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Abstract. In this paper we prove the conjecture of Korevaar and Meyers:
for each N ≥ cdt

d there exists a spherical t-design in the sphere Sd consisting
of N points, where cd is a constant depending only on d.

1. Introduction

Let Sd be the unit sphere in Rd+1 with the Lebesgue measure µd normalized
by µd(Sd) = 1.

A set of points x1, . . . , xN ∈ Sd is called a spherical t-design if∫
Sd

P (x) dµd(x) =
1

N

N∑
i=1

P (xi)

for all algebraic polynomials in d+1 variables, of total degree at most t. The con-
cept of a spherical design was introduced by Delsarte, Goethals, and Seidel [12].
For each t, d ∈ N denote by N(d, t) the minimal number of points in a spherical
t-design in Sd. The following lower bound

(1) N(d, t) ≥



(
d+ k

d

)
+

(
d+ k − 1

d

)
if t = 2k,

2

(
d+ k

d

)
if t = 2k + 1,

is proved in [12].
Spherical t-designs attaining this bound are called tight. The vertices of a

regular t+ 1-gon form a tight spherical t-design in the circle, so N(1, t) = t+ 1.
Exactly eight tight spherical designs are known for d ≥ 2 and t ≥ 4. All such
configurations of points are highly symmetrical, and optimal from many different
points of view (see Cohn, Kumar [8] and Conway, Sloane [11]). Unfortunately,
tight designs rarely exist. In particular, Bannai and Damerell [2, 3] have shown
that tight spherical designs with d ≥ 2 and t ≥ 4 may exist only for t = 4, 5,
7 or 11. Moreover, the only tight 11-design is formed by minimal vectors of the
Leech lattice in dimension 24. The bound (1) has been improved by Delsarte’s
linear programming method for most pairs (d, t); see [22].
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On the other hand, Seymour and Zaslavsky [20] have proved that spherical
t-designs exist for all d, t ∈ N. However, this proof is nonconstructive and gives
no idea of how big N(d, t) is. So, a natural question is to ask how N(d, t) differs
from the tight bound (1). Generally, to find the exact value of N(d, t) even for
small d and t is a surprisingly hard problem. For example, everybody believes
that 24 minimal vectors of the D4 root lattice form a 5-design with minimal
number of points in S3, although it is only proved that 22 ≤ N(3, 5) ≤ 24;
see [6]. Further, Cohn, Conway, Elkies, and Kumar [7] conjectured that every
spherical 5-design consisting of 24 points in S3 is in a certain 3-parametric family.
Recently, Musin [17] has solved a long standing problem related to this conjecture.
Namely, he proved that the kissing number in dimension 4 is 24.

In this paper we focus on asymptotic upper bounds on N(d, t) for fixed d ≥ 2
and t → ∞. Let us give a brief history of this question. First, Wagner [21]

and Bajnok [1] proved that N(d, t) ≤ Cdt
Cd4

and N(d, t) ≤ Cdt
Cd3

, respectively.
Then, Korevaar and Meyers [14] have improved these inequalities by showing

that N(d, t) ≤ Cdt
(d2+d)/2. They have also conjectured that

N(d, t) ≤ Cdt
d.

Note that (1) implies N(d, t) ≥ cdt
d. Here and in what follows we denote by Cd

and cd sufficiently large and sufficiently small positive constants depending only
on d, respectively.

The conjecture of Korevaar and Meyers attracted the interest of many math-
ematicians. For instance, Kuijlaars and Saff [19] emphasized the importance of
this conjecture for d = 2, and revealed its relation to minimal energy problems.
Mhaskar, Narcowich, and Ward [16] have constructed positive quadrature for-
mulas in Sd with Cdt

d points having almost equal weights. Very recently, Chen,
Frommer, Lang, Sloan, and Womersley [9, 10] gave a computer-assisted proof
that spherical t-designs with (t+ 1)2 points exist in S2 for t ≤ 100.

For d = 2, there is an even stronger conjecture by Hardin and Sloane [13]
saying that N(2, t) ≤ 1

2
t2 + o(t2) as t → ∞. Numerical evidence supporting the

conjecture was also given.
In [4], we have suggested a nonconstructive approach for obtaining asymptotic

bounds for N(d, t) based on the application of the Brouwer fixed point theorem.
This led to the following result:

For each N ≥ Cdt
2d(d+1)

d+2 there exists a spherical t-design in Sd consisting of N
points.

Instead of the Brouwer fixed point theorem we use in this paper the following
result from the Brouwer degree theory [18, Th. 1.2.6, Th. 1.2.9].

Theorem A. Let f : Rn → Rn be a continuous mapping and Ω an open
bounded subset, with boundary ∂Ω, such that 0 ∈ Ω ⊂ Rn. If (x, f(x)) > 0
for all x ∈ ∂Ω, then there exists x ∈ Ω satisfying f(x) = 0.
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We employ this theorem to prove the conjecture of Korevaar and Meyers.

Theorem 1. For each N ≥ Cdt
d there exists a spherical t-design in Sd consisting

of N points.

Note that Theorem 1 is slightly stronger than the original conjecture because
it guarantees the existence of spherical t-designs for each N greater than Cdt

d.
This paper is organized as follows. In Section 2 we explain the main idea of

the proof. Then in Section 3 we present some auxiliary results. Finally, we prove
Theorem 1 in Section 4.

2. Preliminaries and the main idea

Let Pt be the Hilbert space of polynomials P on Sd of degree at most t such
that ∫

Sd

P (x)dµd(x) = 0,

equipped with the usual inner product

(P,Q) =

∫
Sd

P (x)Q(x)dµd(x).

By the Riesz representation theorem, for each point x ∈ Sd there exists a unique
polynomial Gx ∈ Pt such that

(Gx, Q) = Q(x) for all Q ∈ Pt.

Then a set of points x1, . . . , xN ∈ Sd forms a spherical t-design if and only if

(2) Gx1 + · · ·+GxN
= 0.

For a differentiable function f : Rd+1 → R denote by

∂f

∂x
(x0) :=

(
∂f

∂ξ1
(x0), . . . ,

∂f

∂ξd+1

(x0)

)
the gradient of f at the point x0 ∈ Rd+1.

For a polynomial Q ∈ Pt we define the spherical gradient as follows:

(3) ∇Q(x) :=
∂

∂x
Q

(
x

|x|

)
,

where | · | is the Euclidean norm in Rd+1.
We apply Theorem A to the open subset Ω of a vector space Pt,

(4) Ω :=

{
P ∈ Pt

∣∣∣∣ ∫
Sd

|∇P (x)|dµd(x) < 1

}
.

Now we observe that the existence of a continuous mapping F : Pt → (Sd)N ,
such that for all P ∈ ∂Ω

(5)
N∑

i=1

P (xi(P )) > 0, where F (P ) = (x1(P ), ..., xN(P )),
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readily implies the existence of a spherical t-design in Sd consisting of N points.
Consider a mapping L : (Sd)N → Pt defined by

(x1, . . . , xN)
L−→ Gx1 + · · ·+GxN

,

and the following composition mapping f = L ◦ F : Pt → Pt. Clearly

(P, f(P )) =
N∑

i=1

P (xi(P ))

for each P ∈ Pt. Thus, applying Theorem A to the mapping f , the vector space
Pt, and the subset Ω defined by (4), we obtain that f(Q) = 0 for some Q ∈ Pt.
Hence, by (2), the components of F (Q) = (x1(Q), ..., xN(Q)) form a spherical
t-design in Sd consisting of N points.

The most naive approach to construct such F is to start with a certain well-
distributed collection of points xi (i = 1, . . . , N), put F (0) := (x1, . . . , xN), and
then move each point along the spherical gradient vector field of P . Note that
this is the most greedy way to increase each P (xi(P )) and make

∑N
i=1 P (xi(P ))

positive for each P ∈ ∂Ω. Following this approach we will give an explicit con-
struction of F in Section 4, which will immediately imply the proof of Theorem 1.

3. Auxiliary results

To construct the corresponding mapping F for each N ≥ Cdt
d we extensively

use the following notion of an area-regular partition.
Let R = {R1, . . . , RN} be a finite collection of closed sets Ri ⊂ Sd such that
∪N

i=1Ri = Sd and µd(Ri ∩ Rj) = 0 for all 1 ≤ i < j ≤ N . The partition R is
called area-regular if µd(Ri) = 1/N , i = 1, . . . , N . The partition norm for R
is defined by

‖R‖ := max
R∈R

diamR,

where diamR stands for the maximum geodesic distance between two points in
R. We need the following fact on area-regular partitions (see Bourgain, Linden-
strauss [5] and Kuijlaars, Saff [15]):
Theorem B. For each N ∈ N there exists an area-regular partition R =
{R1, . . . , RN} with ‖R‖ ≤ BdN

−1/d for some constant Bd large enough.
We will also use the following spherical Marcinkiewicz–Zygmund type

inequality:
Theorem C. There exists a constant rd such that for each area-regular par-

tition R = {R1, . . . , RN} with ‖R‖ < rd

m
, each collection of points xi ∈ Ri

(i = 1, . . . , N), and each algebraic polynomial P of total degree m, the inequality

(6)
1

2

∫
Sd

|P (x)|dµd(x) ≤ 1

N

N∑
i=1

|P (xi)| ≤
3

2

∫
Sd

|P (x)|dµd(x)

holds.
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Theorem C follows naturally from the proof of Theorem 3.1 in [16].

Corollary 1. For each area-regular partition R = {R1, . . . , RN} with ‖R‖ <
rd

m+1
, each collection of points xi ∈ Ri (i = 1, . . . , N), and each algebraic polyno-

mial P of total degree m,

(7)
1

3
√
d

∫
Sd

|∇P (x)|dµd(x) ≤ 1

N

N∑
i=1

|∇P (xi)| ≤ 3
√
d

∫
Sd

|∇P (x)|dµd(x).

Proof. Since |∇P | =
√
P 2

1 + . . .+ P 2
d+1 in Sd, where Pj are polynomials of total

degree m + 1, Corollary 1 is an immediate consequence of (6) applied to Pj,
j = 1, . . . , d+ 1. �

4. Proof of Theorem 1

In this section we construct the map F introduced in Section 2 and thereby
finish the proof of Theorem 1.

For d, t ∈ N, take Cd > (54dBd/rd)d, where Bd is as in Theorem B and rd is
as in Theorem C, and fix N ≥ Cdt

d. Now we are in a position to give an exact
construction of the mapping F : Pt → (Sd)N which satisfies condition (5). Take
an area-regular partition R = {R1, . . . , RN} with

(8) ‖R‖ ≤ BdN
−1/d <

rd

54dt

as provided by Theorem B, and choose an arbitrary xi ∈ Ri for each i = 1, . . . , N .
Put ε = 1

6
√

d
and consider the function

hε(u) :=

{
u if u > ε,

ε otherwise.

Take a mapping U : Pt × Sd → Rd+1 such that

U(P, y) =
∇P (y)

hε(|∇P (y)|)
.

For each i = 1, . . . , N let yi : Pt × [0,∞) → Sd be the map satisfying the differ-
ential equation

(9)
d

ds
yi(P, s) = U(P, yi(P, s))

with the initial condition

yi(P, 0) = xi,

for each P ∈ Pt. Note that each mapping yi has its values in Sd by definition
of spherical gradient (3). Since the mapping U(P, y) is Lipschitz continuous in
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both P and y, each yi is well defined and continuous in both P and s, where the
metric on Pt is given by the inner product. Finally put

(10) F (P ) = (x1(P ), . . . , xN(P )) :=
(
y1

(
P,
rd

3t

)
, . . . , yN

(
P,
rd

3t

))
.

By definition the mapping F is continuous on Pt. So, as explained in Section 2,
to finish the proof of Theorem 1 it suffices to prove

Lemma 1. Let F : Pt → (Sd)N be the mapping defined by (10). Then for each
P ∈ ∂Ω,

1

N

N∑
i=1

P (xi(P )) > 0,

where Ω is given by (4).

Proof. Fix P ∈ ∂Ω. For the sake of simplicity we write yi(s) in place of yi(P, s).
By the Newton-Leibniz formula we have

1

N

N∑
i=1

P (xi(P )) =
1

N

N∑
i=1

P (yi(rd/3t))

=
1

N

N∑
i=1

P (xi) +

∫ rd/3t

0

d

ds

[
1

N

N∑
i=1

P (yi(s))

]
ds.(11)

Now to prove Lemma 1, we first estimate the value∣∣∣∣∣ 1

N

N∑
i=1

P (xi)

∣∣∣∣∣
from above, and then estimate the value

d

ds

[
1

N

N∑
i=1

P (yi(s))

]
from below, for each s ∈ [0, rd/3t]. We have∣∣∣∣∣ 1

N

N∑
i=1

P (xi)

∣∣∣∣∣ =

∣∣∣∣∣
N∑

i=1

∫
Ri

P (xi)− P (x) dµd(x)

∣∣∣∣∣ ≤
N∑

i=1

∫
Ri

|P (xi)− P (x)|dµd(x)

≤ ‖R‖
N

N∑
i=1

max
z∈Sd: dist(z,xi)≤‖R‖

|∇P (z)|

where dist(z, xi) denotes the geodesic distance between z and xi. Hence, for
zi ∈ Sd such that dist(zi, xi) ≤ ‖R‖ and

|∇P (zi)| = max
z∈Sd: dist(z,xi)≤‖R‖

|∇P (z)|,



OPTIMAL ASYMPTOTIC BOUNDS FOR SPHERICAL DESIGNS 7

we obtain ∣∣∣∣∣ 1

N

N∑
i=1

P (xi)

∣∣∣∣∣ ≤ ‖R‖N
N∑

i=1

|∇P (zi)|.

Consider another area-regular partition R′ = {R′1, . . . , R′N} defined by R′i =
Ri ∪ {zi}. Clearly ‖R′‖ ≤ 2‖R‖ and so, by (8), we get ‖R′‖ < rd/(27 d t).
Applying inequality (7) to the partition R′ and the collection of points zi we
obtain that

(12)

∣∣∣∣∣ 1

N

N∑
i=1

P (xi)

∣∣∣∣∣ ≤ 3
√
d ‖R‖

∫
Sd

|∇P (x)|dµd(x) <
rd

18
√
d t

for any P ∈ ∂Ω. On the other hand, the differential equation (9) implies

d

ds

[
1

N

N∑
i=1

P (yi(s))

]
=

1

N

N∑
i=1

|∇P (yi(s))|2

hε(|∇P (yi(s))|)

≥ 1

N

∑
i: |∇P (yi(s))|≥ε

|∇P (yi(s))|

≥ 1

N

N∑
i=1

|∇P (yi(s))| − ε.(13)

Since ∣∣∣∣ ∇P (y)

hε(|∇P (y)|)

∣∣∣∣ ≤ 1

for each y ∈ Sd, it follows again from (9) that
∣∣∣dyi(s)

ds

∣∣∣ ≤ 1. Hence we arrive at

dist(xi, yi(s)) ≤ s.

Now for each s ∈ [0, rd/3t] consider the area-regular partitionR′′ = {R′′1, . . . , R′′N}
given by R′′i = Ri ∪ {yi(s)}. By (8) we have

‖R′′‖ < rd

54dt
+
rd

3t
;

so we can apply (7) to the partition R′′ and the collection of points yi(s). This
and inequality (13) yield

d

ds

[
1

N

N∑
i=1

P (yi(s))

]
≥ 1

N

N∑
i=1

|∇P (yi(s))| −
1

6
√
d

≥ 1

3
√
d

∫
Sd

|∇P (x)|dµd(x)− 1

6
√
d

=
1

6
√
d
,(14)
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for each P ∈ ∂Ω and s ∈ [0, rd/3t]. Finally, equation (11) and inequalities (12)
and (14) imply

(15)
1

N

N∑
i=1

P (xi(P )) >
1

6
√
d

rd

3t
− rd

18
√
d t

= 0.

Lemma 1 is proved. �
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