
CONSISTENCY AND OPTIMALITY

YIJIA CHEN, JÖRG FLUM, AND MORITZ MÜLLER

Abstract. Assume that the problem Q0 is not solvable in polynomial time.
For theories T containing a sufficiently rich part of true arithmetic we char-
acterize T ∪ {ConT } as the minimal extension of T proving for some algo-
rithm that it decides Q0 as fast as any algorithm B with the property that T
proves that B decides Q0. Here, ConT claims the consistency of T . Moreover,
we characterize problems with an optimal algorithm in terms of arithmetical
theories.

1. Introduction

By Gödel’s Second Incompleteness Theorem a consistent, computably enumerable
and sufficiently strong theory T cannot prove its own consistency ConT . In other
words, T ∪ {ConT} is a proper extension of T .

In Bounded Arithmetic one studies the complexity of proofs in terms of the
computational complexity of the concepts involved in the proofs (see e.g. [1, Intro-
duction]). Stronger theories allow reasoning with more complicated concepts. For
example, a computational problem may be solvable by an algorithm whose proof
of correctness needs tools not available in the given theory; moreover, stronger
theories may know of faster algorithms solving the problem. When discussing
these issues with the authors, Sy-David Friedman asked whether T ∪{ConT} can
be characterized in this context as a minimal extension of T . We could prove the
following result (all terms will be defined in the paper).

Theorem 1. Let Q0 be a decidable problem not in PTIME. Then there is a
finite true arithmetical theory T0 and a computable function F assigning to every
computably enumerable theory T with T ⊇ T0 an algorithm F (T) such that (a)
and (b) hold:
(a) T0 proves that F (T) is as fast as any algorithm T -provably deciding Q0.
(b) For every theory T ∗ with T ∗ ⊇ T the following are equivalent:

(i) T ∗ proves ConT .
(ii) The algorithm F (T) T ∗-provably decides Q0.

(iii) There is an algorithm such that T ∗ proves that it decides Q0 and that
it is as fast as any algorithm T -provably deciding Q0.

Hence, by merely knowing the extension T of T0 we are able to compute the
algorithm F (T), which is, provably in T0, as fast as any algorithm T -provably

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de Documents de la UAB

https://core.ac.uk/display/13306052?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 YIJIA CHEN, JÖRG FLUM, AND MORITZ MÜLLER

deciding Q0; however, in order to prove that F (T) decides Q0 we need the full
strength of T ∪ {ConT}. In this sense, T ∪ {ConT} is a minimal extension of T .

The content of the different sections is the following. In Section 3, by a stan-
dard diagonalization technique we derive a result showing for every computably
enumerable set D of algorithms the existence of an algorithm that on every input
behaves as some algorithm in D and that is as fast as every algorithm in D (see
Lemma 2). In Theorem 7 of Section 4 we characterize problems with an optimal
algorithm in terms of arithmetical theories. Finally Section 5 contains a proof of
Theorem 1.

Many papers in computational complexity, older and recent ones, address
the question whether hard problems have optimal or almost optimal algorithms.
Although Levin [5] observed that there exists an optimal algorithm that finds a
satisfying assignment for every satisfiable propositional formula, it is not known
whether the class of satisfiable propositional formulas or the class of tautologies
have an almost optimal algorithm.

Kraj́ıček and Pudlák [4] showed for the latter class that an almost optimal
algorithm exists if and only if “there exists a finitely axiomatized fragment T of
the true arithmetic such that, for every finitely axiomatized consistent theory S,
there exists a deterministic Turing machine M and a polynomial p such that for
any given n, in time ≤ p(n) the machine M constructs a proof in T of ConS(n).”
Here ConS(n) claims that no contradiction can be derived from S by proofs of
lengths at most n.

Hartmanis [2] and Hutter [3] considered ‘provable’ algorithms, where ‘prov-
able’ refers to a computably enumerable, more or less specified true theory T .
Hartmanis compares the class of problems decidable within a given time bound
with the class of problems T -provably decidable within this time bound and
he studies time hierarchy theorems in this context. Hutter constructs an al-
gorithm “which is the fastest and the shortest” deciding a given problem. As
Hutter says, Peter van Emde Boas pointed out to him that it is not provable
that his algorithm decides the given problem and that his proof is a “meta-proof
which cannot be formalized within the considered proof system” and he adds that
“a formal proof of its correctness would prove the consistency of the proof system,
which is impossible by Gödel’s Second Incompleteness Theorem.”

2. Some preliminaries

First we fix some notations and introduce some basic concepts. We consider
problems as subsets of Σ∗, the set of strings over the alphabet Σ = {0, 1}. For
an algorithm A and a string x ∈ Σ∗ we let tA(x) denote the running time of A on
x. In case A does not halt on x, we set tA(x) :=∞. If tA(x) is finite, we denote
by A(x) the output of A on x.

CONSISTENCY AND OPTIMALITY 3

If A and B are algorithms, then A is as fast as B if there is a polynomial p
such that for every x ∈ Σ∗

(1) tA(x) ≤ p
(
tB(x) + |x|

)
.

Note that here we do not require that A and B decide the same Q ⊆ Σ∗.
An algorithm deciding Q is optimal if it is as fast as every other algorithm

deciding Q, that is, if it has no superpolynomial speedup infinitely often. An
algorithm A deciding Q is almost optimal if (1) holds for every other algorithm
deciding Q and every x ∈ Q (hence nothing is required of the relationship between
tA(x) and tB(x) for x /∈ Q).

We do not distinguish algorithms from their codes by strings and we do not
distinguish strings from their codes by natural numbers. However, we do not fix
a computation model (Turing machines, random access machines,. . .) for algo-
rithms. We state the results in such a way that they hold for every standard
computation model.

3. Diagonalizing over algorithms

In computability theory diagonalization techniques are used in various contexts.
We will make use of the following result.

Lemma 2 (Diagonalization Lemma). Let D be a computably enumerable and
nonempty set of algorithms. Then there is an algorithm A such that (a) and (b)
hold.
(a) The algorithm A halts precisely on those inputs on which at least one algo-

rithm in D halts, and in that case it outputs the same as some algorithm
in D; more formally, for all x ∈ Σ∗

– tA(x) <∞ ⇐⇒ tD(x) <∞ for some D ∈ D;

– if tA(x) <∞, then there is D ∈ D with A(x) = D(x).
(b) There is a d ∈ N 1such that for all D ∈ D there is a cD such that for all

x ∈ Σ∗

tA(x) ≤ cD ·
(
tD(x) + |x|

)d
.

Moreover, there is a computable function that maps any algorithm E enumerating
the set D of algorithms to an algorithm A satisfying (a) and (b).

In particular, if all algorithms in D decide Q ⊆ Σ∗, then A is an algorithm
deciding Q as fast as every D ∈ D.

Proof. Let the algorithm E enumerate the set D of algorithms, that is, E, once
having been started, eventually prints out exactly the algorithms in D. For each
i ∈ N we denote by Ei the last algorithm printed out by E in i steps; in particular,
Ei is undefined if E hasn’t printed any algorithm in i steps.

1As the proof shows the constant d ∈ N does not even depend on D but it depends on the
concrete machine model one uses.

4 YIJIA CHEN, JÖRG FLUM, AND MORITZ MÜLLER

Algorithm A is defined as follows.

A(x) // x ∈ Σ∗

1. `← 0
2. for i = 0 to `
3. if Ei is defined then simulate the (`− i)th step
4. of Ei on x
5. if the simulation halts then halt and output
6. accordingly
7. `← `+ 1
8. goto 2.

Of course (the code of) A can be computed from (the code of) E. It is easy to
see that A satisfies (a). Furthermore, there are constants c0, d0 ∈ N such that for
all x ∈ Σ∗ and every ` ∈ N, lines 2–6 take time at most

(2) c0 · (`+ |x|)d0 .

To verify (b), let D ∈ D and iD be the minimum i ∈ N with Ei = D. Fix an input
x ∈ Σ∗. For

` = iD + tEiD
(x) and i = iD

the simulation in line 3 halts if it didn’t halt before. Therefore

tA(x) ≤ O

iD+tD(x)∑
`=0

(`+ |x|)d0

 (
by (2)

)
≤ O

(
(iD + tD(x) + |x|)d0+1

)
≤ cD ·

(
tD(x) + |x|

)d0+1

for an appropriate constant cD ∈ N only depending on D. �

The preceding proof uses the idea underlying standard proofs of a result due
to Levin [5]. Even more, Levin’s result is also a consequence of Lemma 2:

Example 3 (Levin [5]). Let F : Σ∗ → Σ∗ be computable. An inverter of F is
an algorithm I that given y in the image of F halts with some output I(y) such
that F (I(y)) = y. On inputs not in the image of F , the algorithm I may do
whatever it wants.

Let F be an algorithm computing F . For an arbitrary algorithm B define B∗
as follows. On input y the algorithm B∗ simulates B on y; if the simulation halts,
then by simulating F it computes F (B(y)); if F (B(y)) = y, then it outputs B(y),
otherwise it does not stop. Thus if B∗ halts on y ∈ Σ∗, then it outputs a preimage
of y and

(3) tB∗(y) ≤ O
(
tB(y) + tF(B(y)) + |y|

)
.

Furthermore, if B is an inverter of F , then so is B∗.

CONSISTENCY AND OPTIMALITY 5

Let D :=
{
B∗ | B is an algorithm

}
. Denote by Iopt an algorithm having for

this D the properties of the algorithm A in Lemma 2. By the previous remarks
it is easy to see that Iopt is an inverter of F . Moreover, by Lemma 2 (b) and (3),
we see that for any other inverter B of F there exists a constant cB such that for
all y in the image of F

tIopt(y) ≤ cB ·
(
tB(y) + tF(B(y)) + |y|

)d
.

In this sense Iopt is an optimal inverter of F .

4. Algorithms and arithmetical theories

To talk about algorithms and strings we use arithmetical formulas, that is, first-
order formulas in the language LPA := {+, · , 0, 1, <} of Peano Arithmetic Arith-
metical sentences are true (false) if they hold (do not hold) in the standard
LPA-model. For a natural number n let ṅ denote the natural LPA-term without
variables denoting n (in the standard model).

Recall that an arithmetical formula is ∆0 if all quantifiers are bounded and it
is Σ1 if it has the form ∃x1 . . . ∃xmψ where ψ is ∆0.

We shall use a ∆0-formula

Run(u, x, y, z)

that defines (in the standard model) the set of tuples (u, x, y, z) such that u is an
algorithm that on input x outputs y by the (code of a complete finite) run z; recall
that we do not distinguish algorithms from their codes by strings and strings from
their codes by natural numbers.

For the rest of this paper we fix a Q0 ⊆ Σ∗ and an algorithm A0

deciding Q0.

The formula

DecQ0(u) :=∀x∃y∃zRun(u, x, y, z) ∧
∀x∀y∀y′∀z∀z′

(
(Run(Ȧ0, x, y, z) ∧ Run(u, x, y′, z′))→ y = y′

)
defines the set of algorithms deciding Q0.

Let Lall with LPA ⊂ Lall be a language containing countably many function
and relation symbols of every arity ≥ 1 and countably many constants. A theory
is a set T of first-order Lall-sentences.

Definition 4. Let T be a theory.
(a) An algorithm A T -provably decides Q0 if T proves DecQ0(Ȧ).
(b) T is sound for Q0-decision means that for every algorithm A

if A T -provably decides Q0, then A decides Q0.

(c) T is complete for Q0-decision means that for every algorithm A
if A decides Q0, then A T -provably decides Q0.

6 YIJIA CHEN, JÖRG FLUM, AND MORITZ MÜLLER

For a computably enumerable sound theory T that proves DecQ0(Ȧ0) the set

(4) D(T) :=
{
D | D T -provably decides Q0

}
is a computably enumerable set of algorithms deciding Q0. Thus, by Lemma 2
for D = D(T) we get an algorithm A deciding Q0 as fast as every algorithm
in D(T). If in addition T is complete for Q0-decision, then D(T) would be the
set of all algorithms deciding Q0 and thus A would be an optimal algorithm
for Q0. So, the problem Q0 would have an optimal algorithm if we can find a
computably enumerable theory that is both sound and complete for Q0-decision.
Unfortunately, there is no such theory as shown by the following proposition. We
relax these properties in Definition 6 and show in Theorem 7 that the new ones
are appropriate to characterize problems with optimal algorithms.

Proposition 5. There is no computably enumerable theory that is sound and
complete for Q0-decision.

Proof. We assume that there is a computably enumerable theory T that is sound
and complete for Q0-decision and derive a contradiction by showing that then
the halting problem for Turing machines would be decidable.

For every Turing machine M we consider two algorithms. On every input
x ∈ Σ∗ the first algorithm B0(M) first checks whether x codes a run of M ac-
cepting the empty input tape and then it simulates A0 on x (recall A0 is the
fixed algorithm deciding Q0). If x codes an accepting run, then B0(M) reverses
the answer A0(x) of A0 on x, otherwise it outputs exactly A0(x). Clearly B0(M)
decides Q0 if and only if M does not halt on the empty input tape.

The second algorithm B1(M), on every input x ∈ Σ∗ first checks exhaustively
whether M halts on the empty input tape; if eventually it finds an accepting run,
then it simulates A0 on x and outputs accordingly. It is easy to verify that B1(M)
decides Q0 if and only if M halts on the empty input tape.

As T is sound for Q0-decision, it proves at most one of DecQ0(
˙B0(M)) and

DecQ0(
˙B1(M)), and as it is complete for Q0-decision it proves at least one of

these sentences. Hence, given M, by enumerating the T -provable sentences we
can decide whether M halts on the empty input tape. �

Definition 6. A theory T is almost complete for Q0-decision if for every algo-
rithm A deciding Q0 there is an algorithm T -provably deciding Q0 that is as fast
as A.

Theorem 7. The following are equivalent for Q0 ⊆ Σ∗:
(i) Q0 has an optimal algorithm;
(ii) There is a computably enumerable and arithmetical theory T that is sound

and almost complete for Q0-decision.

Proof. (i) ⇒ (ii): We set T :=
{

DecQ0(Ȧ)
}

where A is an optimal algorithm for
Q0. Then T is a computably enumerable true arithmetical theory. Truth implies
soundness and almost completeness follows from the optimality of A.

CONSISTENCY AND OPTIMALITY 7

(ii) ⇒ (i): Let T be as in (ii). Then the set D(T) defined by (4) is a computably
enumerable set of algorithms deciding Q0 (by soundness). By Lemma 2 for D =
D(T) we get an algorithm A deciding Q0 as fast as every algorithm in D(T) and
hence by almost completeness as fast as any algorithm deciding Q0. Thus, A is
an optimal algorithm for Q0. �

A result related to the implication (ii) ⇒ (i) is shown by Sadowski in [7]. He
shows assuming that there does not exist an almost optimal algorithm for the set
Taut of all propositional tautologies, that for every theory T there exists a subset
of Taut in PTIME which is not T -provably in PTIME (cf. [7, Definition 7.5]).

5. Proof of Theorem 1

Recall that Q0 ⊆ Σ∗ and that A0 is an algorithm deciding Q0. A theory T is
Σ1-complete if every true arithmetical Σ1-sentence is provable in T . The following
result is a consequence of Lemma 2.

Lemma 8. Assume Q0 /∈ PTIME. Let T be a computably enumerable Σ1-
complete theory such that T proves DecQ0(Ȧ0). Then there is an algorithm A
such that:
(a) The algorithm A is total (i.e., tA(x) <∞ for all x ∈ Σ∗) and as fast as every

algorithm T -provably deciding Q0;
(b) T is consistent if and only if A decides Q0.

Moreover, there is a computable function diag that maps any algorithm E enu-
merating some Σ1-complete theory T proving DecQ0(Ȧ0) to an algorithm A with
(a) and (b).

Proof. For an algorithm B let B‖A0 be the algorithm that on input x ∈ Σ∗ runs
B and A0 on x in parallel and returns the first answer obtained. Then

(5) tB‖A0 ≤ O
(

min
{
tB, tA0

})
.

Claim 1. If T is consistent and proves DecQ0(Ḃ), then B‖A0 decides Q0.

Proof of Claim 1 : By contradiction, assume that T is consistent, proves DecQ0(Ḃ)
and B‖A0 does not decide Q. Then B‖A0 and A0 differ on some input x ∈ Σ∗.
Thus tB(x) ≤ tA0(x) and in particular B halts on x. Therefore, the following
Σ1-sentence ϕ is true

ϕ := ∃x∃y∃y′∃z∃z′
(
Run(Ȧ0, x, y, z) ∧ Run(Ḃ, x, y′, z′) ∧ ¬y = y′

)
.

By Σ1-completeness T proves ϕ. However, ϕ logically implies ¬DecQ0(Ḃ) and
thus T is inconsistent, a contradiction. a

The set

D1(T) :=
{

B‖A0

∣∣ T proves DecQ0(Ḃ)
}

8 YIJIA CHEN, JÖRG FLUM, AND MORITZ MÜLLER

is nonempty as A0‖A0 ∈ D1(T) by assumption. Let A be the algorithm obtained
for D = D1(T) by Lemma 2. Then the statement (a) of our lemma holds by (5)
and Lemma 2 (b).

For consistent T , by Claim 1 the set D1(T) only contains algorithms deciding
Q0, thus A decides Q0 by Lemma 2.

If T is inconsistent, let Bbad be an algorithm that accepts every input in the
first step. Then Bbad‖A0 ∈ D1(T) by inconsistency of T . Thus, by Lemma 2 (b),
the algorithm runs in polynomial time and thus does not decide Q0.

As from an algorithm enumerating T we effectively get an algorithm enumer-
ating D1(T), by Lemma 2 it should be clear that a computable function diag as
claimed exists. �

Remark 9. As the preceding proof shows we only need the assumption Q0 6∈
PTIME in the proof of the implication from right to left in (b).

Proof of Theorem 1: Let Q0 be a decidable problem not in PTIME. Among
others, the finite true arithmetical theory T0 claimed to exist in Theorem 1 will
contain a formalization of Lemma 8.

We choose a Σ1-formula Prov(x, y) defining (in the standard model) the set
of pairs (m,n) such that algorithm m enumerates a theory2 that proves the sen-
tence n.

We let
Con(x) := ¬Prov

(
x, ˙p¬0 = 0q

)
(here pϕq denotes the Gödel number of ϕ). If E enumerates a theory T , we write

ConT for Con(Ė).3

Let f : N→ N be the function given by

f(m) := pDecQ0(ṁ)q.

Both, this function f and the function diag, from Lemma 8 are computable and
hence, Σ1-definable in the standard model. For better readability we shall use f
and diag like function symbols in arithmetical formulas.

Further, let the arithmetical formula As-fast-as(x, y) define the pairs (n,m)
such that algorithm n is as fast as algorithm m and let Ptime(x) define the set
of polynomial time algorithms. Finally, we set

Afap(x, y) := ∀z
(
Prov(x, f(z))→ As-fast-as(y, z)

)
.

Then for an algorithm E enumerating a theory T the statement “the algorithm
F (T) is as fast as any algorithm T -provably deciding Q0,” that is, the state-
ment (a) in Theorem 1 is formalized by the sentence

(6) Afap
(
Ė, ˙F (T)

)
.

2We may assume that every enumeration algorithm enumerates a theory by deleting those
printed strings that are not sentences.

3The notation is ambiguous, as the definition depends on the choice of E, however not the
arguments to follow.

CONSISTENCY AND OPTIMALITY 9

Recall that Robinson introduced a finite, Σ1-complete arithmetical theory R. Let
e-Rob(x) be a Σ1-formula expressing that the algorithm x enumerates a theory

extending R ∪ {DecQ0(Ȧ0)}.
We now define the theory T0. It extends R by the following sentences (s1)–(s5):

(s1) ∀x
(
e-Rob(x)→ Afap(x, diag(x))

)
,

(a formalization of Lemma 8 (a))

(s2) ∀x
(
(Con(x) ∧ e-Rob(x))→ DecQ0(diag(x))

)
,

(a formalization of part of Lemma 8 (b))

(s3) ∀x(Ptime(x)→ ¬DecQ0(x)),
(Q0 is not in PTIME)

(s4) ∀x
(
¬Con(x)→ ∀y(Sent(y)→ Prov(x, y))

)
(every inconsistent theory proves every sentence; here Sent(y) is a

∆0-formula defining the first-order Lall-sentences)

(s5) ∀x∀y
(
(As-fast-as(x, y) ∧ Ptime(y))→ Ptime(x)

)
(if algorithm x is as fast as the polynomial algorithm y, then it is

polynomial too).

Let T be a computably enumerable extension of T0 and let E be an algorithm
enumerating T . We claim that for the algorithm

F (T) := diag(E)

(see Lemma 8) the statements (a) and (b) of Theorem 1 hold.

The arithmetical sentence ˙F (T) = diag(Ė) is Σ1 and true, so T0 proves it by

Σ1-completeness (as T0 ⊇ R). By the same reason, T0 proves e-Rob(Ė). As T0

contains (s1), T0 proves Afap(Ė, ˙F (T)); that is, T0 proves that F (T) is as fast as
any algorithm T -provably deciding Q0. Thus (a) in Theorem 1 holds.

We turn to (b). Let T ∗ be a theory with T ∗ ⊇ T .

(i) ⇒ (ii): So, we assume that T ∗ proves ConT . We already know that T0, and

hence T ∗, proves e-Rob(Ė). As T ∗ contains (s2), for x = Ė we see that T ∗ proves

DecQ0(diag(Ė)) and thus DecQ0(
˙F (T)); that is, F (T) T ∗-provably decides Q0.

(ii) ⇒ (iii): Immediate by part (a) of the theorem.

(iii)⇒ (i): Let A be an algorithm such that T ∗ proves DecQ0(Ȧ) and Afap(Ė, Ȧ);
the latter means that T ∗ proves

(7) ∀z(Prov(Ė, f(z))→ As-fast-as(Ȧ, z)).

Let B be an algorithm such that T ∗ proves

(8) Ptime(Ḃ).

10 YIJIA CHEN, JÖRG FLUM, AND MORITZ MÜLLER

Then T ∗ proves the following implications:

¬ConT → Prov(Ė, f(Ḃ)) (by (s4) and as Sent(f(Ḃ)) is Σ1)

¬ConT → As-fast-as(Ȧ, Ḃ) (by (7))

¬ConT → Ptime(Ȧ) (by (8) and (s5))

¬ConT → ¬DecQ0(Ȧ) (by (s3)).

As T ∗ proves DecQ0(Ȧ), we see that T ∗ proves ConT . �

We close with an application to Zermelo-Fraenkel set theory ZFC. Here we add
the usual ZFC-definitions of the symbols of LPA as new axioms.

Corollary 10. Assume ZFC is consistent. Then there exist a problem Q and an
algorithm A satisfying (a) and (b).
(a) There is no algorithm deciding Q and being as fast as every other algorithm

deciding Q.
(b) The algorithm A decides Q and is as fast as any algorithm that ZFC-provably

decides Q.

Proof. Messner [6] proved that there is a problemQ, even decidable in exponential
time, that does not have an almost optimal algorithm. In particular, then Q
satisfies (a) and Q /∈ PTIME. We choose A according to Lemma 8 for Q0 := Q
and T := ZFC; then (b) holds. �

Acknowledgments. The authors thank the John Templeton Foundation for
its support under Grant #13152, The Myriad Aspects of Infinity. Yijia Chen
is affiliated with BASICS and MOE-MS Key Laboratory for Intelligent Com-
puting and Intelligent Systems which is supported by National Nature Science
Foundation of China (61033002).

References

[1] S. A. Cook and P. Nguyen. Logical Foundations of Proof Complexity . Cambridge Univer-
sity Press, 2010.

[2] J. Hartmanis. Relations between diagonalization, proof systems, and complexity gaps.
Theoretical Computer Science, 8:239–253, 1979.

[3] M. Hutter. The fastest and shortest algorithm for all well-defined problems. International
Journal of Foundations of Computer Science, 13:431–443, 2002.

[4] J. Krajicèk and P. Pudlák. Propositional proof systems, the consistency of first order
theories and the complexity of computations. The Journal of Symbolic Logic, 54:1063–
1079, 1989.

[5] L. Levin. Universal search problems (in Russian). Problemy Peredachi Informatsii, 9:115-
116, 1973.

CONSISTENCY AND OPTIMALITY 11

[6] J. Messner. On optimal algorithms and optimal proof systems. In Proceedings of the 16th
Symposium on Theoretical Aspects of Computer Science (STACS’99), Lecture Notes in
Computer Science 1563, 361–372, 1999.

[7] Z. Sadowski. On an optimal propositional proof system and the structure of easy subsets.
Theoretical Computer Science, 288:181–193, 2002.

Yijia Chen
Shanghai Jiaotong University
China

E-mail address: yijia.chen@cs.sjtu.edu.cn

Jörg Flum
Albert-Ludwigs-Universität Freiburg
Germany

E-mail address: joerg.flum@math.uni-freiburg.de

Moritz Müller
Centre de Recerca Matemàtica (CRM)
Spain

E-mail address: mmueller@crm.cat

