OPTIMAL ASYMPTOTIC BOUNDS FOR SPHERICAL DESIGNS

ANDRIY BONDARENKO, DANYLO RADCHENKO, AND MARYNA VIAZOVSKA

Abstract. In this paper we prove the conjecture of Korevaar and Meyers: for each $N \geq c_{d} t^{d}$ there exists a spherical t-design in the sphere S^{d} consisting of N points, where c_{d} is a constant depending only on d.

1. Introduction

Let S^{d} be the unit sphere in \mathbb{R}^{d+1} with the Lebesgue measure μ_{d} normalized by $\mu_{d}\left(S^{d}\right)=1$.

A set of points $x_{1}, \ldots, x_{N} \in S^{d}$ is called a spherical t-design if

$$
\int_{S^{d}} P(x) d \mu_{d}(x)=\frac{1}{N} \sum_{i=1}^{N} P\left(x_{i}\right)
$$

for all algebraic polynomials in $d+1$ variables, of total degree at most t. The concept of a spherical design was introduced by Delsarte, Goethals, and Seidel [12]. For each $t, d \in \mathbb{N}$ denote by $N(d, t)$ the minimal number of points in a spherical t-design in S^{d}. The following lower bound

$$
N(d, t) \geq \begin{cases}\binom{d+k}{d}+\binom{d+k-1}{d} & \text { if } t=2 k \tag{1}\\ 2\binom{d+k}{d} & \text { if } t=2 k+1\end{cases}
$$

is proved in [12].
Spherical t-designs attaining this bound are called tight. The vertices of a regular $t+1$-gon form a tight spherical t-design in the circle, so $N(1, t)=t+1$. Exactly eight tight spherical designs are known for $d \geq 2$ and $t \geq 4$. All such configurations of points are highly symmetrical, and optimal from many different points of view (see Cohn, Kumar [8] and Conway, Sloane [11]). Unfortunately, tight designs rarely exist. In particular, Bannai and Damerell [2, 3] have shown that tight spherical designs with $d \geq 2$ and $t \geq 4$ may exist only for $t=4,5$, 7 or 11. Moreover, the only tight 11-design is formed by minimal vectors of the Leech lattice in dimension 24. The bound (1) has been improved by Delsarte's linear programming method for most pairs (d, t); see [22].

On the other hand, Seymour and Zaslavsky [20] have proved that spherical t-designs exist for all $d, t \in \mathbb{N}$. However, this proof is nonconstructive and gives no idea of how big $N(d, t)$ is. So, a natural question is to ask how $N(d, t)$ differs from the tight bound (1). Generally, to find the exact value of $N(d, t)$ even for small d and t is a surprisingly hard problem. For example, everybody believes that 24 minimal vectors of the D_{4} root lattice form a 5 -design with minimal number of points in S^{3}, although it is only proved that $22 \leq N(3,5) \leq 24$; see [6]. Further, Cohn, Conway, Elkies, and Kumar [7] conjectured that every spherical 5 -design consisting of 24 points in S^{3} is in a certain 3-parametric family. Recently, Musin [17] has solved a long standing problem related to this conjecture. Namely, he proved that the kissing number in dimension 4 is 24 .

In this paper we focus on asymptotic upper bounds on $N(d, t)$ for fixed $d \geq 2$ and $t \rightarrow \infty$. Let us give a brief history of this question. First, Wagner [21] and Bajnok [1] proved that $N(d, t) \leq C_{d} t^{C d^{4}}$ and $N(d, t) \leq C_{d} t^{C d^{3}}$, respectively. Then, Korevaar and Meyers [14] have improved these inequalities by showing that $N(d, t) \leq C_{d} t^{\left(d^{2}+d\right) / 2}$. They have also conjectured that

$$
N(d, t) \leq C_{d} t^{d} .
$$

Note that (1) implies $N(d, t) \geq c_{d} t^{d}$. Here and in what follows we denote by C_{d} and c_{d} sufficiently large and sufficiently small positive constants depending only on d, respectively.

The conjecture of Korevaar and Meyers attracted the interest of many mathematicians. For instance, Kuijlaars and Saff [19] emphasized the importance of this conjecture for $d=2$, and revealed its relation to minimal energy problems. Mhaskar, Narcowich, and Ward [16] have constructed positive quadrature formulas in S^{d} with $C_{d} t^{d}$ points having almost equal weights. Very recently, Chen, Frommer, Lang, Sloan, and Womersley [9, 10] gave a computer-assisted proof that spherical t-designs with $(t+1)^{2}$ points exist in S^{2} for $t \leq 100$.

For $d=2$, there is an even stronger conjecture by Hardin and Sloane [13] saying that $N(2, t) \leq \frac{1}{2} t^{2}+o\left(t^{2}\right)$ as $t \rightarrow \infty$. Numerical evidence supporting the conjecture was also given.

In [4], we have suggested a nonconstructive approach for obtaining asymptotic bounds for $N(d, t)$ based on the application of the Brouwer fixed point theorem. This led to the following result:

For each $N \geq C_{d} t^{\frac{2 d(d+1)}{d+2}}$ there exists a spherical t-design in S^{d} consisting of N points.
Instead of the Brouwer fixed point theorem we use in this paper the following result from the Brouwer degree theory [18, Th. 1.2.6, Th. 1.2.9].

Theorem A. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a continuous mapping and Ω an open bounded subset, with boundary $\partial \Omega$, such that $0 \in \Omega \subset \mathbb{R}^{n}$. If $(x, f(x))>0$ for all $x \in \partial \Omega$, then there exists $x \in \Omega$ satisfying $f(x)=0$.

We employ this theorem to prove the conjecture of Korevaar and Meyers.
Theorem 1. For each $N \geq C_{d} t^{d}$ there exists a spherical t-design in S^{d} consisting of N points.

Note that Theorem 1 is slightly stronger than the original conjecture because it guarantees the existence of spherical t-designs for each N greater than $C_{d} t^{d}$.

This paper is organized as follows. In Section 2 we explain the main idea of the proof. Then in Section 3 we present some auxiliary results. Finally, we prove Theorem 1 in Section 4.

2. Preliminaries and the main idea

Let \mathcal{P}_{t} be the Hilbert space of polynomials P on S^{d} of degree at most t such that

$$
\int_{S^{d}} P(x) d \mu_{d}(x)=0
$$

equipped with the usual inner product

$$
(P, Q)=\int_{S^{d}} P(x) Q(x) d \mu_{d}(x)
$$

By the Riesz representation theorem, for each point $x \in S^{d}$ there exists a unique polynomial $G_{x} \in \mathcal{P}_{t}$ such that

$$
\left(G_{x}, Q\right)=Q(x) \text { for all } Q \in \mathcal{P}_{t}
$$

Then a set of points $x_{1}, \ldots, x_{N} \in S^{d}$ forms a spherical t-design if and only if

$$
\begin{equation*}
G_{x_{1}}+\cdots+G_{x_{N}}=0 \tag{2}
\end{equation*}
$$

For a differentiable function $f: \mathbb{R}^{d+1} \rightarrow \mathbb{R}$ denote by

$$
\frac{\partial f}{\partial x}\left(x_{0}\right):=\left(\frac{\partial f}{\partial \xi_{1}}\left(x_{0}\right), \ldots, \frac{\partial f}{\partial \xi_{d+1}}\left(x_{0}\right)\right)
$$

the gradient of f at the point $x_{0} \in \mathbb{R}^{d+1}$.
For a polynomial $Q \in \mathcal{P}_{t}$ we define the spherical gradient as follows:

$$
\begin{equation*}
\nabla Q(x):=\frac{\partial}{\partial x} Q\left(\frac{x}{|x|}\right) \tag{3}
\end{equation*}
$$

where $|\cdot|$ is the Euclidean norm in \mathbb{R}^{d+1}.
We apply Theorem A to the open subset Ω of a vector space \mathcal{P}_{t},

$$
\begin{equation*}
\Omega:=\left\{P \in \mathcal{P}_{t}\left|\int_{S^{d}}\right| \nabla P(x) \mid d \mu_{d}(x)<1\right\} . \tag{4}
\end{equation*}
$$

Now we observe that the existence of a continuous mapping $F: \mathcal{P}_{t} \rightarrow\left(S^{d}\right)^{N}$, such that for all $P \in \partial \Omega$

$$
\begin{equation*}
\sum_{i=1}^{N} P\left(x_{i}(P)\right)>0, \text { where } F(P)=\left(x_{1}(P), \ldots, x_{N}(P)\right) \tag{5}
\end{equation*}
$$

readily implies the existence of a spherical t-design in S^{d} consisting of N points. Consider a mapping $L:\left(S^{d}\right)^{N} \rightarrow \mathcal{P}_{t}$ defined by

$$
\left(x_{1}, \ldots, x_{N}\right) \xrightarrow{L} G_{x_{1}}+\cdots+G_{x_{N}},
$$

and the following composition mapping $f=L \circ F: \mathcal{P}_{t} \rightarrow \mathcal{P}_{t}$. Clearly

$$
(P, f(P))=\sum_{i=1}^{N} P\left(x_{i}(P)\right)
$$

for each $P \in \mathcal{P}_{t}$. Thus, applying Theorem A to the mapping f, the vector space \mathcal{P}_{t}, and the subset Ω defined by (4), we obtain that $f(Q)=0$ for some $Q \in \mathcal{P}_{t}$. Hence, by (2), the components of $F(Q)=\left(x_{1}(Q), \ldots, x_{N}(Q)\right)$ form a spherical t-design in S^{d} consisting of N points.

The most naive approach to construct such F is to start with a certain welldistributed collection of points $x_{i}(i=1, \ldots, N)$, put $F(0):=\left(x_{1}, \ldots, x_{N}\right)$, and then move each point along the spherical gradient vector field of P. Note that this is the most greedy way to increase each $P\left(x_{i}(P)\right)$ and make $\sum_{i=1}^{N} P\left(x_{i}(P)\right)$ positive for each $P \in \partial \Omega$. Following this approach we will give an explicit construction of F in Section 4, which will immediately imply the proof of Theorem 1.

3. Auxiliary results

To construct the corresponding mapping F for each $N \geq C_{d} t^{d}$ we extensively use the following notion of an area-regular partition.

Let $\mathcal{R}=\left\{R_{1}, \ldots, R_{N}\right\}$ be a finite collection of closed sets $R_{i} \subset S^{d}$ such that $\cup_{i=1}^{N} R_{i}=S^{d}$ and $\mu_{d}\left(R_{i} \cap R_{j}\right)=0$ for all $1 \leq i<j \leq N$. The partition \mathcal{R} is called area-regular if $\mu_{d}\left(R_{i}\right)=1 / N, i=1, \ldots, N$. The partition norm for \mathcal{R} is defined by

$$
\|\mathcal{R}\|:=\max _{R \in \mathcal{R}} \operatorname{diam} R
$$

where $\operatorname{diam} R$ stands for the maximum geodesic distance between two points in R. We need the following fact on area-regular partitions (see Bourgain, Lindenstrauss [5] and Kuijlaars, Saff [15]):
Theorem B. For each $N \in \mathbb{N}$ there exists an area-regular partition $\mathcal{R}=$ $\left\{R_{1}, \ldots, R_{N}\right\}$ with $\|\mathcal{R}\| \leq B_{d} N^{-1 / d}$ for some constant B_{d} large enough.

We will also use the following spherical Marcinkiewicz-Zygmund type inequality:

Theorem C. There exists a constant r_{d} such that for each area-regular partition $\mathcal{R}=\left\{R_{1}, \ldots, R_{N}\right\}$ with $\|\mathcal{R}\|<\frac{r_{d}}{m}$, each collection of points $x_{i} \in R_{i}$ ($i=1, \ldots, N$), and each algebraic polynomial P of total degree m, the inequality

$$
\begin{equation*}
\frac{1}{2} \int_{S^{d}}|P(x)| d \mu_{d}(x) \leq \frac{1}{N} \sum_{i=1}^{N}\left|P\left(x_{i}\right)\right| \leq \frac{3}{2} \int_{S^{d}}|P(x)| d \mu_{d}(x) \tag{6}
\end{equation*}
$$

holds.

Theorem C follows naturally from the proof of Theorem 3.1 in [16].
Corollary 1. For each area-regular partition $\mathcal{R}=\left\{R_{1}, \ldots, R_{N}\right\}$ with $\|\mathcal{R}\|<$ $\frac{r_{d}}{m+1}$, each collection of points $x_{i} \in R_{i}(i=1, \ldots, N)$, and each algebraic polynomial P of total degree m,

$$
\begin{equation*}
\frac{1}{3 \sqrt{d}} \int_{S^{d}}|\nabla P(x)| d \mu_{d}(x) \leq \frac{1}{N} \sum_{i=1}^{N}\left|\nabla P\left(x_{i}\right)\right| \leq 3 \sqrt{d} \int_{S^{d}}|\nabla P(x)| d \mu_{d}(x) . \tag{7}
\end{equation*}
$$

Proof. Since $|\nabla P|=\sqrt{P_{1}^{2}+\ldots+P_{d+1}^{2}}$ in S^{d}, where P_{j} are polynomials of total degree $m+1$, Corollary 1 is an immediate consequence of (6) applied to P_{j}, $j=1, \ldots, d+1$.

4. Proof of Theorem 1

In this section we construct the map F introduced in Section 2 and thereby finish the proof of Theorem 1.

For $d, t \in \mathbb{N}$, take $C_{d}>\left(54 d B_{d} / r_{d}\right)^{d}$, where B_{d} is as in Theorem B and r_{d} is as in Theorem C, and fix $N \geq C_{d} t^{d}$. Now we are in a position to give an exact construction of the mapping $F: \mathcal{P}_{t} \rightarrow\left(S^{d}\right)^{N}$ which satisfies condition (5). Take an area-regular partition $\mathcal{R}=\left\{R_{1}, \ldots, R_{N}\right\}$ with

$$
\begin{equation*}
\|\mathcal{R}\| \leq B_{d} N^{-1 / d}<\frac{r_{d}}{54 d t} \tag{8}
\end{equation*}
$$

as provided by Theorem B, and choose an arbitrary $x_{i} \in R_{i}$ for each $i=1, \ldots, N$. Put $\varepsilon=\frac{1}{6 \sqrt{d}}$ and consider the function

$$
h_{\varepsilon}(u):=\left\{\begin{array}{lc}
u & \text { if } u>\varepsilon \\
\varepsilon & \text { otherwise }
\end{array}\right.
$$

Take a mapping $U: \mathcal{P}_{t} \times S^{d} \rightarrow \mathbb{R}^{d+1}$ such that

$$
U(P, y)=\frac{\nabla P(y)}{h_{\varepsilon}(|\nabla P(y)|)}
$$

For each $i=1, \ldots, N$ let $y_{i}: \mathcal{P}_{t} \times[0, \infty) \rightarrow S^{d}$ be the map satisfying the differential equation

$$
\begin{equation*}
\frac{d}{d s} y_{i}(P, s)=U\left(P, y_{i}(P, s)\right) \tag{9}
\end{equation*}
$$

with the initial condition

$$
y_{i}(P, 0)=x_{i},
$$

for each $P \in \mathcal{P}_{t}$. Note that each mapping y_{i} has its values in S^{d} by definition of spherical gradient (3). Since the mapping $U(P, y)$ is Lipschitz continuous in
both P and y, each y_{i} is well defined and continuous in both P and s, where the metric on \mathcal{P}_{t} is given by the inner product. Finally put

$$
\begin{equation*}
F(P)=\left(x_{1}(P), \ldots, x_{N}(P)\right):=\left(y_{1}\left(P, \frac{r_{d}}{3 t}\right), \ldots, y_{N}\left(P, \frac{r_{d}}{3 t}\right)\right) \tag{10}
\end{equation*}
$$

By definition the mapping F is continuous on \mathcal{P}_{t}. So, as explained in Section 2, to finish the proof of Theorem 1 it suffices to prove

Lemma 1. Let $F: \mathcal{P}_{t} \rightarrow\left(S^{d}\right)^{N}$ be the mapping defined by (10). Then for each $P \in \partial \Omega$,

$$
\frac{1}{N} \sum_{i=1}^{N} P\left(x_{i}(P)\right)>0
$$

where Ω is given by (4).
Proof. Fix $P \in \partial \Omega$. For the sake of simplicity we write $y_{i}(s)$ in place of $y_{i}(P, s)$. By the Newton-Leibniz formula we have

$$
\begin{align*}
\frac{1}{N} \sum_{i=1}^{N} P\left(x_{i}(P)\right) & =\frac{1}{N} \sum_{i=1}^{N} P\left(y_{i}\left(r_{d} / 3 t\right)\right) \\
& =\frac{1}{N} \sum_{i=1}^{N} P\left(x_{i}\right)+\int_{0}^{r_{d} / 3 t} \frac{d}{d s}\left[\frac{1}{N} \sum_{i=1}^{N} P\left(y_{i}(s)\right)\right] d s \tag{11}
\end{align*}
$$

Now to prove Lemma 1, we first estimate the value

$$
\left|\frac{1}{N} \sum_{i=1}^{N} P\left(x_{i}\right)\right|
$$

from above, and then estimate the value

$$
\frac{d}{d s}\left[\frac{1}{N} \sum_{i=1}^{N} P\left(y_{i}(s)\right)\right]
$$

from below, for each $s \in\left[0, r_{d} / 3 t\right]$. We have

$$
\begin{aligned}
\left|\frac{1}{N} \sum_{i=1}^{N} P\left(x_{i}\right)\right| & =\left|\sum_{i=1}^{N} \int_{R_{i}} P\left(x_{i}\right)-P(x) d \mu_{d}(x)\right| \leq \sum_{i=1}^{N} \int_{R_{i}}\left|P\left(x_{i}\right)-P(x)\right| d \mu_{d}(x) \\
& \leq \frac{\|\mathcal{R}\|}{N} \sum_{i=1}^{N} \max _{z \in S^{d}: \operatorname{dist}\left(z, x_{i}\right) \leq\|\mathcal{R}\|}|\nabla P(z)|
\end{aligned}
$$

where $\operatorname{dist}\left(z, x_{i}\right)$ denotes the geodesic distance between z and x_{i}. Hence, for $z_{i} \in S^{d}$ such that $\operatorname{dist}\left(z_{i}, x_{i}\right) \leq\|\mathcal{R}\|$ and

$$
\left|\nabla P\left(z_{i}\right)\right|=\max _{z \in S^{d}: \operatorname{dist}\left(z, x_{i}\right) \leq\|\mathcal{R}\|}|\nabla P(z)|,
$$

we obtain

$$
\left|\frac{1}{N} \sum_{i=1}^{N} P\left(x_{i}\right)\right| \leq \frac{\|\mathcal{R}\|}{N} \sum_{i=1}^{N}\left|\nabla P\left(z_{i}\right)\right| .
$$

Consider another area-regular partition $\mathcal{R}^{\prime}=\left\{R_{1}^{\prime}, \ldots, R_{N}^{\prime}\right\}$ defined by $R_{i}^{\prime}=$ $R_{i} \cup\left\{z_{i}\right\}$. Clearly $\left\|\mathcal{R}^{\prime}\right\| \leq 2\|\mathcal{R}\|$ and so, by (8), we get $\left\|\mathcal{R}^{\prime}\right\|<r_{d} /(27 d t)$. Applying inequality (7) to the partition \mathcal{R}^{\prime} and the collection of points z_{i} we obtain that

$$
\begin{equation*}
\left|\frac{1}{N} \sum_{i=1}^{N} P\left(x_{i}\right)\right| \leq 3 \sqrt{d}\|\mathcal{R}\| \int_{S^{d}}|\nabla P(x)| d \mu_{d}(x)<\frac{r_{d}}{18 \sqrt{d} t} \tag{12}
\end{equation*}
$$

for any $P \in \partial \Omega$. On the other hand, the differential equation (9) implies

$$
\begin{align*}
\frac{d}{d s}\left[\frac{1}{N} \sum_{i=1}^{N} P\left(y_{i}(s)\right)\right] & =\frac{1}{N} \sum_{i=1}^{N} \frac{\left|\nabla P\left(y_{i}(s)\right)\right|^{2}}{h_{\varepsilon}\left(\left|\nabla P\left(y_{i}(s)\right)\right|\right)} \\
& \geq \frac{1}{N} \sum_{i:\left|\nabla P\left(y_{i}(s)\right)\right| \geq \varepsilon}\left|\nabla P\left(y_{i}(s)\right)\right| \\
& \geq \frac{1}{N} \sum_{i=1}^{N}\left|\nabla P\left(y_{i}(s)\right)\right|-\varepsilon . \tag{13}
\end{align*}
$$

Since

$$
\left|\frac{\nabla P(y)}{h_{\varepsilon}(|\nabla P(y)|)}\right| \leq 1
$$

for each $y \in S^{d}$, it follows again from (9) that $\left|\frac{d y_{i}(s)}{d s}\right| \leq 1$. Hence we arrive at

$$
\operatorname{dist}\left(x_{i}, y_{i}(s)\right) \leq s
$$

Now for each $s \in\left[0, r_{d} / 3 t\right]$ consider the area-regular partition $\mathcal{R}^{\prime \prime}=\left\{R_{1}^{\prime \prime}, \ldots, R_{N}^{\prime \prime}\right\}$ given by $R_{i}^{\prime \prime}=R_{i} \cup\left\{y_{i}(s)\right\}$. By (8) we have

$$
\left\|\mathcal{R}^{\prime \prime}\right\|<\frac{r_{d}}{54 d t}+\frac{r_{d}}{3 t} ;
$$

so we can apply (7) to the partition $\mathcal{R}^{\prime \prime}$ and the collection of points $y_{i}(s)$. This and inequality (13) yield

$$
\begin{align*}
\frac{d}{d s}\left[\frac{1}{N} \sum_{i=1}^{N} P\left(y_{i}(s)\right)\right] & \geq \frac{1}{N} \sum_{i=1}^{N}\left|\nabla P\left(y_{i}(s)\right)\right|-\frac{1}{6 \sqrt{d}} \\
& \geq \frac{1}{3 \sqrt{d}} \int_{S^{d}}|\nabla P(x)| d \mu_{d}(x)-\frac{1}{6 \sqrt{d}}=\frac{1}{6 \sqrt{d}} \tag{14}
\end{align*}
$$

for each $P \in \partial \Omega$ and $s \in\left[0, r_{d} / 3 t\right]$. Finally, equation (11) and inequalities (12) and (14) imply

$$
\begin{equation*}
\frac{1}{N} \sum_{i=1}^{N} P\left(x_{i}(P)\right)>\frac{1}{6 \sqrt{d}} \frac{r_{d}}{3 t}-\frac{r_{d}}{18 \sqrt{d} t}=0 \tag{15}
\end{equation*}
$$

Lemma 1 is proved.

References

[1] В. Bajnok, Construction of spherical t-designs, Geom. Dedicata, 43 (1992), 167-179.
[2] E. Bannai and R.M. Damerell, Tight spherical designs I, J. Math. Soc. Japan, 31 (1979), 199-207.
[3] E. Bannai and R.M. Damerell, Tight spherical designs. II, J. London Math. Soc., 21 (1980), 13-30.
[4] A. Bondarenko and M. Viazovska, Spherical designs via Brouwer fixed point theorem, SIAM J. Discrete Math., 24 (2010), 207-217.
[5] J. Bourgain and J. Lindenstrauss, Distribution of points on spheres and approximation by zonotopes, Israel J. Math., 64 (1988), 25-31.
[6] P. Boyvalenkov, D. Danev, and S. Nikova, Nonexistence of certain spherical designs of odd strengths and cardinalities, Discrete Comput. Geom., 21 (1999), 143-156.
[7] H. Cohn, J. H. Conway, N. D. Elkies, and A. Kumar, The D_{4} root system is not universally optimal, Experiment. Math., 16 (2007), 313-320.
[8] H. Cohn and A. Kumar, Universally optimal distribution of points on spheres, J. Amer. Math. Soc., 20 (2007), 99-148.
[9] X. Chen, A. Frommer, and B. Lang, Computational existence proofs for spherical t-designs, Numerische Mathematik, 117 (2011), 289-305.
[10] X. Chen and R. S. Womersley, Existence of solutions to systems of underdetermined equations and spherical designs, SIAM Journal on Numerical Analysis, 44(6) (2006), 2326-2341.
[11] J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups., 3rd ed., Springer, New York, 1999.
[12] P. Delsarte, J. M. Goethals, and J. J. Seidel, Spherical codes and designs, Geom. Dedicata, 6 (1977), 363-388.
[13] R. H. Hardin and N. J. A. Sloane, McLaren's Improved Snub Cube and Other New Spherical Designs in Three Dimensions, Discrete Comput. Geom., 15 (1996), 429-441.
[14] J. Korevaar and J. L. H. Meyers, Spherical Faraday cage for the case of equal point charges and Chebyshev-type quadrature on the sphere, Integral Transforms Spec. Funct., 1 (1993), 105-117.
[15] A. B. J. Kululaars and E. B. Saff, Asymptotics for minimal discrete energy on the sphere, Trans. Amer. Math. Soc., 350 (1998), 523-538.
[16] H. N. Mhaskar, F. J. Narcowich, and J. D. Ward, Spherical MarcinkiewiczZygmund inequalities and positive quadrature, Math. Comp., 70 (2001), 1113-1130.
[17] O. R. Musin, The kissing number in four dimensions, Annals of Math., 68 (2008), 1-32.
[18] Donal O’Regan, Yeol Je Cho and Yu Qing Chen, Topological degree theory and applications, Chapman \& Hall/CRC, 2006.
[19] E. B. Saff and A. B. J. Kululaars, Distributing many points on a sphere, Math. Intelligencer, 19 (1997), 5-11.
[20] P. D. Seymour and T. Zaslavsky, Averaging sets: a generalization of mean values and spherical designs, Adv. Math., 52 (1984), 213-240.
[21] G. Wagner, On averaging sets, Monatsh. Math., 111 (1991), 69-78.
[22] V. A. Yudin, Lower bounds for spherical designs, Izv. Ross. Akad. Nauk. Ser. Mat. 61 (1997), 211-233. English transl., Izv. Math., 61 (1997), 673-683.

Andriy Bondarenko
Centre de Recerca Matemàtica
Campus de Bellaterra
08193 Bellaterra (Barcelona), Spain
AND
Department of Mathematical Analysis
National Taras Shevchenko University
str. Volodymyrska, 64, Kyiv,
01033, Ukraine
E-mail address: andriybond@gmail.com
Danylo Radchenko
Department of Mathematical Analysis
National Taras Shevchenko University
str. Volodymyrska, 64, Kyiv
01033, UkRAINE
E-mail address: danradchenko@gmail.com
Maryna Viazovska
Max Planck Institute for Mathematics
Vivatsgasse 7
53111 Bonn, Germany
E-mail address: viazovsk@mpim-bonn.mpg.de

