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Abstract. In this paper the two main drawbacks of the heat balance integral
methods are examined. Firstly we investigate the choice of approximating
function. For a standard polynomial form it is shown that combining the
Heat Balance and Refined Integral methods to determine the power of the
highest order term will either lead to the same, or more often, greatly improved
accuracy on standard methods. Secondly we examine thermal problems with
a time-dependent boundary condition. In doing so we develop a logarithmic
approximating function. This new function allows us to model moving peaks in
the temperature profile, a feature that previous heat balance methods cannot
capture. If the boundary temperature varies so that at some time t > 0
it equals the far-field temperature, then standard methods predict that the
temperature is everywhere at this constant value. The new method predicts
the correct behaviour. It is also shown that this function provides even more
accurate results, when coupled with the new CIM, than the polynomial profile.
Analysis primarily focuses on a specified constant boundary temperature and is
then extended to constant flux, Newton cooling and time dependent boundary
conditions.

1. Introduction

Consider the problem of heating a semi-infinite solid by specifying a time de-
pendent temperature at the boundary x = 0. In non-dimensional form this may
be specified as

∂T

∂t
=

∂2T

∂x2
, 0 < x < ∞(1)

T = 0 , at t = 0(2)

T = h(t) , at x = 0(3)

∂T

∂x
→ 0 , as x → ∞ .(4)

Key words and phrases. Heat Balance Integral Method; Refined Integral Method; Heat
flow; time dependent boundary conditions.
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Using Green’s functions (or Laplace transforms and the convolution theorem) the
solution for any h(t) can be written in integral form as

(5) T (x, t) =
x

2
√

π

∫ t

0

h(τ)e−x2/4(t−τ)

(t − τ)3/2
dτ =

x

2
√

π

∫ t

0

h(t − τ)e−x2/4τ

τ 3/2
dτ .

Of course it might not be possible to explicitly evaluate this integral for all h.
Hence approximate solution methods may also be necessary. Furthermore, if we
see the above thermal problem as a starting point for a more complex Stefan
problem, then approximate solutions are required except in a small number of
special cases.

One suitable approximate technique is the well-known Heat Balance Integral
Method (HBIM), developed by Goodman [7, 8]. For the above initial-boundary
value problem the HBIM involves three steps:

(a) First we define the heat penetration depth, δ(t). For x ≥ δ the tempera-
ture change from the initial temperature is negligible.

(b) An approximating function, typically a polynomial, is then introduced.
This describes the temperature for 0 ≤ x ≤ δ(t).

(c) Finally, the heat equation is integrated over x ∈ [0, δ] to produce the heat
balance integral. This results in a single ordinary differential equation for
δ, which may often be solved analytically.

Once δ has been determined, the temperature T is known from the approximating
function which is given in terms of δ. An alternative approach, developed by
Sadoun & Si-Ahmed [26], is the Refined Integral Method (RIM), which simply
involves carrying out a double integration of the heat equation at stage (c). The
relative merits of the two approaches, as well as a number of variations involving
alternative approximating functions is described in detail in [17]. In fact, this
method has appeared at least twice before in the literature. Gupta & Banik
[9] developed what they termed as the constrained integral method for solving
moving boundary problems. Their method involves applying what is termed as
the zeroth and first moments to the approximating polynomial: these are precisely
the HBIM and RIM formulations respectively. Also, Hill [10] described the RIM
formulation but referred to it as the integration formulation by integration.

Both the HBIM and RIM have two well-known drawbacks [17, 22, 21]. Firstly,
the accuracy depends on the choice of approximating function [17]. This appears
to be problem dependent and consequently there exist a wide variety of options
within the literature [11, 17, 28]. Quadratic, cubic, quartic, non-integer powers
and exponential approximating functions have all been tried, with varying degrees
of success [1, 4, 8, 16, 19, 24, 20]. Reference [28] focusses on the accuracy for differ-
ent formulations of the quadratic problem. When dealing with Stefan problems,
without an analytical solution, the work in [17] compares different formulations
of both quadratic and cubic approximations, while [15] compares the accuracy of
a quadratic HBIM against perturbation and numerical solutions. Secondly, when
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applying a time-dependent boundary condition, heat balance methods are only
possible for small time or very limited (and not physically realistic) forms of h(t),
see [4, 25, 14, 18, 27] for example.

The first issue, namely the choice of approximating function, was recently ad-
dressed for thermal problems in [21] and subsequently applied to Stefan problems
in [22]. With the correct scaling the temperature can be approximated by a poly-
nomial form T ∼ (1 − x/δ)n, where n is most often set to 2 or 3. The approach
adopted in [22, 21] was to leave n unknown. A further condition must then be
introduced to determine n. Langford [13] defined an error for the HBIM problem.
In [22, 21] n is chosen to minimize this error. This method is discussed in more
detail in §2.1. The solutions obtained using this minimisation method are more
accurate than with the standard method, often significantly so. However, the
algebra can be difficult and so the optimal values of n for constant temperature,
constant flux and Newton cooling boundary conditions are tabulated in [22, 21].
The method we propose in the following involves combining the HBIM and RIM
solutions to determine the exponent, which we refer to as the combined integral
method (CIM). This approach is much simpler to apply than the minimisation
technique.

We also tackle the second issue, that of applying time-dependent boundary
conditions. Previous authors have used such conditions with a standard HBIM
formulation applied to Stefan problems. Generally the boundary conditions are
not physically realistic, e.g. of the form h(t) = tm, et [4, 25, 18] or results are pre-
sented for small times (before the analytical solution fails) [6, 12, 14, 27]. It was
also noted by Goodman [7] that for Stefan problems with a time dependent heat
flux, the HBI method is only useful for functions which are monotonically increas-
ing or constant. When applying the minimisation technique to time-dependent
boundary conditions (where n may vary with time) the algebra can be prohib-
itively difficult. Even for a cooling condition the problem that n = n(t) arises.
In [22, 21] this is avoided by fixing n(t) = n(0), but the accuracy of results is
then reduced. With the new CIM the algebra remains tractable and no such
approximation is necessary. The time-dependent boundary condition can also
lead to a catastrophic failure in the integral methods. For example, if we choose
h(t) = 1 − t, with a far-field temperature T = 0, then at t = 1, when h(t) = 0,
both the HBIM and RIM predict an infinite heat penetration depth and T = 0
everywhere. To deal with this we introduce a new form of approximating func-
tion. When used with the CIM the new form turns out to be significantly more
accurate than the polynomial profiles.

Bell [2, 3] has suggested an alternative way to improve the accuracy of Good-
man’s basic method by developing a piecewise linear heat balance integral solu-
tion. However, this is really just a finite difference numerical solution that uses
the HBIM on each sub-interval. It has poor convergence and is not as simple
as the standard HBIM approach which uses a single polynomial. More standard
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finite difference approaches have better convergence, such as the second order
accurate method by Mitchell & Vynnycky [18].

We begin the paper by analysing the problem for constant h(t) = 1 in order
to explain the new method of determining the approximating function. Sub-
sequently, we investigate different forms of boundary condition and specifically
problems where h(t) varies with time in such a way that the standard approxi-
mations break down.

2. Standard thermal boundary conditions

The following sections deal with developing the new method for constant tem-
perature, constant flux and Newton cooling boundary conditions. We then pose
the question, is this method an improvement on previous methods? Finally we
investigate whether the exponent n can vary with time.

2.1. Constant temperature boundary condition. Taking h(t) = 1 in (5)
and applying (2) gives the well known solution

(6) T (x, t) = erfc
x

2
√

t
.

The standard approximating polynomial for the HBIM has the form

(7) T =
(

1 − x

δ

)n

.

This satisfies the far-field condition Tx(δ, t) = 0 provided n > 1. In addition, a
further condition on the curvature is often applied. It is derived by noting

(8)
DT

Dt
(δ, t) =

(

∂T

∂t
+

∂T

∂x

dδ

dt

)
∣

∣

∣

∣

x=δ

= 0 =⇒ ∂2T

∂x2
(δ, t) = 0 .

If this condition is also imposed then we require n > 2. In general n is chosen
arbitrarily, and usually to provide the simplest profile that satisfies the boundary
conditions. Consequently n = 2 or 3 are the most common choices. With n
specified the problem reduces to determining δ.

In an attempt to improve the accuracy of the HBIM solution Myers [21] left n as
an unknown and determined it as part of the solution. The profile (7) therefore
involves two unknowns, the heat penetration depth δ(t) and the exponent n
(initially assumed constant). The heat penetration depth is determined via the
heat balance integral, which may be written in the form

(9)

∫ δ

0

[

∂T

∂t
− ∂2T

∂x2

]

dx = 0 .

This leads to a first order differential equation for δ. From equation (9) we can
see the weakness of the HBIM, namely that the integral does not require Tt to
closely approximate Txx merely that the area beneath f(x, t) = Tt − Txx is zero.
Perhaps the worst case scenario is when f is odd about δ/2 and can then be
arbitrarily large elsewhere. In practice the difference is usually quite small but
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this argument does highlight why some choices of approximating function are
better than others. To avoid this problem Myers [21] also requires that n is
chosen to minimise the error defined by Langford [13]

(10) En =

∫ δ

0

[f(x, t)]2 dx =

∫ δ

0

[

∂T

∂t
− ∂2T

∂x2

]2

dx ≥ 0 .

Minimising the square of f(x, t) prevents the cancelling of positive and negative
areas inherent in the HBIM and consequently forces the terms Tt and Txx to
closely approximate each other. For a constant temperature boundary condition
it was shown in [21] that the error is minimised by choosing n = 2.2335. This
obviously lies between 2 and 3, so clarifying the preference for choosing these
integer values.

This minimisation technique will provide results that are significantly more
accurate than the standard HBIM approach and is particularly useful for Stefan
problems, for which there are few analytical solutions. However, one disadvantage
of this new method is that the integral (10) can be quite complex. For the three
standard thermal boundary conditions, namely constant temperature, constant
flux and Newton cooling, the appropriate values of n are tabulated in [21] and
are quoted here later on in this Section for convenience. However, for different
scenarios such as those encountered in Stefan problems the integral may need to
be calculated numerically. A second issue occurs with certain types of boundary
condition. For example, when applying a Newton cooling condition, Tx = T − 1
at x = 0, the value of n that minimises the error changes with time. If n is
defined as n ≡ n(t) then the integral En becomes even more complicated due to
the Tt term. This difficulty may be circumvented by noting that for this boundary
condition the error is greatest when t = 0 and so n may set to the constant value
n(0). Since T = 0 at t = 0 the boundary condition Tx = T − 1 reduces to the
constant flux condition Tx = −1, which then determines the value of n.

We now offer an alternative approach to obtain n which is less algebraically
complex than the minimisation technique. As in the method of [21] we sometimes
find n = n(t), but this is more easily dealt with due to the simpler form of the
governing equations and consequently we do not need to set n as a constant.
First we write the HBIM (9) in a more standard form, by integrating the second
term (noting Tx(δ, t) = 0) and taking the time derivative outside of the integral
(noting T (δ, t) = 0)

(11)
d

dt

∫ δ

0

T dx = −∂T

∂x

∣

∣

∣

∣

x=0

.

The RIM is derived by integrating the heat equation twice with respect to x

∫ δ

0

(
∫ x

0

∂T

∂t
dξ

)

dx =

∫ δ

0

(

∂T

∂x
− ∂T

∂x

∣

∣

∣

∣

x=0

)

dx .
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Then integrating the left hand side by parts we obtain

(12) δ

∫ δ

0

∂T

∂t
dx −

∫ δ

0

x
∂T

∂t
dx = −T

∣

∣

x=0
− δ

∂T

∂x

∣

∣

∣

∣

x=0

.

However, since Tt = Txx the first term on the left hand side can be integrated
again. This yields the equation for RIM

(13)
d

dt

∫ δ

0

xT dx = T (0, t) .

Substituting T from equation (7) into (11) and (13) gives the following expressions

(14) HBIM:
d

dt

[

δ

n + 1

]

=
n

δ
, RIM:

d

dt

[

δ2

(n + 1)(n + 2)

]

= 1 .

Assuming that n is constant (see §2.3), in both cases integration subject to δ(0) =
0 leads to δ = α

√
t where

(15) HBIM: α =
√

2n(n + 1) , RIM: α =
√

(n + 1)(n + 2) .

Our proposed method requires that δ is the same for either the HBIM or RIM.
In this case since the integration is trivial the simplest method is to equate the
expressions for α in (15) to find n = 2. Alternatively we may equate the two
expressions for δt obtained from (14), with the same result. We note here that
the minimisation technique of [21] predicts n = 2.2335, 2.2185 for the HBIM and
RIM respectively, so the value n = 2 is the closest integer (although there is no
reason to suppose the new method leads to an integer value for n). A comparison
of results for the current solution and the minimisation technique will be shown
later in §3 once we have discussed a further modification.

2.2. Solutions for constant flux and cooling conditions. For completeness
we now discuss the two other basic boundary conditions at x = 0. First con-
sider the problem where the constant temperature boundary condition is changed
to a constant flux condition Tx(0, t) = −1. The temperature takes the form
T = (δ/n)(1 − x/δ)n and the HBIM and RIM formulations lead to the following
equations

(16) HBIM:
d

dt

[

δ2

n(n + 1)

]

= 1 , RIM:
d

dt

[

δ3

(n + 1)(n + 2)

]

= δ .

Again assuming n is constant we find δ =
√

αt where α = n(n+1) for the HBIM
and α = 2(n + 1)(n + 2)/3 for the RIM. As before we may either eliminate δt

between the two equations in (16) or equate α expressions, giving n = 4. The
minimisation technique shows that n = 3.584, 3.822 for HBIM and RIM. So again
the new method leads to the closest integer value.

In the case of a cooling condition Tx = T − 1 at x = 0 the temperature is

(17) T = (δ/(n + δ))
(

1 − x

δ

)n

.
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Using the minimisation technique Myers [21] found that in this case n is time-
dependent. If n ≡ n(t) then the whole minimisation formulation requires recal-
culating and specifically the Tt term involves derivatives of n. The result is two
simultaneous, highly complex nonlinear differential equations to determine δ and
n. To avoid this it was suggested that if a constant value of n is to be used then
the best choice is n(0) (as the error En is maximum at n = 0). Since T (x, 0) = 0
this means that the optimum n is the same as that obtained via the constant flux
condition, Tx(0, t) = −1.

With the current method, for a cooling condition the problem is governed by
the following equations

HBIM:
d

dt

[

δ2

(n + 1)(n + δ)

]

=
n

n + δ
(18)

RIM:
d

dt

[

δ3

(n + 1)(n + 2)(n + δ)

]

=
δ

n + δ
.(19)

Assuming n to be constant and eliminating δt from the two differential equations
we have to solve a quadratic for n, giving

n =
4 − δ ±

√
16 + δ2

2
.(20)

From this it is clear that the constant n assumption is incorrect and n = n(δ(t)) =
n(t). In this case the problem then reduces to the numerical solution of the two
first order differential equations in (18,19) for n(t), δ(t). This example leads to
two obvious questions, namely how can we tell if n is time-dependent and if so
what is the initial condition?

2.3. Is n time-dependent? For the standard heat balance analyses n is speci-
fied as constant at the start of the calculation and δ must adjust to accommodate
this. In the current method we have more freedom for n but in the first two ex-
amples above, constant temperature and constant flux, we have assumed n to
be constant. This was motivated by the results of [21]. We now examine the
question whether n can vary in more detail.

We begin with the constant temperature condition given by equations (14).
Without the assumption of constant n we find

1

n + 1

dδ

dt
− δ

(n + 1)2

dn

dt
=

n

δ
(21)

2δ

(n + 1)(n + 2)

dδ

dt
− δ2(3 + 2n)

(n + 1)2(n + 2)2

dn

dt
= 1 ,(22)

for the HBIM and RIM respectively. These may be rearranged to

(23) δ
dδ

dt
= (n + 1)(4 + n − n2) , δ2dn

dt
= (n + 1)2(4 − n2) .
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Obviously the second equation admits constant n solutions for n = ±2,−1. With
the criteria that n > 1 we see that the correct choice is n = 2. This is the solution
found from the CIM in the previous section. From (23a) it follows that δ =

√
12t.

Similarly, for a constant flux the HBIM and RIM formulations (16) can be
written as

(24) δ
dδ

dt
=

2(n + 1)(3n2 + 6n + 2)

2n2 + 9n + 6
, δ2dn

dt
=

n(n + 1)(n + 2)(4 − n)

2n2 + 9n + 6
.

Again the only constant n solution satisfying n > 1 corresponds to the solution
that we quoted earlier, n = 4. Equation (24a) then determines δ =

√
20t.

Finally, for the cooling condition equations (18,19) become

(25) δ
dδ

dt
= 2(n + 1) , δ2dn

dt
= (n + 1) [δ(2 − n) + n(4 − n)] .

Now the only possible constant n solution is n = −1 which violates the criteria
n > 1 and consequently we must accept n = n(t). Motivated by previous solutions
we assume that as t → 0 then n → n0 6= 0 whilst δ → Atα. Substituting this into
equation (25a) indicates α = 1/2 and A =

√

4(n0 + 1), that is δ =
√

4(n0 + 1)t.
The leading order term of equation (25b) then gives n0 = 4. This could also
be deduced by noting that as t → 0 the temperature T → 0 and the boundary
condition Tx = T − 1 then becomes Tx → −1. So the initial condition for n must
be the same as in the constant flux case and we take δ(0) = 0, n(0) = 4.

It is worth pointing out that the method of [21] leads to a very complex
expression for the error En when n = n(t) (in fact it is a highly nonlinear
integro-differential equation) and this was the main reason why the value n(t) =
n(0) was chosen. With the current method the governing equations, (25), are
much simpler and only involve solving two first order differential equations. In
Figure 1(a) we compare the temperatures with the exact solution, see [21], at
t = 1 subject to a cooling condition at x = 0. The three curves correspond to
the exact solution (solid line), the solution where δ(t) and n(t) (dashed line) are
calculated through (25) with n(0) = 4, and the solution taking the constant value
n = 4 (dash-dotted line). It is clear that varying δ and n leads to much more
accurate results. In Figure 1(b) we show n(t). From this we can see that the
value n = 4 is only appropriate for relatively small times. If we allow δ → ∞ in
equation (25b) then the dominant term on the right hand side is δ(2 − n) and
so it follows that the large time asymptote is n = 2. Thus n will vary between 2
and 4 (further clarifying the popularity of the standard choices 2 or 3).

A close examination of the error between the exact and approximate solutions
indicates that in places the CIM leads to a smaller error than that obtained when
minimising the error. In the example shown in Figure 1, due to taking constant n
in the minimisation method, the CIM in fact generally provides the best approx-
imation. This then poses the questions, is the new method an improvement on
the error minimisation method and how does it produce such accurate results?
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Figure 1. Cooling boundary condition: (a) Comparison of tem-
peratures at t = 1 using the numerical solution of (25) to calculate
δ and n (dashed line), using n = 4 (dot-dashed line) and the exact
solution (solid line). (b) Variation of n(t) up to t = 10.

2.4. Is the new method an improvement? To explain why a combination of
HBIM and RIM may improve on the HBIM or RIM solutions alone consider the
function f(x, t) = Tt − Txx and then define I1(x, t) =

∫ x

0
f(s, t) ds, so the HBIM

condition (9) is I1(δ, t) = 0. As discussed earlier this is not a strong condition
since it does not require Tt ≈ Txx, merely that the area under f(x, t) is zero. For
example, any function that is odd around x = δ/2 will satisfy I1(δ, t) = 0. Now
define I2(x, t) =

∫ x

0

∫ r

0
f(s, t) ds dr; the RIM requires I2(δ, t) = 0. This integral

defines a volume over a triangular base. The area of the triangle is smaller for
s ∈ [0, δ/2] than for s ∈ [δ/2, δ], hence for a function that is odd around δ/2 the
volume defined by the integral will be smaller for s < δ/2 than the volume above
s > δ/2, and so the integral will be non-zero. We may see this by changing the
order of integration

I2(δ, t) =

∫ δ

0

∫ r

0

f(s, t) ds dr =

∫ δ

0

∫ δ

s

f(s, t) dr ds =

∫ δ

0

(δ − s)f(s, t) ds

= δI1(δ, t) −
∫ δ

0

sf(s, t) ds .(26)

So, if we impose the HBIM condition then the first term on the right hand side

of (26) disappears and the RIM condition becomes I2(δ, t) = −
∫ δ

0
sf(s, t)ds = 0.

This obviously has a different form to the HBIM. In particular if f is odd around
δ/2 then sf is not odd and so the condition restricts f (note, since we have
the odd criteria based around s = δ/2 multiplying by s does not make it even).
Conversely, if sf is odd around s = δ/2 then f is even and I1 restricts the
size of f . Consequently, even in the worst case scenario, at least one of these
conditions acts to diminish the magnitude of f . A combination of the two will
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either provide the same level or greater accuracy than a single condition. In other
words we may expect the CIM to give errors bounded by the HBIM and RIM
solutions. In the case where n = n(t), due to the difficulty of implementation, the
minimisation technique is used with n = n(0). The CIM, which allows n = n(t),
is still bounded by the correct solutions, i.e. the ones that would be obtained if
n(t) were used.

We now have a new technique that can provide a value for n that will at worst
provide the same level of accuracy as the HBIM or RIM methods alone and when
n = n(t) will lead to more accurate results. Furthermore, it is easier to apply.
With this in mind we now move on to the second main drawback of the integral
methods, namely the approximation for time dependent boundary conditions.

3. Time dependent boundary conditions

To understand the problem with time-dependent boundary conditions, consider
the two apparently similar cases, h(t) = t and h(t) = 1 − t. The exact solutions
for each case are plotted in Figure 2. For h = t (in Figure 2(a)) the temperature
at x = 0 increases steadily. For x > 0 it decreases monotonically to the far-field
temperature T = 0. This form of temperature profile is easily dealt with by the
integral methods. When h = 1 − t (in Figure 2(b)) the temperature at x = 0
decreases with time. For x > 0, the temperature initially decreases monotonically
to the far field temperature. However, as the initial energy propagates into the
material there comes a time when the internal temperature is greater than that
at the boundary. This first occurs after Tx(0, t) = 0 and subsequently there is a
maximum at x = p(t) where 0 < p < δ (as seen on the curves when t ≥ 0.8). For
the problem with T (0, t) = h(t) the standard polynomial profile has the form

(27) T = h(t)
(

1 − x

δ

)n

,

which only permits Tx = 0 at x = δ. Consequently it is not appropriate for any
temperature profile with a turning point at x 6= δ and therefore cannot represent
the results shown in Figure 2(b).

3.1. An improved approximating function. To permit a turning point for
x < δ, in an analysis of travelling wave solutions to the Korteweg-de Vries equa-
tion, Myers & Mitchell [23] used a profile of the form

(28) T = am(t)

(

δ − x

δ − p

)m

+ an(t)

(

δ − x

δ − p

)n

,

with m = 3, n = 4. For the current problem we note that, without specifying
m, n, this profile satisfies T = Tx = 0 at x = δ provided m, n > 1 and also
permits Tx = 0 for x 6= δ. The condition Tx(p, t) = 0 leads to

(29) am(t) = − n

m
an(t) .
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Figure 2. The exact solution of (1)-(4) at various times for (a)
h(t) = t and (b) h(t) = 1 − t.

We also require p = 0 when Tx(0, t) = 0, and the above condition is consistent
with this requirement. Note that since the temperature profile is defined over a
growing region, p(0) = δ(0) = 0. The form of p(t) is discussed in more detail
later.

Imposing the boundary condition (3) determines

(30) an(t) =
h(t)

yn − n
m

ym
, where y =

δ

δ − p
,

which means that the temperature, equation (28), may be written as

(31) T =
h(t)

yn − n
m

ym

[

yn
(

1 − x

δ

)n

− n

m
ym

(

1 − x

δ

)m]

.

We are now left with a problem involving four unknowns, namely the exponents
m, n, δ(t) and y(t) (or p(t)). In applying the method of [21] to the current
problem, the error Emn varies with both m and n, but otherwise the calculation
is the same. Plotting the surface Emn(m, n) shows that the minimum occurs
when m ≈ n. However, setting m = n in the profile defined by (31) leads to
T = 0 (except at the point x = 0). Consequently we write m = n + ǫ, for some
ǫ ≪ 1, and so the expression (31) reduces to

(32) T =
h(t)

1 − n
n+ǫ

yǫ

[

1 − nyǫ

n + ǫ

(

1 − x

δ

)ǫ
]

(

1 − x

δ

)n

,

which can be expanded for small ǫ to give

(33) T = h(t)
(

1 − x

δ

)n
[

1 +
ln

(

1 − x
δ

)

ln y − 1
n

+ O(ǫ)

]

.
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Motivated by this expansion we therefore consider a profile of the form

(34) T = h(t)
(

1 − x

δ

)n [

1 + φ(t) ln
(

1 − x

δ

)]

.

The profile (34) satisfies the boundary condition (3), and the requirements Tx = 0
at both x = δ and x = p. Also, the condition Txx(δ, t) = 0 is automatically
satisfied provided n > 2 (this can be shown by applying L’Hôpital’s rule to the
product (1 − x/δ)n−2 ln(1 − x/δ)).

Following a similar argument to that in (8) we use the boundary condition
T (0, t) = h(t) to deduce that

(35)
dh

dt
=

∂T

∂t
(0, t) =

∂2T

∂x2
(0, t) .

Substituting (34) into (35) then leads to the expression

n(n − 1)h + (2n − 1)hφ = htδ
2 ,

and so

(36) φ =
htδ

2 − n(n − 1)h

2n − 1
.

Note that the standard form for the temperature, equation (27), is retrieved by
setting φ = 0 in (34). The advantage of this formulation over that of (34) is that
when calculating the numerical solution of the governing differential equations the
definition of y at t = 0 is y = 0/0: this obviously leads to numerical difficulties.
Whereas φ(0) = −n(n − 1)h(0)/(2n − 1) behaves more sensibly. As with the
standard profile, (27), this profile now only involves two unknowns n and δ. In
deriving (34) we have eliminated the other two unknowns m and y(t) (or p(t)):
the former by expanding the profile (32) for m = n + ǫ with ǫ ≪ 1 and only
keeping the leading order term, and the latter by imposing the extra condition
(35).

For a general h(t), and without assuming n constant, substituting for the
temperature profile (34) in the HBIM and RIM equations (11, 13) leads to

HBIM:
d

dt

[

hδ

n + 1
− δφ

(n + 1)2

]

=
nh + φ

δ
(37)

RIM:
d

dt

[

hδ2

(n + 1)(n + 2)
− (2n + 3)δ2φ

(n + 1)2(n + 2)2

]

= h .(38)

These are the two equations that now define the problem for a time-dependent
boundary condition. With φ = 0, h = 1 we retrieve equations (21, 22). The
analysis can now proceed as before: for the new method we solve these two
equations simultaneously, whereas for the minimisation method we solve either
(37) or (38) coupled to the error integral (10).
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Figure 3. Results at t = 0.5 for h(t) = 1 for (a) Temperature
profiles using (27) for the CIM (dashed), HBIM (dot-dashed) and
RIM (dotted), with the latter two using n which minimises En, (b)
Corresponding absolute errors.

Let us now return to the problem considered in §2.1 with h(t) = 1. Although
this is a case where the standard HBIM profile (27) does give a good approxi-
mation, we will show that even for this simple test case, the profile (34) leads
to a much more accurate solution. If h(t) = 1 then φ = −n(n − 1)/(2n − 1)
(defined in (36)) and the above equations reduce considerably. The introduction
of φ into the problem, in this case, merely changes the coefficient of δ or δ2 in
the derivative terms of (37,38) from those of (21, 22). Hence the equations again
allow constant n solutions and δ = α

√
t where

(39)

HBIM: α =

√

2n2(n + 1)2

3n2 − 1
, RIM: α =

√

(2n − 1)(n + 1)2(n + 2)2

2(2n + 1)(n2 + n − 1)
.

Equating these two expressions gives one positive root, n = 5.5132. Using the
minimisation technique (noting that for T defined by (34) this is a non-trivial
exercise) predicts n ≈ 5.2895, 5.5215 for the HBIM and RIM respectively.

In Figure 3 we compare temperature profiles for h(t) = 1 predicted by the
exact solution (6) and the polynomial approximation (7) where n is determined
by the new method and the minimisation technique. The right hand plot shows
the absolute errors, which never exceed 0.04 (corresponding to a 4% error). The
RIM with a minimised n is clearly the most accurate, the HBIM the least. As
mentioned earlier, the new method generally gives errors bounded by the two
other methods. In this case it appears that the new method benefits from the
accuracy of the RIM to outperform the HBIM solution. Note that, for this case
only, the new method corresponds to the classical HBIM solution where n = 2.
In Figure 4 we show the corresponding results for the logarithmic temperature
profile (34). Obviously it is difficult to distinguish between the temperature
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profiles shown in Figure 4(a), consequently in Figure 4(b) we show the absolute
errors. These errors are significantly lower than for the polynomial profile and
we can see that the error never exceeds 0.8%. It is hard to say which is the best
method, since for small x the error is least with the minimised HBIM solution
but later switches to the minimised RIM. The solution via the new technique
closely follows the RIM solution (but is very slightly worse). In all subsequent
examples the errors are small, so from now on we will usually only plot the
errors rather than the temperature profile. Furthermore, with the exception of
the case plotted in Figure 3(b), n will always be significantly different to 2 and
consequently plotting the error for n = 2 requires a larger scale for the figure and
makes it difficult to see the difference between the other solutions; hence we will
no longer plot the n = 2 case.
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Figure 4. Results at t = 0.5 for h(t) = 1 for (a) Temperature
profiles using (34) for the CIM (dashed), HBIM (dot-dashed) and
RIM (dotted), with the latter two using n which minimises En, (b)
Corresponding absolute errors.

For the constant flux and cooling boundary conditions the logarithmic profiles
are both of the form

(40) T =
[

a(t) + b(t) ln
(

1 − x

δ

)](

1 − x

δ

)n

,

where for the constant flux case we have

a(t) =
(3n2 − 6n + 2)δ

n2(2n − 3)
, b(t) = −(n − 1)(n − 2)δ

n(2n − 3)
,
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Figure 5. Comparison of absolute errors at t = 0.5 for the con-
stant flux boundary condition, Tx = −1, for (a) the polynomial
profile for the CIM (dashed), HBIM (dot-dashed) and RIM (dot-
ted) solutions, with the latter two using n which minimises En, (b)
Corresponding absolute errors using the logarithmic profile.

and for the cooling condition

a(t) =

[

3n2 − 6n + 2 + (2n − 1)δ
]

δ

n2(2n − 3) + 2(2n − 1)(n − 1)δ + (2n − 1)δ2

b(t) = −
[

n(n − 1)(n − 2) + n(n − 1)δ
]

δ

n2(2n − 3) + 2(2n − 1)(n − 1)δ + (2n − 1)δ2
.

As for the fixed temperature boundary condition, an extra condition is required
to determine a(t) and b(t). Instead of the condition (35) we differentiate the
boundary conditions Tx = −1 and Tx = T − 1 with respect to t leading to
Txxx = 0 and Txxx = Txx at x = 0 for the constant flux and cooling conditions
respectively.

In Figure 5 we compare the absolute errors calculated when applying a constant
flux boundary condition, Tx(0, t) = −1. For the polynomial temperature profile,
namely T = (δ/n)(1 − x/δ)n, the CIM predicts n = 4, and the minimisation
technique predicts n = 3.5848, 3.8235 for HBIM and RIM respectively. The worst
error is approximately 10−2 (or 1% error). Note, for the classical HBIM, with
n = 2, we find errors of the order 8.5%. For the logarithmic profile, we find n =
7.5152 for the CIM, and the minimisation technique predicts n = 6.9582, 7.3059
for HBIM and RIM respectively. The errors are much lower, with the worst
approximately 3.5×10−3 (or 0.3%). In both figures, the highest error comes from
the RIM, while for much of the domain the new method is the most accurate.

In Figure 6 we compare the absolute errors calculated when applying a cooling
boundary condition, Tx = T − 1 at x = 0. For the polynomial temperature
profile, namely T = (δ/(n + δ))(1 − x/δ)n, the minimisation technique predicts
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Figure 6. Comparison of absolute errors at t = 0.5 for the cooling
condition, Tx = T − 1, for (a) the polynomial profile for the CIM
(dashed), HBIM (dot-dashed) and RIM (dotted) solutions, with the
latter two using n which minimises En, (b) Corresponding absolute
errors using the logarithmic profile.

n = 2.8455, 2.9655 for HBIM and RIM respectively. The errors are all below
2% (slightly larger than for the constant flux boundary condition). Also, note
that the maximum error occurs here for the CIM, rather than the RIM. For the
logarithmic profile the minimisation technique predicts n = 6.1265, 6.4335 for
HBIM and RIM respectively. The errors are also an order of accuracy better,
below 0.4%, and now RIM gives the maximum error.

3.2. Why is the logarithmic profile more accurate? From the above exam-
ples it is clear that the logarithmic approximation improves on the polynomial
approximations, typically by an order of magnitude. We can see why the logarith-
mic profile is more accurate than the polynomial by looking at an expansion of
the different solutions. Firstly, we define the standard thermal similarity variable
ξ = x/

√
t. Then, an expansion of the exact solution (6) for small ξ gives

(41) T ∼ 1 − 1√
π

ξ +
1

12
√

π
ξ3 − 1

160
√

π
ξ5 + O(ξ6) .

Since δ = α
√

t for both approximate profiles, we can also expand (27) and (34)
in terms of ξ. Thus (27) becomes

(42) T = 1 − n

α
ξ +

n(n − 1)

2α2
ξ2 − n(n − 1)(n − 2)

6α3
ξ3 + O(ξ4) ,

and (34) is now

T = 1 − n2

α(2n − 1)
ξ +

n2(n − 1)2

6α3(2n − 1)
ξ3 + O(ξ4) .(43)
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The expansions of (43) and the exact solution (41) both skip the O(ξ2) term and
so should provide close agreement for the correct choice of n. The expansion of
the standard HBIM solution (42) includes the O(ξ2) term and so is unlikely to
behave in a similar manner to the exact solution as ξ increases.

Previous researchers have chosen an approximating function based on the ex-
pansion of a known exact solution and consequently the approximation works well
for the chosen boundary condition, but it is not very good for other conditions
[4, 5, 17, 16, 19, 24]. We this in mind from the above analysis we can strictly
only deduce that the logarithmic profile is more accurate for h = 1. This result
can be extended to a more general h(t) by expanding h(t−τ) about t in equation
(5). An expansion of the resulting expression for ξ = x/

√
t can be compared with

an expansion of the logarithmic approximating function (34), and we find that
the O(ξ0, ξ2) terms match exactly. Consequently the logarithmic approximation
must provide good agreement with the exact solution, at least for small ξ.

3.3. The boundary condition h = h(t). Although the logarithmic profile
clearly provides more accurate solutions than the standard polynomial for the
boundary conditions discussed in the preceding section, the added complexity
means that the polynomial will probably be preferred for these problems. How-
ever, when h is time dependent and the temperature includes a moving peak then
the polynomial form is not appropriate. In this case an alternative form, such as
the logarithmic function (34) must be used.

Let us consider the two cases where h(t) = t and h(t) = 1 − t. Below we list
the appropriate equations for both the standard polynomial temperature profile
(27), in which the HBIM and RIM equations are simply (37) and (38) with φ = 0,
and the logarithmic temperature profile (34) with φ 6= 0.

• Boundary condition h(t) = t: Using the integral form in (5) the exact
solution is

(44) T =

(

t +
x2

2

)

erfc
x

2
√

t
−

√

t

π
xe−x2/4t .

For profile (27), we note that (38), with φ = 0, integrates immediately to
determine δ. Using this solution in (37) we find that solutions with a constant n
are supported, so we can also integrate this equation to obtain

(45) HBIM : δ =

√

2n(n + 1)t

3
, RIM : δ =

√

(n + 1)(n + 2)t

2
.

Equating these two expressions leads to n = 6, whereas finding n to minimise En

gives n = 5.4015, 5.7595 for the HBIM and RIM respectively.
For the logarithmic profile (34) (and assuming that n is constant), solving the

HBIM and RIM equations (37) and (38), gives δ = α
√

t where α satisfies the
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Figure 7. Comparison of absolute errors at t = 0.5 for boundary
condition h(t) = t for the CIM (dashed), HBIM (dot-dashed) and
RIM (dotted) solutions with (a) the polynomial profile (27), (b) the
logarithmic profile (34).

following equations (quadratic in α2):

HBIM : 3α4 − (7n2 − 4n − 5)α2 + 2n2(n + 1)2 = 0

(46)

RIM : 2(2n + 3)α4 − 4(2n + 1)(n2 + n − 1)α2 + (2n − 1)(n + 1)2(n + 2)2 = 0.

(47)

Solving these equations and equating the expressions for α2 leads to n = 10.7204,
whereas finding n to minimise En gives n = 10.1413, 10.1810 for the HBIM and
RIM respectively.

Results for the two approximating functions are given in Figures 7(a), (b). The
polynomial profile clearly shows excellent agreement with the exact solution, with
an error typically below 0.3%. However, the logarithmic approximation, equation
(34), shows errors an order of magnitude less, typically below 0.03%. Of course
both sets of errors are so low that the polynomial profile could be used with
confidence.

• Boundary condition h(t) = 1− t: Using the integral form in (5) the exact
solution is given by

(48) T =

(

1 − t − x2

2

)

erfc
x

2
√

t
+

√

t

π
xe−x2/4t .

For profile (27), with φ = 0, the RIM equation (38) integrates immediately. The
HBIM, equation (37), may be integrated under the assumption of constant n,
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leading to

HBIM : δ =

√

2n(n + 1)

3(1 − t)2
[1 − (1 − t)3](49)

RIM : δ =

√

(n + 1)(n + 2)

2(1 − t)
[1 − (1 − t)2] .(50)

Equating these two expressions shows that n = n(δ(t)) = n(t), so the assumption
used to derive the HBIM result is incorrect and this problem requires more careful
consideration. Consequently we now move on to dealing with a time-dependent
n.

3.4. Time dependent power, n(t). Now consider applying the new method for
a general time dependent boundary condition; we assume n = n(t) and therefore
solve both (37) and (38) simultaneously. In the case of profile (27), i.e. with
φ = 0, these become

h
dδ

dt
− hδ

n + 1

dn

dt
=

n(n + 1)h

δ
− htδ(51)

2h
dδ

dt
− (2n + 3)hδ

(n + 1)(n + 2)

dn

dt
=

(n + 1)(n + 2)h

δ
− htδ ,(52)

which may be expressed as

δ
dδ

dt
= (n + 1)

[

(4 + n − n2) +
δ2ht

h

]

,(53)

δ2dn

dt
= (n + 1)(n + 2)

[

(n + 1)(2 − n) +
δ2ht

h

]

.(54)

When h = 1 these reduce to (23), with n constant. For general h(t) and time
dependent n(t) we must now determine the initial condition n(0).

For t → 0 we assume h → Atβ (since our focus is on physically realistic forms
of h this assumption seems reasonable). We also assume that the value of n tends
to a non-zero constant n → n0. Substituting for h into equation (38), with φ = 0,
and integrating gives

δ2

(n0 + 1)(n0 + 2)
=

t

β + 1
,(55)

and so δ =
√

αt where α = (n0 + 1)(n0 + 2)/(β + 1). Substituting for h, δ and n
into equation (37) gives

(56) n0(n0 + 1) = α

(

β +
1

2

)

.

Note that this equation is independent of t indicating the assumption that n → n0

is valid. With the definition of α given above we find n0 = 2 +4β. For boundary
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conditions such as h(t) = 1, 1 − t, cos t, et, the limit t → 0 gives h → 1 and so
β = 0 and n0 = 2. For conditions such as h = t, sin t etc., h → t as t → 0 and
n0 = 6.

When φ is non-zero we again assume h → Atβ , n → n0. To prevent φ from
blowing up, where

(57) φ = Atβ
[

βδ2/t − n0(n0 + 1)

2n0 − 1

]

,

requires δ =
√

αt and so

(58) φ = γh , γ =
βα − n0(n0 + 1)

2n0 − 1
.

Substituting into equations (37) and (38) then gives two simultaneous equations
for n0 and α

α(2β + 1) [n0 + 1 − γ] = 2(n0 + γ)(n0 + 1)2(59)

α(β + 1) [(n0 + 1)(n0 + 2) − γ(2n0 + 3)] = (n0 + 1)2(n0 + 2)2 .(60)

For β = 0 we find n0 = 5.513, α = 28.594, for β = 1, n0 = 10.720, α = 52.775, for
β = 2, n = 15.73, α = 75.68, for β = 3, n0 = 20.618, α = 97.824.

Returning to the boundary condition h = 1−t discussed in the previous section,
with φ = 0 the problem is governed by equations (37) and (38),

d

dt

[

(1 − t)δ

n + 1

]

=
n(1 − t)

δ
,

d

dt

[

(1 − t)δ2

(n + 1)(n + 2)

]

= (1 − t) .(61)

Obviously the second equation may be integrated analytically, but the first must
be evaluated numerically. Since h → 1 as t → 0 the initial conditions are n(0) = 2,
δ(0) = 0. With φ 6= 0 we solve the full versions of (37) and (38) with initial
conditions n(0) = 5.5132 (see (39)).

As an example of a nonlinear boundary condition, where the solution again
breaks down using the standard integral methods, we now consider h(t) = t(1−t).
The solution of (5) gives
(62)

T =

(

t − t2 +
1

2
x2 − 1

4
x4 − tx2

)

erfc
x

2
√

t
+

√

t

π
x

(

1

6
x2 +

10

3
t − 1

)

e−x2/4t .

The appropriate differential equations for δ and n are (37) and (38) with h =
t(1 − t), subject to n(0) = 6, δ(0) = 0.

Figure 8 displays the errors in the temperature obtained using the polyno-
mial and logarithmic approximating functions when h = 1 − t at time t = 0.5.
Note that the error for the CIM, when using the polynomial approximation, is
unacceptably high at around 9%. This is our first indication that the method
is breaking down due to the time dependence of the boundary condition. The
logarithmic profile gives a much more acceptable maximum error around 1%.
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Figure 8. Comparison of absolute errors at t = 0.5 for boundary
condition h(t) = 1 − t for the CIM (dashed), HBIM (dot-dashed)
and RIM (dotted) solutions with (a) the polynomial profile (27) and
(b) the logarithmic profile (34).
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The problem can be seen clearly in Figure 9(a) which displays plots of the
temperature with the boundary condition h = 1 − t at times t = 0.2, 0.6. For
t = 0.2 the agreement is reasonable, although the errors are significantly larger
than for previous examples. At t = 0.6 a maximum has appeared in the exact
solution and all approximate solutions give very poor agreement. The CIM is by
far the worst. The reason for this is that in this method n is a decreasing function
of time with n(0.2) ≈ 1.37, n(0.6) ≈ 0.019. Recall that to ensure Tx(δ, t) = 0
requires n > 1, and this condition is clearly violated at some time before t = 0.6.
In fact, the reason for showing the t = 0.6 solution is to highlight how the
method breaks down: very shortly afterwards this time n becomes negative and
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Figure 10. Comparison of exact (solid line), CIM (dashed),
HBIM (dash-dot) and RIM (dotted) with a logarithmic approxi-
mating function for (a) h = 1 − t, (b) h = t(1 − t).

T (δ, t) → ∞. The other two approximate methods do not break down in the
same way since n is fixed. However, none of the solutions can capture the peak.
Furthermore, at t = 1, when h(t) = 0 all three approximate methods predict
T = 0 ∀x > 0. The classical approximating profile, with n = 2, will behave in a
similar manner to the HBIM and RIM curves shown as dash-dotted and dotted
lines.

Figure 9(b) displays temperatures predicted by the polynomial approximation
for the boundary condition h = t(1 − t) at times t = 0.2, 0.825. In this case the
solution for the CIM blows up soon after t = 0.825. Again it is clear that at
t = 0.2 the agreement is reasonable but for larger times the similarity decreases
and in the curves for t = 0.825 show terrible agreements.

The temperature profiles for the same boundary conditions as shown in Fig-
ure 9, but with the logarithmic approximating function, are given in Figure 10.
In this case we show results for the single time t = 1, which is where the polyno-
mial approximating functions predict a zero temperature. Both figures show that
the agreement is very good and the peak is accurately captured. This correspon-
dence continues for larger times. In general the results displayed throughout this
paper indicate that the logarithmic profile is more accurate than a polynomial.
The current result also proves that it is more versatile and can deal with time
dependent boundary conditions which cause the standard method to break down
rapidly.

Finally, in Figure 11 the variation of the position of the peak p(t) and the
exponent n(t) are displayed. The peak position, shown in Figure 11(a), is deter-
mined from (30) to give p = δ(1−1/y) where y can be found using the expression
φ(ln y − 1/n) = 1 (which comes from comparing (33) and (34)). Initially p = 0.
For the boundary condition h = t the peak moves backwards and p(t) < 0 for
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Figure 11. Time dependent boundary conditions: (a) plots of the
peak p(t) against t for profile (34), and (b) n(t).

all time. Hence the polynomial approximating functions can model the tempera-
ture, although the logarithmic profile will be more accurate. When h = 1− t and
h = t(1 − t), initially the peak moves backwards but in both cases p(t) becomes
positive for finite time and the polynomial approximating functions fail soon af-
terwards. Figure 11(b) shows the variation of n for the polynomial (dashed lines)
and logarithmic (solid lines) approximations for i), ii) h = 1, iii), iv) h = t, v),
vi) h = 1 − t, vii), viii) h = t(1 − t). The lines i)-iv) all show that n is con-
stant. Curves v), vii) show n decreasing with t and in both cases it becomes
negative for finite time. As soon as n becomes negative the polynomial solutions
will break down (although they will be inaccurate for some time prior to this).
Consequently, the polynomial approximation may only be used for small times
for the boundary conditions h = 1 − t, t(1 − t). The corresponding curves for
the logarithmic profile, vi), viii), both have n > 0 (and in fact n > 4 so ensur-
ing a zero gradient at x = δ) and so do not break down. Our calculations for
larger times show that n remains above 2 in both cases and tends to a positive
asymptote.

4. Conclusions

The method described in this paper improves on standard heat balance inte-
gral methods in two significant ways. Firstly, a new approach has been presented
to calculate the value of the exponent n in the temperature approximation. A
method of this type has recently been presented, [21], where n is determined
by minimising an error associated with either the HBIM or RIM solutions. The
method presented in this paper combines the HBIM and RIM solutions to deter-
mine n in a different manner. The results show that solutions have a similar level
of accuracy to the minimisation technique and in some cases are an improvement.
The new method also has the advantage that the algebra is considerably simpler.



24 S. L. MITCHELL AND T. G. MYERS

Furthermore, when n = n(t), the complexity of the analysis for the minimisation
technique means that a constant value of n has to be taken and so the accuracy
deteriorates. With the present method there is no such problem, n simply satis-
fies a first order differential equation and results show a high degree of accuracy.
The new method is therefore particularly useful for time dependent boundary
conditions.

The second step forward is in the analysis of problems where the temperature
has a moving peak. Previously, the heat balance methods could not model this
situation. Solutions in the literature were only provided for small times, before
the method broke down. The logarithmic approximating function presented here
can predict and follow a single moving peak. Even for boundary conditions
where the standard polynomial approximation can provide solutions for all time,
the logarithmic approximation proved to be more accurate. The only downside
to this new approximation is that the analysis is more complicated, and the main
appeal of the heat balance methods is in their simplicity. However, given that
heat balance methods cannot deal with time dependent boundary conditions it
seems worth investing some time in formulating the new method.
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