ+1 to Qβ.

• f restricted to any set of the form rk−1[{a}] (a ∈ Qα) is injective.
• a ≺ b implies g(a) 6= g(b).

Proposition 9. If special ℵβ+1-Aronszajn trees exist for every β < α, then σα2
has a model of cardinality ℵα.

Proof. Start with a model M of σα0 of size ℵα such that < has order type ℵβ+1

on every Qβ+1 for all β < α. For any β < α let (Qβ+1,≺∗) be a special ℵβ+1-
Aronszajn tree, witnessed by a function h : Qβ+1 → Qβ. Pick from each level γ of
that tree exactly one element tβ+1

γ . We may assume that < has the property that

tβ+1
γ < tβ+1

δ if and only if γ < δ for all β < α (otherwise permute the ordering ≺∗
appropriately while keeping the ordering < on Qβ fixed).

Now we will expand M to a Lα2 -structure. First, set ≺=≺∗ and let rk(a) = tβ+1
γ

if and only if a is an element in level γ of the tree (Qβ+1,≺∗). We then can define
the function f with its property stated in σα2 . Finally, set g = h on all Qβ+1

(β < α).
It is straightforward to verify that ≺, rk, f, g satisfy all the properties of σα2 . �



Proposition 10. If σα2 has a model of size ℵα, then a special ℵβ+1-Aronszajn
tree exists for all β < α.

Proof. Let M be a model of σα2 of size ℵα and fix some β < α. We find a γ < α
such that |Qγ| = ℵβ and |Qγ+1| = ℵβ+1.

(Qγ+1,≺) need not be a special ℵα-Aronszajn tree (among other things, it
might be ill-founded), but we can find a sub-tree which is an ℵα-Aronszajn tree.

First of all, we note that the order < on Qγ+1 is ℵβ-like and thus must have
cofinality ℵβ+1. Pick a <-increasing sequence (tδ)δ<ℵβ+1

of elements in the image
of rk. Define T0 = {t0} and for any non-zero δ < ℵβ+1, set Tδ = {a|rk(a) =
tδ, t0 ≺ a}. It is a straightforward verification that T =

⋃
δ<ℵβ+1

Tδ ordered by ≺

is a special ℵβ+1-Aronszajn tree. �

Consequently, the existence of a model of σα2 of size ℵα is equivalent to the
existence for all β < α of special ℵβ+1-Aronszajn trees.

It is a consequence of GCH that special κ-Aronszajn trees exist for all suc-
cessor cardinals κ that are not successors of limit cardinals. Moreover, in the
constructible universe, special Aronszajn trees exist even in successors of limit
cardinals (this is a consequence of �κ, see [8]).

On the other hand, the consistency of “ZFC+∃κ(κ supercompact)” implies
the consistency of “ZFC+GCH+there are no special ℵα-Aronszajn trees for all
countable limit successors α”, as follows from results found in [4]:

We start with a model of GCH with a supercompact cardinal κ and force with
Coll(ω1, < κ). This forcing preserves a stationary reflection property sufficient to
ensure that Weak Square fails at ℵλ for λ a limit ordinal of countable cofinality.
By a result of Jensen found in [8], Weak Square at a cardinal κ is equivalent to
the existence of a special Aronszajn tree on κ+.

In conclusion, assuming the consistency of supercompact cardinals, model ex-
istence in ℵα of σα2 is non-absolute for every countable α > ω.

Similarly to the last remark in section 3.2, we can also consider slight variations
of the sentences σα2 . For example, to get non-absolutness of model-existence in
ℵα where α is a countable successor ordinal greater than ω, it would suffice to
code special Aronszajn trees on the top level (i.e. we may restrict ≺ to Qα).
However, the set-theoretic assumptions would not be weakened, as we still need
the existence of a supercompact cardinal to eliminate special ℵα-Aronzajn trees.
Also, to achieve non-absoluteness of model existence in limit cardinals, we need
to code special Aronszajn trees on every successor level.

4. Final observations

The case of model-existence in ℵω remains open. Also, it is not clear if we
can find complete sentences for which model-existence in different cardinalities
is non-absolute. Take for example the sentence σ2

1 and try to find a completion
of it. First, we may replace the Q0 ∪ Q1 part by Julia Knight’s construction of



a complete sentence characterizing ℵ1 (see [10]). We can use her techniques to
incorporate the T relation in a complete way, but it already seems difficult to
control the properties of this relation (like e.g. making sure T codes many different
sets). But even if T behaves nicely, the hard part will be to include the Q2-part
in a complete way such that it has a chance (assuming a ℵ1-Kurepa-family exists)
to have cardinality ℵ2 in some model. Since we want a complete sentence, we
would code very specific Kurepa-families (depending on how T exactly looks like)
and it might be set theoretically non-trivial to find out if those are a consistent
concept.

In the light of Lemma 7.1.6 from [1], a model of size ℵ2 would have to be
small, i.e. it must realize only countably many Lω1,ω types. If we naively start
with Julia Knight’s example (without the T -relation) and define a Kurepa-family
(that we find in the constructible universe) on it, it looks quite desperate to
achieve smallness, especially when we try to define T .

It might turn out that under GCH, the existence of a model in, say, ℵ2 is an
absolute notion for complete Lω1,ω sentences, but we do not have any particular
evidence (besides our difficulties to complete the examples presented earlier) to
support this thesis.

As a last remark, our use of the concept of Kurepa-families has the slight flaw
that in order to find set theoretic universes which do not contain such families,
we have to assume the existence of inaccessible cardinals. The special Aronszajn
technique is even worse as we have to assume the consistency of supercompact
cardinals. It would be nice to find Lω1,ω sentences for which under GCH the exis-
tence of models of certain cardinalities is not absolute, regardless of the existence
of large cardinals.
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