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Abstract. We present sharpened lower bounds on the size of cut free proofs
for first-order logic. Prior lower bounds for eliminating cuts from a proof
established superexponential lower bounds as a stack of exponentials, with the
height of the stack proportional to the maximum depth d of the formulas in the
original proof. Our new lower bounds remove the constant of proportionality,
giving an exponential stack of height equal to d − O(1). The proof method is
based on more efficiently expressing the Gentzen-Solovay cut formulas as low
depth formulas.

1. Introduction

The Gentzen cut elimination procedure is a cornerstone of mathematical logic,
and is one of the primary tools for establishing the consistency of proof systems,
for extracting the constructive content of proofs, and for classifying the strengths
of formal systems in terms of their consistency strengths or their computational
complexity. It is well-known that cut free proofs may need to be superexponen-
tially larger than proofs that contain cut, as shown originally by Statman [20, 21]
and Orevkov [14]. The present paper sharpens these lower bounds to (almost)
match the known upper bounds.

All proofs considered in this paper will be Gentzen-style sequent calculus (LK)
proofs in first-order logic. The depth of a formula is defined to be the height of
a formula when viewed as a tree. The depth of a proof is the maximum depth
of a cut formula in P . The applications in the present paper will be for proofs
that have low depth endsequents, and for these proofs, the depth will equal the
maximum depth of any formula in the proof. As defined below, the height of a
proof is the maximum number of non-weak inferences along any branch in the
proof.

Let the base 2 superexponential function be defined by 2n
0 = n and 2n

k+1 = 22n
k .

The best known upper bounds on the size of proofs generated by cut elimi-
nation state that if a proof P has depth d, then P can be transformed into

a cut free proof with size 2
h(P )
d+1 , where h(P ) is the height of P ; for this see
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Orevkov [15, 16], Zhang [24, 25], and the textbook by Troelstra and Schwicht-
enberg [22]. Beckmann-Buss [4] give a slightly more general result that applies
in the presence of non-logical axioms. Other authors have derived similar, but
not quite as sharp upper bounds, including [12, 5]. Baaz and Leitsch [2, 3] have
shown that better upper lower bounds hold in some special cases.

The known lower bounds for the size of cut free proofs are also superexponen-
tial. The sharpest lower bounds for the Gentzen sequent calculus state that there
is a fixed constant ǫ, 0 ≤ ǫ < 1, and proofs P of arbitrarily large depth d, such
that any cut free proof Q with the same endsequent of P has size greater than

2
h(P )
ǫd . The first such result was proved by Orevkov [14], who established this with
ǫ ≈ 1

4
, in predicate logic without function symbols. Gerhardy [10] obtained ǫ ≈ 1

2
for first-order logic with function symbols.

The main result of this paper is to improve the lower bound on the size of cut

free proofs to obtain ǫ ≈ 1. More precisely, we replace the bound 2
h(P )
ǫd with the

bound 20
d−c, for c ∈ N a small constant. This is nearly optimal, as h(P ) = O(d).

Our new lower bound also corrects an error in the literature [26], which claimed

to have established an upper bound of 2
h(P )
d/2 on the size of cut free proofs.

Our lower bound can be compared to some upper bounds and lower bounds
obtained originally by Zhang [24, 25] and refined by Gerhardy [11, 10]. They
prove that if n is an upper bound on the the nesting of (alternations of) quanti-
fiers in cut formulas, then the size of a cut free proof can be bounded essentially

by 2
h(P )
n+2 . (This is a somewhat simplified and weakened restatement of Zhang’s

and Gerhardy’s upper bounds). Furthermore, Gerhardy [10] proved these con-
structions are essentially optimal by showing a matching lower bound based on
Gentzen-Solovay inductive initial segments.

Our lower bound, like the earlier lower bounds of Statman, Orevkov, Gerhardy,
and others, is based on proving that an inductive predicate I contains a large
number 20

n. Loosely speaking, it is shown that there are short proofs of I(20
n),

but that any cut free proof of this requires superexponential size. These short
proofs are based on defining inductive initial segments (which are sometimes
called “inductive cuts”, confusingly, since they have nothing to do with cut infer-
ences). The method of defining inductive initial segments goes back essentially to
Gentzen [8] who used it for proving transfinite induction. It became well-known
from Solovay [19], who introduced it for use in bounded arithmetic. A num-
ber of other authors have also used this technique or similar ones, independently
rediscovering it on at least two occasions. These include Statman [20, 21], Yessin-
Volpin [23], Nelson [13], Paris-Dimitracopoulos [17], Pudlák [18], Baaz-Leitsch [1],
and Gerhardy [10].

Orevkov’s lower bound [14] constructs short proofs of I(20
n), with cuts, using

intermediate formulas that have depth d = O(n). Our principal innovation is to
improve the depth of these formulas to n + O(1). Section 2 establishes notation
by proving a form of Statman’s and Orevkov’s lower bounds, but with ǫ ≈ 1

2
, over
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a first-order language with function symbols. This construction is taken almost
directly from [18, 10]. In Section 3, we improve this to obtain our new lower
bound ǫ ≈ 1. Section 4 outlines how to prove the same results for first-order logic
without function symbols, also with ǫ ≈ 1.

2. Preliminaries

We begin with a short review of our formal systems, however the reader is
presumed to have basic familiarity with the sequent calculus and cut elimination,
as well as at least some familiarity with bounded arithmetic systems such as
S1

2 or I∆0 + exp. We work with a sequent calculus for classical logic over the
connectives ∀, ∃, ∧, ∨, ⊃, and ¬. The logical initial sequents are A→A, for
A an atomic formula. The rules of inference are as shown below.

Γ, A,B,Λ→∆
Exchange: left

Γ, B, A,Λ→∆
Γ→∆, A,B,Λ

Exchange: right
Γ→∆, B, A,Λ

A,A,Γ→∆
Contraction: left

A,Γ→∆
Γ→∆, A, A

Contraction: right
Γ→∆, A

Γ→∆Weakening: left
A,Γ→∆

Γ→∆Weakening: right
Γ→∆, A

Γ→∆, A
¬: left

¬A,Γ→∆
A,Γ→∆

¬: right
Γ→∆,¬A

A,B,Γ→∆
∧: left

A ∧ B,Γ→∆
Γ→∆, A Γ→∆, B

∧: right
Γ→∆, A ∧B

A,Γ→∆ B,Γ→∆
∨: left

A ∨ B,Γ→∆
Γ→∆, A,B

∨: right
Γ→∆, A ∨ B

Γ→∆, A B,Γ→∆
⊃: left

A ⊃ B,Γ→∆
A,Γ→∆, B

⊃: right
Γ→∆, A ⊃ B

A(t),Γ→∆
∀: left

(∀x)A(x),Γ→∆

Γ→∆, A(b)
∀: right

Γ→∆, (∀x)A(x)

A(b),Γ→∆
∃: left

(∃x)A(x),Γ→∆

Γ→∆, A(t)
∃: right

Γ→∆, (∃x)A(x)

Γ→∆, A A,Γ→∆
Cut

Γ→∆
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The ∀: right and ∃: left inferences must satisfy the usual eigenvariable condition
that b does not appear in the lower sequent.

The first six inferences are called weak inferences: these are needed since we
treat cedents as sequences of formulas, rather than as sets or multisets of formulas.
However, the size, |P |, of a proof is defined to be equal to the number of non-
weak inferences. The height of P is denoted h(P ) and is the maximum number
of non-weak inferences along any branch in the proof.

Definition The depth of a formula A is defined by

a. If A is atomic, then depth(A) = 0.
b. If A is ¬B, (∃x)B, or (∀x)B, then A = 1 + depth(B).
c. If A is B ◦ C for ◦ one of ∨, ∧ or ⊃, then

depth(A) = 1 + max{depth(B), depth(B)}.

The depth of a cut inference is the depth of its cut formula. The depth of a
proof P is the maximum depth of cuts appearing in P .

A subformula of a first-order formula φ is any formula that can be obtained
from any sub-formula χ of φ by replacing the freely occurring variables in χ

that were bound variables in φ with arbitrary terms. Thus, for example, the
subformulas of (∀x)A(x) include all the subformulas of A(t) for any term t. Note
that the depth of a subformula of φ has depth ≤ depth(φ).

We shall use a special notion for an “extended” superexponential function.
Let ~u be a finite sequence ~u = 〈u1, . . . , uk〉, with k ≥ 1. The value 2~u is defined
inductively. For ~u = 〈u1〉, a sequence of length one, 2〈u1〉 = u1. And, for ~u =

〈u1, . . . , uk〉, 2~u = u1 + 22〈u2,...,uk〉 . For instance,

2〈a,b,c,d〉 = a + 2b+2c+2
d

.

We now review the prior superexponential lower bound for cut elimination,
based on Pudlák’s exposition [18], but with the better lower bound of ǫ ≈ 1

2
as

obtained by Gerhardy [10]. We let T be a finitely axiomatized theory of bounded
arithmetic which contains a finite fragment of Cook’s theory PV plus the expo-
nential function 2i and the superexponential functions 2x

i and 2〈~u〉. The language
of T contains function symbols for sufficiently many polynomial time computable
functions to formalize the needed arguments described below: this includes se-
quence coding, and proving simple properties about the needed polynomial time
computable functions and about the exponential and superexponential functions.
The theory T is axiomatized by a finite set of purely universal formulas.
T contains an additional, uninterpreted, unary predicate symbol I(x), with

the two axioms I(0) and (∀x)(I(x) ⊃ I(Sx)). The predicate I is not permitted
in induction axioms. The predicate I(x) intuitively means that induction works
up to x, or that x can be reached from zero by repeatedly adding 1. Define the
formula ψ0(x) to be I(x), and for i ≥ 0, define ψi+1(x) to be the formula

(∀y)(ψi(y) ⊃ ψi(y + 2x)).
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There are then simple proofs of

(1) ψi(0) and ∀x(ψi(x) ⊃ ψi(Sx)).

These are proved for successive values of i using simple properties of zero and
successor; namely, as we show below, the formulas (1) for i = k + 1 are proved
from those for i = k. In addition, as we detail below, it is easy to prove that
ψi+1(x) ⊃ ψi(2

x).
Let Γ be the set of universal formulas that axiomatize T , including the

two axioms for the predicate I(x). As we describe below, the sequents
ψi+1(x)→ψi(2

x) can be proved with a proof of height O(i) which contain cuts on
only atomic formulas and on subformulas of ψi. Likewise, the sequent →ψi(0)
is proved with proofs with height O(i) and with the same cut complexity. Com-
bining these sequents with cuts, we get a proof Pℓ of Γ→I(20

ℓ) which has height
O(i) and in which all cut formulas are either atomic or are subformulas of ψℓ(x).

Let Qℓ be a proof with the same conclusion Γ→I(20
ℓ) as Pℓ in which all cuts

are on quantifier-free formulas. We claim that the size of Qℓ is ≥ 20
ℓ . To prove

this, we modify Qℓ in the following fashion. Find each ∀:left inference in Qℓ,
and omit this inference and instead let the auxiliary formula of the inference
remain in the antecedent of that sequents and in all sequents below that sequent,
down to the endsequent. For this, contractions on (formerly universal) formulas
are omitted. The result is a proof Q∗

ℓ of a sequent Γ∗→I(20
ℓ) in which every

formula in Γ∗ is a quantifier-free substitution instance of an axiom of T . Without
loss of generality, Γ∗ does not contain any variables, since any variables that are
present may be replaced everywhere with the constant 0. Note that the number
of formulas in Γ∗ is less than or equal to the number of ∀:right inferences in Qi

plus the number of quantifier-free axioms in the (finite) set Γ. In particular, the
number of substitution instances of I(x) ⊃ I(x + 1) in Γ∗ is less than the size
of Qℓ.

Each such substitution instance of I(x) ⊃ I(x + 1) is a formula of the form
I(s) ⊃ I(s+ 1), for s a closed term. Let n0 ∈ N be the least integer so that no s
has value equal to n0. Of course n0 must be less than the size of Qℓ. On the other
hand, we claim that n0 ≥ 20

ℓ . Otherwise, we could falsify the sequent Γ∗→I(20
ℓ)

in the standard model of the integers by letting I(n) hold for exactly the values
n ≤ n0. It follows that the size of Qℓ is greater than or equal to 20

ℓ .
This is enough to establish the superexponential lower bound on cut free proofs.

However, it is worth examining in more detail how the proof Pℓ can be formed.
First, Pℓ derives the sequents

(2) Γ→ψi(0)

and

(3) Γ, ψi(a)→ψi(S(a))
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for 0 ≤ i ≤ ℓ, where a is a free variable. For i = 0, these are simple to prove
without cuts. For the induction step, Pℓ derives (2) with i = k+1 from the three
sequents

(i) Γ, ψk(a)→ψk(S(a)),
(ii) Γ→S(a) = a+ 20,
(iii) S(a) = a+ 20, ψk(S(a))→ψk(a + 20),

using cuts on the formulas S(a) = a + 20 and ψk(S(a)) followed by an ⊃;right
and a ∀:right. The sequent (i) is (3) with i = k. Sequent (ii) is provable by a
fixed size proof. And, (iii) is provable using only cuts on subformulas of ψk by a
proof of height O(k). (This last fact is readily proved by induction on the depth
of ψk from the fact that ψk has depth O(k).)

As the second part of the induction step, Pℓ derives (3) for i = k + 1 from the
sequents

(i) ψk+1(a), ψk(b)→ψk(b+ 2a),
(ii) ψk+1(a), ψk(b+ 2a)→ψk((b+ 2a) + 2a),
(iii) Γ→(b+ 2a) + 2a = b+ 2S(a),
(iv) (b+ 2a) + 2a = b+ 2S(a), ψk((b+ 2a) + 2a)→ψk(b+ 2S(a)),

using cuts on the atomic formula (b + 2a) + 2a = b + 2S(a) and the formulas
ψk(b+ 2a) and ψk((b+ 2a) + 2a), followed by an ⊃:right and a ∀:right. Note that
(i) and (ii) are readily provable by fixed proof schemes without any cuts.

After proving all the instances of (2) and (3), Pℓ derives the sequents

(4) Γ, ψk+1(a)→ψk(2
a)

for 0 ≤ k < ℓ. This sequent is proved from the sequents

(i) ψk+1(a), ψk(0)→ψk(0 + 2a),
(ii) Γ→ψk(0),
(iii) Γ→0 + 2a = 2a,
(iv) 0 + 2a = 2a, ψk(0 + 2a)→ψk(2

a)

using cuts on the formulas 0 + 2a = 2a, ψk(0) and ψk(0 + 2a). Note that (i) is
provable by a small proof with no cuts, and that (ii) is the same as (2).

Finally, Pℓ derives Γ→ψ0(2
0
ℓ) from the sequent (2) with i = ℓ, the sequents

(4) for 0 ≤ i < ℓ, and the sequents

(i) Γ→220
i = 20

i+1,

(ii) 220
i = 20

i+1, ψℓ−i−1(2
20

i )→ψℓ−i−1(2
0
i+1),

using cuts on the indicated formulas.
By inspection, the height of Pℓ is O(ℓ). Its depth is 2ℓ, since ψℓ(0) is the cut for-

mula of maximum depth. We have thus reproved, taking d = 2ℓ, the prior results
for lower bounds on cut-elimination that were described in the introduction:

Theorem 1. There are proofs Pℓ of sequents Sℓ of depth d and height O(d) such

that any cut free proof of Sℓ requires size 20
(1/2)d. The formulas in Sℓ are purely

universal and have depth O(1).
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The proof Pℓ constructed above has exponential size because the formulas ψi

have exponential size, O(2i). These formulas could be replaced by polynomial size
formulas, as is done by Pudlák [18] using constructions from Ferrante-Rackoff [7].
They could even be made linear size using the refinements to [7] by [6]. With
these modifications, Pℓ would be polynomial size; its depth would become larger
than 2ℓ, although it would still be O(ℓ).

3. Improved lower bounds for cut-elimination

We now improve Theorem 1 to establish the ǫ ≈ 1 version of the lower bounds
on the size of cut-free proofs. The idea is to modify the formulas ψi used in Pℓ so
that they have depth i+ O(1) instead of depth 2i. For this we shall prove there
are formulas ϕi (equivalent to ψi) such that ϕi(x) has depth i+O(1), and ϕ0(x)
is I(x), and the formulas

(5) ϕi+1(x) ↔ (∀y)(ϕi(y) ⊃ ϕi(y + 2x))

have proofs of height O(i) and depth i+O(1). The proof Pℓ can then be carried
out using the ϕi’s in place of the ψi’s, and this will give the desired lower bound
on cut elimination.

Although the details will be a bit complicated, the intuition behind the con-
struction of the ϕi’s is simple. The formula ψi(w), although exponential size, has
prenex form that is a Πi-formula after like quantifiers are collapsed. Thus, ψi(w)
can be equivalently expressed as a formula ϕi(w) of the form

(6) (∀y0)(∃y1) · · · (Qyi−1)R(〈y0, . . . , yi−1〉, w),

where R is a superexponential-time computable relation. We will not be able to
add R as a predicate symbol to T as this seems to be precluded by the fact that
the predicate symbol I cannot be used in induction axioms. However, we will
be able to introduce a finite set of new predicate and function symbols to the
theory T , which will enable T to define R as a constant depth formula. After
doing this, the principal task is to prove that the formulas (1) with ψi replaced
with ϕi have T -proofs of depth i+O(1).

We begin by describing how to express the condition R. Recall that ψ0(z)
is I(z), and that ψ1(y) is ∀z(I(z) ⊃ I(z + 2y)). Expanding further gives that
ψ2(x) is

∀y( ∀z(I(z) ⊃ I(z + 2y)) ⊃ ∀z(I(z) ⊃ I(z + 2y+2x

)) ),

and that ψ3(w) is

∀x[ ∀y( ∀z(I(z) ⊃ I(z + 2y)) ⊃ ∀z(I(z) ⊃ I(z + 2y+2x

)) ) ⊃

∀y( ∀z(I(z) ⊃ I(z + 2y)) ⊃ ∀z(I(z) ⊃ I(z + 2y+2x+2
w

)) ) ].

To better see the pattern, consider a “skeletal” tree representation of ψ3(w).
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I(z) I(z + 2y) I(z) I(z + 2y+2x

) I(z) I(z + 2y) I(z) I(z + 2y+2x+2
w

)

∀z ∃z ∃z ∀z

∃y ∀y

∀x

The skeletal tree shows the quantifier structure of ψ3, but omits the propositional
connectives to keep it simpler. The skeletal tree can be written a more generic
form as follows:

I(t000) I(t001) I(t010) I(t011) I(t100) I(t101) I(t110) I(t111)

∀2x00 ∃1x01 ∃1x10 ∀0x11

∃1x0 ∀0x1

∀0xǫ

This is intended to represent the fact that ψ3 is equivalent to the prenex formula

∀xǫ∀x1∀x11∃x0∃x01∃x10∀x00[((I(t000) ⊃ I(t001)) ⊃ (I(t010) ⊃ I(t011)))

⊃ ((I(t100) ⊃ I(t101)) ⊃ (I(t110) ⊃ I(t111)))].

The superscripts on the quantifiers indicate the order in which quantifiers are
pulled out when putting ψ3 in prenex form. For example, x11 is in the first (out-
ermost) block of quantifiers of ψ3’s prenex form instead of the third (innermost)
block.

The subscripts on the t’s and x’s indicate the path in the tree to reach that
node, with “0” and “1” indicating left and right respectively. For instance, the
term t011 (which is in fact the term x01 + 2x0+2xǫ

) is reached by starting at the
root and descending left, then right, then right. The empty sequence is denoted
by “ǫ”.

The pattern for ψ3 generalizes to form skeletal trees of ψi, i ≥ 1. The formation
rules are as follows. The quantified variables in ψi are x~u, for ~u ∈ {0, 1}<i. The
level ℓ = ℓ(~u) on the quantifier Qℓx~u is equal to the number of 0’s in ~u. A variable
x~u is universally quantified iff its level ℓ(~u) is even. The atomic subformulas of
ψi are the terms t~u for ~u ∈ {0, 1}i. If ~v is a sequence, let |~v| denote the length
of ~v. For p ≤ |~v|, let ~v ↾ p denote the sequence containing the first p elements
of ~v. For t~u a term, ~u ∈ {0, 1}i, we define ν~u to be the sequence

ν~u := 〈x~u↾(i−1), x~u↾(i−2), . . . , x~u↾1, xǫ, w〉,

namely, the variables along the path to node ~u plus the free variable w: this is
the sequence of variables that potentially could appear in t~u. Then, t~u is the
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superexponential term

t~u := 2ν~u↾(r+1)

where r is the number of contiguous 1’s occurring at the end of ~u. For example,
in the formula trees above, for t011, there are two 1’s at the end of “011”, t011 is
equal to 2〈x01,x0,xǫ〉, the extended superexponential function with the subscript a
sequence of length 3 = r + 1.

A variable yℓ in ϕi — see (6) above — will code a sequence containing the
values of the variables x~u with level ℓ(~u) equal to ℓ. Letting ~y be 〈y0, . . . , yi−1〉,
the entry yℓ is “well-formed” provided that it codes a function with domain equal
to the set of sequences x~u with |~u| < i and ℓ(~u) = ℓ. If yℓ is not well-formed,
then by convention it codes the constant function which is equal to the zero on
all inputs in its domain.

For ~u ∈ {0, 1}<i, we write X(~u) to mean the value that ~u is mapped to by
the function encoded by ~y. (The intuition is that X(~u) equals the value of the
variable x~u.) We write t(~u) for the value of t~u when the variables x~u′ are given the
values X(~u′). Note that, although it is suppressed in the notation, X(~u) depends
on ~y. Also, t(~u) depends on both ~y and w, and we sometimes will write it as
t(~u, ~y, w).

Let n be a power of two. Suppose ~σ ∈ {T, F}n, ~σ = 〈σ0, . . . , σn−1〉, where
T and F stand for “True” and “False”. Define the relation BIT(~σ) by (“BIT”
stands for “binary implication tree”)

BIT(~σ) =

{

σ0 if |~σ| = 1

BIT(〈σ0, . . . , σn/2−1〉) ⊃ BIT(〈σn/2, . . . , σn−1〉) otherwise.

We identify binary vectors ~u in {0, 1}i with integers, and write nm(~u) for the
integer with binary representation given by ~u.

We now can define the formula R(~y, w) in (6) to be

(∃~σ ∈ {0, 1}2i

)(BIT(~σ) ∧ (∀~u ∈ {0, 1}i)[σnm(~u) = 1 ↔ I(t(~u))]).

(Note that ↔ is not in our first-order language; instead A↔ B is an abbreviation
for (A ⊃ B) ∧ (B ⊃ A).)

This completes the definition of the formulas ϕi(w). Clearly, ϕi has depth
i+O(1), namely depth i plus the depth of R.

We now give a sketch of the proof that the equivalences (5) have T -proofs
of depth i + O(1). Note that the intuition behind the definition of R is that
R states that a tree of implications holds. We define formulas S0 and S1 that
express, respectively, the hypothesis and the conclusion of the implication, so
that R is equivalent to S0 ⊃ S1. We do this in a general way so that we can do
prenex quantifier operations with the formulas S0 and S1.

Suppose yj codes a function f with domain the set of ~u’s with |~u| < i and
ℓ(~u) = j for j > 0. We write yj�0 for the code of the function g that has as domain
the set of strings u1 · · ·uk such that 0u1 · · ·uk is in the domain of f and such that
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g(u1 · · ·uk) = f(0u1 · · ·uk). Define yj�1 similarly. For ~y = 〈y1, . . . , yi−1〉, define
t0 so that

t0(~u, 〈y0, . . . , yk−1, yk�0, . . . , yi−1�0〉, k)

is equal to t(0~u, 〈y0, . . . , yi−1〉, w) for all ~u’s of length i − 1. (Note that t0 does
not depend on w.) Likewise, define t1 so that

t1(~u, 〈y0, . . . , yk−1, yk�1, . . . , yi−1�1〉, w, k)

is equal to t(1~u, 〈y0, . . . , yi−1〉, w) for all ~u’s of length i−1. Let S0(〈y0, . . . yi−1〉, k)
be the formula

(∃~σ ∈ {0, 1}2i−1

)(BIT(~σ) ∧ (∀~u ∈ {0, 1}i−1)[σnm(~u) = 1 ↔ I(t0(~u, ~y, k))])

Let S1(〈y1, . . . , yi−1〉, w, k) be

(∃~σ ∈ {0, 1}2i−1

)(BIT(~σ) ∧ (∀~u ∈ {0, 1}i−1)[σnm(~u) = 1 ↔ I(t1(~u, ~y, w, k))]).

Clearly we have R(~y, w) is equivalent to S0(~y, w, i) ⊃ S1(~y, w, i). And, this has a
straightforward proof in the theory T .

For k = i, i−1, . . . , 2, 1, consider the formulas

(∀y0) · · · (∃yk−1)[(∃yk)(∀yk+1) · · · (∃yi−1)S0(~y, k)(7)

⊃ (∀yk)(∃yk+1) · · · (∃yi−2)S1(~y, w, k)],

where the notation here assumes k and i are even (and the obvious changes are
made when k or i is odd). These formulas correspond to the formulas that are
obtained as ϕi(w) is converted out of prenex form, and into a quantifier pattern
that matches that of the righthand side of (5). These formulas are can be proved
equivalent to each other, using proofs of size polynomial in i and using formulas
that are only slightly more complicated than the formulas (7). The equivalences
of the formulas (7) are proved straightforwardly by noting which parts of the
(functions coded by the) variables yℓ are used by S0 and S1 and using prenex
reasoning. Also, note that S1 does not depend on yi−1, so the quantifier ∀yi−1

has been omitted in front of S1. (The notation ~y thus variously denotes either
〈y0, . . . , yi−2〉 or 〈y0, . . . , yi−1〉, as appropriate.)

Thus, at k = 1, the formula

(8) (∀y0)[(∀y1)(∃y2) · · · (∃yi−1)S0(~y, 1) ⊃ (∃y1)(∀y2) · · · (∃yi−2)S1(~y, w, 1)]

is equivalent to ϕi(w). The value y0 codes a function with domain 1<i: y0 can be
split into two parts, the first part codes a value yǫ and the remaining part codes
values for f(1j) for all 1 ≤ j < i. Note that S0 depends only on the yǫ part of y0.
Formula (8) is thus equivalent to

(∀yǫ)[(∀y1)(∃y2) · · · (∃yi−1)S0(〈yǫ, y1, . . . , yi−1〉, 1)

⊃ (∀y0)(∃y1)(∀y2) · · · (∃yi−2)S1(〈yǫ ∪ y0, y1, . . . , yi−2〉, w, 1)],

where the notation yǫ ∪ y0 denotes the number that codes the union of the func-
tions coded by yǫ and y0.
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Paying attention to the way that S1 uses w and the value yǫ, and letting yǫ(x)
denote the code of the function f with domain {ǫ} such that f(ǫ) = x, the last
formula is equivalent to

(∀x)[(∀y1)(∃y2) · · · (∃yi−1)S0(〈yǫ(x), y1, . . . , yi−1〉, 1)

⊃ (∀y0)(∃y1)(∀y2) · · · (∃yi−2)S1(〈y0, y1, . . . , yi−2〉, w + 2x, 0)],

The hypothesis of the implication is equivalent to ϕi−1(x): to prove this equiva-
lences in T , just prove that the subformulas of the hypothesis are equivalent to
the corresponding subformulas of ϕi−1(x) starting with the quantifier-free part,
and working out to the entire formula. Similarly, the conclusion of the implication
is equivalent to ϕi−1(w + 2x).

That completes the sketch of the T -proof that ϕi(w) is equivalent to
∀x(ϕi−1(x) ⊃ ϕi−1(w + 2x)). This, plus the lower bound on the size of Qℓ as
established in Section 2, suffices to establish the following theorem.

Theorem 2. There is a constant c ∈ N and proofs Pℓ of depth ≤ ℓ + c and

height O(ℓ) such that every cut-free proof Qℓ with the same conclusion as Pℓ has

height at least 20
ℓ . Furthermore, the same holds for Qℓ containing cuts on only

quantifier-free formulas.

4. Lower bounds for relational languages

The superexponential lower bound of Theorem 2 was obtained for a language
including a number of function symbols, including symbols for exponentiation and
superexponentiation. The present section shows that the use of function symbols
is entirely unnecessary, and the same lower bound can be obtained for a purely
relational language. In prior work, Orevkov already obtained superexponential
lower bounds for cut elimination in a purely relational language, but only with
ǫ ≈ 1

4
.

The theory T used a finite set of function and relation symbols axiomatized
by a set Γ of universal axioms. By standard techniques, the theory T can be
converted to a purely relational theory T rel with a ∀∃-axiomatization. For this,
each function symbol f of T is replaced by a relation symbol Gf that defines the
graph of f ; that is, Gf(~x, y) indicates that f(~x) = y. The set Γ of universal axioms

can be replaced by a set of axioms Γrel := Γ0 ∪ Γ1 where Γ0 is a set of universal
axioms and Γ1 contains the ∀∃-statements asserting the totality of the functions.
In particular, for each function f , Γ1 contains the formula (∀~x)(∃y)Gf(~x, y). Γrel

axiomatizes a theory T rel which is equivalent to T in the sense that models of T
and T rel are essentially the same up to the choice of language.

The construction in the previous section of the proofs Pℓ can be modified
straightforwardly to give proofs of the corresponding statements in the new lan-
guage. Formulas ϕrel

i that express the same condition as ϕi can be defined which
still have depth i + O(1) (the constant hidden in the O(1) will be only slightly
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larger than before). Furthermore, there are proofs of

Γrel→ϕrel
k (0)

and of

Γ, ϕrel
k (a), b = 2a→ϕrel

k−1(b)

which have height O(k) and depth k+O(1). Here the formula “b = 2a” does not
use the exponential 2a as a function, but instead is a binary relation on a and b.
Combining these proofs for 1 ≤ k ≤ ℓ, we can form a proof P rel

ℓ of height O(ℓ)
and depth ℓ+O(1) of the sequent

Γrel, a0 = 20, a1 = 2a0 , a2 = 2a1 , . . . , aℓ = 2aℓ−1→I(aℓ).

Let Qrel
ℓ be a cut-free proof of this sequent (or, even a proof in which all cut for-

mulas are quantifier-free). We claim that Qrel
ℓ must have size ≥ 20

ℓ . To prove this,
we extend the lower bound argument used earlier for Qℓ in Section 2. This will
involve (a) removing all quantifier inferences in Qrel

ℓ and removing contractions
on formulas that (formerly) had quantifiers, and (b) at the same time, assigning

an integer value to every free variable in Qrel
ℓ .

Without loss of generality, Qrel
ℓ is in free variable normal form. The only

free variables in the endsequent are the variables ak, and these are assigned
the integers 20

k+1. The proof Qrel
ℓ is then modified iteratively by removing one

quantifier inference at a time. At each stage in this process, we will have assigned
integer values to all variables that occur below all quantifiers. To remove the
next quantifier, choose the lowest remaining quantifier inference. If it is a ∀:left
inference, just omit the inference, and allow the auxiliary formula in the upper
sequent to remain unchanged. In addition, omit all contraction inferences on that
formula and its descendants in the proof. On the other hand, suppose the lowest
quantifier inference is an ∃:left. This will be an inference of the form

Gf(~s, b),Π→∆

(∃y)Gf(~s, y),Π→∆

where ~s is a vector of terms and all variables in the terms in ~s have already
been assigned integer values ~n. Modify Qrel

ℓ by omitting this ∃:left inference and
propagating the formula Gf (~s, b) down to the endsequent in place of (∃y)Gf(~s, y).
The free variable b is assigned the integer value f(~n) so as to make Gf(~s, b) true.

Once all the quantifier inferences are removed fromQrel
ℓ , we obtain a proofQrel∗

ℓ

in which all formulas are quantifier-free. The number of substitution instances
of I(x) ⊃ I(Sx) in the antecedent of the endsequent of Qrel∗

ℓ is less than the

size |Qrel
ℓ | of Qrel

ℓ . By a similar argument as before, this implies that |Qrel
ℓ | is

≥ 20
ℓ . This gives the following lower bound for cut elimination in relational

languages.

Theorem 3. Theorem 2 holds in the purely relational language described above.
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Although our lower bounds are very close to optimal, there is still a small gap
between the lower bounds of Theorems 2 and 3 and the known upper bounds
discussed in the introduction. Our lower bounds have the form 20

ℓ . But, since Pℓ

has height O(ℓ) and depth ℓ+O(1), the upper bounds of [15, 24, 25] on the size
of cut-free proofs are equal to

2
O(ℓ)
ℓ+O(1) = 20

ℓ+log∗(ℓ)+O(1),

where log∗ denotes the inverse superexponential function. It is open how to close
the log∗ gap between the height of superexponential size upper and lower bounds.

Acknowledgement. Wenhui Zhang provided helpful comments on an earlier
draft of this paper.
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