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ON SLICEWISE MONOTONE PARAMETERIZED PROBLEMS
AND OPTIMAL PROOF SYSTEMS FOR TAUT

YIJIA CHEN AND JORG FLUM

ABSTRACT. For a reasonable sound and complete proof calculus for first-order
logic consider the problem to decide, given a sentence ¢ of first-order logic and
a natural number n, whether ¢ has no proof of length < n. We show that
there is a nondeterministic algorithm accepting this problem which, for fixed
©, has running time bounded by a polynomial in n if and only if there is an
optimal proof system for the set TAUT of tautologies of propositional logic.
This equivalence is an instance of a general result linking the complexity of
so-called slicewise monotone parameterized problems with the existence of an
optimal proof system for TAUT.

1. Introduction

In this paper we relate the existence of optimal proof systems for the class TAUT
of tautologies of propositional logic with the complexity of slicewise monotone
parameterized problems. A proof system in the sense of Cook and Reckhow [4],
say for the class TAUT, is a polynomial time computable function defined on
{0,1}* and with TAUT as range. A proof system P is optimal if for any other
proof system P’ for TAUT there is a polynomial p € N[X] such that for every
tautology «, if o has a proof of length n in P’, then « has a proof of length
< p(n) in P.! In their fundamental paper [9] Krajicek and Pudldk showed that
an optimal proof system for TAUT exists if NE = co-NE and they derived a
series of statements equivalent to the existence of such an optimal proof system,;
however they conjectured that there is no optimal proof system for TAUT.

On the other hand, Gédel in a letter to von Neumann of 1956 (see [6]) asked for
the complexity of the problem to decide, given a sentence ¢ of first-order logic
and a natural number n, whether ¢ has a proof of length < n. In our study [2]
of this problem we introduced the parameterized problem

p-GODEL
Instance: A first-order sentence ¢ and n € N in unary.
Parameter: |y].
Problem: Does ¢ have a proof of length < n?

LAll notions will be defined in a precise manner in later sections.
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Here we refer to any reasonable sound and complete proof calculus for first-order
logic. We do not allow proof calculi, which, for example, admit all first-order
instances of propositional tautologies as axioms (as then it would be difficult to
recognize correct proofs if P # NP).

In a different context, namely when trying to show that a certain logic L< for
PTIME (introduced in [7]) does not satisfy some effectivity condition, Nash et al.
introduced implicitly [12] (and this was done explicitly in [1]) the parameterized
acceptance problem p-AcC< for nondeterministic Turing machines:

p-Acc<
Instance: A nondeterministic Turing machine M and n € N
in unary.
Parameter: ||M]||, the size of M.
Problem: Does M accept the empty input tape in < n steps?

Both problems, p-GODEL and p-ACC<, are slicewise monotone, that is, their
instances have the form (z,n), where z € {0,1}* and n € N is given in unary,?
the parameter is |z|, and finally for all x € {0,1}* and n,n’ € N we have

if (z,n) is a positive instance and n < n’, then (x,n’) is a positive instance.

A slicewise monotone problem is in the complexity class XNP,; if there is
a nondeterministic algorithm that accepts it in time nf1*D for some function
f:N — N. And co-XNP,,; contains the complements of problems in XNP ;.
We show:

Theorem 1. TAUT has an optimal proof system if and only if every slicewise
monotone problem in NP is in co-XNP ;.

There are trivial slicewise monotone problems which are fixed-parameter
tractable. However, for the slicewise monotone problems mentioned above we
can show:

Theorem 2. TAUT has an optimal proof system <= p-ACC< €co-XNP
<= p-GODEL € co-XNP ;.

In [3] we showed that TAUT has a p-optimal proof system if and only if a certain
logic L< is a P-bounded logic for P (=PTIME). The equivalence in the first line
of Theorem 2 is the nondeterministic version of this result; in fact, an immediate
consequence of it states that TAUT has an optimal proof system if and only if
L. is an NP-bounded logic for P (a concept that we will introduce in Section 6).
It turns out that a slight variant of L< is an NP-bounded logic for P (without
any assumption).

2The requirement that n is given in unary notation ensures that the classical complexity of
most slicewise monotone problems we consider is in NP.
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The content of the different sections is the following. In Section 2 and Section 3
we recall the concepts and results of parameterized complexity and on optimal
proof systems, respectively, we need in Section 4 to derive the equivalence in the
first line of Theorem 2. Furthermore, in Section 3 we claim that every problem
hard for EEXP under polynomial time reductions has no optimal proof system.
In Section 5 we derive some basic properties of slicewise monotone problems,
show that p-AccC< is of highest parameterized complexity among the slicewise
monotone problems with classical complexity in NP, and finally show that all
the slicewise monotone problems we consider in a certain sense have the same
complexity (see Proposition 14 for the precise statement). This yields Theorem 1
and the remaining equivalence of Theorem 2. As already mentioned, in Section 6
we analyze the relationship of the existence of an optimal proof system for TAUT
and the properties of the logic L<.

2. Some preliminaries

In this section we recall some basic definitions and concepts from parameter-
ized complexity and introduce the concept of slicewise monotone parameterized
problem.

We denote the alphabet {0,1} by ¥. The length of a string x € ¥* is denoted
by |z|. We identify problems with subsets @ of ¥*. Clearly, as done mostly, we
present concrete problems in a verbal, hence uncodified form or by using other
alphabets. We denote by P the class of problems @) such that x € @) is solvable
in time polynomial in |z|.

All deterministic and nondeterministic Turing machines have X as their alpha-
bet. If necessary we will not distinguish between a Turing machine and its code,
a string in ¥*. If M is a Turing machine we denote by ||M]|| the length of its code.

Sometimes statements containing a formulation like “there is a d € N such that
for all z € ¥*: ... < |z|?” can be wrong for z € ¥* with |z| < 1. We trust the
reader’s common sense to interpret such statements reasonably.

If A is any (deterministic or nondeterministic) algorithm and A accepts x, then
we denote by t,(x) the number of steps of a shortest accepting run of A on x; if
A does not accept x, then t5(x) is not defined.

2.1. Parameterized complexity. We view parameterized problems as
pairs (@, k) consisting of a classical problem @ C >* and a parameterization
k: X" — N, which is required to be polynomial time computable. We will present
parameterized problems in the form we did it for p-GODEL and p-ACC< in the
Introduction.

A parameterized problem (Q, k) is fized-parameter tractable (or, in FPT) if
xr € (@ is solvable by an fpt-algorithm, that is, by a deterministic algorithm
running in time f(x(x)) - |2|Y for some computable f: N — N.
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Let C be a complexity class of classical complexity theory defined in terms of
deterministic (nondeterministic) algorithms. A parameterized problem (Q, k) is
in the class XC,y; if there is a deterministic (nondeterministic) algorithm deciding
(accepting) @ and witnessing for every k € N that the classical problem

(Q, k) :=A{r € Q| K(x) =k},

the kth slice of (Q), k), is in C. For example, (Q), k) is in the class XP,,; if there
is a deterministic algorithm A deciding x € Q in time |z|/®@ for some function
f:N — N. And (Q, k) is in the class XNP,; if there is a nondeterministic
algorithm A accepting @) such that for some function f: N — N we have t, () <
|z|/*=@) for all z € Q. Finally, a parameterized problem (Q, ) is in the class
c0-XCyy if its complement (X* \ @, k) is in XCy;-

We have added the subscript “uni” to the names of these classes to emphasize
that they are classes of the so-called uniform parameterized complexity theory.
If in the definition of XP,,; and XNP,,; we require the function f to be com-
putable, then we get the corresponding classes of the strongly uniform theory.
For example, FPT is a class of this theory.

A parameterized problem (Q), k) is slicewise monotone if its instances have the
form (x,n), where x € ¥* and n € N is given in unary, if x((x,n)) = |z|, and
finally if the slices are monotone, that is, for all x € ¥* and n,n’ € N

(z,n) € Q and n < n’ imply (z,n) € Q.

We already remarked that the problems p-GODEL and p-AccC< are slicewise
monotone.

Clearly, every parameterized problem (@, k) with ¢ € NP is in XNP,;; thus
we can replace co-XNP,; by XNP ;i N co-XNP,; everywhere in Theorem 1 and
Theorem 2.

3. Optimal proof systems

Let Q C X* be a problem. A proof system for () is a surjective function
P:¥* — (@ computable in polynomial time. Then, if P(w) = x, we say that
w is a P-proof of x. A proof system P for @) is optimal if for any other proof
system P’ for @ there is a polynomial p € N[X] such that for every x € Q, if =
has a P’-proof of length n, then x has a P-proof of length < p(n). Hence, any
P’-proof can be translated into a P-proof by a nondeterministic polynomial time
algorithm.

The corresponding deterministic concept is the notion of p-optimality. The
proof system P for @) is polynomially optimal or p-optimal if for every proof
system P’ for () there is a polynomial time computable T": ¥X* — Y* such that
for all w’ € X*

P(T(w") = P'(w).
We list some known results. Part (1) and (2) are immediate from the definitions.
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(1) Every p-optimal proof system is optimal.

(2) Every nonempty @ € PTIME has a p-optimal proof system, every
nonempty ¢ € NP has an optimal proof system.

(3) ([8]) If @ is nonempty and @ <P @’ (that is, if ) is polynomial time
reducible to Q') and @’ has a (p-)optimal proof system, then () has a
(p-)optimal proof system too.

(4) ([10]) Every @ hard for EXP = DTIME (2”O(l)> under polynomial time
reductions has no p-optimal proof system.

It is not known whether there is a problem @ ¢ P (Q ¢ NP) with a p-optimal
(an optimal) proof system. As mentioned in the Introduction, Krajicek and
Pudlék [9] conjectured that there is no optimal proof system for the set TAUT
of tautologies.

Concerning (4) we did not find a corresponding result for optimal proof systems
in the literature. We can show:

Proposition 3. Fvery QQ hard for EEXP = DTIME (22no<l)> under polynomial
time reductions has no optimal proof system.

We do not need this result (and will prove it in the full version of the paper).
However we state a consequence:

Corollary 4. There is no optimal proof system for the set of valid sentences of
first-order logic.

3.1. Almost optimal algorithms and enumerations of P-easy subsets.
Let @ C ¥* be a problem. A deterministic (nondeterministic) algorithm A
accepting @) is almost optimal or optimal on positive instances of @) if for every
deterministic (nondeterministic) algorithm B accepting ) there is a polynomial
p € N[X] such that for all x € Q)

ta(x) < p(te(x) + |z|).

By definition a subset @’ of @ is P-easy if Q' € P. An enumeration of the
P-easy subsets of Q by P-machines (by NP-machines) is a computable function
M: N — >* such that

(i) for every i € N the string M (7) is a deterministic (nondeterministic) Tur-
ing machine deciding (accepting) a P-easy subset of @) in polynomial time;
(ii) for every P-easy subset @' of @ there is an i € N such that M (i) decides
(accepts) Q'
If in the nondeterministic case instead of (i) we only require

(i") for every i € N the string M(7) is a nondeterministic Turing machine
accepting a subset of ) in polynomial time,

we obtain the notion of a weak enumeration of P-easy subsets of ) by NP-

machines.
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We denote by TAUT the class of all tautologies of propositional logic. We need
the following theorem:

Theorem 5. (1) The following statements are equivalent:
(a) TAUT has a p-optimal proof system.
(b) TAUT has an almost optimal deterministic algorithm.
(c) TAUT has an enumeration of the P-easy subsets by P-machines.
(2) The following statements are equivalent:
(a) TAUT has an optimal proof system.
(b) TAUT has an almost optimal nondeterministic algorithm.
(¢) TAUT has a weak enumeration of the P-easy subsets by NP-machines.
(d) TAUT has an enumeration of the P-easy subsets by NP-machines.

The equivalence of (a) and (b) in (1) and (2) is due to [9], the equivalence to
(c) to [13]. The equivalence in (2) to (d) will be a by-product of the proof of
Theorem 8; the equivalence was already claimed in [13] but its author was so
kind to point out to us that he did not realize the difference between (c) and (d):
some machines M (i) of a weak enumeration might accept subsets of () which are
not P-easy (but only in NP).

4. Linking slicewise monotone problems and optimal proof systems

The following result yields a uniform bound on the complexity of slicewise mono-
tone problems whose complements have optimal proof systems.

Theorem 6. Let (Q, k) be a slicewise monotone parameterized problem with de-
cidable Q).

(1) If ¥*\ Q has a p-optimal proof system, then (Q, k) € XP ;.

(2) If ¥*\ Q has an optimal proof system, then (Q, k) € co-XNP ;.

As by (3) on page 5 every nonempty problem in co-NP has a (p-)optimal proof
system if TAUT has one, we immediately get:

Corollary 7. Let (Q, k) be a slicewise monotone parameterized problem with ()
in NP.

(1) If TAUT has a p-optimal proof system, then (Q, k) € XP ;.

(2) If TAUT has an optimal proof system, then (Q, k) € co-XNP ;.

Concerning Theorem 6 (1) we should mention that Monroe [11] has shown that
if the complement of (the classical problem underlying) p-AcC< has an almost
optimal algorithm (which by [9] holds if it has a p-optimal proof system), then
p—ACCS € XPuui.

Proof of Theorem 6: We present the proof for (2), the proof for (1) is obtained by
the obvious modifications. Let (Q), k) be slicewise monotone and let Q be a deter-
ministic algorithm deciding ). Assume that ¥*\ @ has an optimal proof system.
It is well-known [9] that then ¥* \ @ has an almost optimal nondeterministic

algorithm @. We have to show that (Q, k) € co-XNP ;.
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Let S be the algorithm that, on x € ¥*, by systematically applying Q to the
inputs (x,0),(z, 1), ... computes

n(x) := the least n such that (x,n) € Q.

If (z,n) ¢ @ for all n € N, then n(x) is not defined and S does not stop. We show
that the following algorithm A witnesses that (X* \ @, k) € XNP ;.

A(x,n) // x € X* né&Ninunary
1. In parallel simulate S on input x and O on input (x,n)
2. if O accepts then accept
3. if S stops, then
4. if n < n(x) then accept else reject.

By our assumptions on @ and S and the slicewise monotonicity of (), it should
be clear that A accepts ¥* \ ). We have to show that A does it in the time
required by XNP,,;. Hence, we have to determine the running time of A on

inputs (x,n) ¢ Q.

Case (x,0) ¢ Q for all ¢ € N”: In this case S on input x does not stop. Hence,
the running time of A on input (z,n) is determined by . The following algorithm
0O, accepts ¥*\ Q: on input (y, £) the algorithm O, checks whether y = z. If so, it
accepts and otherwise it runs @ on input (y, /) and answers accordingly. Clearly,

for all / € N
to,((z,0)) < O(|z)).

As O is almost optimal, we know that there is a constant d, € N (depending on
x) such that for all (y,0) € ¥*\ Q

to((, 0) < (|, 0] +to,(y, ))™.

In particular, we have
(@, ) = Olto((@,m) < O( (|, )] +O(a))™ ) < n:

for some constant d, € N (depending on ).

Case “(x,0) € Q for some £ € N”7: Then S will stop on input x. Thus, in the

worst case, A on input (x,n) has to wait till the simulation of S on x stops and

then A must check whether the result n(x) of the computation of S is bigger

than n or not and answer according to Line 4. So in the worst case A takes time

O(ts(x) + O(n)) < nOts@), O
We show the equivalence in the first line of Theorem 2:

Theorem 8. (1) TAUT has a p-optimal proof system iff p-ACC< € XP ;.
(2) TAUT has an optimal proof system iff p-ACC< € co-XNP ;.
7



Proof. Again we only prove (2) and by the previous corollary it suffices to show
the corresponding implication from “right to left.”

So assume that the complement of p-Acc< is in XNP,,; and let A be a non-
deterministic algorithm witnessing it; in particular, to((M, n)) < n/IMD for some
function f and all (M, n) ¢ p-Acc<. We show that TAUT has an enumeration
of the P-easy subsets by NP-machines (and this suffices by Theorem 5).

We fix a deterministic Turing machine M that given a propositional formula
« and an assignment checks if this assignment satisfies « in time |a/.

For a deterministic Turing machine M let M* be the nondeterministic machine
that on empty input tape

— first guesses a propositional formula «;

— then checks (by simulating M) whether M accepts « and rejects if this is
not the case;

— finally guesses an assignment and accepts if this assignment does not
satisfy « (this is checked by simulating M).

A deterministic Turing machine M is clocked if (the code of) M contains a natural
number time(M) such that n™¢™ is a bound for the running time of M on inputs
of length n (in particular, a clocked machine is a polynomial time one).
Finally, for a clocked Turing machine M let M* be the nondeterministic Turing
machine that on input « accepts if and only if (i) and (ii) hold:
(i) M accepts «;
(11) (M*, ‘a’time(M)+4) ¢ p—ACCS.

The machine M* checks (i) by simulating M and (ii) by simulating A. Hence, if
M* accepts «, then

tMJr(Oé) S O (|a|time(M) + tA ((M*, |a|time(M)+4))) 7

and as ¢, (M*, |atime®DH4)) < ||ime®D+-FAMD " the Turing machine M* accepts
in time polynomial in |«|.

We show that M[*, where M ranges over all clocked machines, yields an enumer-
ation of all P-easy subsets of TAUT by NP-machines. First let M be a clocked
machine. We prove that M* accepts a P-easy subset of TAUT.

M* accepts a subset of TAUT: If M* accepts «, then, by (i), M accepts o and by
(ii), (M*, |o|time®D+4y & 1  Acc<. Therefore, by definition of M*, every assignment,
satisfies o and hence oo € TAUT.

M* accepts a P-easy set: If (M*, m) € p-Acc< for some m, then, by slicewise
monotonicity of p-ACC<, the machine M* accepts a finite set and hence a P-easy
set. If (M*, m) ¢ p-Acc< for all m, then M* accepts exactly those a accepted
by M; as M is clocked, this is a set in P.

Now let ) C TAUT be a P-easy subset of TAUT and let M be a clocked machine
deciding ). Then M* accepts Q). O



5. Slicewise monotone parameterized problems

In this section we observe that p- ACC< is a complete problem in the class of slice-
wise monotone parameterized problems with underlying classical problem in NP.
Furthermore, we shall see that in Theorem 8 we can replace the problem p-Acc<
by other slicewise monotone parameterized problems (among them p-GODEL)
by showing for them that they are in the class XPy,; (co-XNPy,;) if and only if
p-AcCCc is.

5.1. The complexity of slicewise monotone problems. We start with
some remarks on the complexity of slicewise monotone problems. In [1, 2] we
have shown that p-Acc< and p-GODEL are not fixed-parameter tractable if
“P # NP holds for all time constructible and increasing functions,” that is, if
DTIME(RO®M) # NTIME(h®®) for all time constructible and increasing functions
h: N — N. However:

Proposition 9. (1) [2] Let (Q, k) be slicewise monotone. Then (Q, k) is non-
uniformly fived-parameter tractable, that is, there is a ¢ € N, a function
f: N — N, and for every k an algorithm deciding the slice (Q, k)i in time
f(k) - ne.

(2) Let (Q, k) be slicewise monotone with enumerable Q). Then (Q, k) € XNP ;.

Proof. (2) Let Q be an algorithm enumerating (). The following algorithm shows
that (Q, k) € XNP,;: On input (z,n) it guesses m € N and a string c. If ¢ is the
code of an initial segment of the run of Q enumerating (x, m), then it accepts if
m < n. O

We remark that there are slicewise monotone problems with underlying classi-
cal problem of arbitrarily high complexity that are fixed-parameter tractable. In
fact, let Q9 C X* be decidable. Then the slicewise monotone (Q), k) with

Q:={(x,n)|x € Qo neN, and |z| <n}
(and k((x,n)) := |z|) is in FPT.

To compare the complexity of parameterized problems we use the standard no-
tions of reduction that we recall first. Let (Q, k) and (Q’, k") be parameterized
problems. We write (Q, k) < (@', &') if there is an fpt-reduction from (Q, k) to
(Q', k'), that is, a mapping R: ¥* — ¥* with:

(1) For all z € ¥* we have (x € Q <= R(x) € Q).

(2) R(z) is computable in time f(x(z))-|z|?" for some computable f: N — N.

(3) There is a computable function g: N — N such that '(R(x)) < g(k(x))

for all x € ¥*.

We write (Q, k) <** (@), k') if there is an ap-reduction from (Q, k) to (Q', k'),

which is defined as (Q, k) <P' (@', k') except that instead of (2) it is only required

that R(x) is computable in time |x|/®® for some computable f: N — N.
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These are notions of reductions of the usual (strongly uniform) parameterized
complexity theory. We get the corresponding notions <P and <**. by allowing
the functions f and g to be arbitrary (and not necessarily computable).

We shall use the following simple observation.

Lemma 10. If (Q,r) <P (Q', k) and (Q',K") € XPui, then (Q,k) € XPupi.

The same holds for XNf’um instead of XPp;.
We turn again to slicewise monotone problems. Among these problems with
underlying classical problem in NP the problem p-Accc< is of highest complexity.

Proposition 11. Let (@), k) be slicewise monotone and () € NP. Then
(Q7 /{) Sfpt p_ACCS'
Note that this result together with Theorem 8 (2) yields Theorem 1.

Proof of Proposition 11: Let M be a nondeterministic Turing machine accepting
(). We may assume that for some d € N the machine M on input (z,n) performs
exactly |(z,n)|? steps. For z € ¥* let M, be the nondeterministic Turing machine
that on empty input tape, first writes x on the tape, then guesses a natural
number m, and finally simulates the computation of M on input (z, m). We can
assume that there is a polynomial time computable function A such that M,
makes exactly h(z,m) € O(|x| +m+ |(:E,m)|d) steps if it chooses the natural
number m. Furthermore we can assume that h(x, m) < h(xz,m’) for m < m/'.
Then (x,n) — (Mx, h(x, n)) is an fpt-reduction from (Q, k) to p-Acc<: Clearly,
if (x,n) € @ then (I\\/Jlx, h(m,n)) € p-Acc< by construction of M,. Conversely,
if (I\\/Jlx, h(x,n)) € p-AcCc, then by the properties of h we see that M accepts
(z, m) for some m < n. Thus, (z,m) € @) and therefore (x,n) € ) by slicewise
monotonicity. O

Later on we shall use the following related result.

Proposition 12. Let (), k) be slicewise monotone and assume that there is a
nondeterministic algorithm A accepting Q such that ta(z,n) < nf1*D for some
time constructible f and all (x,n) € Q. Then

(Q, k) <™ p-Acce.

Proof. Let (Q)', k') be the problem

Instance: x € X* and m € N in unary.
Parameter: |z|.
Problem: Is there an n € N such that n/0*V < m and (z,n) € Q?

By the previous proposition we get our claim once we have shown:

(1) (@', ') is slicewise monotone and @’ € NP.
(2) (@Q, k) <P(Q, K
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To see (1) let A be as stated above and let T an algorithm witnessing the time
constructibility of f; that is, T on input & € N computes f(k) in exactly f(k)
steps. An algorithm B witnessing that Q" € NP runs as follows on input (z, m):

— B guesses n € N;

— if n =1, the algorithm B rejects in case m = 0;
if n > 2, the algorithm B simulates m steps of the computation of T on
input |z|; if thereby T does not stop, B rejects; otherwise, the simulation
yields f(|z|) and B checks whether nf1*) > m (this can be detected in
time O(m)); in the positive case B rejects;

— finally B simulates the computation of A on (x, n) and answers accordingly.

(2) Note that the mapping (x,n) — (x, nf(|x|)) is an xp-reduction. O

5.2. Slicewise monotone problems related to logic. In the next section
we will use some further slicewise monotone problems related to first-order logic
and least fixed-point logic that we introduce now.

We assume familiarity with first-order logic FO and its extension least fixed-point
logic LEP (e.g, see [5]). We denote by FO[7] and LFP[7] the set of sentences of
vocabulary 7 of FO and of LFP, respectively. In this paper all vocabularies are
finite sets of relational symbols.

If the structure A is a model of the LFP-sentence ¢ we write A £ ¢. We only
consider structures A with finite universe A. The size ||.A|| of the structure A is
the length of a reasonable encoding of A as string in ¥*. An algorithm based on
the inductive definition of the satisfaction relation for LFP shows (see [14]):

Proposition 13. The model-checking problem A [ ¢ for structures A and LFP-
sentences @ can be solved in time ||A|°1#D,

Let L =FO or L = LFP. First we introduce the parameterized problem

p-L-MODEL
Instance: An L-sentence ¢ and n € N in unary.
Parameter: |o|.
Problem: Is there a structure A with A | ¢ and
|A| <n?

Here, |A| denotes the size of the universe A of A. For every vocabulary 7 we let
7. := 7 U{<}, where < is a binary relation symbol not in 7. For m > 1 we say
that an L[r.]-sentence ¢ is < m-invariant if for all 7-structures A with |A] < m
we have

(A7<1) ’=Q0 <~ ("4’<2) |=<IO

for all orderings <; and <, on A.

Finally we introduce the slicewise monotone parameterized problem
11



p-L-NoT-INV
Instance: A vocabulary 7, an L[7.]-sentence ¢ and
m > 1 in unary.
Parameter: ||
Problem: 1Is ¢ not < m-invariant?

5.3. Membership in XP,,; and co-XNP,,;. Concerning membership in
the classes XP.,; and co-XNP,,; all the slicewise monotone problems we have
introduced behave in the same way:

Proposition 14. Consider the parameterized problems
p-GODEL, p-FO-MODEL, p-LFP-MODEL, p-FO-NOT-INV,
p-LFP-NoOT-INV, and p-Acc<.
If one of the problems is in XPyu, then all are; if one of the problems is in
co-XNP i, then all are.
By Theorem 8 this result yields Theorem 2. We prove it with Lemmas 15-18.
Lemma 15. ([2]) p-GODEL <P* p-FO-MODEL.
Lemma 16. Let L =FO or L = LFP. Then p-L-MoDEL <* p-L-NoT-INV.

Proof. Let ¢ be a sentence of vocabulary 7 We set 7/ := 7U{P} with a new unary
relation symbol P and consider the sentence of vocabulary 7.

Y(p) == ¢ A “P holds for the first element of <.”
Clearly, for every n > 2
(p,n) € p-FO-MODEL <= (¢(¢),n) € p-FO-NOT-INV

and the same equivalence holds for p-LFP-MoODEL and p-LFP-NoT-INv. Thus
(p,n) — (w(go), n) is the desired reduction in both cases. a

Lemma 17. p-LFP-NoT-INnv <** p-Acc<

Proof. Consider the algorithm A that on input (, m), where ¢ is an LFP-sentence
and m > 1, guesses a structure A and two orderings <; and <, and accepts
if |[A] < m, (A,<)) E ¢, and (A, <) E —¢. Then, by Proposition 13, the
algorithm A witnesses that p-LFP-NoOT-INV satisfies the assumptions on (Q, k)
in Proposition 12. This yields the claim. a

Lemma 18. (1) If p-GODEL € XP,;, then p-AcC< € XP ;.
(2) If p-GODEL € co-XNPyi, then p-AcC< € co-XNP ;.

Proof. We give the proof of (2). By standard means we showed in [2, Lemma 7]
that there exists a d € N and a polynomial time algorithm that assigns to every
nondeterministic Turing machine M a first-order sentence o such that for n € N

(1) (M, n) € p-Acc< = (pu,n?) € p-GODEL.
12



Moreover,
(2) oy has a proof = M accepts the empty input tape.

Now assume that A is an algorithm that witnesses that the complement of
p-GODEL is in XNP,,;. We may assume that every run of A either accepts
its input or is infinitely long. Let d € N be as above. We present an algorithm
B showing that the complement of p-AccC< is in XNP,,. On input (M, n) the
algorithm B first computes ¢y and then runs two algorithms in parallel:

— a brute force algorithm that on input M searches for the least ny; such
that M on empty input tape has an accepting run of length ny;
— the algorithm A on input (@, n%).

If the brute force algorithm halts first and outputs nyg, then B checks whether
ny < n and answers accordingly.

Assume now that A halts first. Then A accepts (om,n?) and ((pum,n?) ¢
p-GODEL and hence (M, n) ¢ p-Acc< by (1) and therefore) B accepts.

The algorithm B accepts the complement of p-ACC<; note that if no run of A
accepts (o, n%), then (o, n?) € p-GODEL and therefore M accepts the empty
input tape by (2), so that in this case the computation of the brute force algorithm
eventually will stop.

It remains to see that B accepts the complement of p-ACC< in the time required
by XNP .. We consider two cases.

M halts on empty input tape: Then an upper bound for the running time is given
by the time that the brute force algorithm needs to compute ny (and the time
for the check whether ny < n); hence we have an upper bound of the form n®.

M does not halt on empty input tape: Then, by (2), we have (¢op, n?) ¢ p-GODEL;
hence an upper bound is given by the running time of A on input (o, n?). O

It should be clear that Lemmas 15-18 together with Lemma 10 yield a proof
of Proposition 14.

6. Optimal algorithms and the logic L<

In this section we interpret Theorem 2 in terms of the expressive power of a
certain logic.

For our purposes a logic L consists

— for every vocabulary 7 of a set L[7] of strings, the set of L-sentences of
vocabulary T and of an algorithm that for every vocabulary 7 and every
string ¢ decides whether & € L[7] (in particular, L[] is decidable for
every T);

— of a satisfaction relation Er; if (A, @) € Er, written A Er ¢, then A is

a 7T-structure and ¢ € L[7] for some vocabulary 7; furthermore for each
13



¢ € L[7] the class Mod(y) := {A | A EL ¢} of models of ¢ is closed
under isomorphisms.
Definition 19. Let L be a logic.
(a) L is a logic for P if for all vocabularies 7 and all classes C' (of encodings) of
T-structures closed under isomorphisms we have

CeP <« (C=Mody(p) for some ¢ € L[T].

(b) L is a P-bounded logic for P if (a) holds and if there is an algorithm A
deciding Ef, (that is, for every structure A and L-sentence ¢ the algorithm
A decides whether A p (p) and if moreover, for fixed ¢ the algorithm A
runs in time polynomial in ||.A]|.

The relationship of these concepts with topics of this paper is already exemplified

by the following simple observation.

Proposition 20. Let L be a logic for P and define p-Er by

p- ):L
Instance: A structure A and an L-sentence
©.
Parameter: ||
Problem: Is AL ¢

Then L is a P-bounded logic for P if and only if p-Er, € XP ;.
This relationship suggests the following definition.
Definition 21. L is an NP-bounded logic for P if it is a logic for P and p-
Er€ XNPyy,.
We introduce the logic L<, a variant of LFP.? For every vocabulary 7 we set
L<[7] = LFP[7<]

(recall that 7 := 7 U {<}, with a new binary <) and define the semantics by
AFL. ¢ <= (gp is < |Al|-invariant and
(A, <) ELrp ¢ for some ordering < on A).

Hence, by the previous proposition and the definition of |1_, we get:
Proposition 22. (1) The following statements are equivalent:

— L< is a P-bounded logic for P.

- p-}:LSE XPuni-

— p-LFP-NOT-INV € XP,.

3In this section, if the structure B is a model of an LFP-sentence ¢ we write A ELrp ¢

instead of A [ .
14



(2) The following statements are equivalent:
— L< is an NP-bounded logic for P.
— p-Fr.€ XNP ;.
— p-LFP-NOT-INV € co-XNP ;.

By Theorem 2 and Proposition 14 we get:

Theorem 23. TAUT has an optimal proof system if and only if L< is an NP-
bounded logic for P.

Hence, if TAUT has an optimal proof system, then there is an NP-enumeration
of P-easy classes of graphs closed under isomorphisms. We do not define the con-
cept of NP-enumeration explicitly, however the enumeration obtained by applying
the algorithm in XNP,,; for p- L. to the classes Mod,_(¢(GRAPH) A ¢), where

©(GRAPH) axiomatizes the class of graphs and 1 ranges over all sentences of L<
in the language of graphs, is such an NP-enumeration. Note that even without
the assumption that TAUT has an optimal proof system we know that there is
such an NP-enumeration of P-easy classes of graphs closed under isomorphisms,
as the following variant L<(not) of L< is an NP-bounded logic for P. The logic
L<(not) has the same syntax as L< and the semantics is given by the following
clause:

AEL ot ¢ = not A Er_ .

As the class P is closed under complements, L<(not) is a logic for P. And L<(not)
is an NP-bounded logic for P, as p-LFP-NoOT-INV € XNP ;.
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