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Abstract. We study the complexity of the isomorphism relation on classes of
computable structures. We use the notion of FF -reducibility introduced in [9]
to show completeness of the isomorphism relation on many familiar classes in
the context of all Σ1

1 equivalence relations on hyperarithmetical subsets of ω.

1. Introduction

We develop the theory for computable structures analogous to the theory of
isomorphism relations introduced by H. Friedman-Stanley in [13]. Our languages
are computable, and our structures have universes contained in ω. In measuring
complexity, we identify structures with their atomic diagrams. In particular, a
structure is computable if its atomic diagram is computable.

In descriptive set theory, the study of Borel equivalence relations under Borel
reducibility has developed into a rich area. The notion of Borel reducibility al-
lows one to compare the complexity of equivalence relations on Polish spaces, for
details see, for example, [15, 19, 21]. In particular, natural equivalence relations
such as isomorphism and bi-embeddability on classes of countable structures have
been widely studied, e.g., [13, 14, 18, 25]. An effective version of this study was
introduced in [4] and [24]. The complexity of the isomorphism relation on various
classes of countable structures was measured using the idea of effective transfor-
mations. In the recent work [11] the general theory of effectively Borel (i.e., ∆1

1)
equivalence relations on effectively presented Polish spaces was developed via the
notion of effective Borel reducibility. The resulting structure turned out to be
much more complex than in the classical case.

In computable model theory, equivalence relations have also been a subject of
study, e.g., [3, 7, 23], etc. In these papers, equivalence relations of rather low
complexity were studied (computable, in the Ershov hierarchy, Σ0

1,Π
0
1). In [9] Σ1
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equivalence relations on computable structures were investigated. The notion of
hyperarithmetical and computable reducibility of Σ1

1 equivalence relations on ω
was used to estimate the complexity of natural equivalence relations on hyper-
arithmetical classes of computable structures within the class of Σ1

1 equivalence
relations on hyperarithmetical subsets of ω as a whole.

In this paper we continue the study of the theory of Σ1
1 equivalence relations

on computable structures. Our work here shows that this theory behaves very
differently than the theory initiated in H. Friedman-Stanley [13] for isomorphism
relations and further developed for arbitrary Borel equivalence relations on Polish
spaces [15, 19, 21]. In particular we show that isomorphism of computable graphs
is complete with respect to the chosen effective reducibility in the context of all Σ1

1

equivalence relations on ω. This is false in the context of countable structures and
Borel reducibility [22]: there are examples of Borel equivalence relations that are
not Borel-reducible to isomorphism of graphs. We also show that the isomorphism
relation on computable torsion abelian groups is complete among Σ1

1 equivalence
relations on ω, while in the classical case it is known to be incomplete among
isomorphism relations on classes of countable structures [13]. The same holds
for isomorphism of computable torsion-free abelian groups, which in the case of
countable structures is not known to be complete for isomorphism relations.

2. Background

2.1. Trees. Here we give some definitions useful for describing computable trees.
Our trees are isomorphic to subtrees of ω<ω. For the language, we take a single
unary function symbol, interpreted as the predecessor function. We write ∅ for
the top node (our trees grow down), and we think of ∅ as its own predecessor.
Thus, our trees are defined on ω with their structure given by the predecessor
function, but we often consider them as subtrees of ω<ω and treat their elements
as finite sequences.

Definition 1. Let S, T ⊆ ω<ω be trees. Define the tree S ∗ T in the following
way. We think of the elements of S ∗ T as ordered pairs (σ, τ), where σ ∈ S,
τ ∈ T . At level 0 of S ∗ T , we have (∅, ∅). For an element (σ, τ) at level k of
S ∗ T , σ and τ are at level k of S and T , respectively. The successors of (σ, τ)
are the pairs (σ′, τ ′), where σ′ is a successor of σ in S, and τ ′ is a successor of τ
in T .

Definition 2. Let T be a subtree of ω<ω. We define the tree rank of x ∈ T ,
denoted by tr(x), by induction:

(1) tr(x) = 0 if x has no successor;
(2) For α > 0, tr(x) = α if α is the least ordinal greater than tr(y) for all

successors y of x;
(3) tr(x) =∞ if x does not have ordinal tree rank.

The tree rank of the tree T is defined to be the rank of the top node ∅.
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Note that all computable trees have rank∞ or rank some computable ordinal.
Moreover, for any node x ∈ T , tr(x) =∞ iff x extends to an infinite path through
T [27].

Remark. The tree rank of the tree S ∗ T is the minimum of the tree ranks of S
and T . In particular, S ∗ T has an infinite path iff both S and T have infinite
paths. More generally, for σ ∈ S and τ ∈ T , where σ and τ lie at the same level
in their respective trees, tr((σ, τ)) = min(tr(σ), tr(τ)).

Definition 3 (rank-saturated tree). A computable subtree T of ω<ω is rank-
saturated provided that for all x in T :

(1) If tr(x) is an ordinal α, then for all β < α, x has infinitely many successors
z such that tr(z) = β;

(2) If tr(x) =∞, then for all computable β, x has infinitely many successors z
such that tr(z) = β and x has infinitely many successors z with tr(z) =∞.

Lemma 1. There is a computable rank-saturated tree T∞ such that rk(T∞) =∞.

Proof. In [17] Harrison proved the existence of a computable linear ordering H of
type ωCK

1 (1 + η). We let T∞ be the set of finite sequences ((a0, k0), . . . , (an, kn)),
where a0 > · · · > an in H and k0, . . . , kn ∈ ω. It is easy to see that if ai
corresponds to an ordinal α in H, then tr((a0, k0), . . . , (ai, ki)) = α, and if ai lies
in the non-well-ordered part of H, then tr((a0, k0), . . . , (ai, ki)) =∞. �

Proposition 1. If T is a computable tree, then T ∗ T∞ is a computable rank-
saturated tree of the same tree rank as T .

Proof. The top node in T ∗ T∞ clearly has the proper rank, by Remark 2.1. For
x ∈ T ∗ T∞ of rank α and β < α, we show that x has infinitely many successors
of rank β. Say x = (σ, τ). By Remark 2.1, tr(τ) ≥ α and because T∞ is rank-
saturated, τ has infinitely many successors τ ′ of rank β. Also, tr(σ) ≥ α, so σ has
a successor σ′ of rank at least β. Then for all such pairs (σ′, τ ′), tr(σ′, τ ′) = β. �

Remark. Computable rank-saturated trees are a special case of computable
rank-homogeneous trees, defined in [5].

Proposition 2.

(1) For every computable α, if Tα and Tα1 are computable rank-saturated trees
of tree rank α, then Tα ∼= Tα1 .

(2) If T∞1 is a computable rank-saturated tree of tree rank ∞, then T∞ ∼= T∞1 .

Proof. By induction on α. �

We will fix the notation Tα for the computable rank-saturated tree of rank α,
and we recall that T∞ is a computable rank-saturated tree with infinite paths.
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2.2. Σ1
1 Sets and Relations. We assume the reader is familiar with basic con-

cepts of recursion theory. However, here we list some definitions and facts that
will be useful for the future proofs. Detailed information can be found, for ex-
ample, in [1, 27].

Definition 4.

(1) A relation S(x) is Σ1
1 if there is an arithmetical relation R(x, u), on tuples

of numbers, such that x ∈ S iff (∃f ∈ ωω) (∀s)R(x, f � s) — we identify
f � s with its code.

(2) A relation S(x) is Π1
1 if there is an arithmetical relation R(x, u), on tuples

of numbers, such that x ∈ S iff (∀f ∈ ωω) (∃s)R(x, f � s).
(3) A relation S(x) is ∆1

1 if it is both Σ1
1 and Π1

1.

By the Kleene-Suslin Theorem, a relation is ∆1
1 iff it is hyperarithmetical.

If S(x) is a k-place relation, we may consider the set S ′ of codes for k-tuples
belonging to S. It is clear that S is Σ1

1 iff S ′ is Σ1
1. The next result gives familiar

conditions equivalent to being Σ1
1 [1, 27]. We identify finite sequences with their

codes.

Proposition 3 (Kleene). The following are equivalent:

(1) S is Σ1
1;

(2) There is a computable relation R(n, u), on pairs of numbers, such that
n ∈ S iff (∃f) (∀s)R(n, f � s);

(3) There is a computable sequence of computable trees (Tn)n∈ω such that
n ∈ S iff Tn has an infinite path.

Theorem 1 (Bounding). Let CWF denote the set of codes for computable well-
founded trees on ω and for each computable ordinal α, let CWFα denote the set
of codes for computable trees of tree rank less than α. Then if F is a hyperarith-
metical function from a hyperarithmetical subset of ω into CWF, there exists a
computable α such that the range of F is contained in CWFα.

We now give a notion of effective reducibility of Σ1
1 equivalence relations on hy-

perarithmetical subsets of ω. The idea is the following. A relation E is effectively
reducible to a relation E ′ if there is an effective procedure which allows us to an-
swer any question about E-equivalence using information about E ′-equivalence.
We want to use computable functions as witnesses for reducibilities.

Definition 5. Let E,E ′ be Σ1
1 equivalence relations on hyperarithmetical subsets

X, Y ⊆ ω, respectively. The relation E is FF -reducible to E ′ iff there exists a
partial computable function f with X ⊆ dom(f), Y ⊆ f(X) such that for all
x, y ∈ X,

xEy ⇐⇒ f(x)E ′f(y).

We denote this fact by E ≤FF E ′.
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The notion of FF -reducibility was first used in [9] where it was called
“tc-reducibility”. In the next section we will explain the relationship between
FF -reducibility and the notion of tc-reducibility introduced in [4] to compare the
classes of countable structures.

2.3. Computable Characterization and Classification. Here we review two
equivalent approaches from [16] to the problems of computable characterization
and classification. The goal is to be able to measure the complexity of a set of
computable structures or an equivalence relation on computable structures.

The first approach is based on the notion of computable infinitary formulas.
Roughly speaking, computable infinitary formulas are Lω1ω formulas in which the
infinite disjunctions and conjunctions are over c.e. sets. For a formal definition
see [1]. Computable infinitary formulas form a hierarchy: a computable Σ0 or Π0

formula is a finitary quantifier-free formula. For α > 0, a computable Σα formula
is a c.e. disjunction of formulas of the form ∃uψ, where ψ is computable Πβ for
some β < α, and a computable Πα formula is a c.e. conjunction of formulas of
the form ∀uψ, where ψ is computable Σβ for some β < α.

Following [16], we say that a class K of structures closed under isomorphism
has a computable characterization if the set Kc of its computable members con-
sists exactly of all computable models of a computable infinitary sentence. This
definition expresses the idea that the set of all computable members of K can be
nicely defined among all other structures for the same language.

The second approach uses the notion of an index set. For a computable struc-
ture M, an index is a number a such that ϕa = χD(M), where (ϕa)a∈ω is a
computable enumeration of all unary partial computable functions. The index
set for M is the set I(M) of all indices for computable (isomorphic) copies of
M. For a class K of structures, closed under isomorphism, the index set is the
set I(K) of all indices for computable members of K. As in [16], we say that a
class K has a computable characterization, if its index set is hyperarithmetical.

Proposition 4 (Goncharov-Knight [16]). Let K be a class of countable structures
closed under isomorphism, and let Kc be the set of computable members of K.
Then the following are equivalent:

(1) The index set I(K) of K is hyperarithmetical;
(2) There is a computable infinitary sentence ψ such that Kc = Modcψ, where

Modcψ is the set of all computable models of ψ.

For a relation E on a class K of structures, denote by I(E,K) the set of pairs
of indices

{(m,n)|m,n ∈ I(K) and MmEMn}.
We measure the complexity of various relations on computable structures via
the complexity of the corresponding sets of pairs of indices. In what follows we
will often identify E with I(E,K) considered as a relation on indices. Thus, it
will make sense to compare relations on classes of computable structures with
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relations on subsets of ω. The most studied cases are that of isomorphism and
bi-embeddability relations, e.g., [2, 6, 9, 16].

We are interested in studying the relations on classes that are nicely defined.
For this reason we will require the index set of each class K to be hyperarith-
metical. Equivalently, Kc = Modcψ for some computable infinitary ψ. Let K and
K ′ be two classes of countable structures, such that K = Modψ and K ′ = Modψ′

for some computable infinitary ψ, ψ′. Suppose the isomorphism relation on K
is tc-reducible to the isomorphism relation on K ′ in the sense of [4]. Then
I(∼=, K) ≤FF I(∼=, K ′) and the reduction is exactly the restriction to computable
structures of the reduction of K to K ′.

3. Isomorphism is Complete among Σ1
1 Equivalence Relations

If I(K) is hyperarithmetical and E is the isomorphism or bi-embeddability
relation, then the corresponding equivalence relation I(E,K) on indices is a Σ1

1

set. In this section we prove completeness of the isomorphism relation on various
familiar classes of structures in the context of all Σ1

1 equivalence relations on
hyperarithmetical subsets of ω under FF -reducibility. These results show the
difference of our theory from the classical theory of Borel equivalence relations
since, by [22], some Borel equivalence relations cannot be reduced to isomorphism
relations.

Definition 6. A relation E on a hyperarithmetical subset of ω is an FF -complete
Σ1

1 equivalence relation if E is Σ1
1 and every Σ1

1 equivalence relation E ′ on a
hyperarithmetical subset of ω is FF -reducible to E.

Note that if E is an equivalence relation on a hyperarithmetical class Kc of
computable structures then it is complete if and only if for every Σ1

1 relation E ′,
there exists a computable sequence of computable structures (Mn)n∈ω from Kc

such that for all m,n ∈ ω,

mE ′n ⇐⇒ MmEMn.

3.1. Trees and Graphs.

Theorem 2. The isomorphism relation on computable trees is an FF -complete
Σ1

1 equivalence relation.

Proof. Let E be a Σ1
1 equivalence relation on ω. To prove that E is FF -reducible

to the isomorphism relation on computable trees, we will build a computable
sequence of computable trees (Tn)n∈ω such that for every m,n ∈ ω,

mEn⇐⇒ Tm ∼= Tn.

Since E is Σ1
1, there exists a uniformly computable sequence of trees (Tm,n)m,n∈ω

such that ¬mEn if and only if Tm,n is well founded. Then we say that ¬mEn is
witnessed by stage α if and only if Tm,n has tree-rank less than α.
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The strategy to build (Tn)n∈ω is the following. First, uniformly in m,n, we will
build a computable tree T ∗m,n with the following properties:

(1) T ∗m,n
∼= T ∗n,m;

(2) mEn⇒ T ∗m,n
∼= T∞, where T∞ is the rank-saturated tree with an infinite

path;
(3) ¬mEn⇒ T ∗m,n

∼= Tα, where Tα is the rank-saturated tree of tree rank α,
for α least such that for all m′ ∈ [m]E and n′ ∈ [n]E the relation ¬m′En′
is witnessed by stage α.

We start with a computable sequence of computable trees (Tm,n)m,n∈ω such
that mEn iff Tm,n has an infinite path (such a sequence exists by Proposition 3).
For every m,n ∈ ω, we construct (effectively and uniformly) a new tree T ′m,n
in the following way. Let σ0, σ1, . . . be an enumeration of all finite sequences
of natural numbers. Suppose σs = (a0, . . . , als). Then under the sth node on
level 1 (i.e., under the element of the form (s), s ∈ ω) of T ′m,n we put the tree
Ps = Tm,a0 ∗ Ta0,a1 ∗ · · · ∗ Tals ,n

, identifying the top node of Ps with s. Then

tr(T ′m,n) = sup{tr(Ps) + 1|s ∈ ω}.

IfmEn, then Tm,n has an infinite path, i.e., tr(Tm,n) =∞. Thus, tr(T ′m,n)= ∞.
If ¬mEn, then for every σ = (a0, . . . , al), tr(Tm,a0 ∗ Ta0,a1 ∗ · · · ∗ Tal,n) is a com-
putable ordinal. Indeed, fix m,n ∈ ω such that ¬mEn. For every finite sequence
σs consider the corresponding tree Ps = Tm,a0 ∗ Ta0,a1 ∗ · · · ∗ Tals ,n

. Consider
the function F from the set of finite sequences into CWF such that F (s) is the
code of Ps. The function F is hyperarithmetical, its domain is computable. By
Bounding, there is a computable bound on the range of F . Therefore, T ′m,n has
rank α for some computable α. Note that for all m′ ∈ [m]E and n′ ∈ [n]E, we
get the same bound α. Indeed, let m′Em,n′En and let β be the computable
bound on the ranks of trees constructed using finite sequences starting with m′

and ending with n′. Let Ps = Tm,a0 ∗ Ta0,a1 ∗ · · · ∗ Tals ,n
be as above. Then

tr(Tm′,m ∗ Ps ∗ Tn,n′) = tr(Ps), thus α ≤ β. Similarly one can show that β ≤ α.
Let T ∗m,n = T ′m,n∗T∞. As shown in Proposition 1, the tree T ∗m,n is a computable

rank-saturated tree, tr(T ∗m,n) = tr(T ′m,n), and the construction is uniform.
Now we build the desired sequence (Tn)n∈ω. Take the tree T consisting exactly

of the sequences (m,m, . . . ,m) of length i ≤ m, for m ∈ ω. Now fix n and
for every m, attach T ∗m,n to the m-th leaf of T . The resulting tree is Tn. The
sequence (Tn)n∈ω witnesses the reducibility: mEn iff Tm ∼= Tn. Indeed, suppose
mEn. Then

(1) for every k ∈ [m]E =[n]E, tr(T ′k,m)= tr(T ′k,n)=∞, thus T ∗k,m
∼= T ∗k,n

∼= T∞;
(2) for every k /∈ [m]E, tr(T ′k,m) = tr(T ′k,n) = α, thus T ∗k,m

∼= T ∗k,n
∼= Tα.

Therefore, Tm ∼= Tn.
Suppose now that ¬mEn. Then T ∗m,m

∼= T∞, while T ∗m,n
∼= Tα for some

computable α. Thus Tm � Tn. �
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Corollary 1. The isomorphism relation on computable graphs is an FF -complete
Σ1

1 equivalence relation.

3.2. Torsion-Free Abelian Groups. Torsion-free abelian groups are subgroups
of Q-vector spaces. Hjorth [18] gave a transformation from trees to torsion-free
abelian groups which enabled him to show that the isomorphism relation on these
groups is not Borel. Downey and Montalbán [8] built on Hjorth’s ideas to show
that the isomorphism problem on these groups is complete among Σ1

1 sets. In this
paper we use the transformation from [18] and [8] to show that the isomorphism
relation on computable torsion-free abelian groups is, in fact, complete as a Σ1

1

equivalence relation. First we describe the transformation.
We consider the elements of ω<ω as a basis for a Q-vector space V ∗. Let T be

a subtree of ω<ω, and let V be the subspace of V ∗ with basis T . Let Tn be the
set of elements at level n of T . If u is at level n > 0, let u− be the predecessor
of u. Let (pn)n∈ω be a computable list of distinct primes. We let G(T ) be the
subgroup of V generated by the vector space elements of the following forms:

(1) v
(p2n)k , where v ∈ Tn, and k ∈ ω,

(2) v+v′

(p2n+1)k , where v ∈ Tn, v′ is a successor of v, and k ∈ ω.

Theorem 3. The isomorphism relation on computable torsion-free abelian groups
is FF -complete among Σ1

1 equivalence relations.

Proof. It follows from [12] that if we restrict the class of trees to only rank-
saturated trees, then the transformation from the class of trees into torsion-free
abelian groups described above is 1− 1 on isomorphism types. Thus, given a Σ1

1

equivalence relation E for every n ∈ ω, we first construct the sequence of rank-
saturated trees (T ∗m,n)m∈ω as in Theorem 2. We want to pass effectively from the
sequence to a group Gn such that Gn

∼= Gn′ iff for all m, T ∗m,n
∼= T ∗m,n′ .

For m ∈ ω, let (pm,k)k∈ω be uniformly computable lists of primes such that
for distinct m, the lists are disjoint. For each m, we apply the transformation
described above, taking Tm,n to a torsion-free abelian group Gm,n, using the list
of primes (pm,k)k∈ω. The resulting sequence (Gm,n)n∈ω will satisfy the property:

T ∗m,n
∼= T ∗m′,n′ ⇐⇒ Gm,n

∼= Gm′,n′ .

Let Gn = ⊕mGm,n.
Using the fact that the sequences of primes are disjoint, we can see that Gn

∼=
Gn′ iff for all m, Gm,n

∼= Gm,n′ . The reason is that Gm,n is the subgroup of Gn

generated by the set of elements divisible by all the powers of some prime in the
list (pm,k)k∈ω (for more details see [8] or [12]). �

3.3. Abelian p-Groups. Let p be a prime number. A p-group is a group such
that each element has some power of p for its order. Countable abelian p-groups
are classified up to isomorphism in terms of Ulm invariants (see [20] for details).

In this section we use the transformation from trees into abelian p-groups to
get completeness of the isomorphism relation for this class. Note that in the
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classical theory of Borel equivalence relations the analogous result is false (see
[13] and a proof for Turing computable embeddings in [12]).

Theorem 4. The isomorphism relation on abelian p-groups is an FF -complete
Σ1

1 equivalence relation.

Proof. By Theorem 2, for any Σ1
1 equivalence relation E on ω, we have a uniformly

computable sequence of trees (Tn)n∈ω such that mEn iff Tm ∼= Tn. Each tree Tn
is the result of combining a family of trees T ∗m,n. Each T ∗m,n is rank saturated, so
it is really determined by its tree rank. We may modify our trees, if necessary,
so that the tree rank, if it exists, is a limit ordinal.

Let T = (Tm)m∈ω be a sequence of rank saturated trees. We need a transforma-
tion taking such sequences T to abelian p-groups G(T ), such that G(T ) ∼= G(T ′)
iff the sequences of ranks for the trees in T and T ′ match. We replace Tm by a
tree Tm∗ such that each single successor in Tm becomes a chain of pm successors
in Tm∗ . Then tr(Tm∗ ) = pmtr(T

m). We form a single tree with infinitely many
nodes at level 1, with a copy of T 0

∗ below the first, a copy of T 1
∗ below the second,

etc. Denote the resulting tree by T . Let G be the abelian p-group generated by
the elements of T in a standard way [20]: the top node is the identity, and if x′

is a successor of x, then px′ = x.
Rogers [28] described how to calculate (non-effectively, of course) the Ulm

sequence for G from the tree ranks of elements in the corresponding tree T . We
describe her scheme briefly. For each node of successor rank, apart from the top
node, we choose a successor witnessing the rank. Now, for each α, uG(α) is the
number of nodes of rank α that are not chosen as witnesses. In computing uG(α),
we count all x at level 1 such that tr(x) = α. Suppose x is an element at level
n > 1, where tr(x) = α. Let y be the predecessor of x. If tr(y) > α + 1, then
x cannot witness the rank of y, so we count x. If tr(y) = α + 1, then x may be
the chosen successor of y witnessing the rank. We count x just in case it is not
chosen.

Using Rogers’ scheme, we can see that our group G has the following features.
For all computable α, the Ulm invariant uα(G) is either ∞ or 0. For limit α,
uα(G) = 0. If α = ωβ + pm, then uα(G) =∞ iff tr(Tm) ≥ ωβ. �

Corollary 2. The isomorphism relation on torsion abelian groups is an FF -
complete Σ1

1 equivalence relation.

Suppose K and K ′ are classes of countable structures, with universe a subset of
ω, closed under isomorphism. We write K ≤tc K ′ if there is a Turing computable
operator Φ = ϕe taking the atomic diagram of each A ∈ K to the atomic diagram
of some B ∈ K ′, such that Φ is 1 − 1 on isomorphism types. This notion was
introduced in [4]. If I(K) and I(K ′) are hyperarithmetical, and K ≤tc K ′, then
I(∼=, K) ≤FF I(∼=, K ′). If Φ is the computable operator reducing the isomorphism
relation on structures in K to that on structures in K ′, then for computable
A ∈ K, we can effectively compute an index for Φ(A) from an index for A.
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H. Friedman and Stanley [13] introduced the study of Borel reductions ≤B
of isomorphism relations on classes of structures with universe ω. They showed
that the class of undirected graphs, the class of fields of any fixed characteristic,
the class of 2-step nilpotent groups, and the class of linear orderings all lie “on
top” in this setting. In [4], it was observed that the Borel transformations are
all effective. Moreover, the transformations work perfectly well for structures
with universe an arbitrary subset of ω. Therefore, these classes are also “on top”
under the relation ≤tc in [4]. We have shown that for the class K of trees, the
relation I(E,K) (the set of pairs of indices for computable members of K that
are isomorphic) lies “on top” under the relation ≤FF on Σ1

1 equivalence relations
on ω. From this, we immediately get the following.

Theorem 5. For each of the following classes K, I(E,K) is an FF -complete
Σ1

1 equivalence relation:

• undirected graphs,
• fields of characteristic 0, or p,
• 2-step nilpotent groups,
• linear orderings.

4. Open Problems

In [9] equivalence relations were compared not only via FF -reducibility but
also via hyperarithmetical reducibility (h-reducibility):

Definition 7. Let E,E ′ be Σ1
1 equivalence relations on hyperarithmetical subsets

X, Y ⊆ ω, respectively. The relation E is h-reducible to E ′ iff there exists a
hyperarithmetical function f such that for all x, y ∈ X,

xEy ⇐⇒ f(x)E ′f(y).

By [14] the following theorem is true for the bi-embeddability relation on com-
putable structures. Here we mean the standard model-theoretic notion of em-
beddings on structures.

Theorem 6. For every Σ1
1 equivalence relation E on ω there exists a hyperarith-

metical class K of structures, which is closed under isomorphism and such that E
is h-equivalent to the bi-embeddability relation on computable structures from K.

Remark 3.4 of [14] provides the result for Σ1
1 preorders on the reals, but the

result for preorders on ω follows almost immediately.
In [10] it was proved that the general structure of Σ1

1 equivalence relations on
hyperarithmetical subsets of ω is rich. The above theorem states that the struc-
ture of bi-embeddability relations on hyperarithmetical classes of computable
structures is as complex as the whole structure of Σ1

1 equivalence relations. It
would be interesting to get the following refinement of Theorem 6:
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Question 1. If E is a Σ1
1 equivalence relation on ω, does there exist a hy-

perarithmetical class K of structures, closed under isomorphism and such that
E is FF -equivalent to the bi-embeddability relation on computable structures
from K?

Let K be a class of structures closed under isomorphism such that the index
set I(K) is hyperarithmetical. Consider the following statements:

(1) I(∼=, K) is properly Σ1
1;

(2) I(∼=, K) is m-complete Σ1
1;

(3) I(∼=, K) is Σ1
1 complete under FF -reducibility;

(4) I(∼=, K � highSR) is not hyperarithmetical within K � highSR, where
highSR is the class of structures of high (i.e., noncomputable) Scott rank;

(5) K has infinitely many non-isomorphic computable structures of high Scott
rank.

The following implications are true: (1)⇐ (2)⇐ (3)⇒ (4)⇒ (5).

Question 2. Which of these arrows are reversible?

One of the approaches to give a negative answer to the question “(1)⇒ (3)?”
would be to positively answer the following:

Question 3. Is there a hyperarithmetical class of structures with a unique (up
to isomorphism) computable structure of high Scott rank?

If the answer to the second question is positive, we see immediately that (1)
does not imply (5). Since (3) implies (5), we also conclude that (1) does not
imply (3).

Remark. It is known that up to bi-embeddability this is true in the following
sense. In the class of computable linear orderings, the equivalence class of linear
orderings bi-embeddable with the rationals is Σ1

1-complete, but every computable
scattered linear ordering (i.e., not bi-embeddable with the rationals) has a hy-
perarithmetical equivalence class. For more information on the bi-embeddability
relation in the class of countable linear orderings see [26].

This question may be also considered as a weaker version of the question from
[16] where the authors asked about the existence of a computable structure with
high Scott rank and a hyperarithmetical index set.

Question 4. Are there isomorphism relations on hyperarithmetical classes of
computable structures which are not hyperarithmetical and not FF -complete?
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