
DOUBLE ADJUNCTIONS

THOMAS M. FIORE, NICOLA GAMBINO, AND JOACHIM KOCK

Abstract. We characterize double adjunctions in terms of presheaves and
universal squares, and then apply these characterizations to free monads and
Eilenberg–Moore objects in double categories. We improve upon an earlier
result of Fiore–Gambino–Kock in [7] to conclude: if a double category with
cofolding admits the construction of free monads in its horizontal 2-category,
then it also admits the construction of free monads as a double category hori-
zontally and vertically, and also in its vertical 2-category. We also prove that a
double category admits Eilenberg–Moore objects if and only if a certain param-
eterized presheaf is representable. Along the way, we develop parameterized
presheaves on double categories and prove a double Yoneda Lemma.
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1. Introduction

Although 2-categories and double categories were conceived at about the same
time and the same place (Bénabou [1] in 1967 and Ehresmann [5] in 1963,
respectively), the theory of 2-categories has had a huge advantage in develop-
ment, whereas the theory of double categories has been slower to really take
off. One reason is that 2-categories behave and feel much more like 1-categories,
whereas double categories exhibit many new and strange phenomena. However,
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the past decade has seen a certain renaissance of double categories, and double-
categorical structures are finding application more and more frequently in many
different areas.

We became interested in double categories through work in conformal field
theory, topological quantum field theory, operad theory, and type theory. In
all these cases, the double-categorical structures come about in situations where
there are two natural kinds of morphisms, typically some complicated morphisms
(like spans of sets or bimodules) and some more elementary ones (like functions
between sets or ring homomorphisms), and the double-categorical aspects concern
the interplay between such different kinds of morphisms. While it often provides
great conceptual insight to have everything encompassed in a double category, one
is often confronted with the lack of machinery for dealing with double categories,
and a need is being felt for a more systematic theory of double categories.

This paper can be seen as a small step in that direction: although our work
is motivated by some concrete questions about monads, we try to develop rather
systematically the basics of adjunctions between double categories: we introduce
parametrized presheaves, prove a double Yoneda Lemma, characterize adjunc-
tions in several ways, and go on to study double categories with further structure
— foldings or cofoldings — for which we study the question of existence of free
monads and Eilenberg–Moore objects. This was our original motivation, and in
that sense the present paper is a sequel to our previous paper [7] about monads
in double categories, although logically the present paper is rather a precursor:
with the theory we develop here, some of the results from our previous paper can
be strengthened and simplified at the same time.

In some regards, double adjunctions express universality in the ways one ex-
pects based on experience with 1-categories, as we prove in Theorem 5.2. A
double adjunction may be given by double functors F and G with horizontal nat-
ural transformations η and ε satisfying the two triangle identities, or by double
functors F and G with a universal horizontal natural transformation (η or ε), or
by a single double functor F or G equipped with appropriate universal squares
compatible with vertical composition, or by a bijection between sets of squares
compatible with vertical composition.

However, the characterizations of adjointness in 1-category theory in terms of
representability do not carry over to double category theory in a straightforward
way, and instead require a new notion of presheaf on a double category. Namely,
to prove that an ordinary 1-functor F : A → X admits a right adjoint, it is
sufficient to show that the presheaf A(F−, A) is representable for each object
A separately. But to establish that a double functor F admits a right double
adjoint, two new requirements arise: 1) we must consider how the analogous
presheaves vertically combine, and 2) we must consider the representability of all
the analogous presheaves simultaneously rather than separately. The first require-
ment (that we must consider how the analogous presheaves vertically combine)
forces presheaves on double categories to be vertically lax and to take values in
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the double category Spant of vertical spans, as opposed to the 1-category Set.
We prove a Yoneda Lemma for such Spant-valued presheaves in Proposition 3.10.
The second requirement (that we must consider all the analogous presheaves
simultaneously) forces us to consider parameterized presheaves on double cate-
gories. With these notions we establish the double-categorical analogue of the
representability characterisation of adjunctions in Theorem 5.3, namely a double
functor admits a right horizonal adjoint if and only if a certain parameterized
Spant-valued presheaf is representable. Parameterized presheaves also play a role
in the proof of Theorem 5.2.

Many double categories that arise in practice have convenient additional struc-
ture: vertical morphisms often map to horizontal morphisms, and squares can
often be folded (or cofolded) into horizontal 2-cells. Foldings and cofoldings are
recalled in Definitions 6.2 and 6.8. One utility of these extra structures is that
questions about a double category with folding or cofolding can sometimes be
reduced to questions about its horizontal 2-category. Pseudo double categories
which admit both a folding and a cofolding are essentially the same as the framed
bicategories of Shulman [10]. In this article we work with foldings and cofoldings
separately because some examples, including our motivating examples, admit one
or the other but not both.

As an example of the principle of reduction to the horizontal 2-category in the
presence of a folding or cofolding, our Proposition 6.10 states that two double
functors F and G compatible with foldings (or cofoldings) are horizontal dou-
ble adjoints if and only if their underlying horizontal 2-functors are 2-adjoints.
If vertical morphisms are further assumed to map fully faithfully to horizontal
morphisms, then a double functor F compatible with the foldings (or cofoldings)
admits a horizontal right double adjoint if and only if F admits a right adjoint
in every other reasonable sense, see Corollary 6.13, and its cofolding counterpart
Corollary 6.16.

A further instance of reduction to the horizontal 2-category concerns monads
in double categories, and is one the main applications of the present paper. In
our earlier paper [7] we showed how to associate to a double category D a double
category End(D) of endomorphisms in D and a double category Mnd(D) of mon-
ads in D. The double categories End(D) and Mnd(D) are extensions of Street’s
2-categories of endomorphisms and monads in [12] in the sense that if K is a
2-category and H(K) is K viewed as a vertically trivial double category, then the
horizontal 2-categories of End(H(K)) and Mnd(H(K)) are Street’s 2-categories
End(K) and Mnd(K). In [7, Theorem 3.7] we established a fairly technical cri-
terion which allows one to conclude the existence of free monads in a double-
categorical sense from the existence of free monads in the underlying horizontal
2-category. The basic assumptions are that the double category is a framed bi-
category and the appropriate substructures admit 1-categorical equalizers and
coproducts. In the present paper we clarify and generalize this substantially,
using the theory of double adjunctions and cofoldings.
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A double category D is said to admit the construction of free monads if the for-
getful functor Mnd(D)→ End(D) admits a vertical left double adjoint such that
the underlying vertical morphism of each unit component is the identity. This
is somewhat more stringent than our earlier definition in [7], where we required
only a vertical left double adjoint. Our main application, Theorem 9.5, states
that a double category with cofolding admits the construction of free monads if
its horizontal 2-category admits the construction of free monads. This improves
[7, Theorem 3.7], since it removes nearly all the hypotheses and also strengthens
the conclusion. A main step is our Proposition 7.5, which states that a cofold-
ing on a double category D induces cofoldings on End(D) and Mnd(D). (The
corresponding statement for foldings is false.)

An example is the free–forgetful adjunction between End(Span) and
Mnd(Span), where Span is the double category of horizontal spans. Endomor-
phisms in Span are directed graphs and monads in Span are categories. This
example is worked out in detail in Section 8.

Returning to general double categories without cofolding, we now describe our
second main application. Theorem 10.3 states that a double category D admits
Eilenberg–Moore objects if and only if the parameterized presheaf is representable
which assigns to a monad (X,S) and an object I in D the set S-AlgI of S-algebra
structures on I. The proof is quite short, since most of the work was done in the
earlier sections.

An overview of the paper is as follows. In Section 3 we introduce parameterized
presheaves on double categories and their representability, and prove the Double
Yoneda Lemma. In Sections 4, 5, and 6 we introduce universal squares, prove the
various characterizations of double adjunctions, and consider the special case of
double adjunctions compatible with foldings and cofoldings. In Section 7 we prove
that End(D) and Mnd(D) admit cofoldings when D does. Section 8 works out
the double adjunction between End(Span) and Mnd(Span) explicitly. Sections 9
and 10 are applications of the results on double adjunctions to the construction
of free monads in double categories with cofolding and to a characterization of
the existence of Eilenberg–Moore objects in a general double category.

2. Notational Conventions

We begin by fixing some notation concerning double categories.
A double category is a categorical structure consisting of objects, horizontal

morphisms, vertical morphisms, squares, the relevant source and target functions,
compositions, and units. Succinctly, a double category is an internal category in
Cat. The theory of double categories was pioneered by A. Ehresmann and C.
Ehresmann, beginning with [5]. We indicate double categories with blackboard
letters, such as C, D, and E.

If D is a double category, then Hor D,Ver D, and Sq D, signify the collections
of horizontal morphisms, vertical morphisms, and squares in D. To specify the set
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of horizontal respectively vertical morphisms from an object D1 to an object D2,
we write Hor D(D1, D2) and Ver D(D1, D2). Similarly, the notation Hor D(f, g)
indicates the function Hor D(D1, D2) → Hor D(D′1, D

′
2) obtained by pre- and

postcomposition with the horizontal morphisms f and g. The function Ver D(j, k)
is defined analogously. To indicate the collection of squares with fixed left vertical
boundary j and fixed right vertical boundary k, we write

(1) D(j, k) =

α ∈ Sq D
∣∣∣∣ α has the form

//

j

��
α k

��//

 .

For example, for the vertical identities 1vD1
and 1vD2

, the set D(1vD1
, 1vD2

) consists
of the 2-cells between morphisms D1 → D2 in the horizontal 2-category of D. In
general, the squares in D(j, k) may not compose vertically. Also in analogy to the
hom-notation, the notation D(α, β) means horizontal pre- and postcomposition
by squares α and β. For any double category D, the horizontal opposite Dhorop is
formed by switching horizontal source and target for both horizontal morphisms
and squares in D. More precisely, the horizontal 1-category of Dhorop is equal to
the opposite of the horizontal 1-category of D, the vertical 1-category of Dhorop

is the same as that of D, and the category (Ver Dhorop, Sq Dhorop) is equal to the
opposite category of (Ver D, Sq D).

We may associate various substructures to a double category. We indicate the
horizontal and vertical 2-categories of a double category D by HD and VD.
The double category V1D has vertical 1-category the vertical 1-category of D and
everything else trivial, that is, there are no non-trivial squares and no non-trivial
horizontal morphisms in V1D.

A 2-category gives rise to various double categories. If C is a 2-category, the
double category HC has C as its horizontal 2-category and only trivial vertical
morphisms. Similarly, the double category VC has C as its vertical 2-category
and only trivial horizontal morphisms.

The pseudo double category Span will play a special role in this paper. It is
the pseudo double category in which objects are sets, the horizontal morphisms
are spans of sets, the vertical morphisms are functions, and the squares are the
morphisms of spans. The pseudo double category Spant is its transpose, which
means the horizontal and vertical data are exchanged (including boundaries of
squares). Note that Span is horizontally weak while Spant is vertically weak.

3. Parameterized Presheaves on Double Categories,
Representability, and the Double Yoneda Lemma

In this section we develop the basic theory of parametrized presheaves on a
double category and prove a Yoneda Lemma for double categories. The Double
Yoneda Lemma and the characterization of left double adjoints in Theorem 5.3
require parameterized Spant-valued presheaves, as explained in the Introduction.
The covariant Double Yoneda Lemma for presheaves on a double category D says
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that morphisms from the represented presheaf D(R,−) to a presheaf K on Dhorop

are in bijective correspondence with the set K(R).
A presheaf on a double category assigns to objects sets, to horizontal mor-

phisms functions, to vertical morphisms spans of sets, and to squares morphisms
of spans. Moreover, these target spans are equipped with a kind of composition
provided by the vertical laxness of the presheaf.

Definition 3.1. Let D and E be double categories. A presheaf on D parameter-
ized by E is a vertically lax double functor Dhorop×E→ Spant. We synonymously
use the term presheaf on D indexed by E. A presheaf on a double category D is a
presheaf on D parameterized by the terminal double category, that is, a presheaf
on D is a vertically lax double functor Dhorop → Spant.

Example 3.2. The first example is delivered by the hom-sets of a double category
D. Namely, a presheaf on D indexed by D is defined on objects and horizontal
morphisms by

D(−,−) : Dhorop × D // Spant

(D1, D2) � // Hor D(D1, D2)

(f, g) � // Hor D(f, g) .

On vertical morphisms (j, k), it is the vertical span

Hor D(svj, svk)

D(j, k)

tv

��

sv

OO

Hor D(tvj, tvk),

which we often denote simply by D(j, k). On squares (α, β), the vertically lax
double functor D(−,−) is the morphism of vertical spans induced by D(α, β)(γ) =
[α γ β] as well as Hor D(svα, svβ) and Hor D(tvα, tvβ).

For the vertically lax double functor D(−,−), the composition coherence square
in Spant [

D(j, k)
D(`,m)

]
// D(
[
j
`

]
,
[
k
m

]
)

is simply composition in D. More precisely, on elements we have

//

j

��
ξ1 k

��

`
��

//

ξ2 m

��//

� //

//

[j`]

��

[ξ1ξ2] [ km]

��//

.



DOUBLE ADJUNCTIONS 7

The unit coherence square in Spant of the vertically lax double functor D(−,−)
is simply the vertical identity square embedding

1vD(D1,D2)
iv // D(1vD1

, 1vD2
)

f � //

D1

f //

ivf

D2

D1
f

// D2

.

The presheaf D(−,−) may also be considered as a presheaf on Dhorop indexed by
Dhorop. This completes the example D(−,−).

Example 3.3. As a special case of Example 3.2, we may fix the first variable to
be an object R in D and we obtain a presheaf on Dhorop, namely

D(R,−) : D // Spant .

This presheaf is represented by the object R. We shall discuss a notion of repre-
sentability for parameterized presheaves in Definition 3.7, as they will be a key
ingredient in our characterizations of double adjunctions in Theorem 5.2 (vi) and
Theorem 5.3.

We write out the features of Example 3.2 for this special case, since we will
need these represented presheaves in the Double Yoneda Lemma. Like any double
functor, this presheaf consists of an object functor and a morphism functor

D(R,−)Obj : (Obj D0,Obj D1) // (Sets,Functions)

D(R,−)Mor : (Mor D0,Mor D1) // (Spans,Morphisms of Spans) .

The object functor is the usual represented presheaf on the horizontal 1-category,
namely

D(R,D)Obj := {f : R→ D | f horizontal morphism in D} = Hor D(R,D)

D(R, g)Obj(f) := [f g] .

The morphism functor, on the other hand, takes a vertical morphism j : D → D′

in D to the (vertical) span D(R, j)Mor defined as

D(R,D)Obj

D(1vR, j)

sv

OO

tv

��
D(R,D′)Obj,
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and on a square β we have the morphism of spans D(R, β)Mor induced by
D(R, β)Mor(α) = [α β] .

The composition coherence square in Spant[
D(R, j)Mor

D(R, k)Mor

]
// D(R,

[
j
k

]
)

of the vertically lax double functor D(R,−) is simply composition in D. More
precisely, on elements we have

R //

ξ1 j

��
R //

ξ2 k

��
R //

� //

R //

[ξ1ξ2] [jk]

��
R //

.

The unit coherence square in Spant of the vertically lax double functor D(R,−)
is simply the identity embedding

1vD(R,D)Obj
iv // D(R, 1vD)Mor

f � //

R
f //

ivf

D

R
f

// D

.

Example 3.4. If C is a 1-category, then a classical presheaf on C may be con-
sidered a presheaf on HC in the following way. A classical presheaf on C is the
same thing as a strictly unital double functor F : HChorop → Spant which has
composition coherence morphism for F (1vC) ◦ F (1vC) → F (1vC) given by the pro-
jection of the diagonal of FC × FC to FC. Any presheaf on HC restricts to a
classical presheaf on C by forgetting F (1vC) for each C and the composition and
identity coherences.

Example 3.5. A presheaf on the (opposite of the) terminal double category 1 is
the same as a category, since a vertically lax double functor from 1 into Spant is
the same as a (horizontal) monad in Span, which is the same as a category.

Example 3.6. Let C be a 1-category. Then C(−,−) is a presheaf on C indexed
by Obj C. This is a way to consider all the presheaves C(−, C) simultaneously.
Similarly, by parametrizing via the vertical 1-category of D, the indexed presheaf
D(−,−) : Dhorop × V1D → Spant is a way of considering all presheaves D(−, R)
simultaneously and how they combine vertically (recall the notation V1D from
Section 2). This point of view will become important for our characterization of
double adjunctions in Theorems 5.2 and 5.3.
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Definition 3.7. A parameterized presheaf F : Dhorop × E → Spant in the sense
of Definition 3.1 is representable if there exists a double functor G : E → D
such that F is horizontally naturally isomorphic to the parameterized presheaf
D(−, G−) : Dhorop × E→ Spant. “Horizontal naturally isomorphic” means hori-
zontal naturally isomorphic as vertically lax double functors.

Example 3.8. The presheaf D(−, R) : Dhorop → Spant is represented by the
double functor ∗ → D that is constant R. The indexed presheaf D(−,−) :
Dhorop × V1D → Spant is represented by the inclusion of the vertical 1-category
of D into D.

Definition 3.9. A morphism of presheaves is a horizontal natural transformation
of vertically lax double functors Dhorop → Spant.

We next prove the Double Yoneda Lemma. For simplicity, we do the covariant
version rather than the contravariant version.

Proposition 3.10 (Double Yoneda Lemma). Let D be a small double category,
R an object of D, and K : D → Spant a vertically lax double functor. Then the
map

θR,K : HorNat(D(R,−), K) // KR

α � // αR(1hR)

is a bijection. Further, this bijection is a horizontal natural isomorphism of double
functors HN and E

HN,E : D× DblCatvert.lax(D,Spant) // Spant

HN(R,K) := HorNat(D(R,−), K)

E(R,K) := K(R).

Proof: This is an extension of the proof of [2, Theorem 1.3.3]. We define
θR,K(α) = α(1hR) ∈ K(R) and for a ∈ K(R) we define a horizontal natural trans-
formation τ(a) : D(R,−) ⇒ K. To each object D ∈ D we have the horizontal
morphism in Spant

τ(a)D : D(R,D) // KD

f � // K(f)(a).
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and to each vertical morphism j in D we have the square τ(a)j in Spant

(2)

D(R,D)Obj
τ(a)D // K(D)

D(1vR, j) τ(a)j //

OO

��

K(j)

OO

��
D(R,D′)Obj

τ(a)D′
// K(D′)

=

D(R,D)Obj
K(−)(a)

// K(D)

D(1vR, j) K(−)(δKR (a)) //

OO

��

K(j)

OO

��
D(R,D′)Obj

K(−)(a)
// K(D′).

These squares commute, because for

R //

ξ

D

j
��

R // D′

∈ D(1vR, j) the squares

(3) K(R) K(R)
K(f)

// K(D)

K(R) δkR
// K(1vR)

OO

��

K(ξ) // K(j)

OO

��
K(R) K(R)

K(f ′)
// K(D′)

commute. For example, the top square in (2) evaluated on ξ is the same as the
top half of (3) evaluated on a.

The naturality of τ(a), τ , and θ is proved as in [2, Theorem 1.3.3]. Alterna-
tively, the proposition follows from the internal Yoneda Lemma.

Corollary 3.11. For objects R, S ∈ D, each horizontal natural transformation
D(R,−) ⇒ D(S,−) has the form D(h,−) for a unique horizontal arrow h :
S → R.

Remark 3.12. If k is a vertical morphism in D, then

D(k,−) : (Ver D, Sq D) // (Sets, functions)

`
� // D(k, `)

is an ordinary presheaf on (Ver D, Sq D)op.

4. Universal Squares in a Double Category

The components of the unit or counit of any 1-adjunction are universal ar-
rows. Conversely, a 1-adjunction can be described in terms of such universal
arrows. In this section we introduce universal squares in a double category, with
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a view towards the analogous characterizations of horizontal double adjunctions
in Theorem 5.2.

Definition 4.1. If S : D→ C is a double functor, then a (horizontally) universal
square from the vertical morphism j to S is a square µ in C of the form

C1

j

��

u1 //

µ

SR1

Sk
��

C2 u2

// SR2

such that the map

(4) D(k, `) // C(j, S`)

β′ � // [µ Sβ′]

is a bijection for all vertical morphisms `. There is of course a dual notion of
(horizontally) universal square from a double functor S to a vertical morphism j.

Proposition 4.2. Suppose S : D → C is a 2-functor and u : C → SR is a
morphism in C. Then µ := ivu is universal from 1vC to HS if and only if the
functor

D(R,D)
S(−)◦u

// C(C, SD)

f ′ � // [u Sf ′]

is an isomorphism of categories. In other words, the square ivu in HC is universal
if and only if the morphism u of C is 2-universal.

Proof: In this situation the assignment β′ 7→ [µ HSβ′] is a functor, namely
whiskering with u. Then the claim follows from the observation that the mor-
phism part of a functor is bijective if and only if the functor is an isomorphism
of categories.

Proposition 4.3. The bijection in (4) is a natural transformation of functors

(5) D(k,−) +3 C(j, S−) .

Conversely, given k and j, any natural bijection of functors as in (5) arises in
this way from a unique square µ ∈ C(j, Sk) which is universal from j to S.

Proof: The proof is very similar to that of [9, Proposition 1, page 59]. The
bijection is natural because

[µ S [β′ γ′]] = [µ [Sβ′ Sγ′]] .

For the converse, let φ : D(k,−)⇒ C(j, S−) be a natural bijection, and define
µ := φk(i

h
k). The naturality diagram for φ and β′ yields [µ Sβ′] = φ`(β

′), which
in turn implies that (4) is a bijection, since φ` is a bijection.
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For later use, we record the dual to Proposition 4.3 using the inverse bijection.

Proposition 4.4. Universal squares in C(Sk, j) from S : D → C to j are in
bijective correspondence with natural bijections

C(S−, j) +3 D(−, k) .

5. Double Adjunctions

In any 2-category K, there is a notion of adjunction. Namely, two 1-morphisms
f : A → B and g : B → A in K are adjoint if there exist 2-cells η : 1A ⇒ gf
and ε : fg ⇒ 1B satisfying the triangle identities. In particular, if we consider
adjunctions in the 2-category DblCath of small double categories, double func-
tors, and horizontal natural transformations, we arrive at the notion of horizontal
double adjunction in Definition 5.1. The 2-category DblCath is the same as the
2-category Cat(Cat) of internal categories in Cat, internal functors, and internal
natural transformations, so we may expect various characterizations of horizon-
tal double adjunctions in terms of universal arrows and bijections of hom-sets,
along the lines of Theorem 2 on page 83 of Mac Lane’s book [9]. The character-
izations of horizontal double adjunctions in Theorems 5.2 and 5.3 are the main
results of this section. In Section 8 we present a completely worked example of a
vertical double adjunction: the free and forgetful double functors between endo-
morphisms and monads in Span. This is an extension of the classical adjunction
between small directed graphs and small categories.

Definition 5.1. Let A and X be double categories. A horizontal double adjunc-
tion from X to A consists of double functors

(6) X
F

&&
A

G

ff

and horizontal natural transformations

η : 1X +3GF

ε : FG +31A

such that the composites

G
η∗iG +3 GFG

iG∗ε +3 G

F
iF ∗η +3 FGF

ε∗iF +3 F

are the respective identity horizontal natural transformations. In this case we
say F and G are horizontal double adjoints and we write F a G.
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A horizontal double adjunction from X to A is precisely an adjunction in the
2-category DblCath = Cat(Cat) from X to A. A vertical double adjunction is an
adjunction in the 2-category DblCatv, which has objects small double categories,
morphisms double functors, and 2-cells vertical natural transformations. Our
convention is that a double adjunction is assumed to be horizontal when neither
“horizontal” nor “vertical” is written.

Theorem 5.2. A double adjunction F a G is completely determined by the items
in any one of the following lists.

(i) Double functors F , G as in (6) and a horizontal natural transformation
η : 1X ⇒ GF such that for each vertical morphism j in X, the square ηj
is universal from j to G.

(ii) A double functor G as in (6) and functors

F0 : (Obj X,Ver X) // (Obj A,Ver A)

η : (Obj X,Ver X) // (Hor X, Sq X)

such that for each vertical morphism j in X the square ηj is of the form

X

j

��

ηX //

ηj

GF0X

GF0j

��
Y ηY

// GF0Y

and is universal from j to G. Then the double functor F is defined on
vertical arrows by F0 and on squares χ by universality via the equation
[ηsχ GFχ] = [χ ηtχ].

(iii) Double functors F , G as in (6) and a horizontal natural transformation
ε : FG⇒ 1A such that for each vertical morphism k in A, the square εk
is universal from F to k.

(iv) A double functor F as in (6) and functors

G0 : (Obj A,Ver A) // (Obj X,Ver X)

ε : (Obj A,Ver A) // (Hor A, Sq A)

such that for each vertical morphism k in A the square εk is of the form

FG0A

FG0k
��

εA //

εk

A

k

��
FG0B εB

// B

and is universal from F to k. Then the double functor G is defined
on vertical morphisms by G0 and on squares α by universality via the
equation [FGα εtα] = [εsα α].
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(v) Double functors F , G as in (6) and a bijection

ϕj,k : A(Fj, k) //X(j, Gk)

natural in the vertical morphisms j and k and compatible with vertical
composition. Naturality here means natural isomorphism of functors

(Ver X, Sq X)op × (Ver A, Sq A) // Set ,

and compatibility with vertical composition means

ϕ

([
α
β

])
=

[
ϕ(α)
ϕ(β)

]
.

(vi) Double functors F , G as in (6) and a horizontal natural isomorphism
between the vertically lax double functors (parameterized presheaves)

A(F−,−) : Xhorop × A //Spant

X(−, G−) : Xhorop × A //Spant .

Proof: We first prove Definition 5.1 is equivalent to (v), then we use this
equivalence to prove the other equivalences. In each equivalence, we omit the
proof that the two procedures are inverse to one another.

Definition 5.1 ⇒ (v). Suppose 〈F,G, η, ε〉 is a double adjunction. Then for any
square γ of the form

//

j

��
γ `

��//

we have [ηj GFγ] = [γ η`] by the horizontal naturality of η. We define ϕj,k and
ϕ−1
j,k by

ϕj,k(α) := [ηj Gα]

ϕ−1
j,k(β) := [Fβ εk] .

Then we have

ϕϕ−1β = ϕ [Fβ εk]

= [ηj GFβ Gεk]

= [β ηGk Gεk] (by horizontal naturality)

= β (by triangle identity)

and similarly ϕ−1ϕ(α) = α. Clearly ϕj,k is natural in j and k and compatible
with vertical composition, and we now have 〈F,G, ϕ〉 as in (v).

(v) ⇒ Definition 5.1. From 〈F,G, ϕ〉 as in (v), we define horizontal natural
transformations by

ηj := ϕ(ihFj)

εk := ϕ−1(ihGk).
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They are natural and satisfy the triangle identities by the same arguments as in
Mac Lane’s book [9, pages 81-82], and we obtain 〈F,G, η, ε〉 as in Definition 5.1.

(i) ⇒ (v). Suppose we have 〈F,G, η〉 as in (i). The universality of ηj says that

(7) A(Fj, k) // X(j, Gk)

α � // [ηj Gα]

is a bijection. Clearly this bijection is natural in j and k, and compatible with
vertical composition, so we obtain 〈F,G, ϕ〉 as in description (v).

(v) ⇒ (i). From the first part, we know that Definition 5.1 is equivalent to (v)
and that ϕj,k(α) = [ηj Gα]. This gives us F , G, and η. The universality of ηj
then follows, because the map in (7) is equal to ϕj,k and is therefore bijective.

(i) ⇒ (ii). The data in (ii) are just a restriction of the data in (i).

(ii) ⇒ (i). The universality of ηj guarantees that for each square χ in X there is
a unique square Fχ such that [ηsχ GFχ] = [χ ηtχ]. This defines F on squares
χ in X, and we take F to be F0 on the vertical morphisms of X. Then F is a
double functor by the universality and the hypothesis that F0 and η are functors.
Finally, η is natural because of the defining equation [ηsχ GFχ] = [χ ηtχ].

5.1 ⇔ (iii). The proof of the equivalence Definition 5.1 ⇔ (iii) is dual to the
proof the equivalence Definition 5.1 ⇔ (i).

(iii) ⇔ (iv). The proof of the equivalence (iii) ⇔ (iv) is dual to the proof of the
equivalence (i) ⇔ (ii).

(v) ⇔ (vi). This is just the definitions.

This completes the proof of the equivalence of Definition 5.1 with each of (i),
(ii), (iii), (iv), (v), and (vi).

See Section 8 for a completely worked example of a double adjunction in terms
of Theorem 5.2 (v). For a characterization of adjunctions between pseudo double
categories in terms of certain kinds of graphs, see Garner [8, Appendix A]. For a
discussion of framed adjunctions between framed bicategories, see Shulman [10,
Section 8].

In ordinary 1-category theory, a functor F : A → X admits a right adjoint if
and only if each presheaf A(F−, A) is representable for each A. But for double
categories and double functors F : A→ X, we must consider the representability
of the parameterized Spant-valued presheaf A(F−,−).

Theorem 5.3 (Characterization of horizontal left double adjoints in terms of
parameterized representability). Let F : X → A be a double functor. Then F
admits a horizontal right double adjoint if and only if the parameterized presheaf
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on X
A(F−,−) : Xhorop × V1A // Spant

is represented by a double functor G0 : V1A→ X (see Definitions 3.1 and 3.7 as
well as Section 2). That is, the double functor F admits a horizontal right double
adjoint if and only if for every vertical morphism k in A, the classical presheaf

A(F−, k) : (Ver X, Sq X)op //Set

is representable in a way compatible with vertical composition.

Proof: Suppose that a horizontal right double adjoint G exists. Then by
Theorem 5.2 (vi) the parameterized presheaves A(F−,−) and X(−, G−) are hor-
izontally naturally isomorphic as vertically lax functors on Xhorop × A, so their
restrictions to Xhorop×V1A are also horizontally naturally isomorphic. The dou-
ble functor G0 is simply the restriction of G. We have represented A(F−,−) by
G0.

In the other direction, suppose that the parameterized presheaf on X

A(F−,−) : Xhorop × V1A // Spant

is representable by a double functor G0 : V1A→ X, and let

ϕ : A(F−,−) +3 X(−, G0−)

be a horizontally natural isomorphism between vertically lax functors. For verti-
cal morphisms (j, k), we then have an isomorphism of spans in Set.

A(Fsvj, svj)
ϕ(svj,svj)

// X(svj,G0s
vj)

A(Fj, j)
ϕ(j,k)

//

sv

OO

tv

��

X(j,G0j)

sv

OO

tv

��
A(Ftvj, tvj)

ϕ(tvj,tvj)
// X(tvj,G0t

vj) .

Since V1A has no nontrivial horizontal morphisms or squares, the condition of
horizontal naturality in k is satisfied vacuously. So, essentially we have horizon-
tally natural bijections ϕ(−, k) : A(F−, k) ⇒ X(−, G0k), and these correspond
to universal squares from F to k of the form

FG0A

FG0k
��

ε(A)
//

ε(k)

A

k

��
FG0B

ε(B)
// B
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by Proposition 4.4. The assignments of ε(A) and ε(k) to A and k form a functor

ε : (Obj A,Ver A) // (Hor X, Sq X)

because of the compatibility of ϕ with the vertical laxness of the parameterized
presheaves. Finally, the characterization in Theorem 5.2 (iv) tells us that G0

extends to a right adjoint G, defined on squares α using universality and the
equation

[
FGα ε(thα)

]
=
[
ε(shα) α

]
.

6. Compatibility with Foldings or Cofoldings

Many double categories that arise in practice are equipped with additional
structures which make them easier to work with. In some instances, this extra
structure allows one to reduce questions about the double category to questions
about the horizontal 2-category. In this section we investigate to what extent
adjunctions in the 2-category of double categories with folding/cofolding can be
reduced to the horizontal 2-adjunction.

Extra structures on double categories have various equivalent formulations,
each with its own motivating point of view. Perhaps the earliest extra structure
on a double category is a connection pair in the sense of Brown–Spencer [4], which
was shown to be equivalent to thin structures by Brown–Mosa in [3]. The foldings
of Fiore in [6] are another structure on double categories, and these are equivalent
to connection pairs without assuming the horizontal and vertical 1-categories are
the same. Similarly, cofoldings are equivalent to coconnection pairs. Foldings and
cofoldings translate squares of a double category into 2-cells in the horizontal
2-category, in the same way that the quintet squares of Examples 6.1 and 6.7 are
2-cells in the horizontal 2-category.

Foldings and cofoldings are recalled in Definitions 6.2 and 6.8. They can also be
adapted to pseudo double categories, as was sketched in [6] for foldings. Pseudo
double categories with both folding and cofolding are essentially the same as
the framed bicategories of [10]. However, in this article we work with foldings
and cofoldings individually, rather than assuming a framing, because several im-
portant examples admit either a folding or a cofolding, but not both. This is
the case for the double categories of endomorphisms and monads, End(D) and
Mnd(D), in Section 7: if D admits a cofolding, then so do End(D) and Mnd(D)
in Proposition 7.5, but the analogous statement for foldings is not true.

Our results concerning double adjunctions between double categories with ex-
tra structure are summarized as follows. If F and G are double functors between
double categories with foldings, and F and G preserve the foldings, then F and
G are horizontally double adjoint if and only if the horizontal 2-functors HF and
HG are 2-adjoint, as we prove in Proposition 6.10. If we make an additional
assumption on the foldings, namely that their holonomies are fully faithful, then
a double functor F preserving foldings admits a horizontal right double adjoint
if and only if F admits a right adjoint in any other sense. That is, F admits a
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horizontal right double adjoint if and only if the horizontal 2-functor HF admits
a right 2-adjoint if and only if the vertical 2-functor VF admits a right 2-adjoint
if and only if the double functor F admits a vertical right double adjoint, as we
prove in Corollary 6.13. We have analogous statements for double categories with
cofoldings: Proposition 6.10 also holds for double categories with cofolding, and
Corollary 6.13 has its analogue in Corollary 6.16 for fully faithful coholonomies.

The holonomy is the part of a folding which translates vertical morphisms to
horizontal morphisms in a functorial way preserving source and target. Fully
faithfulness of the holonomy is a very strong assumption, as it implies that
the double category is isomorphic to the quintets QC for some 2-category C.
Most double categories are obviously not of the form QC. However, the idea for
Corollary 6.16 surprisingly also works for the forgetful double functor U :
Mnd(D)→ End(D), even though the coholonomy is not fully faithful. We prove
in Theorem 9.5 that a double category D with cofolding admits the construction of
free monads horizontally if and only if its horizontal 2-category HD admits the
construction of free monads if and only if its vertical 2-category VD admits
the construction of free monads if and only if the double category D admits the
construction of free monads vertically.

We begin the detailed discussion of foldings with the example of quintets.

Example 6.1 (Quintets). A special double category associated to a 2-category C
is Ehresmann’s double category QC of quintets of C. Its objects are the objects
of C, horizontal and vertical morphisms are the morphisms of C, and the squares

A
f //

j

��
α

B

k
��

C g
// D

are the 2-cells α : k ◦ f ⇒ g ◦ j in C. The horizontal 2-category of QC is C. The
vertical 2-category of QC is C with the 2-cells reversed.

The double category QC is entirely determined by its horizontal 2-category.
Similarly, any double category with folding is determined by its vertical 1-category
and horizontal 2-category. Brown–Mosa’s notion of folding in [3] was extended
in [6] to non edge-symmmetric double categories.

Definition 6.2 (Definition 3.16 of [6]). A folding on a double category D consists
of the following.

(i) A 2-functor (−) : (VD)0 → HD which is the identity on objects. In
other words, to each vertical morphism j : A→ C, there is associated a
horizontal morphism j : A → C with the same domain and range in
a functorial way. We call this 2-functor j 7→ j the holonomy, following the
terminology of Brown-Spencer in [4], who first distinguished the notion.
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(ii) Bijections Λf,k
j,g from squares in D with boundary

(8) A
f //

j

��

B

k

��
C g

// D

to squares in D with boundary

(9) A
[f k]

// D

A
[j g]

// D.

These bijections are required to satisfy the following axioms.

(i) Λ is the identity if j and k are vertical identity morphisms.
(ii) Λ preserves horizontal composition of squares, that is,

Λ


A

f1 //

j

��

α

B
f2 //

k

��

β

C

`

��
D g1

// E g2
// F

 =

A
[f1 f2 `]

//

[ivf1
Λ(β)]

F

A [f1 k g2] //

[Λ(α) ivg2 ]

F

A
[j g1 g2]

// F.

(iii) Λ preserves vertical composition of squares, that is,

Λ



A

j1

��

f //

α

B

k1

��
C g //

βj2

��

D

k2

��
E

h
// F,


=

A
[f k1 k2]

//

[Λ(α) iv
k2

]

F

A [j1 g k2] //

[iv
j1

Λ(β)]

F

A
[j1 j2 h]

// F.
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(iv) Λ preserves identity squares, that is,

Λ


A

j

��

ihj

A

j

��
B B

 =

A
j //

iv
j

B

A
j

// B.

The notion of folding on a double category can be packaged succinctly as a
double functor Λ: D→ QHD which is the identity on the horizontal 2-category
HD of D and is fully faithful on squares.

Example 6.3. The double category Span admits a folding. The holonomy is(
A

j→ C
)

� //

(
A

1hA← A
j→ C

)
and the folding is

A

j

��

Y
f0oo

α

��

f1 // B

k
��

C Zg0
oo

g1
// D

 � //


A Y

f0oo kf1 //

(f1,α)
��

D

A A×D Zpr1
oo

g1◦pr2
// D

 .

Remark 6.4. If a double category D is equipped with a folding, then 2-cell com-
position in the vertical 2-category VD corresponds to 2-cell composition in the
horizontal 2-category HD. More precisely, if f1, f2, g1, g2 are identities in Defini-
tion 6.2 (ii), then [ α β ] is the vertical composition β�α in the 2-category VD,
and compatibility with horizontal composition says Λ(β�α) = Λ(α)�Λ(β). Con-
cerning vertical composition in the 2-category VD, if f, g, h in Definition 6.2 (iii),
then

[
α
β

]
is the horizontal composition β ∗α in the 2-category VD, and Λ(β ∗α) =

Λ(β) ∗ Λ(α).

Definition 6.5. Let C and D be double categories with folding. A double functor
F : C→ D is compatible with the foldings if

F (j) = F (j) and F (ΛC(α)) = ΛD(F (α))

for all vertical morphisms j and squares α in C.

Definition 6.6. Let F,G : C→ D be morphisms of double categories with fold-
ing. A horizontal natural transformation θ : F ⇒ G is compatible with the foldings
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if for all vertical morphisms j in C the following equation holds.

(10) Λ


FA

θA //

Fj

��

θj

GA

Gj

��
FC

θC
// GC

 =

FA
[θA Gj]

//

iv
[θA Gj]

GC

FA
[Gj θC]

//// GC

A vertical natural transformation σ : F ⇒ G is compatible with the foldings if for
all vertical morphisms j the following equation holds.

(11) Λ


FA

Fj //

σA

��

σj

FC

σC

��
GA

Gj

// GC


=

FA
[Fj σC]

//

iv
[Fj σC]

GC

FA
[σA Gj]

//// GC

Some double categories admit a cofolding rather than a folding, as the following
variant of Example 6.1 illustrates. In double adjunctions between double cate-
gories of monads and double categories of endomorphisms, cofoldings are more
relevant than foldings, because cofoldings produce a map from vertical monad
maps to horizontal monad maps.

Example 6.7. If C is a 2-category, let QC be the double category in which the
objects are the objects of C, the horizontal 1-category is the underlying 1-category
of C, the vertical 1-category is the opposite of the underlying 1-category of C,

and the squares

A
f //

jop

��
α

B

kop

��
C g

// D

are 2-cells of the form

A
f //

α

�$
@@@@@@@

@@@@@@@ B

C g
//

j

OO

D

k

OO

in C.

The double category QC admits a cofolding in the following sense.

Definition 6.8. A cofolding on a double category D consists of the following.

(i) A 2-functor (−)∗ : (VD)op
0 → HD which is the identity on objects. In

other words, to each vertical morphism j : A → C, there is associated
a horizontal morphism j∗ : C → A in a functorial way. We call the
2-functor j 7→ j∗ the coholonomy.
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(ii) Bijections Λf,k
j,g from squares in D with boundary

(12) A
f //

j

��

B

k

��
C g

// D

to squares in D with boundary

(13) C
[j∗ f ]

// B

C
[g k∗]

// B.

These bijections are required to satisfy the following axioms.

(i) Λ is the identity if j and k are vertical identity morphisms.
(ii) Λ preserves horizontal composition of squares, that is,

Λ


A

f1 //

j

��

α

B
f2 //

k

��

β

C

`

��
D g1

// E g2
// F

 =

D
[j∗ f1 f2]

//

[Λ(α) ivf2
]

C

D [g1 k∗ f2] //

[ivg1 Λ(β)]

C

D
[g1 g2 `∗]

// C.

(iii) Λ preserves vertical composition of squares, that is,

Λ



A

j1

��

f //

α

B

k1

��
C g //

βj2

��

D

k2

��
E

h
// F,


=

E
[j∗2 j∗1f ]

//

[iv
j∗2

Λ(α)]

B

E [j∗2 g k∗1 ] //

[Λ(β) iv
k∗1

]

B

E
[h k∗2 k∗1 ]

// B.
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(iv) Λ preserves identity squares, that is,

Λ


A

j

��

ihj

A

j

��
B B

 =

B
j∗ //

iv
j∗

A

B
j∗

// A.

Example 6.9. The double category Span admits a cofolding. The coholonomy
is (

A
j→ C

)
� //

(
C

j← A
1hA→ A

)
.

The cofolding is similar to the folding described in Example 6.3.

If two given double functors F and G are compatible with the foldings (re-
spectively cofoldings), then one can reduce the question of horizontal double
adjointness to the question of 2-adjointness for the underlying 2-functors HF
and HG.

Proposition 6.10. Let A and X be double categories with folding (respectively
cofolding) and consider double functors F and G compatible with the foldings
(respectively cofoldings).

(14) X
F

&&
A

G

ff

Then F and G are horizontal double adjoints if and only if their horizontal
2-functors HF and HG are 2-adjoints.

Proof: If F and G are double adjoints, then HF and HG are 2-adjoints, since
the 2-functor H : DblCath → 2-Cat preserves adjoints, as does any 2-functor.

For the converse, suppose that F and G are compatible with the foldings and
ϕX,A : HA(FX,A) → HX(X,GA) is a natural isomorphism of categories. For
vertical morphisms j and k in X and A respectively, we define a bijection

ϕj,k : A(Fj, k) //X(j, Gk)

ϕj,k(α) :=
(

Λf†,Gk
j,g†

)−1

ϕsj,tk

(
Λf,k
Fj,g(α)

)
.

Here f † and g† are the transposes of the horizontal morphisms f and g with
respect to the underlying 1-adjunction. The naturality of ϕX,A guarantees that
the boundaries are correct.

The bijection ϕj,k is compatible with vertical composition for the following
reasons:
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(i) ϕX,A is compatible with the vertical composition of 2-cells in HX and
HA

(ii) the isomorphism ϕX,A is natural in X and A, and
(iii) the foldings are compatible with vertical composition as in Definition

6.2 (iii).

The naturality of ϕj,k in j and k similarly follows from (i) and (ii) above, and
the compatibility of the foldings with horizontal composition in Definition 6.2 (ii).

These natural bijections ϕj,k compatible with vertical composition are equiva-
lent to a unit η and counit ε in a double adjunction by Theorem 5.2 (v), so we
are finished.

The analogous proof works for the cofolding claim.

Remark 6.11. In Proposition 6.10, note that the horizontal natural transfor-
mations η and ε which make F and G into horizontal double adjoints are not
required to be compatible with the foldings, though if η and ε exist, they can
be replaced by horizontal natural transformations compatible with the foldings.
Note also that the holonomy (respectively coholonomy) is not required to be fully
faithful.

Proposition 6.10 allows us to draw conclusions about double adjointness when
both double functors F and G are already given, and are compatible with the
foldings. It would be more desirable to have a statement reducing the existence
of a horizontal right double adjoint for a given double functor F (compatible with
foldings) to the existence of a right 2-adjoint for HF , without referencing G at
the outset. For such a statement, we need the strengthened hypothesis that the
holonomy is fully faithful. The result is Corollary 6.13, which says that F admits
a horizontal right double adjoint if and only if HF admits a right 2-adjoint, and
this occurs if and only if the analogous vertical statements hold. To prove this,
we use the 2-fully faithfulness of H and V in Proposition 6.12.

Let DblCatFoldHolh denote the 2-category of small double categories with
folding and fully faithful holonomy, double functors compatible with foldings, and
horizontal natural transformations compatible with folding (see Definitions 6.2,
6.5, and 6.6). Let DblCatFoldHolv denote the 2-category of small double cate-
gories with folding and fully faithful holonomy, double functors compatible with
foldings, and vertical natural transformations compatible with folding (see Defi-
nitions 6.2, 6.5, and 6.6).

Proposition 6.12. The forgetful 2-functors

(15) H : DblCatFoldHolh // 2Cat

(16) V : DblCatFoldHolv // 2Cat

are 2-fully faithful.
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Proof: Suppose F,G : C→ D are double functors compatible with foldings,
and in particular compatible with the fully faithful holonomy, and suppose HF =
HG. Then the double functors F and G agree on the horizontal 2-categories. If j
is a vertical morphism in C, then F (j) = F (j) = G(j) = G(j), and F (j) = G(j).
The double functors F and G similarly agree on squares because of the folding
bijections. Conversely, if a 2-functor is defined on horizontal 2-categories, then
it can be extended to the double categories using the bijective holonomy and
then the foldings. Thus H in (15) and V in (16) are bijective on the objects of
hom-categories.

Similar arguments hold for injectivity on horizontal respectively vertical natu-
ral transformations.

For surjectivity of (15) on 2-natural transformations, suppose θ : HF ⇒ HG is
a 2-natural transformation. We extend θ to a horizontal natural transformation:
for a vertical morphism j in C, define θj by equation (10). Then Λ(θk) = iv

[ θB Gk ]
and Λ(θj) = iv

[ θA Gj ]
and the equation

(17)

[
ivFf Λ(θk)

Λ(Fα) ivθC

]
=

[
ivθA Λ(Gα)

Λ(θj) ivGg

]
holds by 2-naturality. The double naturality [ Fα θk ] = [ θj Gα ] requirement
for θ then follows from an application of Λ−1 to (17).

For surjectivity of (16) on 2-natural transformations, suppose σ : VF ⇒ VG
is a 2-natural transformation. We extend σ to a vertical natural transformation:
for any horizontal morphism j in C, define σj by equation (11). Recall that the
holonomy is fully faithful, so any horizontal morphism is of the form j for a unique
vertical morphism j. Another consequence of the fully faithful holonomy, and
compatibility with horizontal composition of 2-cells in the vertical 2-category in
Remark 6.4, is that the holonomy and folding transform 2-natural transformations
VF ⇒ VG into 2-natural transformations HF ⇒ HG. With this fact, the proof
for surjectivity of (16) on 2-natural transformations proceeds like that of (15).

Corollary 6.13. Let A and X be double categories with folding and fully faithful
holonomies. Let F : X → A be a double functor compatible with the foldings.
Then the following are equivalent.

(i) The double functor F admits a horizontal right double adjoint (not nec-
essarily compatible with the foldings).

(ii) The 2-functor HF : HX→ HA admits a right 2-adjoint.
(iii) The double functor F admits a vertical right double adjoint (not neces-

sarily compatible with the foldings).
(iv) The 2-functor VF : VX→ VA admits a right 2-adjoint.

Proof: By Proposition 6.12, the 2-functor H in (15) is 2-fully faithful, so F
admits a horizontal right double adjoint compatible with the foldings if and only
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if HF admits a right 2-adjoint. But if F admits a horizontal right double adjoint
G not necessarily compatible with the foldings, then HG is still a right 2-adjoint
to HF , and Proposition 6.12 applies to extend the 2-adjunction HF a HG to a
horizontal double adjunction with left horizontal double adjoint F . Thus (i)⇔(ii)
and similarly (iii)⇔(iv).

To complete the proof, we observe (ii) ⇔ (iv), because the fully faithful ho-
lonomy and folding provide a 1-1 correspondence between 2-natural transforma-
tions VF1 ⇒ VF2 and 2-natural transformations HF1 ⇒ HF2, see Remark 6.4.

Example 6.14. The double category of quintets QC in Example 6.1 admits a
fully faithful holonomy. Let F : C→ D be a 2-functor. Then the double functor
QF : QC → QD admits a horizontal right double adjoint if only if F admits a
right 2-adjoint if and only if QF admits a vertical right double adjoint if and only
if VQF = F co admits a right 2-adjoint.

We also state the analogues of Proposition 6.12 and Corollary 6.13 for double
categories with cofoldings and fully faithful coholonomies. The coholonomy is
contravariant, so the horizontal and vertical double adjunctions go in the opposite
directions in Corollary 6.16.

Let DblCatCoFoldCoHolh denote the 2-category of small double categories
with cofolding and fully faithful coholonomy, double functors compatible with
cofoldings, and horizontal natural transformations compatible with cofolding (see
Definition 6.8 and consider the cofolding analogues of Definitions 6.5 and 6.6).
Let DblCatCoFoldCoHolv denote the 2-category of small double categories
with cofolding and fully faithful coholonomy, double functors compatible with
cofoldings, and vertical natural transformations compatible with cofolding (see
Definition 6.8 and consider the cofolding analogues of Definitions 6.5 and 6.6).

Proposition 6.15. The forgetful 2-functors

(18) H : DblCatCoFoldCoHolh // 2Cat

(19) V : DblCatCoFoldCoHolv
co // 2Cat

are 2-fully faithful.

Corollary 6.16. Let A and X be double categories with cofolding and fully faithful
coholonomies. Let F : X→ A be a double functor compatible with the cofoldings.
Then the following are equivalent.

(i) The double functor F admits a horizontal right double adjoint (not nec-
essarily compatible with the cofoldings).

(ii) The 2-functor HF : HX→ HA admits a right 2-adjoint.
(iii) The double functor F admits a vertical left double adjoint (not necessarily

compatible with the cofoldings).
(iv) The 2-functor VF : VX→ VA admits a left 2-adjoint.
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Example 6.17. The quintet variant QC in Example 6.7 admits a fully faith-
ful coholonomy. Let F : C → D be a 2-functor. Then the double functor
QF : QC→ QD admits a horizontal right double adjoint if and only if F admits
a right 2-adjoint if and only if QF admits a vertical left double adjoint if and
only if VQF = F op admits a left 2-adjoint.

7. Endomorphisms and Monads in a Double Category

One of the goals of this paper is to simultaneously remove several hypotheses
from the main theorem of [7] and strengthen its conclusion to obtain Theorem 9.5
of this paper, which says that if a double category D with cofolding admits the
construction of free monads in its horizontal 2-category, then D admits the con-
struction of free monads in every other sense. Towards that goal, we prove in
this section a cofolding on D induces a cofolding on the double categories End(D)
and Mnd(D) of endomorphisms and monads in D, see [7, Definitions 2.3 and 2.4].
We also give examples of End(D) and Mnd(D) in the case that D is the double
category of quintets. Another goal of this paper is Theorem 10.3, the characteri-
zation of the existence of Eilenberg–Moore objects in a double category in terms
of representability of certain parameterized presheaves. For that we also need an
understanding of the double category Mnd(D).

Example 7.1 (Endomorphisms in Quintets). To a 2-category C, we may as-
sociate two possible 2-categories of endomorphisms, depending on the choice
of 2-cell direction in the notion of endomorphism map. The double category
End(QC) contains both of these 2-categories in the following way (recall the
double category of quintets QC from Example 6.1). The objects of End(QC) are
the endomorphisms in C, while a horizontal morphism (F, φ) : (X,P ) → (Y,Q)
is a traditional endomorphism map in C, that is, a morphism F : X → Y in C
equipped with a 2-cell φ : QF ⇒ FP . A vertical endomorphism map, on the
other hand, is a morphism in C equipped with a 2-cell in the opposite direction
as φ. Squares with vertically trivial boundaries or horizontally trivial boundaries
are the 2-cells in the two possible 2-categories of endomorphisms in C.

Example 7.2. On the other hand, for the quintet variant QC in Example 6.7,
the objects of End(QC) are the endomorphisms in C, and the horizontal mor-
phisms in End(QC) are the traditional endomorphism maps in C. The vertical
1-category of End(QC) is the opposite of the category of endomorphisms in C
and traditional endomorphism maps.

Example 7.3 (Monads in Quintets). To a 2-category C, we may associate two
possible 2-categories of monads, depending on the choice of 2-cell direction in
the notion of monad map. The double category Mnd(QC) contains both of
these 2-categories in the following way (recall the double category of quintets
QC from Example 6.1). The objects of Mnd(QC) are the monads in C, while a
horizontal morphism (F, φ) : (X,P ) → (Y,Q) is a traditional monad map in C,
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that is, a morphism F : X → Y equipped with a 2-cell φ : QF ⇒ FP compatible
with the monad structure maps. A vertical endomorphism map, on the other
hand, is a morphism equipped with a 2-cell in the opposite direction as φ and
also compatible with the monad structure maps. Squares with vertically trivial
boundaries or horizontally trivial boundaries are the 2-cells in the two possible
2-categories of monads in C.

Example 7.4. On the other hand, for the quintet variant QC in Example 6.7, the
objects of Mnd(QC) are the monads in C, the horizontal morphisms in Mnd(QC)
are the traditional monad maps in C. The vertical 1-category of Mnd(QC) is
the opposite of the category of the monads and traditional monad maps in C.

We now turn to the main point of this section: a cofolding on D induces a
cofolding on Mnd(D) and End(D).

Proposition 7.5. If (D,ΛD) is a double category with cofolding (Definition 6.8),
then the double categories Mnd(D) and End(D) inherit cofoldings from D and
the forgetful double functor U : Mnd(D) → End(D) preserves them. The co-
holonomies and cofoldings are defined as in (i).

(i) (a) If (u, ū) : (X,P ) → (X ′, P ′) is a vertical endomorphism map, then
the corresponding horizontal endomorphism map (u, ū)∗ under the
coholonomy is

(u∗,ΛD(ū)) : (X ′, P ′)→ (X,P ).

(b) If α is an endomorphism square, then the corresponding endomor-
phism 2-cell is the D-cofolding of α, namely ΛD(α).

(ii) The assignments in (i) are compatible with vertical monad maps and
monad squares:
(a) If (X,P ) and (X ′, P ′) are monads, and (u, ū) is vertical monad map,

then (u, ū)∗ = (u∗,ΛD(ū)) is a horizontal monad map.
(b) If α is a monad square, then ΛD(α) is a monad 2-cell.

(iii) Moreover, if u : X → X ′ is a fixed vertical morphism in D, then

(u, ū) 7→ (u∗,Λ(ū))

is a bijection between vertical endomorphism maps (X,P ) → (X ′, P ′)
with underlying vertical morphism u and horizontal endomorphism maps
(X ′, P ′) → (X,P ) with underlying horizontal morphism u∗. If (X,P )
and (X ′, P ′) are monads, we have a similar one-to-one correspondence
between vertical monad maps with underlying morphism u and horizontal
monad maps with underlying morphism u∗.

(iv) If the coholonomy on D is fully faithful, then the coholonomies on Mnd(D)
and End(D) are also fully faithful.

Compare with [7, Lemma 3.4].
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Proof: Statement (i) defines a coholonomy and cofolding by the functoriality
of the coholonomy on D and the compatibility of ΛD with horizontal and vertical
composition of squares. Compatibility with monad structure maps in (ii)(a) also
follows from the compatibility of ΛD with horizontal and vertical composition of
squares. The bijection in (iii) for a fixed vertical morphism u (and hence also
fixed u∗) follows from the bijectivity of the cofolding. Statement (iv) clearly
follows from the definitions in (i) using the assumed fully faithfulness of the
coholonomy on D and the bijectivity of the cofolding ΛD.

It is worth pointing out that Statement (iii) does not say the coholonomies
in End(D) and Mnd(D) are fully faithful. Rather, Statement (iii) says if u is
a fixed vertical morphism in D, then we have the indicated bijections. Though
Statement (iii) is weaker than fully faithfulness of the coholonomies, it does allow
us to make strong conclusions. For example, Statement (iii) will be used many
times in the proof of Theorem 9.5.

8. Example: Endomorphisms and Monads in Span

Our next topic is a detailed example which illustrates the local description of
double adjunctions in Theorem 5.2 (v), makes concrete the double categories
of endomorphisms and monads in Section 7, and motivates Theorem 9.5 on free
monads. We consider the double category Span in which objects are small sets,
horizontal morphisms are spans, vertical morphisms are functions, and squares
are span morphisms, and we consider the forgetful-free vertical double adjunction

(20) End(Span)

F
,,

⊥ Mnd(Span).

G

ll

Though the double categories End(Span) and Mnd(Span) are horizontally weak
(horizontally they are bicategories), the double functors F and G strictly preserve
all compositions and units. The 1-adjunction

DirGraph

Free
))

⊥ Cat

Forget

kk

is the vertical 1-category part of (20).

Remark 8.1. Since the double adjunction (20) is vertical rather than horizontal,
we use the transpose of the characterizations in Theorem 5.2. We cannot simply
transpose the double categories and double functors in (20) in order to apply the
non-transposed Theorem 5.2, because our notions of monads in a double category
and their various morphisms prefer the horizontal direction as distinguished.
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We begin by spelling out the double categories End(Span) and Mnd(Span)
recalled in Section 7. Objects and vertical morphisms of End(Span) are directed
graphs G0 ← G1 → G0 and morphisms of directed graphs. A horizontal mor-
phism (U, φ) : G∗ → G′∗ in End(Span) is a span U : G0 ← U1 → G′0 equipped
with a chosen (not necessarily bijective) function φ : U1 ×G′0 G

′
1 → G1 ×G0 U1,

namely a square in Span as below.

(21) G0 U1
oo // G′0

φ

G′1oo // G′0

G0 G1
oo // G0 U1

oo // G′0 .

Horizontal composition of horizontal morphisms is by pullback. The associated
φ-part of the composite is the vertical composition of the following squares.

(22) G0

1U

U1
oo // G′0 V1

oo // G′′0

ψ

G′′1oo // G′′0

G0 U1
oo // G′0

φ

G′1oo // G′0

1V

V1
oo // G′′0

G0 G1
oo // G0 U1

oo // G′0 V1
oo // G′′0 .

A square in End(Span)

(23) G∗
U //

J∗
��

α

G′∗

J ′∗
��

H∗ V
// H ′∗

is a square in Span

G0

��

U1
oo

α

��

// G′0

��
H0 V1

oo // H ′0

such that the cube with φ on top and φ′ on bottom commutes. Horizontal and
vertical composition of squares in End(Span) are the horizontal and vertical com-
positions of the underlying squares in Span, for example, horizontal composition
is defined via pullback.

The other double category in the adjunction (20), namely Mnd(Span), is the
double category of monads in the double category of spans. Objects and vertical
morphisms are categories and functors. The horizontal morphisms of Mnd(Span)
are the same as Street’s morphisms of monads in a 2-category [12]. Namely, a
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horizontal monad morphism U : C∗ → D∗ is a span C0 ← U1 → D0 and a square
in Span

C0 U1
oo // D0

φ

D1
oo // D0

C0 C1
oo // C0 U1

oo // D0

such that [[
1vU ηD

]
φ

]
=
[
ηC 1vU

]
and  φ 1vD

1vC φ
µC 1vU

 =

[[
1vU µD

]
φ

]
.

In other words, we have a function φ : U1 ×D0 D1 → C1 ×C0 U1 such that

(24) φ(u, 1tu) = (1su, u)

for all u ∈ U1 and

(25) φC(φU(u, d), d′) ◦ φC(u, d) = φC(u, d′ ◦ d)

(26) φU(φU(u, d), d′) = φU(u, d′ ◦ d).

Note that if D and K have just one object, then equation (26) and the unit
equation (24) essentially say φU defines a left monoid action of D1 on U1. Hor-
izontal composition of horizontal morphisms in Mnd(Span) is by pullback, and
the φ-parts compose as in equation (22).

Remark 8.2. One way to think of φ is as an assignment that converts a path

∈U1 // ∈D1 //

to a path
∈C1 // ∈U1 //

in a way compatible with unit and composition.

Returning to the description of Mnd(Span), a square

(27) A∗
(U,φ)

//

(J1,J0)

��
α

B∗

(K1,K0)
��

C∗
(V,ψ)

// D∗

in Mnd(Span) is a square α in Span such that[
φ

[ J1 α ]

]
=

[
[ α K1 ]

ψ

]
,
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in other words

(J1(φA(u, b)), α(φU(u, b))) = (ψC(α(u), K(b)), ψV (α(u), K(b)).

Now that we understand the double categories in (20), we next turn to the
double functors F and G. On objects and vertical morphisms (that is, on directed
graphs and their morphisms), F is the free category functor. On a horizontal
morphism (U, φ) : G∗ → G′∗ in End(Span) as in (21), we have F (U)1 := U1.
The function φ extends to F (φ) by Remark 8.2 and the fact that morphisms
in the free category on a (non-reflexive) graph are paths of edges. On F (U)1×G′0
G′1, the function F (φ) is simply φ. On F (U)1 ×G′0 F (G′∗)1, the function F (φ) is
defined by moving the element of U1 across the path, one edge at a time using φ.
For example,

u // g // h //

φG(u,g)
//

φU (u,g)
// h //

(28)
φG(u,g)

//
φG(φU (u,g),h)

//
φU (φU (u,g),h)

//

which is the same as below.

u // h◦g //

(29)
φG(u,h◦g)

//
φU (u,h◦g)

//

The equality of (28) and (29) shows that F (φ) satisfies the composition rules in
(25) and (26) by definition. Similarly, (24) holds by definition and the fact that
our directed graphs are non-reflexive. Concerning the definition of F on squares,
the double functor F takes a square α in End(Span) as in (23) to the square
Fα in Mnd(Span) as in (27) which has the same middle function U1 → V1 as
α, but the left and right vertical morphisms are the unique functors on the free
categories that extend the directed graph morphisms on the left and right of α.
For this reason, F clearly preserves vertical composition of vertical morphisms
and squares. It also preserves horizontal composition because the horizontal
composition in both double categories is defined via pullback. Also the φ part of
F (V ◦U) is the appropriate composite of the φ-parts of U and V by an inductive
verification using the “switching” point of view on φ as just discussed. Thus F
is a strict double functor.

The double functor G is easy to describe: it is simply the forgetful double
functor, and is therefore clearly a strict double functor.

We use the transposition of the local description of double adjunctions in The-
orem 5.2 (v) to prove that F a G as a vertical double adjunction. To simplify
our work with the transposed characterization, we introduce the notations

Mnd(Span)

(
FU
V

)
and End(Span)

(
U
GV

)
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to mean the set of squares in Mnd(Span) with vertical source FU and vertical
target V , and the set of squares in End(Span) with vertical source U and vertical
target GV . This notation is the transpose of the notation in equation (1). We
define a bijection

(30) ϕUV : Mnd(Span)

(
FU
V

)
// End(Span)

(
U
GV

)

FA∗
F (U,φ)

//

J

��

α

FB∗

K

��
C∗

(V,ψ)
// D∗

� //

A∗
(U,φ)

//

Jres

��

αres

B∗

Kres

��
GC∗

G(V,ψ)
// GD∗

that is compatible with horizontal composition. The index res means restriction:
the maps Jres and Kres are the restrictions of the functors J and K to the directed
graphs A∗ and B∗, while αres has the same exact middle function U1 → V1 as α
does. The square αres is restricted only in the sense that its horizontal source and
target are restricted. Since the middle function of α is the same as that of αres,

the function ϕUV is manifestly injective. If α′ is a square in End(Span)

(
U
GV

)
,

then we use the bijection J ↔ Jres to find the horizontal source and target of
(ϕUV )−1(α′), and define the middle function of (ϕUV )−1(α′) to be that of α′. This
proves the surjectivity of ϕUV .

To see that ϕ([ α β ]) = [ ϕ(α) ϕ(β) ], one only needs to observe that (α×K0

β)res is the same as αres ×(Kres)0 βres because the diagrams, from which we are
forming the pullbacks, are exactly the same. Namely,

(FA∗)0

J0

��

F (U)1
oo

α

��

// (FB∗)0

K0

��

F (W )1
oo //

β

��

(FH∗)1

L0

��
C0 V1

oo // D0 X1
oo // D0

is exactly the same as

A0

(Jres)0
��

U1
oo

αres

��

// B0

(Kres)0
��

W1
oo //

βres

��

H1

(Lres)0
��

(GC∗)0 (GV )1
oo // (GD∗)0 (GX)1

oo // (GD∗)0.

It only remains to check the naturality of ϕUV in U and V , but that is similar
to the naturality of the ordinary free category functor-forgetful functor adjunc-
tion, the only difference is that here we use vertical pre- and post-composition of
squares.
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In summary, the bijection φUV in (30) is compatible with horizontal composition
and natural in the horizontal morphisms U and V , so F a G in (20) is a vertical
double adjunction by Theorem 5.2 (v).

Another important example is the horizontal double adjunction between the
“underlying” and the inclusion double functor

Mnd(D)

Und

((
⊥ D.

IncD

kk

The inclusion double functor IncD always admits Und as a horizontal left double
adjoint, but IncD may or may not admit a right double adjoint. When IncD admits
a horizontal right double adjoint, we say that D admits Eilenberg–Moore objects.
We will return to this topic in Section 10. Next we consider double adjoints to
the forgetful double functor from monads in D to endomorphisms in D.

9. Free Monads in Double Categories with Cofolding

In this section we remove several hypotheses from the main theorem of [7]
and strengthen its conclusion to obtain Theorem 9.5, which says that if a double
category D with cofolding admits the construction of free monads in its horizontal
2-category, then D admits the construction of free monads in every other sense.
We first recall free monads on endomorphisms in a 2-category.

Definition 9.1. Let K be a 2-category. We say K admits the construction of free
monads if either of the two following equivalent conditions hold.

(i) For every endomorphism (Y,Q) there exists a monad (Y,Qfree) and a
2-cell ι : Q → Qfree in K such that the endomorphism map (1Y , ιQ) :
(Y,Qfree)→ (Y,Q) is universal in the sense that for every monad (X,P ),
post-composition with (1Y , ιQ) induces an isomorphism of categories

MndK((X,P ), (Y,Qfree))
(1Y ,ιQ)◦U(−)

// EndK(U(X,P ), (Y,Q)),

where U : Mnd(K)→ End(K) is the forgetful 2-functor.
(ii) The forgetful functor U : Mnd(K) → End(K) admits a right 2-adjoint

R : End(K) → Mnd(K) with a counit ε such that the underlying mor-
phism in K of each counit component ε(Y,Q) : UR(Y,Q)→ (Y,Q) is 1Y .

Remark 9.2. Definition 9.1 is due to Staton [11, Theorem 6.1.5] in the case
K = Cat, and is treated in general in our first paper [7, Theorem 1.1]. The
reason Definition 9.1 requires a right adjoint to the forgetful functor (as opposed
to an expected left adjoint) is the choice of the direction of 2-cell in the definition
of endomorphism map and monad map, as we now explain. This right adjoint
restricts to a left adjoint when we consider monads and endomorphisms on a fixed
object Y .
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Consider a fixed object Y of the 2-category K. The category of endomorphisms
on Y , denoted End(Y ), has objects endomorphisms on Y . The morphisms in
End(Y ) are endomorphism maps with underlying morphism the identity on Y ,
that is, endomorphism maps of the form (1Y , φ) : (Y,Q1) → (Y,Q2). We follow
the convention of Street [12] for the 2-cell φ, namely φ : Q21Y → 1YQ1. There
are no compatibility requirements on φ. The category of monads on Y , denoted
Mnd(Y ), has objects monads on Y . The morphisms in Mnd(Y ) are monad maps
with underlying morphism the identity on Y , that is, morphisms are monad maps
of the form (1Y , ψ) : (Y,M1)→ (Y,M2). Again, we follow Street’s convention in
[12] for the 2-cell ψ, namely ψ : M21Y → 1YM1. The 2-cell ψ is required to be
compatible with the unit and multiplication of the monads M1 and M2.

The variance in Definition 9.1 restricts to the expected one for monads on the
fixed object Y , that is, the 2-category K is said to admit the construction of
free monads on Y if the forgetful functor UY : Mnd(Y ) → End(Y ) admits a left
adjoint. If K admits the construction of free monads in the sense of Definition 9.1,
then K admits the construction of free monads on each object Y .

Remark 9.3. In Definition 9.1 (i), the isomorphism of categories commutes with
the evident forgetful functors

Mnd(K)((X,P ), (Y,Qfree))
∼= //

))TTTTTTTTTTTTTTT
End(K)(U(X,P ), (Y,Q))

uukkkkkkkkkkkkkkk

K(X, Y ),

since the underlying morphisms and 2-cells in K are composed with (whiskered
with) 1Y .

We refine [7, Definition 2.8] to the more stringent Definition 9.4. In Theo-
rem 9.5 we then prove that if a double category D with cofolding admits the
construction of free monads in its horizontal 2-category, then the horizontal
2-adjunction extends to a horizontal double adjunction as well as a vertical double
adjunction, and D admits the construction of free monads as a double category.

Definition 9.4. A double category D is said to admit the construction of free
monads if the forgetful double functor U : Mnd(D) → End(D) admits a vertical
left double adjoint R with a unit η such that the underlying vertical morphism
in D of each unit component η(Y,Q) : (Y,Q)→ UR(Y,Q) is 1vY .

Theorem 9.5 (Reduction of construction of free monads to horizontal 2-cate-
gory). Let D be a double category with cofolding Λ. If the horizontal 2-category
of D admits the construction of free monads in the sense of Definition 9.1, then
the double category D admits the construction of free monads in the sense of
Definition 9.4.

More precisely, suppose that the horizontal 2-category of D admits the con-
struction of free monads in the sense of Definition 9.1, that is, the forgetful
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2-functor HU admits a right 2-adjoint R such that the counit components of the
2-adjunction are of the form ε(Y,Q) = (1hY , ιQ). Then the following hold.

(i) The 2-adjunction

HMnd(D)

HU
,,

⊥ HEnd(D)

R

ll

in Definition 9.1 extends to a horizontal double adjunction. In particular,
R extends to a double functor, also called R. The double functor R is a
horizontal right double adjoint to U .

(ii) The double functor R is a vertical left double adjoint to U , and the com-
ponents of the unit are η(Y,Q) := (1vY , ιQ).

(iii) We have a 2-adjunction

VEnd(D)

VR
,,

⊥ VMnd(D).

VU

ll

Proof: The coholonomies and cofoldings on End(D) and Mnd(D) inherited
from D in Proposition 7.5 will be used throughout. Suppose that the horizontal
2-category of D admits the construction of free monads in the sense of Defini-
tion 9.1.

(i) To extend R to a double functor, we use the cofoldings on End(D) and Mnd(D)
and the crucial fact that the underlying morphism of the counit is the iden-
tity morphism. The 2-functor R is defined on (horizontal) endomorphism maps
(F, φ) : (X,P )→ (Y,Q) and endomorphism 2-cells α : (F1, φ1)⇒ (F2, φ2) by the
equations

(31) [ UR(F, φ) (1Y , ιQ)] = [ (1X , ιP ) (F, φ) ]

(32)
[
URα iv(1Y ,ιQ)

]
=
[
iv(1X ,ιP ) α

]
.

If (u, u) is a vertical endomorphism map, then R(u∗,Λ(u)) =: (Ru∗, RΛ(u)) is
defined by (31). We see from (31) that the underlying horizontal morphism of Ru∗

is u∗, so by Proposition 7.5 (iii) we may apply Λ−1 to RΛ(u) to obtain R(u, u) :=
(u,Λ−1RΛ(u)) with underlying vertical morphism u. A similar argument using
equation (32) defines R on squares of End(D).

By construction, the double functors R and U are compatible with the cofold-
ings, so the 2-adjunction HU a HR extends to a horizontal double adjunction
by Proposition 6.10.

(ii) We prove that R is a vertical left double adjoint to U : Mnd(D) → End(D)
using the vertical version of Theorem 5.2 (ii), which requires functors

R0 : (Obj End(D),Hor End(D)) // (Obj Mnd(D),Hor Mnd(D))
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η : (Obj End(D),Hor End(D)) // (Ver End(D), Sq End(D))

such that for each horizontal morphism (F, φ) in End(D) the square η(F,φ) is of
the form

(X,P )
(F,φ)

//

η(X,P )

��
η(F,φ)

(Y,Q)

η(Y,Q)

��
UR0(X,P )

UR0(F,φ)
// UR0(Y,Q)

and is universal from (F, φ) to U .
We define R0 as the horizontal 1-adjoint already present, namely R0(X,P ) :=

(X,P free) and R0(F, φ) : (X,P free)→ (Y,Qfree) is the unique (horizontal) monad
morphism such that (1Y , ιQ) ◦ UR0(F, φ) = (F, φ) ◦ (1X , ιP ).

The functor η on objects is η(X,P ) := (1vX ,
(
ΛD)−1

(ιP )) = (1vX , ιP ). Here ΛD is
the cofolding on D, and we are using Proposition 7.5 (i) and (iii), and the fact
that (1vX)∗ = 1hX . For a horizontal endomorphism map (F, φ), we define η(F,φ) to

be
(
ΛEnd(D)

)−1
of the vertical identity square

UL0(X,P )
(1hX ,ιP )

// (X,P )
(F,φ)

//

iv

(Y,Q)

UL0(X,P )
UL0(F,φ)

// UL0(Y,Q)
(1hY ,ιQ)

// (Y,Q)

in End(D).
For the universality of η(Y,Q) concerning vertical morphisms, we must prove for

each endomorphism (Y,Q) and each monad (X,P ) that

VerMnd(D)(Y,Q
free), (X,P ))

U(−)◦(1vY ,ιQ)
// VerEnd(D)((Y,Q), U(X,P ))

is a bijection. For injectivity, if U(u, u)◦ (1vY , ιQ) = U(v, v)◦ (1vY , ιQ), then u = v,
and the coholonomy on End(D) gives us

(1hY , ιQ) ◦ U(u∗,Λ(u)) = (1hY , ιQ) ◦ U(v∗,Λ(v)),

so Λ(u) = Λ(v) by horizontal universality of (1hY , ιQ). Finally, u = v by Proposi-
tion 7.5 (iii). For surjectivity, if (w,w) : (Y,Q)→ U(X,P ) is a vertical endomor-
phism map, the horizontal universality of (1hY , ιQ) guarantees a horizontal monad
map (F, φ) : (X,P )→ (Y,Qfree) such that (1hY , ιQ) ◦U(F, φ) = (w∗,Λ(w)). Then
F = w∗, and we may take (u, u) = (w,Λ−1([ φ ιQ ]) so that U(u, u) ◦ (1vY , ιQ) =
(w,w), again by Proposition 7.5 (iii).

We next prove that the square η(F,φ) is vertically universal, that is, the map

(33) Mnd(D)

(
R0(F, φ)
(F ′, φ′)

)
// End(D)

(
(F, φ)

U(F ′, φ′)

)
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β � //

[
η(F,φ)

Uβ

]
is a bijection (recall Definition 4.1.). The notation Mnd(D)

(
R0(F, φ)
(F ′, φ′)

)
indi-

cates the set of monad squares with top horizontal arrow R0(F, φ) and bottom

horizontal arrow (F ′, φ′). The notation End(D)

(
(F, φ)

U(F ′, φ′)

)
indicates the set of

endomorphism squares with top horizontal arrow (F, φ) and bottom horizontal
arrow U(F ′, φ′).

Since we have already checked the universality of η(Y,Q) with respect to vertical
morphisms, and since squares with distinct vertical arrows are distinct, it suffices
to prove a bijection for monad squares which additionally have the left and right
vertical arrows fixed, so we consider monad squares of the form

(X,P )
R0(F,φ)

//

(u,ū)

��
β

(Y,Qfree)

(v,v̄)

��
(X ′, P ′)

(F ′,φ′)
// (Y ′, Q′).

We factor the map in (33) (for fixed (u, ū) and (v, v̄)), into a sequence of bijections.

β ↔ ΛMnd(D)(β)

↔
[
UΛMnd(D)(β) iv(1Y ,ιQ)

]
↔

[
iv(u,ū)∗ iv

UΛMnd(D)(β) iv(1Y ,ιQ)

]
↔

[
η(F,φ)

Uβ

]
.

The last bijection is (ΛEnd(D))−1 and relies on the fact that U is compatible with
the cofoldings ΛMnd(D) and ΛEnd(D).

(iii) The 2-adjunction VR a VU follows from the vertical double adjunction in
(ii).

10. Existence of Eilenberg–Moore Objects

In Street’s article [12], a 2-category C is said to admit the construction of al-
gebras if the inclusion 2-functor IncC : C → Mnd(C) admits a right 2-adjoint
AlgC : Mnd(C)→ C. Synonymously, we say C admits Eilenberg–Moore objects.
For a monad (X,S) in C, the object AlgC(X,S) is denoted XS.
A right 2-adjoint AlgC exists if and only if for each monad (X,S), the presheaf
MndC (IncC−, (X,S)) is representable. The representing object is then XS.
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The situation for monads in a double category D is more subtle, as repre-
sentability of the individual presheaves MndD (IncD(−), (X,S)) does not suffice,
and we must consider parameterized presheaves.

Definition 10.1. Let D be a double category and let IncD : D → Mnd(D),
I 7→ (I, idI) be the inclusion double functor. We say that the double category D
admits Eilenberg–Moore objects if IncD admits a horizontal right double adjoint.

Remark 10.2. To an object I and a monad (X,S) in D, we may associate the
set S-AlgI of S-algebra structures on I, which is the set of horizontal monad
morphisms from (I, idI) to (X,S). This assignment extends to a parameterized
presheaf on D in the sense of Definition 3.1, namely

(34) Mnd(D)(IncD−,−) : Dhorop × V1Mnd(D) // Spant .

Recall that V1Mnd(D) is the double category which has the same vertical
1-category as Mnd(D), but everything else is trivial, as in Section 2.

Next we can turn to our main application of double adjunctions to the char-
acterization of existence of Eilenberg–Moore objects.

Theorem 10.3 (Characterization of existence of Eilenberg–Moore objects). The
inclusion double functor

IncD : D // Mnd(D)

I
� // (I, id)

admits a horizontal right double adjoint if and only if the parameterized presheaf

-Alg− : Dhorop × V1Mnd(D) // Spant

is (horizontally) representable in the sense of Definition 3.7. See Section 2 for
the definition of V1.

Proof: By Theorem 5.3, the double functor IncD admits a horizontal right
double adjoint if and only if the parameterized presheaf (34) is representable, but
-Alg− is (34) by definition.

Example 10.4. Suppose C is a 2-category which admits Eilenberg–Moore ob-
jects in the sense of 2-category theory, that is, the 2-functor IncC : C→ Mnd(C)
admits a right 2-adjoint. Then the double category QC admits Eilenberg–Moore
objects since QC and Mnd(QC) both have cofoldings with fully faithful co-
holonomies, IncQC preserves them, and HIncQC = IncC admits a right 2-adjoint.
See Example 6.7, Proposition 7.5, and Corollary 6.16. The representing func-
tor G : V1Mnd(QC) → Spant for -Alg− is the transposed opposite of the right
adjoint to IncC.
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In a future paper we will present Eilenberg–Moore objects in a double category
as weighted double limits and treat the free Eilenberg–Moore completion of a
double category.
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