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GENERALIZED DESCRIPTIVE SET THEORY AND
CLASSIFICATION THEORY

SY-DAVID FRIEDMAN, TAPANI HYTTINEN, AND VADIM KULIKOV

ABSTRACT. Descriptive set theory is mainly concerned with studying subsets
of the space of all countable binary sequences. In this paper we study the gener-
alization where countable is replaced by uncountable. We explore properties of
generalized Baire and Cantor spaces, equivalence relations and their Borel re-
ducibility. The study shows that the descriptive set theory looks very different
in this generalized setting compared to the classical, countable case. We also
draw the connection between the stability theoretic complexity of first-order
theories and the descriptive set theoretic complexity of their isomorphism rela-
tions. Our results suggest that Borel reducibility on uncountable structures is
a model theoretically natural way to compare the complexity of isomorphism

relations.
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There is a long tradition in studying connections between Borel structure of

Polish spaces (descriptive set theory) and model theory. The connection arises

from the fact that any class of countable structures can be coded into a subset of

the space 2 provided all structures in the class have domain w. A survey on this

topic is given in [8]. Suppose X and Y are subsets of 2 and let F; and E, be

equivalence relations on X and Y respectively. If f: X — Y is a map such that
Ei(x,y) <= Ey(f(z), f(y)), we say that f is a reduction of Ey to Es. If there
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exists a Borel or continuous reduction, we say that E) is Borel or continuously
reducible to Es, denoted F; <p E5 or F; <. F3. The mathematical meaning of
this is that f classifies E1-equivalence in terms of Es-equivalence.

The benefit of various reducibility and irreducibility theorems is roughly the
following. A reducibility result, say E; <p Es, tells us that F; is at most as
complicated as Fs; once you understand Fs, you understand F; (modulo the re-
duction). An irreducibility result, £y €p Es tells that there is no hope in trying
to classify E7 in terms of Ejy, at least in a “Borel way”. From the model theoretic
point of view, the isomorphism relation, and the elementary equivalence relation
(in some language) on some class of structures are the equivalence relations of
main interest. But model theory in general does not restrict itself to countable
structures. Most of stability theory and Shelah’s classification theory character-
izes first-order theories in terms of their uncountable models. This leads to the
generalization adopted in this paper. We consider the space 2" for an uncount-
able cardinal x with the idea that models of size xk are coded into elements of
that space.

This approach, to connect such uncountable descriptive set theory with model
theory, began in the early 1990’s. One of the pioneering papers was by Mekler
and Véédnanen [22]. A survey on the research done in 1990’s can be found in [34]
and a discussion of the motivational background for this work in [33]. A more
recent account is given the book [35], Chapter 9.6.

Let us explain how our approach differs from the earlier ones and why it is
useful. For a first-order complete countable theory in a countable vocabulary T’
and a cardinal k > w, define

T={ne2"| A =T} and =5={(n.§) € (S7)" | A, = A}

where 7 — A, is some fixed coding of (all) structures of size k. We can now
define the partial order on the set of all theories as above by

T<"T < 2 <>, .

As pointed out above, T' <" T” says that = is at most as difficult to classify as
=£,. But does this tell us whether 7" is a simpler theory than 7"? Rough answer:
If Kk = w, then no but if kK > w, then yes.

To illustrate this, let 7= Th(Q, <) be the theory of the order of the rational

numbers (DLO) and let 7" be the theory of a vector space over the field of
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rational numbers. Without loss of generality we may assume that they are models
of the same vocabulary.

It is easy to argue that the model class defined by 7" is strictly simpler than
that of 7. (For instance there are many questions about 7', unlike 7", that
cannot be answered in ZFC; say existence of a saturated model.) On the other
hand =% <p =Y, and =%, €5 =% because there is only one countable model of T
and there are infinitely many countable models of 77. But for k > w we have
=0 L =4, and =4, <p =7, since there are 2% equivalence classes of =7, and only
one equivalence class of =}. Another example, introduced in Martin Koerwien’s
Ph.D. thesis and his article [18] shows that there exists an w-stable theory without
DOP and without OTOP with depth 2 for which =% is not Borel, while we show
here that for k > w, =/ is Borel for all classifiable shallow theories.

The results suggest that the order <" for K > w corresponds naturally to the
classification of theories in stability theory: the more complex a theory is from
the viewpoint of stability theory, the higher it seems to sit in the ordering <"
and vice versa. Since dealing with uncountable cardinals often implies the need
for various cardinality or set theoretic assumptions beyond ZFC, the results are
not always as simple as in the case k = w, but they tell us a lot. For example,
our results easily imply the following (modulo some mild cardinality assumptions
on K):

« If T is deep and T” is shallow, then =p L .

« If T is unstable and 7" is classifiable, then 2 £ g 7.

2. INTRODUCTION
2.1. Notations and Conventions.

2.1.1. Set Theory. We use standard set theoretical notation:

+ A C B means that A is a subset of B or is equal to B.

+ A C B means proper subset.

« Union, intersection and set theoretical difference are denoted respectively by
AUB, AN B and A\ B. For larger unions and intersections | J,.; A; etc.

« P(A) is the power set of A and [A]<" is the set of subsets of A of size < k

Usually the Greek letters x, A and p will stand for cardinals and «, § and v for
ordinals, but this is not strict. Also n,&, v are usually elements of k" or 2% and
p,q,r are elements of k<% or 2<%, cf(«) is the cofinality of « (the least ordinal
for which there exists an increasing unbounded function f: § — «).
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By S§¥ we mean {a < k | cf(a) = A}. A A-cub set is a subset of a limit
ordinal (usually of cofinality > A) which is unbounded and contains suprema of
all bounded increasing sequences of length A. A set is cub if it is A-cub for all A.
A set is stationary if it intersects all cub sets and A-stationary if it intersects all
A-cub sets. Note that C' C & is A-cub if and only if C'N SY is A\-cub and S C & is
A-stationary if and only if S N SY is (just) stationary.

If (P,<) is a forcing notion, we write p < ¢ if p and ¢ are in P and ¢ forces
more than p. Usually P is a set of functions equipped with inclusion and p <
q <= p C q. In that case @ is the weakest condition and we write P IF ¢ to
mean @ lFp .

2.1.2. Functions. We denote by f(z) the value of x under the mapping f and by
f[A] or just fA the image of the set A under f. Similarly f~'[A] or just f~*A
indicates the inverse image of A. Domain and range are denoted respectively by
dom f and ran f.

If it is clear from the context that f has an inverse, then f~! denotes that
inverse. For a map f: X — Y injective means the same as one-to-one and
surjective the same as onto

Suppose f: X — Y® is a function with range consisting of sequences of el-
ements of Y of length a. The projection pry is a function Y — Y defined
by prs((4i)ica) = yp. For the coordinate functions of f we use the notation
Js=nprgof forall § <a.

By support of a function f we mean the subset of dom f in which f takes non-
zero values, whatever “zero” means depending on the context (hopefully never
unclear). The support of f is denoted by sprt f.

2.1.3. Model Theory. In Section 2.2.3 we fix a countable vocabulary and assume
that all theories are theories in this vocabulary. Moreover we assume that they
are first-order, complete and countable. By tp(a/A) we denote the complete type
of a = (ai, ..., Qengtha) over A where length a is the length of the sequence a.

We think of models as tuples A = (dom A, PA),, .., where the P, are relation
symbols in the vocabulary and the P are their interpretations. If a relation R
has arity n (a property of the vocabulary), then for its interpretation it holds
that R* C (dom.A)". In Section 2.2.3 we adopt more conventions concerning
this.

In Section 4.2.1 and Chapter 5 we will use the following stability theoretical
notions stable, superstable, DOP, OTOP, shallow and x(7"). Classifiable means
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superstable with no DOP nor OTOP, the least cardinal in which T is stable is
denoted by A(T).

2.1.4. Reductions. Let £y C X? and E, C Y? be equivalence relations on X and
Y respectively. A function f: X — Y is a reduction of Fy to Es if forall z,y € X
we have that xEyy <= f(z)F>f(y). Suppose in addition that X and Y are
topological spaces. Then we say that E; is continuously reducible to Es, if there
exists a continuous reduction from F; to Fy and we say that E; is Borel reducible
to E5 if there is a Borel reduction. For the definition of Borel adopted in this
paper, see Definition 15. We denote the fact that E; is continuously reducible to
FE5 by Ey <. Ey and respectively Borel reducibility by Fy <p Es.

We say that relations Fy and E; are (Borel) bireducible to each other if Fy <p
FE, and E; <p E».

2.2. Ground Work.

2.2.1. Trees and Topologies. Throughout the paper x is assumed to be an un-
countable regular cardinal which satisfies

K< =k (%)

(For justification of this, see below.) We look at the space x”, i.e. the functions
from x to k and the space formed by the initial segments <. It is useful to
think of k<" as a tree ordered by inclusion and of k" as a topological space of the
branches of k<"; the topology is defined below. Occasionally we work in 2" and
2<% instead of k" and K<".

1. Definition. A tree t is a partial order with a root in which the sets {x € t |
x < y} are well ordered for each y € t. A branch in a tree is a maximal linear
suborder.

A tree is called a kA-tree, if there are no branches of length A or higher and
no element has > x immediate successors. If ¢ and ¢’ are trees, we write t < t' to

mean that there exists an order preserving map f: t — t/, a <, b= f(a) <y f(b).

Convention. Unless otherwise said, by a tree t C (K<")" we mean a tree with

domain being a downward closed subset of

(“<K)n N{(po,-..,pn1) | dompy=---=domp,_1}

ordered as follows: (po, ..., Pn-1)<(qoy---,qn-1) if pi Cq; for alli€{0,... ,n—1}.
It is always a k™, Kk + 1-tree.
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2. Example. Let a < s be an ordinal and let t, be the tree of descending
sequences in « ordered by end extension. The root is the empty sequence. It is
a kTw-tree. Such t, can be embedded into k<, but note that not all subtrees of

K<“ are kTw-trees (there are also k™, w + 1-trees).
In fact the trees k<%, 3 < k and t, are universal in the following sense:

Fact (k<" = k). Assume that t is a k¥, + 1-tree, 8 < Kk and t' is KT w-tree.
Then

(1) there is an embedding f: t — k<7,
(2) and a strictly order preserving map f:t — t, for some a < k™ (in fact
there is also such an embedding f). 0

Define the topology on k" as follows. For each p € k<" define the basic open

set
N, = {n € " | n]dom(p) = p}.

Open sets are precisely the empty set and the sets of the form [ J X, where X is
a collection of basic open sets. Similarly for 2.

There are many justifications for the assumption () which will be most appar-
ent after seeing the proofs of our theorems. The crucial points can be summarized
as follows: if (x) does not hold, then

» the space k" does not have a dense subset of size k,

« there are open subsets of k" that are not s-unions of basic open sets which
makes controlling Borel sets difficult (see Definition 15 on page 14).

« Vaught’s generalization of the Lopez-Escobar theorem (Theorem 24) fails, see
Remark 25 on page 21.

» The model theoretic machinery we are using often needs this cardinality as-
sumption (see e.g. Theorem 30 and proof of Theorem 72).

Initially the motivation to assume () was simplicity. Many statements concern-
ing the space k<" are independent of ZFC and using (%) we wanted to make the
scope of such statements neater. In the statements of (important) theorems we
mention the assumption explicitly.

Because the intersection of less than k basic open sets is either empty or a
basic open set, we get the following.

Fact (k<" = k). The following hold for a topological space P € {27, k*}:
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(1) The intersection of less than k basic open sets is either empty or a basic
open set,

(2) The intersection of less than k open sets is open,

(3) Basic open sets are closed,

(4) [{A C P | A is basic open}| = K,

(5) {A C P | A is open}| = 2.

In the space k* x k* = (k%)% we define the ordinary product topology.

3. Definition. A set Z C " is ¥ if it is a projection of a closed set C' C (k")
A set is IT} if it is the complement of a X1 set. A set is Al if it is both ¥} and
I

As in standard descriptive set theory (k = w), we have the following:
4. Theorem. Forn < w the spaces (k*)" and k" are homeomorphic. 0

Remark. This standard theorem can be found for example in Jech’s book [15]. Ap-
plying this theorem we can extend the concepts of Definition 3 to subsets of (k)™
For instance a subset A of (k)" is X7 if for a homeomorphism h: (k)" — K",
h[A] is 31 according to Definition 3.

2.2.2. Ehrenfeucht-Fraissé Games. We will need Ehrenfeucht-Fraissé games in

various connections. It serves also as a way of coding isomorphisms.

5. Definition (Ehrenfeucht-Fraissé games). Let ¢ be a tree, xk a cardinal and A
and B structures with domains A and B respectively. Note that ¢ might be an
ordinal. The game EF} (A, B) is played by players I and II as follows. Player I
chooses subsets of A U B and climbs up the tree ¢ and player II chooses partial
functions A — B as follows. Suppose a sequence

(Xi7piafi)i<'y
has been played (if 7 = 0, then the sequence is empty). Player I picks a set
X, C AU B of cardinality strictly less than x such that X5 C X, for all ordinals
0 < «. Then player I picks a p, € t which is <;-above all p; where § < 7.
Then player II chooses a partial function f,: A — B such that X, N A C dom f,,

X,NB Cran f,, |dom f,| < k and f5 C f, for all ordinals 6 < 7. The game ends
when player I cannot go up the tree anymore, i.e. (p;)i<- is a branch. Player II

r=U#
1<y
is a partial isomorphism. Otherwise player I wins.

wins if
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A strategy of player I in EF} (A, B) is a function
o: ([AUB]™ x )™ — | ] B,

Ie[A]<r
where [R]<* is the set of subsets of R of size < x and ht(¢) is the height of the

tree, i.e.
ht(¢) =sup{a|«a is an ordinal and there is an order preserving embedding av—t}.

A strategy of I is similarly a function
<ht(t)
7':( U BI) — [AU B]~" x t.
Ie[A]<r

We say that a strategy 7 of player I beats strategy o of player II if the play 7* o
is a win for I. The play 7 % ¢ is just the play where I uses 7 and II uses o.
Similarly o beats 7 if 7 % 0 is a win for Il. We say that a strategy is a winning
strategy if it beats all opponents strategies.

The notation X T EFJ(A, B) means that player X has a winning strategy in
EF} (A, B)

Remark. By our convention dom A = dom B = k, so while player I picks a subset
of dom A U dom B he actually just picks a subset of x, but as a small analysis
shows, this does not alter the game.

Consider the game EF} (A, B), where |A| = |B| = &, |t| < x and ht(¢) < k. The
set of strategies can be identified with ", for example as follows. The moves of
player I are members of [AU B]<" x ¢t and the moves of player Il are members of
UIE[A]Q B!. By our convention dom A = domB = A = B = &, so these become
V =[r]""xtand U = U;¢)y<- k!. By our cardinality assumption <% = k, these
sets are of cardinality .

Let
fU—k
g: US" — K
h:V — &k
E: VS -k

be bijections. Let us assume that 7: U< — V is a strategy of player I (there
cannot be more than x moves in the game because we assumed ht(f) < k). Let
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v,: k — Kk be defined by

v, =hortog*

and if o: V<" — U is a strategy of player II, let v, be defined by
vy, =foook L
We say that v, codes 7.

6. Theorem (k<" = k). Let A < k be a cardinal. The set

C ={(v,n,€) € (k") | v codes a w.s. of Il in EF}(A,, A¢)} C (k")°
15 closed. If A\ < K, then also the corresponding set for player 1

D= {(v,n,€) € (k) | v codes a w.s. of I in EF{(A,, A¢)} C (k")?
15 closed.

Remark. Compare to Theorem 13.

Proof. Assuming (v,,1,,&,) ¢ C, we will show that there is an open neighbour-
hood U of (v,,n,,&,) such that U C (k) \ C. Denote the strategy that v, codes
by o,. By the assumption there is a strategy 7 of I which beats o,. Consider the
game in which I uses 7 and II uses o,.

Denote the 7" move in this game by (X, h,) where X, C Ay, U Ag, and
hy: Ay — Ag, are the moves of the players. Since player I wins this game, there
is a < A for which h, is not a partial isomorphism between A, and A, . Let

e = sup(X, Udom h, Uran h,)

(Recall dom A, = A,, = & for any 7 by convention.) Let 7 be the coding function
defined in Definition 12 on page 12. Let

ﬂl = 7T[E<w] + 1.

The idea is that 7, [ 31 and &, [ 51 decide the models A, and A as far as the
game has been played. Clearly 4, < k.

Up to this point, player II has applied her strategy o, precisely to the sequences
of the moves made by her opponent, namely to S = {(X,),<3 | 8 < a} C doma,.
We can translate this set to represent a subset of the domain of v,: S’ = k[5],
where k is as defined before the statement of the present theorem. Let [y =
(supS’) + 1 and let

3 = max{fy, fa}.
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Thus n, [ 5, & | 8 and v, [ § decide the moves (h,),<o and the winner.
Now

U={(n&|viB=v,[BAnIB=n,18NEIB=¢18}
= Ny X Nig1p X Neg i

is the desired neighbourhood. Indeed, if (v,n,§) € U and v codes a strategy o,
then 7 beats o on the structures A,, Ae, since the first & moves are exactly as in
the corresponding game of the triple (v,,7,,&,)-

Let us now turn to D. The proof is similar. Assume that (v,,7,,&,) ¢ D and
v, codes strategy 7, of player I. Then there is a strategy of II, which beats 7.
Let 8 < k be, as before, an ordinal such that all moves have occurred before
(£ and the relations of the substructures generated by the moves are decided by
n, [ B,€ | B as well as the strategy 7,. Unlike for player I, the win of II is
determined always only in the end of the game, so 3 can be > \. This is why we
made the assumption A < k, by which we can always have 3 < k and so

U={n&|viB=v,[BAnIB=nT8NEI0 =810}
= Ny X Nyg1p X Neg 15
is an open neighbourhood of (v,,7,,&,) in the complement of D. U

Let us list some theorems concerning Ehrenfeucht-Fraissé games which we will
use in the proofs.

7. Definition. Let T be a theory and A a model of T of size k. The Ly.-Scott
height of A is

sup{a | 3B £ T(A % BATLT EF}, (A4, B))},

if the supremum exists and oo otherwise, where ¢, is as in Example 2 and the
subsequent Fact.

Remark. Sometimes the Scott height is defined in terms of quantifier ranks, but

this gives an equivalent definition by Theorem 9 below.

8. Definition. The quantifier rank R(p) of a formula ¢ € L, is an ordinal
defined by induction on the length of ¢ as follows. If ¢ quantifier free, then
R(p) = 0. If p = Jz9(T), then R(p) = R(¥(z)) + 1. If ¢ = =), then R(p) =
R(y). If o = A,y Ya, then R(p) = sup{R(¢a | @ < A)}.
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9. Theorem. Models A and B satisfy the same Ly.-sentences of quantifier rank
< a if and only if Il T EFf (A, B). d

The following theorem is a well known generalization of a theorem of Karp

[16]:

10. Theorem. Models A and B are Loo.-equivalent if and only if I T EF" (A, B).
L]

11. Remark. Models A and B of size k are L,.+.-equivalent if and only if they are
Lok-equivalent. For an extensive and detailed survey on this and related topics,
see [35].

2.2.3. Coding Models. There are various degrees of generality to which the con-
tent of this text is applicable. Many of the results generalize to vocabularies
with infinitary relations or to uncountable vocabularies, but not all. We find it
reasonable though to fix the used vocabulary to make the presentation clearer.

Models can be coded to models with just one binary predicate. Function
symbols often make situations unnecessarily complicated from the point of view
of this paper.

Thus our approach is, without great loss of generality, to fix our attention to
models with finitary relation symbols of all finite arities.

Let us fix L to be the countable relational vocabulary consisting of the rela-
tions P,, n < w, L = {P, | n < w}, where each P, is an n-ary relation: the
interpretation of P, is a set consisting of n-tuples. We can assume without loss
of generality that the domain of each L-structure of size x is k, i.e. dom A = k.
If we restrict our attention to these models, then the set of all L-models has the
same cardinality as x".

We will next present the way we code the structures and the isomorphisms

between them into the elements of " (or equivalently — as will be seen — to 2%).

12. Definition. Let 7 be a bijection 7: k< — k. If n € k", define the structure
A, to have dom(A,) = k and if (a1, ...a,) € dom(A,)", then

(0,17...,0%) ePnAn <~ W(W(ala"'aan)) >O

In that way the rule n — A, defines a surjective (onto) function from " to the
set of all L-structures with domain x. We say that n codes A,,.
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Remark. Define the equivalence relation on k" by n ~ ¢ <= sprtn = sprt¢,
where sprt means support, see Section 2.1.2 on page 5. Now we have n ~ { <=
A, = Ag, ie. the identity map x — & is an isomorphism between A, and A
when 1 ~ £ and vice versa. On the other hand k"/ ~ 2 2% so the coding can be
seen also as a bijection between models and the space 2.

The distinction will make little difference, but it is convenient to work with
both spaces depending on context. To illustrate the insignificance of the choice
between " and 2%, note that ~ is a closed equivalence relation and identity on
2% is bireducible with ~ on k" (see Definition 2.1.4).

2.2.4. Coding Partial Isomorphisms. Let £,n € k" and let p be a bijection
kK — kX k. Let v € k% a < k. The idea is that for § < «, p1(v(3)) is the
image of # under a partial isomorphism and py(v(/3)) is the inverse image of (.
That is, for a v € k%, define a relation F,, C kK X k:

(B,7) € F, <= (B<arp(v(B)=7)V (v <aAp(v() =p).

If v happens to be such that F), is a partial isomorphism A — A, then we say
that v codes a partial isomorphism between A¢ and A, this isomorphism being
determined by F,. If « = k and v codes a partial isomorphism, then F), is an

isomorphism and we say that v codes an isomorphism.

13. Theorem. The set
C ={(v,n,€) € (k") | v codes an isomorphism between A, and A¢}

18 a closed set.

Proof. Suppose that (v,1,§) ¢ C i.e. v does not code an isomorphism A, = A,.
Then (at least) one of the following holds:

(1) F, is not a function,

(2) F, is not one-to-one,

(3) F, does not preserve relations of A,, Ae.

(Note that F), is always onto if it is a function and domv = &.) If (1), (2) or (3)
holds for v, then respectively (1), (2) or (3) holds for any triple (v/,7/,¢’) where
V' € Nypy, ' € Nypy and &' € Ny, so it is sufficient to check that (1), (2) or (3)
holds for v [~ for some v < k, because

Let us check the above in the case that (3) holds. The other cases are left to the

reader. Suppose (3) holds. There is (ag,...,a,-1) € (domA,)" = & such that
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(ao,-..,an_1) € P, and (ag, ..., an_1) € P2 and (F,(ap), . .., Fy(an_1)) & Pr.
Let 3 be greater than

max({7(ag,...,an-1),7(F,(ao),..., F,(an-1))}
U{ao,...an1, Fo(ag),...,F(an—1)}).

Then it is easy to verify that any (1/,&',v') € N3 X Negjg X N, 5 satisfies (3) as
well. O

14. Corollary. The set {(n,£) € (k")* | A, = A¢} is X1

Proof. 1t is the projection of the set C' of Theorem 13. U

2.3. Generalized Borel Sets.

15. Definition. We have already discussed A} sets which generalize Borel subsets

of Polish space in one way. Let us see how else can we generalize usual Borel sets

to our setting.

« [4, 22] The collection of A-Borel subsets of k" is the smallest set, which con-

tains the basic open sets of k" and is closed under complementation and under
taking intersections of size A. Since we consider only x-Borel sets, we write

Borel = k-Borel.

» The collection A} = X} NTI;.
» [4, 22] The collection of Borel* subsets of k. A set A is Borel* if there exists

a k1 k-tree t in which each increasing sequence of limit order type has a unique

supremum and a function
h: {branches of t} — {basic open sets of "}

such that n € A <= player I has a winning strategy in the game G(t, h,n).
The game G(t, h,n) is defined as follows. At the first round player I picks
a minimal element of the tree, on successive rounds he picks an immediate
successor of the last move played by player I and if there is no last move,
he chooses an immediate successor of the supremum of all previous moves.
Player II always picks an immediate successor of the Player I's choice. The
game ends when the players cannot go up the tree anymore, i.e. have chosen
a branch b. Player I wins, if n € h(b). Otherwise I wins.
A dual of a Borel* set B is the set

B'={¢| 11 G(t,h, )}
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where t and h satisfy the equation B = {¢ | IL T G(t, h,&)}. The dual is not
unique.

Remark. Suppose that ¢t is a k*k tree and h: {branches of t} — Borel® is a
labeling function taking values in Borel* sets instead of basic open sets. Then
{n |1 G(t h,n)}is a Borel* set.

Thus if we change the basic open sets to Borel* sets in the definition of Borel*,

we get Borel*.

16. Remark. Blackwell [2] defined Borel* sets in the case k = w and showed that
in fact Borel=Borel*. When « is uncountable it is not the case. But it is easily
seen that if ¢ is a kT w-tree, then the Borel* set coded by t (with some labeling h)
is a Borel set, and vice versa: each Borel set is a Borel* set coded by a kT w-tree.
We will use this characterization of Borel.

It was first explicitly proved in [22] that these are indeed generalizations:
17. Theorem ([22], k<% = k). Borel C A{ C Borel* C %1,

Proof. (Sketch) If A is Borel*, then it is 31, intuitively, because n € A if and
only if there ezists a winning strategy of player I in G(t, h,n) where (t,h) is a
tree that codes A (here one needs the assumption £<* = x to be able to code the
strategies into the elements of k). By Remark 16 above if A is Borel, then there
is also such a tree. Since Borel C Borel* by Remark 16 and Borel is closed under
taking complements, Borel sets are A}.

The fact that Al sets are Borel* is a more complicated issue; it follows from
a separation theorem proved in [22]. The separation theorem says that any two
disjoint X1 sets can be separated by Borel* sets. It is proved in [22] for xk = wy,
but the proof generalizes to any x (with <% = k). O

Additionally we have the following results:

18. Theorem. (1) Borel C Al.

(2) Ap C X1

(3) If V = L, then Borel* = 3.

(4) It is consistent that A} C Borel”.
Proof. (Sketch)

(1) The following universal Borel set is not Borel itself, but is Aj:

B ={(n,§) € 2" x 2% | n is in the set coded by (t¢, h¢)},
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where £ — (¢, he) is a continuous coding of (kT w-tree, labeling)-pairs in such
a way that for all kT w-trees t C k<“ and labelings h there is § with (t¢, he) =

(t,h). It is not Borel since if it were, then the diagonal’s complement

D={nl(nmn) ¢ B}

would be a Borel set which it is not, since it cannot be coded by any (%, he).
On the other hand its complement C' = (2%)?\ B is ¥{, because (1,&) € C
if and only if there exists a winning strategy of player I in the Borel-game
G(te, he,m) and the latter can be coded to a Borel set. It is left to the reader
to verify that when x > w, then the set

F={(n&v)|vcodes aw.s. for Iin G(t¢, he,n)}

is closed.

The existence of an isomorphism relation which is A} but not Borel follows
from Theorems 70 and 71.
Similarly as above (and similarly as in the case £ = w), take a universal
Yi-set A C 2% x 2" with the property that if B C 2¢ is any Xi-set, then
there is n € 2" such that B x {n} C A. This set can be constructed as in
the case k = w, see [15]. The diagonal {n | (n,7) € A} is ¥] but not II].
Suppose V = L and A C 2% is ¥1. There exists a formula ¢(z,¢) with
parameter £ € 2% which is ¥; in the Levy hierarchy (see [15]) and for all
n € 2" we have

neA = Li=pd).
Now we have that n € A if and only if the set

{a < K| Elﬂ('r] fa,éla € Lg, L = (ZF_ A (ais a cardinal) A p(n ] o, & fa)))}

(4)

contains an w-cub set.
But the w-cub filter is Borel* so A is also Borel*.
This follows from the clauses (1), (6) and (7) of Theorem 49 below. O

Open Problem. Ts it consistent that Borel* is a proper subclass of X1, or even

equals Al? Is it consistent that all the inclusions are proper at the same time:
Al C Borel* € 217

19. Theorem. For a set S C k" the following are equivalent.
(1) S is X1,
(2) S is a projection of a Borel set,
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(3) S is a projection of a ¥} set,
(4) S is a continuous image of a closed set.

Proof. Let us go in the order.

(1) = (2): Closed sets are Borel.

(2) = (3): The same proof as in the standard case k = w gives that Borel sets
are Y (see for instance [15]).

(3) = (4): Let A C k" X K" be a X{ set which is the projection of A, S = pr, A.
Then let C' C k" x kK X k" be a closed set such that pr; C = A. Here
pry: K° X K" — k" and pry: K" X K¥ X K" — K" X K" are the obvious projections.
Let f: k" X k" X K — K" be a homeomorphism. Then S is the image of the
closed set f[C] under the continuous map pryo pryof .

(4) = (1): The image of a closed set under a continuous map f is the projection
of the graph of f restricted to that closed set. It is a basic topological fact
that a graph of a continuous partial function with closed domain is closed
(provided the range is Hausdorff). U

20. Theorem ([22]). Borel® sets are closed under unions and intersections of

size K. ]

21. Definition. A Borel* set B is determined if there exists a tree ¢ and a labeling
function h such that the corresponding game G(t, h, ) is determined for all n € k*
and

B = {n | II has a winning strategy in G(¢, h,n)}.

22. Theorem ([22]). Al sets are ezactly the determined Borel* sets. O

3. BOREL SETS, A] SETS AND INFINITARY LOGIC

3.1. The Language L.+, and Borel Sets. The interest in the class of Borel
sets is explained by the fact that the Borel sets are relatively simple yet at the
same time this class includes many interesting definable sets. We prove Vaught’s
theorem (Theorem 24), which equates “invariant” Borel sets with those definable
in the infinitary language L,+,. Recall that models A and B of size k are L, +,-
equivalent if and only if they are L.-equivalent. Vaught proved his theorem
for the case k = w; assuming CH in [36], but the proof works for arbitrary

assuming k<" = K.
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23. Definition. Denote by S, the set of all permutations of x. If u € k<", denote
u={peS,|p ' domu=u}.

Note that @ = S, and if u € kK is not injective, then @ = @.
A permutation p: kK — Kk acts on 2% by

pm=¢& <= p: A, — A¢ is an isomorphism.

The map n +— pn is well defined for every p and it is easy to check that it defines
an action of the permutation group S, on the space 2. We say that a set A C 2"
is closed under permutations if it is a union of orbits of this action.

24. Theorem ([36], k<" = k). A set B C k" is Borel and closed under permuta-
tions if and only if there is a sentence @ in L+, such that B = {n | A, = ¢}.

Proof. Let ¢ be a sentence in L,+,. Then {n € 2 | A, |= ¢} is closed under
permutations, because if n = p, then 4, = A and A, F ¢ <= A EF ¢
for every sentence . If ¢ is a formula with parameters (a;);<o € K, one easily

verifies by induction on the complexity of ¢ that the set

{ne2" | Ay e((ai)ica)}

is Borel. This of course implies that for every sentence ¢ the set {n | A, = ¢} is
Borel.
The converse is less trivial. Note that the set of permutations S, C k" is Borel,

since

S —ﬂU{n!n =830 () {nlnla) #n(B)}. ()

ﬂ<na<n a<fB<k

open

For a set A C k" and u € k<%, define

open

A":{ne2”|{p€ﬂ\pn€A} is co—meagerina}.

From now on in this section we will write “{p € u | pn € A} is co-meager”, when
we really mean “co-meager in @”.
Let us show that the set

Z ={A C2"| Ais Borel, A" is L+.-definable for all u € x="}

contains all the basic open sets, is closed under intersections of size x and under
complementation in the three steps (a),(b) and (c¢) below. This implies that Z
is the collection of all Borel sets. We will additionally keep track of the fact
that the formula, which defines A** depends only on A and domu, i.e. for each
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0 < k and Borel set A there exists ¢ = @é such that for all u € x” we have
A = {n | A, E o((wi)icp)}. Setting v = @, we have the intended result,
because A*? = A for all A which are closed under permutations and ¢ is a
sentence (with no parameters).

If A is fixed we denote gog‘ = ©g.

(a) Assume ¢ € 2<% and let N, be the corresponding basic open set. Let us show
that N, € Z. Let u € k” be arbitrary. We have to find gogq. Let 6 be a

quantifier free formula with o parameters such that:

N,={ne2"| A, = ‘9((7)7@4)}'

Here (7)< denotes both an initial segment of x as well as an a-tuple of the
structure. Suppose a < 3. We have p € 4t = u C p~ !, so

ne N < {peul|pn€ Ny} is co-meager
<~ {pecul| Ay E0((7)y<a)} is co-meager

= {peul A FO((p'(7)y<a)} is comeager
— {peal An = 9((u7)7<a)1} is co-meager

TV
independent of p

= Ay E 0((Uy)y<a).

Then ¢g = 0.
Assume then that a > (3. By the above, we still have

neN" < E={pecu|A EOI((p " (7)<a)} is co-meager.

Assume that w = (wy),<o € K* is an arbitrary sequence with no repetition
and such that v C w. Since w is an open subset of u and E is co-meager,
there is p € @ N E. Because p € E, we have A, = 0((p7*(7))1<a). On the
other hand p € w, so we have w C p~!, i.e. wy = w(y) = p~(y) for v < a.
Hence

A, E 0((wy)r<a)- (%)

On the other hand, if for every injective w € K, w D u, we have (x), then in

fact £ = u and is trivially co-meager. Therefore we have an equivalence:

neN" = (VwDu)(wer* Awinj. = A, = 0((w,)y<a))-
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But the latter can be expressed in the language L.+, by the formula
ea((wi)icp):
A ) A (Y w)( A A w) = 6(w)ica)
1<j<pB B<i<a 1<j<a

0 was defined to be a formula defining N, with parameters. It is clear thus
that 6 is independent of u. Furthermore the formulas constructed above from
¢ depend only on = domwu and on ¢. Hence the formulas defining N, and
NV for domu = dom v are the same modulo parameters.

(b) For each i < k let A; € Z. We want to show that [),_, A; € Z. Assume that
u € k<" is arbitrary. It suffices to show that

N =(N4a)™

1<K 1<K

1<K

because then gpgiA" is just the k-conjunction of the formulas gogi which exist
by the induction hypothesis. Clearly the resulting formula depends again only
on domw if the previous did. Note that a s-intersection of co-meager sets is
co-meager. Now

n e ﬂ(Af“) — (Vi<k){peu|pne A} is co-meager)
<K
— (Vi<k)(Vi<kr){peu|pne A} is co-meager)
= ﬂ{p € u|pn € A;} is co-meager
<K

— {peul|pe ﬂ A;} is co-meager
1<K
— p¢c (ﬂ Ai> .
1<K
(¢) Assume that A € Z i.e. that A*™ is definable for any u. Let ¢gomu be the

formula, which defines A**. Let now u € k<" be arbitrary and let us show
that (A°)* is definable. We will show that

(Ac)*u _ ﬂ (A*v)c

vOU

i.e. for all n

(1) ne (A9)™ < YvDu(n ¢ A™).
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Granted this, one can write the formula “Yv O u=¢@gomu((V;)i<doms)”, Which
is not of course the real <,0§C which we will write in the end of the proof.

To prove (1) we have to show first that for all n € k" the set B ={p € u |
pn € A} has the Property of Baire (P.B.), see Section 4.3.

The set of all permutations S, C k* is Borel by (-) on page 18. The set @
is an intersection of S, with an open set. Again the set {p € @ | pp € A} is
the intersection of u and the inverse image of A under the continuous map
(p — pn), so is Borel and so has the Property of Baire.

We can now turn to proving the equivalence (1). First “<":

n ¢ (Ao

= B={peu|pne A} is not meager in u

= By P.B. of B there is a non-empty open U such that U \ B is meager
= There is non-empty v C @ such that v \ B is meager.

= There exists v C u such that {p € v | pn € A} = v N B is co-meager
= Jv D u(n € A™).

And then the other direction “=":

ne (A" = {pe€u|pne A} is meager
— for all v C u the set {p € v | pn € A} is meager.
= Vo C u(n ¢ A™).

Let us now write the formula ¢ = ¢ such that

Vo Cu(n ¢ A”) <= Ay = v((wi)icp),
where § = domu: let ¥((u;)i<p) be
A V= ([ N =u) A N\ (@ # l’j)} - ﬁ%((l’i)i@)) :
BLy<k 1<y Ji<p 1<j<y
One can easily see, that this is equivalent to Vo D u(ﬂgodomv((vi)Kdomv)) and

that 1 depends only on dom v modulo parameters. 0

25. Remark. If k<% > k, then the direction from right to left of the above theorem
does not in general hold. Let (k, <, A) be a model with domain k, A C k and
< a well ordering of x of order type k. Véaénéanen and Shelah have shown in [30]



22 SY-DAVID FRIEDMAN, TAPANI HYTTINEN, AND VADIM KULIKOV

(Corollary 17) that if K = A*, k<% > k, A=* = X and a forcing axiom holds (and
wh=w if A = w) then there is a sentence of L, defining the set

STAT = {(k, <, A) | A is stationary}.

If now STAT is Borel, then so would be the set CUB defined in Section 4.3, but
by Theorem 49 this set cannot be Borel since Borel sets have the Property of
Baire by Theorem 45.

Open Problem. Does the direction left to right of Theorem 24 hold without the
assumption K<* = K7

3.2. The Language M,+, and Al-Sets. In this section we will present a theo-
rem similar to Theorem 24. It is also a generalization of the known result which
follows from [22] and [34]:

26. Theorem ([22, 34]:). Let A be a model of size wy. Then the isomorphism
type I = {n | A, = A} is Al if and only if there is a sentence ¢ in M+, such
that I ={n| A, =} and 28\ I = {n| A, =~ ¢}, where ~ 0 is the dual of 6.

The idea of the proof of the following Theorem is due to Sam Coskey and
Philipp Schlicht:

27. Theorem (k<% = k). A set D C 2% is A} and closed under permutations
if and only if there is a sentence ¢ in M+, such that D = {n | A, E ¢} and
K"\ D ={n| A, =~ ¢}, where ~ 0 is the dual of 6.

We have to define these concepts before the proof.

28. Definition (Karttunen [17]). Let A and x be cardinals. The language M),
is then defined to be the set of pairs (¢,.%) of a tree ¢t and a labeling function .Z.
The tree t is a Ax-tree where the limits of increasing sequences of ¢ exist and are
unique. The labeling . is a function satisfying the following conditions:
(1) Z:t—aUaU{A,V}U{3x; | i <k} U{Vx; | i<k} where a is the set of
atomic formulas and @ is the set of negated atomic formulas.
(2) If x € t has no successors, then Z(t) € a U a.
(3) If z € t has exactly one immediate successor then .Z(t) is either Jz; or Va;
for some i < K.
(4) Otherwise Z(t) € {\V, \}.
b) lfz <y, Z(z) € {Iz;,Va;} and L (y) € {Iz;,Vz;}, then i # j.
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29. Definition. Truth for M, is defined in terms of a semantic game. Let (t,.Z)
be the pair which corresponds to a particular sentence ¢ and let A be a model.
The semantic game S(p, A) = S(t,.Z, A) for M), is played by players I and II
as follows. At the first move the players are at the root and later in the game
at some other element of ¢. Let us suppose that they are at the element x € ¢.
If Z(z) =/, then Player I chooses a successor of x and the players move to
that chosen element. If Z(x) = A, then player I chooses a successor of z and
the players move to that chosen element. If £ (z) = Vx; then player I picks an
element a; € A and if Z(z) = Jx; then player II picks an element a; and they
move to the immediate successor of x. If they come to a limit, they move to the
unique supremum. If x is a maximal element of ¢, then they plug the elements a;
in place of the corresponding free variables in the atomic formula Z(x). Player
II wins if this atomic formula is true in A with these interpretations. Otherwise
player I wins.

We define A = ¢ if and only if II has a winning strategy in the semantic game.

Given a sentence ¢, the sentence ~ ¢ is defined by modifying the labeling
function as follows. The atomic formulas are replaced by their negations, the
symbols \/ and /\ switch places and the quantifiers V and 3 switch places. A
sentence ¢ € M), is determined if for all models A either A = ¢ or A E~ .

Now the statement of Theorem 27 makes sense. Theorem 27 concerns a sen-
tence ¢ whose dual defines the complement of the set defined by ¢ among the
models of size k, so it is determined in that model class. Before the proof let us
recall a separation theorem for M,+,, Theorem 3.9 from [32]:

30. Theorem. Assume k<% = X\ and let ARy and IS be two X1 sentences
where ¢ and ¢ are in M+, and AR and 3S are second order quantifiers. If
JdRp A S does not have a model, then there is a sentence 6 € My+) such that
for all models A

AEIRp = A= 0 and A= 35¢ = A =~ 0. 0

31. Definition. For a tree ¢, let ot be the tree of downward closed linear subsets

of t ordered by inclusion.

Proof of Theorem 27. Let us first show that if ¢ is an arbitrary sentence of
M+, then D, = {n | A, E ¢} is 7. The proof has the same idea as the proof
of Theorem 17 that Borel* C . Note that this implies that if ~ ¢ defines the
complement of D, in 2%, then D, is A].
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A strategy in the semantic game S(¢, A,) = S(t,.Z, A,) is a function
v: ot X (domA,))<" — tU (t x dom A,).

This is because the previous moves always form an initial segment of a branch
of the tree together with the sequence of constants picked by the players from
dom A, at the quantifier moves, and a move consists either of going to some node
of the tree or going to a node of the tree together with choosing an element from

dom A,,. By the convention that dom A, = &, a strategy becomes a function
v:ot X K5 = tU(t X K).

Because t is a kT k-tree, there are fewer than x moves in a play (there are no
branches of length x and the players go up the tree on each move). Let

frotx K" — K
be any bijection and let
g:tU(txXK)— K
be another bijection. Let F' be the bijection
F:(tU(tx )" o ke
defined by F(v) = gowvo f~1. Let
C={(n,¢& | F () is a winning strategy of Il in S(¢,.Z, A,)}.

Clearly D, is the projection of C. Let us show that C is closed. Consider an
element (7,€) in the complement of C'. We shall show that there is an open
neighbourhood of (7, £) outside C. Denote v = F~1(£). Since v is not a winning
strategy there is a strategy 7 of I that beats v. There are a« + 1 < k moves in
the play 7 % v (by definition all branches have successor order type). Assume
that b = (z;)i<a is the chosen branch of the tree and (¢;);<, the constants picked
by the players. Let § < k be an ordinal with the properties {f((z;)i<y, (¢i)i<y) |
vy<a+1} Cfand

' € Nyjg = Ay = ZL(wa)((¢i)i<a)- ()

Such f exists, since [{f((:)icqy, (Ci)icy) | ¥ < o+ 1} < Kk and Z(z,) is a
(possibly negated) atomic formula which is not true in A,, because II lost the
game 7 * v and because already a fragment of size < k of A, decides this. Now
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if (n,¢&) € Nyig x Nepg and o' = F1(¢'), then v # 7 is the same play as 7 % v/,
So Ay L (x4)((¢)ica) by (%) and (17, ¢’) is not in C' and

Nyig X Nepg

is the intended open neighbourhood of (7, {) outside C'. This completes the “if”-
part of the proof.

Now for a given A € A} which is closed under permutations we want to find a
sentence ¢ € M+, such that A ={n | A, = ¢} and 27\ A = {n | A, =~ ¢}.
By our assumption k<" = k and Theorems 22 and 30, it is enough to show that
for a given Borel* set B which is closed under permutations, there is a sentence
JR+y which is ¥} over M,+,. (as in the formulation of Theorem 30), such that
B={n| A, = 3R},

The sentence “R is a well ordering of the universe of order type x”, is definable
by the formula 6 = 0(R) of L+, C M +,:

“R is a linear ordering on the universe”

A <\v/wz> ( \/ “R(xi41, xl)>

(2) A\ Ju | (R =y =) |-

(We assume k > w, so the infinite quantification is allowed. The second row says
that there are no descending sequences of length w and the third row says that
the initial segments are of size less than x. This ensures that 0(R) says that R is
a well ordering of order type k).

Let t and h be the tree and the labeling function corresponding to B. Define

the tree t* as follows.

(1) Assume that b is a branch of ¢t with h(b) = N¢j, for some £ € k" and o < k.
Then attach a sequence of order type o on top of b where

o = U ran s,
ser—1[a]

where 7 is the bijection k<“ — k used in the coding, see Definition 12 on
page 12.
(2) Do this to each branch of ¢ and add a root r to the resulting tree.



26 SY-DAVID FRIEDMAN, TAPANI HYTTINEN, AND VADIM KULIKOV

After doing this, the resulting tree is t*. Clearly it is a kT k-tree, because t is.
Next, define the labeling function .Z. If x € ¢ then either £ (z) = A\ or Z(z) =/
depending on whether it is player I’s move or player II's move: formally let n < w
be such that OTP({y € t* | y < z}) = a + n where « is a limit ordinal or 0;
then if n is odd, put Z(z) = A and otherwise Z(z) = \/. If x = r is the root,
then Z(z) = A\. Otherwise, if x is not maximal, define

f=0TP{y e "\ (tU{r}) |y <z}
and set £ (x) = Jug.

Next we will define the labeling of the maximal nodes of t*. By definition these
should be atomic formulas or negated atomic formulas, but it is clear that they
can be replaced without loss of generality by any formula of M, +,; this fact will
make the proof simpler. Assume that x is maximal in t*. .Z(z) will depend only
on h(b) where b is the unique branch of ¢ leading to x. Let us define Z(x) to
be the formula of the form 6 A ©y((x;)i<a), where 6 is defined above and ©, is
defined below. The idea is that

A, = Op((ay)y<ar)} <= n € h(b) and Vy < a*(a, = 7).

Let us define such a ©,. Suppose that { and « are such that h(b) = N¢j,. Define

for s € 771 the formula A as follows:
As . Pdom57 if A{ ): Pdoms((s(i))iedoms)
b= : :
_'Pdom57 if A{ bé Pdoms((s(l))iedoms)'

Then define
Yo((#:)icar) = N\ {V?J(R(yﬁfi) = \/(ly= ffj))}

<o j<i

Pi((T)icar) = N\ Ab((2s0)icdoms).

ser—1la]
O = o A 1.
The disjunction over the empty set is considered false.

Claim 1. Suppose for all n, R is the standard order relation on x. Then

(-Am R) E Gb((a7>'y<cx*) < n€hd)AVy< O‘*(O"y =)

Proof of Claim 1. Suppose A, = O((ay)y<qa+). Then by A, = ¢o((ay)y<ar)
we have that (a,),<q~ is an initial segment of dom .4, with respect to R. But
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(dom A,, R) = (k,<), so Vy < a*(a, = 7). Assume that § < « and n(5) =1
and denote s = 7 1(8). Then A, = Paoms((5(2))icdoms). Since © is true in
A, as well, we must have A] = Pyoms which by definition means that A =
Pioms((5(7))icdoms) and hence £(5) = &(n(s)) = 1. In the same way one shows
that if n(5) = 0, then &(5) = 0 for all § < a. Hence nla = ¢ [a.

Assume then that a, = v for all ¥ < o and that € N¢,. Then A, trivially
satisfies 1y. Suppose that s € 771[a] is such that A¢ = Paoms((5(7))icdoms). Then
&(m(s)) = 1 and since 7(s) < «, also n(w(s)) = 1, so A, = Paoms((5(2))icdoms)-
Similarly one shows that if

Af bé PdOms((‘S(i))iEdoms);

then A, = Pioms((5(%))icdoms). This shows that A, = A;((5(%))icdoms) for all s.
Hence A, satisfies ¢, so we have A, = ©. U Claim 1

Claim 2. ¢, h, t* and .Z are such that for all n € k"

Il T G(t,h,n) <= JRC (domA,)* T TSt %, A,).

Proof of Claim 2. Suppose o is a winning strategy of Il in G(t, h,n). Let R be
the well ordering of dom A4, such that (dom A, R) = (k, <). Consider the game
S(t*, £, A,). On the first move the players are at the root and player I chooses
where to go next. They go to to a minimal element of ¢. From here on II uses
o as long as they are in t. Let us see what happens if they got to a maximal
element of ¢, i.e. they picked a branch b from ¢. Since ¢ is a winning strategy
of Il in G(t, h,n), we have n € h(b) and h(b) = N¢j, for some ¢ and «. For the
next a moves the players climb up the tower defined in item (1) of the definition
of t*. All labels are of the form Jz3, so player II has to pick constants from A,,.
She picks them as follows: for the variable x5 she picks 8 € kK = dom A,. She
wins now if A, = O((5)s<a+) and A, = 0. But n € h(b), so by Claim 1 the
former holds and the latter holds because we chose R to be a well ordering of
order type k.

Let us assume that there is no winning strategy of I in G(¢, h,n). Let R be an
arbitrary relation on dom A,. Here we shall finally use the fact that B is closed
under permutations. Suppose R is not a well ordering of the universe of order
type k. Then after the players reached the final node of t*, player I chooses to
go to 6 and player II loses. So we can assume that R is a well ordering of the
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universe of order type k. Let p: k — & be a bijection such that p(a) is the o
element of x with respect to R. Now p is a permutation and {n | A,, € B} = B
since B is closed under permutations. So by our assumption that n ¢ B (i.e.
I ¥ G(t,h,n)), we also have pn ¢ B, i.e. player II has no winning strategy in
G(t, h,pn) either.

Suppose o is any strategy of II in S(t*,.Z,A,). Player I imagines that o
is a strategy in G(t,h,pn) and picks a strategy 7 that beats it. In the game
S(t*, £, A,), as long as the players are still in ¢, player I uses 7 that would beat
o if they were playing G(t, h,pn) instead of S(t*,.%,n). Suppose they picked a
branch b of t. Now pn ¢ h(b). If I wants to satisfy ¢y of the definition of ©y, she
is forced to pick the constants (a;)i<o+ such that a; is the i*! element of dom A,
with respect to R. Suppose that A, = ¥1((a;)icar) (recall ©, = 15y A ¢)1). But
then A, = ¥1((7)y<a+) and also A,, = ¥o((7)y<ar), so by Claim 1 we should
have pn € h(b) which is a contradiction. O Claim 2

U Theorem 27

4. GENERALIZATIONS FROM CLASSICAL DESCRIPTIVE SET THEORY
4.1. Simple Generalizations.

4.1.1. The Identity Relation. Denote by id the equivalence relation {(n,&) €
(27)% | p = £}. With respect to our choice of topology, the natural generalization
of the equivalence relation

Ey =A{(n,§) € 2¥ x 2% | In <wV¥m > n(n(m) = {(m))}
is equivalence modulo sets of size < k:
Eg"={(n,§) € 2" x 2" | Ja <wVB > a(n(B) = £(8))},
although the equivalences modulo sets of size < A for A < k can also be studied:

Eg? ={(n,€) € 2" x 2" | JA C K[|A| < AAVB & A(n(B8) = E(O)]},

but for A < k these turn out to be bireducible with id (see below). Similarly one
can define E;* on k* instead of 2~

It makes no difference whether we define these relations on 2% or k" since they
become bireducible to each other:

32. Theorem. Let A < k be a cardinal and let Eg*(P) denote the equivalence
relation Eg* on P € {25 K"} (notation defined above). Then

EO<>\(2K> e E0<)\(’%H) and EO</\(’€R) e EO</\(25)'
Note that when A\ = 1, we have E;'(P) = idp.
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Proof. In this proof we think of functions n,{ € k" as graphs n = {(a,n(«)) |
a < k}. Fix a bijection h: K — kx k. Let f: 2% — k" be the inclusion, f(n)(a) =
n(a). Then f is easily seen to be a continuous reduction E;*(2%) <. EFM(k").
Define g: k" — 2% as follows. For n € x" let g(n)(a) = 1 if h(a) € n and
g(n)(a) = 0 otherwise. Let us show that g is a continuous reduction E;* (k") <,
E;2(2%). Suppose 1, € € k are E3*(k")-equivalent. Then clearly [n A €] < A. On
the other hand

I=A{algm)(a) #g(&)(a)} = {a|hla) enAE}

and because h is a bijection, we have that |I| < .
Suppose i and & are not E3*(k*)-equivalent. But then [ A¢| > A and the
argument above shows that also |I| > ), so g(n)(a) is not Eg*(2%)-equivalent to

9(&)(@).

g is easily seen to be continuous. 0

We will need the following Lemma which is a straightforward generalization

from the case Kk = w:
33. Lemma. Borel functions are continuous on a co-meager set.

Proof. For each € k<" let V,, be an open subset of x* such that V;; A f~!N, is
meager. Let
D=x"\ |J V,AF'N,
nER<H
Then D is as intended. Clearly it is co-meager, since we took away only a x-union
of meager sets. Let £ € k<% be arbitrary. The set D N f~'N¢ is open in D since
DN f~'Ne=DnNV;and so f|D is continuous. U

34. Theorem (k<" = k). E5* is an equivalence relation on 2% for all A < k

and

(1) Eg* is Borel.

(2) Eg" £p id.

(3) If A < K, thenid <, B,
(4) If X < K, then E;* <. id.

Proof. E5 is clearly reflexive and symmetric. Suppose nEg ¢ and EEgAC. De-
note n = n~*{1} and similarly for n,{. Then [pA¢] < X and [€ AC| < A; but
nACC (nAE)U(EAC). Thus ES is indeed an equivalence relation.
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) Esr = ﬂ{nﬁln = ¢(a)}.

A€[r]<A agA open
Assume there were a Borel reduction f: 2% — 2" witnessing Fy <p id.
By Lemma 33 there are dense open sets (D;);<. such that f [(,_, D; is
continuous. If p, ¢ € 2% for some a and £ € N, let us denote W/ = g (€]

(k\ @)), and if A C N,,, denote
Alr/a) — {n(p/q) |ne A}

Let C' is be the collection of sets, each of which is of the form

U [D; N Np](p/q)

qe2
for some o < k and some p € 2%. It is easy to see that each such set is dense
and open, so C'is a collection of dense open sets. By the assumption k<% = &,
C' has size k. Also C contains the sets D; for all i < s, (taking o = 0).
Denote D = (\,_,. D;. Let n € NC, & = f(n) and & # &, & € ran(f [ D).
Now £ and £ have disjoint open neighbourhoods V' and V’ respectively. Let
« and p,q € 2% be such that n € N, and such that D N N, C f~![V] and
DN N, C f~![V’]. These p and ¢ exist by the continuity of f on D. Since
n €\ C and n € N,, we have

€ [D;n Nq](Q/P)
for all 7 < k, which is equivalent to
nP/9 e [D; NN,

for all i < k, i.e. 9 is in DN N,. On the other hand (since D; € C for all
i < k and because n € N,), we have n € DN N,,. This implies that f(n) € V
and f(n®/9) € V' which is a contradiction, because V and V' are disjoint
and (n,n"/7) € E,.

Let (A;)i<x be a partition of  into pieces of size x: if i # j then A;NA; = @,
Uic, Ai = x and |A;| = k. Obtain such a collection for instance by taking
a bijection h: k — k X k and defining A; = h™ [k x {i}]. Let f: 2% — 2°
be defined by f(n)(a) = n(i) <= a € A;. Now if n = ¢, then clearly
f(n) = f(€) and so f(n)E; f(€). If n # &, then there exists 4 such that
n(i) # &(i) and we have that

Ai Hal fn)(a) # F(E)()}

and A; is of size Kk > .
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(4) Let P = k<" \ k<*. Let f: P — k be a bijection. It induces a bijection
g: 2P — 2% Let us construct a map h: 2% — 2 such that goh is a reduction
E;* — idys. Let us denote by E<*(a) the equivalence relation on 2% such
that two subsets X, Y of a are E<*(a)-equivalent if and only if |[X A Y] < \.

For each a in A < a < k let h, be any reduction of E<*(a) to idga. This
exists because both equivalence relations have 2¢ many classes. Now reduce
E5* toide<s by f(A) = (ha(ANQ) | A < a < k). If A, B are Eg*-equivalent,
then f(A) = f(B). Otherwise f,(A N «) differs from f,(B N «) for large
enough a < k because A is less than x and k is regular. Continuity of h is
easy to check. O

4.2. On the Silver Dichotomy. To begin with, let us define the Silver Di-
chotomy and the Perfect Set Property:

35. Definition. Let C € {Borel, Al, Borel*, X}, 1} }.

By the Silver Dichotomy, or more specifically, k-SD for C we mean the state-
ment that there are no equivalence relations F in the class C such that £ C 27 x 2"
and E has more than x equivalence classes such that id €g F, id = idg«.

Similarly the Perfect Set Property, or k-PSP for C, means that each member
A of C has either size < k or there is a Borel injection 2 — A. Using Lemma 33
it is not hard to see that this definition is equivalent to the game definition given
in [22].

4.2.1. The Silver Dichotomy for Isomorphism Relations. Although the Silver Di-
chotomy for Borel sets is not provable from ZFC for k > w (see Theorem 42 on
page 35), it holds when the equivalence relation is an isomorphism relation, if

Kk > w is an inaccessible cardinal:

36. Theorem. Assume that k is inaccessible. If the number of equivalence classes

of =1 is greater than k, then id <, Zr.

Proof. Suppose that there are more than s equivalence classes of . We will
show that then ide» <. 7. If T is not classifiable, then as was done in [26],
we can construct a tree t(S) for each S C S and Ehrenfeucht-Mostowski-type
models M (t(S)) over these trees such that if S A S is stationary, then M (t(S)) 2
M(t(S")). Now it is easy to construct a reduction f: idys <. Egs (see notation
defined in Section 2.1), so then n +— M (¢t(f(n))) is a reduction id <. =y.
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Assume now that T is classifiable. By A(T) we denote the least cardinal in
which T is stable. By [25] Theorem XIII.4.8 (this is also mentioned in [7] The-
orem 2.5), assuming that =7 has more than k equivalence classes, it has depth
at least 2 and so there are: a A(T')T-saturated model B = T, |B| = A(T'), and
a A\(T)"-saturated elementary submodel A < B and a ¢ B such that tp(a/B) is
orthogonal to A. Let f: k — & be strictly increasing and such that for all o < k&,
f(a) = u', for some p with the properties \(T') < p < k, cf(u) = p and p** = p.
For each n € 2% with n~'{1} is unbounded we will construct a model A,. As
above, it will be enough to show that A, ¥ A whenever = {1} A& {1} is
A-stationary where A = A\(T)". Fix n € 2% and let A = A\(T)*.

For each o € {1} choose B, D A such that

(1) Imy: B= B, mo [ A =1d4.

(2) Ba laU{Bs | B €n~{1}, 8 # o}
Note that 2 implies that if a # 3, then B, N Bz = A. For each o € {1} and
i < f(a) choose tuples af with the properties

(3) tp(af'/Ba) = ma(tp(a/B))
(4) af Is, U{a] | j < fla),j# i}
Let A, be F§-primary over

S, = U{Ba la<n'{1}} UU{af‘ | < H{1},i < f(o)}.

It remains to show that if S§ N7~ t{1} A& {1} is stationary, then A, % Ae.
Without loss of generality we may assume that S§Nn=1{1}\£7!{1} is stationary.
Let us make a counter assumption, namely that there is an isomorphism F':
A, — Ae.

Without loss of generality there exist singletons b and sets B}, i < k of size
< Asuch that A, = S, U, b] and (S,, (b}, B])i<x) is an Fy-construction.

Let us find an ordinal a < x and sets C' C A, and D C A with the properties
listed below:

(a) o € 77’1{1} \ &1}

(b) D = F[C]

(c) Vﬁ e(a+1)Nn {1} Bz Cc C) and VB € (a+1)NEH1}(Bs C D),

(d) for all i < f(a), V8 € anny {1}(d? € C) and V5 € aN&{1}(a] € D),
(e) IC] = [D| < f(e),

(f) For all g, if BsNC\ A # @, then Bz C C and if BsN D \ A # @, then
Bﬁ CcD,
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(g) C and D are A-saturated,
(h) if b? € C, then B} C [S, UU{b! | j < i}] N C and if b5 € D, then Bf C
[Se WU{BE |j < i}l n D,
This is possible, because n~1{1} \ £7'{1} is stationary and we can close under
the properties (b)—(h).
Now A, is Fy-primary over C'U S, and A is Fy-primary over D U.S, and thus
A, is Fy-atomic over C'U S, and A is Fy-atomic over D U S¢. Let

Lo = {a |1 < f(a)}
Now |1, \ C| = f(«), because |C| < f(«), and so [, \ C # @. Let c € I, \ C and
let AC S\ D and B C D be such that tp(F(c)/AU B) - tp(F(c)/D U Se) and
|AUB| < \. Since a ¢ £7'{1}, we can find (just take disjoint copies) a sequence
(Ai)icf(a)r such that A; C I, N Ag, tp(Ai/D) = tp(A/D) and A; |p U{4; |
j#i < fla)th
Now we can find (d;);<f(a)+, such that

tp(d; " A" B; /@) =tp(F(c)”A™B/2).

Then it is a Morley sequence over D and for all i < f(«a)¥,
tp(di/ D) = tp(F(c)/D),
which implies
tp(F(d;) /C) = tp(c/C),
for some i, since for some i we have ¢ = af. Since by (c), B, C C, the above
implies that
tp(F(di)/Ba) = tp(af' /Ba)

which by the definition of af, item 3 implies

tp(F~(d;)/Ba) = ma(tp(a/B)).

Thus the sequence (F~'(d;));< )+ Witnesses that the dimension of 7, (tp(a/B))
in A, is greater than f(a). Denote that sequence by J. Since m,(tp(a/B)) is
orthogonal to A, we can find J' C J such that |J'| = f(«a)" and J’ is a Morley
sequence over S,. Since f(a)t > A, this contradicts Theorem 4.9(2) of Chapter IV
of [25]. O

Open Problem. Under what conditions on x does the conclusion of Theorem 36
hold?
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4.2.2. Theories Bireducible With id.

37. Theorem. Assume k<" = k = N, > w, Kk is not weakly inaccessible and

A = |a+wl|. Then the following are equivalent

(1) There is v < wy such that 3,(\) > k.
(2) There is a complete countable T such that id <p=7 and =7<p id.

Proof. (2) =(1): Suppose that (1) is not true. Notice that then x > 2¥. Then
every shallow classifiable theory has < k many models of power & (see [7], item 6.
of the Theorem which is on the first page of the article.) and thus id £z=r. On
the other hand if T is not classifiable and shallow, = is not Borel by Theorem
70 and thus it is not Borel reducible to id by Fact 6.

(1) =(2): Since cf(k) > w, (1) implies that there is & = § + 1 < w; such that
Ja(A) = k. But then there is an L*-theory T which has exactly £ many models in
cardinality & (up to isomorphism, use [7], Theorem 6.1 items 2. and 8.). But then
it has exactly x many models of cardinality < &, let A;, ¢ < &, list these. Such
a theory must be classifiable and shallow. Let L be the vocabulary we get from
L* by adding one binary relation symbol E. Let A be an L-structure in which F
is an equivalence relation with infinitely many equivalence classes such that for
every equivalence class a/E, (Ala/FE)[L* is a model of T*. Let T' = Th(A).

We show first that identity on {n € 27| n(0) = 1} reduces to =y. For all
n € 2", let B, be a model of T" of power « such that if n(¢) = 0, then the number
of equivalence classes isomorphic to B; is countable and otherwise the number
is k. Clearly we can code B, as §, € 2% so that n — &, is the required Borel
reduction.

We show then that =, Borel reduces to identity on
X={n:r—(k+1)}.
Since T™ is classifiable and shallow, for all §,7 < x the set
{neX| (A, T0/E) L = A}
is Borel. But then for all cardinals 6 < k and i < k, the set
{ne X |card({d/E | 6 <k, (A,[0/E)[L" = A;}) =0}
is Borel. But then 1+ §, is the required reduction when

&) = Ho/E | 0 <k, (A, 10/E) L= Ai}]. N
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4.2.3. Failures of Silver’s Dichotomy. There are well-known dichotomy theorems
for Borel equivalence relations on 2¥. Two of them are:

38. Theorem (Silver, [31]). Let E C 2 x 2¥ be a I} equivalence relation. If E
has uncountably many equivalence classes, then idow <p F. O

39. Theorem (Generalized Glimm-Effros dichotomy, [6]). Let E C 2¥ x 2¥ be a
Borel equivalence relation. Then either E <p idgw or else Fy <. E. O

As in the case kK = w we have the following also for uncountable  (see Defini-
tion 35):

40. Theorem. If k-SD for 11} holds, then the k-PSP holds for ¥i-sets. More
generally, if C € {Borel, A}, Borel*, X1 II1}, then k-SD for C implies k-PSP for
C’, where elements in C' are all the complements of those in C.

Proof. Let us prove this for C = II}, the other cases are similar. Suppose we have
a Yl-set A. Let

E=A{m& In==¢gor ((ng AN EA))}
Now F = idU(27 \ A)% Since A is 31, (27 \ A)? is 1T} and because id is Borel,
also E is II}. Obviously |A| is the number of equivalence classes of E provided
A is infinite. Then suppose |A| > k. Then there are more than k equivalence
classes of E, so by x-SD for II}, there is a reduction f: id < E. This reduction
in fact witnesses the PSP of A. 0J

The idea of using Kurepa trees for this purpose arose already in the paper [22]
by Mekler and Vaananen.

41. Definition. If t C 2<% is a tree, a path through ¢ is a branch of length k. A
k-Kurepa tree is a tree K C 2<% which satisfies the following;:

(a) K has more than k paths,
(b) K is downward closed,
(c) for all @ < &, the levels are small: [{p € K | domp = a}| < |a+w|.

42. Theorem. Assume one of the following:
(1) k is reqular but not strongly inaccessible and there exists a k-Kurepa tree
K cC 2<%,
(2) k is regqular (might be strongly inaccessible), 2% > k% and there exists a tree
K C 25% with more than k but less than 2" branches.
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Then the Silver Dichotomy for k does not hold. In fact there an equivalence
relation E C 2% x 2% which is the union of a closed and an open set, has more

than k equivalence classes but idsex € F.

Proof. Let us break the proof according to the assumptions (1) and (2). So
first let us consider the case where k is not strongly inaccessible and there is a
rk-Kurepa tree.

(1): Let us carry out the proof in the case kK = w;. It should be obvious then
how to generalize it to any k not strongly inaccessible. So let K C 2<“! be an
wi-Kurepa tree. Let P be the collection of all paths of K. For b € P, denote
b= {b, | @ <wi} where b, is an element of K with domain a.

Let

C={ne2[n= ] ba,beP}.

a<wi

Clearly C' is closed.

Let E={(n&) | n¢g CNEELC)V(ne CAnp=E)} In words, E is the
equivalence relation whose equivalence classes are the complement of C' and the
singletons formed by the elements of C'. FE is the union of the open set {(n,§) |
n¢ CANEE CY and the closed set {(n,€) | ne CAn=¢&={(n,n) |neC}.
The number of equivalence classes equals the number of paths of K, so there are
more than w; of them by the definition of Kurepa tree.

Let us show that ids«; is not embeddable to E. Suppose that f: 2“1 — 2“1 is a
Borel reduction. We will show that then K must have a level of size > w; which
contradicts the definition of Kurepa tree. By Lemma 33 there is a co-meager
set D on which f [ D is continuous. There is at most one n € 2“* whose image
f(n) is outside C, so without loss of generality f[D] C C. Let p be an arbitrary
element of K such that f~'[N,] # @. By continuity there is a ¢ € 2<“* with
fIN,N D] C N,. Since D is co-meager, there are n and & such that n # ¢, ¢ Cn
and ¢ C . Let oy < wp and py and p; be extensions of p with the properties
po C f(n), ;1 C f(§), ar = dompy = dompy, f7'[Ny] # @ # f'[N,] and
N,, N N, = &. Note that py and p; are in K. Then, again by continuity, there
are ¢p and ¢ such that f[N, N D] C N,, and f[N, N D] C N,,. Continue in
the same manner to obtain «,, and p, € K for each n < w and s € 2<% so that
s Cs <= ps Cpy and o, = domp, <= n = doms. Let o = sup,,., .
Now clearly the a’s level of K contains continuum many elements: by (b) in the
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definition of Kurepa tree it contains all the elements of the form (J for
n € 2¥ and 2¥ > w;.

If k is arbitrary regular not strongly inaccessible cardinal, then the proof is the

n<w pﬁf”

same, only instead of w steps one has to do A steps where X is the least cardinal
satisfying 2} > k.

(2): The argument is even simpler. Define the equivalence relation E exactly
as above. Now F is again closed and has as many equivalence classes as is the
number of paths in K. Thus the number of equivalence classes is > « but id
cannot be reduced to E since there are less than 2% equivalence classes. O

Remark. Some related results:

(1) In L, the PSP fails for closed sets for all uncountable regular . This is
because “weak Kurepa trees” exist (see the proof sketch of (3) below for the
definition of “weak Kurepa tree”).

(2) (P. Schlicht) In Silver’'s model where an inaccessible x is made into wy by
Levy collapsing each ordinal below to w; with countable conditions, every
Y1 subset X of 2“1 obeys the PSP.

(3) Supercompactness does not imply the PSP for closed sets.

Sketch of a proof of item (3). Suppose & is supercompact and by a reverse Easton
iteration add to each inaccessible a a “weak Kurepa tree”, i.e., a tree T, with
at branches whose ' level has size 3 for stationary many 3 < a. The forcing
at stage a is a-closed and the set of branches through 7} is a closed set with no
perfect subset. If j: V' — M witnesses A-supercompactness (A > k) and G is the
generic then we can find G* which is j(P)-generic over M containing j[G]: Up
to A we copy G, between A and j(k) we build G* using A" closure of the forcing
and of the model M, and at j(x) we form a master condition out of j[G(k)] and

build a generic below it, again using A* closure. 0

43. Corollary. The consistency of the Silver Dichotomy for Borel sets on wy with
CH implies the consistency of a strongly inaccessible cardinal. In fact, if there
is no equivalence relation witnessing the failure of the Silver Dichotomy for wy,
then ws 1s tnaccessible in L.

Proof. By a result of Silver, if there are no w;-Kurepa trees, then w, is inaccessible
in L, see Exercise 27.5 in Part III of [15]. O

Open Problem. Is the Silver Dichotomy for uncountable x consistent?
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4.3. Regularity Properties and Definability of the CUB Filter. In the
standard descriptive theory (k = w), the notions of Borel, A and Borel* coincide
and one of the most important observations in the theory is that such sets have
the Property of Baire and that the {-sets obey the Perfect Set Property. In
the case k > w the situation is more complicated as the following shows. It was
already pointed out in the previous section that Borel C Al. In this section we

focus on the cub filter
CUB = {n € 2" | n*{1} contains a cub}.
The set CUB is easily seen to be ¥1: the set
{.€) [ ({1} <& H{1}) A (n {1} is cub)}

is Borel. CUB (restricted to cofinality w, see Definition 48) will serve (consis-
tently) as a counterexample to Al = Borel*, but we will show that it is also
consistent that CUB is A]. The latter implies that it is consistent that Al-sets
do not have the Property of Baire and we will also show that in a forcing extension
of L, Aj-sets all have the Property of Baire.

44. Definition. A nowhere dense set is a subset of a set whose complement is
dense and open. Let X C k. A subset M C X is k-meager in X, if M N X is
the union of no more than k nowhere dense sets,
M= JN.
i<k

We usually drop the prefix “x-".

Clearly x-meager sets form a x-complete ideal. A co-meager set is a set whose
complement is meager.

A subset A C X has the Property of Baire or shorter P.B., if there exists an
open U C X such that the symmetric difference U /A A is meager.

Halko showed in [4] that
45. Theorem ([4]). Borel sets have the Property of Baire. O

(The same proof as when x = w works.) This is independent of the assumption
k<" = k. Borel* sets do not in general have the Property of Baire.

46. Definition ([21, 22, 10]). A k" k-tree t is a kA-canary tree if for all stationary
S C 5% it holds that if P does not add subsets of  of size less than « and P kills
the stationarity of S, then P adds a x-branch to t.
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Remark. Hyttinen and Rautila [10] use the notation x-canary tree for our k™ k-
canary tree.

It was shown by Mekler and Shelah [21] and Hyttinen and Rautila [10] that it
is consistent with ZFC+GCH that there is a k" k-canary tree and it is consistent
with ZFC+GCH that there are no k™ k-canary trees. The same proof as in [21, 10]

gives the following:

47. Theorem. Assume GCH and assume A\ < k are reqular cardinals. Let P
be the forcing which adds k™ Cohen subsets of k. Then in the forcing extension
there are no KA-canary trees. ([l

48. Definition. Suppose X C k is stationary. For each such X define the set
CUB(X) = {n € 2° | X \ n~"{1} is non-stationary},
so CUB(X) is “cub in X”.

49. Theorem. In the following r satisfies K" = kK > w.

(1) CUB(S%) is Borel*.

(2) For all reqular X < r, CUB(S%) is not A} in the forcing extension after
adding k™ Cohen subsets of k.

(3) If V = L, then for every stationary S C k, the set CUB(S) is not Af.

(4) Assume GCH and that k is not a successor of a singular cardinal. For any
stationary set Z C k there exists a forcing notion P which has the k™ -c.c.,
does not add bounded subsets of k and preserves GCH and stationary subsets
of k\ Z such that CUB(k \ Z) is Al in the forcing extension.

(5) Let the assumptions for k be as in (4). For all reqular A < k, CUB(SY) is
Al in a forcing extension as in (4).

(6) CUB(X) does not have the Property of Baire for stationary X C k. (Proved
by Halko and Shelah in [5] for X = k)

(7) It is consistent that all Ai-sets have the Property of Baire. (Independently
known to P. Liicke and P. Schlicht.)

Proof of Theorem 49.

Proof of item (1). Let t = [x|<“ (increasing functions ordered by end extension)
and for all branches b C t

h(b) = {€ € 2° | &(sup b(n)) # O}.

n<w
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Now if k\ £71{0} contains an w-cub set C, then player II has a winning strategy
in G(t,h,€): for her n*® move she picks an element x € ¢t with domain 2n + 2
such that z(2n + 1) is in C. Suppose the players picked a branch b in this way.
Then the condition £(b(2n + 1)) # 0 holds for all n < w and because C' is cub
outside £1{0}, we have £(sup,,_, b(n)) # 0.

Suppose on the contrary that S = ¢71{0} is stationary. Let o be any strategy
of player I. Let C, be the set of ordinals closed under this strategy. It is a cub
set, so there is an a € C, N S. Player I can now easily play towards this ordinal
to force £(b(w)) = 0, so o cannot be a winning strategy. Oitem (1)

Proof of item (2). It is not hard to see that CUBY is A{ if and only if there
exists a kA-canary tree. This fact is proved in detail in [22] in the case k = wy,
A = w and the proof generalizes easily to any regular uncountable x along with

the assumption K=" = k. So the statement follows from Theorem 47.  Ojiem (2)

Proof of item (3). Suppose that ¢ is ¥; and for simplicity assume that ¢ has
no parameters. Then for x C k we have:

Claim. ¢(z) holds if and only if the set A of those « for which there exists 8 > «
such that

L E (ZF~ A (w < ais regular) A ((S N a) is stationary ) A ¢(z N )
contains C'N .S for some cub set C.

Proof of the Claim. “=". If ¢(z) holds then choose a continuous chain
(M; | i < k) of elementary submodels of some large ZF~ model Ly so that x
and S belong to M, and the intersection of each M; with k is an ordinal «; less
than k. Let C be the set of «;’s, cub in k. Then any « in C'N S belongs to A by
condensation.

“=". If ¢(x) fails then let C' be any cub in x and let D be the cub of
a < k such that H(«a) is the Skolem Hull in some large Ly of a together with
{k, S, C} contains no ordinals in the interval [, k). Let a be the least element of
S Nlim(D). Then a does not belong to A: If Lj satisfies p(z N «a) then 8 must
be greater than 3 where H(a) = Lj is the transitive collapse of H(c), because
o(z N «) fails in H(a). But as lim(D) N a is an element of Lj. 5 and is disjoint
from S, it follows that either « is singular in Lz or S N « is not stationary in
Lj,5 and hence not in Lg. Of course a does belong to C' so we have shown that

A does not contain S N C' for an arbitrary cub C' in k. L Glaim
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It follows from the above that any 3; subset of 2 is A; over (LI, CUB(S))
and therefore if CUB(S) were A; then any ¥; subset of 2% would be A;, a

contradiction. Hitem (3)

Proof of item (4). If X C 27is A}, then {n € X | n7 {1} C k\Z}is A}, so it is
sufficient to show that we can force a set £ C Z which has the claimed property.
So we force a set £ C Z such that E is stationary but E N« is non-stationary in
a for all @ < k and k \ F is fat. A set is fat if its intersection with any cub set
contains closed increasing sequences of all order types < .

This can be easily forced with
R={p:a—2|a<kp {1}N B C Z is non-stationary in 3 for all 5 < a}

ordered by end-extension. It is easy to see that for any R-generic G the set
E = (UG)~'{1} satisfies the requirements. Also R does not add bounded subsets
of k and has the x™-c.c. and does not kill stationary sets.

Without loss of generality assume that such F exists in V and that 0 € E.

Next let Py = {p: a — 2<% | a < &, p(B) € 2°,p(B)"1{1} C E}. This forcing
adds a {p-sequence (A, | a € E) (if G is generic, set A, = (UG)(a)"1{1}) such
that for all B C E there is a stationary S C FE such that A, = B N« for all
a € S. This forcing Py is < k-closed and clearly has the x*-c.c., so it is easily
seen that it does not add bounded subsets of k£ and does not kill stationary sets.

Let ¥(G,n, S) be a formula with parameters G € (2<7)* and 7 € 2% and a free
variable S C x which says:

Va < k(e €S <= G(a) {1} =n H1}Nna).

If (G(a)™'{1})a<x happens to be a {p-sequence, then S satisfying 1 is always
stationary. Thus if Gy is Pg-generic over V and n € 2¥ then (¢(Go,n,S) —
(S is stationary))VICol.

For each 1 € 27, let S, be a nice Py-name for the set S such that V|G| =
»(Go,n, S) where Gy is Py-generic over V. By the definitions, Py IF “5'77 C Eis
stationary” and if n # 1/, then Py I+ “Sn N Sn’ is bounded”.

Let us enumerate F = {; | i < k} such that i < j = §; < §; and for n € 2
and v € r define 1 + 7 to be the & € 2F such that £(3;) = 1 for all i < v and

£(By+;) = n(B;) for j > 0. Let

Fy={n € 2" | (0) =0}". (+)
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Now for all n,n’ € Fy and a, & € kK, n 4+ a =17+ o implies n =7 and a = /.
Let us now define the formula ¢(G,n, X) with parameters G € (2<%)", n € 2%
and a free variable X C x\ E which says:

(n(0) =0) AVa < k[(a € X — IS((G,n+ 2a,S) A S is non-stationary))
A(a ¢ X — IS (G, n+2a+1,S) A S is non-stationary))].

Now, we will construct an iterated forcing P.+, starting with Py, which kills
the stationarity of Sn for suitable n € 2, such that if G is P,+-generic, then for
all S C k\ E, S is stationary if and only if

In € 2%(p(Go, 1, 5))

where Gy = G [ {0}. In this model, for each n € Fp, there will be a unique X
such that ¢(Go,n,X), so let us denote this X by X,. It is easy to check that
the mapping 1 — X, defined by ¢ is X} so in the result, also S = {S C k \ F |
S is stationary} is 1. Since cub and non-stationarity are also 31, we get that S
is Al, as needed.

Let us show how to construct the iterated forcing. For S C k, we denote
by T'(S) the partial order of all closed increasing sequences contained in the
complement of S. Clearly T'(S) is a forcing that kills the stationarity of S. If
the complement of S is fat and S is non-reflecting, then 7'(S) has all the nice
properties we need, as the following claims show. Let f: k7 \ {0} — k* x kT be
a bijection such that fi(y) < 7.

Py is already defined and it has the xk™-c.c. and it is < k-closed. Suppose that
P; has been defined for ¢ < o and o; has been defined for i < Ua such that o; is
a (nice) P;-name for a x*-c.c. partial order. Also suppose that for all i < U,
{(Si;,0:;) | § < Kt} is the list of all pairs (S, ) such that S is a nice P;-name for
a subset of &\ E and § < x, and suppose that

ga:{sf(i)]i<oz}—>F0 (% * %)

is an injective function, where Fj is defined at (k).

If o is a limit, let P, consist of those p: o — J,_, domo; with |sprt(p)| < &
(support, see Section 2.1.2 on page 5) such that for all v < o, p[ € P, and let
9o = U, gi- Suppose a is a successor, @ = v + 1. Let {(S,;,0;) | j < k} be
the the list of pairs as defined above. Let (S,8) = (Sf(,),d4¢,)) where f is the
bijection defined above. If there exists i < v such that S i) = S ty) (ie. S; has
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been already under focus), then let g, = g,. Otherwise let

9o = 95 U {(Ss5:m)}

where 7 is some element in Fj \ ran g,. Doing this, we want to make sure that in
the end ran g+ = Fy. We omit the technical details needed to ensure that.

Denote n = g(Sf(ﬂ,)). Let o, be a P,-name such that for all P,-generic G, it
holds that

Oy = T(Sn+2§)7 if V[G,y] = [(5]0@) € Sf(,y)) A (Sf(,y) is stationary)]

Py kS 0y = T(Sp2611), it VIGS] = [(05¢) & Spm)) A (Sg() is stationary)]
o, = {2}, otherwise.

Now let IP,, be the collection of sequences p=(p;)i<, such that p [y=(p;)i<y € P5,
py € domo,, and p[v IFp, p, € 0, with the ordering defined in the usual way.

Let G be P,+-generic. Let us now show that the extension V[G] satisfies what
we want, namely that S C x \ E is stationary if and only if there exists n € 2F
such that S = X, (Claims 3 and 4 below).

Claim 1. For a < " the forcing P, does not add bounded subsets of x and the
suborder

Qa={p|p€Psp=(pi)ica Where p; € V for i < a}

is dense in P,.

Proof of Claim 1. Let us show this by induction on a@ < k™. For P, this is
already proved and the limit case is left to the reader. Suppose this is proved
for all vy < @ < kT and @ = [+ 1. Then suppose p € Py, p = (p;)ica- Now
p| B IF pg € os. Since by the induction hypothesis P3 does not add bounded
subsets of k and Qg is dense in P, there exists a condition r € Qg, r > p[ 3 and
a standard name ¢ such that r IF ¢ = pg. Now () is in Q,, so it is dense in P,,.
To show that P, does not add bounded sets, it is enough to show that Q, does
not. Let us think of Q, as a suborder of the product [[,_, 2<*. Assume that 7
is a Qu-name and p € Q, forces that || = X\ < & for some cardinal A. Then let
(Mjs)s<, be a sequence of elementary submodels of H (k™) such that for all §, 3

)
)
(d) if 3 is a limit ordinal, then Ms = .45 Ma,
) if K = AT, then M C M; and if & is inaccessible, then MJ;M‘S‘ C Ms,q,
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(f> Ma S Ma+17

(8) {p. %, Qa, 7, B} C M.
This (especially (e)) is possible since k is not a successor of a singular cardinal
and GCH holds. Now the set C' = {Ms Nk | 6 < Kk} is cub, so because xk \ F
is fat, there is a closed sequence s of length A+ 1 in C'\ E. Let (d;);<x be the
sequence such that s = (Ms, N k);<x. For g € Q,, let

m(g) = inf rang(y). (*)
yeEsprt g

Let pp = p and for all ¢ < v let p;y1 € Ms, \ Ms, be such that p; < p;y1,
pir1 decides ¢ + 1 first values of 7 (think of 7 as a name for a function A — &
and that p; decides the first ¢ values of that function) and m(p;+1) = Ms, N k.

This p;+1 can be found because clearly p; € Ms,,, and M;s, | is an elementary

i
submodel. If ¢ is a limit, ¢ < A, then let p; be an upper bound of {p; | j < i}
which can be found in M;,,, by the assumptions (f), (e) and (b), and because
Ms,Nk ¢ E. Finally let py be an upper bound of (p;);<» which exists because for
all a € |, sprt p; sup; ran p; (o) = Ms, Nk is not in £ and the forcing is closed
under such sequences. So p, decides the whole 7. This completes the proof of
the claim. O Claim 1

So for simplicity, instead of P+ let us work with Q.

Claim 2. Let G be P,+-generic over V. Suppose S C k, S € V[G] and Sis a
nice name for a subset of  such that Sg = S. Then let v be the smallest ordinal
with S € V[G,]. If (S C k\ E is stationary)"[ ] then S is stationary in V[G].
If S =8, for some n € V and V[G,] |= 0, # T((S,)a, 10y) for all v < k*, then
S is stationary in V[G].

Proof of Claim 2. Recall, o, is as in the construction of P,+. Suppose first
that S C k\ E is a stationary set in V[G,] for some v < x*. Let us show that S
is stationary in V[G]. Note that V[G] = V[G,][G"] where G" = G [{a | a > v}.
Let us show this in the case vy = 0 and S € V, the other cases being similar. Let
C be a name and p a condition which forces that C is cub. Let us show that then
plFSNC #&. For g € Q.+ let m(q) be defined as in (x) above.

Like in the proof of Claim 1, construct a continuous increasing sequence
(Mp)a<r of elementary submodels of H(x**) such that {p,x,P.+,S,C} C M,
and M, Nk is an ordinal. Since {M,Nk | @ < kK, My NK = a} is cub, there exists
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o € S such that M, Nk = « and because E does not reflect to a there exists a
cub sequence

cC{MgnNkr|f<a,Mgnk=p}\E,

¢ = (Ci)icci(a)- Now, similarly as in the proof of Claim 1, we can choose an
increasing (p;)i<ct(a) such that py = p, p; € Qy+ for all i, p;yq IF B e C for some
¢i < B < i1, pig1 € M, \ Me, and m(pi1) = ¢;. If i is a limit, let p; be again
an upper bound of {p; | j <4} in M,,. Since the limits are not in E, the upper
bounds exist. Finally pega) IF o € C, which implies Pet(a) IF SNC +# @, because
« was chosen from S.

Assume then that S = 5",7 for some 7 € V such that

VIG.] [ o, # T((S))e, to0})

for all v < k*. To prove that (S,)¢s is stationary in V[G], we carry the same
argument as the above, a little modified. Let us work in V[Gy| and let py force
that

Yy < k7 (o, #T(Sy))-

(This po exists for example because there is at most one v such that o, = 7'(5,))
Build the sequences ¢, (M, )icct(a) and (p;)icct(a) in the same fashion as above,
except that assume additionally that the functions g.+ and f, defined along with
P+, are in M,,.

At the successor steps one has to choose p; ;1 such that for each v € sprt p;, piy1
decides 0. This is possible, since there are only three choices for o, namely {@},
T'(Setr2a+1) O T(Setoq) where € and « are justified by the functions g+ and f. For
all v € sprtp; let us denote by &, the function such that p; 1 [y IF 0y = T(Se ).
Clearly n # &, for all v € sprt p;. Further demand that m(pi41) > sup(S, N Se,)
for all v € sprtp;. It is possible to find such p;;; from M;,; because M, is an
elementary submodel and such can be found in H (k") since &, # n and by the
definitions S, N S, is bounded. O Claim 2

Claim 3. In VI[G] the following holds: if S C k\ E is stationary, then there
exists 1 € 2 with n(0) = 0 such that S = X,,.

Proof of Claim 3. Recall the function g,.+ from the construction of P,+ (defined
at (+ %) and the paragraph below that). Let 7 = g,.+ (S) where S is a nice name

S € V such that S¢ = S. If a € S, then there is the smallest v such that
S = Sty and o = 65,y (where f is as in the definition of P,+). This stage v
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is the only stage where it is possible that V[G,]| = 0, = T'(S,424+1), but since
V[G,] = @ € S, by the definition of P,+ it is not the case, so the stationarity of
Sy+2a+1 has not been killed by Claim 2. On the other hand the stationarity of
Sy+2q 1s Killed at this level v of the construction, so a € X, by the definitions
of ¢ and X,. Similarly if o ¢ S, we conclude that a ¢ X,,. O Claim 3

Claim 4. In V[G] the following holds: if S C '\ E is not stationary, then for
all n € 2% with n(0) = 0 we have S # X,,.

Proof of Claim 4. It is sufficient to show that X, is stationary for all n € 2%
with 1(0) = 0. Suppose first that n € Fy C V. Then since g+ is a surjection onto
Fy (see (x %)), there exists a name S such that S = S is stationary, S C x\ E
and g.+(S) =n. Now the same argument as in the proof of Claim 3 implies that
X, =5, so X, is stationary by Claim 2.

If n ¢ Fo, then by the definition of n — X, it is sufficient to show that the
O-sequence added by Py guesses in V[G] every new set on a stationary set.

Suppose that 7 and C are nice P, -names for subsets of % and let p be a
condition forcing that C' is cub. We want to find v and ¢ > p such that

qIF (UGo)(%) {1} =7nH) A (3 €C)

where GO =G {0} is the name for the Py-generic. To do that let py > p be such
that po I- 7 & P(k)V.

Similarly as in the proofs above define a suitable sequence (M;);~ of elemen-
tary submodels, of length A < k, where X is a cofinality of a point in E, such
that sup,.\(M; Nk) = a € E and M; Nk ¢ E for all i < X\. Assume also that
po € My. Suppose p; € M; is defined. Let p;11 > p; be an element of M1 \ M,;
satisfying the following:

(1) piy1 decides og for all § € sprt p;,

(2) for all B € sprtp; there is 5" € M,y such that p;41 IF 5" € 7 A &g, where &5
is defined as in the proof of Claim 2 and p;,; decides what it is,

(3) piy1 decides 7 up to M; N &,

(4) pis1 IF 6 € C for some 6 € M1 \ M,

(5) m(piy1) > M; Nk, (m(p) is defined at (x)),

Item (1) is possible for the same reason as in the proof of Claim 2 and (2) is
possible since p; - ¥ € P(r)V (1 # S;).
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Since M; Nk ¢ E for i < A, this ensures that the sequence py < p; < ...
closes under limits < A. Let py = J,_, p; and let us define ¢ D py as follows:
sprt g = sprtpy, for § € sprtpy \ {0} let domqg = a+ 1, pA(d) C ¢(9), q¢(a) =1
and ¢(0)(a) = 7N~ (7 means here what have been decided by {p; | i < A\}). Now
q is a condition in the forcing notion.

Now certainly, if ¢ € G, then in the extension 7¢ N a = (UGp)(a) {1} and
a € (', so we finish. O Claim 4

Uitem (4)

Proof of item (5). If x = AT, this follows from the result of Mekler and
Shelah [21] and Hyttinen and Rautila [10] that the existence of a kA-canary tree
is consistent. For arbitrary A <  the result follows from the item (4) of this
theorem proved above (take Z =k \ S%). Oitem (5)

Proof of item (6). For X = & this was proved by Halko and Shelah in [5],
Theorem 4.2. For X any stationary subset of x the proof is similar. It is sufficient
to show that 2° \ CUB(X) is not meager in any open set. Suppose U is an open
set and (D, )a<x is a set of dense open sets and let us show that

2"\ CUB(X))NUN (] Do # 2.
a<k
Let p € 2<% be such that N, C U. Let py > p be such that py € D,. Suppose
pp are defined for 8 < o+ 1. Let poy1 be such that por1 = Py Pat1 € Data-
Suppose pg is defined for 8 < o and « is a limit ordinal. Let p, be any element of
2<% such that p, > UB<0¢ Dgs pa(sﬂup dompg) = 0 and p, € Dq. Let n =J,_, Pa-
<«
The complement of 71{1} contains a cub, so X \ n71{1} is stationary whence

n ¢ CUB(X) and so n € 27\ CUB(X). Also clearly n € UN(,-. Da- Oitem (6)

a<k

Proof of item (7). Our proof is different from that given by Liicke and Schlicht.
Suppose <" = Kk > w. We will show that in a generic extension of V all Aj-sets
have the Property of Baire. Let

P = {p | pis a function,|p| < k,domp C k x k", ranp C {0,1}}

with the ordering p < ¢ <= p C ¢ and let G be P-generic over V. Suppose
that X C 2% is a Al-set in V[G]. Tt is sufficient to show that for every r € 2<%



48 SY-DAVID FRIEDMAN, TAPANI HYTTINEN, AND VADIM KULIKOV

there is ¢ D r such that either N, \ X or NV, N X is co-meager. So let r € 2<% be
arbitrary.

Now suppose that (p;)i<. and (¢;);<. are sequences in V[G] such that p;,q; €
(2<%)? for all i < x and X is the projection of

Co = (2%’ \ U N,
1<K
and 27\ X is the projection of
Cr= 27\ [N,
1<K
(By Ny, we mean N x N,z where p; = (pj,p;).) Since these sequences have
size k, there exists a; < k* such that they are already in V[G,,| where G,, =
{p € G |domp C kxai}. More generally, for E C P and A C k™, we will denote
Es={p€ FE|domp C k x A} and if p € P, similarly p4 = p[(k x A).

Let ap > oy be such that r € Gy, (identifying x x {as} with ). This is
possible since G is generic. Let = Gyq,}. Since in V[G], v € X or x € 27\ X,
there are a3z > ag, p € Gas, Plapy O 7 and a name 7 such that p forces that
(x,7) & N, for all i < k or (z,7) ¢ N, for all i < k. Without loss of generality
assume that p forces that (z,7) ¢ N, for all i < k. Also we can assume that 7
is a P,,-name and that ag = ay + 2.

By working in V[G,,] we may assume that ay = 0. For all ¢ € Pgyy, ppy € ¢
and ¢ < &, let D; 4 be the set of all s € Pygy such that poy C s, dom(s) > dom(p;)
and there is ¢’ € Pyyy such that ¢ C ¢’ and s U ¢ decides 7 | dom(p}). Clearly
each D;, is dense above pyoy in Pgy and thus it is enough to show that if y € 2~
is such that for all ¢ < k and ¢ as above there is o < x such that y [a € D,
then y € X.

So let y be such. Then we can find z € 2% such that for all ©+ < s and ¢
as above there are o, 3 < k such that a > dom(p;) and y [ @ U z | 3 decides
t = 7 [dom(p?). By the choise of p, (y | dom(p}),t) # p;. Thus letting 7* be the
function as decided by y and z, (y,7*) € Cy and thus y € X. Oitem (7)

O Theorem 49

Remark (cf(k) = k > w). There are some more results and strengthenings of the
results in Theorem 49:
(1) (Independently known by S. Coskey and P. Schlicht) If V' = L then there is
a Al wellorder of P(x) and this implies that there is a A} set wihtout the
Baire Property.
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(2) Suppose that w < kK < A, k regular and X inaccessible. Then after turning A
into k* by collapsing each ordinal less than \ to s using conditions of size
< K, the Baire Property holds for Al subsets of x*.

50. Corollary. For a reqular A < k let NSy denote the equivalence relation on
2% such that nNS,E if and only if n™ {1} A {1} is not \-stationary. Then NSy
is mot Borel and it is not Al in L or in the forcing extensions after adding k™

Cohen subsets of k.

Proof. Define amap f: 2° — (2%)2 by n — (&, x\n). Suppose for a contradiction
that NS, is Borel. Then

NSg =NSxn{(@,n) |n €2}

VvV
closed

is Borel, and further f~'[NSg] is Borel by continuity of f. But f~![NSy] equals
CUB which is not Borel by Theorem 49 (6) and Theorem 45. Similarly, using
items (2) and (3) of Theorem 49, one can show that NSy is not A] under the
stated assumptions. O

4.4. The Partial Orders (£, <p). Let C € {Borel, A}, Borel*, ©{} and define
EC={E C2"x2"| (E €C) A (FE is an equivalence relation)}.

Equip £¢ with the partial order <. In the case k = w there are many known
results that describe the order (€2l ). Some results were discussed in Sec-
tion 4.2.3, some other results show that this order is very complicated. To mention

two:

51. Theorem (Louveau-Velickovic [20]). The partial order (P(w),C) can be
embedded into (E3°™, <), where A C, B if A\ B is finite.

52. Theorem (Adams-Kechris [1]). The partial order (B,C) can be embedded
into (EB7 <g), where B is the collection of all Borel subsets of the real line
R. In fact, the embedding is into the suborder of (EE°! <p) consisting of the
countable Borel equivalence relations, i.e., those Borel equivalence relations each

of whose equivalence classes is countable.

4.4.1. An Embedding of (P(k), C) into (€,<p). In this section we aim to prove
the following weak version of such a theorem for x > w:
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53. Theorem. Suppose GCH and k is reqular, uncountable. Then in a cofinality
and GCH preserving forcing extension, there is an embedding

(P(k),C) — (5", <p).

Proof. In this proof we identify functions n € 2% with the sets n~!{1}: for
example we write 7 N € to mean n~ {1} NE{1}.

The equivalence relations in the range of the embedding will have the following
form. For X C S, we denote by Ex the relation

Ex ={(n,&) €2 x2" | (n Y1} A¢1{1}) N X is not stationary}.

This relation is easily seen to be ¥}. If 4 = w, then it is in fact Borel*. To see
this use the same argument as in the proof of Theorem 49 (1) that the CUB
set is Borel*. So, we will carry out the argument for an almost arbitrary regular
cardinal ;1 < k where “almost” means: if k = AT and X is singular, then we
demand that pu < cf(\). The statement of the theorem then follows putting
U= w.

The embedding will look as follows. Let (.S;);<, be pairwise disjoint stationary

subsets of
lim S = {a € S} | a is a limit of ordinals in S}}}. (%)
Denote
K(A)=F U S, (xx)
acA

We intend that A — K(A) is the embedding. If X; C X, C &, then Ex, <p Fx,,
because f(n) =n N X; is a reduction. This guarantees that

Al C AQ — K(Al) <B K(AQ)

Now suppose that for all & < x we have killed (by forcing) all reductions from
K(a) = Es, to K(k\ a) = B, s, for all a« < k. Then if K(A;) <p K(A) it
follows that A; C Ag: Otherwise choose a € A; \ Az and we have:

K(a) <p K(A1) <p K(A2) <p K(k\ @),
contradiction. So we have:
A C Ay = K(A) <p K(Ay)

and therefore K is the desired embedding.
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Suppose that f: Ex <p Fy is a Borel reduction. Then g: 2* — 2% defined by
g(n) = f(n) A £(0) is a Borel function with the following property:

nN X is stationary <= g¢g(n) NY is stationary.

The function g is Borel, so by Lemma 33 there are dense open sets D; for i < k

such that g [ D is continuous where D = (1._, D;. Note that D; are open so for

1<K
each i we can write D; = J;_, Ny, 5, where (p(i,j));<s is a suitable collection
of elements of 2<%,

Next define Q,: 2<% x 2<% — {0,1} by Q,(p,q) =1 < N,ND C g *[N,]
and Ry: k X k — 2<% by Ry(i,j) = p(i, j) where p(i, j) are as above.

For any Q: 2<% x 2<% — {0, 1} define Q*: 2* — 2" by

g, st Va<kdB <rQn]B,&]a)=1if such exists,

0, otherwise.

Q" (n) =

And for any R: k X kK — 2<% define

= (U N
1<K j<K
Now clearly R} = D and Q; [ D = g[ D, i.e. (Q,D) codes gD in this sense.
Thus we have shown that if there is a reduction Exy <p Ey, then there is a pair
(@, R) which satisfies the following conditions:
(1) Q: (2%)®2 — {0,1} is a function.
2) Q(z,2) =1
(3) If Q(p,q) =1 and p’ > p, then Q(p',q) = 1.
(4) If Q(p,q) = 1 and ¢’ < ¢, then Q(p,¢’) = 1.
(5) Suppose Q(p,q) = 1 and @ > domgq. There exist ¢ > ¢ and p’ > p such
that dom¢ = o and Q(p/,¢') = 1.
(6) If Q(p,q) = Qp,¢') =1, then ¢ < ¢ or ¢’ < ¢.
(7) R: k X k — 2" is a function.
(8) For each i € r the set |J;_, Nr(i ) is dense.
(9) For all n € R*, nN X is stationary if and only if Q*(nN X)NY is stationary.
Let us call a pair (@, R) which satisfies (1)-(9) a code for a reduction (from
Ex to Ey). Note that it is not the same as the Borel code for the graph of a

reduction function as a set. Thus we have shown that if Fxy < FEy, then there
exists a code for a reduction from Ex to Fy. We will now prove the following
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lemma which is stated in a general enough form so we can use it also in the next

section:

54. Lemma (GCH). Suppose py and po are regular cardinals less than k such
that if kK = AT, then puy < cf(N\), and suppose X is a stationary subset of S Y
is a subset of S, X NY = @ (relevant if p1 = pz) and if g1 < pp then an X
is not stationary in « for all « € Y. Suppose that (Q, R) is an arbitrary pair.
Denote by ¢ the statement “(Q, R) is not a code for a reduction from Ex to Ey”.

Then there is a kT -c.c. < k-closed forcing R such that R I .

Remark. Clearly if p; = ps = w, then the condition uy < cf(\) is of course true.
We need this assumption in order to have v<#2 < g for all v < k.

Proof of Lemma 54. We will show that one of the following holds:

(1) ¢ already holds, i.e. {@} IF ¢,
2)P=2={p:a—2|a<k}lFyp,
3) RIF ¢,

where

R={(p,q) | p,ge2%a <k, XNpNqg=a,qis p-closed}.

4

Above “q is py-closed” means “¢~'{1} is ui-closed” etc., and we will use this
abbreviation below. Assuming that (1) and (2) do not hold, we will show that
(3) holds.

Since (2) does not hold, there is a p € P which forces =y and so P, = {¢ € P |
q > p}IF—p. But P, 2 P, so in fact P I —¢, because ¢ has only standard names
as parameters (names for elements in V', such as @, R, X and Y)). Let G be any
P-generic and let us denote the set G'{1} also by G. Let us show that GN X is
stationary. Suppose that C'is a name and r € P is a condition which forces that C'
is cub. For an arbitrary go, let us find a ¢ > ¢o which forces CNGNX # &. Make
a counter assumption: no such ¢ > ¢y exists. Let ¢ > g9 and a; > dom gy be
such that ¢; IF &, € C, dom ¢ > a is a successor and ¢; (maxdomg;) = 1. Then
by induction on 7 < k let ¢;41 and a;y; > domg; be such that ¢;1q IF &;11 € C',
dom g; 1 > ;41 is a successor and ¢;41(maxdom g;;1) = 1. If j is a limit ordinal,
let ¢; = U,; ¢ U{(sup,; domg;, 1)} and a; = sup,; ;. We claim that for some
1 < K, the condition ¢; is as needed, i.e.

glFGNXNC+w.
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Clearly for limit ordinals j, we have o; = maxdomg; and g;(a;) = 1 and {¢; |
J limit} is cub. Since X is stationary, there exists a limit j, such that oy, € X.
Because ¢ forces that C' is cub, ¢ > ¢ > q forali <j, ¢l-o € C and
o = sup;; a;, we have ¢; IF o € C' N X. On the other hand gi(ej) =1, s0
¢; IF oj € G so we finish.

So now we have in V[G] that GNX is stationary, G € R* (since R* is co-meager)
and @ is a code for a reduction, so Q* has the property (9) and Q*(GNX)NY
is stationary. Denote Z = Q*(GNX)NY. We will now construct a forcing Q in
V[G] such that

VIG] E (QIF “G N X is not stationary, but Z is stationary”).

Then V[G] = (Q IF ¢) and hence P+ Q I . On the other hand Q will be chosen

such that P« Q and R give the same generic extensions. So let
Q={¢:a—2|XNGNqg=9,qis puy — closed}, (% % %)

Clearly Q kills the stationarity of G N X. Let us show that it preserves the
stationarity of Z. For that purpose it is sufficient to show that for any nice
Q-name C for a subset of k and any p € Q, if p IF “Cis fto-cub”  then
plH(CNZ+5).

So suppose C' is a nice name for a subset of x and p € Q is such that

plF “C is cub”.
Let A > k be a sufficiently large regular cardinal and let N be an elementary

submodel of (H()), p, C,Q, ) which has the following properties:

N| = He,
« N2 C N,
« a =sup(N Nk) € Z (This is possible because Z is stationary).

Here we use the hypothesis that ps is at most ¢f(A) when k = A™. Now by the
assumption of the theorem, o\ X contains a pu-closed unbounded sequence of
length pa, (;)icpy- Let (D;)ic,, list all the dense subsets of QY in N. Let gy > p,
g0 € QY be arbitrary and suppose ¢; € QY is defined for all i < v. If y = 3+ 1,
then define ¢, to be an extension of gz such that ¢, € Dg and domgq, = «; for
some «; > domgg. To do that, for instance, choose o; > domgg and define
¢ D gp by dom¢ = o, q(6) = 0 for all § € dom¢'\ dom gz and then extend

¢ to gz in Dg. If 7y is a limit ordinal with cf(y) # w4, then let ¢, = | If
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cf () = p, let
¢y = ( U qi)“(sup domg;, 1).
1<y =<

Since N is closed under taking sequences of length less than ps, ¢, € N. Since
we required elements of QQ to be p;-closed but not v-closed if cf(y) # 1, ¢, € Q
when cf(7) # 1. When cf(vy) = p1, the limit sup;_. dom ¢; coincides with a limit
of a subsequence of (o)<, of length 1y, i.e. the limit is ag for some [ since this
sequence is py-closed. So by definition sup,_., domg; ¢ X and again ¢, € Q.

Theng=U,.,¢,isa QN-generic over N. Since XNY = @, also (XNG)NZ =
@and o ¢ X NG. Hence ¢~ (a, 1) is in Q. We claim that ¢ IF (C'N Z # ©).

Because p IF “C is unbounded”, also N |= (p IF “C is unbounded”) by el-
ementarity. Assuming that A is chosen large enough, we may conclude that
for all QV-generic g over N, Nlg] = “C, is unbounded”, thus in particular
Nlg] E “C, is unbounded in . Let G; be Q-generic over V[G] with ¢ € G.
Then Cg, D C’q which is unbounded in « by the above, since sup(k N N) = a.
Because C"Gl is po-cub, « is in C‘Gl.

Thus P x Q IF . It follows straightforwardly from the definition of iterated
forcing that R is isomorphic to a dense suborder of P*Q where Q is a P-name for
a partial order such that Qg equals Q as defined in (% * ) for any P-generic G.

Now it remains to show that R has the x™-c.c. and is < k-closed. Since R is a
suborder of P x [P, which has size r, it trivially has the x™-c.c. Suppose (p;, ¢;)i<~
is an increasing sequence, v < k. Then the pair

(p.q) = <<Upi)“<a,0>> (U qi)“<a7 1>>

1<y
is an upper bound. O Lemma 54

Remark. Note that the forcing used in the previous proof is equivalent to k-Cohen

forcing.

55. Corollary (GCH). Let K: A E__, s, be as in the beginning of the proof.
For each pair (Q, R) and each « there is a < k-closed, k¥ -c.c. forcing R(Q, R, &)
such that

R(Q, R,a) IF “(Q, R) is not a code for a reduction from K({a}) to K(k\{a})”
Proof. By the above lemma one of the choices R = {@}, R = 2<" or

R=1{(p,q) |p,qge2®,B<r SeNpnq=a,qis p-closed}
suffices. O



GENERALIZED DESCRIPTIVE SET THEORY AND CLASSIFICATION THEORY 55

Start with a model satisfying GCH. Let h: kT — k™ x k X kT be a bijection
such that hs(a) < « for @ > 0 and h3(0) = 0. Let Py = {@}. For each a < &,
let {o3a0 | B < Kk} be the list of all Py-names for codes for a reduction from
K({a}) to K(x\ {a}). Suppose P; and {04 | 5 < KT} are defined for all i < v
and a < k, where v < k™ is a successor v = 3 + 1, P; is < k-closed and has the
kT-c.c.

Consider oy,(g). By the above corollary, the following holds:

Ps - [3R € P(2°° x 2°")(R is < k-closed, k*-c.c. p.o. and
R I “oy5) is not a code for a reduction.”)]

So there is a Pg-name pg such that Pg forces that pg is as R above. Define

Py ={(pi)i<y | ((p)i<s € Pg) A ((pi)icp I ps € pp)}-
And if p = (p;)icy € Py and p’ = (p)i<y € P, then

p<p, P = [(Di)icp <py (0))ics] N (0D)ics IF (P8 <ps P5)]-

If v is a limit, v < kT, let

Py = {(pi)icy | VB(B < v — (pi)i<p € Pg) A (| sprt(pi)icy| < &)},

where sprt means support, see Section 2.1.2 on page 5. For every «, let {034 |
B < KT} list all Pg-names for codes for a reduction. It is easily seen that P, is
< k~closed and has the k*-c.c. for all v < k™.

We claim that P+ forces that for all o, K({a}) €5 K(r \ {a}) which suffices
by the discussion in the beginning of the proof, see (xx) for the notation.

Let G be P, +-generic and let G, = “G NP,” for every v < x. Then G, is
IP,-generic.

Suppose that in V[G], f: 2" — 2" is a reduction K ({a}) <p K(x\ {a}) and
(@, R) is the corresponding code for a reduction. By [19] Theorem VIII.5.14,
there is a § < kT such that (Q, R) € V[Gs]. Let dy be the smallest such 4.

Now there exists 0.44,, a Ps,-name for (@), R). By the definition of h, there
exists a d > dg with h(d) = (v, @, dy). Thus

Psi1 IF “0446, is not a code for a reduction”,

i.e. V[Gs11) = (@, R) is not a code for a reduction. Now one of the items (1)—(9)
fails for (@, R) in V[Gsy1]. We want to show that then one of them fails in V[G].
The conditions (1)—(8) are absolute, so if one of them fails in V[Gs4], then we
are done. Suppose (1)—(8) hold but (9) fails. Then there is an n € R* such that
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Q*(n N S{ay) N Sk\a is stationary but n N Sgay is not or vice versa. In V[Gsi4]
define
P = {(pi)icnt € Put | (pi)icss1 € Gosr}-

Then P! is < k-closed. Thus it does not kill stationarity of any set. So if
G’ is Psyi-generic over V[Gs 4], then in V[Gs1][G°FY], (Q, R) is not a code
for a reduction. Now it remains to show that V[G] = V[Gs;1][G°T!] for some
G°FL. In fact putting G°*! = G we get P*!-generic over V[G5s,1] and of course
V|[Gs41][G] = V[G] (since G5,y C G). U Theorem 53

Remark. The forcing constructed in the proof of Theorem 53 above, combined
with the forcing in the proof of item (4) of Theorem 49 gives that for k<% = k > w;
not successor of a singular cardinal, we have in a forcing extension that (P(k), C)
embeds into (£21,<p), i.e. the partial order of Al-equivalence relations under
Borel reducibility.

Open Problem. Can there be two equivalence relations, F; and Ey on 2", Kk > w
such that E; and Fy are Borel and incomparable, i.e. Fy €p Fs and Ey L F1?

4.4.2. Reducibility Between Different Cofinalities. Recall the notation defined in
Section 2.1. In this section we will prove the following two theorems:

56. Theorem. Suppose that k is a weakly compact cardinal and that V = L.
Then

(A) Esp <¢ Ereg(s) for any regular A <k, where reg(r) = {A < k| A is regular},
(B) In a forcing extension Ege <. Ege. Similarly for A, At and AT instead of

w, wy and wy for any reqular \ < k.

57. Theorem. For a cardinal k which is a successor of a reqular cardinal or
k inaccessible, there is a cofinality-preserving forcing extension in which for all

reqular A < K, the relations Eg; are <p-incomparable with each other.

Let us begin by proving the latter.

Proof of Theorem 57. Let us show that there is a forcing extension of L in
which Ege: and Ege. are incomparable. The general case is similar.

We shall use Lemma 54 with p; = w and pus = w; and vice versa, and then a
similar iteration as in the end of the proof of Theorem 53. First we force, like in
the proof of Theorem 49 (4), a stationary set S C S22 such that for all a € S22,

a NS is non-stationary in a. Also for all v € 552, a M S22 is non-stationary.
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By Lemma 54, for each code for a reduction from Eg to ESS% there is a <
wy-closed ws-c.c. forcing which kills it. Similarly for each code for a reduction
from Esfjf to Egw2. Making an ws-long iteration, similarly as in the end of the
proof of Theorem 53, we can Kkill all codes for reductions from Eg to Esfjf and
from ES:)J%; to Egw2. Thus, in the extension there are no reductions from Esﬁjf to
Ege2 and no reductions from Eges to Eges. (Suppose there is one of a latter kind,
f:2¥2 — 2«2 Then g(n) = f(nNS) is a reduction from Fg to ESZ?% .) O Theorem 57

58. Definition. Let X,Y be subsets of x and suppose Y consists of ordinals of
uncountable cofinality. We say that X o-reflects to Y if there exists a sequence
(Dy)aey such that

(1) D, C « is stationary in «,

(2) if Z C X is stationary, then {« € Y | D, = Z N a} is stationary.

59. Theorem. If X o-reflects to Y, then Ex <. Ey.
Proof. Let (Dg)acy be the sequence of Definition 58. For a set A C k define
f(A) ={a e Y|AN X N D, is stationary in a}. (1)

We claim that f is a continuous reduction. Clearly f is continuous. Assume that
(AA B)N X is non-stationary. Then there is a cub set C' C k \ [(AA B) N X].
Now ANXNC = BNXNC (ii). Theset C' = {a < k | CNa is unbounded in a}
is also cub and if « € Y N C’, we have that D, N C' is stationary in «. Therefore
for a« € Y N C" (iii) we have the following equivalences:

a€ f(A) <= ANXn D, is stationary

EoAnxnon D, is stationary

& BNnXnNnddnND, is stationary

g BNXnND, is stationary

PIUN a € f(B)

Thus (f(A)A f(B))NY C k\ C’" and is non-stationary.
Suppose A A B is stationary. Then either A\ B or B\ A is stationary. Without
loss of generality suppose the former. Then

S={acY |(A\B)NXNa=D,}



58 SY-DAVID FRIEDMAN, TAPANI HYTTINEN, AND VADIM KULIKOV

is stationary by the definition of the sequence (D, )qecy. Thus for a € S we have
that ANXND,=ANXN(A\B)NXNa=(A\B)NXNa is stationary
inaand BNXND,=BNXN(A\B)NXNa=d is not stationary in a.
Therefore (f(A) A f(B))NY is stationary (as it contains 5). O

Fact (ITi-reflection). Assume that r is weakly compact. If R is any binary predi-
cate on V. and VAyp is some I} -sentence where ¢ is a first-order sentence in the
language of set theory together with predicates {R, A} such that (V,, R) = VA,
then there exists stationary many o < k such that (V,, RN'V,) E VAp.

We say that X strongly reflects to Y if for all stationary Z C X there exist
stationary many « € Y with X N « stationary in a.

60. Theorem. Suppose V' = L, k is weakly compact and that X C k and Y C
reg k. If X strongly reflects to Y, then X o-reflects to Y .

Proof. Define D, by induction on o € Y. For the purpose of the proof also define
C, for each « as follows. Suppose (Dg, Cp) is defined for all 5 < a. Let (D, C)
be the L-least! pair such that

(1) C is cub subset of a.

(2) D is a stationary subset of X N«

3) forall Be Y NC, DNG# Dg
If there is no such pair then set D = C' = @. Then let D, = D and C, = C.
We claim that the sequence (D,)qcy is as needed. To show this, let us make a
counter assumption: there is a stationary subset Z of X and a cub subset C' of
k such that

CnY c{a€Y |D,+#ZNa}. (%)

Let (Z,C) be the L-least such pair. Let A > k be regular and let M be an
elementary submodel of L, such that

(1) [M] < &,

(2) a=MnrkeYNnC,

(3) Z N« is stationary in «,

4) {Z,C, X, Yk} C M

(2) and (3) are possible by the definition of strong reflection. Let M be the
Mostowski collapse of M and let G: M — M be the Mostowski isomorphism.
Then M = L, for some v > «. Since Kk N M = «, we have

!The least in the canonical definable ordering on L, see [19].
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GZ)=ZNa,GC)=Cna,GX)=XNa, GY)=YNaand G(k) = a,
(xx).

Note that by the definability of the canonical ordering of L, the sequence
(Dg)p<r is definable. Let ¢(z,y, «) be the formula which says

“(x,y) is the L-least pair such that z is contained in X N, x is stationary in a,
yiscubinaandxNB# Dgforall feynY Na”.

By the assumption,
LE ¢(Z,C.r), s0 M o(Z,C.x) and L, = o(G(Z), G(C), G(x)).

Let us show that this implies L = ¢(G(Z),G(C),G(k)), i.e. L = o(ZNa,CN
a,«). This will be a contradiction because then D, = Z N a which contradicts
the assumptions (2) and (%) above.

By the relative absoluteness of being the L-least, the relativised formula with

parameters ¢ (G(Z),G(C), G(k)) says

“(G(Z),G(C)) is the L-least pair such that G(Z) is contained in G(X), G(Z) is
(stationary)™ in G(k), G(C) is cub in G(k) and G(Z) N 3 # Dé” for all
BeGC)NGY)NG(K).

Written out this is equivalent to

“(ZNa,CNa)is the L-least pair such that Z N« is contained in X N, Z N«
is (stationary)® in a, CNa is cub in a and Z N3 # Dg” forall e CNY Na”.

Note that this is true in L. Since Z N « is stationary in « also in L by (3), it
remains to show by induction on 3 € aNY that ZNa Dg” = Df and C’g” = Cf
and we are done. Suppose we have proved this for 6 € fNY and g € anY.
Then (D3, C5") is

(a) (the least L-pair)® such that

(b) (Cp is a cub subset of 8)5,

(c) (Dg is a stationary subset of 5)%

(d) and for all § € Y N3, (DgN§ # Ds)™.

(e) Or there is no such pair and Dg = @.

The L-order is absolute as explained above, so (a) is equivalent to (the least
L-pair)”. Being a cub subset of « is also absolute for L. so (b) is equivalent to
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(Cjs is a cub subset of a)®. All subsets of § in L are elements of Ljg+ (see [19]),
and since « is regular and § < a < vy, we have P(5) C L,. Thus

(Dg is stationary subset of 3)*7 <= (Dj is stationary subset of 3)*.

Finally the statement of (d), (DsN§ # Ds)" is equivalent to Dy NG # D5L” as it
is defining Dg, but by the induction hypothesis D(SL” = D}, so we are done. For
(e), the fact that

P(B) C Lig+ C Lo C Ly,
as above implies that if there is no such pair in L., then there is no such pair

in L. [l

Proof of Theorem 56. In the case (A) we will show that S§ strongly reflects to
reg(x) in L which suffices by Theorems 59 and 60. For (B) we will assume that «
is a weakly compact cardinal in L and then collapse it to wy to get a ¢-sequence
which witnesses that S22 o-reflects to S%? which is sufficient by Theorem 59. In

the following we assume: V = L and k is weakly compact.

(A): Let us use IT}-reflection. Let X C S§. We want to show that the set
{A €reg(r) | X N\ is stationary in A}
is stationary. Let C' C k be cub. The sentence
“(X is stationary in k) A (C'is cub in k) A (k is regular)”

is a IT}-property of (V,, X, C). By IIj-reflection we get § < x such that (Vz, X N
5, C'N ) satisfies it. But then ¢ is regular, X N¢ is stationary and § belongs to C'.

(B): Let k be weakly compact and let us Levy-collapse k to ws with the following
forcing:

P = {f: vegn — £ | ran(f(u) C i, [{p | F() £ 2] < )
Order P by f < ¢ if and only if f(u) C g(p) for all u € reg(x). For all p put
P,={feP|sprtf Cp}and P*={f e P|sprtf C x\ p}, where sprt means
support, see Section 2.1.2 on page 5.
Claim 1. For all regular p, w < pu < &, P, satisfies the following:

(a) If 4 > wy, then P, has the p-c.c.,
(b) P, and P* are < w;-closed,
(€) P=P, I w, = &,
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(d) If p < K, then P IF cf (1) = wy,
(e) if p € P, 0 a name and p I- “o is cub in wy”, then there is cub £ C k such
that p I E C o.

Proof. Standard (see for instance [15]). O

We want to show that in the generic extension Sg? o-reflects to Sg2. It is
sufficient to show that Sg? o-reflects to some stationary Y C S22 by letting
D,=aforag¢Y. InourcaseY = {u € V[G] | (n € reg(x))"}. By (d) of Claim
1, Y C 52, (reg(x))Y is stationary in V (for instance by IIj-reflection) and by
(e) it remains stationary in V[G].

It is easy to see that P = P, x P*. Let G be a P-generic over (the ground
model) V. Define

G,=GNP,.
and
G' =G NP
Then G, is P,-generic over V.
Also G* is P#-generic over V|G| and V[G] = V[G,][G"].
Let
E={pcP|(p>q) Ap,lFp"€D)}
Then E is dense above ¢: If p > ¢ is arbitrary element of P, then ¢ IF Jp’ >
P(p' € D) by (#). Thus there exists ¢ >q with ¢’ >p,, ¢ € P, and p’ > p,p’ € P*
such that ¢/ IF p’' € D and so (¢' [ ) U (p'| (k\ p)) is above p and in E. So there
is p € GNE. But then p, € G, and p* € G* and p, I p* e D,soG'ND + @.
Since D was arbitrary, this shows that G* is P*-generic over V[G,]. Clearly V|[G]
contains both G, and G*. On the other hand, G = G, U G*, so G € V[G,][G"].
By minimality of forcing extensions, we get V[G]| = V[G,][G"].
For each p € reg(k) \ {w,w;} let

k,: p= — {0 | o is a nice P, name for a subset of u}
be a bijection. A nice P, name for a subset of i is of the form

J{{a} x Aa | e € B,

where B C fi and for each o € B, A, is an antichain in IP,. By (a) there are no
antichains of length p in P, and |P,| = p, so there are at most ;~* = 1 antichains
and there are it subsets B C p, so there indeed exists such a bijection &, (these
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cardinality facts hold because V' = L and p is regular). Note that if o is a nice
P,-name for a subset of i, then o C V,.
Let us define

[ku ([(UG)(M+)](0)>} . if it is stationary

L otherwise.

D,=

Now D, is defined for all 4 € Y, recall Y = {u € V[G] | (1 € regr)"}. We
claim that (D,),cy is the needed ¢-sequence. Suppose it is not. Then there is a
stationary set S C S“? and a cub C' C wy such that for all « € CNY, D, # SNa.
By (e) there is a cub set Cy C C' such that Cy € V. Let S be a nice name for S
and p’ such that p’ forces that S is stationary. Let us show that

H={q>p |qlFD,=Sn for some u € Cy}

is dense above p’ which is obviously a contradiction. For that purpose let p > p’ be
arbitrary and let us show that there is ¢ > p in H. Let us now use IT}-reflection.
First let us redefine P. Let P* = {q | 3r € P(r [sprtr = ¢)}. Clearly P* = P
but the advantage is that P* C V,; and P;, = P* NV}, where P}, is defined as P,.
One easily verifies that all the above things (concerning P,, P* etc.) translate
between P and P*. From now on denote P* by P. Let

R=(Px {0})U (S x {1}) U (Cox {2}) U ({p} x {3}).

Then (Vi,R) = VAp, where ¢ says: “(if A is closed unbounded and r > p
arbitrary, then there exist ¢ > r and « such that @« € A and ¢ IFp & € S’).” So
basically VA says “p I+ (S is stationary)”. It follows from (e) that it is enough
to quantify over cub sets in V. Let us explain why such a formula can be written
for (Vi, R). The sets (classes from the viewpoint of V) P, S and Cy are coded
into R, so we can use them as parameters. That r > p and ¢ > r and A is closed
and unbounded is expressible in first-order as well as & € A. How do we express
g IFp & € S? The definition of & is recursive in o

a={(0,1¢) | B < a}

and is absolute for V.. Then ¢ IFp & € S is equivalent to saying that for each
¢ > q there exists ¢’ > ¢ with (&,¢") € S and this is expressible in first-order
(as we have taken R as a parameter).
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By IIj-reflection there is u € Cj such that p € P, and (V,,, R) = VAp. Note
that we may require that  is regular, i.e. (jic € V)V and such that « € SN p
implies (&, p) € S for some p € P,. Let Su =S5nN V.

Thus p IFp, “Su is stationary”. Define ¢ as follows: dom ¢ = dompU {u*}, ¢
p=plpand q(pt) = f, dom f = {0} and f(0) = k;'(S,). Then ¢qlFp S, = D,
provided that ¢ IFp “S), is stationary”. The latter holds since P* is < w;-closed,

and does not kill stationarity of (S,)g, so (SM)GH is stationary in V|[G] and by
the assumption on , (S#)G# = (S,)¢- Finally, it remains to show that in V]G],
(S,)e = SN . But this again follows from the definition of .

Instead of collapsing x to ws, we could do the same for AT+ for any regular

A < k and obtain a model in which ES,\++ <. ES”*‘ O
A AT

Open Problem. Is it consistent that S%? Borel reduces to 527

4.4.3. Ey and Eg;. In the Section 4.4.2 above, Theorem 57, we showed that the
equivalence relations of the form Eg; can form an antichain with respect to <g.
We will show that under mild set theoretical assumptions, all of them are strictly
above

Ey={(n,&) | {1} A ¢ {1} is bounded}.

61. Theorem. Let k be reqular and S C k stationary and suppose that . (S)
holds (i.e., { holds on the stationary set S). Then Ey is Borel reducible to Es.

Proof. The proof uses similar ideas than the proof of Theorem 59. Suppose that
the $(S5) holds and let (Dy)aes be the &, (S)-sequence. Define the reduction
f:2% — 2" by

f(X)={aeS| D, and X N« agree on a final segment of a}.

If X,Y are Ey-equivalent, then f(X), f(Y) are Fg-equivalent, because they are
in fact even Fy-equivalent as is easy to check. If X, Y are not Ey-equivalent, then
there is a club C' of a where X, Y differ cofinally in «; it follows that f(X),
f(Y) differ on a stationary subset of S, namely the elements o of C'N S where
D, equals X N a. O

62. Corollary. Suppose k = \* = 2*. Then Ey is Borel reducible to Eg where
S C K\ S is stationary.

Proof. Gregory proved in [3] that if 2 = ut = k, p is regular and A < p, then
O r(S5) holds. Shelah extended this result in [29] and proved that if x = AT = 2*
and S C £\ Sfy), then $,(S) holds. Now apply Theorem 61. O



64 SY-DAVID FRIEDMAN, TAPANI HYTTINEN, AND VADIM KULIKOV

63. Corollary (GCH). Let us assume that K is a successor cardinal. Then in a
cofinality and GCH preserving forcing extension, there is an embedding

f: (P(r).C) — (€, <p),

where E¥1 is the set of Yl-equivalence relations (see Theorem 53) such that for
all A € P(k), Ey is strictly below f(A). If k is not the successor of an w-cofinal

cardinal, we may replace X1 above by Borel*.

Proof. Suppose first that x is not the successor of an w-cofinal cardinal. By
Theorem 53 there is a GCH and cofinality-preserving forcing extension such that

there is an embedding
f: <P(I€>’ C> - <8B0rel*7 <B>

From the proof of Theorem 53 one sees that f(A) is of the form Eg where S C S”.
Now Ej is reducible to such relations by Corollary 62, as GCH continues to hold
in the extension.

So it suffices to show that Eg £p E, for stationary S C S. By the same
argument as in Corollary 50, Eg is not Borel and by Theorem 34 E, is Borel, so
by Fact 6 Egy 1s not reducible to Ej.

Suppose k is the successor of an w-cofinal ordinal and x > w;. Then, in the
proof of Theorem 53 replace p by w; and get the same result as above but for
relations of the form Eg where S C Sf .

The remaining case is k = w;. Let {S, | @ < w;} be a set of pairwise disjoint
stationary subsets of w;. Let P be the forcing given by the proof of Theorem 53
such that in the P-generic extension the function f: (P(w;), C) — (EB <p)
given by f(A) = E__, s, is an embedding. This forcing preserves stationary sets,
so as in the proof of clause (4) of Theorem 49, we can first force a {-sequence
which guesses each subset of | J,_,, S on a set S such that SN S, is stationary
for all a. Then by Corollary 62 Fj is reducible to Fj _, s, for all A C . 0

5. COMPLEXITY OF ISOMORPHISM RELATIONS

Let T be a countable complete theory. Let us turn to the question discussed
in Section 1: “How is the set theoretic complexity of = related to the stability
theoretic properties of T7”. The following theorems give some answers. As
pointed out in Section 1, the assumption that x is uncountable is crucial in the
following theorems. For instance the theory of dense linear orderings without
end points is unstable, but =7 is an open set in case k = w, while we show
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below that for unstable theories T the set =7 cannot be even A] when k > w.
Another example introduced by Martin Koerwien in his Ph.D. thesis and in [18]
shows that there are classifiable shallow theories whose isomorphism is not Borel
when k = w, although we prove below that the isomorphism of such theories is
always Borel, when x > w. This justifies in particular the motivation for studying
the space k" for model theoretic purposes: the set theoretic complexity of =,
positively correlates with the model theoretic complexity of T'.

The following stability theoretical notions will be used: stable, superstable,
DOP, OTOP, shallow, A(T') and x(T"). Classifiable means superstable with no
DOP nor OTOP and A\(T) is the least cardinal in which T is stable.

The main theme in this section is exposed in the following two theorems:

64. Theorem (k<" = k). Assume that k is not weakly inaccessible. A theory T
18 classifiable and shallow if and only if its isomorphism relation on structures of

size Kk is Borel.

65. Theorem (k<" = k). Assume that for all A < k, X < k and k > w;. Then
in L and in the forcing extension after adding k™ Cohen subsets of k we have:
for any theory T, T is classifiable if and only if = is Af.

The two theorems above are proved in many subtheorems below. Our results
are stronger than those given by 64 and 65 (for instance the cardinality assump-
tion k > w; is needed only in the case where T is superstable with DOP and the
stable unsuperstable case is the only one for which Theorem 65 cannot be proved
in ZFC). Theorem 64 follows from Theorems 69, 70. Theorem 65 follows from
Theorems 71, 72, 73 and items (2) and (3) of Theorem 49.

5.1. Preliminary Results. The following Theorems 66 and 68 will serve as
bridges between the set theoretic complexity and the model theoretic complexity

of an isomorphism relation.

66. Theorem (k<" = k). For a theory T, the set = is Borel if and only if the
following holds: there exists a kT w-tree t such that for all models A and B of T,
A>B < 11 EF; (A B).

Proof. Recall that we assume dom A = k for all models in the discourse. First
suppose that there exists a x*w-tree t such that for all models A and B of T,
A= B < T 1 EF;(A,B). Let us show that there exists a k*w-tree u which
constitutes a Borel code for =7 (see Remark 16 on page 15).
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Let u be the tree of sequences of the form

<(p07A0)7 f07 (p17A1)7f17 sy (pnvAn)a fn>

such that for all : < n
(1) (pi, A;) is a move of player Iin EF}, ie. p; € t and A; C k with |4;| < &,
(2) f; is a move of player I in EF}, ie. it is a partial function x — k with
| dom f;|, |ran f;| < k and A; C dom f; Nran f;

(3) {(po, Ao), fo, (1, A1), f1,- -y (Pn, An), fn) is a valid position of the game, i.e.
(pi)i<n is an initial segment of a branch in ¢t and A; C A; and f; C f;

whenever i < 7 < n.

Order u by end extension. The tree u is a k*w-tree (because ¢ is and by (3)).

Let us now define the function
h: {branches of u} — {basic open sets of (x*)?}.

Let b C u be a branch,

b =1, ((po, Ao)), (o, Ao); fo), - - -, {(Po; Ao); fo, - - s (Prs Ak), fr) }-

It corresponds to a unique EF-game between some two structures with domains
k. In this game the players have chosen some set A = Uigk A; C Kk and some
partial function fr = ;o fi: & — #. Let h(b) be the set of all pairs (1, §) € (x*)?
such that f.: A, [ A, = A [ A, is a partial isomorphism. This is clearly an open
set:

(7,€) € h(b) = Nui((sup a0)+1) X Nep(isup 4 +1) C (D).

Finally we claim that A, = A, <= II T G(u, h, (n,§)). Here G is the game
as in Definition 15 of Borel* sets, page 14 but played on the product " x k*.
Assume A, = A;. Then I T EF}(A,, A¢). Let v denote the winning strategy. In
the game G(u, h, (1n,€)), let us define a winning strategy for player Il as follows.
By definition, at a particular move, say n, I chooses a sequence

((po, Ao), fo, .- (Pn, An)).

Next II extends it according to v to

<(p07A0)7 f07 s (pnaAn)v fn>7

where f, = v((po, Ao), .- ., (Pn, An)). Since v was a winning strategy, it is clear
that f.. = (J,., fi is going to be a isomorphism between A, [ A, and A¢ | A,, so
(n,€) € h(b).
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Assume that A, 2 Ac. Then by the assumption there is no winning strategy
of I, so player I can play in such a way that f, =, <x Ji 1s not an isomorphism
between A, [UA; and A¢ [UA;, so (n,€) is not in h(b). This completes the proof
of the direction “<="

Let us prove “=". Suppose = is Borel and let us show that there is a tree
as in the statement of the theorem. We want to use Theorem 24 and formalize
the statement “=p is definable in L,+,” by considering the space consisting of
pairs of models.

Denote the vocabulary of A and B as usual by L. Let P be a unary relation
symbol not in L. We will now discuss two distinct vocabularies, L and LU{P} at
the same time, so we have to introduce two distinct codings. Fix an n € 2. Let
A, denote the L-structure as defined in Definition 12 of our usual coding. Let
p: KUKSY — K be a bijection and define A7 to be the model with dom A" = &
and if a € dom A", then A" = P(a) <= n(p(a)) =1 such that if (a1,...,a,) €
(dom AM™, then A" |= P,(ay,...,a,) < n(p(a,...,a,)) = 1. Note that we
are making a distinction here between x and £{°}.

Claim 1. The set W = {n € 2" | k = |PA"| = |x \ P*"|} is Borel.
Proof of Claim 1. Let us show that the complement is Borel. By symmetry it

is sufficient to show that

B={n|r>|P"}
is Borel. Let I C k be a subset of size < . For 3 ¢ I define U(I,/3) to be the
set

U(I,53) = {n | n(p(B)) = 0}.
Clearly U(I,3) is open for all I, 5. Now

B= J NUu.p).

Ie[s]<r B¢l
By the assumption k<" = k&, this is Borel (in fact a union of closed sets). [ cjaim 1
Define a mapping h: W — (2%)? as follows. Suppose £ € W. Let
T K — pA*

and
¢
ro: k — K\ PA

be the order preserving bijections (note PA" C x = dom A").
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Let m; be such that r; is an isomorphism
Ay, — (AN P L
and 7y such that ry is an isomorphism
Ay, = (AS\ PA)T L.
Clearly 1, and 7, are unique, so we can define h(§) = (n1,72).

Claim 2. h is continuous.

Proof of Claim 2. Let U = N, x N, be a basic open set of (25)% p,q € 2<% and
let € € h™![U]. Let PA* = {f; | i < x} be an enumeration such that 3; < 8; <=
i < j and similarly &\ PA° = {v; | i < k}. Let a = max{Biomp: Ydomq} + 1.
Then N¢j, C h7[U]. Thus arbitrary € in A~ *[U] have an open neighbourhood in
h~[U], so it is open. O Claim 2

Recall our assumption that E' = {(n,&) € 27 | A, = A¢} is Borel. Since h is
continuous and in particular Borel, this implies that

E'={n| Apm = A} =h'E

is Borel in W. Because W is itself Borel, E’ is Borel in 2*. Additionally, E’ is
closed under permutations: if A" is isomorphic to A%, then A"NPA” is isomorphic
to A¢ N PA* and A" \ PA" is isomorphic to A$ \ PA g0 if A7 € E’, then also
A¢ € E' (and note that since n € W, also ¢ € W). By Theorem 24, there is a
sentence 0 of L+, over LU{P} that defines E’. Thus by Theorem 9 and Remark
11 there is a kTw-tree ¢ such that

if € E' and ¢ ¢ E, then I Y EFF(A", A%). ©
We claim that ¢ is as needed, i.e. for all models A, B of T’
A= B < I TEF}(AB).

Suppose not. Then there are models A 2 B such that I T EF} (A, B). Let n and
¢ be such that Ap, () = Anoe) = Anie) = A and A,y = B. Clearly n € E,
but £ ¢ E', so by (© there is no winning strategy of I in EFf (A", A%) which is
clearly a contradiction, because II can apply her winning strategies in EF} (A, B)
and EFf(A, A) to win in EF; (A7, A%). U Theorem 66

We will use the following lemma from [22]:
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67. Lemma. Ift C (k<%)? is a tree and & € k", denote

t(€) ={p e r~"| (p,{Idomp) € t}.

Similarly if t € (k<F)3, then

t(n, &) ={p e x| (p,nldomp, ¢ domp) € t}.

Assume that Z is 1. Then Z is A} if and only if for every tree t C (k<)? such
that
t(§) has a k-branch <= (€ Z

there exists a k1 k-tree t' such that £ € Z <= t(§) £ t'. (Recall that t < t' when
there exists a strictly order preserving map t — t')

68. Theorem. Let T be a theory and assume that for every k™ k-tree t there exist
(n,€) € (25)* such that A, Ac ET, A, % A¢ but I1 1 EF}(A,, A¢). Then = is
not A}.

Proof. Let us abbreviate some statements:

A(t): t C (k<F)3 is a tree and for all (n,€) € (k*)2,
(n,€) €2y < t(n,£) contains a k-branch.
B(t,t'): t C (k<%)3 is a KT k-tree and for all (1, &) € k~,
(n,€) €=r <= t(n, &) £t

Now Lemma 67 implies that if 27 is A, then V¢[A(t) — 3t'B(t,t')]. We will show
that Jt[A(t) A VU'-B(t,t')], which by Lemma 67 suffices to prove the theorem.
Let us define ¢. In the following, v,, n, and &, stand respectively for v [a, n [«
and & [ a.

t = {(Va, N, &a) | @ < Kk and v codes an isomorphism between A, and A}

Using Theorem 13 it is easy to see that t satisfies A(t). Assume now that ¢’ is an
arbitrary x*k-tree. We will show that B(¢,¢") does not hold. For that purpose let
u = w X t’ be the tree defined by the set {(n,s) | n € w,s € t'} and the ordering

(ng,So) <u (nl, 81> 1 (80 <y $§1V (80 =351 Ang <y nl)) (1)

This tree u is still a kT k-tree, so by the assumption of the theorem there is a pair
(&1, &) such that Ag, and Ag, are non-isomorphic, but I T EF (A, , Ag,).
It is now sufficient to show that #(&;,&) £ t'.
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Claim 1. There is no order preserving function
ot —t,
where ot is defined in Definition 31.

Proof of Claim 1. Assume g: ot’ — ¢, is order preserving. Define zy = ¢g(2)

and
ro=g({yet | <aly<zy)}) for0<a<k

Then (x4)a<, contradicts the assumption that ¢’ is a k™ k-tree. O Claim 1

Claim 2. There is an order preserving function

at’ — (&1, &2)-

Proof of Claim 2. The idea is that players I and II play an EF-game for each
branch of the tree ¢' and II uses her winning strategy in EF[ (A, , Ag, )to embed
that branch into the tree of partial isomorphisms. A problem is that the winning
strategy gives arbitrary partial isomorphisms while we are interested in those
which are coded by functions defined on page 13. Now the tree u of (1) above
becomes useful.
Let o be a winning strategy of player II in EF} (A, Ag,). Let us define g:

ot’ — t(&1, &) recursively. Recall the function 7 from Definition 12 and define

C ={a|w[a~] =a}.

Clearly C'is cub. If s C ¢’ is an element of ot’, then we assume that ¢ is defined
for all s’ <,v s and that EF? is played up to (0,sups) € u. If s does not contain
its supremum, then put g(s) = J, ., g(s’). Otherwise let them continue playing
the game for w more moves; at the n'" of these moves player I picks (n,sup s)
from u and a § < k where [ is an element of C' above

max{ran f, 1,dom f, 1}

where f,_1 is the previous move by II. (If n = 0, it does not matter what I
does.) In that way the function f = (J,,,, fn is a partial isomorphism such that
dom f = ran f = « for some ordinal «. It is straightforward to check that such
an f is coded by some v,: o — k. It is an isomorphism between A N a and
Ag, Na and since « is in C, there are & and &, such that & [a C &, & [a C &)
and there is an isomorphism Ag = Ag coded by some v such that v, = v [a.
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Thus v, € t(&1, &) is suitable for setting g(s) = v,. O Glaim 2

|:|Theorem 68
5.2. Classifiable. Throughout this section x is a regular cardinal satisfying

<

K=Kk > w.

69. Theorem. If the theory T is classifiable and shallow, then =1 is Borel.

Proof. If T' is classifiable and shallow, then from [25] Theorem XIII.1.5 it follows
that the models of T are characterized by the game EF} up to isomorphism,
where ¢ is some ktw-tree (in fact a tree of descending sequences of an ordinal
a < k7). Hence by Theorem 66 the isomorphism relation of 7" is Borel. 0

70. Theorem. If the theory T is classifiable but not shallow, then =1 is not Borel.

If K is not weakly inaccessible and T is not classifiable, then =1 is not Borel.

Proof. If T' is classifiable but not shallow, then by [25] XIII.1.8, the Lo.,-Scott
heights of models of T' of size k are not bounded by any ordinal < k* (see
Definition 7 on page 11). Because any kTw-tree can be embedded into ¢, =
{decreasing sequences of a} for some « (see Fact 2.2.1 on page 7), this implies
that for any s w-tree t there exists a pair of models A, B such that A % B but
I 7 EF}(A,B). Theorem 66 now implies that the isomorphism relation is not
Borel.

If T is not classifiable k is not weakly inaccessible, then by [26] Theorem 0.2
(Main Conclusion), there are non-isomorphic models of T" of size x which are
Lo.-equivalent, so the same argument as above, using Theorem 66, gives that
&1 is not Borel. O

71. Theorem. If the theory T is classifiable, then = is Al
Proof. Shelah’s theorem [25] XIII.1.4 implies that if a theory T’ is classifiable, then

any two models that are L. .-equivalent are isomorphic. But L., equivalence is
equivalent to EF"-equivalence (see Theorem 10 on page 12). So in order to prove
the theorem it is sufficient to show that if for any two models A, B of the theory
T it holds that I T EF(A,B) <= A = B, then the isomorphism relation is
Al. The game EF” is a closed game of length w and so determined. Hence we

have I 1T EF/(A,B) <= A% B. By Theorem 6 the set
{(v,n,€) € (k) | v codes a winning strategy for I 1T EF*(A,, A¢))}

is closed and thus {(n,&) | A, # A¢} is X}, which further implies that =7 is A}
by Corollary 14. O
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5.3. Unclassifiable.

5.3.1. The Unstable, DOP and OTOP Cases. As before, k is a regular cardinal

satisfying k<" = k > w.

72. Theorem. (1) If T is unstable then =7 is not A},
(2) If T is stable with OTOP, then = is not Af.
(3) If T is superstable with DOP and k > wy, then =p is not Al.
(4) If T is stable with DOP and X = cf(\) = M(T) + AX<*D) > w; k > AT and
for all € < K, E* < K, then =g is not Al. (Note that k(T) € {w,w}.)

Proof. For a model A of size x of a theory T let us denote by E(.A) the following
property: for every x*k-tree t there is a model B of T of cardinality x such that
II 7 EF} (A, B) and A % B.

For (3) we need a result by Hyttinen and Tuuri, Theorem 6.2. from [14]:

Fact (Superstable with DOP). Let T be a superstable theory with DOP and
< = Kk > wy. Then there exists a model A of T of cardinality x with the
property E(A).

K

For (4) we will need a result by Hyttinen and Shelah from [13]:

Fact (Stable with DOP). Let T be a stable theory with DOP and A\ = cf(\) =
MT) + X > ), k5% = k > AT and for all € < kK, €* < k. Then there is a
model A of T' of power k with the property E(A).

For (1) a result by Hyttinen and Tuuri Theorem 4.9 from [14]:

Fact (Unstable). Let T' be an unstable theory. Then there exists a model A of T
of cardinality k with the property E(A).

And for (2) another result by Hyttinen and Tuuri, Theorem 6.6 in [14]:

Fact (Stable with OTOP). Suppose T is a stable theory with OTOP. Then there
exists a model A of T of cardinality x with the property E(A).

Now (1), (2) and (4) follow immediately from Theorem 68. O
5.3.2. Stable Unsuperstable. We assume k<" = k > w in all theorems below.

73. Theorem. Assume that for all A\ < k, \* < k.
(1) If T is stable unsuperstable, then = is not Borel.



GENERALIZED DESCRIPTIVE SET THEORY AND CLASSIFICATION THEORY 73

(2) If k is as above and T is stable unsuperstable, then = is not A} in the
forcing extension after adding k™ Cohen subsets of k, or if V = L.

Proof. By Theorem 87 on page 94 the relation Eg. can be reduced to =7. The
theorem follows now from Corollary 50 on page 49. U

On the other hand, stable unsuperstable theories sometimes behave nicely to

some extent:

74. Lemma. Assume that T is a theory and t a k*k-tree such that if A and B
are models of T, then A= B <= I 1 EF}(A,B). Then = of T is Borel*.

Proof. Similar to the proof of Theorem 66. O

75. Theorem. Assume k € I[k] and k = AT (“ck € I[k]” is known as the Ap-
proachability Property and follows from X~* = X). Then there exists an unsuper-

stable theory T whose isomorphism relation is Borel*.

Proof. In [11] and [12] Hyttinen and Shelah show the following (Theorem 1.1 of
[12], but the proof is essentially in [11]):
Suppose T' = ((w*, E;)i<w), where nE;¢ if and only if for all j < 4, n(j) = £(5).
If K € I[k], Kk = AT and A and B are models of T' of cardinality x, then
A= B < I1EF}, ., ,(A B), where 4+ and - denote the ordinal sum and

product, i.e. A\ -w + 2 is just an ordinal.

So taking the tree t to be A - w 4 2 the claim follows from Lemma 74. U

Open Problem. We proved that the isomorphism relation of a theory 7" is Borel
if and only if 7T is classifiable and shallow. Is there a connection between the
depth of a shallow theory and the Borel degree of its isomorphism relation? Is

one monotone in the other?

Open Problem. Can it be proved in ZFC that if T is stable unsuperstable then
7 is not A{?

6. REDUCTIONS

Recall that in Chapter 5 we obtained a provable characterization of theories
which are both classifiable and shallow in terms of the definability of their iso-
morphism relations. Without the shallowness condition we obtained only a con-
sistency result. In this chapter we improve this to a provable characterization by
analyzing isomorphism relations in terms of Borel reducibility.
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Recall the definition of a reduction, Section 2.1.4 and recall that if X C « be
a stationary subset, we denote by Ex the equivalence relation defined by

v, € € 2"(nExé <= (n {1} A¢ H{1}) N X is non-stationary),

and by SY we mean the ordinals of cofinality A that are less than .

The equivalence relations Fx are ¥} (AEx B if and only if there exists a cub
subset of K\ (X N (AA B))).

Simple conclusions can readily be made from the following observation that
roughly speaking, the set theoretic complexity of a relation does not decrease

under reductions:

Fact. If B is a Borel (or A}) equivalence relation and Ey is an equivalence
relation with Ey <p E\, then Ey is Borel (respectively A} if Ey is Al). O

The main theorem of this chapter is:

76. Theorem. Suppose k = A\t = 2% > 2% where \* = \. Let T be a first-order
theory. Then T is classifiable if and only if for all reqular p < k, Esr L5 =r.

6.1. Classifiable Theories. The following follows from [25] Theorem XIII.1.4.

77. Theorem ([25]). If a first-order theory T is classifiable and A and B are
non-isomorphic models of T of size K, then 17T EF’ (A, B). O

78. Theorem (k<% = k). If a first-order theory T is classifiable, then for all
A< K

Ess L5 =1 .
Proof. Let NS € {Egg | A € reg(x)}.
Suppose r: 2% — 2% is a Borel function such that

v, § € 2°(Avy ET N Ay ETANMNSE <= Ay = Arg)). (V)

By Lemma 33, let D be an intersection of k-many dense open sets such that
R = r | D is continuous. D can be coded into a function v: Kk X kK — K=" such
that D = ;. U;. No@ijy- Since R is continuous, it can also be coded into a

single function u: £<* x k<% — {0, 1} such that
R(n) =¢ <= (Ya <r)38 <r)ulnlpf,¢la) =1].
(For example define u(p,q) = 1if DN N, C R7![N,].) Let
e, & u,v) = (Yo < /)38 < K)[u(n!6,€1a) = YA(Vi < £)(Fj < K)[n € Nugj))-
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It is a formula of set theory with parameters u and v. It is easily seen that ¢ is
absolute for transitive elementary submodels M of H(x™) containing %, u and v
with (k<%)M = k<" Let P = 2<* be the Cohen forcing. Suppose M < H(x") is
a model as above, i.e. transitive, k,u,v € M and (k<%)™ = x<%. Note that then
PU{P} C M. Then, if G is P-generic over M, then UG € D and there is £ such
that ©(UG, &, u,v). By the definition of ¢ and wu, an initial segment of £ can be
read from an initial segment of UG. That is why there is a nice P-name 7 for a
function (see [19]) such that
o(UG, ¢, u,v)
whenever G is P-generic over M.
Now since the game EF” is determined on all structures, (at least) one of the
following holds:
(1) there is p such that p |- II T EF(A-, A,@5),
(2) there is p such that p IF I T EF}(A;, A.@))
where 0 is the constant function with value 0. Let us show that both of them
lead to a contradiction.
Assume (1). Fix a nice P-name o such that

p - “o is a winning strategy of I in EF(,(A,, A,@)”.

A strategy is a subset of ([k]<")<¥ x k<" (see Definition 5), and the forcing does

not add elements to that set, so the nice name can be chosen such that all names

in dom o are standard names for elements that are in ([k]<")<* x k<" € H(k™).
Let M be an elementary submodel of H(k") of size x such that

{u,v,0,7(0),7,P} U (k+1)UM<" C M.

Listing all dense subsets of P in M, it is easy to find a P-generic G over M which
contains p and such that (UG)~*{1} contains a cub. Now in V, UG NS 0. Since
©(UG, 7, u,v) holds, we have by (V):

Ao 2 Av)- (4)

Let us show that o is a winning strategy of player Il in EF[ (A, A,@) (in V)
which by Theorem 77 above is a contradiction with (7).

Let p be any strategy of player I in EF((A.,, A.(5) and let us show that og
beats it. Consider the play o * u and assume for a contradiction that it is a win
for I. This play is well defined, since the moves made by u are in the domain of
o¢ by the note after the definition of o, and because ([k]<*)<“ x k<* C M.
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The play consists of w moves and is a countable sequence in the set ([k]<*) x k<"
(see Definition of EF-games 5). Since P is < & closed, there is ¢y € P which
decides o¢ * p (i.e. oG, * p = 0, * p whenever ¢y € Gy N Gy). Assume that G’
is a P-generic over V' with ¢o € G'. Then

(000 1) = (o0 "1 = (06 4 )"

oG * U agg * U

(again, because P does not add elements of k<) and so

(o¢r * p is a win for T)VIET,

But ¢ IF “o % pu is a win for II”, because ¢q extends p and by the choice of o.
The case (2) is similar, just instead of choosing UG such that (UG)~*{1} con-

tains a cub, choose G such that (UG)~'{0} contains a cub. Then we should

have A, = A, which contradicts (2) by the same absoluteness argument as

above. O

6.2. Unstable and Superstable Theories. In this section we use Shelah’s
ideas on how to prove non-structure theorems using Ehrenfeucht-Mostowski mod-
els, see [26]. We use the definition of Ehrenfeucht-Mostowski models from [14],
Definition 4.2.

79. Definition. In the following discussion of linear orderings we use the following

concepts.

« Coinitiality or reverse cofinality of a linear order n, denoted cf*(n) is the small-
est ordinal « such that there is a map f: a — n which is strictly decreasing
and ran f has no (strict) lower bound in 7.

- If n = (n,<) is a linear ordering, by n* we denote its mirror image: n* =
(n,<*) where z <*y <= y <.

» Suppose A is a cardinal. We say that an ordering 7 is A-dense if for all subsets
A and B of n with the properties Ya € AVb € B(a < b) and |A| < A and
|B| < A there is € n such that a <« < b for all a € A, b € B. Dense means

w-dense.

80. Theorem. Suppose that k = A\t = 2* such that \** = X\ > w. IfT is unstable
or superstable with OTOP or DOP, then Egy <. =r.

Proof. Note that from the cardinal assumptions it follows that A > 2“ and
(A = A, We will carry out the proof for the case where T' is unstable
and shall make remarks on how certain steps of the proof should be modified
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in order this to work for superstable theories with DOP or OTOP. First for each
S C S%, let us construct the linear orders ®(.S) which will serve a fundamental

role in the construction. The following claim is Lemma 7.17 in [9]:

Claim 1. For each cardinal p of uncountable cofinality there exists a linear
ordering 7 = 7, which satisfies:

(1) n=n+n,
2) foralla< u,n=n-a+n,

(2)
(B)m=n-p+n-wi,
(4) n is dense,
(5) [nl =
©) () -
Proof of Claim 1. Exactly as in [9]. U Claim 1

For a set S C SY, define the linear order ®(5) as follows:
o(8) =) (i, 9),
<K
where 7(i,5) =nyif i ¢ S and 7(i, S) = 1) -wi, if i € S. Note that ®(5) is dense
and has size k. For a < < k define
®(S,0,8) = > 7(i,9).
ai<f

Then ®(S,a, #) has size < k. (These definitions are also found in [9] although
the idea dates back to J. Conway’s Ph.D. thesis from the 1960’s; they are first
referred to in [23]). From now on denote n = n,.

Claim 2. If « ¢ S, then for all # > « we have ®(S, o, 5+ 1) 2 nand if « € S,
then for all 5 > o we have ®(S,a, 5+ 1) = n - wi.

Proof of Claim 2. Let us begin by showing the first part, i.e. assume that o ¢ S.
This is also like in [9]. We prove the statement by induction on OTP(5 \ «). If
B = a, then ®(S, , «+ 1) = 1 by the definition of ®. If 5 =+ 1 is a successor,
then 3 ¢ S, because S contains only limit ordinals, so 7(3,.S) = n and

(S, , B+1) =0(S,a,7+1+1)=0(S,a,7y+1) +17

which by the induction hypothesis and by (1) is isomorphic to n. If 5 ¢ S is a
limit ordinal, then choose a continuous cofinal sequence s: cf(3) — [ such that
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s(y) ¢ S for all v < cf(3). This is possible since S contains only ordinals of
cofinality A. By the induction hypothesis ®(S, a, s(0) + 1) = 7,
(5, s(v) + Ls(y+ 1) +1) =1

for all successor ordinals v < cf(3),

D(S,s(7),s(y+1)+1)=n
for all limit ordinals v < cf(f) and so now

O(S,a,B+1)2n-cf(B) +n

which is isomorphic to n by (2). If 5 € S, then cf(5) = A and we can again
choose a cofinal sequence s: A — [ such that s(«) is not in S for all & < A. By
the induction hypothesis. as above,

O(S, o, 0+1)=n-A+7(8,5)
and since 3 € S we have 7(3,5) = n - w}, so we have
O(S,a,f+1)=n-A+n-w
which by (3) is isomorphic to 7.
Suppose o € S. Then a+ 1 ¢ S, so by the previous part we have
O(S,a,f4+1) Z71(a,S)+@(S,a+ 1,8+ 1) =n-wi+n=n-wi.
U Claim 2

This gives us a way to show that the isomorphism type of ®(S) depends only
on the Egr-equivalence class of S:

Claim 3. If 5,5 C S§{ and S A S’ is non-stationary, then ®(S5) = &(5").

Proof of Claim 3. Let C be a cub set outside S A S’. Enumerate it C' = {«; |
i < k} where (a;);<x is an increasing and continuous sequence. Now ®(S) =
Uicw @05, @i, 1) and ©(S") = |, P(S’, @i, iy1). Note that by the definitions
these are disjoint unions, so it is enough to show that for all ¢ < s the orders
O(S, oy, ;1) and (S, oy, 1) are isomorphic. But for all i < k a; € § <~
a; € S, so by Claim 2 either

‘I)(Sa Qy, Oéz‘+1) =n= cI>(S’, Q;, Oéz'+1)
(if a; ¢ ) or
O(S, iy i) = n-wi Z O ay, qiy1)

(lf o; € S) |:|Claim 3
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81. Definition. K} is the set of L-models A where L = {<, <, (P,)a<x, b}, with
the properties

- dom A C IS for some linear order 1.

s Vr,y e Alx <y <= xCy).

» Vo € A(P,(z) < length(x) = a).

Vr,y € Alr <y <= Jz € A((z,y € Succ(2)) NI Ez <y))].
+ h(zx,y) is the maximal common initial segment of x and y.

For each S, define the tree T(S) € K} by
T(S) = ®(S) U {n: A — &(9) | n increasing and
of (@(9) \ {z | By € rann)(x < y)}) = wi}.

The relations <, <, P, and h are interpreted in the natural way. From the
cardinality assumptions it follows that |T'(S)| = k.

Clearly an isomorphism between ®(.S) and ®(S’) induces an isomorphism be-
tween T'(S) and T'(S"), thus T'(S) =2 T'(S") if S A S’ is non-stationary.

Claim 4. Suppose 7' is unstable in the vocabulary v. Let 77 be T with
Skolem functions in the Skolemized vocabulary v; D v. Then there is a function
P(S5) — {A' | A' E Ty, |AY = k}, S — AY(S) which has following proper-
ties:

(a) There is a mapping T'(S) — (dom . A'(S))" for some n < w, N +— a,, such
that A'(S) is the Skolem hull of {a, | n € T(S)}, i.e. {a, | n € T(S)} is the
skeleton of A'(S). Denote the skeleton of A by Sk(A).

(b) A(S) = AY(S) lv is a model of T

(c) Sk(A'(S)) is indiscernible in A'(S), i.e. if 7, € T(S) and tp, . (7/2) =
tpyr(£/D), then tp(a;/@) = tp(ag/@) where az = (ay,, ..., ay..,)- This
assignment of types in A'(S) to q.f.-types in T'(S) is independent of S.

(d) There is a formula ¢ € L, (v) such that for all n,v € T(S) and o < A, if
T(S) = Pa(n) A Py(v), then T'(S) =n > v if and only if A(S) = ¢(a,, ay).

Proof of Claim 4. The following is known:
(F1) Suppose that T' is a complete unstable theory. Then for each infinite linear
order 7, T' has an Ehrenfeucht-Mostowski model A, |A| = |n| of vocabulary
vy, where |v1| = |T'| + w and order is definable by a first-order formula, such

that the template (assignment of types) is independent of 7.2

2This is from [27]; there is a sketch of the proof also in [14], Theorem 4.7.
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It is not hard to see that for every tree ¢t € K we can define a linear order L(t)
satisfying the following conditions:

(1) dom(L(t)) = (domt x {0}) U (domt x {1}),

(2) for all a € t, (a,0) <p (a,1),

(3) if a,bet, thena <, b <= [(a,0) <pu (b,0)] A[(b,1) <p@ (a,1)],

(4) if a,b € t, then

(@€ b)A(b&a) = [(b1) <rw (¢,0)] V(e 1) <pw (b,0)]

Now for every S C k, by (F1), there is an Ehrenfeucht-Mostowski model A'(S)
for the linear order L(T'(S)) where order is definable by the formula ¢ which is
in Loey,. Suppose i = (1o, ..., n,) and € = (&, ..., &,) are sequences in T'(.S) that
have the same quantifier free type. Then the sequences

<(7707 0)7 (770a 1)7 (7717 O)’ (7717 1)7 SRR (nnv 0)7 (nnv 1)>
and

<(€07 0)7 (507 1)7 (61; 0)7 (§1> 1)7 Tt (5717 O)? (£n7 1)>

have the same quantifier free type in L(7(S)) (refer to this property as (#)).
Now let the canonical skeleton of A'(S) given by (F1) be {a, | = € L(T(S))}.
Define the T'(S)-skeleton of A'(S) to be the set

{amo " amy | neT(S)}.

Let us denote b, = a(,0)" a(,,1)- This guarantees that (a), (b) and (c) are satisfied.

For (d) suppose that the order L(7(S)) is definable in A(S) by the formula
Y(u,c), ie. A(S) E¢(as, ay) <= z <yforx,y e L(T(S)). Let (o, z1, Yo, y1)
be the formula

U(zo, yo) AUy, 21).
Suppose 7, v € T(S) are such that T'(S) = Px(n) A P,(v). Then
v((ay,0), (@, 1), (ay, 0), (ay, 1))

holds in A(S) if and only if v <p(g) 7. U Claim 4

Claim 5. Suppose S — A(S) is a function as described in Claim 4 with the iden-
tical notation. Suppose further that S, S" C S§. Then S A S’ is non-stationary
if and only if A(S) = A(5").

Proof of Claim 5. Suppose S A S’ is non-stationary. Then by Claim 3 T'(S) =
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T'(S") which implies L(T'(S)) = L(T(S")) (defined in the proof of Claim 4) which
in turn implies A(S) = A(S").
Let us now show that if S A S’ is stationary, then A(S) 2 A(S’). Let us make

a counter assumption, namely that there is an isomorphism
[ A(S) = A(S)

and that S A S’ is stationary, and let us deduce a contradiction. Without loss of
generality we may assume that S\ S’ is stationary. Denote

Xo - S \ S/.
For all a < k define T*(S) and T%(S’) by
TYS) ={neT(S) | rann C ®(5,0,8+ 1) for some § < a}

and

TSy ={n e T(S) | rann C ®(5',0,3+ 1) for some [ < a}.
Then we have:
(i) if o < B, then T%(S) C T#(9),
(ii) if 7 is a limit ordinal, then 77(S) = U, T*(S).
The same of course holds for S’. Note that if & € S\ S’, then there is n € T(.5)
cofinal in ®(.S,0, ) but there is no such n € T%(S’") by definition of ®: a cofinal
function 7 is added only if cf*(®(5’, o, k)) = wy which it is not if o ¢ S’. This is
the key to achieving the contradiction.

But the clauses (i),(ii) are not sufficient to carry out the following argument,
because we would like to have |7%(S)| < . That is why we want to define a
different kind of filtration for T°(S), T'(S").

For all a € X, fix a function

ny € T(S) (##)

such that domng = A, for all B < A, n{ [ € T(S) and 1§ & T(5).

For arbitrary A C T'(S)UT(S") let clgk(A) be the set X C A(S)U.A(S’) such
that X N .A(S) is the Skolem closure of {a, | n € ANT(S)} and X N A(S’) the
Skolem closure of {a, | n € ANT(S")}. The following is easily verified:

There exists a A\-cub set C' and a set K¢ C T*(S) UT(S’) for each a € C
such that
(i) If @ < 3, then K® C KP.

(ii") If v is a limit ordinal in C, then K7 = (J,ccn, K,
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(iti) for all B < o, 7§ € K. (see (#+#) above).
(iv) |K*| =\

(v) clgk(K?) is closed under fU f~1.

(vi) {n e T*(S)UT*(S") | domn < A} C K“.
(vii) K* is downward closed.

Denote K* = |, K Clearly K" is closed under f U f~! and so f is an
isomorphism between A(S) N clgk(K*) and A(S") N clgk(K*). We will derive
a contradiction from this, i.e. we will actually show that A(S) N clg(K*) and
A(S") N clgg(K*) cannot be isomorphic by f. Clauses (iii), (v), (vi) and (vii)
guarantee that all elements we are going to deal with will be in K*.

Let

X1 - XO N C
For a € X7 let us use the following abbreviations:

» By A,(S5) denote the Skolem closure of {a, | n € K*NT(S)}.

» By A, (') denote the Skolem closure of {a, | n € K*NT(S")}.

« K*(S) = K*NT(S).

- K4(S") = K*nT(Y).

In the following we will often deal with finite sequences. When defining such a
sequence we will use a bar, but afterwards we will not use the bar in the notation
(e.g. let a = a be a finite sequence...).

Suppose a € X;. Choose

& =E&eT(S) (###)

to be such that for some (finite sequence of) terms m = 7 we have
flang) = m(agg)
= (T1(aeg(1), - - - » Aeg tength(&2))) s - - - » Tlength 7 (Aeg (1), - - - » Qeg (length(£g))))-

Note that £ is in K" by the definition of K“’s.

Let us denote by 73, the element 75 [ 3. (#H#HH#H#)
Let
E={veT(9) I e <}
Also note that £€& C K” for some (3.

Next define the function g: X; — & as follows. Suppose o € X;. Let g(a)
be the smallest ordinal 3 such that £ N K*(S') C KP(S’). We claim that
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g(a) < a. Clearly g(a) < a, so suppose that g(a) = a. Since & is finite,
there must be a (i) € & such that for all 8 < « there exists v such that
(i) [y € Ko(S')\ KP(S"), i.e. £§(i) is cofinal in ®(S’,0, ) which it cannot be,
because a ¢ 5.

Now by Fodor’s lemma there exists a stationary set

Xo C X,y

and v such that g[Xs3] = {0}
Since there is only < k£ many finite sequences in A, (S’), there is a stationary
set

X5 C Xy

and a finite sequence ¢ = £ € K(S’) such that for all @ € X3 we have
8N KM (S") = &, where &, is the set

& ={reT(S") | v < forsome ¢ €&} C K™(S).
Let us fix a (finite sequence of) term(s) m = 7 such that the set
Xy ={a € X3 | flaye) = m(aee)}
is stationary (see (##)). Here f(a) means (f(a1),..., f(Giengna)) and 7(b) means

<7T1(b17 ce 7b1engtha)a o 77T1ength7r(b1a cee 7b1engtha)>-

We can find such 7 because there are only countably many such finite sequences
of terms.

We claim that in 7'(.5”) there are at most A many quantifier free types over &,.
All types from now on are quantifier free. Let us show that there are at most A
many 1-types; the general case is left to the reader. To see this, note that a type
p over &, is described by the triple

(Vp, Bpy mp) (%)

defined as follows: if 7 satisfies p, then v, is the maximal element of &, that is an
initial segment of n, 3, is the level of n and m, tells how many elements of &, N
Piomu,+1 are there <-below n(domv,) (recall the vocabulary from Definition 81).

Since v, € &, and &, is of size A, B, € (A + 1) U{oo} and m, < w, there can be
at most A such triples.

Recall the notations (#4#), (###) and (###+#) above.
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We can pick ordinals o < o/, o,/ € X4, a term 7 and an ordinal 5 < A such
that
ng #n3,
() = 7(agg) and f(15) = 7(agy) for some &5, &5,
tp(£5/6.) = to(&3 /&)
and

tp(€5/6.) = tp(&5 /&)
We claim that then in fact

tp(€5/ (6. U{E]) = tn(€5 /(& U {€7')).

Let us show this. Denote

= tp(£3/(& U{EYD))
and
P =tp(&5 /(& UL D).

By the same reasoning as above at (x) it is sufficient to show that these types
p and p’ have the same triple of the form (x). Since a and o' are in X3 and
X,, we have £ N K*(S') = & € K*(S"). On the other hand f | Ay (S) is an
isomorphism between A,/ (S) and A.(S’), because o and o are in X, and so
53/ € K (8"). Thus v, = vy € & and m, = m,, follows in the same way. Clearly
ﬁp - Bp’-

Now we have: £§ and 7 are such that f(n}) = (%) and §§ and 7 are such
that f(ng) = 7(£5). Similarly for /. The formula ¢ is defined in Claim 4.

We know that

A(S) [ pla,e, a,0)
and because f is isomorphism, this implies
!
A(S') E ol (ay). Flay)
which is equivalent to
A(S) B @(W(agg’)yT(agg/))
(because «, o/ are in X4). Since T'(S’) is indiscernible in A(S") and fg‘/ and &§

have the same type over over (£, U {£9'}), we have

A(S) | p(mlagy ) m(agy)) <= p(m(agy),T(ag;)) (%)
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and so we get

A(S") | e(m(ag), 7(acg))
which is equivalent to

A(S) o f(ay), flang))

and this in turn is equivalent to

A(S) E plag ap).
The latter cannot be true, because the definition of 3, and o' implies that
ﬁgl 7& 77,% |:|Claim 5

Thus, the above Claims 1 — 5 justify the embedding of Fgy into the isomor-
phism relation on the set of structures that are models for T" for unstable T'. This

embedding combined with a suitable coding of models gives a continuous map.

DOP and OTOP cases. The above proof was based on the fact (F1) that for
unstable theories there are Ehrenfeucht-Mostowski models for any linear order
such that the order is definable by a first-order formula ¢ and is indiscernible
relative to Ly, (see (¢) on page 79); it is used in (%) above. For the OTOP case,
we use instead the fact (F2):

(F2) Suppose that T is a theory with OTOP in a countable vocabulary v. Then
for each dense linear order 1 we can find a model A of a countable vocabulary
v; D v such that A is an Ehrenfeucht-Mostowski model of T" for n where order
is definable by an L, -formula.?

Since the order ®(S) is dense, it is easy to argue that if 7°(.S) is indiscernible
relative to L., then it is indiscernible relative to Lo, (define this as in (¢) on
page 79 changing tp to tp;__). Other parts of the proof remain unchanged,
because although the formula ¢ is not first-order anymore, it is still in L.

In the DOP case we have the following fact:

(F3) Let T be a countable superstable theory with DOP of vocabulary v. Then
there exists a vocabulary v; D v, |v1| = wy, such that for every linear order 7
there exists a v;-model A which is an Ehrenfeucht-Mostowski model of T" for
n where order is definable by an L, -formula.*

3Contained in the proof of Theorem 2.5. of [24]; see also [14], Theorem 6.6.
4This is essentially from [28] Fact 2.5B; a proof can be found also in [14] Theorem 6.1.
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Now the problem is that ¢ is in Le,,. By (¢) of Claim 4, T'(S) is indiscernible
in A(S) relative to L, and by the above relative to Ly,. If we could require
®(S) to be wy-dense, we would similarly get indiscernible relative to Ly, . Let
us show how to modify the proof in order to do that.

In Claim 1 (page 77), we have to replace clauses (3), (4) and (6) by (3’), (4')
and (6):

B)n=n-ptn-w,

(4’) n is wy-dense,

(67) cf*(n) = w1

The proof that such an 7 exists is exactly as the proof of Lemma 7.17 [9] except
that instead of putting u = (w;)V put g = w, build #-many functions with
domains being countable initial segments of w; instead of finite initial segments
of w and instead of Q (the countable dense linear order) use an wi-saturated
dense linear order — this order has size 2“.

In the definition of ®(.S) (right after Claim 1), replace w} by w* and 7 by the
new 7 satisfying (3’), (4’) and (6’) above. Note that ®(S) becomes now w;-dense.
In Claim 2 one has to replace wi by w*. The proof remains similar. In the proof
of Claim 3 (page 78) one has to adjust the use of Claim 2. Then, in the definition
of T'(S) replace wy by w.

Claim 4 for superstable 7" with DOP now follows with (c¢) and (d) modified:
instead of indiscernible relative to L, demand L., and instead of ¢ € L, we
have now ¢ € L,,. The proof is unchanged except that the language is replaced
by Leow, everywhere and fact (F1) replaced by (F3) above.

Everything else in the proof, in particular the proof of Claim 5, remains
unchanged modulo some obvious things that are evident from the above expla-
nation. 0 Theorem 80
6.3. Stable Unsuperstable Theories. In this section we provide a tree
construction (Lemma 86) which is similar to Shelah’s construction in [26] which
he used to obtain (via Ehrenfeucht-Mostowski models) many pairwise non-
isomorphic models. Then using a prime-model construction (proof of Theo-

rem 87) we will obtain the needed result.

82. Definition. Let I be a tree of size k. Suppose (I,)a<x is a collection of
subsets of I such that

» For each a < k, I, is a downward closed subset of 1.
' Ua<n [a =1
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- If o < B <k, then I, C Ig.
» If v is a limit ordinal, then I, =, Lo
« For each o < k the cardinality of [, is less than .

Such a sequence (I,)a<x is called s-filtration or just filtration of I.

83. Definition. Recall K}, from Definition 81 on page 79. Let K}, = {A[]L* |
A € K)}, where L* is the vocabulary {<}.

84. Definition. Suppose ¢t € K¢, is a tree of size x (i.e. t C £5) and let

7 = (I,)a<x be a filtration of ¢. Define

Sz(t) = {a <k|(@net)[(domn=w)AVn <w(nln € l,)An¢l,)] }
By S ~ng 5" we mean that S A S’ is not w-stationary.

85. Lemma. Suppose trees ty and t; are isomorphic, and Z = (I,)a<x and J =
(Jo)a<x are k-filtrations of to and t1 respectively. Then Sz(ty) ~ns S7(t1).

Proof. Let f: ty — t; be an isomorphism. Then fZ = (f[l,])a<x is a filtration of
t; and

a € Sz(ty) <= a € Sz(th). (%)
Define the set C' = {a | f[la] = Juo}. Let us show that it is cub. Let a € k.
Define oy = o and by induction pick (o, )n<, such that f[I,,] C J,, ., for odd n
and J,, C flla,,,] for even n. This is possible by the definition of a -filtration.
Then o, = U,,o, an € C. Clearly C'is closed and C C & \ Syz(t1) A Sz(t1), so
now by (%)

Sz(to) = sz(fl) ~NS Sj(tl). ]

86. Lemma. Suppose for A < k, \Y < k and k<" = k. There exists a function
J: P(k) — Ky, such that

trx
- VS C k(|J(9)] = k).
- If S C k and T is a k filtration of J(S), then Sz(J(S)) ~ns S.
. ]f SO ~NS 517 then J(SQ) = J(Sl)

Proof. Let S C S’ and let us define a preliminary tree I(S) as follows. For
each a € S let C, be the set of all strictly increasing cofinal functions n: w — «.
Let 1(S) = M@ UU,es Ca where MQ" is the set of strictly increasing functions

from finite ordinals to k.
For ordinals a < # < k and ¢ < w we adopt the notation:
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Bl ={r <y <G}

@B ={rla<y<8)

» fla, B,1) = Uigjeodn: [, 3) — [, 8) | m strictly increasing}

For each «, § < k let us define the sets Pf’ﬁ, for v < k as follows. If a = =
v =0, then P)° = I(S). Otherwise let {P*F | v < k} enumerate all downward

closed subsets of f(a, B,1) for all i, i.e.
{Pj’ﬂ |y <k}= U P(f(, 8,7)) N{A| Ais closed under inital segments}.
<w
Define
(P
to be the natural number i such that Pﬁ’ﬁ C f(a,ﬁ, i). The enumeration is

possible, because by our assumption k<" = k we have

‘ U P(fa.8,4)] <w x [P(f(0,5,0))]

<w

/N

w x |P(3%)]
=w x 2%
<WwXK

= KR

Let S C k be a set and define J(S) to be the set of all n: s — w x k? such that
s < w and the following conditions are met for all 7,7 < s:

(1) 7 is strictly increasing with respect to the lexicographical order on w x .
(2) m@) <Km@E+1)<m@)+1
(3) m(1) =0 — n2(i) = n3(2) = ma(i) = 0.
(4) m(i) <m(i+1) = na(i +1) = ns(@) + nald).
(5) m(i) =m(@+1) = (Vk € {2,3,4}) (e (i) = me(i + 1))
(6) if for some k < w, [i,5) = n; *{k}, then
ns i, j) € P;ZQ((Z))WB(Z‘)-
(7) if s = w, then either
(m < w)(Vk < w)(k >m — n (k) =m(k+1))
or
supranns € S.

(8) Order J(S) by inclusion.
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Note that it follows from the definition of P{"# and the conditions (6) and (4)
that for all i < j < domn, n € J(S):

(9) i < j —ns(i) < ns(j)-

For each a < k let
J*(S)={ne€ J(S) |rann C w x (B + 1)* for some (3 < a}.

Then (J*(S))a<x is a r-filtration of J(S) (see Claim 2 below). For the first item
of the lemma, clearly |J(S)| = k.
Let us observe that if n € J(S) and rann; = w, then

suprann < supranr, = supranrs = sup ranms (#)

and if in addition to that, n [k € J*(S) for all k and n ¢ J*(S) or if rann; = {0},
then

sup ranfs = «. (®)

To see (#) suppose rann; = w. By (9), (95(i))i<w is an increasing sequence.
By (6) supranns > supranns > supran7s. By (4), supranmn, > supranns and
again by (4) suprann, > suprann,. Inequality supranmns; < « is an immediate
consequence of the definition of J*(S), so (®) follows now from the assumption
that n ¢ J*(S).

Claim 1. Suppose £ € J*(S) and n € J(S). Then if domé < w, & C n and
(Vk € domn \ dom &) (m: (k) = & (maxdom &) A (k) > 0), then n € J*(S).

Proof of Claim 1. Suppose ,n € J%(S) are as in the assumption. Let us define
B = &(maxdomé), B3 = &(maxdom(), and By = &(maxdomé). Because
¢ € J*S), there is 8 such that (5,05,0, < S+ 1 and < a. Now by (5)
ne(k) = Ba, n3(k) = P and ny(k) = By, for all k£ € domn\ dom¢. Then by (6) for
all k € domn \ dom¢& we have that 5y < n5(k) < 3 < §+ 1. Since £ € J*(S),
also 3y < f+1,s0n € J*S). U Claim 1

Claim 2. |J(S)| = &, (J*(9))a<sx is a k-filtration of J(S) and if S C k and 7 is
a r-filtration of J(S), then Sz(J(S)) ~ns S.

Proof of Claim 2. For all a < k, J%(S) C (w x a*)S¥, so by the cardinality
assumption of the lemma, the cardinality of J*(S) is < k if a < & (J*(S) = J(9)).
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Clearly o < 3 implies J*(S) C J?(S). Continuity is verified by
UJO‘ ={neJ(S)|Ja<v,3B3<alanny Cw x (B+1)*)}

a<y
={ne J(S) |38 <Uy(rann Cw x (6+1)")}
which equals J7(S) if v is a limit ordinal. By Lemma 85 it is enough to show
Sz(J(S)) ~ns S for T = (J(5))a<n, and we will show that if Z = (J(59))a<n,
then in fact Sz(J(S)) = S.

Suppose a € Sz(J(5)). Then there is ne€ J(S), domn=w, such that n [ k €
JY(S) for all k < w but n ¢ J*(S). Thus there is no § < « such that rann C
w x (B +1)* but on the other hand for all k < w there is 3 such that rann [k C
w x (B+1)% By (5) and (6) this implies that either rann; = w or rann; = {0}.
By (®) on page 89 it now follows that supranns = a and by (7), a € S.

Suppose then that o € S. Let us show that o € Sz(J(95)). Fix a function
No: w — k with suprann, = a. Then 7, € I(S) and the function 1 such that
n(n) = (0,0,0,0,7.(n)) is as required. (Recall that P)° = I(S) in the definition
of J(9)). O Claim 2

Claim 3. Suppose S ~yng S’. Then J(S) = J(5').
Proof of Claim 3. Let C C x\ (SAS’) be the cub set which exists by the
assumption. By induction on ¢ < x we will define a; and F,, such that

(a) If i <j <k, then ; < aj and F,,, C Iy,
(b) If i is a successor, then «; is a successor and if ¢ is limit, then «; € C.

d

(e) Suppose that ¢ = v + n, where 7 is a limit ordinal or 0 and n < w is even.

)
(c) If v is a limit ordinal, then o, = sup,_, a;,
(d) F,, is a partial isomorphism J(S) — J(S5")
)

Then dom F,, = J*(S) (el). If also n > 0 and (7x)r<, is an increasing
sequence in J%(S) such that n = J,_,m € J(5), then U, Fo,(m) ¢
J(S") (e2).

(f) If i = v+ n, where 7 is a limit ordinal or 0 and n < w is odd, then
ran F,, = J*(S") (fl). Further, if (m)g<w is an increasing sequence in
J(S") such that n = Uy, e € J(S"), then U, Fi.' () € J(S) (£3).

(g) If dom¢ < w, £ € domF,,, n [ dom¢ = £ and (‘v’k > dom&)(m(k) =
& (maxdom &) A (k) > 0), then 7 € dom F,,. Similarly for ran F,,

(h) If ¢ € dom F,, and k < dom¢, then £ [k € dom F,,.
(i) For all n € dom F,,,, domn = dom(Fy,,(n)).
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The first step. The first step and the successor steps are similar, but the first
step is easier. Thus we give it separately in order to simplify the readability. Let
us start with ¢ = 0. Let ag = 8+ 1, for arbitrary § € C. Let us denote by

o(a)
the ordinal that is order isomorphic to (w x a?, <j.x). Let v be such that there
is an isomorphism h: PY%®) = joo(8) and such that n(P)*) = 0. Such exists
by (1). Suppose that n € J*(S). Note that because P»* and J*(S) are closed

under initial segments and by the definitions of n and P$’5 , we have dom h 1 (n) =
dom 7, Define £ = F,,(n) such that dom & = domn and for all £ < dom ¢

= &i(k) =1

- f2(k) =
&3(k) = o(ao)

»&u(k) =7

» & (k) = R (n) ().
Let us check that ¢ € J(S"). Conditions (1)-(5) and (7) are satisfied because &
is constant for all k € {1,2,3,4}, & (¢) # 0 for all ¢ and &5 is increasing. For (6),
if ,'{k} is empty, the condition is verified since each Pfﬁ is closed under initial
segments and contains the empty function. If it is non-empty, then £ = 1 and
in that case & '{k} = [0,w) and by the argument above (dom h~!(n) = domn =
dom &) we have & = h™(n) € pooteo) — Pff((g))’&(o), so the condition is satisfied.

Let us check whether all the conditions (a)-(i) are met. In (a), (b), (c), (e2)
and (f) there is nothing to check. (d) holds, because h is an isomorphism.
(el) and (i) are immediate from the definition. Both J*(S) and P2 are
closed under initial segments, so (h) follows, because dom F,, = J*(S) and
ran Fy,, = {1} x {0} x {6(ag)} x {7} x P*. Claim 1 implies (g) for dom F,.
Suppose £ € ranF,, and n € J(S') are as in the assumption of (g). Then
m(i) = &) = 1 for all i < domn. By (5) it follows that ny(i) = &(i) = 0,
ns(i) = &(i) = olag) and (i) = &(i) = 7 for all i < domn, so by (6)
N5 € P$ 2(@0) and since h is an isomorphism, n € ran F,,.

Odd successor step. We want to handle odd case but not the even case first,
because the most important case is the successor of a limit ordinal, see (t¢t) below.
Except that, the even case is similar to the odd case.

Suppose that j < k is a successor ordinal. Then there exist 8; and n; such
that j = 3; + n; and (8 is a limit ordinal or 0. Suppose that n; is odd and that
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a; and F,, are defined for all I < j such that the conditions (a)-(i) and (1)—(9)
hold for | < j.

Let a; = B4 1 where (3 is such that 3 € C, ranF,,, |, C JP(S"), B > aj_;.
For convenience define £(—1) = (0,0,0,0,0) for all £ € J(S) U J(S"). Suppose
n € ranFy, , has finite domain domn = m < w and denote § = Fojjil(n)
Fix 7, to be such that ﬁ(P%ﬂ) = m and such that there is an isomorphism
Dy : P%ﬁ — W, where

W ={(|dom¢ =[m,s),m <s<w,n (m,((m)) ¢ranF, _ ,n ¢ e J(S)},

a=2E&m—1)+&(m—1) and § = o + 6(c;) (defined in the beginning of the
First step).

We will define F,, so that its range is J*/(S’) and instead of I, we will define
its inverse. So let n € J*(S"). We have three cases:

(¢) n€ranFy,_,,

(te) 3m <domn(nim €ranF,,  Anl[(m+1) & F,,_,),

we) Ym < domn(nl(m-+1) erank,. , An¢ranF, ).
j—1 j—1

Let us define { = F!(n) such that dom ¢ = domn. If (¢) holds, define {(n) =
F@{l(n)(n) for all n < domn. Clearly £ € J(S) by the induction hypothesis.

Suppose that (¢2) holds and let m witness this. For all n < dom¢ let
- If n < m, then £(n) = F ' (nIm)(n).

eSS

« Suppose n = m. Let
c&(n) =&(m—1)+1

+ §5(n) = hyp, (0) ().
Next we should check that £ € J(S); let us check items (1) and (6), the rest are
left to the reader.

(1) By the induction hypothesis £ [ m is increasing. Next, & (m) = & (m—1)+1, so
E(m—1) <iex £&(m). If m < ny < ng, then & (ny) = p(nog) forall k € {1,2,3,4}
and &5 is increasing.

(6) Suppose that [i,j) = & *{k}. Since & | [m,w) is constant, either j < m, when
we are done by the induction hypothesis, or « = m and j = w. In that case one
verifies that 7 [ [m,w) € W = ran h,, and then, imitating the corresponding
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argument in the first step, that

& Hmvw) = h;rlm(n Hmvw))

and hence in dom hy, = ng(%)’%(w-

Suppose finally that (c.) holds. Then domn must be w since otherwise the
condition (cee) is simply contradictory (because n [ (domn — 1+ 1) = n (except
for the case domn = 0, but then condition (¢) holds and we are done)). By (g),
we have ran7n; = w, because otherwise we had n € ran F,, . Let Fa—j1 (n)=¢=
Un<w Fo;£1(n [n).

Let us check that it is in J(S). Conditions (1)—(6) are satisfied by £, because
they are satisfied by all its initial segments. Let us check (7).

First of all £ cannot be in J*~1(S), since otherwise, by (d) and (i),

For (9= Fa€In)=Jnin=1n
n<w nw
were again in ran Fy,,_,. If j — 1 is a successor ordinal, then we are done: by (b)
aj_1 is a successor and we assumed 1 € J(S’), so by (e2) we have £ € J(S). Thus
we can assume that j—1 is a limit ordinal. Then by (b), a;;_; is a limit ordinal in
C and by (a), (e) and (f), ran F,, | = J*-1(S’) and dom F,,, |, = J*-1(S). This
implies that rann ¢ w x §* for any 8 < a;_1 and by (®) on page 89 we must have

Jj—1

supranns = «;_1 which gives a;_; € S" by (7). Since aj_1 € C C K\ SA S, we
have a;_; € S. Again by (®) and that dom Fy,, , = J*-1(S) by (el), we have
supran s = a1, thus & satisfies the condition (7).

Let us check whether all the conditions (a)-(i) are met. (a), (b), (¢) are common
to the cases (¢), (1) and (cee) in the definition of Ff,_ I'and are easy to verify. Let
us sketch a proof for (d); the rest is left to the reader.

(d) Let n1,m2 € ran F,; and let us show that
mGne = F N (m) S F ).

The case where both 7, and 7, satisfy (t¢) is the interesting one (implies all
the others).

So suppose 11,12 € (tt). Then there exist m; and my as described in the
statement of (ct). Let us show that m; = my. We have n; [ (my + 1) =
mo [ (my+1) and ny [ (my + 1) ¢ ran Fy,_,, so my < my. If mg < my, then
ms < dommny, since m; < domn;. Thus if my < my, then ny [ (mg + 1) =
2 [ (mg+1) ¢ ran Fy,,_,, which implies my = m;. According to the definition
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of F’Ojj1 (m;)(k) for k < domny, Fojjl (n;)(k) depends only on m; and n [m; for
i € {1,2}. Since m; = my and 7y [ my = 1y [ My, we have Fojjl(nl)(k:) =
ngl(ng)(k) for all & < domn;.

Let us now assume that 7, ¢ 7. Then take the smallest n € domn; N
dom )y such that n;(n) # n2(n). It is now easy to show that Fojj1 (m)(n) #
F.'(n2)(n) by the construction.

Even successor step. Namely the one where j = 4+ n and n is even. But
this case goes exactly as the above completed step, except that we start with
dom F,,; = J%(5) where a; is big enough successor of an element of C' such that
J%(S) contains ran Fy,,_, and define §{ = F,,(n). Instead of (e) we use (f) as the
induction hypothesis. This step is easier since one does not need to care about
the successors of limit ordinals.

Limit step. Assume that j is a limit ordinal. Then let a; = |J, ~; o and
F,, = UKJ. F,,. Since «; are successors of ordinals in C, «a; € C, so (b) is
satisfied. Since each F,, is an isomorphism, also their union is, so (d) is satisfied.
Because conditions (e), (f) and (i) hold for ¢ < j, the conditions (e) and (i) hold
for j. (f) is satisfied because the premise is not true. (a) and (c) are clearly
satisfied. Also (g) and (h) are satisfied by Claim 1 since now dom F,,; = J%/ ()
and ran F,; = J%(S’) (this is because (a), (e) and (f) hold for i < j).

Finally F' = J,_, F,, is an isomorphism between J(S) and J(S5"). O Claim 3

<K
UJ Lemma 86

87. Theorem. Suppose k is such that k<" = Kk and for all A < k, \* < k and
that T' is a stable unsuperstable theory. Then Egs <. Zr.

Proof. For n € 2% let J, = J(n '{1}) where the function J is as in Lemma
86 above. For notational convenience, we assume that J, is a downward closed
subtree of kS*. Since T is stable unsuperstable, for all n and ¢ € J,, there are
finite sequences a; = a; in the monster model such that

(1) If dom(t) = w and n < w then

as V At -

U a;[m
m<n

(2) For all downward closed subtrees X,Y C J,,

Uat l Uat.

U Qy
teX teXny tey
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(3) For all downward closed subtrees X C .J,, and Y C J, the following holds:
If f: X — Y is an isomorphism, then there is an automorphism F' of the
monster model such that for all t € X, F(a}) = a?/(t).

Then we can find an FZ-construction

( U ag, (b, Bi)i<x)
tey
(here (t(b/C), D) € FZ if D C C is finite and b | ;, C, see [25]) such that

(%) for all @ < k, ¢ and finite B C UtEJn a; U
Bg = B and

;<o Ui there is o < 8 < k such that
stp(bs/ B) = sto(c/B).
Then
M, =Jaul b ET
teJy <K
Without loss of generality we may assume that the trees .J, and the FJ-
constructions for M, are chosen coherently enough such that one can find a code
&, for (the isomorphism type of) M, so that n +— &, is continuous. Thus we are
left to show that nEg«n' <= M, = M,

“=" Assume J, & J,. By (3) it is enough to show that F/-construction of
length r satisfying (x) are unique up to isomorphism over {J,c; a;. But (x)
guarantees that the proof of the uniqueness of F-primary models from [25]
works here.

“«<=" Suppose F': M, — M, is an isomorphism and for a contradiction suppose
(m,1m') & Ess. Let (J¥)a<s be a filtration of J, and (Ji7)a<x be a filtration of
Jyy (see Definition 82 above). For a < &, let

M,sé: UatUUbl

teJg i<a
and similarly for n':
Mg =] aul b
teJe <o
n

Let C' be the cub set of those a < r such that F' | M7 is onto M and
for all i < o, B; C My and B C My, where (UteJn,,(b;,Bg)Kb) is in the
construction of M,,. Then we can find a € lim C such that in J, there is t*
satisfying (a)—(c) below, but in J,/ there is no such ¢*.:

(a) dom(t*) = w,
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(b) ¢ & Ji,
(c) for all B < « there is n < w such that t*[n € J \ J;f.
Note that
(%x) ifa € C'and ¢ € M, there is a finite D C UteJ{f a; such that (t(c, U, ar), D)
€ Fl,
Let ¢ = F(a;+). By the construction we cat find finite D C My, and X C Jy
such that

(t(c, My U U a’),DU U a?,> € FJ.

tEJn/ teX

But then there is # € C', § < «, such that D C Mf, and if u < t for some t € X,
then u € Jg, (since in J,/ there is no element like ¢* is in J,). But then using (xx)
and (2), it is easy to see that

c | My.
MP
n

On the other hand, using (1), (2), (xx) and the choice of ¢* one can see that
ap} My, a contradiction. O
MP

Open Problem. If kK = AT, X regular and uncountable, does equality modulo

A-non-sationary ideal, Egsg¢, Borel reduce to T' for all stable unsuperstable 777

7. FURTHER RESEARCH

In this chapter we merely list all the questions that also appear in the text:

Open Problem. Ts it consistent that Borel* is a proper subclass of X1, or even
equals A{? TIs it consistent that all the inclusions are proper at the same time:
Al C Borel* C X117

Open Problem. Does the direction left to right of Theorem 24 hold without the

assumption k<% = k7

Open Problem. Under what conditions on x does the conclusion of Theorem 36
hold?

Open Problem. Is the Silver Dichotomy for uncountable s consistent?

Open Problem. Can there be two equivalence relations, F; and Fy on 2", k > w
such that £y and E5 are Borel and incomparable, i.e. By €g Fy and Fy € E7
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Open Problem. Is it consistent that S22 Borel reduces to 527

Open Problem. We proved that the isomorphism relation of a theory T is Borel
if and only if T is classifiable and shallow. Is there a connection between the
depth of a shallow theory and the Borel degree of its isomorphism relation? Is

one monotone in the other?

Open Problem. Can it be proved in ZFC that if T is stable unsuperstable then
7 is not A{?

Open Problem. If kK = AT, X regular and uncountable, does equality modulo
A-non-sationary ideal, Egg, Borel reduce to T' for all stable unsuperstable 77

Open Problem. Let Ty, be the theory of dense linear orderings without end points
and Ty, the theory of random graphs. Does the isomorphism relation of 7§, Borel

reduce to Ty, i.e. =7, <=1y, 7
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