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CONICAL SQUARE FUNCTIONS AND

NON-TANGENTIAL MAXIMAL FUNCTIONS WITH

RESPECT TO THE GAUSSIAN MEASURE

Jan Maas, Jan van Neerven, and Pierre Portal

Abstract

We study, in L1(Rn; γ) with respect to the gaussian measure, non-
tangential maximal functions and conical square functions associ-
ated with the Ornstein-Uhlenbeck operator by developing a set of
techniques which allow us, to some extent, to compensate for the
non-doubling character of the gaussian measure. The main result
asserts that conical square functions can be controlled in L1-norm
by non-tangential maximal functions. Along the way we prove a
change of aperture result for the latter. This complements recent
results on gaussian Hardy spaces due to Mauceri and Meda.

1. Introduction

Gaussian harmonic analysis, understood as the study of objects asso-
ciated with the gaussian measure

dγ(x) = (2π)−n/2 exp
(
− 1

2 |x|2
)
dx

on R
n, and the Ornstein-Uhlenbeck operator

Lf(x) = −∆f(x) + x · ∇f(x)

on function spaces such as L2(Rn; γ), has recently gained new momentum
following the development, by Mauceri and Meda [9], of an atomic Hardy
space H1

at(R
n; γ), on which various functions of L give rise to bounded

operators. Harmonic analysis in Lp(Rn; γ) has been relatively well es-
tablished for some time, with results such as the boundedness of Riesz
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transforms going back to the work of Meyer and Pisier in the 1980’s.
The p = 1 case, however, has always proven to be difficult. Over the
last 30 years, some weak type (1, 1) estimates have been obtained, while
others have been disproved (see the survey [13]). The proofs of these
results rely on subtle decompositions and estimates of kernels. Until the
seminal Mauceri-Meda paper appeared in 2007, a large part of euclidean
harmonic analysis, such as end point estimates using Hardy and BMO
spaces, seemed to have no gaussian counterpart. Gaussian harmonic
analysis in L2(Rn; γ) is relatively straightforward given the fact that
the Ornstein-Uhlenbeck operator is diagonal with respect to the basis of
Hermite polynomials. The Lp(Rn; γ) case, with 1 < p < ∞, is harder
but still manageable through kernel estimates. The end points p = 1
and p = ∞, however, usually require techniques such as Whitney cover-
ings and Calderón-Zygmund decompositions, for which the non-doubling
nature of the gaussian measure, has, so far, not been overcome. Mauceri
and Meda’s paper [9], though, indicates a possible strategy. The au-
thors used the notion of admissible balls which goes back to the work
of Muckenhoupt [11]. These are balls B(x, r) with the property that
r ≤ amin(1, 1

|x|) for some fixed admissibility parameter a > 0. On these

admissible balls, the gaussian measure turns out to be doubling. The
idea is then to follow classical arguments using admissible balls only.
This is easier said than done. Indeed, admissible balls are very small
when their centre is far away from the origin, whereas tools such as
Whitney decompositions of open sets require the size of balls to be com-
parable to their distance to the boundary of the set, hence possibly very
large. This may be why, although it contains many breakthrough results,
Mauceri and Meda’s paper [9] does not yet give a full theory of H1 and
BMO spaces for the gaussian measure. For instance, the boundedness
of key operators such as maximal functions, conical square functions
(area integrals), and above all Riesz transforms, is still missing. In fact,
while this paper was in its final stages, Mauceri, Meda, and Sjögren [10]
proved that Riesz transforms (more precisely some Riesz transforms, see
their paper for the details) are bounded from the Mauceri-Meda Hardy
space H1

at(R
n; γ) into L1(Rn; γ) only in dimension one. This suggests

that the ‘correct’ gaussian Hardy space H1(Rn; γ) should be a modifica-
tion of theirs.

In this paper, we take another step towards a satisfying H1(Rn; γ)
theory by studying, in L1(Rn; γ), non-tangential square functions and
maximal functions. These are gaussian analogues of the sublinear op-
erators which, in the euclidean setting, are the cornerstones of the real
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variable theory of H1(Rn). In the gaussian context, non-tangential max-
imal functions were first introduced in an unpublished work by Fabes and
Forzani, who studied a gaussian counterpart of the Lusin area integral.
Their Lp-boundedness was shown subsequently by Forzani, Scotto, and
Urbina [6]. Our definition is an averaged version of a non-tangential
maximal function from a subsequent paper of Pineda and Urbina [12].
The additional averaging adds some technical difficulties, but experience
has shown (see e.g. [7]) that such averaging can be helpful in Hardy space
theory and its applications (to boundary value problems, for instance).

Here we prove a change of aperture formula for the maximal function
in the spirit of one of the key estimates of Coifman, Meyer, and Stein [3].
We then show that the non-tangential square function is controlled by the
non-tangential maximal function. Such estimates are central in Hardy
space theory (see for instance [4], [5]). Thus, the purpose of this arti-
cle is twofold. On the one hand, it contributes to the development of
dyadic techniques in gaussian harmonic analysis, i.e., methods and re-
sults based on gaussian analogues of the decomposition of Rn into dyadic
cubes, the related covering lemmas, and the corresponding H1 and weak
type (1, 1) estimates. This makes the paper technical in nature, but we
believe that the techniques developed here will find more applications,
as gaussian harmonic analysis becomes more geometric and relies less
on euclidean (after a change of variables) estimates of the Mehler ker-
nel. On the other hand, this article gives some of the results required
in the development of a gaussian Hardy space theory. When completed,
such a theory will not only be satisfying from a pure harmonic analytic
perspective, but it should also be applicable to stochastic partial differ-
ential equations (SPDE). Given the success of Hardy space techniques
in deterministic PDE, one can think that a gaussian analogue would
similarly have applications to non-linear SPDE and stochastic boundary
value problems.

Now let us state the main result of this paper. We set

m(x) := min

{
1,

1

|x|

}

and let

Γa
x(γ) :=

{
(y, t) ∈ R

n × (0,∞) : |y − x| < t < am(x)
}

denote the admissible cone with parameter a > 0 based at the point x ∈
Rn. We denote by (e−tL)t≥0 the Ornstein-Uhlenbeck semigroup acting
on Lp(Rn; γ) for 1 < p < ∞ (see the survey [13] and the references
therein). For test functions u∈Cc(R

n) and admissibility parameter a>0
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we consider the conical square function

Sau(x) =

(∫

Γa
x(γ)

1

γ(B(y, t))
|t∇e−t2Lu(y)|2 dγ(y)dt

t

) 1
2

,

and the non-tangential maximal function

T ∗
au(x) := sup

(y,t)∈Γa
x(γ)

(
1

γ(B(y, t))

∫

B(y,t)

|e−t2Lu(z)|2 dγ(z)
) 1

2

.

The main result of this paper reads as follows:

Theorem 1.1. For each a > 0 there exists an a′ > 0 such that the
conical square function Sa is controlled by the non-tangential maximal
function T ∗

a′ , in the sense that

‖Sau‖L1(Rn;γ) . ‖T ∗
a′u‖L1(Rn;γ)

with implied constant independent of u ∈ Cc(R
n).

By using the truncated cones Γa
x, we are only averaging over admissi-

ble balls in the definition of the operators. The idea is, of course, to ex-
ploit the doubling property of the gaussian measure on these balls. This
makes the operators “admissible”. The reader should notice, however,
that they are not local, in the sense that their kernels are not supported
in a region of the form {(x, y) ∈ R2n; |x − y| ≤ a

1+|x|+|y|}. Moreover,

they can not be written as sums of local operators. This is due to a
lack of off-diagonal estimates, that is a crucial difference between the
Ornstein-Uhlenbeck semigroup and the heat semigroup.

Acknowledgement. We are grateful to the anonymous referee for valu-
able suggestions that led to simplifications and generalisations of various
arguments.

2. A covering lemma

In this section we introduce partitions of Rn into “admissible” dyadic
cubes and use them to prove a covering lemma which will be needed
later on.

We begin with a brief discussion of admissible balls. Let

m(x) := min

{
1,

1

|x|

}
, x ∈ R

n.

For a > 0 we define

Ba :=
{
B(x, r) : x ∈ R

n, 0 ≤ r ≤ am(x)
}
.
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The balls in Ba are said to be admissible at scale a. It is a fundamen-
tal observation of Mauceri and Meda [9] that admissible balls enjoy a
doubling property:

Lemma 2.1 (Doubling property). Let a, τ > 0. There exists a con-
stant d = da,τ,n, depending only on a, τ , and the dimension n, such that
if B1 = B(c1, r1) ∈ Ba and B2 = B(c2, r2) have non-empty intersection
and r2 ≤ τr1, then

γ(B2) ≤ dγ(B1).

In particular this lemma implies that for all a > 0 there exists a
constant d′ = d′a,n such that for all B(x, r) ∈ Ba we have

γ(B(x, 2r)) ≤ d′γ(B(x, r)).

The first part of the next lemma, which is taken from [8], says, among
other things, that if B(x, r) ∈ Ba and |x − y| < br, then B(y, r) ∈ Bc

for some constant c = ca,b which depends only on a and b.

Lemma 2.2. Let a, b > 0 be given.

(i) If r ≤ am(x) and |x − y| ≤ br, then r ≤ ca,bm(y), where ca,b :=
a(1 + ab).

(ii) If |x − y| ≤ bm(x), then m(x) ≤ (1 + b)m(y) and m(y) ≤ (2 +
2b)m(x).

For k ≥ 0 let ∆k be the set of dyadic cubes at scale k, i.e.,

∆k = {2−k(x + [0, 1)n) : x ∈ Z
n}.

Following [8], in the gaussian case we only use cubes whose diameter
depends on another parameter l, which keeps track of the distance from
the ball to the origin. More precisely, define the layers

L0 = [−1, 1)n, Ll = [−2l, 2l)n \ [−2l−1, 2l−1)n (l ≥ 1),

and define, for k, l ≥ 0,

∆γ
k,l = {Q ∈ ∆l+k : Q ⊆ Ll}, ∆γ

k =
⋃

l≥0

∆γ
k,l, ∆γ =

⋃

k≥0

∆γ
k .

Note that if Q ∈ ∆γ
k with Q ⊆ Ll, then its centre cQ has norm 2l−1 ≤

|cQ| ≤ 2l
√
n and we have

(2.1) diam(Q) = 2−k−l
√
n ≤ 2−knm(cQ).

Lemma 2.3. If a ball B(x, r) ∈ Ba intersects a cube Q ∈ ∆γ
0 with

center cQ, then
r ≤ 2a(a+ n)m(cQ).
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Proof: We consider two cases. First, if |cQ| ≥ 2(a+ n), we notice that

r ≤ a

|x| ≤
a

|cQ| − (r + nm(cQ)/2)
≤ a

|cQ| − (a+ n/2)
≤ 2a

|cQ|
= 2am(cQ);

in the first inequality we used that diam(Q) ≤ nm(cQ) by (2.1), in the
second we used that m(cQ) ≤ 1 and r ≤ am(x) ≤ a, the third follows
from the assumption we made, and the final identity follows by noting
that |cQ| ≥ 2n ≥ 1. Second, if |cQ| ≤ 2(a + n), then together with 1 ≤
2(a+n) we obtain 1 ≤ 2(a+n)m(cQ) and r ≤ a ≤ 2a(a+n)m(cQ).

We denote by α ◦Q the cube with the same centre as Q and α times
its side-length; similar notation is used for balls. Cubes in ∆γ enjoy the
following doubling property:

Lemma 2.4. Let α > 0. There exists a constant Cα,n, depending only
on α and the dimension n, such that for every cube Q ∈ ∆γ we have

γ(α ◦Q) ≤ Cα,nγ(Q).

Proof: Without loss of generality we may assume that α > 1. Let Q ∈
∆γ

k,l with center y and side-length 2s. Set B = B(y, s) and note that

B ⊆ Q. Moreover, we have α ◦Q ⊆ α
√
n ◦B. Since, if |y| > 1,

2s =
diam(Q)√

n
= 2−k−l ≤ 2−l ≤

√
n

|y| =
√
nm(y),

and, if |y| ≤ 1,

2s = 2−k−l ≤ 1 ≤ √
nm(y),

it follows that B ∈ B√
n/2. Using the doubling property for admissible

balls from Lemma 2.1 we now obtain

γ(α ◦Q) ≤ γ(α
√
n ◦B) ≤ Cα,nγ(B) ≤ Cα,nγ(Q).

Lemma 2.5. Let F ⊆ Rn be a non-empty set, let a, b, c > 0 be fixed,
and let

Oa := {x ∈ R
n : 0 < d(x, F ) ≤ am(x)}.

There exists a sequence (xk)k≥1 in Oa with the following properties:

(i) Oa ⊆ ⋃
k≥1

B(xk, bd(xk, F ));

(ii)
∑
k≥1

γ(B(xk, cd(xk, F ))) . γ(O2a) with constant depending only

on a, b, c, and n.

Remark 2.6. In the above lemma one actually has γ(O2a) . γ(Oa), but
since this fact is not needed below the rather technical proof is omitted.
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Proof: Let δ := min{ 1
2 , b} and set O := Oa and O′ := O2a for brevity.

We use a Whitney covering of O′ by disjoint cubes Qk such that

1
4δd(Qk, ∁O

′) ≤ diam(Qk) ≤ δd(Qk, ∁O
′),

(see [14, VI.1]). We discard the cubes that do not intersect O and relabel
the remaining sequence of cubes as (Qk)k≥1 with centers (ck)k≥1. For
each k ≥ 1 pick xk ∈ O ∩Qk.

To check that the balls B(ck, diam(Qk)) are admissible, we use the
fact that δ ≤ 1

2 to obtain

|ck − xk| ≤ 1
2 diam(Qk) ≤ 1

4d(Qk, ∁O
′) ≤ 1

4d(xk, F ) ≤ 1
4am(xk).

Lemma 2.2(ii) then shows that m(xk) ≤ (1 + a
4 )m(ck). It follows that

the balls B(ck, diam(Qk)) are admissible.
Next, diam(Qk) ≤ δd(Qk, ∁O′) ≤ bd(xk, F ), so (i) follows from

O ⊆
⋃

k≥1

Qk ⊆
⋃

k≥1

B(xk, diam(Qk)) ⊆
⋃

k≥1

B(xk, bd(xk, F )).

Towards the proof of (ii), we claim that for all x ∈ O,

d(x, F ) ≤ 3max{1, a}d(x, ∁O′).

To prove the claim, we fix x ∈ O and pick an arbitrary y ∈ ∁O′. Setting
ε := 1

3 min{1, 1
a} we need to prove that

|x− y| ≥ εd(x, F ).

From y 6∈ O′ we know that either d(y, F ) ≥ 2am(y) or d(y, F ) = 0. In
the latter case we have y ∈ F , hence εd(x, F ) ≤ d(x, F ) ≤ |x − y|, so
in what follows we may assume that d(y, F ) ≥ 2am(y). From x ∈ O we
know that d(x, F ) ≤ am(x). Suppose, for a contradiction, that |x− y| <
εd(x, F ). Then |x− y| < εam(x) and therefore m(x) ≤ (1 + εa)m(y) by
Lemma 2.2(ii). Also, for all f ∈ F we have |x− y| ≥ |y − f | − |f − x| ≥
2am(y)−|f−x|. Minimising over f , this gives |x−y| ≥ 2am(y)−d(x, F ).
Since also εd(x, F ) > |x − y|, we find that am(y) < 1

2 (1 + ε)d(x, F ) ≤
1
2 (1+ε)am(x). It follows that m(y) < 1

2 (1+ε)m(x), and in combination
with the inequality m(x) ≤ (1 + εa)m(y) we get

2 < (1 + ε)(1 + εa).

On the other hand, recalling that ε = 1
3 min{1, 1

a} we see that (1+ε)(1+

εa) ≤ (1 + 1
3 )(1 +

1
3 ) =

16
9 < 2. This contradicts the previous inequality

and the claim is proved.
Combining the estimate

d(xk, ∁O
′) ≤ d(Qk, ∁O

′) + diam(Qk) ≤
(
1 +

4

δ

)
diam(Qk)



320 J. Maas, J. van Neerven, P. Portal

with the claim, we obtain

d(xk, F ) ≤ 3max{1, a}d(xk, ∁O
′) ≤ 3

(
1 +

4

δ

)
max{1, a} diam(Qk).

Recalling the inequality |ck − xk| ≤ 1
4d(xk, F ) proved before, and then

using the doubling property in combination with the above inequality,
we obtain∑

k≥1

γ(B(xk, cd(xk, F ))≤
∑

k≥1

γ(B(ck, (c+
1
4 )d(xk, F ))

.
∑

k≥1

γ(B(ck, diam(Qk)).
∑

k≥1

γ(Qk)≤γ(O′).

3. Change of aperture for maximal functions

In the proof of Theorem 1.1 we need a change of aperture result for the
admissible cone appearing in the definition of non-tangential maximal
functions. For this purpose we define, for A, a > 0, the non-tangential
maximal function with parameters A, a by

T ∗
(A,a)u(x) := sup

(y,t)∈Γ
(A,a)
x (γ)

(
1

γ(B(y,At))

∫

B(y,At)

|e−t2Lu(z)|2 dγ(z)
) 1

2

,

where

Γ(A,a)
x (γ) :=

{
(y, t) ∈ R

n × (0,∞) : |y − x| < At and t < am(x)
}

is the admissible cone with parameters A, a based at the point x ∈ R
n.

The parameter A is called the aperture of the cone.
In what follows we will fix the dimension n and write Lp(γ) :=

Lp(Rn; γ).

Theorem 3.1 (Change of aperture). For all A,A′, a > 0 there exists a
constant D, depending only on A, A′, a, and the dimension n, such that
for all u ∈ L1(γ) and σ > 0 we have

γ
({

x ∈ R
n : T ∗

(A,a)u(x) > Dσ
})

. γ
({

x ∈ R
n : T ∗

(A′,a′)u(x) > σ
})

with a′ = a(1 + 2aA)(1 +A′a(1 + 2aA)) and with implied constant inde-
pendent of u and σ. In particular,

‖T ∗
(A,a)u‖L1(γ) . ‖T ∗

(A′,a′)u‖L1(γ)

with implied constant independent of u ∈ L1(γ).
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The proof of this theorem follows known arguments in the euclidean
case [5]. We begin with a gaussian weak type (1, 1) estimate from [9].
For the convenience of the reader we include an alternative and self-
contained proof.

Lemma 3.2. Let a > 0. For f ∈ L1
loc(R

n) put

M∗
af(x) := sup

B(x,r)∈Ba

1

γ(B(x, r))

∫

B(x,r)

|f(y)| dγ(y).

Then for all τ > 0,

τγ({M∗
a (f) > τ}) . ‖f‖L1(γ)

with implied constant only depending on a and n.

Proof: Fix f ∈ L1
loc(R

n) and decompose it as f =
∑

Q∈∆γ
0
1Qf . We

denote by cQ the centre of a cube Q. The idea of this proof is that

the gaussian density is essentially equal to e−
1
2 |cQ|2 on an admissible

ballB(cQ, rQ) and the support ofM∗
A(1Qf) is included in such admissible

balls.
To make this precise, consider a cube Q ∈ ∆γ

0 , and suppose that
a ball B(x, r) ∈ Ba intersects Q. Then Lemma 2.3 implies that r ≤
2a(a + n)m(cQ). As a consequence, for any y ∈ B(x, r), we use the
triangle inequality and (2.1) to obtain

|y − cQ| ≤ 2r + 1
2 diam(Q) ≤ (4a(a+ n) + 1

2n)m(cQ) =: ba,nm(cQ),

and thus

∣∣|cQ|2−|y|2
∣∣ ≤ |cQ+y| |cQ−y| ≤

(
2|cQ|+ |cQ−y|

)
|cQ−y| ≤ 2ba,n+b2a,n.

This inequality implies that

e−
1
2 |y|

2

h e−
1
2 |cQ|2

with implied constants depending only on a and n.
Using this estimate we obtain

(3.1)
1

γ(B(x, r))

∫

B(x,r)

|1Q(y)f(y)| dγ(y).
1

|B(x, r)|

∫

B(x,r)

|1Q(y)f(y)| dy,

where |B(x, r)| denotes the Lebesgue measure of the ball; the constants
depend only on a and n.
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Next we note that if M∗
a (1Qf)(x) > 0, then there exists a ball B ∈ Ba

such that B ∩Q 6= ∅. Using (3.1), we thus have, for all τ > 0 and some
C > 0,

γ({M∗
a(1Qf)>τ})h

∫

{M∗

a (1Qf)>τ}
e−

1
2 |x|

2

dx.e−
1
2 |cQ|2 |{M∗

a (1Qf) > τ}|

.e−
1
2 |cQ|2|{MHL(1Qf)>Cτ}|,

where MHL denotes the euclidean Hardy-Littlewood maximal operator.
Using the weak type (1, 1) bound for the latter, we get

τγ({M∗
a (1Qf) > τ}) . e−

1
2 |cQ|2

∫

Q

|f(y)| dy . ‖1Qf‖L1(γ),

with constants depending only on a and n.
Now fix a cube Q ∈ ∆γ

0 with centre cQ. For x ∈ Q we have |x− cQ| ≤
1
2 diam(Q) ≤ 1

2nm(cQ) by (2.1), and therefore by the second part of

Lemma 2.2(ii), m(x) ≤ 2(1 + 1
2n)m(cQ). Hence if B(x, r) ∈ Ba and

x ∈ Q, then r ≤ am(x) ≤ (2 + n)am(cQ). Thus

B(x, r) ⊆
NQ⋃

l=1

Q(l),

where we denote by Q(l), l = 1, . . . , NQ, the cubes from ∆γ
0 that satisfy

d(Q,Q(l)) ≤ (2 + n)am(cQ). Remark that NQ ≤ N , where N = Na,n

only depends on a and n.
It follows from the preceding considerations that

M∗
af(x) ≤ M∗

a




NQ∑

l=1

1Q(l)f


 (x) ≤

NQ∑

l=1

M∗
a (1Q(l)f)(x)
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for x ∈ Q, and thus

γ({M∗
af > τ}) =

∑

Q∈∆γ
0

γ({M∗
af > τ} ∩Q)

≤
∑

Q∈∆γ
0

γ







NQ∑

l=1

M∗
a (1Q(l)f) > τ








≤
∑

Q∈∆γ
0

NQ∑

l=1

γ

({
M∗

a (1Q(l)f) >
τ

NQ

})

.
∑

Q∈∆γ
0

NQ

τ

NQ∑

l=1

‖1Q(l)f‖L1(γ)

.
NN ′

τ
‖f‖L1(γ),

with implied constant depending only on a and n; the N ′ in the last
inequality accounts for the fact that, given Q′ ∈ ∆γ

0 , there are at most
N ′ cubes Q ∈ ∆γ

0 such that dist(Q,Q′) ≤ (2 + n)am(cQ), where again
N ′ depends only on a and n.

Proof of Theorem 3.1: It suffices to prove the inequality for test func-
tions u ∈ Cc(R

n). For the rest of the proof we fix u ∈ Cc(R
n). Using

the doubling property on admissible balls, we fix a constant τ > 0 such
that

γ(B(y, (A′ + 4A)t)) <
1

τ
γ(B(y,A′t)) ∀ B(y, t) ∈ Bca,2A ,

where ca,2A = (1+2aA)a is the constant arising from Lemma 2.2(i). For
σ > 0 we define

Eσ := {x ∈ R
n : T ∗

(A′,a′)u(x) > σ},
Ẽσ := {x ∈ R

n : M∗
b (1Eσ

)(x) > τ},
where M∗

b f is defined as in the lemma and b := (A′ +2A)a. The scheme

of the proof is the following. We first prove (step 1) that, if x 6∈ Ẽσ and

(y, t) ∈ Γ
(2A,a)
x (γ), then B(y,A′t) 6⊆ Eσ. We then use this fact (step 2)

to prove that

1

γ(B(y,A′t))

∫

B(y,A′t)

|e−t2Lu(ζ)|2 dγ(ζ) ≤ σ2,
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for all (y, t) ∈ Γ
(2A,a)
x (γ) with x 6∈ Ẽσ. This eventually gives (step 3) that

there exists D = DA,A′,a,n > 0 such that {x ∈ R
n; T ∗

(A,a)u(x) > Dσ} ⊆
Ẽσ. The proof is then concluded using Lemma 3.2 applied to 1Eσ

. In
the estimates that follow, the implicit constants are independent of u
and σ.

Throughout steps 1–3 below, we fix a point x 6∈ Ẽσ and a point

(y, t) ∈ Γ
(2A,a)
x (γ).

Step 1: We claim that B(y,A′t) 6⊆ Eσ. To prove this, first note that
from |x− y| ≤ 2At we have

B(y,A′t) ⊆ B(x, (A′ + 2A)t) ⊆ B(y, (A′ + 4A)t).

Furthermore, t ≤ am(x), and therefore B(x, (A′ + 2A)t) ∈ B(A′+2A)a =
Bb. If we now assume that the claim is false, we get

M∗
b (1Eσ

)(x) = sup
B(x,r)∈Bb

γ(B(x, r) ∩ Eσ)

γ(B(x, r))

≥ sup
B(x,r)∈Bb

γ(B(x, r) ∩B(y,A′t))

γ(B(x, r))

≥ γ(B(x, (A′ + 2A)t) ∩B(y,A′t))

γ(B(x, (A′ + 2A)t))

=
γ(B(y,A′t))

γ(B(x, (A′ + 2A)t))

≥ γ(B(y,A′t))

γ(B(y, (A′ + 4A)t))

> τ,

where the second inequality uses that B(x, (A′+2A)t) ∈ Bb and the last
one follows from the definition of the constant τ and the observation
that B(y, t) ∈ Bca,2A by Lemma 2.2(i), using that B(x, t) ∈ Ba and

|x − y| ≤ 2At. This contradicts the fact that x 6∈ Ẽσ and the claim is
proved.

Step 2: Since B(y,A′t) 6⊆ Eσ, there exists ỹ ∈ B(y,A′t) such that
ỹ 6∈ Eσ, that is,

(3.2) sup
(z,s)∈Γ

(A′,a′)

ỹ
(γ)

1

γ(B(z, A′s))

∫

B(z,A′s)

|e−s2Lu(ζ)|2 dγ(ζ) ≤ σ2.
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Remark also that, since B(y, t) ∈ Bca,2A and thus t ≤ ca,2Am(y),

Lemma 2.2 implies that t ≤ a′m(ỹ). Thus (y, t) ∈ Γ
(A′,a′)
ỹ (γ) and there-

fore (3.2) implies

(3.3)
1

γ(B(y,A′t))

∫

B(y,A′t)

|e−t2Lu(ζ)|2 dγ(ζ) ≤ σ2.

Step 3: Next let (w, s) ∈ Γ
(A,a)
x (γ) be arbitrary and fixed for the moment.

Then w ∈ B(x,As). For any v ∈ B(w,As) we have |v − x| ≤ |v − w| +
|w − x| ≤ 2As. Since also s ≤ am(x), it follows that (v, s) ∈ Γ

(2A,a)
x (γ).

Also, since |v − w| ≤ As implies B(v,A′s) ⊆ B(w, (A′ +A)s), we have

γ(B(v,A′s)) ≤ γ(B(w, (A′ +A)s)) . γ(B(w,As))

by the doubling property for admissible balls; the balls B(w,As) are
indeed admissible by Lemma 2.2(i).

We can cover B(w,As) with finitely many balls of the form B(vi, A
′s)

with vi ∈ B(w,As); this can be achieved with N = N(A,A′, n) balls.
We then have, by (3.3),

1

γ(B(w,As))

∫

B(w,As)

|e−s2Lu(z)|2 dγ(z)

.
N∑

i=1

1

γ(B(vi, A′s))

∫

B(vi,A′s)

|e−s2Lu(z)|2 dγ(z) . σ2.

Taking the supremum over all (w, s) ∈ Γ
(A,a)
x (γ), we infer that there ex-

ists a constant D > 0, depending only on A, A′, a, and the dimension n,

such that T ∗
(A,a)u(x) ≤ Dσ for all x 6∈ Ẽσ.

We have now shown that {T ∗
(A,a)u(x) > Dσ} ⊆ Ẽσ. The first assertion

of the theorem follows from this via Lemma 3.2. The second assertion
follows from the first by integration:

‖T ∗
(A,a)u‖L1(γ) = D

∫ ∞

0

γ({x ∈ R
n : T ∗

(A,a)u(x) > Dσ}) dσ

.

∫ ∞

0

γ(Ẽσ) dσ .

∫ ∞

0

γ(Eσ) dσ = ‖T ∗
(A′,a′)u‖L1(γ).

Since the choice of A,A′, a ≥ 0 was arbitrary, this concludes the proof.
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4. Proof of Theorem 1.1

In this section we follow the method pioneered in [5] for proving square
function estimates in Hardy spaces. This method has recently been
adapted in a variety of contexts (see [1], [2], [7]). Here, we modify
the version given in [7] to avoid using the doubling property on non-
admissible balls, and to take into account differences between the Laplace
and the Ornstein-Uhlenbeck operators. As a typical example of the latter
phenomenon, we start by proving a gaussian version of the parabolic
Cacciopoli inequality. Recall that L is the Ornstein-Uhlenbeck operator,
defined for f ∈ C2

b(R
n) by

(4.1) Lf(x) = −∆f(x) + x · ∇f(x).

Note that, for all f, g ∈ C2
b(R

n), one has the integration by parts formula
∫

Rn

Lf · g dγ =

∫

Rn

∇f · ∇g dγ.

Lemma 4.1. Let v : Rn × (0,∞) → C be a C1,2-function such that
v(·, t) ∈ C2

b(R
n) for all t > 0, and suppose that

∂tv + Lv = 0

on I(x0, t0, 2r) := B(x0, 2cr) × [t0 − 4r2, t0 + 4r2] for some r ∈ (0, 1),
0 < C0 ≤ c ≤ C1 < ∞, and t0 > 4r2. Then
∫

I(x0,t0,r)

|∇v(x, t)|2 dγ(x) dt . 1 + r|x0|
r2

∫

I(x0,t0,2r)

|v(x, t)|2 dγ(x) dt,

with implied constant depending only on the dimension n, C0 and C1.

Proof: Let η ∈ C∞(Rn×(0,∞)) be a cut-off function such that 0 ≤ η ≤ 1
on Rn × (0,∞), η ≡ 1 on I(x0, t0, r), η ≡ 0 on the complement of
I(x0, t0, 2r), and

‖∇η‖∞ .
1

r
, ‖∂tη‖∞ .

1

r2
, ‖∆η‖∞ .

1

r2

with implied constants depending only on n, C0, C1. Then, in view of
‖x · ∇η‖∞ . (|x0|+ 2r) · 1

r and recalling that 0 < r < 1,

(4.2) ‖Lη‖∞ .
1

r2
+

1

r
|x0|+ 1 .

1 + r|x0|
r2

,

where the implied constants depend only on n, C0, C1.
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Considering real and imaginary parts separately, we may assume that
all functions are real-valued. Integrating the identity

(η∇v) · (η∇v) = (v∇η −∇(vη)) · (v∇η −∇(vη))

and then using that
∫

I(x0,t0,2r)

η2∇(vη) · ∇(vη) dγ dt ≤
∫ ∞

0

∫

Rd

∇(vη) · ∇(vη) dγ dt

=

∫ ∞

0

∫

Rn

vηL(vη) dγ dt

=

∫

I(x0,t0,2r)

vηL(vη) dγ dt,

we obtain∫

I(x0,t0,r)

|∇v|2 dγ dt ≤
∫

I(x0,t0,2r)

η2|η∇v|2 dγ dt

≤
∫

I(x0,t0,2r)

η2|v∇η|2 dγ dt

+

∣∣∣∣∣

∫

I(x0,t0,2r)

2vη2∇(vη) · ∇η dγ dt

∣∣∣∣∣

+

∣∣∣∣∣

∫

I(x0,t0,2r)

vηL(vη) dγ dt

∣∣∣∣∣ .

(4.3)

For the first term on the right-hand side we have the estimate
∫

I(x0,t0,2r)

η2|v∇η|2 dγ dt . 1

r2

∫

I(x0,t0,2r)

|v|2 dγ dt.

For the second term we have, by (4.2),
∣∣∣∣∣

∫

I(x0,t0,2r)

2vη2∇(vη) · ∇η dγ dt

∣∣∣∣∣ =
1

2

∣∣∣∣∣

∫

I(x0,t0,2r)

∇(vη)2 · ∇η2 dγ dt

∣∣∣∣∣

≤ 1

2

∣∣∣∣
∫

Rn

(vη)2Lη2 dγ dt

∣∣∣∣

.
1 + r|x0|

r2

∫

I(x0,t0,2r)

|v|2 dγ dt
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where we used the fact that η2 satisfies the same assumptions as η and
(4.2) was applied to η2. To estimate the third term on the right-hand
side of (4.3) we substitute the identity

L(vη) = ηLv + vLη − 2∇v · ∇η = −η∂tv + vLη − 2∇v · ∇η

and estimate each of the resulting integrals:

∣∣∣∣∣

∫

I(x0,t0,2r)

vη2∂tv dγ dt

∣∣∣∣∣ =
1

2

∣∣∣∣∣

∫

I(x0,t0,2r)

η2∂tv
2 dγ dt

∣∣∣∣∣

=
1

2

∣∣∣∣∣

∫

I(x0,t0,2r)

v2∂tη
2 dγ dt

∣∣∣∣∣

=

∣∣∣∣∣

∫

I(x0,t0,2r)

v2η∂tη dγ dt

∣∣∣∣∣

.
1

r2

∫

I(x0,t0,2r)

|v|2 dγ dt,

∣∣∣∣∣

∫

I(x0,t0,2r)

v2ηLη dγ dt

∣∣∣∣∣ .
1 + r|x0|

r2

∫

I(x0,t0,2r)

|v|2 dγ dt,

∣∣∣∣∣

∫

I(x0,t0,2r)

vη∇v · ∇η dγ dt

∣∣∣∣∣ =
1

4

∣∣∣∣∣

∫

I(x0,t0,2r)

∇v2 · ∇η2 dγ dt

∣∣∣∣∣

=
1

4

∣∣∣∣
∫

Rn

v2Lη2 dγ dt

∣∣∣∣

.
1 + r|x0|

r2

∫

I(x0,t0,2r)

|v|2 dγ dt.

Below we shall apply the lemma with v(x, t) = e−tLu(x), where u is
a function in Cc(R

n). From the representation
e−tLu(x) =

∫
Rn Mt(x, y)u(y) dy where M is the Mehler kernel (see,

e.g., [13]), it follows that v satisfies the differentiability and boundedness
assumptions of the lemma.
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We can now prove the main result of this paper. Recall that

Sau(x) =

(∫

Γ
(1,a)
x (γ)

1

γ(B(y, t))
|t∇e−t2Lu(y)|2 dγ(y) dt

t

) 1
2

=

(∫

Rn×(0,∞)

1B(x,t)(y)

γ(B(y, t))
1(0,am(x))(t)|t∇e−t2Lu(y)|2 dγ(y) dt

t

) 1
2

.

It will be convenient to define, for ε > 0,

Sε
au(x) :=

(∫

Rn×(0,∞)

1B(x,t)(y)

γ(B(y, t))
1(ε,am(x))(t)|t∇e−t2Lu(y)|2 dγ(y) dt

t

) 1
2

.

Proof of Theorem 1.1: As in the proof of Lemma 4.1 it suffices to con-
sider real-valued u ∈ Cc(R

n). Throughout the proof we fix a > 0 and

set K := ca,1 and K̃ := c1+2K,2 using the notations of Lemma 2.2.
Let F ⊆ Rn be an arbitrary closed set and define

F ∗ :=
{
x ∈ R

n : γ(F ∩B(x, r)) ≥ 1
2γ(B(x, r)) ∀ r ∈ (0, K̃m(x)]

}
.

Note that, since F is closed, F ∗ ⊆ F . For 0 < ε < 1 and 1 < α < 2 put

Rε
α(F

∗) :={(y, t)∈R
n×(0,∞) : d(y, F ∗) < αt and t ∈ (α−1ε, αKm(y))}

and let ∂Rε
α(F

∗) be its topological boundary. As in [5, p. 162] and
[14, p. 206] we may regularise this set and thus assume it admits a
surface measure dσε

α(y, t). Applying first Green’s formula in Rn to the
section of Rε

α(F
∗) at level t and using the definition of L (see (4.1)), and

subsequently the fundamental theorem of calculus in the t-variable, we
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obtain the estimate
∫

F∗

|Sε
au(x)|2 dγ(x)

=

∫

Rn×(0,∞)

∫

F∗

1B(x,t)(y)

γ(B(y, t))
1(ε,am(x))(t)|t∇e−t2Lu(y)|2 dγ(x) dγ(y)dt

t

(i)

≤
∫

Rn×(0,∞)

∫

F∗

1B(y,t)(x)

γ(B(y, t))
1(ε,Km(y))(t)|t∇e−t2Lu(y)|2 dγ(x) dγ(y)dt

t

(ii)
=

∫

Rn×(0,∞)

γ(B(y, t)∩F ∗))

γ(B(y, t))
1{d(y,F∗)<t}1(ε,Km(y))(t)|t∇e−t2Lu(y)|2dγ(y)dt

t

≤
∫

Rn×(0,∞)

1{d(y,F∗)<t}1(ε,Km(y))(t)|t∇e−t2Lu(y)|2 dγ(y)dt
t

≤
∫

Rε
α(F∗)

|t∇e−t2Lu(y)|2 dγ(y)dt
t

.

∫

Rε
α(F∗)

tLe−t2Lu(y) · e−t2Lu(y) dγ(y) dt

+

∫

∂Rε
α(F∗)

|t∇e−t2Lu · ν//(y, t)||e−t2Lu(y)|e−
1
2 |y|

2

dσε
α(y, t)

.

∫

Rε
α(F∗)

−∂t|e−t2Lu(y)|2 dγ(y) dt

+

∫

∂Rε
α(F∗)

|t∇e−t2Lu(y)||e−t2Lu(y)|e−
1
2 |y|

2

dσε
α(y, t)

.

∫

∂Rε
α(F∗)

|e−t2Lu(y)ν⊥(y, t)|2e−
1
2 |y|

2

dσε
α(y, t)

+

∫

∂Rε
α(F∗)

|t∇e−t2Lu(y)||e−t2Lu(y)|e−
1
2 |y|

2

dσε
α(y, t).

In the above computation, ν// denotes the projection of the normal vec-
tor ν to Rε

α onto Rn and ν⊥ the projection of ν in the t direction. In
step (i) we used that 1B(x,t)(y) = 1B(y,t)(x) and that |x − y| < t and
t < am(x) imply t < Km(y) via Lemma 2.2(i); in step (ii) we used that
B(y, t) ∩ F ∗ 6= ∅ implies d(y, F ∗) < t. Of course, all implied constants
in the above inequalities are independent of F , ε, α, and u.
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If (y, t) ∈ ∂Rε
α(F

∗), then either d(y, F ∗)=αt and t ∈ [α−1ε, αKm(y)],
or else d(y, F ∗) < αt and t ∈ {α−1ε, αKm(y)}. By examining these three
cases separately, each time distinguishing between the possible relative
positions of m(y) with respect to the numbers 1

2ε, α−1ε, and ε, one

checks that ∂Rε
α(F

∗) ⊆ B̃ε := B̃ε
1 ∪ B̃ε

2 ∪ B̃ε
3 with

B̃ε
1 := {(y, t) ∈ R

n × (0,∞) : t ∈ [ 12ε,min{ε,m(y)}] and d(y, F ∗) ≤ 2t},
B̃ε

2 := {(y, t) ∈ R
n × (0,∞) : t ∈ [ε,m(y)] and t ≤ d(y, F ∗) ≤ 2t},

B̃ε
3 := {(y, t) ∈ R

n × (0,∞) : t ∈ [m(y), 2Km(y)] and d(y, F ∗) ≤ 2t}.

Now notice that, on ∂Rε
α(F

∗), we have either t = ε
α , t = αKm(y), or

t = α−1d(y, F ∗). Integrating over α ∈ (1, 2) with respect to dα
α and

changing variables using that dα
α ∼ dt

t , we obtain

∫

F∗

|Sε
au|2dγ.

∫

B̃ε

|e−t2Lu(y)|2dγ(y)dt
t

+

(∫

B̃ε

|e−t2Lu(y)|2dγ(y)dt
t

)1
2
(∫

B̃ε

|t∇e−t2Lu(y)|2dγ(y)dt
t

)1
2

.

∫

B̃ε

|e−t2Lu(y)|2 dγ(y)dt
t
+

∫

B̃ε

|t∇e−t2Lu(y)|2 dγ(y)dt
t
.

Here, and in the estimates to follow, the implied constants are indepen-
dent of F , ε, and u.

We have to estimate the following six integrals:

I1 :=

∫

B̃ε
1

|e−t2Lu(y)|2 dγ(y)dt
t
, I2 :=

∫

B̃ε
1

|t∇e−t2Lu(y)|2 dγ(y)dt
t
,

I3 :=

∫

B̃ε
2

|e−t2Lu(y)|2 dγ(y)dt
t
, I4 :=

∫

B̃ε
2

|t∇e−t2Lu(y)|2 dγ(y)dt
t
,

I5 :=

∫

B̃ε
3

|e−t2Lu(y)|2 dγ(y)dt
t
, I6 :=

∫

B̃ε
3

|t∇e−t2Lu(y)|2 dγ(y)dt
t
.

We start with I1 and remark that, for (y, t) ∈ B̃ε
1, there exists x ∈ F ∗

such that |x− y| ≤ 2t. Since t ≤ min{ε,m(y)} ≤ m(y), by Lemma 2.2(i)

we have t ≤ c1,2m(x) and hence t ≤ K̃m(x), noting that c1,2 ≤ c1+2K,2 =

K̃. Therefore, by the definition of F ∗,

(4.4) γ(F ∩B(x, t)) ≥ 1
2γ(B(x, t)).
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(At this point the reader may wonder why F ∗ is defined in terms of K̃
and not in terms of c1,2. The reason is that the argument will be repeated
in the estimation of I2, I5, and I6; in the latter two cases, the definition
of Bε

3 implies that one only gets t ≤ 2Km(y) and hence t ≤ c2K,2m(x) ≤
c1+2K,2m(x).) By (4.4) and doubling property for the admissible ball
B(x, t) ∈ Bc1,2 ,

γ(F ∩B(y, 3t))≥γ(F ∩B(x, t))≥ 1
2γ(B(x, t)) & γ(B(x, 3t)) ≥ γ(B(y, t)),

and therefore, writing d := c1,3,

I1 .

∫

B̃ε
1

∫

F∩B(y,3t)

1

γ(B(y, t))
|e−t2Lu(y)|2 dγ(z) dγ(y)dt

t

≤
∫

Rn

∫ 1
2 ε∨min{ε,m(y)}

1
2 ε

∫

F

1B(y,3t)(z)

γ(B(y, t))
|e−t2Lu(y)|2 dγ(z)dt

t
dγ(y)

≤
∫

F

∫ 1
2 ε∨min{ε,dm(z)}

1
2 ε

∫

B(z,3t)

1

γ(B(y, t))
|e−t2Lu(y)|2 dγ(y)dt

t
dγ(z),

(4.5)

where in the last inequality we used that t ≤ m(y) and |y−z| < 3t imply
t ≤ dm(z) by Lemma 2.2(i).

Fix (z, t) ∈ F × (12ε,
1
2ε∨min{ε, dm(z)}). For all y ∈ B(z, 3t) we have

B(z, 3t) ⊆ B(y, 6t) and therefore, by the doubling property for B(y, t)

(noting that from t < dm(z) and |z − y| < 3t it follows that t < d̃m(y)

where d̃ := cd,3, so B(y, t) is an admissible ball in Bd̃),

∫

B(z,3t)

1

γ(B(y, t))
|e−t2Lu(y)|2dγ(y). 1

γ(B(z, 3t))

∫

B(z,3t)

|e−t2Lu(y)|2dγ(y)

≤|T ∗
(3,d)u(z)|2,

where the last inequality follows from (z, t) ∈ Γ
(3,d)
z (γ). Combining this

with the previous inequality it follows that

I1 .

∫

F

∫ ε

1
2 ε

|T ∗
(3,d)u(z)|2

dt

t
dγ(z) .

∫

F

|T ∗
(3,d)u(z)|2 dγ(z).
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We proceed similarly for I2, using Lemma 4.1 to handle the gradient.
With τ(z) := dm(z) we have, proceeding as in (4.5),

I2.

∫

F

∫ 1
2 ε∨min{ε,τ(z)}

1
2 ε

∫

B(z,3t)

1

γ(B(y, t))
|t∇e−t2Lu(y)|2 dγ(y)dt

t
dγ(z)

(i)

.

∫

F∩{τ(z)≥ 1
2 ε}

∫ ε

1
2 ε

1

γ(B(z, 3ε))

∫

B(z,3ε)

|t∇e−t2Lu(y)|2 dγ(y)dt
t
dγ(z)

(ii)

.

∫

F∩{τ(z)≥ 1
2 ε}

7∑

l=2

∫ (l+1)ε2

8

lε2

8

1

γ(B(z, 3ε))

∫

B(z,3ε)

|∇e−sLu(y)|2dγ(y) ds dγ(z).

In (i) we used the inclusions B(z, 3t) ⊆ B(z, 3ε) ⊆ B(z, 6t) ⊆ B(y, 9t)
together with the doubling property for B(y, t), and in (ii) we substituted
t2 = s.

For each l ∈ {2, . . . , 7} we apply Lemma 4.1 with tl0 = 1
2 (

lε2

8 +
(l+1)ε2

8 ) = (2l+1)ε2

16 , cl = 12 and (rl)2 = ε2

16 . Together with the dou-
bling property for B(z, ε) (noting that B(z, ε) ∈ B2d in view of ε ≤ 2t ≤
2dm(z)), this gives

I2 .

∫

F∩{τ(z)≥ 1
2 ε}

7∑

l=2

∫ (2l+5)ε2

16

(2l−3)ε2

16

1 + rl|z|
(rl)2

× 1

γ(B(z, 6ε))

∫

B(z,6ε)

|e−sLu(y)|2 dγ(y) ds dγ(z).

Fix (z, s) ∈ (F ∩ {τ(z) ≥ 1
2ε})× ( 1

16ε
2, 19

16ε
2). Then from B(z, 6ε) ⊆

B(z, 24
√
s) ⊆ B(z, 30ε) and the doubling property for the balls B(z, ε) ∈

B2d (note that ε ≤ 2τ(z) = 2dm(z)),

1

γ(B(z, 6ε))

∫

B(z,6ε)

|e−sLu(y)|2 dγ(y)

.
1

γ(B(z, 24
√
s))

∫

B(z,24
√
s)

|e−sLu(y)|2 dγ(y) ≤ |T ∗
(24,4d)u(z)|2,
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where the last step follows from (z,
√
s) ∈ Γ

(24,4d)
z (γ). Combining this

with the previous estimate we obtain

I2 .

∫

F

7∑

l=2

∫ (2l+5)ε2

16

(2l−3)ε2

16

1 + rl|z|
(rl)2

|T ∗
(24,4d)u(z)|2 ds dγ(z)

.

∫

F

(1 + ε|z|)|T ∗
(24,4d)u(z)|2 dγ(z),

where the last step follows from the fact that rl = 1
4ε.

We proceed with an estimate for I3. For a > 0 let

Ga := {y ∈ R
n : 0 < d(y, F ∗) ≤ am(y)}.

Using Lemma 2.5, we cover G2 with a sequence of balls B(xk, rk) with
xk ∈ G2 and rk = 1

4d(xk, F
∗) for all k, and

(4.6)
∑

k≥1

γ(B(xk, d(xk, F
∗))) . γ(G4) ≤ γ(∁F ∗),

with implied constant independent of u and F . Note that B(xk, rk) ∈
B 1

2
for all k.

If (y, t) ∈ B̃ε
2 , then y ∈ G2 and therefore y ∈ B(xk, rk) for some k,

and 1
2d(y, F

∗) ≤ t ≤ d(y, F ∗). It follows that

I3 ≤
∑

k

∫

B(xk,rk)

∫ d(y,F∗)

1
2d(y,F

∗)

|e−t2Lu(y)|2 dt
t
dγ(y)

≤
∑

k

∫

B(xk,rk)

∫ 5
4d(xk,F

∗)

1
4d(xk,F∗)

|e−t2Lu(y)|2 dt
t
dγ(y)

≤
∑

k

∫ 5
4d(xk,F

∗)

1
4d(xk,F∗)

∫

B(xk,t)

|e−t2Lu(y)|2 dγ(y)dt
t
.

(4.7)

In the second inequality we used that y ∈ B(xk, rk) implies |xk − y| <
rk = 1

4d(xk, F
∗), and the third inequality follows from Fubini’s theorem

and the inequality rk = 1
4d(xk, F

∗) ≤ 1
2d(y, F

∗) ≤ t.

Fix an index k and a number t ∈ (14d(xk, F
∗), 5

4d(xk, F
∗)). Since

F ∗ is contained in the closure of F we may pick zk ∈ F such that
|xk − zk| < 2d(xk, F

∗). By the choice of t this implies |xk − zk| < 8t.
Since by assumption we have t ≤ 5

4d(xk, F
∗) ≤ 5

2m(xk) (the second
inequality being a consequence of xk ∈ G2), and since |xk − zk| < 8t,
from Lemma 2.2 we conclude that t ≤ dm(zk) with d := c 5

2 ,8
. We
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conclude that (xk, t) ∈ Γ
(8,d)
zk (γ) (since by definition this means that

|xk−zk| ≤ 8t ≤ 8dm(zk)) and consequently, using the doubling property
for the admissible ball B(xk, t) ∈ B 5

2
,

1

γ(B(xk, t))

∫

B(xk,t)

|e−t2Lu(y)|2 dγ(y)

.
1

γ(B(xk, 8t))

∫

B(xk,8t)

|e−t2Lu(y)|2 dγ(y) ≤ |T ∗
(8,d)u(zk)|2.

Combining this with the previous inequalities we obtain

I3 .
(
sup
z∈F

|T ∗
(8,d)u(z)|2

)∑

k

∫ 5
4 d(xk,F

∗)

1
4d(xk,F∗)

γ(B(xk, t))
dt

t

.
(
sup
z∈F

|T ∗
(8,d)u(z)|2

)∑

k

γ(B(xk,
5
4d(xk, F

∗)))

.
(
sup
z∈F

|T ∗
(8,d)u(z)|2

)
γ(∁F ∗),

where the last step used (4.6) and the doubling property (recall that
d(xk, F

∗) ≤ 2m(xk), so the balls B(xk, d(xk, F
∗)) belong to B2).

To estimate I4, we let G2 and B(xk, rk) be as in the previous estimate.
Proceeding as in the first two lines of (4.7) and applying the Fubini
theorem, we get

I4 .
∑

k

∫ 5
4 d(xk,F

∗)

1
4 d(xk,F∗)

∫

B(xk,rk)

|t∇e−t2Lu(y)|2 dγ(y)dt
t

=
1

2

∑

k

49∑

l=2

∫ 2l+2
64 d2(xk,F

∗)

2l
64d

2(xk,F∗)

∫

B(xk,rk)

|∇e−sLu(y)|2 dγ(y) ds.

By Lemma 4.1, applied with t0=
2l+1
64 d2(xk, F

∗), c=2 and r= 1
8d(xk, F

∗),
this gives the estimate

I4 .
∑

k

49∑

l=2

∫ 2l+5
64 d2(xk,F

∗)

2l−3
64 d2(xk,F∗)

1 + d(xk, F
∗)|xk|

d2(xk, F ∗)

×
∫

B(xk,
1
2d(xk,F∗))

|e−sLu(y)|2 dγ(y) ds

≤
∑

k

49∑

l=2

∫ 2l+5
64 d2(xk,F

∗)

2l−3
64 d2(xk,F∗)

3

d2(xk, F ∗)

∫

B(xk,4
√
s)

|e−sLu(y)|2 dγ(y) ds,
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where we used that d(xk, F
∗) ≤ 2m(xk) ≤ 2

|xk| and that s ≥ 1
64d

2(xk, F
∗)

implies 1
2d(xk, F

∗) ≤ 4
√
s.

Fix k and pick an element zk ∈ F such that |xk − zk| < 2d(xk, F
∗).

Then for all s in the range of integration we have |xk − zk| < 16
√
s.

Since
√
s ≤ 3

2d(xk, F
∗) ≤ 3m(xk), from Lemma 2.2 we conclude that√

s ≤ dm(zk) with d := c3,16. We conclude that (xk, 4
√
s) ∈ Γ

(4,4d)
zk (γ).

This gives

I4 .
(
sup
z∈F

|T ∗
(4,4d)u(z)|2

)∑

k

1

d2(xk, F ∗)

∫ 103
64 d2(xk,F

∗)

1
64 d

2(xk,F∗)

γ(B(xk, 4
√
s) ds

.
(
sup
z∈F

|T ∗
(4,4d)u(z)|2

)∑

k

γ(B(xk,
1
2

√
103d(xk, F

∗)))

.
(
sup
z∈F

|T ∗
(4,4d)u(z)|2

)∑

k

γ(B(xk, d(xk, F
∗)))

.
(
sup
z∈F

|T ∗
(4,4d)u(y)|2

)
γ(∁F ∗),

where the second last step used the doubling property for admissible balls
(recalling that B(xk, d(xk, F

∗)) ∈ B2), and the last step used (4.6).
To estimate I5, we proceed as we did for I1. Writing c := c2K,3 we

obtain

I5 .

∫

B̃ε
3

∫

F∩B(y,3t)

1

γ(B(y, t))
|e−t2Lu(y)|2 dγ(z) dγ(y)dt

t

≤
∫

Rn

∫ 2Km(y)

m(y)

∫

F

1B(y,3t)(z)

γ(B(y, t))
|e−t2Lu(y)|2 dγ(z)dt

t
dγ(y)

(i)

≤
∫

F

∫ cm(z)

(1+3c)−1m(z)

∫

B(z,3t)

1

γ(B(y, t))
|e−t2Lu(y)|2 dγ(y)dt

t
dγ(z)

.

∫

F

|T ∗
(2K,c)u(z)|2 dγ(z),

where in step (i) we used that m(y) ≤ t ≤ 2Km(y) and |y−z| < 3t imply
t ≤ cm(z) by Lemma 2.2(i), so |y − z| < 3cm(z), and by an application
of Lemma 2.2(ii) the latter implies m(z) ≤ (1 + 3c)m(y) ≤ (1 + 3c)t.

Finally we turn to I6, which is treated as I2. With c = c2K,3 and
d = (1 + 3c)−1 as in the previous estimate, and using Lemma 4.1 as in
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the estimate for I2, we get

I6 .

∫

F

∫ cm(z)

dm(z)

1

γ(B(z, 3t))

∫

B(z,3t)

|t∇e−t2Lu(y)|2 dγ(y)dt
t
dγ(z)

=
1

2

∫

F

∫ c2m(z)2

d2m(z)2

1

γ(B(z, 3t))

∫

B(z,3t)

|∇e−sLu(y)|2 dγ(y) ds dγ(z)

.

∫

F

(1 +m(z)|z|)|T ∗
(A,a)u(z)|2 dγ(z)

.

∫

F

|T ∗
(A,a)u(z)|2 dγ(z),

for certain A, a independent of u, F , and ε.
Combining all these estimates, we obtain six couples (A(j), a(j)) (j =

1, . . . , 6), and, passing to the limit ε ↓ 0, the following estimate, valid for
arbitrary closed subsets F ⊆ Rn:

(4.8)

∫

F∗

|Sau(x)|2 dγ(x)

.
6∑

j=1

((
sup
z∈F

|T ∗
(A(j),a(j))u(z)|2

)
γ(∁F ∗)+

∫

F

|T ∗
(A(j),a(j))u(z)|2 dγ(z)

)
,

with constants independent of F and u.
To finish the proof, we consider the distribution functions

γSau(σ) := γ
({

x ∈ R
n : Sau(x) > σ

})
,

γT∗

(A(j) ,a(j))
u(σ) := γ

({
x ∈ R

n : T ∗
(A(j),a(j))u(x) > σ

})
, j = 1, . . . , 6.

We fix σ > 0 for the moment, and apply (4.8) to the set

Fσ :=
{
z ∈ R

n : T ∗
(A(j),a(j))u(z) ≤ σ, j = 1, . . . , 6

}
,

and claim that ∁F ∗
σ c ⊆ {M∗

K̃
(1∁Fσ

) > 1
2}. Indeed, let x ∈ ∁F ∗

σ and fix

r ∈ (0, K̃m(x)] such that γ(B(x, r) ∩ Fσ) <
1
2γ(B(x, r)). Then

M∗
K̃
(1∁Fσ

)(x) ≥ γ(B(x, r) ∩ ∁Fσ)

γ(B(x, r))
>

1

2
,

proving the claim.

Lemma 3.2 (with admissibility parameter K̃, τ = 1
2 , applied to the

function 1∁Fσ
) gives us γ(∁F ∗

σ ) . γ(∁Fσ). Using this in combination
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with the definition of Fσ, for j = 1, . . . , 6 we obtain

1

σ2

(
sup
z∈Fσ

|T ∗
A(j),a(j)u(z)|2

)
γ(∁F ∗

σ ) ≤ γ(∁F ∗
σ )

. γ(∁Fσ)≤
6∑

k=1

γ
({

T ∗
(A(k),a(k))u > σ

})
.

Hence, from (4.8) we infer

γSau(σ) ≤ γ(F ∗
σ ∩ {Sau > σ}) + γ(∁F ∗

σ )

.
1

σ2

∫

F∗

σ

|Sau(x)|2 dγ(x) + γ(∁Fσ)

.
6∑

j=1

[
γT∗

(A(j) ,a(j))
u(σ) +

1

σ2

∫

Fσ

|T ∗
(A(j),a(j))u(z)|2 dγ(z)

]

.
6∑

j=1

[
γT∗

(A(j) ,a(j))
u(σ) +

1

σ2

∫ σ

0

tγT∗

(A(j),a(j))
u(t) dt

]
.

Integrating over σ and noting that

∫ ∞

0

1

σ2

∫ σ

0

tγT∗

(A(j),a(j))
u(t) dt dσ=

∫ ∞

0

tγT∗

(A(j) ,a(j))
u(t)

∫ ∞

t

1

σ2
dσ dt

=

∫ ∞

0

γT∗

(A(j),a(j))
u(t) dt=

∥∥T ∗
(A(j),a(j))u

∥∥
L1(γ)

,

we get, by Theorem 3.1 and with a(j)′ as in the statement of that theo-
rem,

‖Sau‖L1(γ) .
6∑

j=1

∥∥T ∗
(A(j),a(j))u

∥∥
L1(γ)

.
6∑

j=1

∥∥T ∗
(1,a(j)′)u

∥∥
L1(γ)

≤ 6
∥∥T ∗

(1,a′)u
∥∥
L1(γ)

,

where a′ = max
j=1,...,6

a(j)′.
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Remark 4.2. In [8] the cones

Γ̃(A,a)
x (γ) :=

{
(y, t) ∈ R

n × (0,∞) : |y − x| < At and t < am(y)
}

are used implicitly. Set a′ := ca,A. In view of the inclusions

Γ(A,a)
x (γ) ⊆ Γ̃(A,a′)

x (γ), Γ̃(A,a)
x (γ) ⊆ Γ(A,a′)

x (γ),

the corresponding functions S̃ and T̃ ∗ satisfy the pointwise bounds

S̃au(x) . Sa′u(x), Sau(x) . S̃a′u(x)

and

T̃ ∗
(A,a)u(x) . T ∗

(A,a′)u(x), T ∗
(A,a)u(x) . T̃ ∗

(A,a′)u(x).

In particular, Theorem 1.1 remains valid if we replace S and T ∗ by S̃

and T̃ ∗. Remark also that [8, Theorem 3.8] gives a change of aperture
formula for tent spaces that implies an analogue of Theorem 3.1 for the

square function S̃ for A,A′ > 1.

Remark 4.3. We conclude with a few words on reverse inequalities, i.e.,
controls of the maximal function by the square function. In the euclidean
case, such inequalities are generally proven via atomic decompositions,
usually going through tent spaces. We have developed, in [8], the gauss-
ian analogues of these spaces and their atomic decomposition. However,
to deduce a reverse inequality, we would then need an adequate analogue
of the Calderón reproducing formula (analogues exist, but do not seem
to be appropriate), and such a formula is involving all t ∈ (0,∞) rather
than just t ∈ (0, am(x)). A complete Hardy space theory is thus likely to
require an understanding of the “non-admissible” parts of objects such
as T ∗u, Su, or Mauceri-Meda’s atoms (i.e. the part corresponding to the
scales t ∈ (am(x),∞), for which balls are not admissible), or a technique
that allows one to avoid such non-admissible part in arguments involv-
ing Calderón reproducing formulae. This is the subject of some of our
on-going investigations.
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